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Abstract

This paper characterizes strongly stable networks under general threshold contagion. Among
other applications, the theory is applied to interbank lending and financial contagion wherein a
government can intervene to stop contagion. In the absence of intervention, banks form disjoined
clusters to minimize contagion. In the presence of intervention, banks become less concerned
with the counterparties of their counterparties, which we dub network hazard. Network hazard
allows some banks to become systemically important and gives the network a core-periphery
structure. The counterparty risk of a large part of the economy becomes correlated through
the core banks’ solvency. Core banks serve as a buffer against contagion when solvent and an
amplifier of contagion when insolvent. As such, bailouts create welfare volatility and increase
systemic risk via network hazard. It is shown that network hazard is a novel force distinct
from moral hazard. Results are historically relevant to the pyramiding of reserves and the
establishment of the Federal Reserve.
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1 Introduction

Contagion of certain attributes or actions over a network of bilateral relationships has been well stud-
ied in sociology, mathematics, physics, economics, and other fields. Applications include the spread
of diseases, defaults by banks, the spread of rumors, the adoption of new products or platforms, in-
novation and patenting, the adoption of political or religious views, and more. Understanding what
properties of a network facilitate contagion has been a key question in the literature. In certain
scenarios, however, the network in question is strategically formed. A prime example is financial
and economics networks. An immediate question is, if agents anticipate the possibility of contagion,
what kinds of networks would they form? This question has drawn more attention in recent papers
such as Blume et al. (2013). Once we understand how networks are strategically formed in the pres-
ence of the risk of contagion, another question follows: How would the anticipation that a principal
might intervene with contagion in order to mitigate it alter the incentives regarding the formation
of the network prior to contagion? For example, if a vaccine or quarantining were available to stop
the spread of a disease, or bailouts were available to stop failures of banks, how would the antic-
ipation of intervention impact the structure of the network? Would network effects lead to more
or less contagion given that agents are less concerned with protecting themselves against contagion
in response to the anticipation of intervention? These questions are the focus of this paper. We
provide a general theory and a detailed application to interbank lending and bailouts.1

A widely used mechanics for modeling contagion is the threshold contagion model (see Jackson
(2010), Easley and Kleinberg (2010), Centola and Macy (2007)). Under threshold contagion, once
a certain fraction of counterparties of an agent adopt the behavior or the attribute, the agent in
question also adopts the behavior or the attribute. As for network formation, we use the strong
stability as our solution concept. Roughly speaking, strongly stable networks preclude deviations
by any subset of agents that improve the deviating subset. We show the existence and uniqueness
of strongly stable networks under threshold contagion. In the absence of intervention, strongly
stable networks roughly consist of many disjoined cliques2 of heterogenous sizes, and potentially
another interconnected subnetwork. A disjoined clique structure serve to minimize risk of contagion
while maintaining a satiation level in terms of the connectivity desired by each agent. In the
presence of intervention, contagion is mitigated by intervention. As a by-product of intervention,
the cliques dissolve into a large interconnected network that facilitates more potential for contagion.
We introduce this theory in Section 2.

We then move in Section 3 to our main application. Threshold contagion models are useful for
understanding financial contagion and systemic risk. Major examples are Elliott et al. (2014) and
Acemoglu et al. (2015c). Our main application is financial networks, and interbank lending in
particular, which is timely. The financial crisis of 2008 alerted many to the risk that the failure of a
few individual financial institutions might, through the interconnectedness of the financial system,
damage the economy as a whole. Such systemic risk can be ameliorated ex-ante using regulatory

1In Appendix D we provide another detailed application to real firms with joint projects.
2A clique is a subnetwork in which all nodes in the clique have links with each other.
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tools, yet the inability of government to credibly commit to not intervening suggests that an ex-
post response, in the form of bailouts, is unavoidable. Bailouts of failing institutions are criticized
because they encourage excessive risk taking by individual institutions. Yet these negative individual
implications could perhaps be offset if the net effect of ex-post intervention, given the ex-ante market
response during network formation, is to mitigate contagion. Therefore, it is important to understand
whether the anticipation of intervention leads to networks that are more or less prone to contagion.
Could we expect some form of moral hazard with regards to network formation in response to the
anticipation of bailouts?

In Section 3.1 we introduce and study a model of interbank lending. We borrow some features
from Allen and Gale (2000), Moore (2011), and Erol and Ordonez (2017). Banks first form bilat-
eral borrowing and lending partnerships.3 After the strategic formation of these partnerships, some
banks receive insolvency shocks and default. Once a certain number of counterparties of a bank
default, it becomes too costly to raise liquidity for the bank, and the bank prefers to liquidate its
dividend-yielding project to save management costs. Call these illiquid banks. Once many solvent
banks become illiquid this way, a solvent bank with too many solvent-but-illiquid counterparties
also becomes illiquid. Contagion of illiquidity spreads this way. Foreseeing the extent of contagion,
government intervenes with capital injections to stop contagion in a time-consistent fashion. Gov-
ernment lacks the ability to commit itself to not intervene. This makes banks realize that contagion
will be mitigated by the government, which reduces banks’ own incentives to protect themselves
against contagion. This has a subtle but powerful impact on the structure of the network and the
resulting welfare, which we explain next.

In the absence of the anticipation of intervention, a bank prefers that its counterparties are coun-
terparties only of each other. A bank that does not have a second-order counterparty eliminates
exposure to second-order counterparty risk−that is, the risk that it incurs losses due to defaults by
good counterparties that default because of their own defaulting counterparties. This force generates
a market discipline that leads uniquely to the formation of dense clusters that are isolated from each
other, and this network structure eliminates second-order counterparty risk.

In the presence of intervention all banks know that illiquid banks are going to be saved by bailouts.
Therefore, a solvent bank knows that all of its solvent counterparties will continue their operations
and maintain their dividend-yielding projects. In other words, a solvent bank does not need to
worry about its solvent counterparties becoming illiquid due to their own counterparties. All solvent
banks become immune to illiquidity. Second-order counterparty risk is eliminated as a by-product
of optimal intervention, which we call network hazard. Network hazard loosens the market discipline
because banks no longer concern themselves with the counterparties of their counterparties during
network formation. This effect of bailouts on the network topology emerges because each bank
anticipates that its counterparties can get bailed-out, and not because each bank anticipates that it
will be bailed-out.

Network hazard changes the topology of the network in two ways. First, because banks no longer
3Prior work has shown that interbank lending mostly occurs over long-term partnerships. See Weber (2003),

Calomiris and Carlson (2017), and Afonso et al. (2013).
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concern themselves with second-order counterparty risk, the isolated clusters that form in the absence
of intervention dissolve, and an interconnected network emerges in the presence of intervention. As
the network becomes more interconnected, the extent of potential contagion increases. Second, large
banks that need many counterparties would carry on risk across the separate parts of the network in
the absence of intervention. In the presence of intervention, other banks no longer worry about large
banks carrying excess second-order counterparty risk, and so large banks become highly connected
to the rest of the network. This turns the network into a core-periphery network. Large banks make
up the core of the network and small banks make up the periphery. Because of the banks at the core
of the network, the counterparty risks faced by peripheral banks are correlated. In return, when
a sufficient number of core banks get bad shocks, a large number of small banks become illiquid.
An insolvent core serves as both a direct source of contagion and an amplifier of contagion across
the periphery. When a sufficient number of core banks experience good shocks, peripheral banks
overall become more resilient. Only a large number of bad shocks to the peripheral counterparties
of a peripheral good bank can force the latter to default. Thus, the core serves as a buffer against
contagion. Network hazard leads to a core-periphery arrangement, which makes very bad and very
good outcomes more likely. This generates welfare volatility endogenously. We further argue that
network hazard is distinct from moral hazard. In the model, banks that are bailed out are made
indifferent between defaulting or not. The anticipation of intervention does not necessarily lead
banks to shift more risk to depositors.

In Section 3.2 we dig deeper into understanding the separate impacts of second-order and first-order
counterparty risks. In Section 3.3 we discuss the relevance of the theory to the establishment of
Federal Reserve (FED henceforth) and the resulting change in the interbank network and volatility.

Literature. Our theory builds on threshold contagion models and strongly stable networks. Thresh-
old contagion was first introduced by Granovetter (1978). Lim et al. (2015) study threshold contagion
and include an instructive and brief overview of the large literature on cascades and the diffusion
in networks. Strong stability was introduced in Dutta and Mutuswami (1997) and Jackson and
Van den Nouweland (2005). Goyal and Vega-Redondo (2005) consider a network formation problem
with additive payoffs across links. In case of a unilateral link formation game with no uncertainty
in payoffs, they find that an empty network, a complete network, or a network that consists of two
cliques is formed, depending on the cost of links. Erol and Vohra (2014) consider additive payoffs
with uncertainty in the benefits that are derived from links, and they show that if the behavior is very
contagious, the unique strongly stable network consists of disjoined cliques. Using our framework,
we study strongly stable networks (neither unilaterally formed links nor pairwise stable networks)
under any payoff function (not necessarily additive), any threshold rule (neither necessarily linear
nor necessarily very contagious), and uncertainty regarding nodes (not edges).

Our application is related to a growing literature on systemic risk and networks that does not make
particular emphasis on moral hazard. Early contributors include Allen and Gale (2000), Eisenberg
and Noe (2001), Kiyotaki and Moore (1997), and in more recent years, Acemoglu, Ozdaglar and
Tahbaz-Salehi (2015c), Elliott, Golub and Jackson (2014), Glasserman and Young (2015), and others.
These papers examine contagion within fixed networks. Other scholars, among them Drakopoulos,
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Ozdaglar and Tsitsiklis (2015a), Freixas, Parigi and Rochet (2000), and Minca and Sulem (2014),
examine the problem of how to most effectively stop contagion in exogenous networks. Acemoglu,
Ozdaglar and Tahbaz-Salehi (2015b), Elliott and Hazell (2015), Erol and Vohra (2014), and others
study the formation of networks by agents who take systemic risk into account. In contrast to
our approach, these studies do not consider the possibility that the anticipation intervention with
contagion might affect the network structure. To the best of our knowledge, this paper is the first to
study how the anticipation of intervention affects endogenous networks and systemic risk, whether
in banking or in other fields. Most closely related are two recent papers by Bernard et al. (2017) and
Kanik (2017), who compare certain classes of networks under bailouts and bail-ins. More references
are given in Section 5.

It is worth noting that most financial networks feature a core-periphery structure. Some authors,
such as Farboodi (2015), Wang (2016), and Neklyudov and Sambalaibat (2017), show that core-
periphery networks emerge endogenously without any government intervention. But these papers
are not about systemic risk. Our results indicate that in a self-fulfilling process, the anticipation
of government intervention makes some institutions systemically important and induces a core-
periphery structure because government intervention mitigates systemic risk ex-post. Moreover, we
show in Section 3.3.1 that even in the absence of intervention and under systemic risk, when ex-ante
side payments are allowed, banks form core-periphery networks. In this case, the anticipation of
intervention makes the network “more core-periphery.” This, too, is a novel result.

Structure. Section 2 introduces the theory and provides the main theoretical results. In Section 3
the theory is applied to interbank lending. In Section 4 we briefly present other applications of the
theory. We discuss the theory and the application to interbank lending in Section 5 and conclude in
Section 6. Appendix A includes the proofs of Section 2. Appendix B continues with the theory and
presents more results. Appendix C includes the proofs of Section 3 that concern the application to
interbank lending. Appendix D details another application to real firms with joint projects.

2 Pareto Strong Stability under threshold contagion

2.1 Environment

Agents: Let N = {n1, n2, ..., nk} be a finite set of k agents. Each agent ni ∈ N has an ex-ante type
γi ∈ Γ, where Γ is a finite set.

Network: Agents can form bilateral partnerships, called links. If ni and nj form a link, they are
called counterparties, and the link is denoted {ni, nj}. The set of formed links is denoted E ⊂ [N ]2

and the network formed is denoted (N,E). Ni denotes the set of counterparties of ni and di = |Ni|
the degree of ni.

Agent ni can form di ∈ D (γi) many links where D(γ) is the set of feasible number of links for type
γ. Given the following contagion dynamics and the resulting expected payoffs for agents for any
given network, agents are assumed to form Pareto Strongly Stable (PSS) networks in which they
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all have feasible degrees. The solution concept PSS, described in Section 2.2, roughly states that
no coalition has a Pareto-improving deviation.

Contagion: After the network is formed, each agent ni gets a good shock θi = G or a bad shock
θi = B. Shocks are i.i.d. and the probability of a good shocks is α.4 Agents with good (bad) shocks
are called the good (bad) agents, the set of which is denoted NG (NB). Bad agents are the initial
set of defaulting agents during the first round of contagion. During any round along contagion if a
non-defaulting agent ni has strictly more than R (di, γi) many defaulting counterparties, ni defaults
as well. R(di, γi) is called the resilience (threshold) of ni. The function R satisfies R (di, γi) ∈ [0, di]
for all di and γi. Contagion is irreversible. Contagion progresses round by round, and it stops when
no new agent defaults during some round. Denote the default of ni with ai = D and the final set of
defaulting agents ND ⊃ NB . Call the remaining agents continuing agents. Denote the continuation
of ni with ai = C and denote the set of continuing agents NC ⊂ NG. Denote bi = |Ni ∩NB | the
number of bad counterparties of ni and fi = |Ni ∩ND| the number of defaulting counterparties of
ni.

Payoffs: At the end of contagion, a bad agent receives PB (di, γi) and a defaulting good agent
receives PG (di, γi). A continuing agent ni obtains payoff P (fi, di; γi). P is strictly decreasing in
fi.5 Given the payoff function P and the resilience function R, agents can calculate the payoffs for
any given network and form a feasible PSS network.

Interpretation: We provide detailed mappings of the theory to various financial, economic, and social
networks in Sections 3 and 4. The essential two features are, first, that defaulting agents do not
care about the number of defaulting counterparties and, second, continuing agents are strictly hurt
by each defaulting counterparty. To fix ideas, think of a lead example wherein agents are banks that
rely on each other to meet their short-term liquidity needs. Bad shocks mean large operational costs
or large withdrawals of demand deposits (as in Allen and Gale (2000)) that force the bank with the
bad shock into default. Then a good bank with too many defaulting counterparties may find that it
is now too costly raise liquidity on demand. Such illiquidity can cause an otherwise healthy bank to
be unable to meet the refinancing needs of projects it manages or be unlikely to meet the withdrawal
demands of depositors. It can also create the opportunity costs that are caused by missing out on
funding profitable projects. These costs can force even a good bank into default.

Remark: The outcome of the exogenous contagion dynamics can be micro-founded with an equilib-
rium of a network game with complementarities. Details are given in Section 5.

2.2 Solution Concept

Before shocks are realized, agents evaluate a network according to the expectation of their payoffs
with respect to shocks given the contagion that follows. Agents form Pareto Strongly Stable (PSS)

4All results follow with conditionally independent shocks: for any given σ ∈ ∆ [0, 1] there is probability σ (α) that
all shocks are i.i.d. with probability α. We use i.i.d. shocks for the sake of simplicity.

5In fact, it suffices to assume that for any γ ∈ Γ and any d ∈ D (γ), P (f, d, γ) is strictly decreasing in f for
f ∈ [R (d, γ) , d].
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networks as defined in Jackson and Van den Nouweland (2005). Consider a candidate network (N,E)
and a subset N ′ of banks. A feasible deviation by N ′ from E is one in which N ′ can simultaneously
add any missing links within N ′, cut any existing links within N ′, and cut any of the links between
N ′ and N/N ′. A feasible deviation is illustrated in Figure 1.

Original network Deviation by diamonds After deviation

Figure 1: A feasible deviation

A Pareto profitable deviation by N ′ from E is a feasible deviation in which the resulting network
yields weakly higher expected payoffs to every member of N ′ and a strictly higher payoff to at least
one member of N ′. A network (N,E) is Pareto Strongly Stable (PSS) if there are no subsets of N
with a Pareto profitable deviation from E. In Appendix B we study weaker solution concepts.

