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Abstract

We propose a new method to construct instruments in a broad class of economic environ-

ments. In the economies we study, a few large firms, industries or countries account for an

important share of economic activity. As the idiosyncratic shocks to these large players a↵ect

aggregate outcomes, they are valid and often strong instruments. We provide a methodol-

ogy to extract idiosyncratic shocks from the data and create “granular instrumental variables”

(GIVs), which are size-weighted sums of idiosyncratic shocks. These GIVs allow us to estimate

causal parameters of interest, including elasticities and multipliers. For instance, in a basic

supply and demand framework, GIVs provide a novel approach to identify both supply and

demand elasticities via idiosyncratic shocks to either supply or demand. We then show how to

extend the basic procedure to cover a range of settings that are relevant to empirical research.
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1 Introduction

In many settings, there is a dearth of instruments, which hampers economists’ understanding

of causal relations (Ramey (2016); Stock and Watson (2016); Nakamura and Steinsson (2018);

Chodorow-Reich (2019)). We propose a new way to construct instruments. In the economies we

study, idiosyncratic shocks that impact a few large actors, such as firms, industries or countries,

a↵ect aggregate outcomes.1 These idiosyncratic shocks (for instance, productivity shocks) are valid

instruments for aggregate endogenous variables such as prices. We present a method to use these

idiosyncratic shocks to construct “granular instrumental variables” (GIVs). The GIVs then allow

us to estimate causal relations in a wide variety of economic contexts.

We first illustrate the idea in a basic static setup with supply and demand (Section 2). In

this classic setting, we show how GIVs allow for a novel estimation procedure: they yield an

instrument that allows us to estimate the price elasticities of both supply and demand. Intuitively,

idiosyncratic demand shocks to large firms or countries provide valid instruments for changes in

demand – and thus allow us to estimate the elasticity of supply. They also allow us to estimate

the elasticity of demand: the idiosyncratic demand shock of a large firm impacts the price, which

changes the demand of other firms. We formalize these ideas and present a way to extract and

optimally aggregate idiosyncratic shocks, thus constructing optimal GIVs: the optimal GIV is the

size-weighted sum of the idiosyncratic shocks. In this basic setup, we also show that some parameters

that are of interest to economists, such as the pass-through of aggregate shocks to prices, can simply

be estimated via OLS using GIVs. We establish the consistency of the OLS and IV estimators using

GIVs and we derive their asymptotic distributions.

We analyze the instrument strength of GIVs in Section 3. The main insight is that GIVs are

strong instruments when, first, a few large actors account for a substantial fraction of aggregate

economic activity and, second, when idiosyncratic shocks are volatile relative to the volatility of

aggregate shocks.

In the same section, we also discuss the robustness of GIVs to various forms of misspecification.

The IV estimator using GIVs is robust to including only a subset of the large actors, mismeasurement

of the size distribution, and heterogeneity in demand elasticities. The OLS estimator using GIVs

does require that the size distribution is correctly measured. The main threat to identification when

using GIVs is that we do not correctly isolate the idiosyncratic shocks. In this case, the estimated

idiosyncratic shocks are a↵ected by aggregate shocks, which can lead to bias. We provide several

concrete solutions to mitigate that concern. First, we show that we can add factors for which we

need to estimate the loadings. Second, we can “narratively check” GIVs: as the GIV procedure

provides the dates and magnitudes of idiosyncratic and aggregate shocks, the largest idiosyncratic

1Hence, economies are “granular:” their shocks are made of incompressible “grains” of economic volatility, the
idiosyncratic shocks that occur at the level of firms, industries, or, in an international context, countries. This theme
is laid out in Gabaix (2011), and developed in Acemoglu et al. (2012), di Giovanni and Levchenko (2012); di Giovanni
et al. (2014), and Carvalho and Grassi (2019).
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shocks can be analyzed in their historical context to confirm their idiosyncratic nature. Third, when

a large idiosyncratic shock coincides with an unusual aggregate event (which we label a sporadic

factor realization), it is prudent to remove those dates. Fourth, we can perform over-identification

tests: for instance, split countries into two groups (e.g., developing versus developed countries), form

two GIVs using the idiosyncratic shocks of each group, and test whether the resulting estimates are

statistically di↵erent.

Section 4 shows how the basic procedure extends to a range of settings that are relevant to

empirical research that include (but are not limited to) heterogeneous demand elasticities, het-

eroskedasticity, time-varying factor loadings, and multidimensional outcomes. This generality stems

from the fact that the basic intuitive idea is general, namely to use large, idiosyncratic shocks as

primitive disturbances to the system.

Uses of GIVs Several recent papers have already applied GIV procedures to identify key param-

eters and elasticities of interest. Chodorow-Reich et al. (2021) study the multiplier of idiosyncratic

shocks to an insurer’s asset portfolio on the insurer’s equity valuation. Camanho et al. (2022) study

the impact of currency flows on exchange rates, using idiosyncratic shocks to fund-level rebalancing.

Galaasen et al. (2021) use GIVs to study how idiosyncratic shocks to firms impact banks, and how

this spills over to other (small, non-granular) firms borrowing from the same bank. Schubert et al.

(2022) study the impact of concentration on wages and use idiosyncratic firm-level shocks to instru-

ment for concentration. Kundu and Vats (2021) estimate how idiosyncratic firm-level shocks in one

state a↵ect economic activity in other states via their transmission through the banking system.

Adrian et al. (2022) use bank-level idiosyncratic shock to estimate growth-at-risk. Ma et al. (2022)

estimate how lenders’ expectations about a city a↵ect GDP growth in the same geography. Dong

et al. (2022) study the impact of flows on factor returns using GIVs. Flynn and Sastry (2022) use

GIVs to study how narratives spread across firms over time. We developed the GIV while working

on Gabaix and Koijen (2022), where we use it to measure the elasticity of the aggregate stock

market using idiosyncratic demand shocks to large investor sectors.

Related literature We relate to a number of strands. An active literature discusses identification

strategies in macroeconomics (Ramey (2016); Nakamura and Steinsson (2018); Chodorow-Reich

(2019); Huber (2023)). We add to it by proposing GIVs, which provide a systematic candidate

approach to identification.

A growing literature finds that a sizable amount of volatility is “granular” in nature—coming

from idiosyncratic shocks to firms or industries (Long and Plosser (1983); Gabaix (2011); Acemoglu

et al. (2012); di Giovanni and Levchenko (2012); di Giovanni et al. (2014); Baqaee and Farhi (2019);

Carvalho and Grassi (2019); Gaubert and Itskhoki (2021)). We provide tools to isolate idiosyncratic

shocks in the presence of common factors. Data sets used in this literature can be revisited and

GIVs can be constructed to investigate causal relations.

3



The idea of using idiosyncratic shocks as instruments to estimate spillover e↵ects has been ex-

plored in several creative papers, as we discuss in more detail in Section D.1, such as Leary and

Roberts (2014), Amiti and Weinstein (2018), and Amiti et al. (2019). However, the typical ap-

proach has been to use idiosyncratic shocks to variables that are excluded from the main estimating

equation to construct instruments. We instead use the idiosyncratic shocks in the estimating equa-

tion directly. In addition, we allow for more flexible exposures to unobserved common shocks when

extracting idiosyncratic shocks. Section D.1 contains a fuller discussion of the literature.

Outline Section 2 introduces the GIV framework, centered around a classic model of supply

and demand. Section 3 gives an economic discussion of the robustness and potential threats to

identification, and proposes diagnostic tests. Section 4 presents a number of extensions. Section 5

concludes. Proofs are in the Appendix, or in the Online Appendix, which also presents additional

extensions.

Notations For a vector X = (Xi)i=1...N and a series of weights wi, we define Xw =
P

i
wiXi.

With size weights Si that satisfy
P

N

i=1 Si = 1, we define XE := 1
N

P
N

i=1 Xi and XS :=
P

N

i=1 SiXi

so that XE is the equal-weighted average of the vector’s elements and XS is their size-weighted

average. We also commonly use the notation ui for shocks that are uncorrelated across i’s and with

variance �2
ui
. We use the notation ✓e

T
for an estimator, based on observations from T periods, of a

parameter ✓ whose true value is ✓0. We use Ct for a vector of controls; I for the identity matrix,

◆ = (1, . . . , 1)0 for a vector of ones, all of the appropriate dimension given the context; V Y for the

variance-covariance matrix of a random vector Yt (so V Y = E [YtY 0
t
] if Yt is a mean zero column

vector with constant variance). We use notation (A,B) for the concatenation of two matrices A,

B. We use the notation at, bt ? xt, yt to signify that variables at and bt are uncorrelated with xt

and yt.

2 GIVs: Main results

In this section, we formally introduce GIVs at a fairly high level of generality. Section 3.1 contains an

instructive simple case. We also establish consistency of the estimators and derive their asymptotic

distributions.

2.1 The baseline GIV

Setup Our goal is to estimate the scalar parameters  and �d in the following prototypical model:

pt =  ySt + Cp

t m
p + "t, (1)

yit = �dpt + Cy

it
my + �i⌘t + uit, (2)
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where ySt :=
P

i
Siyit, with Si the weight on entity i 2 {1, . . . , N}, with

P
i
Si = 1. An economic

interpretation is that of demand and supply for a given good, e.g. oil.2 Each entity’s log demand

yit depends on the log price pt of that good as in (2), with demand elasticity �d, and some shocks.

The price in turn depends on aggregate demand, ySt, which is the size-weighted demand, with a

sensitivity  that is the inverse of the supply elasticity. We impose that  �d 6= 1, which ensures

the existence of a unique solution of our system (1)-(2).

