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Abstract
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ties, and produce spikes and crashes in price-dividend ratios and volatilities. Furthermore,
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1. Introduction

Financial markets play a key role in facilitating risk sharing and efficient allocation of
assets among investors. However, trading in financial assets often entails moral hazard
due to investors’ incentives to default on their risky positions. The moral hazard can be
alleviated by collateralized trades whereby risky positions are backed by financial capital
that can be seized in the event of default. The latter arrangement restores the functionality
of financial markets at a cost of restricting risk sharing among investors. In this paper, we
develop a parsimonious model which sheds light on the economic effects of such restrictions
and show that they give rise to rich dynamics of asset prices. In particular, we show how
collateralization inflates asset prices, generates repeated booms and busts in the stock
market, and leads to spikes, crashes, and clustering of stock return volatilities, as well as
cycles of high and low leverage. Our analysis is facilitated by closed-form solutions and
the stationarity of equilibrium processes.

We consider a pure exchange economy with one consumption good produced by a tree
with i.i.d. shocks, similar to Lucas (1978). The economy is populated by two representa-
tive investors with heterogeneous constant relative risk aversion (CRRA) preferences over
consumption and heterogeneous beliefs about the output growth rate. Each investor re-
ceives a fraction of the tree’s output as labor income and invests total wealth in financial
assets such as bonds and stocks. The investors have limited liability and can re-enter the
financial market following defaults on risky positions in financial assets. In the event of
default the financial assets can be seized by counterparties but labor income cannot be
expropriated. The arising moral hazard problem is resolved by requiring risky positions
to be backed by collateral in such a way that each investor’s total financial wealth stays
positive at all times, and hence, investors can always pay back to counterparties. We also
allow the aggregate consumption to experience rare large negative shocks, which help us
explore how mere anxiety about the possibility of a production crisis affects the economy
by tightening collateral constraints. Our closed-form solutions allow us to prove some of
the results for general model parameters rather than for particular calibrations.

First, we show that collateral constraints increase the prices of all tradable assets with
positive cash flows relative to a frictionless economy. Moreover, these increases in prices
are larger when investors are closer to their default boundaries. In particular, the stock
price-dividend ratio is a U-shaped function of one of the investor’s share of the aggregate
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consumption. Consequently, it spikes upwards in response to small economic shocks near
default boundaries giving rise to repeated periods of high and low stock prices.

The intuition for the latter results is as follows. In a frictionless economy, the investors’
consumption shares gradually approach zero or one, and hence the economic impact of
one of the investors vanishes in the long-run (e.g., Blume and Easley, 2006; Yan, 2008;
Chabakauri, 2015). The collateral requirements restrict financial losses and protect in-
vestors from losing their consumption shares. The result is that the consumption shares
are bounded away from zero and one. Moreover, the constraints never bind simultane-
ously for both investors, and at each moment one of the investors is unconstrained. The
unconstrained investor’s marginal utility of consumption is proportional to the prices of
Arrow-Debreu securities. This marginal utility is expected to be higher in the economy
with constraints because the unconstrained investor’s consumption is expected to be lower
than in the unconstrained economy due to the upper bound on the consumption share, dis-
cussed above. Consequently, the prices of Arrow-Debreu securities, and hence, the prices
of all assets with positive cash flows, are higher in the constrained economy.

The dynamics of the price-dividend ratio determines the effect of constraints on volatil-
ities. We show that collateral constraints dampen volatilities in bad times, when aggregate
consumption is low, and amplify them in good times, when aggregate consumption is high.
The latter effect makes collateral requirements a useful tool for curbing excessive volatility
in bad times. The explanation is that the U-shaped price-dividend ratio is procyclical
in good and countercyclical in bad times. As a result, the price-dividend ratio and the
dividend move in the same direction in good times and in opposite directions in bad times.
Because the stock price is the product of the price-dividend ratio and the dividend, the
stock return volatility increases in good times and decreases in bad times. The volatil-
ity experiences spikes and crashes due to the sensitivity of price-dividend ratios to small
shocks when investors are close to hitting their constraints. Moreover, the periods of high
and low volatility are persistent because of the persistence of periods when constraints are
likely to bind, as discussed below, which gives rise to the clustering of volatilities.

We also derive the distributions of investors’ consumption shares in analytic form and
show that they are stationary and non-degenerate (i.e., their support is a closed interval
rather than a single point). The analysis of these distributions yields three economic
insights. First, there is non-trivial time-variation of asset prices in the long run. Second,
periods of binding collateral requirements are persistent. That is, the economy stays close
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to default boundaries for some time because hitting a constraint makes likely hitting it
again in the near future due to slow accumulation of wealth over time. Third, we show
that all investors, including those with incorrect beliefs, survive in the long run and can
have a large economic impact in equilibrium because the constraints prevent investors from
losing their consumption shares, similar to the related literature (e.g., Blume and Easley,
2006; Cao, 2018). We note that the non-degeneracy of consumption share distributions
and the persistence of the periods of binding constraints are more difficult to demonstrate
than survival, and, to our best knowledge, these results are new to the literature.

Next, we show that mere possibility of a large (albeit unpredictable) drop in the aggre-
gate output next period decreases interest rates and increases Sharpe ratios in the current
period when the irrational optimist is close to hitting the collateral constraint. The latter
effect only occurs when production crises and collateral requirements are jointly present
in the economy. Hence, the collateral requirements amplify the spillover of the production
crisis to the financial market. The amplification effect arises because investors “fly to qual-
ity” by buying riskless bonds when there is a possibility of hitting the collateral constraint
next period. We note that lower interest rates and higher Sharpe ratios can be generated
by alternative mechanisms and constraints, discussed in the literature review below. How-
ever, the amplification mechanism, to our best knowledge, has not been studied before.
We also show that investor heterogeneity and the stationarity of equilibrium give rise to
cycles of high and low leverage. In particular, the leverage is high when investors are far
away from their default boundaries, and drops to zero when investors hit their constraints.

Finally, we measure the collateral liquidity premium of the stock versus labor income.
This premium arises because dividends and labor incomes are collinear but incomes are
non-pledgeable. First, we derive shadow prices of claims to labor incomes such that ex-
changing marginal units of these claims for the consumption good at shadow prices does
not affect investors’ welfare. Then, we construct portfolios of stocks that replicate labor
incomes. We define the collateral liquidity premium as the percentage difference in the
value of the replicating portfolio and the shadow price. The premium from the view of a
particular investor widens close to that investor’s default boundary and ranges from 0%
to 35% in our calibration, which demonstrates the economic importance of collateraliza-
tion. We also show that the non-tradability of labor income does not contribute to this
premium. This is because in economies with pledgeable labor income investors circumvent
non-tradability by taking short positions in the stock, and hence, the liquidity premium

3

 Electronic copy available at: https://ssrn.com/abstract=2689672 



in such economies is zero.

The paper develops a new methodology for studying the effects of collateral require-
ments. This new methodology allows us to obtain closed-form equilibrium processes and
prove their properties which previously could only be studied numerically. For example,
we prove that our constraints increase price-dividend ratios and generate spikes in asset
prices, and lead to non-degeneracy and stationarity of consumption share distributions.
Hence, collateralization emerges as a tractable way of inducing the stationary of equi-
librium. Finally, the paper introduces a tractable discrete-time framework that makes
exposition less technical and permits taking continuous-time limits. The tractability and
stationarity make our model a convenient benchmark for asset pricing research that can
be extended in various directions.

Related Literature. Closest to us are papers that study economies where investors have
limited liability and face solvency constraints. Deaton (1990) considers a partial equilib-
rium model in which investors trade in a riskless asset with an exogenous interest rate and
face a non-negativity constraint on their financial wealth. Detemple and Serrat (2003) also
study the non-negative wealth constraint in a model where investors have heterogeneous
beliefs and identical risk aversions. They show that this constraint introduces a singularity
component into interest rates when the constraint binds while stock risk premia have the
same structure as in unconstrained economies. They do not compute price-dividend ratios,
volatilities, and consumption share distributions as we do in this paper. They also do not
study the effects of rare production crises and heterogeneity in preferences. We show that
the production crises give rise to new effects. They amplify the effects of constraints on
interest rates and Sharpe ratios and have an impact on them not only at the boundaries
(as in Detemple and Serrat, 2003) but also in the internal area of the state-space.

Chien and Lustig (2010) study a similar constraint in an economy with a continuum of
ex-ante identical investors that receive non-pledgeable labor incomes affected by idiosyn-
cratic shocks. Lustig and Van Nieuwerburgh (2005) study the role of housing collateral
when labor income is non-pledgeable. The main difference of our paper from the latter
two papers is that our investors are ex-ante heterogeneous and are not affected by idiosyn-
cratic shocks to labor income. The economic effects of heterogeneity in preferences and
beliefs are different from the effects of ex-post heterogeneity in realized idiosyncratic labor
income shocks in the above literature. For example, Krueger and Lustig (2010) show the
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irrelevance of market incompleteness induced by these income shocks for the risk premia.

Cao (2018) proves that investors with incorrect beliefs have strictly positive shares
of consumption in the long run (i.e., survive in the long-run) in economies with general
collateral constraints and stationary endowment processes bounded away from zero. Sim-
ilar results are also shown numerically in an example with non-stationary endowments.
Blume et al (2015) explore potential benefits from imposing trading restrictions, such as
natural borrowing constraints, in economies with bounded endowments and investors with
heterogeneous beliefs. In contrast to these works, our results do not rely on bounded
endowments. Moreover, in addition to showing the survival of investors, we derive con-
sumption share distributions in closed form, and establish their bimodality, stationarity,
and non-degeneracy (i.e., their support is a closed interval rather than a single point),
and derive new equilibrium effects. Kubler and Schmedders (2013) prove the existence of
stationary equilibria in dynamic economies with general collateral constraints. Rampini
and Viswanathan (2018) study household insurance in an economy with collateral con-
straints with limited enforcement and deep-pocket risk-neutral lenders, who provide state-
contingent claims to households at zero risk premium. Our model is different from the
latter paper in that all investors in our economy are risk averse, and risk premia are en-
dogenous and time-varying. Gromb and Vayanos (2002, 2010, 2018) and Brunnermeier
and Pedersen (2009) study economies with CARA investors subject to margin constraints,
which have similarities with our constraints. In contrast to their models, in our model all
investors have CRRA preferences and interest rates are endogenous.

Geanakoplos (2003, 2009), Fostel and Geanakoplos (2008, 2014), and Geanakoplos and
Zame (2014) develop the theory of collateral constraints in two- and three-period multi-
nomial general equilibrium economies. Similar to the baseline analysis in Geanakoplos
(2003, 2009), our constraint also prevents investors from defaulting in the worst-case sce-
nario. Simsek (2013) studies a two-period economy with a continuum of states and shows
that collateral constraints have asymmetric disciplining effects, depending on investor’s
beliefs, and also shows how defaultable debt endogenously emerges in equilibrium. Biais,
Hombert, and Weill (2018) study a two-period economy with multiple trees and imperfect
collateral pledgeability. In contrast to this literature, we focus on the non-pledgeability
of labor income rather than imperfect pledgeability of assets. Hence, our model gener-
ates a different set of predictions. Our constraint is also more tractable and allows us to
study multiperiod economies where investors have different preferences and beliefs and the
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output follows a geometric Brownian motion with jumps.

Kehoe and Levine (1993), Kocherlakota (1996), Tsyrennikov (2012), and Osambela
(2015) study economies where investors are weakly better off not defaulting and are per-
manently excluded from securities markets if they default. Alvarez and Jermann (2000)
show that such constraints can be implemented by imposing certain “not too tight” sol-
vency portfolio constraints. Alvarez and Jermann (2001) find that such constraints help
explain equity premia in the U.S. economy. They solve a simple example in closed form
and develop a numerical method for the general case. In contrast to this literature, our
investors have limited liability and can re-enter the market after a default.

Our paper is related to the literature on the economic effects of borrowing, margin,
short-sale and position limit constraints (e.g., Harrison and Kreps, 1978; Detemple and
Murthy, 1997; Basak and Cuoco, 1998; Basak and Croitoru, 2000, 2006; Pavlova and
Rigobon, 2008; Gârleanu and Pedersen, 2011; Chabakauri, 2013, 2015; Rytchkov, 2014;
Brumm et al, 2015; Buss et al, 2016), portfolio insurance (e.g., Basak, 1995) and VaR con-
straints (e.g., Basak and Shapiro, 2001). Our economic results are different from the results
in this literature. First, the latter constraints can increase or decrease stock prices depend-
ing on whether the investors’ risk aversions are greater or less than one (e.g., Chabakauri,
2015), whereas our collateral requirements always increase stock prices irrespective of risk
aversions and beliefs. Second, these constraints typically dampen stock return volatility
whereas our collateral constraints amplify them in some states of the economy. We also
uncover new effects such as spikes and crashes of volatilities and stock prices, and clusters
of volatility.

We note that our collateral requirements are different from the margin and borrowing
constraints in some of the related models discussed above (e.g., Gârleanu and Pedersen,
2011; Chabakauri, 2013, 2015; Rytchkov, 2014). The latter models focus on partial non-
pledgeability of stocks and do not incorporate labor incomes. The economic effects of
constraints in these models are driven by reduced risk-sharing. In contrast to these works,
we explore the non-pledgeability of labor incomes in a setting with fully pledgeable financial
assets serving as collateral. The effects of constraints in our model are driven by increased
marginal utilities of investors and collateral premia, which inflate asset prices.

Our methodology is also different from the approaches in the related literature. The
equilibrium in models with constraints is often constructed using fictitious complete mar-
ket economies (Cvitanić and Karatzas, 1992; Cuoco, 1997; Detemple and Murthy, 1997;
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Basak and Cuoco, 1998; Basak and Croitoru, 2000, 2006; Pavlova and Rigobon, 2008;
Gârleanu and Pedersen, 2011; Chabakauri, 2013, 2015). Moreover, when investors have
non-logarithmic utilities the equilibrium is characterized in terms of non-linear differential
equations that can only be solved numerically (e.g., Chabakauri, 2013, 2015; Rytchkov,
2014). In contrast to these works, we do not employ fictitious markets and derive the
equilibrium using the envelope theorem. To our best knowledge, this paper is the first
to derive analytical prices, distributions of consumption shares, and conditions for the
constraints to be binding.

The paper is also related to macro-finance, financial intermediation, and banking liter-
atures that study economies with frictions (Kiyotaki and Moore, 1997; Krusell and Smith,
1998; Brunnermeier and Sannikov, 2014; Klimenko, Pfeil, Rochet, and De Nicolo, 2016;
Kondor and Vayanos, 2018) and to the literature on frictionless economies with heteroge-
neous investors (e.g., Chan and Kogan, 2002; Basak, 2005; Yan, 2008; Bhamra and Uppal,
2014; Atmaz and Basak, 2018; Borovička, 2018; Massari, 2018, among others).

2. Economic setup

We consider a pure-exchange infinite-horizon economy with one consumption good pro-
duced by an exogenous Lucas (1978) tree. The economy is populated by two representative
heterogeneous investors A and B that hold shares in the tree and receive labor income
each period. To facilitate the exposition, we start with a discrete-time economy with dates
t = 0,∆t, 2∆t, . . ., and later take a continuous-time limit.

At each point of time t = 0,∆t, 2∆t, . . . the economy is in one of the three states: ω1,
ω2, and ω3. With probability 1− λ∆t the economy is either in state ω1 or state ω2, which
we call normal states, and with probability λ∆t in state ω3, which we call the crisis state.
Parameter λ > 0 is the crisis intensity. States ω1 and ω2 have probabilities 1/2 conditional
on the economy being in a normal state. Figure 1 depicts the structure of uncertainty.

2.1. Output, financial markets, and investor heterogeneity

At date t the tree produces Dt∆t units of aggregate output, where Dt follows a process

∆Dt = Dt[µD∆t+ σD∆wt + JD∆jt], (1)
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Figure 1
States of the Economy
After time t the economy moves to a normal state with probability 1− λ∆t and to a crisis state
with probability λ∆t. Conditional on being in a normal state the economy moves to either ω1 or
ω2 with equal probabilities.

where µD ≥ 0, σD > 0, and JD ≤ 0 are output growth mean, volatility, and drop during
a crisis, respectively, and ∆Dt = Dt+∆t − Dt is the change in output. Processes wt and
jt are discrete-time analogues of a Brownian motion and Poisson processes, respectively.1

These processes follow dynamics wt+∆t = wt+∆wt and jt+∆t = jt+∆jt, where increments
∆wt and ∆jt are i.i.d. random variables given by:

∆wt =


+
√

∆t, in state ω1,

−
√

∆t, in state ω2,

0, in state ω3,

∆jt =


0, in state ω1,

0, in state ω2,

1, in state ω3.