2.3 Pareto Strongly Stable networks

Throughout the paper, we refer to losses due to bad counterparties as first-order counterparty losses.
Losses due to defaulting good counterparties who default due to their bad counterparties are dubbed
second-order counterparty losses. Higher order counterparty losses are defined analogously. For a
given network, the expected counterparty losses of order t are called the counterparty risk of order
t. Notice that if an agent ni faces no counterparty risk of order t, then it faces no counterparty risk
of order t′ > t either. This is because contagion that originates at distance t′ from ni has to go
through agents at distance t in order to hurt ni. If bad shocks to agents at distance t′ from ni cannot
hurt ni via contagion, then bad shocks to agents at distance t to ni cannot hurt ni via contagion
either. It will turn out that first-order counterparty risk (FOCPR) and second-order counterparty
risk (SOCPR) are the governing forces of network formation. FOCPR captures the propensity of
agents to form links and determines the density of the network. SOCPR captures how concerned
agents are with the counterparties of their counterparties, and it determines the structure of the
network. FOCPR is illustrated in Figure 2−a and SOCPR is illustrated in Figure 2−b.

A star network is useful to illustrate both contagion and some forces behind network formation. A
star network, as shown in Figure 3, is one in which one agent, called the center, has links with all
other agents. All other agents, which are called leaf agents, have links only to the center agent.
Consider a disjoined star subnetwork with center ni who has degree di.

If the center agent ni gets a bad shock, then all leaf agents default (supposing that R (1, γj) = 0
for all leaves nj). This is direct contagion from center to leaves. If the center agent ni gets a good
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Figure 2: First-order and second-order counterparty risks

shock and R (di, γi) many or less leaf agents get bad shocks, then ni continues, and in turn the leaf
agents that received good shocks also continue. In this case the center is sufficiently resilient and
serves as a buffer. Contagion does not transmit through the center. If the center ni gets a good
shock and more than R (di, γi) many leaf agents get bad shocks, then ni defaults, which, in turn
forces all leaf agents to default as well. This is the case in which peripheral shocks accumulate and
force the center into default, creating cascading failures.
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Up then downstream:
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Figure 3: A star network and types of contagion

A particular feature of the star network is that the center is not exposed to any SOCPR because its
counterparties, the leaves, have no counterparties other than the center. There is no way in which
a good counterparty of ni can hurt ni. Moreover, because bad shocks are exogenous, ni can not
affect FOCPR conditional on degree di. This leads to a value for ni that is a function of its degree,
conditional on there being no SOCPR for ni. Denote the payoff of ni when it is at the center of a
star network with V (di, γi). Call V the ideal value function. V is given by

V (di, γi) = (1− α)PB (di, γi)︸ ︷︷ ︸
if ni is bad

+ αPbi [bi > R (di, γi)]× PG (di, γi)︸ ︷︷ ︸
if ni is good but defaults

+αPbi [bi ≤ R (di, γi)]× Ebi [P (di, bi, γi)| bi ≤ R (di, γi)] .︸ ︷︷ ︸
if ni is good and does not default

(1)

Notice that in the expression of V , P is evaluated at fi = bi. The number of defaulting counterparties
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fi is equal the number of bad counterparties bi because ni is not exposed to any SOCPR in the star
configuration.

Proposition 1. For any network, ni’s expected payoff is at most V (di, γi).

Consequently, a disjoined star subnetwork is one ideal configuration for ni, conditional on its degree
di, in the sense that ni cannot achieve a higher expected payoff in any other network in which it
has the same degree di. This brings us to the next question: What other structures can give ni its
ideal value, conditional on its degree? Eliminating SOCPR is a necessary and sufficient condition
for achieving the ideal value conditional on degree. The next proposition pins down how SOCPR
for ni can be eliminated. Denote dij = |Ni ∩Nj |.

Proposition 2. ni has V (di, γi) expected payoff if and only if min {R(di, γi), dij}+(dj − dij − 1) ≤
R(dj , γj) is satisfied for all nj ∈ Ni.

Proposition 2 is essential to our following results. An explanation is offered in Figure 4. Consider
all events in which ni is not forced into default by its bad counterparties. Can any such event cause
a good counterparty nj ∈ Ni to default, which would be a second-order counterparty loss for ni?
This can happen if and only if at the event in which at most R(di, γi) common counterparties of
ni and nj get bad shocks and nj ’s own counterparties get bad shocks, nj is forced to default. This
situation is illustrated in Figure 4.

𝑛𝑖 𝑛𝑗

Figure 4: Eliminating second-order counterparty risk

Proposition 3. Consider a disjoined clique with d+ 1 agents and an agent ni in this clique. If all
agents in the clique have the same or higher resilience than ni (i.e., R (d, γj) ≥ R (d, γi) for all nj
in the clique), then ni has the expected payoff V (d, γi).

Counterparty risk at the
center of a star

𝑛𝑖

𝑛𝑗

Counterparty risk at a
clique

Figure 5: Counterparty risk at the center of a star and in a clique
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The star network and those described by Proposition 2 are desirable configurations for ni. One such
configuration is a disjoined clique wherein all agents are at least as resilient as ni. Nevertheless, such
structures may not be desirable for counterparties of ni; hence such a network may not be PSS.
For example, in the star network the leaves are exposed to SOCPR through the center, and pairs
of leaves could deviate and form links with each other. Or in the clique structure, counterparties
of ni who are more resilient than ni may want to deviate and form more resilient cliques. Next
we examine whether or how two counterparties can both eliminate SOCPR and achieve their ideal
value conditional on their degrees. But first we need to introduce some definitions.

Define the set of safe γ-counterparty degrees S(γ) := {d ∈ D(γ) : R(d, γ) ≥ d− 1}. This is the set
of degrees such that having a γ-type counterparty of such a degree does not carry any SOCPR.

Proposition 4. Consider two counterparties, ni and nj, that both achieve their ideal values condi-
tional on their degrees. Then, either

• they both have unsafe counterparty degrees, their set of counterparties are identical except each
for other, and they have the same resilience, or

• they both have safe counterparty degrees.

The only way two counterparties with unsafe counterparty degrees get their ideal payoff conditional
on their degrees is if none of them creates any SOCPR for the other. This is only possible if they have
exactly the same counterparties and the same resilience. Also, an agent with a safe counterparty
degree cannot achieve its ideal payoff conditional on its degree if it has any counterparty with an
unsafe counterparty degree. The next and final step in finding the structure of the network formed
is to consider whether or how all agents in a component6 can achieve their ideal value. This is
important to determine since our solution concept PSS allows for joint deviations by any number
of agents.

Proposition 5. Take any component. All agents in the component achieve their ideal payoffs given
their degrees if and only if either

• they all have unsafe counterparty degrees, the component is a disjoined clique (hence all have
the same degree), and they all have the same resilience, or

• they all have safe counterparty degrees.

This results indicates that the perfectly resilient types can form an arbitrary structure because
they naturally do not carry over any SOCPR to one another. Imperfectly resilient types, however,
will form cliques in order to endogenously eliminate SOCPR. Consequently, all agents will end up
eliminating SOCPR endogenously.

A next question follows: Conditional on there being no SOCPR and agents achieving their ideal
values conditional on their degrees, what degree would agents want to have? The number of links

6A component is a connected subnetwork that is not connected to the rest of the network.
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ni can have is restricted, first, by its feasible set of degrees D (γi) and, second, by the set of agents
who are willing to form links. Define the ideal degree for type γ as7

d∗(γ) := argmaxd<k, d∈D(γ)V (d, γ). (2)

Also call V (d∗(γ), γ) the ideal value for type γ. According to Proposition 5, if d∗ (γ)+1 agents of type
γ come together and form a disjoined clique, they achieve their ideal value. However, this is not the
only way agents can achieve their ideal values. For two counterparties to achieve their ideal values
they need not have the same type but identical ideal degrees and identical resilience at their ideal
degrees. Accordingly, call two types γ, γ′ ∈ Γ similar if their ideal degrees are equal, d∗(γ) = d∗(γ′),
and the resulting resiliences are equal R(d∗(γ), γ) = R(d∗(γ′), γ′). Notice that similarity is an
equivalence relation. Consider the equivalence classes induced by similarity. Index the equivalence
classes by ι. Let kι be the number of agents in equivalence class ι. For an equivalence class ι,
denote the ideal degree and induced resilience of the class with d∗ι = d∗(γ) and R∗ι = R(d∗(γ), γ),
where γ is an element of the equivalence class ι. For an equivalence class ι, if the ideal degree is
a safe counterparty degree, R∗ι ≥ d∗ι − 1, call this class a safe class; otherwise call it an unsafe
class. According to Proposition 5, for unsafe classes, disjoined cliques that consist of similar types,
wherein all agents have their ideal degree, give all of them their ideal value. This is the only way in
which all agents achieve their ideal values.

Theorem 1. Suppose that the number of agents from each class is larger than the ideal degree of
the class: ∀ι, kι ≥ d∗ι + 1. A network is PSS if and only if it consists of disjoined cliques of agents
from the same unsafe class, each of which has their ideal degree, and a subnetwork of all safe classes
in which each agent has its ideal degree.8

The resulting network is illustrated in Figure 6−a. High resilience agents prefer to form links with
high resilience agents. Safe classes do not form links unsafe classes. So agent from the safest unsafe
class forms links only with agents from the same safest unsafe class. Therefore there is sorting in
terms of resilience. Agents from safe classes form links only with each other in a way that each agent
achieves its ideal degree. Agents from the second most resilient class, which is an unsafe class, forms
links with only with each others, making up disjoined cliques. The same argument holds iteratively
for less resilient classes. By this argument, our result is a consequence of matching and sorting, but
not symmetry across certain groups of agents. More results concerning PSS and weaker solution
concepts are given in Appendix B.

2.4 Prologue to network hazard

In our general theory, P and R are both fundamentals of the model and do not need to be linked
to each other. An example in which the two are not related is the spread of diseases. The social

7Generically, R,P, PG, and PB are such that V admits no indifferences over integers. We assume that V admits
no such indifferences in order to rule out some cumbersome and unintuitive indifferences.

8In the “safe” part of the network, agents can also become counterparties with other classes because they all have
safe counterparty degrees.
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benefits of links do not need to be linked to the infectiousness of a disease. However, in many
economic applications, it is possible that a good agent defaults once the payoff from continuing falls
below the payoff from defaulting. For example, once a bank cannot repay its depositors, it goes
bankrupt, but is protected by limited liability. Consequently, in many economics applications, R is
going to be given by

R(di, γi) = max {fi : P (di, fi, γi) ≥ PG (di, γi)} .

In these economic and financial applications, government intervention that stops ex-post contagion
is going have an ex-ante consequence: agents are not going to be worried about contagion during
network formation. This by-product of intervention will break this tie between payoff P and resilience
R. Market discipline during network formation will be reduced, which is going to generate what we
call network hazard.

To make things more concrete, imagine a principal that can intervene with contagion. The forms
that intervention can take and the objective of the principal are context-specific. Each particular
application of the theory is going to yield particular form and constraints for policy; it will yield a
particular welfare criterion, and, hence, yield a particular optimal policy. We fix the timing of policy
throughout the paper: intervention is going to be time-consistent in the sense that the principal can
not commit to a policy before the realization of shocks. That is, the policy cannot be used directly to
regulate the formation of the network. The principal observes the network and shocks, foresees the
extent of contagion, and tries to alter contagion. In applications to financial and economics networks,
such a principal could naturally be a government and the form of policy could be subsidizing the
losses of agents using transfers from outside the system. These transfers are typically bailouts, such
as capital injections or purchase of legacy assets. In Section 3 we present detailed applications of the
theory to interbank lending and study in detail the resulting welfare criteria. Nonetheless, before
moving on to detailed applications, it is useful to summarize what we mean by network hazard under
a high-level welfare criteria.

Consider banks that rely on each other to meet their short-term liquidity needs. Suppose that bad
shocks mean large operational costs that force bad banks into bankruptcy. These defaults can render
good banks illiquid and create cascading defaults. In this situation, it is conceivably optimal to let
insolvent bad banks fail and provide liquidity to illiquid good banks. This would ensure that all
good banks and only good banks continue. As a result, all good banks always continue and the tie
between P and R is broken. The resilience function R artificially becomes

R̃(di, γi) = di.

All degrees become safe counterparty degrees. Then as a corollary of Theorem 1, the cliques dissolve
and an interconnected network emerges. This can be seen in Figure 6.

In general, time-consistent government intervention is going to alter resilience R and ideal value
function V into some R̃ and Ṽ . Under any welfare criterion that requires that good agents are
directly or indirectly assisted, the resilience function R is modified into R̃(di, γi) = di for all di and
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Figure 6−a : In the absence of
intervention unsafe classes form
cliques, safe classes form an
interconnected component

Figure 6−b : In the presence of
intervention, all agents form an

interconnected network

Figure 6: PSS network in the absence and presence of intervention

γi. That is, all degrees become safe counterparty degrees. SOCPR is eliminated as a by-product of
intervention, which is the formal definition of network hazard.

3 Application to interbank lending and bailouts

3.1 Second-order counterparty risk

We first study the sole impact of the elimination of SOCPR. To do this, we introduce in Section
3.1.1 a simple framework wherein FOCPR is not mitigated by bailouts but SOCPR is eliminated.
In Section 3.1.2 we show that network hazard creates welfare volatility in this framework. Finally,
in Section 3.1.3 we contrast network hazard with moral hazard.

3.1.1 Model with solvency shocks

Absence of intervention. This application involves banks that form borrowing and lending part-
nerships that allow them to meet their short term liquidity needs. There are three stages, as shown
in Figure 7.
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Figure 7: Timeline of events

Investment stage: Some banks are large banks located at central locations denoted γi = L. Some
banks are small and rural banks, and they have γi = S. There are kL many large banks and kS many
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small banks. Each bank ni has Dγi deposits and needs to pay depositors at the end. Deposit level
is a proxy for the size of the bank, so we assume DL > DS . Banks can form bilateral partnerships
for borrowing and lending in the future, which are represented by links. The utility cost of forming
di links to ni is cγid2

i . We take cS > cL = 0 to capture the location advantage of large banks. After
forming a PSS network, banks invest their deposits into some proprietary projects that pay a flow
of dividends at rate λ and a safe rate of return 1 + r at maturity. We call this the long project.

Crises stage: In this stage, some banks receive shocks. A bad shock represents a very large opera-
tional cost for the bank and enforces its bankruptcy. Banks with bad shocks are called insolvent bad
banks. A good shock represents small operational costs, and a bank that experiences such a shock
is called a good bank. A bad shock to ni is denoted θi = B and has probability 1−α. A good shock
to ni is denoted θi = G and has probability α.

Insolvent bad banks cannot continue because of the high cost of their operations. They liquidate
their long projects and repay their depositors as much as they can. Each good bank either continues
its operations or defaults. Continuation is denoted ai = C, and it has an operational cost κγi per
unit of investment managed. Default, denoted ai = D, does not entail any operational cost. In the
event of default, the project is liquidated. If ni liquidates its project, for some η < 1, ni recovers
(1− η)Dγi and pays it to the depositors. ηDγi loss is covered by the deposit insurance. Accordingly,
the payoffs of bad insolvent bad banks and the payoffs of solvent good banks that default are given
by

PB (di; γi) ≡ PG (di; γi) = −cγid2
i .