The econometrician observes Si, pt, yit and the controls Cp

t and Cy

it
, which include constants

and entity fixed e↵ects. Cy

t is the vector of Cy

it
’s. The parameters  , �d, mp, and my have to be

estimated, and we are chiefly interested in  and �d. The shocks "t, ⌘t and ut = (uit)i=1...N are

not observed. The demand-side aggregate shocks are captured by a factor model of dimension r,

�i⌘t =
P

r

f=1 �
f

i
⌘ft , so that �i and ⌘t have dimensions 1⇥ r and r⇥ 1, respectively. We assume that

the first component of �i is 1, and the other components have been normalized to have mean 0, so

we can write �i =
�
1, �̌i

�
—this is just a normalization. We call � = (�i)i=1...N and �̌ =

�
�̌i
�
i=1...N

the N ⇥ r and N ⇥ (r � 1) matrices collecting the �i’s and �̌i’s respectively. The normalization

implies ◆0�̌ = 01⇥(r�1).

Throughout the paper, the number of entities N is fixed, and we study estimators in the limit

where the number of periods T ! 1. We view the data (yt, pt, C
y

t , C
p

t )t=1...T as sampled i.i.d. across

periods,3 and take the vector of weights Si to be fixed (i.e. non-random).

Assumptions made throughout the paper We maintain the following assumptions through-

out the paper. All random variables have finite fourth moments. The aggregate and idiosyncratic

shocks, ⌘t, "t, and ut, are uncorrelated across periods, and have mean 0. The controls Cp

t and Cy

t

are mutually uncorrelated with ⌘t and "t: C
p

t , C
y

t ? ⌘t, "t.

The central assumption is that shocks uit are idiosyncratic, that is, they are uncorrelated with

the aggregate shocks, ⌘t and "t, and with controls, Cy

t and Cp

t . Formally,

ut ? ⌘t, "t, C
y

t , C
p

t . (3)

Assumptions made for expositional convenience We sometimes make assumptions that

simplify the exposition or the reasoning, typically with minimal impact on the economics. We will

indicate in the remainder of the paper when we make these auxiliary assumptions.

Assumption 1 The �i are known.

Assumption 1 is weaker than it seems. For instance, it holds when the �i simply have a para-

metric form, �i = Xi�̇, where �i and Xi are r-dimensional row vectors and �̇ is an r ⇥ r matrix.

The vector of characteristics Xi are observed. This implies that � = X�̇ where � and X are N ⇥ r

2Section D.2 of the Online Appendix contains a simple economic model leading to this structure.
3One could extend this, e.g. to a setting with stochastic volatility, but we keep the i.i.d. assumption for simplicity.
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matrices. This assumption simplifies the exposition and reasoning, but it will be relaxed in Section

4.2. As one can change ⌘t into �̇⌘t, one might normalize �̇ = Ir.

The following three assumptions also simplify the exposition and we will relax each of them

later in the paper.

Assumption 2 The controls have the shape: Cy

it
= �ic

y

t .

Assumption 3 The uit are uncorrelated across i’s and homoskedastic with variance �2
u
> 0.

Assumption 4 The uit are heteroskedastic with variance-covariance matrix V u = E [utu0
t
] that is

non-singular and constant over time.

The core idea of GIVs The idea of GIVs is to use idiosyncratic shocks uit as instruments. We

construct GIVs as follows, where we impose Assumption 2 for now. Suppose that we have a set of

weights � 2 RN orthogonal to factor loadings � but not to the size vector S:

�0� = 0, �0S 6= 0. (4)

This is possible when S is not spanned by the loadings �.4 We provide a concrete and optimal

construction of � in (17). Then the GIV is defined as:

zt := �
0yt =

NX

i=1

�iyit. (5)

Hence, the GIV zt is constructed from observables, yit. As �0� = 0, we have �0◆ = 0 (recall that

◆ = (1, . . . , 1)
0
and that the first column vector of � is a 1). The key observation is that (using

Assumption 2 for now),5 zt := �0yt = �0 �◆�dpt + �cyt + �⌘t + ut

�
= �0ut, so

zt = �
0ut. (6)

As a result, the GIV zt is a linear combination of idiosyncratic shocks. The GIV satisfies the

exogeneity condition by (3):

Exogeneity: zt ? ⌘t, "t, (7)

and the relevance condition because �0S 6= 0:

Relevance: E [yStzt] 6= 0. (8)

4This is, when there is no vector b such that S = �b.
5Alternatively, the reader is encouraged to think of the even simpler case where there are no controls, Cy

t = 0.
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Then, (1) implies the moment condition:6

E [(pt �  ySt) zt] = 0, (9)

and we can estimate  using the GIV zt as an instrument, as  = E[ptzt]
E[yStzt]

. Its natural empirical

counterpart is the estimator  e

T
=

PT
t=1 ptztPT
t=1 yStzt

.

To estimate �d, we take a vector Ẽ such that

E [u
Ẽt
u�t] = 0, ◆0Ẽ = 1. (10)

For instance, with homoskedastic residuals, we can take Ẽi =
1
N
, which leads us to call Ẽ a “quasi-

equal weight” vector more generally.7 As y
Ẽt

:=
P

i
Ẽiyit = �dpt + Cy

Ẽt
my + �

Ẽ
⌘t + u

Ẽt
, with

u
Ẽt

:=
P

i
Ẽiuit, (10) implies

E
⇥�
y
Ẽt

� �dpt
�
zt
⇤
= 0. (11)

The relevance condition is then

Relevance: E [ptzt] 6= 0. (12)

This condition is satisfied if  6= 0, that is, when demand shocks influence the price. Then, we can

estimate �d using zt as an instrument, via �d =
E[yẼtzt]
E[ptzt] . Its empirical counterpart is �d,e

T
=

PT
t=1 yẼtztPT
t=1 ptzt

.

The following proposition establishes the consistency of the GIV estimator.

Proposition 1 (Consistency of the GIV estimator). Let Assumptions 1 and 2 hold, and assume

that E [uStu�t] 6= 0. Define the GIV estimators  e

T
=

PT
t=1 ptztPT
t=1 yStzt

and �d,e

T
=

PT
t=1 yẼtztPT
t=1 ptzt

. Then,  e

T
is

a consistent estimator of  : as T ! 1,  e

T

a.s.!  . Likewise, if  6= 0, then �d,e

T
is a consistent

estimator of �d: as T ! 1, �d,e

T

a.s.! �d.

To think about the variance of the estimators, and, not coincidentally, the economics, we define

M :=
1

1�  �d
, µ :=  M. (13)

Those quantities are the pass-through from idiosyncratic and aggregate shocks to the aggregate

quantity and the price, respectively, see (33) and (34).

Proposition 2 (Variance of the GIV estimator). Let Assumptions 1 and 2 hold, and assume that

E [uStu�t] 6= 0. Assume that " t := Cp

t m
p + "t is homoskedastic conditionally on ut with variance

6The error term, pt � ySt, includes aggregate shocks and controls. This moment condition holds, even though it
is more e�cient to account for controls in estimating  , see Section 2.3.

7See (??) for a proof. The heteroskedastic case will lead to (54).
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�2
" 
. Then, as T ! 1,

p
T ( e

T
�  )

d�! N
�
0, �2

 

�
, � =

E [u2
�t]

1/2

|E [uStu�t]|
�" 

|M | . (14)

Likewise, if µ 6= 0, then, assuming that "�t := Cy

Ẽt
my + �

Ẽ
⌘t + u

Ẽt
has variance �2

"�
conditionally on

ut,
p
T
⇣
�d,e

T
� �d

⌘
d�! N

�
0, �2

�d

�
, ��d =

E [u2
�t]

1/2

|E [uStu�t]|
�"�

|µ| . (15)

We provide further economic intuition for the asymptotic variances of the GIV estimators in

Section 3.1. The condition E [uStu�t] 6= 0 is generically true. For instance, with homoskedastic uit,

E [uStu�t] = �2
u
�0S, it is guaranteed by (4).

2.2 Optimal GIV weights and the precision of the GIV estimator

We now derive the optimal GIV weights � that minimize the asymptotic variances �2
 
and �2

�d
in

Proposition 2. For this, we use the N ⇥ N projection matrix Q that is orthogonal to the factor

loadings, that is, Q� = 0:

Q := I � � (�0�)�1 �0. (16)

Proposition 3 (Optimal weights � for the GIV y�t). Let Assumptions 1, 2, and 3 hold. The

optimal weights

�⇤0 = S 0Q (17)

minimize the asymptotic variances �2
 
and �2

�d
of the GIV estimators in Proposition 2, with

E[u2
�t]

E[uStu�t]
2 =

1
E[u2

�⇤t]
. For any other � that is not proportional to �⇤, the asymptotic variances �2

 
(�) and �2

�d
(�)

are strictly larger than for �⇤.

We summarize the intuition behind Proposition 3. Each entity i a↵ects the price proportionally

to its size Si, see (1). Hence, the economically appropriate weights are S. However, we need to

satisfy �0� = 0 to remove the influence from aggregate shocks on the GIV. Proposition 3 shows that

the optimal weights vector is �⇤: it is the vector closest to S, while being orthogonal to the factor

loadings �.

2.3 Controlling for observed and latent factors

So far, we only used zt to estimate the elasticities without accounting for observed and latent factors.

We now show how to account for those in the procedure.

We proceed in two steps. First, in Section 2.3.1, we show that we can rewrite the demand
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equation in (2) in a more convenient form

yit = �dpt + Cy

it
my + ⌘1t + �̌i⌘̌t + ǔit, (18)

where we replace �⌘t = ⌘1t+�i⌘t by ⌘1t+�̌i⌘̌t, and uit by ǔit, where ⌘̌t and ǔit are defined below. This

reformulation has two advantages. First, when my and �̌i are known, ⌘̌t and ǔit can be recovered

without error, unlike the ⌘t and uit of the original factor model (2). Second, it holds that ⌘̌t ? ǔt.