(2)

It can be easily verified that Et[∆wt|normal] = 0 and vart[∆wt|normal] = ∆t, similar to
a Brownian motion, where Et[·] and vart[·] are expectation and variance conditional on
time-t information. Parameters µD, σD, and JD are such that Dt > 0 for all t.

The economy is populated by two representative investors A and B. Each investor
stands for a continuum of identical investors of unit mass. Fractions lA and lB of the
aggregate output Dt∆t are paid to investors A and B as their labor incomes, respectively.
Labor incomes are non-tradable. Fractions lA and lB can also be interpreted as non-tradable
shares in the aggregate output such as holdings of illiquid assets rather than shares of labor
income. The remaining fraction 1− lA − lB is paid as a dividend to the shareholders.

The investors can trade three securities at each date t: 1) a riskless bond in zero net
supply, which pays one unit of consumption at date t + ∆t; 2) one stock in net supply of
one unit, which is a claim to the stream of dividends (1 − lA − lB)Dt∆t; 3) a one-period

1Chabakauri (2014) shows that process (1) converges to a continuous-time Lévy process as ∆t→ 0.
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insurance contract in zero net supply, which pays one unit of consumption in the crisis state
ω3 and zero otherwise. Absent any frictions the market is complete. Market completeness
and the absence of idiosyncratic shocks to labor income are required for tractability, and
allow us to solve the model in closed form. Bond, stock, and insurance prices Bt, St, and
Pt, respectively, are determined in equilibrium.

2.2. Investor heterogeneity and optimization problems

The investors have heterogeneous CRRA preferences over consumption, given by

ui(c) =


c1−γi

1− γi
, if γi 6= 1,

ln(c), if γi = 1,
(3)

where i = A,B. The investors agree on time-t asset prices and the aggregate output but
disagree on the probabilities of states. Investor A is rational and has correct probabilities

πA(ω1) = 1− λ∆t
2 , πA(ω2) = 1− λ∆t

2 , πA(ω3) = λ∆t, (4)

where λ is such that probabilities (4) are positive. Investor B has biased probabilities

πB(ω1) = 1− λB∆t
2 (1 + δ

√
∆t), πB(ω2) = 1− λB∆t

2 (1− δ
√

∆t), πB(ω3) = λB∆t, (5)

where crisis intensity λB and disagreement parameter δ are such that probabilities (5) are
positive. It is immediate to verify that πB(ω1) + πB(ω2) + πB(ω3) = 1, and hence, πB(ω) is
a probability measure. Throughout the paper, by Eit[·] and varit[·] we denote conditional
expectations and variances under the probability measure of investor i.

It can be easily verified that time-t conditional expected output growth rate in normal
times under the beliefs of investor B is given by:

EB

t

[
∆Dt

Dt

∣∣∣normal
]

= (µD + δσD)∆t, (6)

Therefore, parameter δ measures the extent of the investor disagreement about the ex-
pected output growth during normal times. For tractability, we assume that investor B
does not update probabilities over time. We also assume that investor B is weakly less
risk averse and more optimistic than investor A: γA ≥ γB, λ ≥ λB and δ ≥ 0. The as-
sumption that the less risk averse investor is also more optimistic is imposed to simplify
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the exposition and does not affect the qualitative results in the paper.2 We allow for the
heterogeneity in both risk aversions and beliefs for generality. Main qualitative results do
not change if we keep only one source of heterogeneity.

At date 0 the investors have certain endowments of financial assets. The total time-t
disposable wealth of investor i is given by Wit + liDt∆t, where Wit is the financial wealth,
defined as the time-t value of all positions in financial assets acquired at the previous date,
and liDt∆t is the labor income. At date t, investor i allocates wealth to cit∆t units of
consumption, bit units of bond, and a portfolio of risky assets nit = (ni,St, ni,P t), where
ni,St and ni,P t are units of stock and insurance, respectively.

In a frictionless economy, the financial wealth Wit can become negative when investors
take risky positions backed by their future labor income. However, in our economy only
financial assets are pledgeable whereas labor incomes are not. Moreover, the investors have
limited liability. That is, they can default when their financial wealth becomes negative
and then re-enter the market, which gives rise to a moral hazard problem, similar to
the related literature (e.g., Chien and Lustig, 2010; Geanakoplos, 2009). This problem is
addressed here by requiring the investors to keep their next-period financial wealth Wi,t+∆t

positive at all times, so that their pledgeable capital is sufficient to cover all liabilities such
as debt and short positions. Intuitively, constraint Wi,t+∆t ≥ 0 requires investors to cross-
collateralize their pledgeable financial assets in such a way that losses on one position are
always offset by gains on the other positions.

Investor i = A,B maximizes expected discounted utility with time discount ρ

max
cit,bit,nit

Eit

[
∞∑
τ=t

e−ρτui(ciτ )∆t
]
, (7)

subject to the self-financing budget constraints, given by

Wit + liDt∆t = cit∆t+ bitBt + nit(St, Pt)>, (8)

Wi,t+∆t = bit + nit
(
St+∆t + (1− lA − lB)Dt+∆t∆t, 1{ωt+∆t=ω3}

)>
. (9)

and the collateral constraint:
Wi,t+∆t ≥ 0, (10)

2Assuming that the less risk averse investor is more optimistic makes our main state variable st =
c∗At/Dt (introduced in Section 2.3 below) countercyclical, which facilitates the analysis of the results. If
this assumption is relaxed, the qualitative results remain the same, but additional analysis is required to
determine whether the state variable s is counter- or pro-cyclical.
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where Wi,t+∆t is the financial wealth at date t+ ∆t given by equation (9).

To provide further intuition for the constraint (10), following Gromb and Vayanos
(2018), we observe that it is equivalent to the following collateral constraint:3

Wit+(liDt−ct)∆t ≥ max
ωt+∆t

{
ni,St

(
St−

St+∆t + (1− lA − lB)Dt+∆t∆t
1 + rt∆t

)
+ni,P t

(
Pt−

1{ωt+∆t=ω3}

1 + rt∆t
)}
.

(11)
The expression on the right-hand side of the constraint (11) represents the largest possible
loss of a risky position evaluated in present value terms. Therefore, this constraint indicates
that the investors are allowed to invest in portfolios of assets using these portfolios as
collateral, but are required to put up sufficient amount of their own capital to cover the
losses in the worst-case scenario. The coefficients multiplying asset holdings ni,St and ni,P t
in (11) and evaluated at the worst-case state ωt+∆t are endogenous margin requirements
that show the investors’ own capital invested per unit of asset.

The constraint (11) is similar to collateral constraints in Brunnermeier and Pedersen
(2008) and Gromb and Vayanos (2018) with the difference being that we allow investors
to “cross-margin” their positions so that one risky asset can be used to cover margins on
the other. Brunnermeier and Pedersen (2008) discuss the institutional features of such
constraints and point out that it is increasingly possible to “cross-margin”.

Remark 1 (Partially pledgeable labor income). Our model can be easily extended
to economies where fraction ki ∈ [0, 1] of investor i’s labor income can be pledged. The
requirement to keep next-period pledgeable wealth is then given by:

Wi,t+∆t + kili
1− lA − lB

(
St+∆t + (1− lA − lB)Dt+∆t∆t

)
︸ ︷︷ ︸

measure of pledgeable labor income

≥ 0. (12)

The second term in constraint (12) measures the value of the pledgeable income. Let
kiliDt∆t be the pledgeable income of investor i. This income is proportional to stock
dividends (1− lA − lB)Dt∆t, and hence, can be replicated by a portfolio of n̂i = kili/(1−
lA − lB) units of stock with cum-dividend value n̂i(St + (1− lA − lB)Dt∆t). The investors
can circumvent the non-tradability of pledgeable income by shorting stocks against this
income. Hence, the claims to pledgeable income are, effectively, tradable and have the same
value as the replicating portfolio. The requirement to have positive pledgeable wealth then

3The constraint (11) is obtained by substituting bond holding bit = (Wit + (liDt − cit)∆t −
nit(St, Pt)>)/Bt from equation (8) into equation (9) for wealth Wi,t+∆t, and then rearranging term in the
inequality Wi,t+∆t ≥ 0.
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becomes Wi,t+∆t + n̂i
(
St+∆t + (1− lA− lB)Dt+∆t∆t

)
≥ 0, which is equivalent to constraint

(12). Lemma A.1 in the Appendix shows that models with ki 6= 0 reduce to models with
ki = 0 by a change of variable. Hence, the economic implications of our baseline model
with constraint (10) and the model with a more general constraint (12) are the same.

2.3. Equilibrium

Definition. An equilibrium is a set of asset prices {Bt, St, Pt} and of consumption and
portfolio policies {c∗it, b∗it, n∗it}i∈{A,B} that solve optimization problem (7) for each investor,
given processes {Bt, St, Pt}, and consumption and securities markets clear:

c∗At + c∗Bt = Dt, b∗At + b∗Bt = 0, n∗A,St + n∗B,St = 1, n∗A,P t + n∗B,P t = 0. (13)

In addition to asset prices, we derive price-dividend and wealth-output ratios Ψ =
S/
(
(1 − lA − lB)D

)
and Φi = W ∗

i /D, respectively. We also derive annualized ∆t-period
riskless interest rates rt, stock mean-returns µt and volatilities σt in normal times, and the
percentage change of the stock price in the crisis state, denoted by Jt.

We derive the equilibrium in terms of state variable vt given by the log-ratio of marginal
utilities of investors evaluated at their shares of the aggregate consumption c∗it/Dt:

vt = ln
(

(c∗At/Dt)−γA
(c∗Bt/Dt)−γB

)
. (14)

Substituting consumption shares of investors A and B, denoted by st = c∗At/Dt and 1−st =
c∗Bt/Dt, into equation (14), we express vt as a function of st:

vt = γB ln(1− st)− γA ln(st). (15)

Variable vt is a decreasing function st, and hence, st is an alternative state variable.

We assume that the exogenous model parameters are such that

Ei
[
e−ρ∆t

(
Dt+∆t

Dt

)1−γi
]
< 1, i = A,B. (16)

Condition (16) is necessary and sufficient for the existence of equilibrium in homogeneous-
agent economies populated only by investor A or investor B.
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3. Characterization of equilibrium

First, we derive the investors’ state price densities (SPD) ξAt and ξBt defined as processes
such that asset prices can be expressed as follows (e.g., Duffie (2001, p.23)):

Bt = Eit
[ξi,t+∆t

ξit

]
, (17)

St = Eit
[ξi,t+∆t

ξit

(
St+∆t + (1− lA − lB)Dt+∆t∆t

)]
, (18)

Pt = Eit
[ξi,t+∆t

ξit
1{ωt+∆t=ω3}

]
, (19)

where i = A,B. The state price density ξit exists for each investor i due to the absence
of arbitrage opportunities in our economy.4 The investors can eliminate arbitrage because
strategies with zero investment and non-negative payoffs are feasible given constraints (8)–
(10). The SPDs ξAt and ξBt differ due to heterogeneity in beliefs and are linked by the
change of measure equation5

ξB,t+∆t

ξBt
= ξA,t+∆t

ξAt

πA(ωt+∆t)
πB(ωt+∆t)

. (20)

We find the SPDs from the first order conditions in terms of investors’ marginal utilities
of consumption and Lagrange multipliers for collateral requirements (10). First, we rewrite
the budget equations (8)–(9) in a static form that expresses the current wealth in terms
of current consumption and the expected discounted future wealth (e.g., Cox and Huang,
1989). Then, we solve investor optimizations by dynamic programming and the method
of Lagrange multipliers. Lemma 1 below reports the results.

Lemma 1 (Dynamic programming and the first order condition).

1) Let Vi(Wit, vt; li) denote the value function of investor i, where vt is the state variable.
Then, the value function solves the following equation of dynamic programminng:

Vi(Wit, vt; li) = max
cit

{
ui(cit)∆t+ e−ρ∆tEit[Vi(Wi,t+∆t, vt+∆t; li)]

}
, (21)

subject to the static budget and collateral constraints:

Wit + liDt∆t = cit∆t+ Eit

[
ξi,t+∆t

ξit
Wi,t+∆t

]
, (22)

Wi,t+∆t ≥ 0. (23)
4The proof of existence of the SPD in arbitrage-free economies can be found in Duffie (2001, p.4).
5Three equations (17)–(19) can be rewritten as equations for three unknowns πi(ωk)ξi,t+∆t(ωk)/ξit,

where k = 1, 2, 3 and i is set to either A or B. The solution of these equations is unique when the matrix
of asset payoffs is invertible, and hence, πB(ωt+∆t)ξB,t+∆t/ξBt = πA(ωt+∆t)ξA,t+∆t/ξAt for all states.
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2) Value function Vi(Wit, vt; li) is a concave function of wealth Wit.

3) The SPDs ξit and optimal consumptions c∗it satisfy the first order conditions

ξi,t+∆t

ξit
= e−ρ∆t (c∗i,t+∆t)−γi + `i,t+∆t

(c∗it)−γi
, (24)

where `i,t+∆t ≥ 0 is the Lagrange multiplier for collateral requirement (23) satisfying the
complementary slackness condition `i,t+∆tW

∗
i,t+∆t = 0.

We use Lemma 1 to derive the dynamics of state variable vt. First, suppose the
constraints do not bind. Hence, Lagrange multipliers `i,t+∆t vanish and the first order
conditions (24) are the same as in a frictionless economy. The dynamics of the state variable
vt in the unconstrained region of the state-space is then the same as in the frictionless
economy, and is found in closed form below. Next, let v and v be the values of the
state variable vt when constraints (10) of investors A and B bind, respectively. We show
that state variable vt stays within boundaries v ≤ vt ≤ v. Intuitively, binding collateral
constraints restrict the investors’ losses of wealth and consumption, which traps the state
variable in the interval [v, v]. The boundaries v and v are found from the condition that the
constraints bind: Wi,t+∆t = 0. Dividing these constraints by Dt+∆t, we obtain equations

ΦA(v) = 0, ΦB(v) = 0, (25)

where Φi(vt) are wealth-output ratios given by equations (A19) and (A20) in the Appendix.
Proposition 1 below reports the dynamics of vt.

Proposition 1 (Closed-form dynamics of state variable vt).
Given the boundaries v and v, the equilibrium dynamics of state variable vt is given by:

vt+∆t = max
{
v; min{ v; vt + µv∆t+ σv∆wt + Jv∆jt}

}
, (26)

where drift µv, volatility σv, and jump Jv are given in closed form by:

µv = 1
2∆t

(γA − γB) ln[(1 + µD∆t)2 − σ2
D∆t] + ln

(
1− λB∆t
1− λ∆t

)2

+ ln(1− δ2∆t)
 ,(27)

σv = 1
2
√

∆t

(
(γA − γB) ln

(
1 + µD∆t+ σD

√
∆t

1 + µD∆t− σD
√

∆t

)
+ ln

(
1 + δ

√
∆t

1− δ
√

∆t

))
, (28)

Jv = (γA − γB) ln(1 + µD∆t+ JD) + ln
(
λ
B

λ

)
− µv∆t. (29)

Boundaries v and v are reflecting when ∆t is sufficiently small; that is, vt does not stay
at the boundaries forever: Prob(v > vt+∆t|vt = v) > 0 and Prob(vt+∆t > v|vt = v) > 0.
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Equation (26) reveals the exact structure of the state variable and sheds light on the
equilibrium effects of the collateral requirement. The equation demonstrates that the
constraint does not alter the dynamics of the state variable when the constraint does
not bind, and all its effects are due to imposing bounds on process vt. This property of
state variable vt plays important role in establishing the clustering of volatilities and other
results in Section 4 below, and it is difficult to see using numerical methods instead of a
closed-form dynamics.

Proposition B.1 in technical appendix B proves the existence of time-independent
bounds finite v and v satisfying equations (25). The intuition for the existence of these
bounds is as follows. Suppose, for example, that v = +∞. Then, equation (15) for the
consumption share s(vt) of investor A implies that s(vt) ≈ 0 when vt is sufficiently large,
and hence, investor A’s consumption net of labor income (s(vt) − lA)Dt can be negative
for a long period. As a result, investor A’s wealth is negative for a sufficiently large vt be-
cause this wealth equals the present value of net consumptions. However, negative wealth
contradicts the constraint WA,t+∆t ≥ 0, and hence v should be finite.