Normal times: All good banks that continue move on to normal times. Normal times consist of t̄ ≥ 1
periods. During each period t ≤ t̄, ni receives λDγi dividend payments from the project. Moreover,
during every period t ≤ t̄, one new outside borrower with a safe short-term project arrives at the
economy. Call these short projects. Short projects have a r′ > 1 rate of return that materializes
at the end of the period. Each bank has probability p < k−1 of receiving this borrower with the
short project. The links help banks borrow and lend to each other and to channel their dividends
to the bank with the short project. If ni has a counterparty with the short project, say nj , then
ni makes a take-it-or-leave-it offer of lending λDγi to nj at rate r′. nj , in return, borrows from all
counterparties, and lends these funds and its own dividends to the borrower with the short project.
At the end of the period, the short project yields safe returns, the outside borrower pays nj , and nj
pays all counterparties. Then all returns and dividends are consumed by banks.9 The main friction
interbank market is that funds cannot travel more than one link. Then, at the beginning of period
t, ni’s expected return within period t is p (di − fi + 1)λDγir

′ + λDγi . At the end of period t̄, ni’s
project matures and returns (1 + r)Dγi . The original depositor is repaid Dγi and the remaining
resources are consumed. The expected payoff of bank ni at the beginning of normal times is

t̄pλr′Dγi (di − fi + 1) + t̄λDγi + rDγi − κγiDγi .

Corresponding R and V : Denote χ1 = t̄pλr′ and χ2 = χ1 + t̄λ+ r. If ai = C, ni’s ex-post payoff P
9No dividend retention or perishable goods.
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is given by
P (fi, di; γi) = −cγid2

i + [(di − fi)χ1 + χ2 − κγi ]Dγi .

If (di − fi)χ1 + χ2 − κγi < 0, then ni defaults. That is, the contagion dynamics are governed by

R (di, γi) = di − τγi , τγi =
⌈
κγi − χ2

χ1

⌉
. (3)

In this case call ni an illiquid good bank. Moreover, the ideal value function is

V (di, γi) = −cγid2
i + αEbi

[
[(di − bi)χ1 + χ2 − κγi ]

+
]
Dγi . (4)

Define d∗S = argmaxdi≥0V (di;S). Note that d∗S <∞ because cS > 0.

Assumption 1. Large banks have higher management costs and, thus, they are less resilient than
small banks: τL > τS. Small banks are not entirely safe as counterparties: τS > 1.

Assumption 2. There are few large banks and many small banks: kL < d∗S < kS.

Proposition 6. In the absence of intervention, a network is PSS if and only if it consists of disjoined
cliques of small banks, each of which has degree d∗S, and one disjoint clique of large banks, each of
which has degree kL − 1.

This result is not a direct corollary of Theorem 1; instead, it is a corollary of both Theorem 1 and
Proposition 2 together. Large banks incur no cost of forming links, and so they want to form as
many links as possible. Large banks, simply by forming links among themselves, cannot reach their
ideal degree. They need to form links with small banks, too. But large banks are not sufficiently
resilient, and so small banks are not willing to form links with large banks. Small banks instead
form links with one another.10

Presence of intervention. Now suppose that a government can intervene with the market. In-
tervention is allowed only during the crises stage; it is not allowed in normal times.11

We assume that the government can intervene just before contagion during the crisis stage by
implementing transfers from households−e.g., through bailouts, as in capital injections. Figure 8
show the timeline of events. A transfer can be executed to save troubled banks on the basis of their
financial standing or to stop contagion. Formally, after the shocks and before the default decisions,
government commits to a transfer scheme,

{
Ti

(
ai| ~θ,E

)}
i∈N
≥ 0. Here Ti describes the amount

of transfer to bank ni if ni has ai ∈ {C,D}.12 The intervention is time-consistent in the sense that
the government cannot commit to a transfer policy before the shocks.

10Note that this network is not efficient. What is efficient is large banks forming links with some small banks too.
We study the efficient network in Section 3.3.1.

11Section 13(3) of the FED Act allows the FED to provide an uncapped amount of liquidity to the banking system
only under unusual and exigent circumstances (https://www.federalreserve.gov/aboutthefed/section13.htm).

12In general, Ti depends on the entire action profile (ai)i∈N . The specification, wherein the transfer to ni depends
only on ai but not a−i, is without a loss of generality as far as optimal policy is concerned.
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Figure 8: Timeline of events

T can induce an otherwise defaulting bank to continue. But for the receiving bank these transfers
are not always free. For the sake of simplicity we assume that a bailed-out bank forfeits all future
payoffs to the government, which is then redistributed to households. We assume that transfers from
households do not entail any extra distortionary cost in terms of welfare. Accordingly, we define
an optimal policy as an ex-post welfare maximizing transfer scheme that uses minimal transfers
among all welfare maximizing transfer schemes.13 Consequently, the optimal policy T ∗ satisfies
T ∗i (D|·) ≡ 0, meaning that defaulting banks do not receive any transfers. Then with a slight abuse
of notation, denote T ∗i = T ∗i

(
C|~θ,E

)
, which is the amount of transfer ni gets if it continues. We

say that an optimal policy T ∗ bails-out ni if T ∗i > 0.

A good bank with less than τγi good counterparties faces default and is indirectly illiquid. If part of
the bank’s debt to depositors was covered it could continue, which by saving the liquidation costs
and future dividends of the projects could improve welfare.

Assumption 3. It is welfare improving that solvent good banks continue if they have at least one
continuing counterparty: χ1 + χ2 + η > κL.

Proposition 7. The unique optimal policy bails out illiquid good banks that are facing default because
of insolvent bad counterparties. Formally

T ∗i = Dγi [κγi − χ2 − (di − bi)χ1]+

if θi = G and T ∗i = 0 if θi = B.

Corresponding R and V : Under the implementation of the optimal policy T ∗, good banks cannot
be forced into default by their counterparties. In other words, R̃ (di; γi) = di. Good banks become
immune to contagion and all good banks always continue. Because of the anticipation of intervention,
banks no longer worry about their illiquid good counterparties. SOCPR is eliminated. However,
insolvent bad banks are not bailed out, and so all banks still concern themselves with their bad
counterparties as much as they would in the absence of intervention. FOCPR is not altered and
Ṽ ≡ V .

Proposition 8. In the absence of intervention, a network is PSS if and only if all large banks have
degree k − 1 and small banks have degree d∗S.

13Because of the requirement that optimal policy must use minimal transfers, our results are robust to allowing
for small costs of transfers. To make our point about network hazard as simple as possible, we do not introduce any
distortionary costs of transfers.

16



Figure 9−a : Absence of
intervention, disjoined

cliques.

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

   
 

 
 

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9−b : Presence of
intervention, core-periphery.

Figure 9: PSS network under solvency risk

As a by-product of intervention, SOCPR is eliminated. Banks do not concern themselves with the
illiquidity risk of their counterparties, be it the direct liquidity risk from shocks or indirect illiquidity
risk due to counterparty failures that make the bank illiquid at normal times. This makes all degrees
safe counterparty degrees for both large and small banks during network formation. Then the cliques
dissolve and the network acquires a core-periphery structure. The resulting change is illustrated in
Figure 9. For two reasons the network acquires a core-periphery character.

First, because bad banks are not bailed out, all bad banks still default. Then FOCPR is unchanged
and Ṽ ≡ V . In other words, a bank’s propensity to form links does not change. Accordingly, small
banks form the same number of links: d̃∗S = d∗S . Because SOCPR is eliminated small banks no
longer need to form cliques. This makes the periphery interconnected within itself.

Second, because SOCPR risk is eliminated, large banks are no longer susceptible to carrying over
SOCPR across different parts of the network. Small banks start connecting with large banks. The
propensity of a large bank to form links has not changed. Yet small banks no longer refuse to form
links with large banks. This allows large banks to form their desired number of links, making them
highly connected. Large banks become the core of the system, which renders them systemically
important.

This change in the topology of the network is solely a result of the elimination of SOCPR (i.e. network
hazard). FOCPR is not altered by intervention. We elaborate more on the contrast between FOCPR
and SOCPR in Section 3.2.

3.1.2 Network hazard and volatility

The major impact of network hazard is to make large banks systemically important, which leads to
volatility. Under the core-periphery structure, the risk of the whole economy is correlated through
the solvency of the core. If a solvent core bank is illiquid because it has many insolvent bad
counterparties, it gets bailed out and continues its business. Yet the insolvent core banks fail, as a
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consequence of which the potential benefits of the many links between the core and periphery are
lost. If many core banks are insolvent the economy performs very poorly, and if many core banks are
solvent the economy performs very well. Therefore, the anticipation of intervention creates volatility
both in welfare and in the performance of the banking sector. The probability distribution of ex-post
welfare and the number of troubled banks are illustrated Figure 10.
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Figure 10: Volatility as a consequence of intervention

It is important to note that mean ex-ante welfare increases as a consequence of intervention. The
reason for this is as follows. Defaulting banks are made indifferent between defaulting or not;
consequently FOCPR is not reduced. Therefore, banks’ propensity for connections does not change.
This and the fact that the cost of links are borne fully by banks, network hazard allowing the large
banks to achieve the individually rational level of connections does not hurt welfare.

Proposition 9. There exists k̄L and kS such that if kL < k̄L and kS > kS, the mean and standard
deviation of welfare is higher in the presence of intervention than in the absence of intervention.14

3.1.3 Moral hazard

To the extent that volatility and increased likelihood of a tail event are hazardous, the elimination
of SOCPR has hazardous consequences. Now we compare and contrast network hazard and moral
hazard. We first introduce into our framework a form of individual moral hazard in operational risk
choice that arises from limited liability and deposit insurance. We find that interconnectedness that
arises from network hazard does not alter the extent of individual moral hazard by small banks. The
systemic importance of large banks has ambiguous effects on the extent of individual moral hazard
by large banks.

14That the welfare or volatility increases should not be seen as a general statement about the implications of network
hazard for other applications of the theory. For example, in certain applications it is possible that the cost of links
is not perfectly internalized by the agents who forming the links. Thus, the anticipation of intervention that allows
certain agents to become more connected can lead a reduced welfare.
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Suppose that banks can choose to incur some of their operational costs in advance. Smaller op-
erational costs during the crises stage makes a bank more resilient. This partially reverses the
operational risk shifted onto depositors. Formally each ni can incur a cost cop (κ; γi) during the in-
vestment stage to set its operational cost of continuing during the crises stage to κ. cop is decreasing
in κ. For example, if cop (κ; γi) = κ̄γi − κ for some κ̄γi so that incurring the cost earlier or incurring
the cost later are perfect substitutes, then ni always chooses κ = κ̄γi to incur the operational cost
during the crises stage and shifts all the operational risk onto the depositors. For general functional
forms cop, there is an optimal level κ∗γi in the absence of intervention. In the presence of intervention,
this optimal choice becomes κ̃∗γi . We are interested in whether κ̃∗γi > κ∗γi or not. If κ̃∗γi > κ∗γi , the
bank ni is shifting more operational risk onto depositors in response to the anticipation of bailouts.

Proposition 10. There exists κ∗S, d∗S, κ∗L, and κ̃∗L such that

• In the absence of intervention, a network is PSS if and only if

– all small banks choose operational cost κ∗S and all large banks choose operational cost κ∗L,
and

– the network consists of disjoined cliques of small banks, each of which has degree d∗S, and
one disjoined clique of large banks, each of which has degree kL − 1.

• In the presence of intervention, a network is PSS if and only if

– all small banks choose operational cost κ∗S and all large banks choose operational cost κ̃∗L,
and

– in the network, all small banks have degree d∗S and all large banks have degree k − 1.

Because FOCPR is not altered small banks have the same ideal value function in both the absence
and presence of intervention. Accordingly, the realized degrees of small banks do not change, and so
the optimal level of investment in their operations does not change. Large banks, on the other hand,
are allowed form more connections because SOCPR is eliminated. Such a change in the degree does
affect the level of investments in operations. The direction of the change, however, is ambiguous: it
depends on the curvatures of the cost function cop and the CDF of the binomial distribution. To
infer a direction of change it is not sufficient to assume that cop is just convex.

3.2 First-order counterparty risk

Now we dig deeper into understanding network hazard. Our main goal in Section 3.2 is to compare
and contrast the impact of FOCPR and SOCPR. In Section 3.2.1, we tweak the model presented in
3.1.1 to incorporate liquidity shocks to banks rather than solvency shocks. Under liquidity shocks,
optimal policy will be to bail out banks with bad shocks, which will eliminate FOCPR and SOCPR.
Then in Section 3.2.2 we compare the two models and dissect the distinct effects of eliminating
FOCPR and SOCPR.
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3.2.1 Model with liquidity shocks

Consider the model in 3.1.1 and change the nature of a shock as follows. For some banks, their
depositors need to withdraw all deposits early. These banks are called illiquid bad banks. Early
withdrawal from bank ni is denoted θi = B and has probability 1 − α. In this case ni has to
liquidate the long project. Otherwise, with probability α, θi = G and there is no withdrawal. The
bank is then called a good bank. After withdrawals, each good bank decides to continue its operations
or default. Continuation is denoted ai = C and has an operational cost of κγi per unit of investment
managed. Default, denoted ai = D, entails no operational cost.

Proposition 6 holds identically with regards to the absence of intervention. As for the presence of
intervention, the optimal policy is rather different.

Proposition 11. The unique optimal policy bails out all illiquid bad banks. Formally T ∗i = Dγi if
θi = B and T ∗i = 0 if θi = G.

Now that all banks with bad shocks receive bailouts, all banks always continue. FOCPR is elimi-
nated, as are all orders of counterparty risk, particularly SOCPR. Accordingly, R̃ (di; γi) = di. Since
FOCPR is eliminated

Ṽ (di, γi) = −cγid2
i + α [diχ1 + χ2 − κγi ]

+
Dγi .

R̃ (di; γi) = di turns all degrees into safe counterparty degrees and both L and S turn from unsafe
types into safe types. The clique structure dissolves into an interconnected network. The ideal degree
of large banks is k − 1 since cL = 0. The ideal degree of small banks increases because FOCPR is
eliminated. The new ideal degree becomes d̃∗S = argmaxdi≥0Ṽ (di; γi). Note that d̃∗S ≥ d∗S .

Proposition 12. In the absence of intervention, a network is PSS if and only if all large banks
have degree k − 1 and small banks have degree d̃∗S.

The change in the topology of the network from cliques to core-periphery is solely a result of the
elimination of SOCPR (i.e., network hazard). Eliminating FOCPR increases the propensity of banks
to form links, which increases the realized degree of small banks from d∗S to d̃∗S .

3.2.2 Liquidity vs. solvency shocks: dissecting the impact of bailouts on the network

The anticipation of intervention impacts the network and welfare through two main channels:
FOCPR and SOCPR. Their effects and channels are summarized in Figure 11.

Under liquidity shocks, bailouts eliminate FOCPR, which alters the ideal value function V into
Ṽ 6≡ V . The individual propensity of banks to form links increases, which makes banks form more
links compared to the absence of intervention. This is a consequence of bilateral agreements between
banks that individually want to have more links. When FOCPR is eliminated, so is SOCPR, and
when SOCPR is eliminated, the resilience function R becomes R̃, which is no longer tied down to
payoff function P . Good banks become perfectly resilient. This relaxes market discipline and leads

20



!"#$"%"&'
(")*

+,"-.$&)

Volatility

6.	8.(,-	ℎ,:,(%;<&=(>.<<=>&=%
)&($>&$(=

?=>.<%	.(%=(
@AB	=-"8"<,&=%	

?.-C=<>'
(")*

+,"-.$&)

D"()&	.(%=(
@AB	=-"8"<,&=%	

?')&=8">,--'	
"8E.(&,<&
-,(F=	G,<*)

HC=(>.<<=>&".<
G'	,--	G,<*)

;<%"C"%$,--'	

@.--=>&"C=-'

I.(=	.(	-=))
8.(,-	ℎ,:,(%

Figure 11: Intervention and its consequences

to the dissolution of cliques. Banks form interconnected networks. The interconnection, however, is
a collective decision rather than a bilateral or an individual decision. Interconnection arises because
groups of counterparties do not enforce discipline on each other with regards to each other’s other
counterparties.