These two convenient features are then used in Proposition 4, which is the main result of this

section.

2.3.1 Introducing recoverable factors

Before turning to this section’s main result, we introduce the concept of “recoverable factors” that

will simplify the idea and proofs that follow. We start from the factor model part of our system

(calling it Yt rather than yt):

Yt = �⌘t + ut, ⌘t ? ut, (19)

and we maintain Assumption 1 that we know �. In this case, ⌘t cannot be recovered without error

when the number of entities N is fixed, as it is in our case (one would need N ! 1, see e.g. Bai

(2003)). The main insight is that the estimates and residuals that we can recover without error, ⌘̌t
and ǔt, are uncorrelated, just as the true values, ⌘t and ut. These estimates can be computed even

though N is fixed, and have useful properties that Lemma 1 spells out.

Lemma 1 (Recoverable factors and their properties) Let Assumption 3 hold. Given a factor model

(19), define the r ⇥N and N ⇥N matrices:

R� := (�0�)�1 �0, Q� := I � �R� (20)

and

⌘̌t := ⌘t +R�ut, ǔt := Q�ut. (21)

Then we have

Yt = �⌘̌t + ǔt, ⌘̌t, ⌘t ? ǔt. (22)

In addition, ⌘̌t and ǔt can be exactly recovered from Yt and �, via

⌘̌t = R�Yt, ǔt = Q�Yt. (23)

In the remainder of this section, we work with the recoverable shocks (⌘̌t, ǔt) rather than the

non-recoverable shocks (⌘t, ut). Just as ⌘t and ut are uncorrelated, ⌘̌t and ǔt are uncorrelated as

well—compare (19) and (22). However, proofs and concepts are easier working with (⌘̌t, ǔt) rather
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than with (⌘t, ut) as (⌘̌t, ǔt) are directly recovered from Yt (see (23)).8 By a slight abuse of language,

we will refer to ⌘̌t as common factors and ǔt as a vector of idiosyncratic shocks.9

Computing ⌘̌t and ǔt in Lemma 1 corresponds to running cross-sectional regressions of Yit on

�i, for every date t:

Yit = �i⌘̌t + ǔit, (24)

which yields an exact recovery of ⌘̌t and ǔit.

2.3.2 GIV, controlling for observable and recovered controls

Before stating the procedure with controls, we need a bit more notation. We decompose ⌘t =

(⌘1t, ⌘2t), where ⌘t, ⌘1t, and ⌘2t have dimensions r, 1, and (r � 1). We apply the idea of Lemma 1

to �̌ (recall we decomposed �i =
�
1, �̌i

�
with ◆0�̌ = 01⇥(r�1)), hence we define:

⌘̌t := R�̌ (⌘t + �ut) = ⌘2t +R�̌ut, ǔt := Q�ut. (25)

Then, we can recover ⌘̌t and ǔt, and we still have ⌘̌t ? ǔt. 10 We decompose ⌘1t = b1⌘̌t + ⌘?1t and

"t = b"⌘̌t + "?
t
, where ⌘?1t and "

?
t
are uncorrelated with ⌘̌t: they are the residuals after projecting on

⌘̌t. We call y̌it = yit�y
Ẽt

the cross-sectionally demeaned value with quasi-equal weights Ẽ satisfying

(10). Defining by := �̌
Ẽ
+ b1 and "yt := ⌘?1t + u

Ẽt
, we write y

Ẽt
as

y
Ẽt

= �dpt + by⌘̌t + Cy

Ẽt
my + "yt . (26)

Proposition 4 (GIV estimation with controls) Let Assumptions 1 and 3 hold. Define y̌it :=

yit � yEt and similarly Čy

it
:= Cy

it
� Cy

Et
. Given a candidate value my, we construct ⌘̌t (my) :=

R�̌ (yt � Cy

t m
y) and the GIV

zt (m
y) := �0 (yt � Cy

t m
y) . (27)

with � satisfying (4). Define ✓ to be the collection of parameters
�
 ,�d,mp, bp,my, by

�
and ✓0 the

true value of ✓. Define ✓e
T
to be the estimator of ✓0 that solves the following sample moments:

X

t

�
�y̌t + �̌⌘̌t (m

y) + Čy

t m
y
�0
Čy

t = 0, (28)

X

t

(�pt +  ySt + bp⌘̌t (m
y) + Cp

t m
p)
�
zt (m

y) , ⌘̌t (m
y)0 , Cp0

t

�
= 0. (29)

8Even when � is not known, (⌘̌t, ǔt) are still very useful. See for instance Proposition 7.
9Even if the uit are uncorrelated across i’s, the ǔit will have some slight correlation across i’s sinceV ǔ = Q�2

u

This sometimes requires a bit of care, which we take.
10Running the regression yit � Cy

itm
y = at + �̌i⌘̌t + ǔit on the known �̌i yields ⌘̌t and ǔit, see (28). This holds

because ⌘̌t = R�̌ (yt � Cy
t m

y), ǔt = Q�̌ (yt � Cy
t m

y).
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To estimate �d (assuming  6= 0), we use the additional moment condition:

X

t

⇣
�y

Ẽt
+ �dpt + by⌘̌t (m

y) + Cy

Ẽt
my

⌘⇣
zt (m

y) , ⌘̌t (m
y)0 , Cy0

Ẽt

⌘
= 0. (30)

Under the additional regularity Assumption 5 from Appendix A, ✓e
T
is consistent and

p
T�asymptotically

normal. Assuming that "?
t
and "yt are homoskedastic conditionally on ut, the variances of the esti-

mators  e

T
and �d,e

T
are as in Proposition 2, with the new values �2

" 
= var

�
"?
t

�
and �2

"�
= var ("yt ).

In addition, the optimal � remains as in Proposition 3.

The upshot of Proposition 4 is that we can estimate the parameters as in our basic Proposition 2,

except that the controls “soak up” more variance.11 In addition, under Assumption 1, the standard

errors of  e

T
and �d,e

T
are the asymptotic standard errors that a “naive” IV estimator would report

that ignores that my and ⌘̌t have been estimated.

In summary, when there are no controls and under the assumptions of Proposition 4, the optimal

GIV is

zt := �
⇤0yt = S 0Qyt = S 0ǔt, (31)

with ǔt := Qut. In other terms, ǔit is the residual from a cross-sectional regression of y̌it := yit�yEt,

on the demeaned factor loadings �̌i:

y̌it := �̌i⌘̌t + ǔit. (32)

This regression also recovers the aggregate shocks ⌘̌t, see Lemma 1. When there are controls, we

just replace yt by yt � Cy

t m
y.

2.4 Using the GIV via OLS

So far, we used the GIV zt in an IV form. We now show how to use it in estimating µ and M using

OLS, where we defined µ and M in (13). First, we solve for ySt, which leads to:

pt = µuSt + bpct + "pt , (33)

ySt = MuSt + byct + "yt , (34)

where ct = (Cp

t , C
y

St
, ⌘̌t) is a vector of controls, and ("pt , "

y

t ) are uncorrelated with uSt. If yit is log

demand and pt is the log price, the interpretation is that a 1% demand shock leads to a µ% price

increase and an M% supply increase. The intuition is that the size-weighted idiosyncratic shock

uSt a↵ects pt with a strength µ and ySt with a strength M .

11The assumption  6= 0 is only needed to estimate �d via (28) and (30). If  = 0, we can still estimate  by the
moments (28)-(29).
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Next, we introduce � satisfying (4), and such that

E [uStu�t]

E [u2
�t]

= 1. (35)

Defining Ẽ := S � �, condition (35) is equivalent to having (10).12 Then uSt = u�t + u
Ẽt
, and

pt = µzt + bpct + ept , (36)

ySt = Mzt + byct + eyt , (37)

with ept := "pt +µu
Ẽt

and eyt := "yt +Mu
Ẽt
, which are orthogonal to zt and ct (recall (10)). It follows

that we can estimate µ and M by an OLS regression of pt and ySt on zt.13 The next proposition

records that result and derives the precision of the estimators.

Proposition 5 (GIV estimator for OLS). Let Assumptions 1 and 3 hold, and assume (35). Con-

sider the procedure that (i) estimates my by the regression (28), where ⌘̌t (my) := R�̌ (yt � Cy

t m
y)

and R�̌ =
�
�̌0�̌
��1

�̌0; (ii) defines the GIV zt by (27); (iii) estimates µ and M by the OLS regres-

sion coe�cients of, respectively, (36) and (37), where ct = (Cp

t , C
y

St
, ⌘̌t (my)) is a vector of controls.

Then, under the additional regularity Assumption 5 from Appendix A, the OLS estimators µe

T
and

M e

T
are consistent. In addition,

p
T (µe

T
� µ)

d�! N
�
0, �2

µ

�
and

p
T (M e

T
�M)

d�! N (0, �2
M
). As-

suming that ept and eyt are homoskedastic conditionally on ut, �2
µ
=

var(ept )
var(zt)

and �2
M

=
var(eyt )
var(zt)

, and

these asymptotic standard errors are those that an OLS procedure would report that did not account

for the fact that the values of my and ⌘̌t (my) were estimated. In addition, the optimal � remains

as in Proposition 3.

The fact that the standard errors are correct is a bit surprising at first as zt is a generated

regressor. When there are no other controls, Cp

t = Cy

t = 0, the reason is that the GIV is directly

obtained from an exact formula (zt := S 0Qyt as in (31)) and can thus be constructed without error.14

For this result, Assumption 1, and the fact that we know the �ui , are important. If one needs to

estimate � or the �ui ’s, then that estimation error needs to be taken into account when calculating

the standard errors of the elasticities,  and �d, and pass-throughs, M and µ (see Sections 4.2 and

4.3).