The closed-form dynamics (26) helps us build a theory of collateral constraints. In
particular, we use this dynamics to prove the existence of equilibrium and stationarity of
equilibrium processes, derive asset prices, and to study the effects of collateralization on
asset prices. Proposition 2 below reports the SPD and the stock price.

Proposition 2 (State price density and the effects on asset prices).

1) The state price density under the beliefs of investor A is given by:

ξA,t+∆t

ξAt
= e−ρ∆t

(
s(vt+∆t)
s(vt)

Dt+∆t

Dt

)−γA
exp

(
max{0; vt +µv∆t+σv∆wt +Jv∆jt− v}

)
, (30)

where investor A’s time-t consumption share s(vt) solves equation (15).

2) The price-dividend ratio Ψ(vt) is uniformly bounded, the stock price St is given by

St = (1− lA − lB)DtEA

t

[ +∞∑
τ=t+∆t

ξAτ
ξAt

Dτ

Dt

]
, (31)

and the prices of the bond and the insurance contract are given by Bt = EA
t [ξA,t+∆t]/ξAt

and Pt = EA
t [ξA,t+∆t1{ωt+∆t=ω3}]/ξAt, respectively.

3) The prices of bond, stock, and the insurance contract are higher in the economy with
collateral constraints than in the frictionless economy, conditional on two economies having
the same current output Dt and the state variable vt.
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Equation (30) captures the effect of collateralization on the SPD in our economy. It
shows that the change in the SPD, ξt+∆t/ξt, can be decomposed into two terms. The
first term, e−ρ∆t(s(vt+∆t)Dt+∆t)−γA/(s(vt)Dt)−γA , given by the ratio of marginal utilities
of investor A at times t+ ∆t and t, is the change in SPD in the frictionless economy. The
second term captures the effect of the friction on the SPD, and is only activated when the
constraint of investor A is binding. An equivalent representation of SPD can be obtained
in terms of the marginal utilities of investor B.

Proposition 2 demonstrates that collateralization inflates asset prices. This is because
the SPD in the constrained economy exceeds its counterpart in the frictionless economy
due to the positive Lagrange multiplier `i,t+∆t in the first order condition (24). This result
is in contrast to the effects of borrowing, margin, and restricted participation constraints
in the related literature (e.g., Chabakauri, 2013, 2015; Rytchkov, 2014), which increase or
decrease the stock prices depending on the investors’ elasticities of intertemporal substi-
tution. Moreover, this literature evaluates the effects of frictions numerically, whereas we
provide proves aided by the closed-form dynamics of the state variable (26) and the SPD
(30). We discuss the intuition and further economic differences between our constraint
and the constraints in the literature in Section 4.1.

Proposition B.2 in the technical Appendix B provides the verification theorem for
the optimality of investors’ optimal strategies, and is not reported here for brevity. In
particular, this proposition shows that in the economy where the state price density is
given by equation (30) the dynamic programming problem (21)–(23) has a unique solution
Vit and this solution is the indirect utility function of investor i.

3.1. Closed-form solution in a continuous-time limit

Next, we take continuous-time limit ∆t → 0 and derive the equilibrium in closed form.
Taking the limit allows rewriting equations (A32) and (A33) for the price-dividend and
wealth-consumption ratios, Ψt and Φit, as differential-difference equations. For tractability,
we derive ratios Ψt and Φit in terms of a transformed ratio Ψ̂(v; θ), which satisfies a simpler
equation reported in Lemma 2 below.

Lemma 2 (Differential-difference equation). In the limit ∆t→ 0, the price-dividend
ratio Ψ and wealth-output ratios Φi are given by:

Ψ(v) = Ψ̂(v;−γA)s(v)γA , (32)
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Φi(v) =
(
(1{i=A} − 1{i=B})Ψ̂(v; 1− γA) + (1{i=B} − li)Ψ̂(v;−γA)

)
s(v)γA , (33)

where s(v) solves equation (15) and Ψ̂(v; θ) satisfies a differential-difference equation

σ̂2
v

2 Ψ̂′′(v; θ) +
(
µ̂v + (1− γA)σDσ̂v

)
Ψ̂′(v; θ)

−
(
λ+ ρ− (1− γA)µD + (1− γA)γA

2 σ2
D

)
Ψ̂(v; θ)

+ λ(1 + JD)1−γAΨ̂
(
max{v; v + Ĵv}; θ

)
+ s(v)θ = 0,

(34)

subject to the reflecting boundary conditions

Ψ̂′(v; θ) = 0, Ψ̂′(v; θ)− Ψ̂(v; θ) = 0, (35)

where µ̂v, σ̂v ≥ 0, and Ĵv ≤ 0 are constants given by:

µ̂v = (γA − γB)
(
µD −

σ2
D

2

)
+ λ− λB −

δ2

2 , (36)

σ̂v = (γA − γB)σD + δ, (37)

Ĵv = (γA − γB) ln(1 + JD) + ln
(
λB
λ

)
. (38)

The boundaries v and v solve the following equations:

Ψ̂(v; 1− γA)
Ψ̂(v;−γA)

= lA,
Ψ̂(v; 1− γA)
Ψ̂(v;−γA)

= 1− lB. (39)

We observe that equation (34) is linear, in contrast to economies with constraints
directly imposed on trading strategies of investors (e.g., Gârleanu and Pedersen, 2012;
Chabakauri, 2013, 2015; Rytchkov, 2014). This equation is a differential-difference equa-
tion with a “delayed” argument in the fourth term on the left-hand side of the equation
because Ĵv ≤ 0. This term is further complicated by the fact that the delayed argument
is restricted to stay above the lower boundary v, which gives rise to the dependence of
the fourth term on a peculiar argument max{v; v + Ĵv}. This term captures investors’
decisions in anticipation of hitting their collateral constraint.

Before deriving the equilibrium in the general case, in Corollary 1 below, we provide
analytical price-dividend ratios when there is no crisis and investors have log preferences.
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Corollary 1 (Analytical asset prices with log preferences). Suppose, investors A
and B have logarithmic preferences and there is no production crisis, that is, λ = λB = 0.
Then, price-dividend ratio Ψ(v) is given by:

Ψ(v) = 1
ρ

+ C1e
ϕ+v + C2e

ϕ−v

1 + ev
, (40)

where ϕ± = 0.5(1 ±
√

1 + 8ρ/δ2), and constants C1 and C2 are given by equations (A46)
and (A47) in the Appendix, respectively.

In Section 4 below, we argue that the analytical price-dividend ratio (40) captures some
important properties of price-dividend ratio that hold in the general case with arbitrary
risk aversions and crises. Hence, this special case can be used as a tractable benchmark
in asset pricing research. Nevertheless, we undertake a comprehensive investigation of
equilibrium in the general case.

Proposition B.3 in Appendix B presents the closed-form price-dividend ratio for gen-
eral CRRA risk aversions and beliefs. These solutions are in terms of exogenous model
parameters and do not require solving equations (34)–(35). Although the closed-form so-
lution in Proposition B.3 is complex, it provides a constructive proof for the existence of
price-dividend ratios. We also solve equations (34)–(35) using the method of finite differ-
ences, and double-check that the numerical solution coincides with the exact one reported
in Proposition B.3 in Appendix B.

We call the interval v ∈ [v, v−Ĵv] in the state-space a period of anxious economy, similar
to Fostel and Geanakoplos (2008).6 When the economy falls into this state, even a small
possibility of a crisis renders the collateral requirement binding and leads to deleveraging
in the economy. To explore the economic effects of the anxious economy, we provide closed-
form expressions for the interest rates rt and risk premia in normal times µt − rt, which
can be easily obtained using equations for asset prices and the state price density derived
in Proposition 2. Proposition 3 below reports the results.

Proposition 3 (Interest rates and risk premia in the limit). For a sufficiently small
6However, in contrast to Fostel and Geanakoplos (2008), the disagreement about the consumption

growth dynamics in our economy does not increase during these periods.

18

 Electronic copy available at: https://ssrn.com/abstract=2689672 



interval ∆t, the interest rate rt and the risk premium µt− rt in normal times are given by:

rt =


r̃t − λ(1 + JD)−γA

s
(
max{v; vt + Ĵv}

)
st

−γA +O(∆t), for v < vt < v,

(1− st)Γt
(
1{v=v} − 1{v=v}

)
− γB

2γB
√

∆t
σ̂v +O(1), for v = v or v = v,

(41)

µt − rt =
(
γAσD −

(1− st)Γtσ̂v
γB

+ (1− st)Γtσ̂v(1{v=v} + 1{v=v})− γBσ̂v1{v=v}

2γB

)
σt

− λ(1 + JD)−γAJt

s
(
max{v; vt + Ĵv}

)
st

−γA +O(
√

∆t), (42)

where r̃t is the interest rate in the unconstrained economy without crisis risk, given by:

r̃t = λ + ρ+ γAµD −
γA(1 + γA)

2 σ2
D +

(
γAσDσ̂v − µ̂v

γB

)
(1− st)Γt

− σ̂2
v

(
1

2γ2
B

(1− st)2Γ2
t + 1

2γ2
Aγ

2
B

st(1− st)Γ3
t

)
,

(43)

drift µ̂v, volatility σ̂v, and Ĵv of the state variable v are given by equations (36)–(38),
volatility σt and jump size Jt are given by equations (B27)–(B28), respectively, and Γt ≡
γAγB/

(
γA(1− st) + γBst

)
is the risk aversion of a representative investor.

The effects of collateral requirements on interest rates and risk premia arise due to the
investors’ concern that a potential crisis may render the constraint binding next period
when the economy is close to boundary v. The last term in the first equation in (41) for
the interest rate quantifies the impact of collateralization on precautionary savings due to
a downward jump in the aggregate consumption, which we further discuss in Section 4.

Equations (41) and (42) also feature terms with indicator functions 1{v=v} and 1{v=v},
which are non-zero only at the boundaries v and v. For the interest rate rt these terms
have the order of magnitude proportional to 1/

√
∆t, and hence, the interest rate has

singularities at the boundaries v and v when ∆t → 0. The intuition is that near the
boundaries v and v even a small shock ∆wt may lead to a default. Thus, when the
investor’s constraint binds at time t, this investor allocates a larger fraction of income to
bond than in the interior region v < vt < v and requires a higher risk premium. Therefore,
the interest rate decreases and Sharpe ratio increases at the boundaries.
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Similar singularities arise in a continuous-time model of Detemple and Serrat (2003).
Our discrete-time analysis sheds new light on these singularities by uncovering their order
of magnitude 1/

√
∆t. Consequently, the per-period rate rt∆t is finite and has an order of

magnitude O(
√

∆t). Moreover, in contrast to the latter paper, due to production crises,
the collateralization in our model affects the interest rates and Sharpe ratios not only at the
boundaries but also in the internal area of the state-space interval, which we call the period
of anxious economy. We also note that the interest rate (41) and the risk-premium (42)
are significantly different from those in the literature on borrowing and margin constraints
(e.g., Chabakauri, 2013, 2015; Rytchkov, 2014) where they feature Lagrange multipliers
for the constraints that bind in an interval of a state space and do not have singularities.

3.2. Stationary distribution of consumption share

Absent any frictions, state variable v follows an arithmetic Brownian motion with a jump.
This process is non-stationary and induces non-stationarity in the unconstrained equilib-
rium where one of the investor’s consumption share gradually converges to zero. As a
result, with the exception of some knife-edge parameter combinations, only one of the
investors has a significant impact on asset prices in the frictionless economy in the long
run (e.g., Blume and Easley, 2001; Yan, 2008; Chabakauri, 2015).

Imposing collateral constraints (10) helps both investors survive and have an impact on
equilibrium in the long-run because these constraints protect investors against losing their
shares of aggregate consumption beyond certain limits. This intuition for the survival
of investors has also been discussed in the previous literature (e.g., Blume and Easley,
2001; Cao, 2018, among others). However, this intuition does not reveal the shape of the
distribution of consumption share s, whether this distribution is well-defined or degenerate
(e.g., fully concentrated at boundaries s or s), and which parameters determine the relative
dominance of investors in the economy. Our main contribution in this section is that armed
with the closed-form dynamics of the state variable vt in (26), we derive the probability
density function (PDF) of consumption share s in closed form, show that this PDF is
stationary and non-degenerate, and find parameters that determine its shape. The latter
result is important because it implies non-trivial time-variation of asset prices in the long
run. For simplicity, we assume that there is no crisis risk so that λ = λB = 0. Proposition
4 reports the results.
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Proposition 4 (Stationary distribution of consumption share). Suppose, λ =
λB = 0. Then, the PDF f(s, τ ; st; τ) of consumption share s at time τ conditional on
observing share st at time t is given in closed form by expression (A67) in the Appendix.
Furthermore, the stationary PDF of consumption share s is given by:

f(s) = 2µ̂v
σ̂2
v

(
γA
s

+ γB
1− s

) (
(1− s)γB/sγA

)2µ̂v/σ̂2
v

(
(1− s)γB/sγA

)2µ̂v/σ̂2
v −

(
(1− s)γB/sγA

)2µ̂v/σ̂2
v

1{s≤s≤s}, (44)

where µ̂v = (γA − γB)(µD − σ2
D/2) − δ2/2, σ̂v = (γA − γB)σD + δ, 1{s≤s≤s} is an indicator

function, and s and s are the bounds on the consumption share s, which solve equation
(15) for v and v, respectively.

Proposition 4 confirms that both investors survive in the long run, and that consump-
tion share s has a well-defined stationary distribution. The beliefs enter PDF (44) via the
ratio of the drift and variance of process vt, given by µ̂v/σ̂

2
v . This ratio determines the

relative dominance of investors in the economy. In particular, for bounds s and s that are
symmetric around 0.5, the PDF is concentrated around s if µ̂v > 0 and around s if µ̂v < 0.

Figure 2 plots the stationary PDF (44) and transition densities f(s, t; s0, 0), for pa-
rameters described in the legend and explained in Section 4 below. The stationary PDF
has a larger mass around s = 0.1 because the labor share lB = 0.14 of investor B exceeds
the labor share lA = 0.123 of investor A in this example in order to get boundary values
s = 0.1 and s = 0.9 symmetric around 0.5. From Figure 2 we observe that both rational
and irrational investors can occasionally have large consumption shares.

Another notable feature of PDF (44) is that it is bimodal, with a large mass of the
distribution concentrated around boundaries s and s. The economic implication of this
bimodality is that the periods of binding constraints are likely to be persistent. The closed-
form dynamics (26) for the state variable v helps explain the bimodality of the PDF. From
this dynamics, we observe that after hitting a boundary the process vt remains in its
vicinity for some time. Hence, because variable v follows an arithmetic Brownian motion
in the interval (v, v), the probability of hitting the same boundary again is high.

Proposition 4 implies that the PDF of consumption share s is always stationary when
investors have positive labor incomes lB > 0 and lA > 0 because in this case 1 > s > s > 0,
and hence, the PDF (44) is well-defined. The PDF of s is also stationary when lA = 0,
lB > 0, and µ̂v < 0, or lA > 0, lB = 0, and µ̂v > 0. In the latter cases, s = 0 or s = 1,
respectively. Then, we observe that the PDF (44) is well-defined when s = 0 and µ̂v < 0,
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Figure 2
Convergence to stationary distribution of consumption share st = c∗A,t/Dt

The Figure shows transition densities f(s, t; s0, 0) for the starting point s0 = 0.2 and the station-
ary distribution f(s) (i.e., density for t =∞). We set γA = 2, γB = 1.5, µD = 0.018, σD = 0.032,
λ = λB = 0, ρ = 0.02, δ = 0.1125, s = 0.1, s = 0.9, lA = 0.123, and lB = 0.14.

and when s = 1 and µ̂v > 0, and hence is stationary. The PDF of s is non-stationary
when lA = 0 and lB = 0, and is derived in closed form in Chabakauri (2015). In the latter
case only investor A survives if µ̂v < 0, and only investor B survives when µ̂v > 0.

4. Analysis of Equilibrium

In this section, we demonstrate the economic implications of our model. In Section 4.1, we
show that capital requirements amplify the effect of rare crises on generating lower interest
rates and higher Sharpe ratios, lead to spikes and crashes of stock prices and stock return
volatilities, amplify volatility in good times and decrease it in bad times, and generate
volatility clusters. Section 4.2 measures the economic significance of collateralization by
quantifying the collateral premium of the stock.