The elimination of FOCPR is sufficient but not necessary for the elimination of SOCPR. Indeed,
under solvency shocks rather than liquidity shocks, only good banks are bailed-out, which eliminates
SOCPR, whereas FOCPR remains intact. Accordingly, the ideal value function V is not altered by
bailouts, Ṽ ≡ V , and banks are not willing to form more links. Nonetheless, R becomes R̃ 6≡ R,
and good banks become perfectly resilient. The dependence between resilience R̃ and payoff P

again is broken. Network hazard exists for both liquidity shocks and insolvency shocks that lead to
interconnectedness, whereas willingness to form more links exists only for liquidity shocks.

Under liquidity shocks, intervention eliminates FOCPR, which increases the willingness to form
links. Since the elimination of SOCPR is necessary but not sufficient for the elimination of FOCPR,
one can argue that network hazard is a gateway for over-connectedness. But there is another form
of over-connection. Recall that under solvency shocks, intervention eliminates SOCPR but not
FOCPR, which makes large banks more connected even though it does not increase the willingness
of large banks to form links. This kind of over-connection occurs not because large banks’ FOCPR
is altered but because their SOCPR is eliminated, which makes small banks willing to connect with
large banks. What is important here is that network hazard allows large banks to over-connect; it
does not make them more willing to connect. That large banks are willing to form many links even
in the absence of intervention is consistent with our “gateway” insight. Overall, network hazard
allows for the emergence of over-connectedness; it does not directly cause over-connectedness. In
particular, network hazard allows large banks to become systemically important.

3.3 The historical relevance of the theory

3.3.1 Side payments and the efficient network

The model predicts that in the absence of intervention small banks do not connect with large banks
at all. This is so in part because large banks are not able to compensate small banks with risk
premiums to convince small banks to connect with them. If side payments were allowed during
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network formation, then large banks could share with small banks (which are hurt by the SOCPR
that large banks impose) the benefits that they enjoy from having extra links.

Suppose, for example, that during network formation banks can write arbitrary and enforceable
contracts for how the cost of links is shared. In this case, banks form the utilitarian efficient network.
In the absence of intervention, large core banks compensate their small counterparties with SOCPR
premiums and, as shown in Figure 12−a, a hierarchical core-periphery emerges. In the presence of
intervention, a large core-periphery emerges. The impact of network hazard on the network topology
makes the network “more core-periphery” in character. To keep the insight general, we allow for both
liquidity and solvency shocks for the following result. For technical reasons we alter Assumption 1
into τL > 1 ≥ τS . We relax cL = 0.

Theorem 2. Suppose that τL > 1 ≥ τS and cS > cL ≥ 0. The unique optimal policy bails out all
illiquid banks, both illiquid bad banks with bad liquidity shocks and illiquid good banks that are illiquid
due to counterparties. Insolvent bad banks are not bailed out. As for network formation, there exists
d̃∗L ≥ d∗L and d̃∗S ≥ d∗S such that:

• In the absence of intervention a network is PSS if and only if there is a set S∗ of d∗L − kL + 1
many small banks such that

– all large banks are counterparties with S∗ and all other large banks, but with no other
bank,

– all small banks have d∗S counterparties (i.e., members of S∗ have d∗S − kL small counter-
parties, whereas other small banks have d∗S small counterparties).

• In the presence of intervention, a network is PSS if and only if all large banks have degree d̃∗L
and all small banks have degree d̃∗S.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12−a : Absence of
intervention

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

  

 

 
 

 

  

 
 

 

 

 

 

 

 

12−b : Presence of
intervention

Figure 12: Network with side payments

In the absence of intervention, large banks impose SOCPR on their small counterparties. Taking
into account the imposed SOCPR, the efficient number of links that large banks have is smaller than
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what large banks would normally prefer if SOCPR were eliminated. In other words, large banks
have to pay positive SOCPR premiums to their small counterparties, which causes them to connect
less often than they would in the presence of intervention.

There are other ways to think about transfers. We can think of a situation in which large banks
compensate their small counterparties via bilateral contracts that are contingent only on whether
they have the link or not. This, however, seems to not change the qualitative result: large banks
compensate their small counterparties with SOCPR premiums, and a smaller and limited core-
periphery network emerges. At the level of connectedness that large banks would like to have,
non-zero SOCPR premiums must be paid to small banks. This increases the effective cost incurred
by large banks to connect with small banks. That is, large banks are limited in their ability to
compensate small banks with SOCPR premiums, and, thus, large banks cannot convince all small
banks to connect with them. In the presence of intervention, however, SOCPR is eliminated. Small
banks are happy with arbitrarily small SOCPR premiums. Large banks are able to connect with
more small banks and the periphery grows large as it spans a larger part of the economy.

Ex-post side payments during contagion, however, are different problem. This would correspond to
bail-ins, wherein banks rescue each other from default. In recent papers this important problem has
been studied by Bernard et al. (2017) and Kanik (2017).

3.3.2 The FED Act and volatility

Our model can be used to understand certain changes in the interbank networks that occurred after
the FED was established as the lender of last resort. In our model, and in the absence of side
payments and intervention, the clique structure resembles the clearinghouses that banks formed
during the free banking era. During bank runs these clearinghouses would issue joint notes and
sometimes suspend payments. This was the manner in which a pre-FED era banking panic typically
would end (Gorton and Tallman (2016)). The FED Act of 1913, which established the FED as the
lender of last resort, abolished the need for clearinghouses—an outcome that can be seen as the
dissolution of the cliques that our model predicts.

Yet even in 19th century prior to the establishment of the FED, some banking networks featured a
core-periphery structure. Our model with side payments predicts that banking networks are core-
periphery even in the absence of intervention and feature a three-layered pyramiding of reserves. This
is exactly the topology of the banking networks documented by Anderson et al. (2016). Our theory
predicts that the network becomes more core-periphery in nature in the presence of intervention.
Indeed Anderson et al. (2015) show evidence consistent with the view that after the FED was
established, small state banks started to keep bigger parts of their reserves in large New York banks,
which intensified the links between the core and the periphery.

The establishment of the FED, which would lend to member banks via discount facilities and serve as
a lender of last resort, can be interpreted as switching from a regime without bailouts to a regime with
bailouts. Starting with the free-banking era, small country banks used to hold part of their reserves
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at large banks. The goal was to accommodate out-of-city withdrawals and earn interest on these
reserves. Large city banks would use these funds in other markets. The National Banking acts of
the 1860s further incentivized small banks to keep deposits at large banks by allowing such reserves
to count partially for the legal reserve requirements. This reinforced the pyramiding of reserves,
from small country banks to reserves city banks, and from reserve city banks to central reserve
banks in New York. This historical episode and its consequences with regards to the interbank
network structure is discussed in detail by Anderson et al. (2016). The pyramiding system was
inherently prone to instability. During certain seasons farmers would demand liquidity at large
amounts. These seasonal liquidity shocks created credit crunches, and some years it caused panics.
Some small banks started withdrawing their deposits from larger banks, and the distress in large
New York banks propagated back to all the small banks in the pyramid. Many legislative attempts
were made to address the pyramiding of reserves and frequent banking panics. Selgin (2016) provides
an historical account.

Perhaps due to pyramiding, “The most important single factor to be considered in estimating the
strength of the system as a whole,” as Sprague (1910) puts it, had become the financial standing
of the largest New York banks. While other options were being considered, such as an asset-backed
(rather than government-bond backed) decentralized currency system to address instability, the FED
was established in 1913 to issue a currency and lend to members at the discount rate in order to
have an elastic money supply. However, small banks kept reserves at the reserve city banks to keep
earning interest, while large banks borrowed from the FED. Thus, the establishment of the FED
strengthened the pyramiding. In his review, Selgin (2016) notes: “...the Fed’s discount facilities
made it appear less likely that New York banks would ever have to suspend payments, and therefore
less risky for other banks to send funds to them.” Furthermore, a study by Anderson et al. (2015)
indicates that small state banks kept their reserves in large New York banks to keep earning interest
and maintain indirect access to FED discount facilities.

This led to an expansion of the large New York bank’s balance sheets and their network position.
Selgin (2016) notes: "Instead of declining, balances in the three reserve cities grew rapidly, with those
in New York growing most rapidly of all. . . [T]he share of such balances belonging to the six-largest
banks had risen from 65 percent to almost 78 percent.”15 In a recent paper Anderson et al. (2017)
are studying the changes in the detailed structure of banking networks after the FED Act.

These changes had a variety of consequences. Especially after the 1917 amendment to the FED
Act, the FED controlled the money supply elastically, which eliminated excess seasonal interest rate
volatility. Bernstein et al. (2010) demonstrate the existence of these effects and Mankiw et al. (1987)
show how quickly the adjustment occurred. Nonetheless, other forms of volatility remained, perhaps
because of the pyramiding of reserves. Miron (1988) compares 25 years before and 25 years after
the establishment of the FED, and even when the Great Depression period is excluded from the
sample, he shows that "the variance of both the rate of growth of output and of the inflation rate
increased significantly, while the average rate of growth of output fell, and real stock prices became

15Resources: Watkins (1929), Beckhart and Smith (1932), and “Annual Report of the Comptroller of the Currency,
1863–1980,” Federal Reserve Bank of St. Louis archive, https://fraser.stlouisfed.org/title/56
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substantially more volatile” . More recently, Selgin et al. (2012) have shown that the US economy
has seen more volatility since the establishment of the FED. More on the historical period that
followed the FED Act can be found in Goodfriend (2013).

Our theory is in line with increased volatility. Nonetheless, we take stances neither on the average and
distributional welfare consequences of volatility nor the political debates surrounding the FED Act.
Our results suggest that the network effects of the FED Act might be welfare enhancing, whereas
volatility might have increased through the making of large banks more heavily connected to the
system. Banks might have engaged in more or less individual moral hazard after the establishment
of the FED, but documenting whether this happened is beyond the scope of this paper.

4 Other applications

In our theory, each link, in its most general form, represents a potentially beneficial relationship
between the counterparties involved, such as credit lines, trade agreements, joint projects, or even
friendships for the study of social networks. We assume that benefits realize in full only if neither
party defects. Below are some applications of the general theory other than interbank lending. For
simplicity we introduce these applications with identical agents in this section and drop the type γ
from notation.

Real firms and joint investments. In this application agents are real firms that borrow from
banks. After borrowing from banks, firms can undertake joint projects. The return from projects
is safe but firms can fail due to exogenous events, such as high operational costs. If too many
counterparties fail, it becomes too costly for a firm to complete its projects and the firm as a whole
becomes unable to repay the bank. The details of the environment and a full analysis of network
formation in the absence and presence of intervention are given in Appendix D. Sturm (2017)
provides another insightful application regarding joint projects with endogenous size of projects.

Liquidity coinsurance and credit lines. Erol and Ordonez (2017) present another major appli-
cation that involves credit lines that banks use to ride future refinancing shocks to their proprietary
projects. If too many counterparties fail because of productivity shocks to their managed projects,
then a bank with a healthy project can find it too unlikely to ride a potential future refinancing
shock, and it may prefer to default on its project to reduce managements costs.

Loan syndication and risk diversification. Elliott et al. (2014) study diversification and inte-
gration via cross-ownership across banks. Our model can capture a similar tradeoff using our model.
Consider banks that have illiquid assets A, liquid endowment ω, and liabilities L. Each bank has a
proprietary project. Banks can invest 1 unit in each other’s’ project. A link represents two counter-
parties that each invest 1 unit into each other’s’ project. This helps them diversify and integrate.
A link costs c to each counterparty−for example, costs incurred for monitoring counterparties. A
bank that has d counterparties has invested ω − d into its own project. Then shocks are realized;
θi ∈ {G,B} captures the management cost of continuation. If ni continues, it incurs the utility cost
κ (θi) to manage its project. Suppose that κ (B) is very large so that all bad banks are forced into
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defaulting. All good banks that continue move on to the return and repayment stage. All projects
that are still being managed realize a rate of return r ∼ F realized. Denote t⊗F for the distribution
of the sum of t i.i.d. random variables distributed with respect to F. A bank, ni, for each good
counterparty nj ∈ Ni that has continued, receives rj . Then ni’s total liquidity is

Xi = (ω − d) ri +
∑

nj∈Ni,aj=C
rj .

If this liquidity suffices to pay L, ni pays its debt and consumes the rest. Otherwise ni has to
liquidate its illiquid asset at a per unit cost η. Hence, ni’s realized payoff is A+Xi−L−ηA×1Xi<0.
Therefore,

P (f, d) = Er,r̃
[
[A+ (ω − d) r + r̃ − L− ηA× 1r+r̃−L<0]+

]
− cd− κ (G) ,

where r ∼ F and r̃ ∼ (d− f)⊗ F, and PG (d) ≡ PB (d) = −cd.

Social coordination and behavior adoption. Suppose that agents are individuals in the society
who form social ties, such as in Morris (2000) and Goyal and Vega-Redondo (2005). It is beneficial to
have friends who behave similarly, whereas it is costly to have conflict with friends. Shocks capture
agents who start acting in their own interest. Because of peer pressure it can be costly to maintain
friendships that involve such anti-social behavior, and other agents may start acting in their own
interest. Such situations can be modeled with a payoff function

P (f, d) = (d− f) r − fc,

PG (d) ≡ PB (d) ≡ 0,

where r captures some homophylic benefit and c captures the cost of conflict. If the behavior
adoption is a strategic choice, it can be modeled with

R (d) = d

1 + c
r

.

On the other hand, behavior adoption could stem from psychological factors. Then R could be given
by any other threshold rule irrespective of P .

Spread of diseases. One can also consider the spread of diseases, such as flu. Having social links
provides some benefits, but active links can facilitate the transmission of disease. Each person has a
resilience that captures the strength of their immune system against the contagion of the disease. If
there are more than R (di) ≡ τ infected friends, the agent also gets infected, where τ is a constant.
Infected friends drop out of the group, at least temporarily. So payoffs are given by

P (f, d) = u (d− f)− v (d)− c (d) ,

PG (d) ≡ PB (d) = v(d)− c(d),
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where u (d− f) is the benefit of social links with a temporary loss, v (d) is the continuation value
after all friends heal from the disease, and c (d) is the cost of forming these links.

5 Discussions

5.1 Discussion of the theory

Other solution concepts for network formation. Strong stability is defined differently in Jackson and
Van den Nouweland (2005) and Dutta and Mutuswami (1997). In Jackson and Van den Nouweland
(2005), deviations that Pareto improve the coalition are precluded, whereas in Dutta and Mutuswami
(1997) deviations that strictly improve every member of the coalition are precluded. To minimize
confusion we use the name Pareto Strong Stability (PSS) for Jackson and Van den Nouweland
(2005) and Strong Stability (SS) for Dutta and Mutuswami (1997). Appendix B provides results
for SS.

In our framework, the advantage of PSS is that it yields a unique prediction, but to avoid unintuitive
cycles of deviations its existence requires some divisibility assumptions regarding the number of
agents. SS yields existence without divisibility assumptions regarding the number of agents, but it
leaves some small room for multiplicity.16

It is natural to employ a solution concept that captures the fact that forming links requires mutual
consent; it is less natural to employ a formation game in which a counterparty cannot reject a link.
The simplest solution concept that captures this is Pairwise stability. Pairwise stability roughly
precludes deviations by pairs of banks. SS is a demanding solution concept compared to Pairwise
stability. The typical challenge is the existence of SS networks. We have been able to prove the
existence of SS networks in our general contagion framework, but we do not see SS as a positive
description of how banks become counterparties or how social links are formed. Indeed, SS should
be seen as selections among many possible pairwise stable networks that can arise in our framework.
In fact, one source of multiplicity among Pairwise stable networks in our framework is an unintuitive
one that arises due to discreteness. The function V (d, γ) typically features many non-monotonicities,
such as V (d+2, γ) > V (d, γ) > V (d+1, γ) for some d. In this case, d−regular networks are pairwise
stable in the presence of intervention because the feasible deviations can feature only two agents and
not three. Agents cannot increase their degree from d to d+2 with feasible deviations, and agents do
not want to increase their degree from d to d+1. Thus, a d−regular network is Pairwise stable because
of this unintuitive discrete fall in V at d. Even if coalitions of three agents were allowed to deviate,
similar problems would occur at some d such that V (d+ 3, γ) > V (d, γ) > V (d+ 2, γ) > V (d+ 1, γ).
SS resolves all such discreteness problems by allowing all sizes of coalitions.17

16Other papers in the literatures, such as Farboodi (2015) and Erol and Vohra (2014), use the strong stability notion
of Dutta and Mutuswami (1997). Strongly stable networks correspond to strong Nash equilibria of an underlying
proposal game. See Dutta and Mutuswami (1997) for more on the relation between strong Nash equilibria and
strongly stable networks.