12So for instance, we can use � = S � Ẽ with Ẽi =
1
N in the homoskedastic case, and (54) in the heteroskedastic

case.
13Alternatively, in the regressions (36) and (37) one can replace zt by Zt := ySt � yẼt. Then, the result is the

same, including the standard error of the estimators. This is simply because with zt = Zt � �̌�⌘̌t, we control for ⌘̌t.
14When there is an my, the reason is more subtle, and revealed by the proof: an error in my creates an error

proportional to Cy
t times random variables uncorrelated to it, hence a negligible term op

�
T�1/2

�
.
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3 Discussion

3.1 The intuition behind GIV estimators

3.1.1 GIVs in a simple model

To explain the intuition, we specialize our analysis to the case where there is only a single factor

and all entities have the same loading on the factor, �i = 11⇥r, and there are no other controls,

Cp

t = Cy

t = 0. The single factor is then absorbed by a time fixed e↵ect. It allows us to develop the

main intuition in a transparent way. The system is

pt =  ySt + "t, (38)

yit = �dpt + ⌘t + uit. (39)

To take advantage of the great analytical simplicity of that example, we retrace the derivation steps

in an elementary manner. We cannot estimate  and �d by OLS as "t and ⌘t are typically correlated,

implying that ySt is correlated with "t in (38), and pt with ⌘t in (39).

We construct the GIV as the “size-weighted” average outcome, ySt =
P

i
Siyit, minus the “equal-

weighted” average outcome, yEt =
1
N

P
N

i=1 yit:

zt := y�t = ySt � yEt. (40)

Given that15

ySt = �dpt + ⌘t + uSt, yEt = �dpt + ⌘t + uEt, (41)

the GIV is also

zt = u�t = uSt � uEt, (42)

and it is only made of idiosyncratic shocks. Given the exogeneity condition (3), we have E [ut"t] = 0,

and hence E [zt"t] = 0. This gives (using (38)): E [(pt �  ySt) zt] = 0 and thus  = E[ptzt]
E[yStzt]

. Its

empirical counterpart is the estimator  e

T
=

PT
t=1 ptztPT
t=1 yStzt

.

Likewise, given the exogeneity condition (3), we have E [zt⌘t] = 0. In addition, under the

Assumption 3 that the uit are homoskedastic we have E [uEtu�t] = 0.16 So, using (41), we have

E
⇥�
yEt � �dpt

�
zt
⇤
= 0, hence, �d = E[yEtzt]

E[ptzt] . Its empirical counterpart is �d,e

T
=

PT
t=1 yEtztPT
t=1 ptzt

.

Hence, the same instrument, the GIV zt, can be used to estimate both the demand elasticity

�d = E[yEtzt]
E[ptzt] and the supply elasticity �s = 1

 
= E[yStzt]

E[ptzt] . Intuitively, an idiosyncratic shock to, for

instance, a large country a↵ects both world prices and quantities, so it allows us to estimate the

elasticity of demand of the other countries, and the elasticity of supply, which is equal (as supply

15As is clear in this simple example, any average (other than size-weighted) of the yit can be used to remove
�dpt + ⌘t, not just yEt. What is most e�cient, however, is to use the equal-weighted average in this case.

16Indeed, we have �0E =
P

i

�
Si � 1

N

�
1
N = 0. So E [u�tuEt] = E [(�0ut) (u0

tE)] = �0E [utu0
t]E = �2

u�
0E = 0.
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equals demand) to the size-weighted demand of all countries.17

The general Propositions 1 and 2 show that those estimators are
p
T–consistent. Proposition 3

implies that this GIV (40) is the optimal one, as stated below.

Corollary 1 (GIV estimator in the case with a single factor and common loadings). Let Assump-

tion 3 hold. In the case with a single factor and common loadings, (38)-(39), the optimal GIV

estimator of Proposition 3 takes the form � = S � E, that is, �i = Si � 1
N
:

zt := y�t = ySt � yEt, (43)

so that zt = u�t = uSt � uEt.

Hence, in this simplest of cases, the GIV is the “size-weighted” minus the “equal-weighted”

value of outcomes, which recovers the the “size-weighted” minus the “equal-weighted” value of

idiosyncratic shocks. In addition, ǔit = uit � uEt, so that zt =
P

i
Siǔit. In the general case,

intuitively, the GIV weights � mimic this structure, but they need to be adjusted to remove common

factors if the factor structure is more complex, see (17).

3.1.2 GIV estimators are more precise in concentrated economies with volatile id-

iosyncratic shocks

We next study when the GIV achieves a good precision.

Corollary 2 (Precision of the GIV estimator in the case with a single factor and common loadings).

Let Assumption 3 hold. Consider the case with a single factor and common loadings, (38)-(39). The

GIV estimators are consistent, and converge as
p
T ( e

T
�  )

d�! N
�
0, �2

 

�
and (assuming  6= 0)

p
T
⇣
�d,e

T
� �d

⌘
d�! N

⇣
0, �2

�d

⌘
, where the asymptotic standard deviations of the scaled and centered

GIV estimators are (assuming that "t and "
�

t
:= ⌘t + uEt are homoskedastic conditionally on ut):

�z = �u� = h�u, � =
�"

�z |M | , ��d=
�"�

�z |µ|
, (44)

where h is the excess Herfindahl:

h :=

vuut
 

NX

i=1

S2
i

!
� 1

N
. (45)

17As the supply elasticity �s = E[yStzt]
E[ptzt]

traces out how the supply side reacts to the price, we need to use aggregate
supply ySt, which is, in equilibrium, the size-weighted average of the demands. On the other hand, the demand

elasticity �d =
E[yẼtzt]
E[ptzt]

indicates how the demand side of an individual country reacts to the price, so one can take

many weights Ẽ, provided that they satisfy (10). It is most e�cient, however, to take the equal-weighted average of
demands of individual countries, Ẽi = Ei =

1
N , to maximally smooth out idiosyncratic noise.
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Corollary 2 highlights what it takes to obtain a strong instrument and a precise estimate of  

(and similarly of �d): we need one or several large units (in order to have a large excess Herfindahl

h) and we need idiosyncratic shocks to be volatile compared to the volatility of aggregate shocks

(large �u compared to �" or �"�).
18

3.2 Instrument strength

Two-stage least squares One can view regression (36) as the first-stage regression of the price

on the GIV and controls ct, which yields the instrumented price pe
t
:= µezt + bpct. In the second

stage, we regress supply on the instrumented price and controls ct:

ySt =
1

 
pe
t
+ �ySct + "yS ,2SLSt , (46)

which gives an estimate of the supply elasticity 1
 
. To estimate the demand elasticity, we regress

the equal-weighted (not size-weighted) demand on the instrumented price, pe
t
, and controls ct in

the second stage: y
Ẽt

= �dpe
t
+ �yẼct + "

yẼ ,2SLS
t . This yields estimates that are the same as the IV

estimators from Proposition 4.

GIVs and weak instruments In case of the OLS estimator, a low power of the GIV simply

manifests itself as large standard errors, while in case of the IV estimators, we can encounter weak

instrument problems. For the parameters that can be estimated using OLS, that is, µ and M , the

standard errors obtained via standard OLS inference are valid when T is large (as per Proposition

5, and under its assumptions). When a ratio is implicitly performed, for instance to estimate �d

or  by instrumental variables, the two-stage least squares (2SLS) procedure will also give correct

standard errors when the instrument is strong enough. A traditional rule of thumb for the strength

of the instrument (in the i.i.d., homoskedastic case) is that the F -statistic (which is the squared

t-statistic on µ) on the first stage (37) should be greater than a threshold around 16 to 19, and this

advice is being progressively enhanced in current IV research (see Montiel Olea and Pflueger (2013)

and Andrews et al. (2019)).

Proposition 3 and Corollary 2 show that we have a precise estimator if concentration is high

and if the idiosyncratic shocks are volatile relative to the volatility of aggregate shocks. Hence,

before conducting a large-scale study and data collection e↵ort, researchers can perform an ex

ante power analysis. Recall that in the most basic case, the standard error of the estimator is

s.e. ( e

T
) = �"

h�u|M |
p
T
(see (44)). To get a quick sense of the power of GIVs, we can have a rough

estimate of �" using the volatility of the left-hand side variable (here, pt) as an order of magnitude,

�u using �y̌i so that a simple common factor is removed as well as the component that depends

18This intuition extends to the model with a more complex factor structure: the expression �z = h�u now entails
a modified Herfindhal h =

p
S0QS, which is less transparent (see Proposition 3) but has broadly similar behavior.

See the proof of Corollary 2 for an example.
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on prices, and the average excess Herfindahl h. These inputs can be used to calibrate an order of

magnitude for � e
T
, given the researcher’s prior view on M . This gives a sense of the t-statistics

t =  

� e
T

that can be obtained with T periods of data. Hence, before refining the empirical model

and perhaps collecting additional data, one has a sense of whether the GIV will be su�ciently

powerful. The results of such a power analysis can be reported alongside the final estimates.

3.3 Robustness to misspecification and threats to identification

Before discussing the limitations of GIVs and diagnostics for misspecification, we highlight the forms

of misspecification to which GIV estimators are robust.

Forms of misspecification to which GIVs are robust First, it is possible to construct GIVs

based on a subset of entities, It, that is, zt =
P

i2It Siǔit. This can be useful in practice as we can

select the top K entities, the entities for which we have data, or to omit entities for which the data

may contain measurement error. In this case, all results go through, although a rescaling may be

required to ensure that Assumption 7 holds.19 Hence, the estimator remains valid, although it is

not the optimal GIV estimator.