We study the equilibrium for calibrated parameters. We set the parameters of the
aggregate consumption process to µD = 0.018, σD = 0.032, JD = −0.2, and the crisis
intensities of investors A and B to λ = 0.017 and λB = 0.01, respectively.7 The risk
aversions are γA = 2 and γB = 1.5, and the time discount is ρ = 0.02. The disagreement
parameter is δ = 0.1125, which corresponds to the mean growth rate (6) under investor

7Drift µD and volatility σD are within the ranges considered in the literature (e.g., Basak and Cuoco,
1998; Chan and Kogan, 2002; Rytchkov, 2014), intensity λ = 0.017 is from Barro (2009).
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B’s beliefs equal to 1.2µD. The shares of labor income lA = 0.123 and lB = 0.14 are chosen
to generate symmetric bounds on investor A’s consumption share: s = 0.1 and s = 0.9.8

We plot the equilibrium distributions and processes as functions of consumption share
st = c∗At/Dt because s lies in the interval (0, 1) and is more intuitive than variable v. We
observe that consumption share s is countercyclical in the sense that corrt(dst, dDt) <
0. Intuitively, the aggregate wealth and consumption shift to (away from) investor A
following negative (positive) shocks to output because this investor is more risk averse and
pessimistic than investor B. We call a process procyclical (countercyclical) if that process
is a decreasing (increasing) function of s. We interpret periods of low (high) st as good
(bad) times in the economy, because during these periods the output Dt is high (low).

4.1. Equilibrium processes

Figure 3 depicts investor B’s leverage/market ratio Lt/St and stock holdings nBt in the
constrained (solid line) and unconstrained (dashed line) economies. Panel (a) demonstrates
the cyclicality of leverage. The leverage is lowest when either investor A or investor B bind
on their constraints. Intuitively, when s = s, investor B’s financial wealth is zero, and
hence, B lacks collateral and cannot borrow. When s = s, investor A’s financial wealth
is zero and the labor income lADt∆t is infinitesimally small in the continuous-time limit.
The liquidity dries up because investor A cannot supply credit. The leverage cycles are
present only in the constrained economy. They do not occur in the unconstrained economy
where the state variable s is non-stationary and gradually converges to 0 or 1.

Panel (b) presents the number of stocks held by investor B. Consider first the uncon-
strained economy where the labor income is pledgeable. From panel (b) we observe that in
this economy investor B shorts stocks despite being more optimistic than investor A when
consumption share s is close to 1. The intuition is that in bad times, following a sequence
of negative shocks to output, investor B shorts stocks to finance consumption and backs
short positions by the pledgeable labor income. The stream of labor income lBDt∆t is
equivalent to dividends from holding n̂B = lB/(1− lA − lB) units of non-tradable shares in
the Lucas tree. Short-selling allows the investor to circumvent the non-tradability of labor
income and freely adjust the effective share n̂B + nB,St in the Lucas tree. Overcoming the

8To avoid finding bounds s and s numerically, we set them exogenously to s = 0.1 and s = 0.9 and
then recover the shares of labor incomes lA = 0.123 and lB = 0.14 that imply these bounds in equilibrium.
First, we find v and v from equation (15) for v, and then find lA and lB from equations (39).
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Figure 3
Leverage and stock holdings of optimistic and less risk averse investor B
Panels (a) and (b) depict optimistic and less risk averse investor B’s leverage/market price ratio
Lt/St and the number of shares nSt, respectively, as functions of consumption share st = c∗At/Dt.
The solid and dashed lines correspond to constrained and unconstrained economies, respectively.

non-tradability of labor incomes makes this economy similar to the non-stationary uncon-
strained economy where investors can freely trade shares in the Lucas tree. The financial
wealth can then become negative. The collateral requirement imposes non-negative wealth
constraint, which precludes investor B from shorting. The trading strategy of investor A
equals 1− n∗Bt in equilibrium and can be analyzed similarly. Investor A also has an addi-
tional motive to short stocks due to being more pessimistic than investor B.

Figure 4 depicts the interest rate rt, Sharpe ratio (µt − rt)/σt, price-dividend ratio
Ψ, and excess stock return volatility (σt − σD)/σD in the constrained (solid line) and
unconstrained (dashed line) economies. Panel (a) shows the interest rates rt.9 The interest
rate declines sharply when the economy enters into an anxious state close to the boundary
s where even a small possibility of a crisis next period makes the constraint of investor
B binding. The intuition is as follows. In the unconstrained economy, a crisis around
state s generates wealth transfer to the pessimistic and more risk averse investor A and
increases her consumption share s above s. In the constrained economy, consumption share
s is capped by s. Consequently, following a crisis, investor A’s marginal utility (c∗A)−γA

is higher in the constrained than in the unconstrained economy. As a result, investor
A is more willing to smooth consumption in the constrained economy, and hence, the
interest rate declines due to the precautionary savings motive. In particular, the investor
buys more bonds, which drives interest rates down. Panel (b) of Figure 4 shows that the

9We exclude the singularities in the dynamics of rt and focus on the dynamics in the unconstrained
region because the economy spends an infinitesimal amount of time at the boundaries.
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Figure 4
Equilibrium processes
Panels (a)–(d) show interest rate rt, Sharpe ratio (µt − rt)/σt, price-dividend ratio Ψt, and
excess volatility (σt − σD)/σD as functions of st = c∗At/Dt for the constrained (solid lines) and
unconstrained (dashed lines) economies.

Sharpe ratio increases to compensate investor A for buying risky assets from investor B.

Our results on interest rates and Sharpe ratios indicate that the rare crises and collateral
requirements reinforce the effects of each other. In particular, the decreases in interest rates
and increases in Sharpe ratios during anxious times arise only when both the crises and
the constraints (10) are simultaneously present. Removing the constraint but keeping the
crisis risk increases the interest rate and decreases the Sharpe ratio. Equation (41) for the
interest rate and equation (42) for the risk premium show that removing the crisis risk
(i.e., setting λ = λB=0) but keeping the constraint leads to rt and µt − rt which are the
same as in the frictionless economy when v < vt < v, consistent with findings in Detemple
and Serrat (2003). Absent any crises, the constraints affect rt and µt − rt only at the
boundaries of the state-space, as shown in Section 3.1.

From panel (c), we observe that the collateral requirements give rise to higher price-
dividend ratio Ψ than in the unconstrained economy, Ψconstr

t − Ψunc
t > 0, as proven in
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Proposition 2. The increases in ratio Ψ are larger around the boundaries s and s, which
makes ratio Ψ a U-shaped function of s sensitive to small shocks close to boundaries.
The U-shape is a robust phenomenon that does not require rare crises or investors that
differ both in risk aversions and beliefs. When both investors have identical risk aversions
γA = γB = 1 but different beliefs and there is no crisis risk (i.e., λA = λB = 0), the U-shape
is an analytical result that follows from the closed-form expression (40) for ratio Ψ. This
ratio remains U-shaped when investors have different risk aversions but identical beliefs.

The intuition for the U-shape is as follows. Suppose, consumption share s is close to the
boundary s, where investor B’s constraint is likely to bind but investor A is unconstrained.
Because investor A’s constraint is loose the state price density ξAt is proportional to in-
vestor A’s marginal utility (c∗At)−γA . In the constrained economy the consumption share
of investor A is capped by s < 1 whereas in the unconstrained economy it can increase
above s. Therefore, the marginal utility of investor A and, hence, the state price density
are expected to be higher in the constrained than in the unconstrained economy. Con-
sequently, stocks are more valuable in the constrained economy around the boundary s.
The intuition around s can be analyzed in a similar way. An additional economic force
contributing to higher stock price is that the stock can be used as collateral that helps
relax the constraint, which gives rise to a premium. This force is explored in Section 4.2.

The results on panel (d) demonstrate that the constraint makes volatility more pro-
cyclical, reducing it in bad times (around s) and increasing it in good times (around s).
This is because U-shaped price-dividend ratio in the constrained economy is more pro-
cyclical in good times (i.e., around s) and more countercyclical in bad times (i.e., around
s) than in the unconstrained economy. Stock price St = ΨtDt is more volatile in good
times (around s) because both Ψ and Dt change in the same direction, and is less volatile
in bad times (around s) because Ψ and Dt change in opposite directions and partially
offset the effects of each other. Lower volatility in bad times is in line with the previous
literature on the effects of portfolio constraints on asset prices (e.g., Chabakauri, 2013,
2015; Brunnermeier and Sannikov, 2014, among others). The empirical literature finds
that the volatility tends to be higher in bad times (e.g., Schwert, 1989). However, high
volatility can be explained by high uncertainty about the economic growth and learning
effects in bad times (e.g., Veronesi, 1999), which we do not study in this paper to focus on
the effects of collateral constraints which are not confounded by other effects.

Boundary conditions (35) allow us to explore volatility σt near the boundaries s and s
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Figure 5
Simulated P/D ratio Ψ and stock return volatility σ over time
Panels (a) and (b) show the spikes and crashes of simulated P/D ratio and volatility σ, and
clustering of volatility σ over the period of 50 years.

using closed form expressions in Corollary 2 below.

Corollary 2 (Stock return volatility at the boundaries). Stock return volatility in
normal times σt satisfies the following boundary conditions:

σ(s) = σD + γBsσ̂v
γA(1− s) + γBs

> σD, σ(s) = σD −
γA(1− s)σ̂v

γA(1− s) + γBs
< σD. (45)

By continuity, inequalities (45) also hold in a vicinity of the boundaries. Panel (d)
shows that volatility σt is very steep at the boundaries: it spikes close to s and crashes
close to s, consistent with Corollary 2. It also evolves in three regimes of low, medium, and
high volatility, which resembles volatility clustering documented in the empirical literature
(e.g., Bollerslev, 1987). The distribution of consumption share s on Figure 2 implies that
the economy persists in these clusters for some time.

Figure 5 plots the simulated dynamics of P/D ratio and stock return volatility over
a period of 50 years. Consistent with our discussion above, the dynamics of P/D ratio
on panel (a) exhibits intervals of booms and busts around the times when the collateral
requirements become binding. These intervals resemble periods of inflating and deflating
bubbles in the economy. The volatility σ on panel (b) evolves in clusters of high and low
volatility, as explained above.

The economic effects of collateral requirements are different from the effects of margin
and borrowing constraints in the related literature discussed in the introduction. In par-
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ticular, those constraints increase or decrease price-dividend ratios and make them pro- or
counter-cyclical depending on investors’ risk aversions (e.g., Chabakauri, 2015). They also
shrink volatility towards the output volatility σD by reducing the risk-sharing. The main
mechanism in this paper is different, and is driven by the increased marginal utilities due
to endogenously arising bounds on the consumption share s. As a result, in our model
price-dividend ratios increase irrespective of the beliefs and risk aversions of investors, and
the volatility deviates further away from the output volatility (Figure 4). Other new effects
relative to this literature include the cyclicality of leverage, mutual amplification of effects
of rare crises and collateral constraints, and spikes in price-dividend ratios and volatilities.

4.2. Collateral liquidity premium

In this section, we measure the liquidity premium of stocks over labor income arising
because stocks can be used as collateral. We consider a marginal representative investor
i that does not affect asset prices and characterize this investor’s shadow indifference
price Ŝit of labor income. We define Ŝit as the price such that exchanging marginal ∆li
units of labor income for Ŝit∆li units of wealth leaves the investor’s utility unchanged.
Consider the investor’s value function Vi(Wit, vt; li) satisfying the dynamic programming
equation (21) subject to constraints (22) and (23). Price Ŝit is the solution of equation
Vi(W ∗

it, vt; li) = Vi(W ∗
it + Ŝit∆li, vt; li −∆li) when ∆li → 0. In the limit, we find:

Ŝit = ∂Vi(W ∗
it, vt; li)/∂li

∂Vi(W ∗
it, vt; li)/∂Wit

. (46)

The definition of shadow indifference price Ŝit comes from the literature on the valuation
of derivative securities in incomplete markets (e.g., Davis, 1997).

The labor incomes liDt∆t are proportional to dividends (1− lA − lB)Dt∆t. Therefore,
if claims on labor incomes were tradable and pledgeable, shadow price Ŝit would have been
equal to St/(1 − lA − lB). However, labor incomes are non-tradable and non-pledgeable.
Hence, from the view of investor i, the stock enjoys liquidity premium, which we define as

Λit = St/(1− lA − lB)− Ŝit
St/(1− lA − lB) . (47)

We find derivatives in equation (46) using the envelope theorem. Then, we derive prices
Ŝit and show that premia (47) are positive and large. Proposition 5 reports our results.
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Collateral liquidity premia from the view of investors A and B

The Figure shows the collateral liquidity premia (47) of stocks over non-pledgeable labor incomes
from the view of investors A and B.

Proposition 5 (Shadow prices and the liquidity premium). In the limit ∆t → 0,
investor i′s shadow price of a unit of labor income is given by:

Ŝit = Ψ̂i(v;−γA)s(v)γADt, i = A,B, (48)

where Ψ̂i(v; θ) satisfies differential-difference equation (34) subject to the following bound-
ary conditions for investors A and B

Ψ̂′A(v; θ) = 0, Ψ̂′A(v; θ) = 0, (49)

Ψ̂′B(v; θ) = Ψ̂B(v; θ), Ψ̂′B(v; θ) = Ψ̂B(v; θ). (50)

The investors’ liquidity premia for stocks ΛA and ΛB are positive, and hence,

St/(1− lA − lB) > ŜAt, St/(1− lA − lB) > ŜBt. (51)

The premium Λit > 0 arises because the stock can be used as a collateral whereas the
labor income cannot. We note that this premium is zero in the unconstrained economy,
and hence the non-tradability of labor income and the possibility of shorting stocks do
not contribute to the premium. This is because, as discussed in Section 4.1, in an un-
constrained economy with fully pledgeable labor income the investors can circumvent the
non-tradability of labor income by shorting stocks. We further remark that the shadow
prices and liquidity premia can be found in closed form, similar to stock prices in Section
3, but we do not present them for brevity.
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Figure 6 plots the liquidity premia (47) for the same calibrated parameters as in Section
4.1. We observe that investors A and B have different valuations of their labor incomes
due to differences in preferences and beliefs. Their premia Λi are close to zero when the
investors are far away from the boundaries where their respective collateral requirements
become binding. The premia increase up to 35% close to the boundaries where the stock
is more valuable for the purposes of relaxing the constraints. Large premia Λit imply the
economic significance of stock pledgeability.

5. Conclusion

We develop a parsimonious and tractable theory of asset pricing under collateral require-
ments. We show that requiring investors to collateralize their trades has significant effects
on asset prices and their moments. The constraints decrease interest rates and increase
Sharpe ratios when optimistic investors are close to default boundaries. They also increase
price-dividend ratios, amplify volatilities in good states and dampen them in bad states.
The tractability of our model allows us to obtain asset prices and the distributions of
consumption shares in closed form.
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Appendix A: Proofs

Lemma A.1 (Change of variable). Let n̂i = kili/(1 − lA − lB). Maximization of
expected discounted utility (7) subject to budget constraints (8) and (9), and constraint (12)
is equivalent to maximizing (7) with respect to cit, bit and ñit subject to the following set
of constraints:

W̃it + liDt∆t = cit∆t+ bitBt + ñit(St, Pt)>, (A1)

W̃i,t+∆t = bit + ñit
(
St+∆t + (1− lA − lB)Dt+∆t∆t, 1{ωt+∆t=ω3}

)>
, (A2)

W̃i,t+∆t ≥ 0, (A3)

where W̃it = Wit + n̂iSt and W̃i,t+∆t = Wi,t+∆t + n̂i(St+∆t + (1− lA − lB)Dt+∆t).

Proof of Lemma A.1. Substituting nit = ñit − (n̂i, 0) into (8) and (9), we obtain
constraints (A1) and (A2). Rewriting constraint (12) in terms of variable W̃i,t+∆t, we
obtain (A3). Finally, we note that W̃it = Wit + n̂iSt is worth W̃i,t+∆t next period. Hence,
(A1) and (A2) can be seen as self-financing budget constraints. �

Proof of Lemma 1.

1) We start by demonstrating the equivalence of the dynamic (8)–(9) and static budget
constraints (22). Multiplying equation (9) by ξi,t+∆t/ξit, taking expectation operator Eit[·]
on both sides, and using equations (17)–(19) for asset prices, we obtain:

Eit

[
ξi,t+∆t

ξit
Wi,t+∆t

]
= bitBt + nit(St, Pt)>. (A4)

From the budget constraint equation (8), we observe that the right-hand side of (A4)
equals Wit + liDt∆t, and hence, we obtain the static budget constraint (22). Conversely,
if there exists Wi,t+∆t satisfying constraints (22) and (23) there exist trading strategies
bit and nit that replicate Wi,t+∆t because the underlying market is effectively complete
(i.e., the payoff matrix is invertible). Then, rewriting the optimization problem (7) in a
recursive form, we obtain the dynamic programming equation (21) for the value function.