17For more on various notions of network formation, see Bala and Goyal (2000), Bloch and Dutta (2011), Bloch
and Jackson (2006), Dutta, Ghosal and Ray (2005), Fleiner, Janko, Tamura and Teytelboym (2015), Galeotti, Goyal
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Divisibility assumptions. The existence of PSS networks is contingent on being a certain number
of agents from each type. As shown in Theorem 3 in Appendix B, one can also use the SS solution
concept, which does not require the divisibility assumptions for existence when agents are identical
ex-ante. Such discreteness problems are common in endogenous network formation. Moreover, we
show in Theorem 4 that if at least one type has a high propensity to form links, this type of node
can absorb the residual demand, and we restore the existence.

Correlated shocks. All our results still hold if shocks are conditionally independent. Suppose that
with some probability σB < 1 all shocks are bad, with probability σG < 1 all shocks are good, and
with probability 1 − σB − σG all shocks are determined independently as in the model. All results
concerning the topology of the network hold identically because the such correlation does not cause
any contagion. The level of connectedness d∗, however, can be different in the case of σB = σG = 0.

Micro-foundation of contagion. Our theory takes the contagion dynamics to be exogenous. This
allows us to have a general and arbitrary form for the resilience function R. This generality is useful
in studies of situations in which contagion dynamics are not tied to the benefits that agents enjoy
from links, such as in epidemics. However, contagion can be seen as the spread of a defective behavior
that is taken strategically. Suppose that in stage three, agents play a simultaneous game and choose
to play C or D. Given the realized network and shocks, this game is supermodular. Then, via
Topkis’ Theorem, the best responses are increasing functions of the actions of others, where C is the
higher action. In return, Tarski’s Theorem indicates that the set of Nash equilibria is a complete
lattice. The action profile at the highest element of the lattice corresponds to the outcome of the
exogenous contagion dynamics. Call this the cooperating equilibrium.18

This equilibrium can be obtained in two ways other than exogenous dynamics. In the first, the
myopic best-response dynamics that starts with the ‘everyone plays C for all projects’ action profile
is iterated, as in Morris (2000). The second, which is subtly different, applies the iterated elimination
of strictly dominated strategies. In both cases, the constructed sequence of action profiles reaches and
stops at the cooperating equilibrium. Following the second way to reach the cooperating equilibrium,
an alternative definition of the cooperating equilibrium can be given via rationalizable strategies.19

‘The rationalizable strategy profile in which all banks play the highest action they can rationalize’
is identical to cooperating equilibrium. This natural contagion interpretation maps onto exogenous
contagion dynamics.

Incomplete information. For the sake of simplicity, we introduced cooperating equilibrium for com-
plete information games. Vives (1990) also shows that any Bayesian game with supermodular ex-
post payoff functions has a maximal pure strategy Bayesian-Nash equilibrium. Thus, cooperating
equilibrium can be identically defined for incomplete information.

and Kamphorst (2006), Goyal and Vega-Redondo (2005), Jackson and Watts (2002), Jackson and Wolinsky (1996),
Ray and Vohra (2015), Shahrivar and Sundaram (2015), Tarbush and Teytelboym (2015) and Teytelboym (2013).

18The cooperating equilibrium is a standard selection used in the literature, such as in Vives (1990), Eisenberg and
Noe (2001), Elliott et al. (2014), Morris (2000), Goyal and Vega-Redondo (2005), Erol and Vohra (2014) and others.
See Vives (1990) for additional discussion of how complementarities generate a lattice structure on the set of Nash
equilibria. See Milgrom and Shannon (1994) for more on supermodular games.

19This link between rationalizability and the extreme points of the lattice is introduced in Milgrom and Roberts
(1990).
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Now suppose that each agent observes the shocks to itself, its counterparties, and possibly some
other agents. Formally, ni observes the shocks to a subset Ii(E, ~θ) of banks that includes ni and
all counterparties of ni. {ni} ∪ Ni ⊂ Ii

(
E, ~θ

)
⊂ N . All results hold identically both for the

absence and presence of intervention. The key observation is that in the absence of intervention,
if agents form cliques, the shocks of every agent in the clique are common knowledge across all
clique members. Therefore, by forming a clique with its own type, ni has V (di, γi) expected payoff.
Clearly, this payoff cannot be exceeded in any configuration or any information structure because
bad counterparties always default. As for presence of intervention, an agent does not need to know
anything more than the shocks of its counterparties. This is so because intervention makes sure all
good agents continue and there is no contagion.

Heterogenous link benefits. We have assumed that agents do not get different benefits or harm from
links with different types. Moreover, the probability that an agent receives a good shock is the same
across all types. This modeling choice is intentional. In this manner preferences over the composition
of types of counterparties are endogenously determined via network formation, and the emphasis
is on the network structure. One can relax these assumptions and assume that the payoff of ni is
given by P

((
fγ
i
, dγi
)
γ∈Γ , γi

)
where dγi is the number of counterparties with type γ and fγi are the

number of defaulting counterparties with type γ. In other words, the composition of the types of
counterparties of ni could matter for ni. One can also assume different αγ for each type γ. Under
appropriate regularity assumptions on P , R, and α’s, such that there is a common linear to which
types are more preferred, then similar results hold. Such arguments can be used to study also the
formation of directed links.

Generalization of results. Our network formation results can be generalized to allow the ex-post
payoff function P to depend on various other variables such as the shocks of counterparties and the
number of defaults by agents at various distances to ni.

Phase transitions. The network formed is prone to phase transitions in several ways. In an example
provided by Erol and Ordonez (2017), the liquidity coinsurance network that banks form is influenced
by the level of reserve requirement that the government sets ex-ante. They show that beyond a
threshold level of reserve requirement, the network collapses and all liquidity coinsurance is lost.
This leads to a discontinuous jump in systemic risk.

Behind this result is the theory that intervention effectively changes the parameters in the P function.
The shape of V changes smoothly in these parameters, yet the argmax d∗ of V features discontinuous
changes. Although V has multiple local maxima that change smoothly, at a certain tipping point of
the parameter in question, the global max d∗ of V changes discontinuously from one local max to
another local max. At this point, connectivity in the network changes discontinuously.

Generally speaking, in any application where certain parameters in the P function change, such
phase transitions are possible. Moreover, a form of phase transition with respect to the number of
agents is possible. It is possible that global max of V changes from one local max to another local
max once there is one more agent in the economy. We explore these in future work.
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5.2 Discussion of the application to interbank lending

Costly bailouts and welfare: One reason that welfare increases with time-consistent bailouts is that
these transfers entail no extra cost. One can think of some costs per unit of transfer as a distortionary
tax on households that funds the bailout budget. Another cost can be a fixed cost of executing each or
all bailouts, such as passing a certain budget for bailouts or political costs. In such cases, the optimal
policy is more complex than what our model proposes. We conjecture that with side payments and
costly bailouts, there is a threshold for the cost of bailouts, above which welfare is smaller in the
presence of intervention than in the absence of intervention. Because a detailed analysis of the
optimal policy in the costly bailout case makes the analysis complicated, we do not go into details
in this paper.

Undoing network hazard: constructive ambiguity. The goal of this paper is to identify network
hazard. As we have shown, ex-ante welfare actually increases despite network hazard. Network
hazard is the elimination of the SOCPR, which leads to volatility. Moreover, if bailouts entail
distortionary costs, welfare, too, could decrease. That said, a partial commitment to not bailing out
banks—if that were possible—would undo network hazard. Without side payments, even a small
probability that there would not be any bailouts would be enough to restore the clique structure.
However, with side payments, an arbitrarily small probability would not to suffice to return the core-
periphery structure to the clique structure. Large banks are ready to pay high SOCPR premiums,
including a premium for the risk of not getting bailed out. Large banks have a limited “budget”
to distribute for these premiums. This limit can be used to determine the minimum probability of
“no-bailouts” that is necessary to revert the core-periphery structure to the clique structure, or to
induce an optimally sized core-periphery. Hence the model also can be used to find the optimal level
of constructive ambiguity. We pursue this question in a follow-up paper.

Commitment to bailing out only systemically important institutions. If government could commit
to bailing out only SIFIs, then the interconnectedness across the periphery would disappear and a
core-periphery would emerge in which the periphery banks would form disjoined cliques besides their
links with core banks. This would not undo the benefit or harm that would occur if some banks
became systemically important, but it would restore the market discipline within the periphery.

A similar prediction can be made for the times when only large national banks were members of
the FED. Indeed, after the establishment of the FED, not all state banks immediately joined the
FED. The large national banks that became members of the FED enjoyed the discount lending.
Our model predicts in this case a core-periphery network in which the peripheral small banks form
disjoined cliques in addition to their links with large banks.

Optimal policy in the combined model. In the combined model, presented in Section 3.3.1, that allows
for both liquidity and solvency shocks, the optimal policy is to bail out all illiquid banks, both exoge-
nously illiquid banks due to bad liquidity shocks and endogenously illiquid banks due to defaulting
counterparties. Closely related is the discussion by Rochet and Tirole (1996) of whether TBTF
institutions should be bailed out to assist their troubled counterparties or troubled counterparties
should be assisted directly. We argue that a mixture is optimal because all troubled illiquid banks,
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including those that are not TBTF, should receive bailouts, whereas TBTF institutions should fail
if they are insolvent.

Other forms of individual risk and moral hazard. In Section 3.1.3 we introduce an endogenous
choice of operational risk to study moral hazard. A similar analysis can be made for other forms of
individual risk taking. These include the choice of idiosyncratic risk α and the choice of the level
of deposits Dγ . Similar insights hold in that network hazard does not cause any moral hazard by
itself.

Risk shifting. Consider the forms of individual risk taking we have mentioned. Interconnectedness
caused by network hazard does not exacerbate risk shifting. This is clear in the case of solvency
shocks with identical banks. Only good banks receive bailouts, and when they receive bailouts they
are made indifferent between defaulting or not defaulting. As discussed above, small banks do not
over-connect or under-connect in response to network hazard. Since the degree does not change,
small banks undertake identical decisions regarding their individual risk in the absence and presence
of intervention. However, the systemic importance consequence of network hazard can involve more
or less risk shifting.

Other references. Papers that study systemic risk given exogenous networks include Allen and Gale
(2000), Eisenberg and Noe (2001), Kiyotaki and Moore (1997), Acemoglu, Ozdaglar and Tahbaz-
Salehi (2015a), Acemoglu, Ozdaglar and Tahbaz-Salehi (2010), Allen, Babus and Carletti (2012),
Amini and Minca (2014), Blume et al. (2011), Bookstaber et al. (2015), Caballero and Simsek
(2013), Eboli (2013), Elliott, Golub and Jackson (2014), Freixas, Parigi and Rochet (2000), Gai and
Kapadia (2010), Gai et al. (2011), Gale and Kariv (2007), Gottardi, Gale and Cabrales (2015), Glover
and Richards-Shubik (2014), Gofman (2011), Gofman (2014), Kiyotaki and Moore (2002), Lim,
Ozdaglar and Teytelboym (2015), Vivier-Lirimonty (2006), Acemoglu, Ozdaglar and Tahbaz-Salehi
(2015c), Elliott, Golub and Jackson (2014), and Glasserman and Young (2015). Some that study
the efficient ways of stopping contagion for fixed networks are Drakopoulos, Ozdaglar and Tsitsiklis
(2015a), Freixas, Parigi and Rochet (2000), Minca and Sulem (2014) Amin, Minca and Sulem (2014),
Drakopoulos, Ozdaglar and Tsitsiklis (2015b), and Motter (2004). Moreover, Acemoglu, Ozdaglar
and Tahbaz-Salehi (2015b), Elliott and Hazell (2015), Erol and Vohra (2014), Goldstein and Pauzner
(2004), Moore (2011), Cabrales, Gottardi and Vega-Redondo (2017), Babus and Hu (2015), Blume
et al. (2013), Chang and Zhang (2015), Condorelli and Galeotti (2015), Kiyotaki and Moore (1997),
Lagunoff and Schreft (2001), and Zawadowski (2013) study the formation of networks.

6 Conclusion

This paper characterizes strongly stable networks in a general model of threshold contagion. The
theory is used to document a novel force that we call network hazard. The risk of contagion across the
network has a disciplining effect on the market during the network’s formation. Ex-post intervention
by a principal to mitigate contagion weakens such ex-ante market discipline. The anticipation of
intervention affects the detailed structure of the network. The change in the structure of the network
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has adverse effects such as making the network more prone to contagion. Through these network
effects, a large number of agents may become exposed to contagion, which may require a large-scale
intervention with the market.

Various applications of the theory are presented. The main application involves interbank lending.
In an environment in which banks form bilateral lending partnerships, the anticipation of bailouts
reduces second-order counterparty risk—that is, the risk that a bank can incur losses due to solvent
counterparties that default because of their own insolvent counterparties. In the presence of inter-
vention, banks concern themselves less with the counterparties of their counterparties. As a result,
“firebreaks” that would form in the absence of intervention dissolve, and banks form a core-periphery
network. In return, the performance of a large part of the economy becomes correlated through the
solvency of the core banks. This creates welfare volatility. Nonetheless, expected welfare increases,
too. These predictions are consistent with some historical account of the pyramiding of reserves and
the establishment of the FED.
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A Theory: Pareto Strongly Stable networks

This Appendix consists of proofs of results in Section 2.

Proof of Proposition 1. Consider any E and take any agent ni. The distribution of fi first-order-
stochastically dominates the distribution of bi due to potential spillovers. The latter equals the
distribution of the total number of defaulting counterparties of ni if ni were at the center of a
disjoined star with di leaves, because there is no SOCPR for ni in the star configuration. P (bi, di, γi)
is a strictly decreasing function of bi . Since the expectation of a decreasing function decreases with
respect to first order stochastic dominance, ni gets at most V (di, γi) in any network wherein ni has
degree di.

Proof of Proposition 2. Suppose that there exists nj ∈ Ni such that

min {R(di, γi), dij}+ (dj − dij − 1) > R(dj , γj).

Consider the event that min {R(di, γi), dij} many agents in Ni ∩Nj and all the dj − dij − 1 many
agents in (Nj\{ni}) \Ni get bad shocks, and all else get good shocks. nj defaults while ni does
not default without nj defaulting. This causes ni to incur an extra loss on top of the direct costs
from bad counterparties. That is, there is SOCPR for ni through nj . Due to the existence of such
a positive probability event, conditional on the event that both ni and nj are good, and less than
R(di, γi) many counterparties of ni are bad, the distribution of fi in (N,E) first order stochastically
dominates the distribution of bi. Hence, ni’s expected payoff is strictly less than V (di, γi).

Now suppose that
min {R(di, γi), dij}+ (dj − dij − 1) ≤ R(dj , γj)

is satisfied for all nj ∈ Ni. By the same argument, there is no event in which ni continues and nj
defaults without being bad, i.e. there is no SOCPR for ni. Hence the only risk that nj imposes on
ni is the first-order counterparty risk of nj getting a bad shock. Then conditional on ni having at
least R(di, γi) many good counterparties, the distribution of fi of ni in (N,E) is equivalent to the
distribution of bi. This means that ni has V (di, γi) payoff.