Second, suppose that we misspecify the vector S of size weights, for example, by defining zt =P
i
S�
i
ǔe

it
using a wrong vector S�. Then, the parameters estimated using IV are still consistently

estimated, but the parameters estimated using OLS can be biased.20 After all, (9) still holds,

namely E [(pt �  ySt) zt] = 0, so that the IV procedure in Proposition 1 remains valid.

Third, if we assume that the elasticities are homogeneous across entities (of demand in our model

in (1)-(2)), while they are actually heterogeneous, then the IV and OLS estimates are still useful,

as the parameters that we estimate are equal-weighted averages of coe�cients. For instance, the IV

estimators yield estimates of  and �d

E
, and the OLS estimators estimate coe�cients corresponding

to the interpretation that the elasticity of demand is �d

E
instead of �d

S
. Section D.8 provides the

derivations.

The limits of GIVs, threats to identification, and diagnostics for misspecification We

now discuss the main limits to the applicability of GIVs, threats to identification, and some diag-

nostics for misspecification.

Conditional on GIVs being su�ciently powerful, the most important threat to identification is

that we do not properly control for common factors. Indeed, calling �e� and ⌘e
t
the estimated values,

zt = u�t + �̌�⌘̌t � �̌e�⌘̌
e

t
, so there is a danger that, even after controlling for ⌘̌e

t
in the regression,

19For instance, we still have uSt = zt + "uS
t with zt ? "uS

t . Section D.10 gives for a formal analysis.
20Calling ⇠ = E[ztuS�t]

E[z2
t ]

(which is 1 when S� = S, assuming (35)), then the OLS above gives the estimates (in

expectation) µe = µ⇠ and Me = M⇠. For some selection procedures (e.g. selecting the shocks to some pre-specified
entities as we discussed), we still have that ⇠ = 1, so that OLS is still valid. However, if S� = S + ✏S , where ✏S is a
vector of measurement error, then typically ⇠ 6= 1 and the OLS procedure is biased.
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we will not completely eliminate the error term �̌�⌘̌t � �̌e�⌘̌
e

t
.21 This bias is larger when

���̌�
�� is

greater, that is, when loadings are correlated with size. Indeed, omitting factors for which �̌� = 0

is inconsequential. We provide four concrete suggestions to mitigate this concern.

First, we can add factors for which we estimate the loadings, see Section 4.2. As we show,

when T is su�ciently large, we accurately measure �̌ and ⌘̌t and this procedure detects (strong)

missing factors. While one cannot rule out weak factors, it is reassuring if the GIV estimates remain

stable when adding factors. A related concern is that the factor loadings are unstable over time. In

this case, it is possible to use more advanced methods to extract factors, for instance by modeling

�it = Xit�̇, as we discuss in Section D.12. Identification then depends on the correct specification

of Xit.

Second, we can “narratively check” the idiosyncratic shocks that are being used in the GIV.

Indeed, if granular shocks have aggregate consequences, it is often the case that the researcher

can “label” them and understand them—especially if we have high-frequency data. This conforms

to the spirit of the credibility revolution that the researcher is very clear about the underlying

“assignment-to-treatment process”; here we can be clear about what the “treatments” are. The

researcher can check the top, say, 10 events, and confirm using additional information that those

shocks indeed are valid idiosyncratic shocks. It is then possible to construct the GIV based only on

those narratively-checked shocks only.22 This analysis also helps researchers to provide economic

content to the variation used in estimating the parameters of interest, which lends further credibility

to the estimates.

Third, the narrative check may reveal that a large idiosyncratic shock coincides with a large

aggregate event. For instance, there may be an important policy announcement in the sample. If

this happens once in the sample, it is hard to detect using standard factor models. Such “sporadic

factor realizations” can lead to bias, and it is therefore prudent to remove these dates.

Fourth, we can do an overidentification test. We can construct two GIVs based on two types

of entities, e.g. developing and developed countries. Then form the GIVs z(1)t = S(1)0ǔt and

z(2)t = S(2)0ǔt based on the size-weighted sum of idiosyncratic shocks of each type (i.e., with two

di↵erent sets of weights S(1) and S(2)), and test whether the estimates using either instrument are the

same. If the estimates are significantly di↵erent, then this points to misspecification, for instance,

of the factor model or that the elasticities are heterogeneous across entities. In this case, we can

explore generalization in terms of the factor model (see Section 4.2) or the model of elasticities (see

Section 4.1).

21As we do control for ⌘̌et in the regression, the bias is due to the residual of �̌�⌘̌t � �̌e�⌘̌
e
t after controlling for ⌘̌et .

22This is roughly what the “narrative” approach in the literature does (e.g., Caldara et al., 2019). But the GIV
procedure helps researchers even in the narrative context, since it automates the “pre-selection” of the topK (perhaps
K = 10) shocks, by selecting the events with the largest K values in Si |ǔit|. Hence, researchers don’t need to know
the whole history before selecting their main events – the GIV gives them the most promising candidate events,
and the detailed historical search is simply restricted to K events. In addition, the factor analysis in the GIV gives
controls ⌘et that are usable when running regressions, which increases the precision of estimators.
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What is an idiosyncratic shock? Mathematically, an idiosyncratic shock is plainly a random

variable uit such that Et�1 [(⌘0t, "t) uit] = 0. That said, it is useful to discuss di↵erent types of

economic settings that map into this definition. In some cases it is quite clear – for example, a

random productivity or demand shock. But there are more subtle types of idiosyncratic shocks.

One is an “unexpected change in the loading on a common shock.” For instance, if China decreases

oil consumption by more than anticipated in response to a global economic downturn, then it is an

idiosyncratic shock. Formally, if demand is yit = �dpt+
⇣
�i + �̃it

⌘
⌘t+vit, with Et�1

h
(1, ⌘0

t
, "t) �̃it

i
=

0, then uit := �̃it⌘t + vit is a valid idiosyncratic shock.

The volatility of idiosyncratic shocks can depend on the common shocks. For instance, suppose

that uit = �tvit where �t and (⌘0
t
, "t) could be correlated (for instance, �t could increase when |"t| is

high), but Et�1 [(⌘0t, "t) �tvit] = 0 (a su�cient condition is that vit independent of �t (⌘0t, "t)); then,

uit is an idiosyncratic shock because Et�1 [(⌘0t, "t) uit] = 0.23

4 Extensions

We now present a succession of extensions of the basic GIV procedure that cover a range of empir-

ically relevant cases. The Online Appendix gives a number of other extensions.

4.1 Heterogeneous demand elasticities

We have assumed so far that demand elasticities are constant across entities. We now extend the

model to the case where demand elasticities vary across entities and are a function of characteristics

xi.24 xi is a k-dimensional vector and the first entry is equal to 1.25 We represent the demand

elasticities as:

�d

i
= xi�̇

d =
kX

`=1

xi`�̇
d

`
, (47)

for some k-dimensional vector �̇d =
⇣
�̇d

`

⌘

`=1...k
that is to be estimated. With x the N ⇥ k matrix of

characteristics, we summarize the elasticities as �d = x�̇d. We assume that � spans x. For instance,

we can have � =
⇣
x, �̂
⌘
, where �̂ comprises loadings orthogonal to x. The following proposition

describes how we can consistently estimate  and �̇d.

Proposition 6 (Estimation of heterogeneous parametric elasticities). Let Assumptions 1 and 3

hold. Consider the model with heterogeneous elasticities of demand following (47). Define Rx :=

(x0x)�1 x0, ẏt := Rx (yt � Cy

t m
y) (which has dimension k), ǔt := Q� (yt � Ctmy), and zt := �0ǔt,

23A related concern is that some (small) clusters of the uit’s are correlated. In that case, we can either aggregate
the entities within each cluster or, alternatively, we estimate V u from Assumption 4 to be block diagonal.

24This xi might be di↵erent from Xi in Assumption 1, e.g. be a strict subset of it.
25Section D.9 considers a non-parametric version, which is more involved.
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where � satisfies (4). We then identify  and �̇d using the moment conditions: E [(pt �  ySt) zt] = 0

and E
h⇣

ẏt � �̇dpt
⌘
zt
i
= 0K⇥1, i.e.

E
h⇣

ẏ`t � �̇d

`
pt
⌘
zt
i
= 0 for ` = 1 . . . k (48)

This procedure extends the model with homogeneous demand elasticities, where the moment

condition (48) simplifies to E
⇥�
yEt � �dpt

�
zt
⇤
= 0.26

Computing ẏt and ǔt in Proposition 6 corresponds to running cross-sectional regressions of

yit � Cy

it
my on xi and �̌i, for every date t (and given my):

yit � Cy

it
my = xiẏt + �̌i⌘̌t + ǔit, (49)

which yields an exact recovery (as in Lemma 1) of ẏt, ⌘̌t, and ǔit. Then, we form the GIV zt :=P
i
Siǔit and use the moment conditions in Proposition 6 to recover the elasticities. One can add

controls, as in Proposition 4, and the procedure is otherwise the same.

4.2 When the factor loadings are estimated

The results so far are derived by imposing Assumption 1 that we know �. We now show how the

procedure extends when we relax this assumption and estimate the factor loadings. We remain in

the case where T ! 1 and N is fixed.27

Recall that we have � =
�
◆, �̌
�
. As in all factor models, we need a normalization. We choose the

normalization that 1
N
�0� = Ir and that V ⌘̌ is diagonal.28 To ensure uniqueness of the representation,

we also impose that the diagonal terms of V ⌘̌ are distinct and in decreasing order; this is a purely

technical condition without economic substance, that could be relaxed at the cost of distracting

notations. This leads to the following system of moment conditions.