2) Consider wealth levels Wit and Ŵit. Let {c∗it, b∗it, n∗it} and {ĉ∗it, b̂∗it, n̂∗it} be optimal con-
sumptions and portfolios that correspond to Wit and Ŵit, respectively, and satisfy con-
straints (8)–(10). For any α ∈ [0, 1], policies {αĉ∗it + (1−α)c∗it, αb̂∗it + (1−α)b∗it, αn̂∗it + (1−
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α)n∗it} are admissible for wealth αWit + (1− α)Ŵit. By concavity of CRRA utilities:

Vi(αWit + (1− α)Ŵit, vt; li)≥
∞∑
τ=t

ui(αĉ∗it + (1− α)c∗it)

≥
∞∑
τ=t

(αui(ĉ∗it) + (1− α)ui(c∗it))

= αVi(Wit, vt; li) + (1− α)Vi(Ŵit, vt; li).

(A5)

Therefore, Vi(Wit, vt; li) is a concave function of wealth.

3) Consider the following Lagrangian:

L = ui(cit)∆t+ e−ρ∆tEit
[
Vi(Wi,t+∆t, vt+∆t; li)

]
+ ηit

(
Wit + liDt∆t− cit∆t− Eit

[ξi,t+∆t

ξit
Wi,t+∆t

])
+ Eit

[
e−ρ∆t`i,t+∆tWi,t+∆t

)]
,(A6)

where multiplier `i,t+∆t satisfies the complementary slackness condition `i,t+∆tWi,t+∆t = 0.
Differentiating the Lagrangian (A6) with respect to cit and Wi,t+∆t, we obtain:

u′i(c∗it) = ηit, (A7)

e−ρ∆t
(
∂Vi(Wt+∆t, vt+∆t; li)

∂W
+ `i,t+∆t

)
= ηit

ξi,t+∆t

ξit
. (A8)

By the envelope theorem (e.g, Back (2010, p.162)):

∂Vi(Wi,t+∆t, vt+∆t; li)
∂W

= u′i(c∗i,t+∆t). (A9)

Substituting the partial derivative of the value function (A9) and the marginal utility (A7)
into equation (A8), and then dividing both sides of the equation by u′i(c∗it), we obtain the
expression for the SPD (24). �

Proof of Proposition 1.
Step 1. Consider the case when constraints do not bind, and hence, `i,t+∆t = 0. Then,
using equation (14) for the state variable vt and the first order conditions (24), we obtain:

vt+∆t − vt = ln
(

(c∗A,t+∆t/c
∗
At)−γA

(c∗
B,t+∆t/c

∗
Bt)−γB

(
Dt+∆t

Dt

)γA−γB)
= ln

(
ξA,t+∆t/ξAt
ξB,t+∆t/ξBt

(
Dt+∆t

Dt

)γA−γB)
.

From the above equation and the change of measure equation (20), which relates SPDs
ξA,t+∆t and ξB,t+∆t, we obtain the dynamics of vt when constraints do not bind:

vt+∆t − vt = ln
(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)
. (A10)
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Let v and v be the boundaries satisfying Equations (25), at which the constraints
of investors A and B bind, respectively. Let investor A’s constraint be binding so that
vt+∆t = v, and hence, `A,t+∆t ≥ 0. Using Equation (14) for vt, first order conditions (24),
and `A,t+∆t ≥ 0, we obtain:

v − vt ≤ ln
(

((c∗A,t+∆t)−γA + `A,t+∆t)/(c∗At)−γA
(c∗
B,t+∆t/c

∗
Bt)−γB

(
Dt+∆t

Dt

)γA−γB)

= ln
(
ξA,t+∆t/ξAt
ξB,t+∆t/ξBt

(
Dt+∆t

Dt

)γA−γB)
= ln

(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)
.

(A11)

Similarly, for vt+∆t = v we obtain that v−vt ≥ ln
(
πB(ωt+∆t)/πA(ωt+∆t)

(
Dt+∆t/Dt

)γA−γB).
The latter two inequalities imply that when the constraint binds vt+∆t is given by:

vt+∆t = max
{
v; min

{
v; vt + ln

(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)}}
. (A12)

We observe that (A12) is also satisfied in the unconstrained case where v < vt+∆t < v. It
remains to prove that vt does not escape [v, v] interval. Consider a marginal investor of
type A. We guess that vt follows dynamics (A12) and verify that the consumption choice
of investor A indeed implies this dynamics. The analysis for investor B is similar.

We have shown above that vt satisfies inequality (A11) when investor A is constrained.
Now, we show the opposite: investor A is constrained when vt satisfies (A11). Hence, vt+∆t

cannot exceed v. Consider vt such that vt+ln
(
πB(ωt+∆t)/πA(ωt+∆t) (Dt+∆t/Dt)γA−γB

)
> v

for some ωt+∆t and vt ∈ (v, v). Because v < vt < v, investor A consumes c∗At = s(vt)Dt, as
shown above. We show that the constraint of investor A binds and c∗A,t+∆t = s(v)Dt+∆t.
This consumption level confirms that vt+∆t = v is indeed an equilibrium outcome.

Consider the constraint of investor A at date t in the state ωt+∆t where vt+∆t = v:

WA,t+∆t ≥ 0 ≡ ΦA(v)Dt+∆t, (A13)

where the last equality holds by the definition of v. Using the concavity of the value
function, proven in Lemma 1, and condition (A9) from the envelope theorem, we obtain:

u′A(c∗A,t+∆t) = ∂VA(WA,t+∆t, v; lA)
∂W

≤ ∂VA(ΦA(v)Dt+∆t, v; lA)
∂W

= u′A(s(v)Dt+∆t). (A14)

Because u′i(c) is a decreasing function, we find that c∗A,t+∆t/Dt+∆t ≥ s(v).

Investor B is unconstrained when vt+∆t = v, and hence, has SPD

ξB,t+∆t

ξBt
= e−ρ∆t

(
c∗B,t+∆t

c∗Bt

)−γB
= e−ρ∆t

(
(1− s(v))Dt+∆t

(1− s(vt))Dt

)−γB
. (A15)
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From the change of measure equation (20) and the FOC (24), the SPD of investor A is

ξA,t+∆t

ξAt
= ξB,t+∆t

ξBt

πB(ωt+∆t)
πA(ωt+∆t)

= e−ρ∆t (c∗A,t+∆t)−γA + `A,t+∆t

(c∗At)−γA
. (A16)

From (A16) and (A15), we find the Lagrange multiplier:

lA,t+∆t

(c∗
A,t+∆t)−γA

=
(
c∗A,t+∆t

c∗At

)γ
A
(

(1− s(v))Dt+∆t

(1− s(vt))Dt

)−γB πB(ωt+∆t)
πA(ωt+∆t)

− 1

≥
(
s(v)Dt+∆t

s(vt)Dt

)γ
A
(

(1− s(v))Dt+∆t

(1− s(vt))Dt

)−γB πB(ωt+∆t)
πA(ωt+∆t)

− 1

=
(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)
evt−v − 1 > 0.

The first inequality follows from the fact that c∗A,t+∆t ≥ s(v)Dt+∆t we proved above. The
second equality holds by the definition of state variable (14). The second inequality comes
from the assumption that vt + ln

(
πB(ωt+∆t)/πA(ωt+∆t) (Dt+∆t/Dt)γA−γB

)
> v. Hence,

the Lagrange multiplier lA,t+∆t is strictly positive. From the complementary slackness
condition, the constraint (A13) must be binding. Therefore, inequality (A14) becomes an
equality, and hence, c∗A,t+∆t = s(v)Dt+∆t.

Step 2. We now look for coefficients µv, σv and Jv such that:

µv∆t + σv∆wt + Jv∆jt = ln
(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)

= ln
(
πB(ωt+∆t)
πA(ωt+∆t)

)
+ (γA − γB) ln(1 + µD∆t+ σD∆wt + Jv∆jt).

(A17)

We write identity (A17) in each of the states ωt+∆t ∈ {ω1, ω2, ω3} and obtain the following
system of three linear equations with three unknowns µv, σv and Jv:

µv∆t + σv
√

∆t = ln
(

(1− λB∆t)(1 + δ∆t)
1− λ∆t

)
+ (γA − γB) ln(1 + µD∆t+ σD

√
∆t),

µv∆t − σv
√

∆t = ln
(

(1− λB∆t)(1− δ∆t)
1− λ∆t

)
+ (γA − γB) ln(1 + µD∆t− σD

√
∆t),

µv∆t + Jv = ln
(
λB
λ

)
+ (γA − γB) ln(1 + µD∆t+ JD).

(A18)

Solving the above system, we obtain µv, σv and Jv reported in Proposition 1.
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Step 3. Finally, we show that the boundaries are reflecting for a sufficiently small ∆t.
Suppose, two conditions are satisfied: µv∆t− σv

√
∆t < 0 and µv∆t+ σv

√
∆t > 0. Then,

the boundaries are reflecting: 1) if vt = v, then vt+∆t = v+µv∆t−σv
√

∆t < v with positive
probability; 2) if vt = v, then vt+∆t = v + µv∆t + σv

√
∆t > v with positive probability.

It can be easily verified that as ∆t → 0, µv → µ̂v and σv → σ̂v, where µ̂v and σ̂v are
constants given by equations (36) and (37), respectively. Because σv > 0 and

√
∆t-terms

dominate ∆t-terms for small ∆t, we find that µv∆t− σv
√

∆t < 0 and µv∆t+ σv
√

∆t > 0
for all sufficiently small ∆t. Hence, the boundaries are reflecting. �

Lemma A.2 (Wealth-output ratios). The investors’ wealth-output ratios Φi are uni-
formly bounded and given by:

ΦA(vt) = EA

t

+∞∑
τ=t

e−ρ(τ−t)
(
Dτ

Dt

)1−γA
(
s(vτ )
s(vt)

)−γA
(s(vτ )− lA)∆t

 , (A19)

ΦB(vt) = EB

t

+∞∑
τ=t

e−ρ(τ−t)
(
Dτ

Dt

)1−γB
(

1− s(vτ )
1− s(vt)

)−γB
(lB − s(vτ ))∆t

 . (A20)

Proof of Lemma A.2. Substituting FOC (24) into the budget constraint (22) and using
the complementary slackness condition `i,t+∆tW

∗
i,t+∆t = 0, we obtain:

W ∗
At = EA

t

e−ρ∆t
(
c∗A,t+∆t

c∗At

)−γA
W ∗

A,t+∆t

+ (c∗At − lADt)∆t. (A21)

Substituting W ∗
At = ΦAtDt and c∗At = s(vt)Dt into equation (A21) and iterating, we obtain

equation (A19). Let s = s(v) s = s(v), where s(v) is given by equation (15). Then,
s ≥ s ≥ s > 0. Using the bounds on st, we obtain the following uniform bound on ΦA:

ΦA(vt) ≤ Const× EA

t

[+∞∑
τ=t

e−ρ(τ−t)
(
Dτ

Dt

)1−γA
∆t
]
.

The series on the right-hand side of the latter inequality is convergent due to condition
(16) on model parameters. Equation (A20) is obtained along the same lines. �

Proof of Proposition 2. 1) First, we derive the SPD ξAt under the correct beliefs of
investor A. When investor A’s constraint does not bind, substituting c∗At = s(vt)Dt into
the first order condition (24) we find that

ξA,t+∆t

ξAt
= e−ρ∆t

(
s(vt+∆t)
s(vt)

)−γA (Dt+∆t

Dt

)−γA
. (A22)
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Equation (A22) is consistent with SPD (30) because when the constraint does not bind
vt+∆t = vt + µv∆t+ σv∆wt + Jv∆jt < v, and hence the exponential term in (30) vanishes.

When the constraint of investor A binds, the constraint of investor B is loose: the
constraints cannot bind simultaneously because stock market would not clear otherwise.
Therefore, the ratio ξB,t+∆t/ξBt is given by FOC (24) for investor B with `B = 0. Using
equation (20), we rewrite the latter SPD under the correct beliefs of investor A:

ξA,t+∆t

ξAt
= e−ρ∆t

(
1− s(vt+∆t)

1− s(vt)

)−γB (Dt+∆t

Dt

)−γB πB(ωt+∆t)
πA(ωt+∆t)

. (A23)

Next, from equation (15) for consumption share s we find that (1 − st)−γB = e−vts−γAt .
Substituting the latter equality into equation (A23), and also using equation (A17) for the
increment vt+∆t − vt, we obtain:

ξA,t+∆t

ξAt
= e−ρ∆t

(
s(vt+∆t)
s(vt)

)−γA (Dt+∆t

Dt

)−γA
evt−vt+∆t

πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB

= e−ρ∆t
(
s(vt+∆t)
s(vt)

)−γA (Dt+∆t

Dt

)−γA
exp{vt − vt+∆t + µv∆t+ σv∆wt + Jv∆jt}.

(A24)

The fact that the constraint of investor A is binding means that vt+∆t = v and vt+µv∆t+
σv∆wt + Jv ≥ v (because otherwise vt+∆t < v, and hence, the constraint does not bind).
Therefore, the exponential term exp(vt − vt+∆t) in equation (A24) can be replaced with
exp(max{0, vt +µv∆t+σv∆wt + Jv∆jt− v}). When the constraint of investor A does not
bind the latter term vanishes and we obtain equation (A22). Therefore, both equations
(A22) and (A24) are summarized by equation (30) for ξA,t+∆t/ξAt.

2) Lemma A.2 derives the wealth-output ratios Φi(vt) and shows that they are uniformly
bounded. From the market clearing condition St = WAt +WBt. Dividing by Dt, we obtain
that Ψ(vt) = ΦA(vt) + ΦB(vt). Hence, Ψ(vt) is uniformly bounded. The fact that stock
price St is given by (31) can be verified by substituting St into the recursive equation (18).

3) In the unconstrained economy, the state variable vunct follows dynamics:

vunct = µv∆t+ σv∆wt + Jv∆jt. (A25)

Define processes Ut+∆t = Ut + ∆Ut and Vt+∆t = Vt + ∆Vt, where increments are given by:

∆Ut = max{0; vt+µv∆t+σv∆wt+Jv∆jt−v}, ∆Vt = max{0; v−vt−µv∆t−σv∆wt−Jv∆jt}.
(A26)
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The process for the state variable in the constrained economy can be rewritten as

vt+∆t = vt + µv∆t+ σv∆wt + Jv∆jt + ∆Vt −∆Ut. (A27)

If the state variables have the same value at time 0, i.e., v0 = vunc0 , we obtain:

vt = vunct + Vt − Ut (A28)

Next, we prove that the SPD is higher in the constrained economy.

ξA,t+∆t

ξAt
= e−ρ∆t

(
s(vt+∆t)
s(vt)

Dt+∆t

Dt

)−γA
exp(∆Ut), (A29)

ξuncA,t+∆t

ξuncAt

= e−ρ∆t
(
s(vunct+∆t)
s(vunct )

Dt+∆t

Dt

)−γA
. (A30)

Iterating the above equations, we obtain:

ξAt
ξA0

= e−ρt
(
s(vt)
s(v0)

Dt

D0

)−γA
exp(Ut),

ξuncAt

ξuncA0
= e−ρt

(
s(vunct )
s(v0)

Dt

D0

)−γA
.

By the definition of s(v) in equation (15), we have ev = (1− s(v))γB · s(v)−γA . Hence,

ξAt/ξA0

ξuncAt /ξ
unc
A0

=
(
s(vt)
s(vunct )

)−γA
exp(Ut) =

(
s(vunct + Vt − Ut)

s(vunct )

)−γA
ev

unc
t e−(vunct −Ut)

≥ s(vunct − Ut)−γAe−(vunct −Ut) · s(vunct )γAevunct

= (1− s(vunct − Ut))−γB · (1− s(vunc))γB ≥ 1.