Proof of Proposition 3. All other agents have the same or higher resilience: R (d, γj) ≥ R (d, γi) for
all nj in the clique. Then if f ≤ R(d, γi) many agents are bad in the clique, all the good agents in
the clique continue. Thus from the viewpoint of ni, if ni gets a good shock, and f ≤ R(d, γi) many
agents get bad shocks, ni gets payoff P (bi, di, γi). If ni gets a good shock, but f > R(d, γi), then it
defaults and gets PG (di, γi) which does not depend on f . If ni gets a bad shock, it gets PB (di, γi).
Thus, its ni’s payoff is V (d, γi).

Proof of Proposition 4. By Proposition 2 we have both

min {R(di, γi), dij}+ dj − dij − 1 ≤ R(dj , γj),

38



min {R(dj , γj), dij}+ di − dij − 1 ≤ R(di, γi).

If one of ni and nj , say ni, has a safe counterparty degree, R(di, γi) ≥ di − 1 ≥ dij , so that
min {R(di, γi), dij} = dij . Then the latter inequality becomes dj − 1 ≤ R(dj). Thus, the other nj
must also have a safe counterparty degree.

Now consider the case in which both have unsafe counterparty degrees. By dj /∈ S(γj) we have
R(dj , γj) < dj − 1. Then by the former inequality we have min {R(di, γi), dij}< dij . That implies
min {R(di, γi), dij} = R(di, γi). Then the former inequality becomes. R(di, γi) + dj − dij − 1 ≤
R(dj , γj). Similarly since dj /∈ S(γj), we have R(dj , γj) + di − dij − 1 ≤ R(di, γi). Add both up
to get di + dj ≤ 2(dij + 1). That implies that di = dj = dij + 1, which in turn implies that
Ni\{nj} = Nj\{ni}. Put that back into the inequalities to get R(di, γi) = R(dj , γj).

Proof of Corollary 5. Either of the two conditions make sure that conditions of Proposition 4 are
satisfied for all agents in the component, so all agents in the component have their ideal value.

Take any component. Suppose that there exists two agents with one safe and one unsafe counterparty
degree. Then by the connectivity of the component, there are two counterparties with one safe and
one unsafe counterparty degree in the component meaning that there is at least one agent which
does not achieve its ideal payoff. This is a contradiction. If all agents in the component have safe
counterparty degrees, the second condition is satisfied. If all agents in the component have unsafe
counterparty degrees, by Proposition 4 the set of counterparties of any two counterparties in the
component must be identical. Then by the connectivity of the component, the component must be
a disjoined clique. All agents in the component are then counterparties of each other. Hence their
resiliences also must be identical.

Proof of Theorem 1. If there is any agent with type γ ∈ ι is not achieving its ideal value, then this
agent, and d∗ι other agents with similar types could deviate to forming a disjoined clique of order
d∗ι + 1 and all get their ideal value. This would be a Pareto improvement. Hence, in any PSS

network, all agents must achieve their ideal values. On the other hand, if all agents have their ideal
value, then this network is clearly PSS. By Proposition 5, all agents have their ideal value if and
only if the network consists of disjoined cliques of agents from the same unsafe class each with their
ideal degree, and a subnetwork of all safe classes in which each agent has its ideal degree.

B Theory: Strongly Stable networks

PSS networks may not exist due to integer problems in the number of agents from each type, as
reflected in Theorem 1. However, SS networks always exist if |Γ| = 1. This Appendix consists of
results concerning strong stability and the proofs of these results.

Stating the set of SS networks requires some additional notation. Construct a sequence iteratively
as follows. Let Γ = {γ}. Set n0 = k. For t ≥ 1, as long as d∗(kt, γ) 6∈ S (γ) , set kt = kt−1 −
d∗ (kt−1, γ)− 1 ≥ 0. Let kκ be the last element of the sequence: d∗ (kκ, γ) ∈ S (γ). That is, find the
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ideal degree among the remaining number of agents, and separate that many plus one agents aside.
Iterate, and stop when ideal degree is a safe counterparty degree.

Theorem 3. (Strongly stable networks) Suppose that Γ = {γ}.

• (Existence) The following is a strongly stable network: There are κ disjoined cliques with
orders d∗(kt−1, γ) + 1, for t = 1, 2, ..., κ, and another disjoined residual subnetwork which is
almost-d∗(kκ, γ)-regular20 among the kκ remaining agents.

• (Almost uniqueness) In any strongly stable network, there are κ disjoined cliques with orders
d∗(kt−1, γ)+1 agents, for t = 1, 2, ..., κ. The remaining kκ agents constitute an approximately-
d∗(kκ, γ)-regular21 network.22

Proof. (Existence) As stated before, by Corollary 5, being part of a clique with order d∗(k0, γ) + 1
gives the highest payoff any configuration can achieve for a agent among a network of k0 agents.
Therefore, agents in the clique with order d∗(k0, γ) + 1 have no incentive to deviate to any other
network. The argument can be applied iteratively for the κ cliques. As for the remaining almost-
d∗(kκ, γ)-regular part, all agents have degree d∗(kκ, γ) ∈ S (γ) (except possibly one which is not
connected to anyone). That is, all these remaining agents (except the singleton) have safe counter-
party degrees. Then there is no SOCPR and two good counterparties are sufficient for each other
to resist defaulting. Hence for any agent (except the singleton) has V (d∗(kκ, γ), γ) expected payoff,
which is the highest any agent can achieve among kκ people. If there is a singleton left-over agent
with degree 0, it cannot convince anyone to deviate either, because everyone else is already getting
their maximum possible payoff among people they could convince to deviate.

(Almost uniqueness) Take any strongly stable network. Let d∗ = d∗(k0, γ). First consider d∗ 6∈ S (γ).
If all agents have strictly less than V (d∗, γ) expected payoff, d∗+1 of them can deviate to a (d∗+1)-
clique and improve. Hence, there is at least one agent who gets V (d∗, γ) payoff, say ni0 . Then
di0 = d∗ 6∈ S (γ) .

For any counterparty of ni0 which gets V (d∗, γ), say nj , it must be the case that dj = d∗ 6∈ S. By
Proposition 4, Ni0\{nj} = Nj\{ni0}. Let N0 = Ni0 ∪{ni}. Thus all agents in N0 which get V (d∗, γ)
are adjacent to all other agents in N0, and none else.

Then consider agents in N0 that get less than V (d∗, γ), say N1. Suppose that N1 6= ∅. Consider the
deviation by N1 in which they keep all existing edges with N0, they connect all of the missing edges
in N1, and they cut all edges they have with NC

0 . After this deviation, N0 becomes a (d∗+ 1)-clique
and all agents get V (d∗, γ) so that all the deviators in N1 get strictly better off. Therefore, N1 = ∅,
so that N0 is already a (d∗ + 1)-clique.

20A network is almost-d-regular if all agents, except at most one of them, have degree d and the possible residual
agent has degree 0. An almost-d-regular network always exists among d+ 1 or more agents.

21A network is approximately-d-regular if all agents, except at most d of them, have degree d.
22Concerning the remaining kκ agents, more can be said on the structure of the subnetwork using Erdos-Gallai

Theorem. If the degree sequence of the remaining kκ agents is given by x1,...,xκ, then the sequence d∗(kκ) −
xk,...,d∗(kκ)− x1 cannot be a graphic sequence.
A graphic sequence is sequence of integers such that there is a simple graph whose agent degrees are given by the

sequence. Erdos-Gallai Theorem provides a necessary and sufficient condition for a sequence being graphic.
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All in all, in any strongly stable network of k0 agents, if d∗(k0, γ) 6∈ S, there exists a disjoined
clique of order d∗(k0, γ) + 1. Now the same arguments can be repeated for agents in the remaining
k1 = k0 − d∗(k0, γ)− 1 agents. Then among those, there must be a clique with d∗(k1, γ) + 1 agents,
then d∗(k2, γ) + 1 agents.... as long as d∗(kt, γ) 6∈ S (γ).

When d∗(kκ, γ) ∈ S (γ) first time in the sequence, for the remaining kκ people, among them there
cannot be d∗(kκ, γ)+1 or more people that have degree other than d∗(kκ, γ) because then d∗(kκ, γ)+1
many would deviate and form a clique, and get V (d∗(kκ, γ), γ).

The tighter condition mentioned in the Footnote 22 is also necessary. If the sequence d∗(kκ, γ) −
x1,...,d∗(kκ, γ) − xκ is graphic, then an appropriate isomorphism of the graph with this particular
degree sequence can be joined with the existing remainder, so that all deviators increase their degree
to d∗(kκ, γ). This way, all agents achieve their ideal payoffs among kκ agents, so that all deviators
get strictly better off.

We were able to prove existence of SS networks without any divisibility assumptions. When there
is heterogeneity, our proof strategy for the existence of SS networks does not work at the last small
residuals. If there are remainder agents from each class ι after forming cliques of order d∗ι + 1,
it is not clear how the remainders from different classes would mix with each other. For example,
if remainders consist of 1 agent from each class, we essentially need to solve for a SS network for
|N | = |Γ|. This is a hard task at this level of generality in the payoff and resilience functions P and
R. The “trick” of using ideal payoffs do not work anymore when there is too much heterogeneity.

Nevertheless, by assuming there exists one type that is resilient and has high propensity to form
links, we can restore the existence. Agents of this type would absorb the demand of residual agents.
Formally, suppose that there exists γ0 ∈ Γ such that R(d, γ0) ≥ d − 1 for all d and P (f, d, γ0) =
φ (d− f) for some increasing function φ.

Theorem 4. Suppose that k0 >
∑
ι d
∗ι for all ι such that γ0 6∈ι. Then SS networks exist. In

particular, networks that consist of the following components are SS:

• disjoined cliques of ideal order of same unsafe equivalence class,

• A disjoined subnetwork of safe classes in which all agents have their ideal degree,

• A core-periphery component wherein agents with type γ0 are the core and the periphery consists
of

– cliques of same unsafe class that are disjoined besides their links to the core,

– a subnetwork of agents from safe classes which have their ideal degree including their links
to the core.

The proof is omitted since it is a simple variation of previous proofs. Without having such a type γ0

that absorbs the residual demand of other types, and without having any divisibility assumptions
on the number of agents from each type, we can show by an example that SS networks may not
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exist. Suppose that there are three agents n1, n2, n3. n1 and n2 have type γ and n3 has type γ′.
PI ≡ PS ≡ 0 for both types. R(d, γ) = R(d, γ′) = d for all d. For some small ε > 0,

P (f, d, γ) =


2− εf if d = 2,

−εf if d = 1,

1− εf if d = 0,

P (f, d, γ′) =


1− εf if d = 2,

2− εf if d = 1,

−εf if d = 0.

n1 and n2 prefer having 2 links to 0 links to 1 link. n3 prefers having 1 link to 2 links to 0 links. In
this situation there are no strongly stable networks. The deviations from each candidate network
are illustrated in Figure 13. All agents jointly deviate from G1 to G2. n3 deviates from G2 to G3.
n2 deviates from G3 to G4. n1 deviates from G4 to G1. n1 and n2 jointly deviate from G5 and G6

to G1.

𝑛2𝑛1

𝑛3
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Figure 13: Labels of networks and deviations

Putting more structure on R and P can yields existence of SS networks in general without any
particular assumption on the number of agents from each type. We leave this to future work.

C Application: Interbank lending

This Appendix consists of proofs of results in Section 3.

Proof of Proposition 6. The proof is a corollary of Theorem 1 for the most part and Proposition 2
for the remaining part. The only tweak to the proof of Theorem 1 concerns the large banks. Because
cL = 0 the ideal degree of large banks is k − 1, which is larger then the number of large banks by
Assumption 2.

By Assumption 2, the number of small banks is larger the ideal degree of small banks, in any PSS
network all small banks must achieve V (d∗S , S). Otherwise, d∗S + 1 small banks including the small
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bank that does not have V (d∗S , S) can deviate to a disjoined clique. This weakly improves all and
strictly improves at least one deviating bank. By Proposition 2 and Assumption 1, a small bank can
never achieve V (d∗S , S) if it has a large counterparty because large banks are not as resilient as small
banks. Therefore, in any PSS network, there is no small bank that is connected to a large bank. By
Assumption 1, small banks are not perfectly resilient, so they must form cliques among themselves
in any PSS network. For the large banks, on the other hand, V (d, L) is strictly increasing d since
cL = 0. Then, in any PSS network, they must be doing the best thing among themselves, which
is to be adjacent to as many large banks as possible, which leads to a clique among themselves of
order kL. Therefore, the only candidate PSS network is the candidate network wherein all small
banks are formed to cliques of order d∗S + 1 and large banks into one clique of order kL. Notice that
this network is indeed PSS because if a small ever deviates and forms a link with a large bank,
it can not achieve V (d∗S , S). So no large bank can connect to a small bank in a Pareto improving
deviations. Then the only possible deviations are among large banks themselves, but they already
achieve the best they can among kL large banks. So the candidate network is PSS.

Proof of Proposition 7. QED.

Proof of Proposition 8. Now the resilience functions are R (d, γ) = d for both γ ∈ {S,L}. Hence by
Theorem 1 and Proposition 2, a network is PSS if and only if all banks have their ideal degrees.
Since FOCPR is not changed, V ≡ Ṽ . Hence the ideal degree of small banks is still d∗S and the ideal
degree of large banks is k − 1.

Proof of Proposition 9. QED.

Proof of Proposition 10. The payoff functions in the absence of intervention are given by

P (di, fiκi; γi) = −cop (κi; γi)− dicγi +Dγi [(di − fi)χ1 + χ2 − κi]+ ,

P (di, fiκi; γi) ≡ P (di, fiκi, γi) = −cop (κi; γi)− dicγi ,

V (di, κi; γi) = −cop (κi; γi)− dicγi + αDγiE
[
[(di − fi)χ1 + χ2 − κi]+

]
.

In the presence of intervention, all illiquid banks are bailed out by being made indifferent between
defaulting or not. Ṽ ≡ V since FOCPR is intact. Therefore, d̃∗S = d∗S and κ̃∗S = κ∗S . However,
R̃ (di, κi) = di since SOCPR is eliminated. Therefore, large banks start connecting with small
banks, and their realized degree becomes k − 1. This in turn affects their choice of operational risk
(which does not scare of other banks since there are bailout guarantees in case the operational cost
ever becomes relevant) and they choose a different level κ̃∗L 6= κ∗L.

Proof of Proposition 11. QED.

Proof of Proposition 12. Since SOCPR is eliminated, the resilience functions are R (d, γ) = d for
both γ ∈ {S,L}. Hence by Theorem 1 and Proposition 2, a network is PSS if and only if all banks
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have their ideal degrees. In contrast with Proposition 8, FOCPR is also eliminated so, V 6≡ Ṽ .
Hence the ideal degree of small banks is now d̃∗S 6= d∗S . The ideal degree of large banks is still k − 1
since cL = 0.

Proof of Theorem 2. Consider the absence of intervention. Since τS = 0, the small banks’ limited
liability constraint never binds. Hence the payoff of a small bank ni can be additively separated into
ideal payoff and various orders of counterparty risk as

V (di, S)−
∑
nj∈Ni

[SOCPR imposed onni by nj ]− [higher CPR imposed onni].

Moreover, since τS = 0, small banks do not impose any SOCPR on counterparties so that all SOCPR
comes from large banks. For nj , denote gj the number of good counterparties, gjS the number of
small good counterparties, and djS the number of small counterparties of nj . The SOCPR imposed
on good ni by large nj is given by

χ1P [gj < τj , θi = G] .

Accordingly, the sum of payoffs of small banks is

∑
ni:γi=S

V (di, S)− χ1
∑

ni:γi=S

 ∑
nj :γj=L

P [gj < τj , θi = G]


=

∑
ni:γi=S

V (di, S)− χ1
∑

nj :γj=L
E [gjS |gj < τj ]P [gj < τj ] .

Denote
Φ (djS , dj) = E [gjS |gj < τj ]P [gj < τj ] .

Notice that Φ (djS , dj) ≤ Φ (dj − (kL − 1) , dj) and the equality holds if and only if nj has kL − 1
large counterparties, i.e. nj is counterparties with all other large banks.