Proposition 7 (GIV estimation with controls and estimation of factor loadings �) Let Assumption

3 hold. Define y̌it := yit � yEt and similarly Čy

it
:= Cy

it
� Cy

Et
. Given candidate values my and � =�

◆, �̌
�
, we construct estimates of the factors using ⌘̌t

�
my, �̌

�
:= R�̌ (yt � Cy

t m
y) and the associated

GIV zt
�
my, �̌

�
:= S 0Q� (yt � Cy

t m
y). Define ✓ to be

�
 ,�d,mp, bp,my, by, �̌

�
and ✓e

T
to be the GMM

estimator of ✓ associated with the following moment conditions:

X

t

�
�y̌t + �̌⌘̌t

�
my, �̌

�
+ Čy

t m
y
�
⌘̌t
�
my, �̌

�0
= 0 (50)

X

t

�
�y̌t + Čy

t m
y
�0
Čy

t = 0, (51)

26Indeed, when the elasticity is the same across entities, x = ◆ so that Rx = E0 and ẏt = yEt.
27Banafti and Lee (2022) extend the results in this paper by studying the the case where T,N ! 1.
28To remove the classic indeterminacy that the f -th factor �f could be changed into ��f , we can impose e.g. that

for each f , the first non-zero �fi is positive.
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and moments (29)-(30), making ⌘̌t and zt depend on
�
my, �̌

�
. Then, assuming  6= 0, and the

regularity Assumption 5 from Appendix A, the vector ✓0 is consistently estimated (with T ! 1 and

fixed N), and we have
p
T (✓e

T
� ✓0) ! N

�
0, V ✓

�
for a matrix V ✓.

The new moment (50) identifies �̌.29,30 The advantage of the formulation in Proposition 7 is

that the variance V ✓ is derived using standard GMM theory, and implemented numerically using

standard GMM routines. An analogous proposition can be stated for the OLS procedure, as in

Proposition 5, but adding the moment (50) to estimate �̌. Then, unlike the positive message

of Proposition 5, when � is estimated, the fact that zt is a constructed regressor does a↵ect the

asymptotic variance of the estimator and we cannot rely on the OLS standard error. Instead, one

must rely on the variance matrix V ✓, which is still easy to compute numerically.

4.3 Heteroskedasticity

We now discuss the case where the uit are heteroskedastic. We call V u their variance-covariance

matrix. We assume for now that this is known, at least up to a factor of proportionality, and

constant over time. Given a positive definite matrix W , define the r ⇥N and N ⇥N matrices,

R�,W := (�0W�)�1 �0W, Q�,W := I � �R�,W , (52)

so that Q�,W is a projection on the space orthogonal to � and R�,W is a projection on �.31

Proposition 8 (GIV with heteroskedastic idiosyncratic shocks) Let us replace Assumption 3 by

Assumption 4, assuming that we know V u, and define the corresponding matrices Q�,W and R�,W in

(52), with W = (V u)�1. Then Propositions 1-7 and Lemma 1 hold, provided that we change �0S 6= 0

into �0V uS 6= 0 in (4); change Q�,W and R� into Q�,W and R�,W everywhere, for all occurrences of

factors � (e.g., in (17) we change �⇤0 = S 0Q into �⇤0 = S 0Q�,W ; in (20) we change R�, Q� into R�,W ,

Q�,W ; in Proposition 6, we change Rx into Rx,W ); change equal weights E into quasi-equal weights

Ẽ := W ◆

◆0W ◆
(e.g. in (43)); change (50) into

P
t

�
�y̌t + �̌⌘̌t

�
my, �̌

�
+ Čy

t m
y
�
W ⌘̌t

�
my, �̌

�0
= 0.

When idiosyncratic shocks are homoskedastic, Ẽi =
1
N
, while if they are uncorrelated but het-

29Moment (50) means that the r�1 column vectors �̌ are eigenvectors of the empirical variance-covariance matrix
of y̌t � Čy

t m
y, so that a PCA can be equivalently performed. See the proof of Proposition 7.

30Instead of (51), one could use the moment
P

t

�
�y̌t + �̌⌘̌t

�
my, �̌

�
+ Čy

t m
y
�0
Čy

t = 0, but (51) simplifies the proof.
31These matrices have convenient properties that we record here (dropping the superscripts for simplicity):

Q� = 0, R� = I, Q0W� = 0, (I �Q)W�1Q0 = 0, (I �Q0)WQ = 0, Q2 = Q, RW�1Q0 = 0. (53)

20



eroskedastic (i.e. W = Diag
�
1/�2

ui

�
), we have32

Ẽi :=
1/�2

uiP
j
1/�2

uj

. (54)

In addition, in the cross-sectional regressions, we use GLS with weights W = (V u)�1 instead of

OLS (e.g. in (32)).

While estimating  could be done without knowing the �2
ui
, estimating �d, M , and µ does

require the conditions (10) or (35), hence some knowledge of the heteroskedasticity of the ui’s.33,34

Estimation of the degree of heteroskedasticity In the central case where the uit are uncorre-

lated across i’s, we can estimate the volatilities �ui ’s consistently, via the moments E [ǔ2
it
] = Q�,W

ii
�2
ui
,

where ǔt = Q�,Wut is the vector of residuals; this fits in the GMM structure of the rest of the esti-

mation.35 This is detailed in Section D.3 of the Online Appendix. When the �ui are estimated, the

standard errors of the estimators of  , �d, µ, and M adjust accordingly.

4.4 Generalization of the GIV to other setups

While we focus on the demand and supply setup for our main analysis, we discuss in this section

how the basic ideas extend to a variety of settings.

Time-varying size weights Size weights could vary over time, Si,t, so that in our leading example

(2) the aggregate demand disturbance ySt becomes ySt =
P

i
Si,t�1yit. We then make the additional

assumption that ut is independent of St�1. Then, our identifying moments are still correct, replacing

Si by Si,t�1 and � by �t, with the natural changes (e.g. in (4) we replace S and � by St and �t). 36

Time-varying factors We can relax Assumption 1 and replace �i = Xi�̇ by �it = Xit�̇. This

would allow for time variation in the loadings on the aggregate shocks. In general, we can then

have factor loadings that are observed and time varying and factor loadings that are unknown (see

32Generically, �⇤ 6= 0. But in cases where the variance is inversely proportional to size, V uS = a◆ for some scalar
a, so that �⇤0 = S0Q�,W = 0 and the GIV would fail. This would be detected in practice via extremely large standard
errors. Fortunately, in most contexts, variance may decay a bit with size Si, but not as fast as 1/Si (see e.g. Lee et
al. (1998) and the discussion in Gabaix (2011)).

33Recall that those conditions are identical when Ẽ := S � �.
34If we misspecify the variance of the uit (keeping them uncorrelated), the impact on the estimates is typically quite

small. For instance, if the �2
ui
are heteroskedastic and we ignore this fact, then E [u�tuEt] =

1
N

P
i �i�2

ui
will be non-

zero, but will still be small when we have a large cross-section, of order O
�

1
N

�
. The relative bias E[u�tuEt]

E[u2
�t]

= O
⇣

1
Nh2

N

⌘

more generally goes to 0 when we are in a “granular” case where h2
N � 1

N , where hN is the Herfindahl (45)—see
Gabaix (2011), Proposition 2 for details.

35The moment does features Q�,W
ii �2

ui
, not

⇣
Q�,W

ii

⌘2
�2
ui

as one might think at first.
36The expressions of the variances will change, for instance replacing �2

z by its average value, which should remain
bounded away from 0.
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Section 4.2). The combined loadings are then given by �it =
⇣
Xit�̇,�Fi

⌘
, where Xit�̇ fluctuates over

time and �F
i
is constant.

Multidimensional GIV The basic model can be extended to cover multidimensional outcomes

yit and shocks uit. For instance, a firm i could have two-dimensional shocks uit, one to productivity

and one to labor demand. We show how GIVs can be used in this setting in Section D.6.

Beyond supply and demand for one good In Section D.5, we show how GIVs can be used

to estimate parameters of interest in models that feature multiple general equilibrium channels.

Estimating structural vector autoregressions with GIVs We can estimate vector autore-

gressions and impulse responses with GIVs. If Yt = AYt�1 + Xt for vectors Xt, Yt and matrix A,

we can use the GIV zt to instrument for some of the shocks to the innovations Xt, and achieve

partial or full identification. The GIV is then an “external instrument” and we can follow the

methods spelled out in Stock and Watson (2018).37 We can also estimate Jordà (2005)-style local

projections, regressing Et [Yt+h] = �hXt, and instrumenting some of the regressors Xt by GIVs.

This shows how GIVs can be used to identify parameters in structural VARs, complementing an

active literature that uses sign restrictions, as in Uhlig (2005), or narrative restrictions combined

with sign restrictions, as in Antoĺın-Dı́az and Rubio-Ramı́rez (2018) and Ludvigson et al. (2020).

Comparison with Bartik instruments Bartik (1991) instruments are widely used in economics

and we discuss the link between Bartik and GIV in Online Appendix D.4, and clarify the di↵erence

in identifying assumptions using the econometric framework of Borusyak et al. (2022).38 We briefly

summarize the main insights. First, in a number of cases where a cross-section is studied, Bartik

applies but GIV cannot be used as there is no large idiosyncratic shock that one can use (e.g., Autor

et al., 2013). On the other hand, in a number of cases GIV applies naturally, particularly when

there are large idiosyncratic shocks that a↵ect aggregate outcomes. We therefore view Bartik and

GIVs as complements in the toolkit of economists, and it depends on the setting which empirical

strategy is most appropriate.