(A31)

Therefore, we conclude that ξAt/ξA0 ≥ ξuncAt /ξ
unc
A0 . The latter inequality and the equations

for asset prices (17)–(19) imply that prices are higher in the constrained economy. �

Proof of Lemma 2. The price-dividend ratio Ψ and wealth-aggregate consumption ratios
Φi are functions of the state variable v, and satisfy equations:

Ψ(vt) = EA

t

[
ξA,t+∆t

ξAt

Dt+∆t

Dt

(
Ψ(vt+∆t) + ∆t

)]
, (A32)

Φi(vt) = EA

t

[
ξA,t+∆t

ξAt

Dt+∆t

Dt

Φi(vt+∆t)
]

+
(
1{i=A}s(vt) + 1{i=B}(1− s(vt))− li

)
∆t.(A33)
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These equations are obtained by substituting St = (1 − lA − lB)DtΨ(vt) into equation
(18) for the stock price, and Ψi = DtWit into static budget constraints (22). Define the
following function in discrete time:

Ψ̂(vt; θ) = EA

t

[
e−ρ∆t+∆Ut

(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

]
+ s(vt)θ∆t, (A34)

where ∆Ut is given by equation

∆Ut = max{0; vt + µv∆t+ σv∆wt + Jv∆jt − v}. (A35)

Comparing equation (A34) with equations (A32) and (A33) for Ψ and Φi and using the
linearity of equation (A34), it easy to observe that Ψ(vt) and Φi(vt) are given by the
following equations in terms of Ψ̂(vt; θ):

Ψ(vt) = Ψ̂(vt,−γA)s(vt)γA −∆t,

Φ(vt) =
(
(1{i=A} − 1{i=B})Ψ̂(v; 1− γA) + (1{i=B} − li)Ψ̂(v;−γA)

)
s(v)γA .

Taking limit ∆t→ 0, we obtain equations (32) and (33) for Ψ(vt) and Φi(vt).

First, we derive the equation for Ψ̂(vt; θ) when vt belongs to the interior (v, v). For a
sufficiently small ∆t we have ∆Ut = 0, where ∆Ut is given by (A35). Then, we rewrite
the expectation of (Dt+∆t)/Dt)1−γAΨ̂(vt; θ) as follows:

EA
t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

]
= (1− λ∆t)EA

t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

∣∣∣normal
]

+λ∆tEA
t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

∣∣∣crisis
]
.

(A36)

Noting that in the crisis Dt+∆t/Dt = 1 + µv∆t+ JD and vt+∆t = max{v; vt + µv∆t+ Jv}
and in the normal state Dt+∆t/Dt = 1 + µD∆t+ σD∆wt and vt+∆t = vt + µv∆t+ σv∆wt,
using Taylor expansions for (Dt+∆t/Dt)1−γA and Ψ̂(vt+∆t; θ), we find:

EA

t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)|crisis

]
= (1 + JD)1−γAΨ̂

(
max{v; vt + Jv}; θ

)
. (A37)

EA

t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)|normal

]
=
[
1 +

(
(1− γA)µD + (1− γA)γAσ2

D

2

)
∆t
]

Ψ̂(vt; θ)

+
(
µv + (1− γA)σDσv

)
Ψ̂′(vt; θ)∆t + σ2

v

2 Ψ̂′′(vt; θ)∆t+ o(∆t). (A38)
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Substituting (A37)-(A38) into (A34), we obtain:

Ψ̂(vt; θ) =
[
1−

(
λ+ ρ− (1− γA)µD + (1− γA)γA

2 σ2
D

)
∆t
]

Ψ̂(vt; θ)

+
(
µv + (1− γA)σDσv

)
Ψ̂′(v; θ)∆t+ σ2

v

2 Ψ̂′′(v; θ)∆t

+ λ(1 + JD)1−γAΨ̂
(
max{v; vt + Jv}; θ

)
∆t+ s(v)θ∆t+ o(∆t).

(A39)

Canceling similar terms, diving by ∆t, taking limit ∆t → 0, and noting that µv, σv and
Jv converge to µ̂v, σ̂v and Ĵv given by (36)-(38), we obtain equation (34) for Ψ̂(vt; θ).

Next, we derive the boundary conditions for Ψ̂(vt; θ). From equation (26), the state
variable dynamics at lower bound is vt+∆t = v + max{0, µv∆t+ σv∆wt + Jv∆jt}. We use
∆vt to denote the difference of vt+∆t and vt. In this case,

∆vt = max{0, µv∆t+ σv∆wt + Jv∆jt}. (A40)

For sufficiently small ∆t increment ∆vt is positive only in state ω1 and is zero otherwise.
In state ω1, ∆vt = µv∆t + σv

√
∆t. Therefore, the order of EA

t [∆vt] is
√

∆t, but second
order terms involving ∆vt have lower order:

lim
∆t→0

EA
t [∆vt]√

∆t
= σ̂v

2 ,

lim
∆t→0

EA
t

[
(∆vt)2

]
√

∆t
= lim

∆t→0

EA
t [∆vt∆t]√

∆t
= lim

∆t→0

EA
t [∆vt∆wt]√

∆t
= lim

∆t→0

EA
t [∆vt∆jt]√

∆t
= 0.

(A41)

Taylor expansion of Ψ̂(vt+∆t; θ) at vt = v is given by

Ψ̂(vt+∆t; θ) = Ψ̂(v; θ) + Ψ̂′(v; θ)∆vt + 1
2Ψ̂′′(v; θ)∆v2

t + o(
√

∆t). (A42)

In subsequent calculations we keep terms with order of
√

∆t. Using the above results, we
obtain the following expansion:

EA
t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

]

= EA
t

[
(1 + µD∆t+ σD∆wt + Jv∆jt)1−γA

(
Ψ̂(v; θ) + Ψ̂′(v; θ)∆vt + 1

2Ψ̂′′(v; θ)∆v2
t

)]
= Ψ̂(v; θ) + Ψ̂′(v; θ)EA

t [∆vt] + o(
√

∆t).

(A43)

Substituting (A43) into (A34), taking into account that ∆Ut = 0 at vt = v, and canceling
Ψ̂(v; θ) on both sides, we obtain the first boundary condition Ψ̂′(v; θ) = 0.
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At the upper bound vt = v investor A is constrained, and hence, ∆Ut in (A35) is
positive. From (26) the state variable at the upper bound is

vt+∆t = min{v, vt + µv∆t+ σv∆wt + Jv∆jt} = vt + µv∆t+ σv∆wt + Jv∆jt−∆Ut. (A44)

The order of EA
t [∆Ut] is

√
∆t, but second order terms involving ∆Ut have order o(

√
∆t).

Proceeding in the same way as (A41)-(A43), we arrive at

Ψ̂(v; θ) = Ψ̂(v; θ) +
[
Ψ̂(v; θ)− Ψ̂′(v; θ)

]
EA

t [∆Ut] + o(
√

∆t).

Canceling similar terms, taking limit ∆t→ 0, we obtain condition Ψ̂(v; θ)− Ψ̂′(v; θ) = 0.

Finally, we derive the equations for v and v. Taking limit ∆t → 0 in equations (25),
we find that these equations become: ΦA(v) = 0, ΦB(v) = 0. Substituting Φi(v) and Ψ(v)
in terms of Ψ̂(v; θ) from equations (33) into the latter equations for the boundaries, after
some algebra, we obtain equations (39). �

Proof of Corollary 1. Consider the case λ = λB = 0 and γA = γB = 1. Then, s(v)
solving equation (26) is given by s(v) = 1/(1 + ev), Ψ(v) = Ψ̂(v)s(v), where Ψ̂(v) solves a
special case of equation (34) given by:

δ2

2 Ψ̂′′(v)− δ2

2 Ψ̂′(v)− ρΨ̂(v) + 1 + ev = 0, (A45)

subject to boundary conditions (35). It can be easily verified that Ψ̂(v) = C1e
ϕ−v +

C2e
ϕ+v + (1 + ev)/ρ satisfies (A45). Substituting Ψ̂(v) into boundary conditions (35), we

obtain the following system for coefficients C1 and C2:

C1ϕ−e
ϕ−v + C2ϕ+e

ϕ+v + ev/ρ = 0; C1(ϕ− − 1)eϕ−v + C2(ϕ+ − 1)eϕ+v − 1/ρ = 0.

Solving these equations, we obtain:

C1 = 1
ρ

(ϕ+ − 1)ev+ϕ+v + ϕ+e
ϕ+v

ϕ+(ϕ− − 1)eϕ−v+ϕ+v − ϕ−(ϕ+ − 1)eϕ+v+ϕ−v
, (A46)

C2 =−1
ρ

(ϕ− − 1)ev+ϕ−v + ϕ−e
ϕ−v

ϕ+(ϕ− − 1)eϕ+v+ϕ−v − ϕ−(ϕ+ − 1)eϕ+v+ϕ−v
. � (A47)

Proof of Proposition 3. From equation (17) for the bond price and the fact that
1 = Bt(1 + rt∆t) we find that the riskless interest rate rt is given by:

rt = 1− Et[ξA,t+∆t/ξAt]
Et[ξA,t+∆t/ξAt]∆t

= 1− (1− λ∆t)Et[ξA,t+∆t/ξAt|normal]− λ∆tEt[ξA,t+∆t/ξAt|crisis]
Et[ξA,t+∆t/ξAt]∆t

,

(A48)
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where ξA,t+∆t/ξAt is given by equation (30). We separately calculate Et[ξA,t+∆t/ξAt|normal]
and Et[ξA,t+∆t/ξAt|crisis], and then take the limit ∆t→ 0.

We start with the derivation of Et[ξA,t+∆t/ξAt|normal] when v < vt < v, and hence, by
continuity, for a sufficiently small ∆t the economy is unconstrained next period, so that
v < vt+∆t < v. In the unconstrained region ∆vt = µ̂v∆t+ σ̂v∆wt and the SPD is given by
(A22). From the expression for the SPD, using expansions (A57) and (A59), we obtain:

Et
[
ξA,t+∆t

ξAt

∣∣∣normal
]

= Et
[(

(1 + at∆vt + bt(∆vt)2
)(

1− rA∆t− κA∆wt
)
|normal

]
+ o(∆t)

= Et
[
1 + at∆vt + bt(∆vt)2 − rA∆t− κA∆wt − κAat∆vt∆wt

∣∣∣normal
]

+ o(∆t)

= 1 + atµ̂v∆t+ btσ̂
2
v∆t− rA∆t− κAatσ̂v∆t+ o(∆t).

(A49)
Conditioning on the crisis state, we have:

Et
[
ξA,t+∆t

ξAt

∣∣∣crisis
]

= (1− ρ∆t)(1 + µD∆t+ JD)−γA
(
s(max{v, vt + µv∆t+ Jv})

s(vt)

)−γA

= (1 + JD)−γA
(
s(max{v, vt + Ĵv})

s(vt)

)−γA
+ o(∆t).

(A50)
Substituting at and bt from (A58) into equation (A49), and then substituting (A49) and
(A50) into equation (A48), after simple algebra, we obtain rt in (41) for the case v < vt < v.

Now, we derive rt at the boundaries v and v. The SPD is given by (30). Using
expansions (A57) and (A59), we obtain the following expansion:

Et
[
ξA,t+∆t

ξAt

∣∣∣normal
]

= Et
[(

(1 + at∆vt + bt(∆vt)2
)(

1− rA∆t− κA∆wt
)

×(1 + ∆Ut + 0.5(∆Ut)2)|normal
]

+ o(∆t)

= Et
[
1 + at∆vt + bt(∆vt)2 − rA∆t− κA∆wt − κAat∆vt∆wt

+ ∆Ut − κA∆wt∆Ut + at∆Ut∆vt + 0.5(∆Ut)2
∣∣∣normal

]
+O(∆t),

(A51)
where ∆Ut is given by equation (A35). Using equation (26) for the process vt and equation
(A35) for ∆Ut, for a fixed vt and sufficiently small ∆t, we find that ∆vt and ∆Ut at the
boundaries are given by:

∆vt =


min(0, µv∆t+ σv∆wt), if vt = v,

max(0, µv∆t+ σv∆wt), if vt = v,
(A52)
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∆Ut =


0, if vt < v,

max(0, µv∆t+ σv∆wt), if vt = v,
(A53)

We note that for a sufficiently small ∆t the sign of µv∆t+ σv∆wt is solely determined by
the second term σv∆wt because it has the order of magnitude

√
∆t. Volatility σv is positive

because under our assumptions investor A is more risk averse and more pessimistic. Using
the latter observation, substituting equations (A52) and (A53) into equation (A51) and
computing the expectation, we obtain:

Et
[
ξA,t+∆t

ξAt

∣∣∣normal
]

= 1+



(
at(µv − κAσv)

2 + btσ
2
v

2 + µv + κAσv + σ2
v

2 − rA
)

∆t

+σv(1− at)2
√

∆t+O(∆t), if vt = v,(
atµv − atκAσv + btσ

2
v

2

)
∆t+ atσv

2
√

∆t+O(∆t), if vt = v.

(A54)
Substituting (A54) and (A50) into equation (A48) for the interest rate rt, we obtain rt in
(41) for the case when vt is at the boundary.

To obtain the risk premium, we first decompose stock returns as follows:

∆St + (1− lA − lB)Dt+∆t∆t
St

= µt∆t+ σt∆wt + Jt∆jt. (A55)

Multiplying both sides of (A55) by ξA,t+∆t/ξAt and taking expectations, we obtain:

Et
[
ξA,t+∆t

ξAt

∆St + (1− lA − lB)Dt+∆t∆t
St

]
= µt∆tEt

[
ξA,t+∆t

ξAt

]
+σtEt

[
ξA,t+∆t

ξAt
∆wt

]
+JtEt

[
ξA,t+∆t

ξAt
∆jt

]
.

On the other hand, from the equation for stock price (18) we find that:

Et
[
ξA,t+∆t

ξAt

∆St + (1− lA − lB)Dt+∆t∆t
St

]
= 1− Et

[
ξA,t+∆t

ξAt

]
.

Combining the last two equations and the equation (A48) for the interest rate, we obtain:

µt − rt = −
(
σtEt

[
ξA,t+∆t

ξAt
∆wt

]
+ JtEt

[
ξA,t+∆t

ξAt
∆jt

])
1 + rt∆t

∆t . (A56)

Then, proceeding in the same way as with the calculation of interest rates and using similar
expansions, we obtain equation (42) for the risk premium. �

Lemma A.3 (Useful expansions).
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1) For small increment ∆vt = vt+∆t − vt the ratio
(
s(vt+∆t)/s(vt)

)−γA has expansion:(
s(vt+∆t)
s(vt)

)−γA
= 1 + at∆vt + bt(∆vt)2 + o(∆t), (A57)

where coefficients at and bt are given by:

at = (1− st)Γt
γB

, bt = 1
2γ2

B

(1− st)2Γ2
t + 1

2γ2
Aγ

2
B

st(1− st)Γ3
t , (A58)

Γt = γAγB/(γA(1 − s) + γBs) is the risk aversion of the representative investor and st is
consumption share of investor A that solves equation (15).

2) For the case JD = 0, the SPD in a one-investor economy can be expanded as follows:

e−ρ∆t
(
Dt+∆t

Dt

)−γA
= 1− rA∆t− κA∆wt + o(∆t), (A59)

where rA and κA are the riskless rate and the Sharpe ratio in an economy populated only
by investor A, given by:

rA = ρ+ γAµD −
γA(1 + γA)

2 σ2
D, κA = γAσD. (A60)

Proof of Lemma A.3. 1) We expand the ratio on the left-hand side of (A57) using Tay-
lor’s formula, and observe that at = (s(vt)−γA)′/s(vt)−γA and bt = 0.5(s(vt)−γA)′′/s(vt)−γA .
Differentiating, we obtain the following expressions for at and bt:

at = −γA
s′(vt)
s(vt)

, bt = γA(1 + γA)
2

(
s′(vt)
s(vt)

)2

− γA
2
s′′(v)
s(v) . (A61)

To find derivatives s′(v) and s′′(v), we differentiate equation (15) twice with respect to v,
and obtain two equations for the derivatives:

1 = −
(
γA
st

+ γB
1− st

)
s′(vt), (A62)

0 =
(
γA
s2
t

− γB
(1− st)2

)
(s′(vt))2 −

(
γA
st

+ γB
1− st

)
s′′(vt). (A63)

Finding s′(v) and s′′(v) from the system (A62)–(A63) and substituting them into expres-
sions (A61) for coefficients at and bt, after some algebra, we obtain expressions (A58).