Now consider the payoff of large banks. Large bank nj has payoff at most V (dj , L). By Proposition
2, this payoff is attained if and only if all large counterparties of nj have the exact same set of
counterparties with nj .

Then the sum of payoffs of banks is less than

∑
ni:γi=S

V (di, S)− χ1
∑

nj :γj=L
Φ (dj − (kL − 1) , dj) +

∑
nj :γj=L

V (dj , L) .

where the equality holds if and only if all large banks are counterparties of each other and all large
banks have exactly the same set of counterparties. Denote

d∗L = argmaxdjV (dj , L)− Φ (dj − (kL − 1) , dj) ,

d∗S = argmaxdiV (di, S) .
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Then the sum of payoffs of banks is less than

kL [V (d∗L, L)− Φ (d∗L − (kL − 1) , d∗L)] + kSV (d∗S , S)

where the equality holds if and only if

• all large banks are counterparties of each other,

• all large banks have exactly the same set of counterparties,

• all large banks degree d∗L and small banks have degree d∗S .

Notice that these are consistent conditions, so the upper bound we have found is attained only at
such networks:

• there is a set S∗ of d∗L − kL + 1 small banks such that all large banks have S∗ and all other
large banks as their counterparties,

• all small banks have d∗S counterparties (i.e. members of S∗ has d∗S − kL small counterparties
whereas other small banks have d∗S small counterparties).

For the presence of intervention, the there is no SOCPR through large banks due to bailouts so the
efficient networks are those in which all banks have their ideal payoffs.

D Application: Real firms with joint projects

Environment. In this economy firms first borrow from banks, then undertake some joint projects.
Following investments, firms receive some productivity shocks and choose to continue their business
or not. Then returns from projects realize and banks are repaid.

Formally, there are k firms denoted N = {n1, n2, ..., nk}. Firm ni has type γi ∈ Γ. ni access to Dγi

credit line from its bank. Denote li ≤ Dγi the total amount ni borrows from its bank, and promises
to pay rγiF li after returns from investments where rγiF > 1. 23

Firms then undertake joint investments by mutual consent. A mutual investment requires 1 unit of
investment from both counterparties. The investment by ni and nj is called a link. Counterparties,
network, degree are defined identically. The solution concept is PSS.24

23riF is a constant for now. At the end of the section we generalize our results to endogenous interest rates and
show that our results remain intact.

24We allow for only one link between a pair of firms. A link can be seen as the optimally chosen number of projects
each of which have some fixed capacity.A link can also be seen as optimally sized project between two counterparties.
One can engineer a cost function such that the optimal size of the investment is 2, and so each counterparty pays 1.
Sturm (2017) studies a case in which the size of the projects are endogenously chosen. Our focus is the impact of
bailouts on the network architecture.
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Shocks are also defined similarly: θi ∈ {G,B} denotes the realized shock to bank ni. A shock θi
means that ni has to incur a utility cost κγi (θi) per project to continue managing its projects. Call
firms that receive bad shocks bad firms and firms that receive good shocks good firms.

After shocks are realized and observed, firms can -choose- to continue with their projects or not. The
solution concept is the cooperating equilibrium.25 A firm ni chooses (ãij)j∈Ni ∈ {C,D}

di . ãij = C

means that ni continues with the project with nj and ãij = D means that ni defaults on the project
with nj . We assume that once one counterparty quits managing a project the project fails.26

ni incurs the management cost for each project that it continues with. If ni and its counterparty
continue their project, each get safe return r from the project. Otherwise both get 0. ni had
borrowed li and used di for investment, and owes rγiF li to its bank. Accordingly, ni’s payoff is

[r × |{j ∈ Ni : ãij = ãji = C}|+ (li − di)− rγiF li]
+ − κγi (θi)× |{j ∈ Ni : ãij = C}| .

Absence of intervention. Best responses. First note that ni will never borrow more than di since
banks are promised rγiF > 1. We assume that projects are ex-post profitable for good firms, or in
other words management costs of good firms are small. Otherwise firms would never continue with
projects ex-post, hence they would neither invest nor borrow in the first place.

Assumption 4. Projects are profitable for good firms: r − rγiF > κγi (G) for all γi.

Then ni’s best response is given by

ã∗ij =

ãji if [r × |{j ∈ Ni : ãji = C}| − rγiF di]
+ − κγi (θi)× |{j ∈ Ni : ãji = C}| ≥ 0

D o.w.

In words, the best response is to

• reciprocate: continue with all projects in which the counterparty is continuing with the project,
and try to repay banks, or to

• default: default on all projects and get 0,

depending on whichever gives higher payoff. Then without loss of generality we can actually re-
strict the strategy space of ni. Represent the action of ni with ai ∈ {C,D} where C is called
continuing, representing the choice of reciprocating to each counterparty, and D is called defaulting
representing the choice to default on all counterparties. Clearly, the representation overlaps when
all counterparties are defaulting, so we represent this overlapping choice with ai = D which is more
intuitive.

25See Section 5 for more on cooperating equilibrium.
26There are two ways to think about this. It becomes too costly for the other counterparty to continue managing

the joint project on its own hence it is optimally dropped. Another way is to think that the project needs expertise
or speciality of both counterparties.
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Denote the number of counterparties of ni that default with fi = |{nj ∈ Ni : aj = D}| . Then ni’s
best response is simply to play C if

(r − κγi (θi))× (di − fi) ≥ rγiF di.

Contagion. Next we assume that a bad shock implies large management costs, enough to force a
firm into default even if no counterparties are defaulting. Otherwise contagion never starts and all
firms always play C.

Assumption 5. Projects are not profitable for bad firms: κγi (B) > r − rγiF for all γi.

Accordingly bad firms default and get 0. Good firms also get 0 if they default. A good firm ni that
continues gets

P (fi, di, γi) = Aγidi −Bγifi, where

Aγi = r − rγiF − κγi (G) , Bγi = r − κγi (G) .

In the cooperating equilibrium, a good firm ni plays C if only if

fi ≤ τγi × di, where τγi = Aγi
Bγi

.

Network formation. The ex-ante characteristics of a firm ni are captured by Dγi and τγi . For our
purposes it suffices to consider two types of firms. Suppose that firms are either large firms or small
firms: Γ = {S,L}. NL is the set of large firms and NS is the set of small firms. N = NL ∪ NS .
There are kL = |NL| many large firms and kS = |NS | many small firms.

Assumption 6. There are few large firms. They have large credit lines: DS > kS, DS > kL,
DL > kL.

Assumption 7. Firms are not too resilient: 1
1−τS < DS, 1

1−τL < kL. Large firms are less resilient
than small firms: τL + 1

DS
< τS.27

Large firms want to have many counterparties and their challenge will be to convince the small
firms to connecting with them. τL + 1

DS
< τS means that large firms are less resilient per project

compared to smaller firms, potentially due to higher management costs. The role that this plays is
that large firms are able to and willing to take on more projects than small firms, nonetheless, when
they do, they become risky counterparties for small firms. 1

1−τS < DS and 1
1−τL < kL simply mean

that a small firm that has DS counterparties and a large firm that has kL counterparties are not
immune to contagion.

Proposition 13. There exists ᾱ < 1 such that for α > ᾱ a network is PSS if and only if it consists
of disjoined cliques of small firms each of which has degree DS and one more disjoined clique of
large firms with order kL.28

27Normally τL < τS suffices but the additional 1
DS

resolves some integer problems.
28ᾱ is roughly equal to τS . Due to discrete nature of the problem ᾱ = τS does not always work. The small gap

between smallest such ᾱ that Proposition 13 holds and τS can be approximated well by using Chernoff bounds.
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Proof. If ni’s counterparties have no counterparties other than ni, this situation would give ni the
highest payoff it can get conditional on degree di. This is by first order stochastic dominance. Call
this payoff V (di, γi). V (di, γi) is given by

V (di, γi) = αEθ−i
[
P (|Ni ∩NB | , di, γi)+

]
.

The only way to achieve this payoff is to eliminate SOCPR. In particular, ni has V (di, γi) payoff if
and only if there is no positive probability event in which at least one good counterparty of ni, say
nj , defaults whereas ni does not default without nj defaulting. That is, ni has V (di, γi) payoff if
and only if for all nj ∈ Ni

min {R (di, γi) , dij}+ dj − dij − 1 ≤ R (dj , γj) . (5)

Recall that τSDS < DS − 1. Then if ni and nj are both small firms, then by Equation (5), ni and
nj both get V (DS , S) if and only if DS = dij + 1, i.e. the set of counterparties of ni and nj are
identical except each other, i.e. Ni\ {nj} = Nj\ {ni}.

Now consider the case in which ni is small and nj is large. Suppose that ni gets V (DS , S). Then

min {bτSDSc , dij}+ dj − dij − 1 ≤ bτLdjc .

Consider bτSDSc ≤ dij . Then

bτLdjc ≥ bτSDSc+ dj − dij − 1 ≥ bτSDSc ≥
⌊(

τL + 1
DS

)
DS

⌋
= bτLDS + 1c

which implies that dj ≥ DS . Then

DS − bτLDSc ≤ dj − bτLdjc ≤ dij + 1− bτSDSc ≤ DS − bτSDSc

which implies that
bτLDSc ≥ bτSDSc ≥ bτLDS + 1c .

A contradiction. Then it must be the case that bτSDSc > dij . Then Equation (5) becomes

dj − 1 ≤ bτLdjc .

In words, nj must be immune to contagion conditional on ni being a good bank. But note that
τLkL < kL − 1. So if a large firm has degree kL, its small counterparties cannot achieve V (DS , S).

Now consider our candidate network. If there were a Pareto improving deviation from this network,
the strict improvement has to be by a large firm since a small firm cannot go above V (DS , S).
A large firm is getting V (kL − 1, L) in the candidate network. α is large enough that V (·, L) is
increasing. So for a strict improvement, a large firm must connect with a small firm and have degree
more than or equal to kL in the deviation. But then its small counterparty is strictly hurt. So this
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network is PSS.

Now we show that there is no other PSS network. In any PSS network, since α is large enough, all
large firms must be counterparties of each other. Otherwise large firms would deviate and form the
links missing between each other. Then if a large firm has a link with a small firm in a PSS network,
the small firm gets strictly worse than V (DS , S). Then DS +1 small firms would deviate to forming
a clique among each other which would be a Pareto improvement. Therefore, in a PSS network,
small firms are counterparties of only each other. We have shown earlier that if two small firms ni
and nj both get V (DS , S) then Ni\ {nj} = Nj\ {ni}. Since the component of ni and nj consists
of small firms, by the connectivity of the component, the set of counterparties must be identical for
every pair in the component, meaning that the component must be disjoined clique.

Presence of intervention. A policy is
{
Ti

(
(ãij)j∈Ni

∣∣∣ ~θ,E)}
i∈N

≥ 0. Here Ti describes the
amount of transfer to firm ni if it continues with projects given by (ãij)j∈Ni . In order to illustrate
what the optimal policy would look like, consider a firm ni who has two counterparties nj and nj′ .
Suppose that ni, nj are good firms and nj′ is a bad firm. Suppose that κγi (G) + κγj (G) < 2r <
κγi (G) + κγj′ (B). Then the project {ni, nj} is ex-post profitable and government would like both
counterparties to continue with this project, whereas the opposite holds for the project {ni, nj′}. If
r − κγi (G) − 2rγiF < 0, then ni is facing default which implies that the ex-post profitable project
{ni, nj} fails too. If government promises to compensate ni for the ex-post profitable project and
part of ni’s debt to banks, but not for the inefficient project with nj′ , then ni would continue with the
project with nj . Formally, government promises to pay − [r − κγi (G)− 2rγiF ] if (ãij , ãij′) = (C,D)
and 0 otherwise. Then ni continues with {ni, nj}, conjecturing that nj will also continue with
{ni, nj}. In the induced cooperating equilibrium, nj does continue with {ni, nj} since it conjectures
that ni will continue with {ni, nj}.

In general, an ex-post welfare maximizing policy always makes sure that ex-post profitable projects
are continued by both counterparties by sufficient transfers. An ex-post welfare maximizing policy
clearly does not compensate banks for their projects that are not ex-post profitable. Hence with
some abuse of notation we denote Ti to be the transfer promised to ni if it continues with all ex-post
profitable projects. In all other cases, optimal policy entails 0 transfer due to minimal transfer
restriction. A strictly positive transfer to ni, who would default on some ex-post profitable projects
without the transfer, which makes sure that ni continues with all ex-post profitable projects in the
induced cooperating equilibrium can be interpreted as bailing-out firm ni. Formally, an optimal
policy T ∗ is said to bailout ni if T ∗i > 0 and in the cooperating equilibrium induced by T ∗, ãij = C

for all nj ∈ Ni such that κγi (θi) + κγj′ (θj) < 2r.

Proposition 14. Suppose that κS (B) = κL (B).29 The optimal policy T ∗ is the following.

(Case 1: Direct assistance policy) If 2r < κ (B) + κS (G) < κ (B) + κL (G) good firms which are
facing default due to bad counterparties and have a good counterparty are bailed out. The transfers

29When κS (B) 6= κL (B), the optimal policy has 18 different cases to consider, all of which yield the same network
and same qualitative insights. We make this assumption only for clarity of the exposition.
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are

T ∗i =

− [(r − κγi (G))× |Ni ∩NG| − rγiF di]
−

θi = G, Ni ∩NG 6= 0

0 otherwise.

(Case 2: Mixed policy) If κ (B) + κS (G) < 2r < κ (B) + κL (G) all bad firms which have a good
small counterparty are bailed out. Also all good large firms which are facing default due to bad
counterparties and have a good counterparty are bailed out. The transfers are

T ∗i =


− [(r − κγi (B))× |Ni ∩NG ∩NS | − rγiF di] θi = B, Ni ∩NG ∩NS 6= ∅

−
[
(r − κL (G))× |Ni ∩NG| − rLF di

]−
θi = G, ni ∈ NL, Ni ∩NG 6= ∅

0 otherwise.

(Case 3: Indirect assistance policy) If κ (B) + κS (G) < κ (B) + κL (G) < 2r and κ (B) > r all bad
firms with at least one good counterparty are bailed out. The transfers are

T ∗i =

− [(r − κγi (B))× |Ni ∩NG| − rγiF di] θi = B, Ni ∩NG 6= 0

0 otherwise.

(Case 4: Indirect assistance policy) If κ (B) < r, all bad firms with at least one counterparty are
bailed out. The transfers are

T ∗i =

− [(r − κ (B))× di − rγiF di] θi = B, Ni 6= 0

0 otherwise.

Proof. The proof strategy is to first show that the action profile in which all firms continue with
their (ex-post) profitable projects and default on other projects is the cooperating equilibrium under
the described transfer scheme. Second we show that this outcome can not be achieved with smaller
transfers.

For the case of 2r < κB (B) + κS (G) < κ (B) + κL (G), if a good firm ni conjectures that all of
its good counterparties will continue with their projects with ni, then then its best response to
reciprocate and continue with all projects with good counterparties which yields

− [(r − κγi (G))× |Ni ∩NG| − rγiF di]
− + (r − κγi (G))× |Ni ∩NG| − rγiF di ≥ 0.

Then by definition, the described action profile is rationalizable. Note that bad firms and good
firms who do not have any good counterparties can not rationalize continuing with any projects.
Hence the intended outcome is the cooperating equilibrium. This outcome cannot be achieved with
smaller transfers. Consider any transfer scheme that implements this outcome. Bad firms default
on all projects in this outcome. Then if a good firm ni such that Ni ∩NG 6= 0 and (r − κγi (G))×
|Ni ∩NG| − rγiF di < 0 does not receive at least − [(r − κγi (G))× |Ni ∩NG| − rγiF di] transfer, it
defaults on at least one project with a good counterparty.
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Consider κ (B) + κS (G) < 2r < κ (B) + κL (G). If a bad firm ni conjectures that all good and
small counterparties continue with their projects with ni and the rest default on ni, then ni’s best
response is to reciprocate which yields

− [(r − κγi (B))× |Ni ∩NG ∩NS | − rγiF di] + [(r − κγi (B))× |Ni ∩NG ∩NS | − rγiF di] = 0.