When aggregate shocks are at least partially made of idiosyncratic shocks GIVs extend

to economies where aggregate shocks ⌘t are themselves (at least partially) made of idiosyncratic

shocks uit (as in Long and Plosser (1983); Gabaix (2011); Acemoglu et al. (2012); Carvalho and

Gabaix (2013); Carvalho and Grassi (2019); Brownlees and Mesters (2021)). We develop this in

Sections D.17-D.18. These sections show that we can identify important parameters even if we have

only crude proxies for the primitive shocks such as TFP.

37See Plagborg-Møller and Wolf (2022) and Sarto (2022) for recent developments in this area.
38Bartik instruments (also known as shift-share estimators) have been rigorously studied in recent econometric

work, see also Adao et al. (2019); Goldsmith-Pinkham et al. (2020); Borusyak et al. (2022).

22



5 Conclusion

We developed granular instrumental variables (GIVs). The generative insight is that idiosyncratic

shocks o↵er a rich source of instruments in concentrated economic environments with large idiosyn-

cratic shocks. We lay out econometric procedures to extract them from panel data and e�ciently

aggregate them to obtain the most powerful instruments. We discuss various econometric exten-

sions that might be useful in applied work. Given the ubiquity of concentration in various economic

settings and the volatility of idiosyncratic shocks, we hope that GIVs provide a valuable addition

to the toolkit of economists to estimate and understand causal relationships in the economy.
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A Appendix: Proofs

This section shows some of the main proofs. Further proofs are in the Online Appendix, Section C.

A.1 Variance facts

We will repeatedly use a number of facts that we record here. For two deterministic vectors X and

Y of dimensions n⇥ 1, defining uX := X 0u and uY := Y 0u, we have

E [uXuY ] = E [(X 0u) (Y 0u)] = X 0E [uu0]Y = X 0V uY. (55)

If (ui)i=1...N is a vector of uncorrelated random variables with mean 0 and common variance �2
u
,

then V u = �2
u
I and

E [uXuY ] = X 0Y �2
u
. (56)

With � = S � E (where Ei =
1
N
), we have with h =

qP
N

i=1 S
2
i
� 1

N
:39

E [u�uE] = 0, E
⇥
u2
�

⇤
= E [uSu�] = h2�2

u
. (57)

In the general heteroskedastic case for V u, defining W = (V u)�1, the quasi-equal weight vector is

Ẽ = W ◆

◆0W ◆
. Then, for any � such that ◆0� = 0, we have:40

E [u�uẼ
] = 0. (58)

A.2 Proof of Propositions 1 and 2

First, we note that (2) implies

ySt = �dpt + uSt + "1t,

where "1t (and later "2t, "3t, etc.) is a linear function of "t, ⌘t, C
y

t , and Cp

t , and thus uncorrelated

with ut by (3). Using (1) gives

ySt =  �dySt + uSt + "2t.

Hence, using the notation introduced in (13), we have

ySt = MuSt + "3t, pt = µuSt + "4t, y
Ẽt

= (M � 1) uSt + u
Ẽt

+ "5t. (59)

This gives how idiosyncratic shocks a↵ect ySt, pt, and yEt.

The rest of the proof uses well-known ingredients. We use ET for the sample temporal mean,

39Indeed, �0E = 1
N

P
i (Si � Ei) = 0, and �0� =

PN
i=1

�
Si � 1

N

�2
=
PN

i=1

�
S2
i � 2

N Si +
1

N2

�
=
PN

i=1 S
2
i � 1

N = h2.
40Indeed, as Ẽ = kW ◆, and k = 1

◆W ◆ , we have E [u�uẼ ] = Ẽ0E [uu0]� = Ẽ0V u� = k◆0WV u� = k◆0� = 0.
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ET [Yt] :=
1
T

P
T

t=1 Yt. We have pt �  ySt = " t := Cp

t m
p + "t, so

 e

T
�  =

ET [ptzt]

ET [yStzt]
�  =

ET [(pt �  ySt) zt]

ET [yStzt]
=

ET

h
" t u�t

i

ET [yStu�t]
=

AT

DT

, (60)

where AT = ET

h
" t u�t

i
and DT = ET [yStu�t]. For the denominator, the law of large number gives,

as T ! 1,

DT = ET [yStu�t]
a.s.��! D = E [yStu�t] .

Using (59), we have

D = E [yStu�t] = E [(MuSt + "3t) u�t] = ME [uStu�t]

which is non-zero because we assumed that E [uStu�t] 6= 0, and because of the definition of M in

(13). For the numerator, the central limit theorem gives the convergence in distribution
p
TAT

d�!
N (0, �2

A
) ,where, using the assumption that " t is homoskedastic conditionally on ut,

�2
A
= E

⇣
" t

⌘2
u2
�t

�
= E


E
⇣
" t

⌘2
| ut

�
u2
�t

�
= E

⇥
�2
" 
u2
�t

⇤
= �2

" 
�2
u�
.

This implies (by Slutsky’s theorem) that
p
T ( e

T
�  )

d�! N
�
0, �2

 

�
, where � = �A

|D| =
�
" 
�u�

|ME[uStu�t]| .

The derivation of �2
�d

follows along the same lines. It is detailed in Section C of the Online Appendix.

A.3 Proof of Proposition 3

We solve for the optimal �, which minimizes � (�) (and then, automatically, ��d (�)) subject to

�0� = 0. Given Proposition 2, we want to maximize the squared correlation:

max
�

C (�) := corr (uSt, u�t)
2 subject to �0� = 0. (61)

We next solve this problem. By Assumption 3 and (56) we have E [uStu�t] = �2
u
�0S, hence:

C (�) =
E [uStu�t]

2

var (uS) var (u�t)
=

(�0S)2

(S 0S) (�0�)
.

The problem is invariant to changing � into k� for a non-zero k. So, we can fix �0S at some value

v. Given this, we want the minimum value of �0�. So, we minimize over � the Lagrangian

L =
1

2
�0�� �0�b� c (�0S � v) , (62)
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with some Lagrange multipliers b (of dimension r ⇥ 1), and c (a scalar). The first order condition

in �0 is:

0 = �� �b� cS () � = cS + �b. (63)

We next use the projection operator Q = I � � (�0�)�1 �0 (see (16)) which satisfies Q� = 0. As

�0� = 0, we have Q� = �. So

� = Q� = cQS +Q�b = cQS. (64)

The factor c doesn’t a↵ect the results, as � and c� give the same estimator �s,e

T
, so we may choose

c = 1, and conclude � = QS.

A.4 Proof of Lemma 1

We prove the lemma in the more general heteroskedastic case, with W = (V u)�1. We define, as

in (52), R := (�0W�)�1 �0W and Q := I � �R, dropping the superscripts for concision. We have

Q� = 0 and �⌘̌t + ǔt = � (⌘t +Rut) + (I � �R) ut = �⌘t + ut = Yt. Finally,

E [⌘̌tǔ
0
t
] = E

⇥
(⌘t +Rut) (Qut)

0⇤ = E [Rutu
0
t
Q0] = RE [utu

0
t
]Q0 = RV uQ0

= (�0W�)�1 �0WV uQ0 = (�0W�)�1 �0Q0 = (�0W�)�1 (Q�)0 = 0.

A.5 Proof of Proposition 4

We will use the following regularity assumption.

Assumption 5 The matrices E [⌘̌t⌘̌0t] , E
h�
Q�Cy

t

�0 �
Q�Cy

t

�i
, E

⇥
Cy0

St
C 0

St

⇤
and E

⇥
Cp0

t C
p

t

⇤
have full

rank. The true parameter ✓0 is in the interior of a compact set ⇥.

These conditions are mild and technical.41 We also recall that we maintain the assumption that

at the true values,  �d 6= 1.

We define the function gt (✓) =
�
gk
t
(✓)
�
k=1,2,3

as

g1
t
(✓) :=

�
�y̌t + �̌⌘̌t (m

y) + Čy

t m
y
�0
Čy

t , (65)

g2
t
(✓) :=

�
�pt +  ySt + bp⌘̌t (m

y) +mp0Cp0
t

� �
zt (m

y) , ⌘̌t (m
y)0 , Cp

t

�
(66)

g3
t
(✓) :=

⇣
�y

Ẽt
+ �dpt + by⌘̌t (m

y) + Cy

Ẽt
my

⌘ �
zt (m

y) , ⌘̌t (m
y)0
�

(67)

We again use ET for the sample temporal mean, ET [Yt] :=
1
T

P
T

t=1 Yt. So that, given a sample

of size T , our estimator ✓e
T
solves ET [gt (✓eT )] = 0. Amongst other things, the proof will verify that,

for large T , the solution exists and is unique.

41For instance, if E [⌘̌t⌘̌0t] doe not have full rank r � 1, one can just use a lower-dimensional factor model, and
achieve full rank.
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At the true value, E [gt (✓0)] = 0. Indeed, g1
t
(✓0) = �ǔ0

t
Čy

t , as spelled out in the Online Ap-

pendix, equation (73). This implies that E [g1
t
(✓0)] = 0, by (3), and the fact that ǔt = Q�ut. Like-

wise, g2
t
(✓0) = �"?

t

�
zt, ⌘̌0t, C

p0
t

�
, so E [g2

t
(✓0)] = 0, by the maintained assumptions of Section 2.1,

which imply "t, ⌘t ? Cp0
t , ut, ǔt, zt as zt = �0ut; Lemma 1, which implies ⌘̌t := ⌘t +R�ut ? Cp0

t , ǔt, zt
as additionally zt = �0ǔt; the fact that "?

t
= "t � b"⌘̌t ? ⌘̌t which implies "?

t
? Cp0

t , zt, ⌘̌t. And

similarly E [g3
t
(✓0)] = 0.