2) Substituting Dt+∆t/Dt from (1) into equation (A59), after some algebra, we obtain:

e−ρ∆t
(
Dt+∆t

Dt

)
= e−ρ∆t (1 + µD∆t+ σD∆wt)−γA

= (1− ρ∆t)
(

1−
(
γAµD −

γA(1 + γA)
2 σ2

D

)
∆t− γAσD

)
+ o(∆t)

= 1− rA∆t− κA∆wt + o(∆t). �

(A64)
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Proof of Proposition 4. Consider a reflected arithmetic Brownian motion with bound-
aries v and v and dynamics dvt = µ̂vdt+ σ̂vdwt when v < vt < v, where wt is a Brownian
motion. The transition density for this process is given by (see Veestraeten, 2004):

fv(v, τ ; vt, t) = 1√
2πσ̂2

v(τ − t)

+∞∑
n=−∞

exp

−2µ̂v
σ̂2
v

n(v − v)−

(
v − vt − µ̂v(τ − t) + 2n(v − v)

)2

2σ̂2
v(τ − t)



+ exp

−2µ̂v
σ̂2
v

(
vt − v + n(v − v)

)
−

(
v − vt − µ̂v(τ − t) + 2(vt − v + n[v − v])

)2

2σ̂2
v(τ − t)




+ 2µ̂v
σ̂2
v

+∞∑
n=0

[
exp

(
−2µ̂v
σ̂2
v

(
v − v + n[v − v]

))
N
(
vt + µ̂v(τ − t)− v − 2(v − v + n[v − v])

σ̂v
√
τ − t

)

− exp
(

2µ̂v
σ̂2
v

(
v − v + n[v − v]

))(
1−N

(
vt + µ̂v(τ − t)− v + 2(v − v + n[v − v])

σ̂v
√
τ − t

))]
,

(A65)
whereN (·) is the cumulative distribution of a standard normal distribution. By Fv(v, τ ; vt, t)
= Prob{vτ ≤ v|vt} we denote the corresponding cumulative distribution function of v con-
ditional on observing vt at time t. We observe that st = s(vt) is a decreasing function
of vt implicitly defined by equation (15). From the latter equation we also find that
s−1(x) = γB ln(1 − s) − γA ln(s). The cumulative distribution function of consumption
share sτ at time τ conditional on observing st at time t can then be found as follows:

F (x, τ ; st, t) = Prob{sτ ≤ x|st} ≡ Prob{s(vτ ) ≤ x|st}

= 1− Prob{vτ ≤ s−1(x)|vt}

= 1− Prob{vτ ≤ γB ln(1− x)− γA ln(x)|vt}

= 1− Fv(γB ln(1− x)− γA ln(x), τ ; vt, t).

(A66)

Substituting vt = γB ln(1−st)−γA ln(st) into (A66), differentiating CDF F (x, τ ; st, t) with
respect to x and setting x = s, we find that the transition PDF for s is given by:

f(s, τ ; st, t) =
(
γA
s

+ γB
1− s

)
fv
(
γB ln(1−s)−γA ln(s), τ ; γB ln(1−st)−γA ln(st), t

)
, (A67)

where transition density fv(v, τ ; vt, t) is given by equation (A65).

The stationary distribution of variable v, calculated in Veestraeten (2004), is given by:

fv(v) = 2µ̂v
σ̂2
v

exp
(
(2µ̂v/σ̂2

v)v
)

exp
(
(2µ̂v/σ̂2

v)v
)
− exp

(
(2µ̂v/σ̂2

v)v
) . (A68)
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Proceeding in the same way as for the derivation of transition PDF (A67), we obtain
stationary PDF (44) for consumption share s. �

Proof of Corollary 2. The proof easily follows by substituting boundary conditions (35)
into the equation (B27) for volatility σt at the boundary values v and v. �

Proof of Proposition 5. Consider Lagrangian (A6) for the dynamic optimization of
investor i. Differentiating this Lagrangian with respect to li and cit, we obtain:

∂Vi(W ∗
it, vt; li)
∂li

= ηitDt∆t+ e−ρ∆tEit

[
∂Vi(W ∗

i,t+∆t, vt+∆t; li)
∂li

]
, (A69)

u′(c∗it) = ηit. (A70)

By the envelope theorem (e.g., Back (2010, p.162)):

∂Vi(Wit, vt; li)
∂W

= u′i(c∗it), (A71)

∂Vi(Wi,t+∆t, vt+∆t; li)
∂W

= u′i(c∗i,t+∆t). (A72)

Substituting (46), (A70), (A71), and (A72) into equation (A69), and simplifying, we find:

Ŝit = Dt∆t+ Eit

[
e−ρ∆tu

′
i(c∗i,t+∆t)
u′i(c∗it)

Ŝi,t+∆t

]
. (A73)

From equation (30), we recall that the SPD of investor A is given by

ξA,t+∆t

ξAt
= e−ρ∆t+∆Ut (c

∗
A,t+∆t)−γA
(c∗At)−γA

Dt+∆t

Dt

, (A74)

where ∆Ut = max{0; vt + µv∆t + σv∆wt + Jv∆jt − v}. Rewriting equation (A73) for
investor A in terms of SPD (A74), we obtain:

ŜAt = Dt∆t+ EA

t

[
e−∆Ut ξA,t+∆t

ξAt
ŜA,t+∆t

]
. (A75)

Following the same steps as in the proof of Lemma 2, we find that ŜAt = Ψ̂i(vt;−γA)s(vt)γADt,
where Ψ̂i(v; θ) satisfies differential-difference equation (34) with boundary conditions (49).

Iterating equation (18) for stock and equation (A75) for shadow prices, we obtain:

St + (1− lA − lB)Dt∆t = 1
ξt
EA

t

[
∞∑
τ=t

ξτ (1− lA − lB)Dτ∆t
]
, (A76)

ŜAt = 1
ξt
EA

t

[
∞∑
τ=t

e−(Uτ−Ut)ξτDτ∆t
]
. (A77)
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Inequality (St + (1 − lA − lB)Dt∆t)/(1 − lA − lB) > ŜAt follows from the fact that Ut =∑t
τ=0 ∆Uτ is a non-decreasing processes. In the continuous-time limit, we obtain that

St/(1− lA− lB) > ŜAt. Hence, the liquidity premium ΛAt is positive. The derivation of the
shadow price of investor B is analogous and available upon request. �
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Appendix B: Technical results.

Proposition B.1 (Existence of boundaries v and v). There exist constant boundaries
v and v for the state variable vt process (26) that solve equations (25).

Proof of Proposition B.1. We here show the existence of v that solves ΦA(v) = 0,
where ΦA(v) is given by equation (A19) in Appendix A. The proof for v is analogous.

We note that ΦA(vt) ≥ 0 because of the constraint WAt ≥ 0. Suppose, v does not exist,
and hence ΦA(vt) > 0 for all vt. From equation (15) for consumption share s we observe
that s(vt) → 0 when vt → +∞. For arbitrary ε ∈ (0, lA) choose vt sufficiently large, so
that s(vt)− lA < −ε. Let T (vt) be the stopping time, defined as

T (vt) = inf{τ : s(vτ )− lA ≥ −ε}. (B1)

From equation (A19) for ΦA(vt) we obtain the following inequality:

ΦA(vt)s(vt)−γA ≤−εEA

t

T (vt)∑
τ=t

e−ρ(τ−t)
(
Dτ

Dt

)1−γA
s(vτ )−γA∆t



+ EA

t

 +∞∑
τ=T (vt)+∆t

e−ρ(τ−t)
(
Dτ

Dt

)1−γA
s(vτ )−γA(s(vτ )− ε)1{s(vτ )≥ε}∆t



≤−ε(lA − ε)−γAEA

t

T (vt)∑
τ=t

e−ρ(τ−t)
(
Dτ

Dt

)1−γA
∆t


+ max(1; ε1−γA)EA

t

 +∞∑
τ=T (vt)+∆t

e−ρ(τ−t)
(
Dτ

Dt

)1−γA
∆t
 .

(B2)

Next, we show that T (vt) → +∞ as vt → +∞. Let v̂ be such that s(v̂) = lA − ε.
Then, because s(vt) is a decreasing function, vt ≥ v̂ and the stopping time (B1) can be
rewritten as T (vt) = inf{τ : vτ ≤ v̂}. We note that T (vt) ≥ T̂ , where T̂ is the minimal
time required to get from vt to v̂, which is the time when ∆wt = −

√
∆t and ∆jt = 1 along

the path. Time T̂ is found from the condition vt+(T̂ /∆t)(µv∆t−σv
√

∆t+Jv) = v̂, where
Jv < 0. We observe that T̂ → +∞ as vt → +∞, and hence T (vt) → +∞. We also note
that Et[

∑∞
τ=t e

−r(τ−t)D1−γA
τ ∆t] < +∞ by condition (16). Therefore, for a sufficiently large

vt we obtain from inequality (B2) that ΦA(vt) < 0, which contradicts initial assumption
that ΦA(vt) > 0 for all vt. Hence, there exists v such that ΦA(v) = 0. �
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Lemma B.1 (Unconstrained optimization). Consider an infinitesimal unconstrained
investor with risk aversion γi and labor income liDt, i = A,B, who lives in the economy
where the state price density is given by (30). The investor’s value function is given by

V unc
i (Wt, vt) = (Wt + li/(1− lA − lB)St)1−γi

1− γi
hi(vt)γi , (B3)

where h(vt) is a uniformly bounded wealth-consumption ratio, given by:

hi(vt) = Eit
[+∞∑
τ=t

(ξiτ
ξit

)1−1/γi
e−ρ(τ−t)/γi∆t

]
. (B4)

The investor’s optimal consumption is given by c∗iτ = `(ξiτeρ(τ−t))−1/γi, where ` is a con-
stant. Moreover, for all feasible consumptions ct the following inequalities are satisfied:

+∞∑
τ=t

e−ρ(τ−t)ui(cτ )∆t ≤
+∞∑
τ=t

e−ρ(τ−t)ui(c∗τ )∆t = V unc
i (Wt, vt), (B5)

lim
T→∞

sup e−ρTEt
[
V unc
i (WT , vT )

]
≤ 0. (B6)

Proof of Lemma B.1. We solve the problem using the martingale method. The static
budget constraint is given by:

Eit
[+∞∑
τ=t

ξiτ
ξit
c∗τ
]

= Wt + liSt
1− lA − lB

, (B7)

where the last term is the value of the labor income. Because the dividends and labor
incomes are collinear, the value of the labor income is given by:

Eit
[+∞∑
τ=t

ξiτ
ξit

(liDτ )
]

= liSt
1− lA − lB

.

The first order condition gives the optimal consumption c∗τ = `(ξiτ/ξiteρ(τ−t))−1/γi ,
where ` is the Lagrange multiplier that can be found by substituting c∗τ into (B7). Finding
the multiplier ` and substituting c∗τ into the objective function, we obtain the value function
(B3), where h(vt) is given by (B4).

Next, we show that h(vt) is uniformly bounded. First, we consider the case γi ≥ 1.
Using equation (B4) and Hölder’s inequality, we obtain:

hi(vt) = Eit
[ ∞∑
τ=t

(ξiτ
ξit

)1−1/γi
e−ρ(τ−t)/γi

]
≤
(
Eit
[ ∞∑
τ=t

ξiτDτ

ξitDt

])1−1/γi(Eit[ ∞∑
τ=t

e−ρ(τ−t)
(Dτ

Dt

)1−γi])1/γi
.
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We note that both multipliers on the right-hand side of the latter inequality are bounded.
The first multiplier equals the price-dividend ratio and is bounded by Proposition 2. The
second multiplier is bounded due to condition (16) on the model parameters. Consider
now the case γi ≤ 1. From the FOCs (24) and the fact that s ≤ s ≤ s, we obtain:

ξiT
ξit
≥ e−ρ(T−t)

(c∗T
c∗t

)−γi ≥ e−ρ(T−t)
(DT

Dt

)−γi(s
s

)−γi
.

From the latter inequality it follows that

Eit
[(ξiτ
ξit

)1−1/γi
e−ρ(τ−t)/γi

]
≤
(s
s

)1−γiEit
[
e−ρ(τ−t)

(Dτ

Dt

)1−γi]
. (B8)

The inequality (B8) and condition (16) imply that the infinite series in (B4) converges and
function hi(v) is uniformly bounded. We also observe that hi(v) ≥ ∆t > 0.

Now, we prove inequality (B5). We consider feasible consumption streams satisfying
condition Wt+ li/(1− lA− lB)St ≥ 0 for all t, which means that investor’s aggregate wealth
is non-negative at all times so that investor does not go bankrupt. From the investor’s
budget constraint and the latter inequality for all feasible consumptions we obtain:

Wt+
liSt

1− lA − lB
≥ Eit

[ T∑
τ=t

ξiτ
ξit
cτ∆t

]
+Eit

[ξiT
ξit

(
WT + liST

1− lA − lB

)]
≥ Eit

[ T∑
τ=t

ξiτ
ξit
cτ∆t

]
. (B9)

Consider the weighting function wt given by

wτ =

(
ξiτ
ξit

)1−1/γi
e−ρ(τ−t)/γi

ĥiT (vt)
, where ĥiT (vt) = Eit

[ T∑
τ=t

(ξiτ
ξit

)1−1/γi
e−ρ(τ−t)/γi∆t

]
. (B10)

We note that Eit[
∑T
τ=twτ∆t] = 1. Using Jensen’s inequality and inequality (B9), we obtain:

Eit
[ T∑
τ=t

e−ρ(τ−t)c1−γi
τ

1− γi
∆t
]

= Eit
[ T∑
τ=t

(
(ξiτ/ξit)1/γieρ(τ−t)/γicτ

)1−γi
wτ∆t

1− γi

]
ĥiT (vt)

≤

(
Eit
[ T∑
τ=t

(ξiτ/ξit)1/γieρ(τ−t)/γicτwτ∆t
])1−γi

1− γi
ĥiT (vt)

=

(
Eit
[ T∑
τ=t

(ξiτ/ξit)cτ∆t
])1−γi

1− γi
ĥiT (vt)γi

≤

(
Wt + liSt

1−lA−lB

)1−γi

1− γi
ĥiT (vt)γi .

(B11)
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Taking limit T →∞ in (B11), and noting that ĥiT (vt)→ hi(vt), we obtain (B5).

Finally, we prove inequality (B6). Because cτ ≥ 0, from inequality (B9), we obtain:

Eit
[ξiT
ξit

(
WT + liST

1− lA − lB

)]
≤ Wt + liSt

1− lA − lB
. (B12)

Using Jensen’s inequality following the same steps as in inequality (B11), we obtain:

Eit
[(
WT + liST

1−lA−lB

)1−γi]
1− γi

≤

(
Eit
[
ξiT
ξit

(
WT + liST

1−lA−lB

)])1−γi

1− γi

(
Eit
[(ξiT
ξit

)− 1−γi
γi

])γi

≤

(
Wt + liSt

1−lA−lB

)1−γi

1− γi

(
Eit
[(ξiT
ξit

)− 1−γi
γi

])γi
.

The above inequality and the boundedness of hi(vt) then imply the following inequality:

e−ρ(τ−t)Eit[V unc
iT ] ≤ Const× V unc

it

(
Eit
[(ξiT
ξit

)− 1−γi
γi e−ρ(τ−t)/γi

])γi
. (B13)

Inequality (B13) also holds for γi = 1 if CRRA preferences are replaced with logarith-
mic preferences. Suppose, γi > 1. Then, inequality (B6) is satisfied because V unc

i < 0.
Suppose, γi ≤ 1. Then, using inequalities (B8), (B13), and condition (16), we obtain:

e−ρ(τ−t)Eit[V unc
iT ] ≤ Const×

(
Eit
[
e−ρ(τ−t)

(Dτ

Dt

)1−γi])γi → 0, as T →∞. �

Lemma B.2. Let P(V ) be a point-wise monotone operator such that for all point-wise
bounded functions V1 and V2 such that V1 ≤ V2 ⇒ P(V1) ≤ P(V2). Suppose further there
exist point-wise bounded functions V and V such that V ≤ V , P(V ) ≥ V , and P(V ) ≤ V .
Then, there exists a point-wise bounded function V ∗ such that: 1) V ≤ V ∗ ≤ V ; 2)
V ∗ ≤ P(V ∗); 3) Pn(V )→ V ∗ point-wise as n→∞.