If a good small firm ni conjectures that all of its counterparties continue with all projects, then its
best response is clearly to reciprocate. If a good and large firm ni conjectures that all of its good
counterparties are continuing with their projects with ni and its bad counterparties are defaulting
on ni, then ni’s best response is to reciprocate which yields

− [(r − κL (G))× |Ni ∩NG| − rγiF di]
− + (r − κL (G))× |Ni ∩NG| − rγiF di ≥ 0.

This outcome cannot be achieved with smaller transfers. Consider any transfer scheme that im-
plements this outcome. Good large firms and bad firms default on bad firms. So bad firms
can not continue with projects with good small firms without being compensated (r − κγi (B)) ×
|Ni ∩NG ∩NS | − rγiF di. Bad firms default on good large firms in this outcome. So if a good
and large firm ni has (r − κL (G)) × |Ni ∩NG| − rγiF di < 0, then it must be compensated at least
− [(r − κL (G))× |Ni ∩NG| − rγiF di] in order to continue with its projects with good firms.

The remaining cases are shown similarly.

The optimal policy incorporates a form counter-contagion. First, bad firms that are worthy are
bailed out. Then given that worthy bad firms are not defaulting anymore, good firms that still face
default are bailed out as well. Being worthy of a bail out is determined by the characteristics of the
firm in question and the set of counterparties of it.

If there is a project between the firm in question and another firm such that the sum of the manage-
ment costs of the two is smaller than the total return 2r from the project, both members of the pair
shall continue their business in order save the project. So there is a sense in which projects are being
bailed out rather than firms, yet through firms. Notice that the policy does not have to compensate
a firm at an amount that covers all potential losses. Policy covers firms that have ex-post efficient
projects at an amount that makes sure only ex-post efficient projects are continued, not the other
projects. Indeed, the policy implements the ex-post efficient outcome by saving all ex-post efficient
projects and only such projects.

In Figure 14, bailouts under the mixed policy case are portrayed. This is richest case that most
clearly illustrates the optimal policy. First, a bad firm which has a small and good counterparty is
bailed out directly. Because bad firms will never continue business on their own without a bailout
even if all of their counterparties are bailed out. It is just not possible to induce bad firms to
continue via indirect support. This is the starting point of the counter-contagion. After such bad
firms are bailed out, good bad firms are examined to see which ones are still troubled, i.e. facing
default. Good and large firms who are surrounded by bad firms are not worthy of a bailout since
they have no projects worthy of saving. Good and large firms that have a good counterparty are
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bailed out if they are facing default due to bad counterparties. This way these good firms will
continue with their projects with other good firms. Now that good small firms are not hurt by bad
counterparties and good large firms can not hurt other good firms either, good firms do not face the
risk of default anymore. All profitable projects are saved via minimal injections. This concludes the
counter-contagion.
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Figure 14: Illustration of optimal policy.

Proposition 15. There exists ᾱ < 1 such that for all α > ᾱ, a network is PSS if and only if large
firms have min {k − 1, DL} counterparties and small firms have DS counterparties.

Proof. For the case of 2r < κ (B) + κS (G) < κ (B) + κL (G), all good firms continue with good
firms, and default on others. Bad firms default on everyone. Then in any network, a small firm ni

has V (di, S) and a large firm ni has V (di, L) expected payoff. Since α > ᾱ, V (·, S) and V (·, L) are
both increasing. Then the core-periphery network that is described gives everyone their maximal
payoff. Then clearly there is no other PSS network.

For κ (B)+κS (G) < 2r < κ (B)+κL (G), a small firm ni has expected payoff α
(
r − rSF

)
di regardless

of the network. A large firm ni has expected payoff V (di, L) regardless of the network. Then again,
all firms get their maximal payoff in the core-periphery and so core-periphery is the class of PSS
networks.

For κ (B)+κS (G) < κ (B)+κL (G) < 2r, a small firm ni has expected payoff α
(
r − rSF

)
di regardless

of the network. A large firm ni has expected payoff α
(
r − rLF

)
di regardless of the network. Same

argument holds.

Proposition 16. Government intervention strictly increases ex-ante welfare.
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Proof. All ex-post profitable projects reach maturity. The number of total projects does not decrease.
The projects are ex-ante positive NPV since α > ᾱ. Hence welfare increases.

It is not surprising that ex-ante mean of welfare increases. The number of projects increases, each
project has positive NPV, and government can effectively bail out projects selectively through the
amounts of transfers. However, welfare can be highly volatile due to network hazard. When the
network becomes a core-periphery, the aggregate risk in the economy is correlated through idiosyn-
cratic risks of the few large firms. This effect is shown in Figure 15 for direct assistance case, Figure
16 mixed assistance case, and Figure 17 indirect assistance case. The common feature is the en-
dogenous volatility. The reason is that core-periphery structure makes the ‘very good’ and ‘very
bad’ outcomes more likely. Very bad outcome is that the core gets bad shocks, and amplifies the
contagion among the periphery, causing most peripheral firms into indirect defaults, which calls for
a amount for bailouts. Very good outcome is that the core gets good shocks, and mitigates the
contagion among the periphery by contributing to resilience of the periphery. The performance of
the all firms and projects in the economy become highly correlated through the financial standings
of large firms. That is, network hazard creates endogenous volatility in welfare through the shocks
that large core firms receive.
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Figure 15: Distribution of welfare. Direct assistance case.

Since welfare follows a similar pattern for all cases, in the remainder we provide comparative statics
regarding the mixed case to avoid repetitiveness. In the direct assistance case almost all good firms
receive bailouts. In the indirect assistance case, almost all bad firms receive bailouts and all firms
always continue. The mixed assistance case is the richest and the most intuitive case as far as
bailouts are concerned.

Figure 18 shows the number of ex-post efficient projects that are at the risk of failing. The probability
that a project needs assistance in the presence of intervention is smaller than the probability that a
project fails in the absence of intervention. Again, due to the correlation through the core, standard
deviation is much larger, even when it is calculated for the fraction of projects that need assistance
in order to account for the larger number projects undertaken in the presence of intervention.
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Figure 16: Distribution of welfare. Mixed case.
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Figure 17: Distribution of welfare. Indirect assistance case.

Figure 19−a plots the number of firms that default in the no intervention case against the number of
troubled firms in the intervention case. Here troubled firm refers to defaulting firms and bailed-out
firms. After shocks arrive, these firms are materially facing distress, and would all default without
receiving direct assistance. Here intervention does not create volatility because large firms are bailed
out and there is no need to provide direct assistance to good small firms. Big chunk of the number
of bailouts is the small bad firms that have small good counterparties. Then the distribution of the
total number of defaulting firms and bailed-out firms in the presence of intervention is roughly the
distribution of the number of bad small firms. In the absence of intervention, contagion causes many
small good firms to default as well. So in response to the anticipation of bailouts, the distribution
roughly decreases in FOSD sense.30 On the other hand, the number of firms at risk shown in Figure

30Note that for Case 1, 2R < κ (B) + κS (G) < κ (B) + κL (G) , the optimal policy is to directly save small good
firms instead of saving them with indirect assistance via the bad large firms. Then the volatility is reflected on the
number of troubled banks as well. Bad large firms force many small good firms into default and government saves a
large number small and good firms with direct assistance.
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Figure 18: Distribution of the number of ex-post efficient projects that are at the risk of failing

19−b becomes more volatile. A firm at risk refers to all firms that would default, hypothetically, if
government did not intervene despite the anticipation of intervention. These firms rely on govern-
ment’s -direct or indirect- assistance. In the event that the core gets many bad shocks, all firms in
the economy are at risk.
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Figure 19: Distribution of the number of troubled firms and firms at risk.

Despite these, in fact, network hazard does not make the large firms inherently safer than smaller
firms. Remember that the common impact of network hazard across all cases of the optimal policy
is that network hazard makes good firms immune to contagion. For example under Case 1, 2r <
κ (B)+κS (G) < κ (B)+κL (G), only good firms with good counterparties bailed out and being large
or small does not factor into the ex-post decision of a firm being bailed-out or not. However, being
large or small factors into the ex-ante likelihood of being bailed out. Network hazard does make large
firms too big to fail in the sense that large firms become ex-ante more likely to continue business
compared to small firms. This is more stark under Case 2, κ (B) + κS (G) < 2r < κ (B) + κL (G)
where bad firms with a good small counterparty are bailed out. Large firms have a large number
of small counterparties and this makes it almost certain that large firms are bailed out even when
they receive a bad shock. That is, large firms are almost certain to continue business. In this sense,
network hazard makes large firms ex-ante TBTF.
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Endogenous interest rates. The interest rates so far were taken to be exogenous for simplicity.
Here we show how that endogenous interest rates would react to the anticipation of intervention and
show that the previous results are robust. Given the anticipated network formation and endogenous
risk of contagion that arises, banks are promised an interest rate that makes them indifferent between
lending or not. By an equilibrium we mean one interest rate rLF for all large firms, one interest rate
rSF for all small firms, and a PSS network given these interest rates. Consider members of a clique
of order d+ 1 consisting of firms of type γ ∈ {S,L}. Let F denote the Binomial CDF. The interest
rate rγF is determined according to

1 = rγFαF
[(

1− rγF
r − κγ (G)

)
d, d, 1− α

]
. (6)

Proposition 17. (Existence) Suppose that 1 < α2 (r − κS (G)). There exists DS and k̄L with
DS > k̄L such that for all DS > DS and kL < k̄L the following holds. In the absence of intervention,
there is an equilibrium in which rSF < rLF and the network formed consists of disjoined cliques of
order DS + 1 among small firms and one disjoined clique of order kL among large firms.

Proof. Conjecture that

τL = 1− rLF
r − κL (G) < 1− rSF

r − κS (G) = τS and

r < α (r − κS (G)) .

By the first conjecture, network formed is in cliques of order DS+1 among small firms and one clique
of order kL among large firms. In order for a bank to get a repayment, her corresponding firm must be
a good firm and its counterparties suffer fewer bad shocks than what the firm can absorb. The prob-
ability of repayment is then αF [τSDS , DS , 1− α] for small firms and αF [τL (kL − 1) , kL − 1, 1− α]
for large firms, where F is the Binomial CDF. Accordingly the interest rates satisfy

rSFαF
[(

1− rSF
r − κS (G)

)
DS , DS , 1− α

]
= 1,

rLFαF
[(

1− rLF
r − κL (G)

)
(kL − 1) , kL − 1, 1− α

]
= 1.

It is clear that rSF > α−1 and rLF > α−1. By the second conjecture rSF < α (r − κS (G)). Then for
all ε there exists DS such that for all DS ≥ DS we have

F
[(

1− rSF
r − κS (G)

)
DS , DS , 1− α

]
≥ 1− ε.

That is, if DS is large enough, rSF is arbitrarily close α−1. This verifies the second conjecture since
1 < α2 (r − κS (G)).
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Now consider rLF . Since rLF > α−1,

F
[(

1− rLF
r − κL (G)

)
(kL − 1) , kL − 1, 1− α

]
< F

[(
1− 1

α (r − κL (G))

)
(kL − 1) , kL − 1, 1− α

]
.

Then there exists ε′ > 0 and k̄L such that for all kL ≤ k̄L, RHS is smaller than 1 − ε′. Therefore,
rLF is bounded away from α−1 so that rLF > 1− ε > 1− ε′ > rSF . Then

rLF
r − κL (G) >

rSF
r − κS (G) ,

verifying the first conjecture.

This does not rule out multiplicity yet. For example if 1 < α2 (r − κL (G)) then the following is
a -potentially- consistent scenario. Banks charge a small interest rate around α−1 to large firms
making sure that τL > τS , expecting that large firms will be highly connected and be very safe
(due to law of large numbers and 1 < α2 (r − κL (G))). This way small firms are willing to connect
with large firms so that large firms can indeed achieve very large degrees and indeed become worthy
of small interest rates α−1. It is still not clear whether there would exist a PSS network in this
case since large firms are not entirely safe, but just safer.31 Nonetheless it is a possible scenario.
Regardless, 1 > α2 (r − κL (G)) rules this possibility out, as we show in the next proposition.

Proposition 18. (Uniqueness) Suppose that α2 (r − κL (G)) < 1 < α2 (r − κS (G)). There exists
DS such that for all DS > DS the following holds. In the absence of intervention, there is no
equilibrium with bounded prices32 in which τL < τS. Accordingly there is no equilibrium network
other than the one described in Proposition 17.

Proof. Suppose that there exists an equilibrium with bounded prices in which τL < τS . Recall
that a firm with degree di payoff gets payoff V (di, γi) if and only if all of its counterparties nj
satisfy min {bτγidic , dij} + dj − dij + 1 ≤ τγjdj . Since small firms can always achieve the payoff
V (DS , S) collectively for each of them, in any PSS network, each small firm must have this payoff.
Hence a small firm accepts a configuration if and only if it has degree DS and the counterparty
risk not more than what it is in a clique of order DS + 1 consisting of small firms. Therefore,
in any PSS network candidate, the probability of repayment by a small firms is identical to the
probability of repayment in a clique of order DS + 1 consisting of small firms. That probability
is αF [τSDS , DS , 1− α]. If rSF > α (r − κS (G)), since DS is large, αF [τSDS , DS , 1− α] ≈ 0, so
rSF ≈ ∞. So rSF < α (r − κS (G)). Since DS is large, αF [τSDS , DS , 1− α] ≈ α so rSF ≈ α−1 . Since
τL > τS , we have rLF < rSF which means rLF ≈ α−1. That is, in the equilibrium network, for large
firms ni we have F

[
θLdi, di, 1− α

]
≈ 1. This necessitates di being large and rLF < α (r − κL (G)).

By the latter, we have 1 < α2 (r − κL (G)), a contradiction. Hence τL < τS in any equilibrium.
31Recall the proof of Proposition 15 that it is not sufficient to have τL > τS to convince small banks to connect

with large banks.
32Another option for multiplicity is that banks charge infinite interest rates so any borrower firm is certain to

default, and certain to not repay. We ignore this option.
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Then by the previous arguments in the Proof of Proposition 13, the only candidate PSS network is
the one described.

The only possible multiplicity that remains is due to the curvature of the Binomial CDF in Equation
(6). Nevertheless this multiplicity does not have any impact on the network structure and the
qualitative results.

When government intervention is anticipated, the analysis is simpler. The details of the network
architecture does not play an ex-post role in optimal policy. All interest rates are determined by
the type of a firm, the number of its counterparties, and the types of its counterparties.

Proposition 19. Suppose that κS (B) = κL (B). There exists ᾱ < 1 such that for all α > ᾱ the
following holds. In the presence of intervention,

If 2r < κ (B) + κS (G) < κ (B) + κL (G),

rSF =
[
α
(

1− (1− α)DS
)]−1

,

rLF =
[
α
(

1− (1− α)k−1
)]−1

.

If κ (B) + κS (G) < 2r < κ (B) + κL (G),

rSF =
[
(1− α)

(
1− (1− α)DS−kL

)
+ α

]−1
,

rLF =
[
(1− α)

(
1− (1− α)k−kL

)
+ α

(
1− (1− α)k−1

)]−1
.

If κ (B) + κS (G) < κ (B) + κL (G) < 2r and κ (B) > r

rSF =
[
(1− α)

(
1− (1− α)DS

)
+ α

]−1
,

rLF =
[
(1− α)

(
1− (1− α)k−1

)
+ α

]−1
.

If κ (B) < r,
rSF = rLF = 1.

In all cases, a network is PSS if and only if large firms have degree min {k − 1, DL} and small firms
degree DS.

Proof. Q.E.D. by the optimal policy in Proposition 14.
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