Proof of Lemma B.2. From the monotonicity of the operator P(V ) and the definitions
of V and V , we obtain:

V ≤ P(V ) ≤ P(V ) ≤ V . (B14)

Applying operator P to inequalities (B14), and then using the definitions of V and V ,
we obtain: V ≤ P(V ) ≤ P2(V ) ≤ V . Proceeding in the same way n times we obtain
V ≤ P(V ) ≤ P2(V ) ≤ . . . ≤ Pn(V ) ≤ V . Consequently, Pn(V ) is point-wise increasing
and bounded, and hence converges to some function V ∗ such that V ≤ V ∗ ≤ V and
Pn(V ) ≤ V ∗. Applying operator to both sides of the latter inequality, we find that
Pn+1(V ) ≤ P(V ∗). Taking limit, we find that V ∗ ≤ P(V ∗). �
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Proposition B.2 (Verification of optimality). Consider an infinitesimal investor i
who lives in an economy where the state price density is given by equation (30). Suppose,
this investor maximizes expected discounted utility (7) subject to a self-financing budget con-
straint and the collateral constraint (10). Then, there exists unique bounded value function
V ∗i satisfying the dynamic programming equation (21) and the transversality condition,
such that for all feasible consumptions

V ∗it ≥ Eit
[+∞∑
τ=t

u(ciτ )∆t
]
, (B15)

and, moreover,

V ∗it = Eit
[+∞∑
τ=t

u(c∗iτ )∆t
]
, (B16)

for the optimal consumptions given by FOCs (24).

Proof of Proposition B.2. Consider the following operator:

Pi(V ) = max
ct

{
ui(ct)∆t+ e−ρ∆tEit[Vi,t+∆t)]

}
, i = A,B (B17)

where maximization is subject to budget constraint (22) and collateral constraint (23).
Consider the following functions:

V it =


0, γi < 1,

Eit
[+∞∑
τ=t

e−ρ(τ−t)ui(liDτ )∆t
]
, γi ≥ 1,

V it =


V unc
it , γi ≤ 1,

0, γi > 1,
(B18)

where V unc
t is given by (B3).

We observe that for γi ≥ 1 function V i is bounded due to condition (16) imposed on
model parameters. Because ct = liDt is feasible, we obtain that

P(V i) ≥ ui(liDt) + e−ρ∆tEit
[ +∞∑
τ=t+∆t

e−ρ(τ−t)ui(liDt)∆t
]

= V i.

For γi < 1 it is easy to see that P(V i) ≥ V i because ui(c) > 0. Next, we prove that
Pi(V i) ≤ V i. The latter inequality is straightforward for γi > 1 because Pi(0) ≤ 0.
Suppose now, γi ≤ 1. Consider operator P̃i(Vi) given by equation (B17), where the
maximization is subject to the budget constraint (22), but without the collateral constraint
(23). Hence, Pi(Vi) ≤ P̃i(Vi). By Lemma B.1, V unc

i is the solution of the unconstrained
optimization, and hence V i = P̃i(V i). Therefore, Pi(V i) ≤ P̃i(V i) = V i.
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We drop subscript and superscript i for convenience. Consider the sequence Vn+1 =
P(Vn), with V0 = V , where V is given in (B18). Then, by Lemma B.2, Vn → V ∗ point-
wise as n → ∞. Next, we show that V ∗ is the value function and P(V ∗) = V ∗. By the
definition operator P(V ) in (B17), for all feasible consumption streams

Vn+1 ≥ u(ct)∆t+ e−ρ∆tEt [Vn(Wt+∆t; vt+∆t)]

≥ Et
[n∆t∑
τ=t

e−ρ(τ−t)u(cτ )∆t
]

+ e−ρn∆tEt[V ].
(B19)

Taking point-wise limit n→∞ in (B19) and taking into account that Et[V ] is point-wise
bounded, we obtain inequality (B15).

By Lemma B.2, V ∗ ≤ P(V ∗) and V ∗ ≤ V , where V is given in (B18), and hence

V ∗(Wt, vt)≤ u(c∗t )∆t+ e−ρ∆tEt [V ∗(Wt+∆t; vt+∆t)]

≤ Et
[ T∑
τ=t

u(c∗τ )∆t
]

+ e−ρTEt[V ∗(WT , vT )]

≤ Et
[ T∑
τ=t

u(c∗τ )∆t
]

+ e−ρTEt[V (WT , vT )],

(B20)

where c∗ is the optimal consumption that solves optmization in equation (B17).

We note that V = 0 for γ > 1 and lim sup e−ρTEt[V (WT , vT )] ≤ 0 as T →∞ for γ ≤ 1,
by Lemma B.1. Taking limit T →∞ in (B20) we find that V ∗ ≤ Et

[∑+∞
τ=t u(c∗τ )∆t

]
, which

along with inequality (B15) yields (B16). Equation (B16) along with inequality (B20)
also imply that V ∗ = P(V ∗). Moreover, V ∗ is point-wise bounded because V ≤ V ∗ ≤
V . Then, given the existence of the value function, the optimal consumptions are given
by (24). Finally, we show that V ∗ satisfies the transversality condition. We note that
e−ρ(T−t)Et[V T ] ≤ e−ρ(T−t)Et[V ∗T ] ≤ e−ρ(T−t)Et[V T ]. Taking limit T → 0 we find that the
upper and lower bound in the latter equation converge to 0, and hence the transversality
condition is satisfied for V ∗. �

Proposition B.3 (Closed-form solutions).

1) In the limit ∆t → 0 the price-dividend ratio Ψ and wealth-consumption ratios Φi are
given by equations (32) and (33), where function Ψ̂(v; θ) is given by:

Ψ̂(v; θ) =
∫ v

v
s(y)θψ̂(v − y)dy +

∫ v

v
s(y)θ

[
ψ̂′(v − y)− ψ̂(v − y)

]
dy

1 +H

(
ψ̂(v − v)−

∫ v−v

0
ψ̂(y)dy

) (
1−H

∫ v−v

0
ψ̂(y)dy

)
,

(B21)
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where s(y) solves equation10 (15), and ψ̂(x), H and some auxiliary variables are given by:

ψ̂(x) = 2
σ̂2
v

∞∑
n=0

(2λ(1 + JD)1−γA

σ̂2
v

)n exp
(
(ζ+ + ζ−)(x+ nĴv)/2

)
(ζ+ − ζ−)2n+1n! (B22)

× Qn

(
(ζ+ − ζ−)(x+ nĴv)

2

)
1{x+nĴv≥0}

]
, (B23)

Qn(x) = exp(−x)
n∑

m=0
(2x)n−m (n+m)!

m!(n−m)! − exp(x)
n∑

m=0
(−2x)n−m (n+m)!

m!(n−m)! , (B24)

H = λ+ ρ− (1− γA)µD + (1− γA)γA
2 σ2

D − λ(1 + JD)1−γA , (B25)

ζ± = −
µ̂v + (1− γA)σ̂vσD ∓

√
(µ̂v + (1− γA)σ̂vσD)2 + 2σ̂2

v

(
λ+ ρ− (1− γA)µD + (1−γA)γA

2 σ2
D

)
σ̂2
v

.

(B26)
2) Stock return volatility in normal times and the jump size Jt are given by:

σt = σD +
(

Ψ̂′(vt;−γA)
Ψ̂(vt;−γA)

− γA(1− s(vt))
γA(1− s(vt)) + γBs(vt)

)
σ̂v, (B27)

Jt =
(1 + JD)Ψ̂

(
max{v; vt + Ĵv};−γA

)
s
(
max{v; vt + Ĵv}

)γA
Ψ̂(vt;−γA)s(vt)γA

− 1. (B28)

Numbers of shares n∗i,St and leverage Lit = −bitBit to market price St ratio are given by:

n∗i,St = Φi(vt)σD + Φ′i(vt)σ̂v
Ψ(vt)σt

,
Lit
St

= ni,St −
Φi(vt)

Ψ(vt)(1− lA − lB) . (B29)

Proof of Proposition B.3. 1) First, we solve the differential-difference equation in
Lemma 2. We denote g(x) = Ψ̂(x+ v; θ) and apply the following changes of variables:

x = v − v, σ̃ = σ̂v, µ̃ = µ̂v + (1− γA)σDσ̂v, J̃ = −Ĵv, λ̃ = λ(1 + JD)1−γA ,

ρ̃ = λ+ ρ− (1− γA)µD + (1− γA)γA
2 σ2

D.
(B30)

Equations (34) and (35) with new variables now become:

σ̃2

2 g
′′(x) + µ̃g′(x)− ρ̃g(x) + λ̃g(max{x− J̃ , 0}) + s(x+ v)θ = 0, (B31)

10Although s(y) is not in closed form, we observe from equation (15) that its inverse is given by s−1(x) =
γB ln(x)−γA ln(1−x). The change of variable x = s(y) eliminates implicit functions, similar to Chabakauri
(2015). We keep all integrals in terms of s(y) because s(y) is intuitive and easily computable from (15).
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g′(0) = 0, g(v − v)− g′(v − v) = 0. (B32)

Let L [g(x)] =
∫∞

0 e−zxg(x)dx be the Laplace transform of g(x), and similarly for other
functions. The Laplace transforms of g′(x), g′′(x) and g(max{x− J̃ , 0}) are given by:

L [g′(x)] = zL [g(x)]− g(0),

L [g′′(x)] = z2L [g(x)]− zg(0)− g′(0),

L
[
g(max{x− J̃ , 0})

]
=
∫ ∞

0
e−zxg(max{x− J̃ , 0})dx

=
∫ J̃

0
e−zxg(0)dx+

∫ ∞
J̃

e−zxg(x− J̃)dx

= 1
z

(1− e−J̃z)g(0) + e−J̃zL [g(x)] .

(B33)

Applying the transform to equation (B31), we arrive at the following equation:

σ̃2

2
(
z2L [g(x)]− zg(0)− g′(0)

)
+ µ̃ (zL [g(x)]− g(0))− ρ̃L [g(x)]

+ λ̃
(
e−J̃zL [g(x)] + 1

z
(1− e−J̃z)g(0)

)
+ L

[
s(x+ v)θ

]
= 0.

(B34)
Applying boundary condition g′(0) = 0 and solving for L [g(x)], we obtain:

L [g(x)] =
L
[
s(x+ v)θ

]
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

+ g(0)
(

1
z
− ρ̃− λ̃
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

· 1
z

)
. (B35)

Now define a new function ψ̂(x) through inverse Laplace transform

ψ̂(x) = L−1
[

1
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

]
. (B36)

Next, we apply inverse transform to each term in (B35). Noting that L−1[1/z] = 1 and
using the theorem which states that Laplace transform of a convolution is the product of
Laplace transforms, we derive the following inverse transforms:

L−1

 L
[
s(x+ v)θ

]
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

 =
∫ x

0
s(y + v)θ · ψ̂(x− y)dy,

L−1
[

1
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

· 1
z

]
=
∫ x

0
1{y≥0} · ψ̂(x− y)dy =

∫ x

0
ψ̂(y)dy.

(B37)

The linearity of the Laplace transform gives the following equation:

g(x) = L−1 [L [g(x)]] =
∫ x

0
s(y + v)θ · ψ̂(x− y)dy + g(0)

[
1−

(
ρ̃− λ̃

) ∫ x

0
ψ̂(y)dy

]
. (B38)
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We calculate g(0) below, and then after changing the variable back from x to v = x + v,
substituting in expressions for ρ̃ and λ̃ from (B30), we obtain (B21).

Next, we solve for ψ̂(x) in closed form. We expand L
[
ψ̂(x)

]
as series, and sum up the

inverse transforms of each term in the summation to get ψ̂(x).

L
[
ψ̂(x)

]
= 1
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

= (ρ̃− µ̃z − σ̃2

2 z
2)−1 · (1− λ̃e−J̃z

ρ̃− µ̃z − σ̃2

2 z
2
)−1

=
∞∑
n=0

λ̃ne−nJ̃z

(ρ̃− µ̃z − σ̃2

2 z
2)n+1

.

(B39)

The above series converges for z such that |ρ̃− µ̃z− (σ̃2/2)z2| > |λ̃ exp(−J̃z)|. This holds
if the real part of z is sufficiently large, e.g., <(z) > 4|µ̃|/σ̃2 + (2/σ̃)

√
ρ̃+ λ̃. The inverse

Laplace transform can then be calculated along the line (z − i∞, z + i∞) in the complex
domain where z > 4|µ̃|/σ̃2 + (2/σ̃)

√
ρ̃+ λ̃, and hence, the inequality for <(z) is satisfied.

Let ζ− < ζ+ be roots of ρ̃ − µ̃z − σ̃2z2/2 = 0, given by (B26). We use the following
inversion formula for 1/[(z−ζ+)(z−ζ−)]n+1 from Gradshteyn and Ryzhik (2007, p. 1117):

L−1
[

1
[(z − ζ+)(z − ζ−)]n+1

]
=

√
π

Γ(n+ 1)
xn+ 1

2

(ζ+ − ζ−)n+ 1
2
e
ζ++ζ−

2 xIn+ 1
2

(
ζ+ − ζ−

2 x

)
. (B40)

Function e−nJ̃z in the complex domain corresponds to a shift from x to x−nJ̃ . Therefore,

L−1

 λ̃ne−nJ̃z

(ρ̃− µ̃z − σ̃2

2 z
2)n+1

 = λ̃n
(
− σ̃

2

2

)−n−1

1x≥nJ̃

×
√
π

Γ(n+ 1)
(x− nJ̃)n+ 1

2

(ζ+ − ζ−)n+ 1
2
e
ζ++ζ−

2 (x−nJ̃)In+ 1
2

(
(ζ+ − ζ−)(x− nJ̃)

2

)
.

(B41)

Consequently, the explicit expression for ψ̂(x) is given by:

ψ̂(x) =
∞∑
n=0

λ̃n
(
− σ̃

2

2

)−n−1 1{x≥nJ̃}
√
π

Γ(n+ 1)
(x− nJ̃)n+ 1

2

(ζ+ − ζ−)n+ 1
2
e
ζ++ζ−

2 (x−nJ̃)In+ 1
2

(
(ζ+ − ζ−)(x− nJ̃)

2

)
,

(B42)
where function In+ 1

2
(·) is a modified Bessel function of the first kind, ζ− < ζ+ are given by

(B26) and ρ̃, µ̃, σ̃, λ̃, and J̃ are defined in (B30). Bessel function In+ 1
2
(·) is given by (see
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equation 8.467 in Gradshteyn and Ryzhik (2007)):

In+ 1
2
(z) = 1√

2πz

[
ez

n∑
m=0

(−1)m(n+m)!
m!(n−m)!(2z)m + (−1)n+1e−z

n∑
m=0

(n+m)!
m!(n−m)!(2z)m

]
. (B43)

Substituting (B43) into (B42), after minor algebra, we obtain expression (B23) for ψ̂(x).
The infinite series (B42) has only finite number of non-zero terms because for a fixed x

indicators 1{x≥nJ̃} vanish for sufficiently large n, and hence, (B42) is well-defined.

To find g(0) in equation (B38), we first evaluate ψ̂(0). From the above formula (B42),
because 1{0≥nJ̃} = 0 for all n > 0, we obtain

ψ̂(0) = − 2
σ̃2 ·

eζ+·0 − eζ−·0

ζ+ − ζ−
= 0. (B44)

Differentiating (B38) and using ψ̂(0) = 0, we find:

g′(x) =
∫ x

0
s(y + v)θ · ψ̂′(x− y)dy − g(0) ·

(
ρ̃− λ̃

)
ψ̂(x), (B45)

We solve for g(0) from the boundary condition g(v − v)− g′(v − v) = 0 and obtain:

g(0) =

∫ v−v

0
s(y + v)θ ·

[
ψ̂′(v − v − y)− ψ̂(v − v − y)

]
dy

1−
(
ρ̃− λ̃

) ∫ v−v

0
ψ̂(y)dy +

(
ρ̃− λ̃

)
ψ̂(v − v)

. (B46)

Substituting (B46) into (B38), we derive equation (B21) for Ψ̂(v; θ).

2) Next we solve for stock volatility and jump size. In the unconstrained region v < vt < v,
stock price St, dividend Dt and state variable vt follow processes:

dSt = St[µtdt + σtdwt + Jtdjt],

dDt = Dt[µDdt + σDdwt + JDdjt],

dvt = µ̂vdt+ σ̂vdwt +
(
max{v; vt + Ĵv} − vt

)
djt.

(B47)

Applying Ito’s lemma to St = (1− lA − lB)Ψ̂(vt;−γA)s(vt)γADt, and matching dwt and djt
terms, after some algebra, we obtain σt and Jt in Proposition B.3.

Equation equation (9) for Wi,t+∆t, implies the following expressions for n∗i,St and b∗it:

n∗i,St =

√√√√ vart[Wi,t+∆t −Wit|normal]
vart[∆St + (1− lA − lB)Dt∆t|normal] ,

b∗it = Et[Wi,t+∆t|normal]− nitEt[St+∆t + (1− lA − lB)Dt+∆t∆t|normal].
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Taking limit ∆t→ 0 in the above expressions and using expansions similar to those in the
proof of Lemma 2, we obtain the number of stocks and the leverage per the market value
of stocks in equation (B29).
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