The solution of E [gt (✓)] = 0 is unique. The high-level idea is that the equation E [g1
t
(✓)] = 0

is linear equation in my, and identifies my given our full-rank Assumption 5. Then, given my, the

other equations (E
⇥
gk
t
(✓)
⇤
= 0 for k = 2, 3) are linear in all the other parameters in ✓, so that

unicity of the solution is guaranteed as those linear equations have full rank. We spell out the

details in the Online Appendix, Section C.

The estimator is consistent. Our estimator ✓e
T
is the solution ET [gt (✓)] = 0.42 Note that

✓e
T
is equivalent to the GMM estimator that minimizes ET [gt (✓)]

0 ET [gt (✓)], as indeed is achieves

ET [gt (✓)] = 0. We thus proceed to apply general GMM results (Hansen (1982); Newey and Mc-

Fadden (1994)). In particular under the regularity conditions and i.i.d. sampling, by Newey and

McFadden (1994), Theorem 2.6, the estimator is consistent.

The estimator is
p
T -normally distributed. Under the regularity conditions we assumed (and

in particular that  �d 6= 1, which ensures bounded gradients), by Newey and McFadden (1994),

Theorem 3.4,
p
T (✓e

T
� ✓) converges in distribution to a normal distribution with mean 0 and

positive variance covariance matrix V ✓.

Derivation of the variance of  e

T
. It turns out that it is enough to zoom in on first component

of (66), i.e. the moment ET

⇥
g2,zt (✓)

⇤
= 0, where

g2,zt = (�pt +  ySt + bp⌘̌t (m
y) + Cp

t m
p) zt (m

y) . (68)

As part of our application of Newey and McFadden (1994)’s Theorem 6.1, we now show that E
⇥
g2,z
✓k

⇤

has only one non-zero component k, the one corresponding to ✓k =  .

We take all derivatives at the true value, ✓0. For notational simplicity, we drop the t when the

meaning is clear, e.g. we write g2,z
 

for d

d 
g2,zt . As g2,z

 
= yStzt, it holds

E
⇥
g2,z
 

⇤
= E [yStzt] = ME [uStzt] . (69)

42Moreover, the solution exists and is unique, by the same reasoning as for E [gt (✓)] = 0, replacing E by ET when
needed.
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Next, ⌘̌t (my) := R�̌ (yt � Cy

t m
y) and zt (my) := �0 (yt � Cy

t m
y) yield

d

dmy
⌘̌t (m

y) = �R�̌Cy

t ,
d

dmy
zt (m

y) = ��0Cy

t , (70)

and thus

E
✓

d

dmy
⌘̌t (m

y)

◆
zt

�
= 0.

This allows us to verify that all the other derivatives of E
⇥
g2,z
✓k

⇤
for the other components k of ✓

(except  ) are 0. For instance, d

dbp
g2,zt = ⌘̌tzt, so E

⇥
g2,z
bp

⇤
= E [⌘̌tzt] = 0. Likewise, E

h
g2,z
�d

i
= 0 and

E
⇥
g2,z
by

⇤
= 0. More involved is:

E
h
g2,z
my

i
= E

✓
d

dmy

(�pt +  ySt + bp⌘̌t (m
y) + Cp

t m
p)

◆
zt + (�pt +  ySt + bp⌘̌t (m

y) + Cp

t m
p)

✓
d

dmy
zt

◆�

= bpE
✓

d

dmy
⌘̌t (m

y)

◆
zt

�
+ E [(�"t) (��0Cy

t )] = 0 + 0 = 0.

Hence, we just showed that E
⇥
g2,z
✓

⇤
only has one non-zero component, the E

⇥
g2,z
✓k

⇤
corresponding

to ✓k =  . Then, applying Newey and McFadden (1994)’s Theorem 6.1 allows us to conclude that:43

�2
 
=

var
�
g2,zt

�
�
E
⇥
g2,z
 

⇤�2 (71)

Given g2,zt = �"?
t
zt, and using the assumption that "?

t
is homoskedastic conditional on ut,

var
�
g2,zt

�
= E

h�
"?
t
zt
�2i

= E
h
E
h�
"?
t

�2 |ut

i
z2
t

i
= E

h�
"?
t

�2iE
⇥
z2
t

⇤
,

so that, using (69),

�2
 
=

var
�
"?
t

�
E [z2

t
]

(ME [uStzt])
2 .

This is the asymptotic variance �2
 
that a “naive” IV estimator would report, ignoring that my

and ⌘̌t had to be estimated. If we did not have to estimate my and ⌘̌t, we would obtain the same

asymptotic error �2
 
.

The optimal � remains as in Proposition 3. This comes straightforwardly from the fact that the

variance of the estimator is proportional to
E[u2

�t]
E[uStu�t]

2 , which is minimized at �⇤.

Calculating the error on �d,e

T
. The argument is exactly the same as for  . It is spelled out in

the Online Appendix, Section C.

43In the notations of Newey and McFadden (1994)’s Theorem 6.1, we have G� = 0, i.e. the gradient of the moment
condition g2,z with respect to the nuisance parameters � := ✓\ { } is 0.
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B Appendix: Notations

d, s : Indicates demand and supply. E.g., �d,�s = 1
 
are the elasticities of demand and supply.

"t, ⌘t: Aggregate shocks.

Cx

t
: Controls a↵ecting variable x.

�: Factor loadings.

ut: Idiosyncratic shocks.

ǔt := Qut: Idiosyncratic shocks residualized by a projection matrix Q.

zt = �0ut: GIV.

C Additional Proofs

C.1 Complement to the proof of Proposition 2

We detail the derivation of ��d (�), which follows the same steps as that of � (�). We have

y
Ẽt

� �dpt = eyt with eyt := �
Ẽ
⌘t + u

Ẽt
. This implies

�d,e

T
� �d =

ET [y
Ẽt
zt]

ET [ptzt]
� �d =

ET

⇥�
y
Ẽt

� �dpt
�
zt
⇤

ET [ptzt]
=

ET [eytu�t]

ET [ptu�t]
=

aT
dT

,

where

dT = ET [ptu�t]
a.s.��! d := E [ptu�t] =  ME [uStu�t] .

By the central limit theorem,
p
TaT

d�! N (0, �2
a
), where

�2
a
= E

h
(eyt )

2 u2
�t

i
= E

h
E
h
(eyt )

2 |ut

i
u2
�t

i
= E

⇥
�2
eyu

2
�t

⇤
= �2

ey�
2
u�
.

This implies that
p
T
⇣
�d,e

T
� �d

⌘
d�! N

⇣
0, �2

�d

⌘
, where

��d (�) =
�a
|d| =

�ey�u�

| ME [uStu�t]|
.

C.2 Complement to the proof of Proposition 4

Verification that the solution of E [gt (✓)] = 0 is unique. First, we show that the equation

E [g1
t
(✓)] = 0 identifies my. We observe that y̌it := yit � yEt can be written y̌t = Q◆yt, with
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Q◆ = I � ◆E 0, and likewise Čy

t = Q◆Cy

t . In the following, we shall use

R�̌Q◆ = R�̌, Q�̌Q◆ = Q�, Q�Q◆ = Q�, (72)

which are easy to verify. We have

⌘̌t (m
y) := R�̌ (yt � Cy

t m
y) = R�̌Q◆ (yt � Cy

t m
y) = R�̌

�
y̌t � Čy

t m
y
�

so

y̌t � Čy

t m
y � �̌⌘̌t (m

y) =
⇣
I � �̌R�̌

⌘ �
y̌t � Čy

t m
y
�
= Q�̌

�
y̌t � Čy

t m
y
�

= Q�̌Q◆ (yt � Cy

t m
y) = Q� (yt � Cy

t m
y)

= Q�
�
◆�dpt + �⌘t + ut

�
= Q�ut = ǔt (73)

Next, as Q�Čy

t = Q�Q◆Cy

t = Q�Cy

t , and using Q� =
�
Q�
�0
Q� per (53),

�g1
t
(✓)0 = Čy0

t Q
� (yt � Cy

t m
y) = Čy0

t Q
�0Q� (yt � Cy

t m
y) =

�
Q�Cy

t

�0 �
Q�yt �Q�Cy

t m
y
�

so that, using the full rank Assumption 5, there is a unique solution.

Given my, the other equations (E
⇥
gk
t
(✓)
⇤
= 0 for k = 2, 3) are linear in all the other parameters

in ✓, so that unicity of the solution is guaranteed if those linear equations have full rank. We

thus verify that they have full rank. Take the equation E [g2
t
(✓)] = 0. Calling � := ( , bp,mp0),

At :=
�
ySt, ⌘̌t, C

p0
t

�
and Bt := (zt, ⌘̌0t, C

p

t ), we have g2
t
(✓) = (�pt + �At)Bt. Hence, if E [AtBt] is

invertible, the solution in � is unique. To verify that E [AtBt] is invertible, we remark that it is

a upper triangular block matrix with block diagonal elements E [yStzt], E [⌘̌t⌘̌0t], E
⇥
Cp0

t C
p

t

⇤
. So, by

(4), which implies the relevance condition E [yStzt] 6= 0, and the full rank Assumption 5, E [AtBt] is

indeed invertible.

The argument is the same for E [g3
t
(✓)] = 0, using the relevance result E [ptzt] 6= 0, which comes

from E [ptzt] = µE [uStu�t] 6= 0 because of (4) and  6= 0.

So, we proved that the solution of E [gt (✓)] = 0 is indeed unique.

Derivation of the asymptotic variance of �d,e

T
. The argument is exactly the same as for  .

We zoom on g3,z:

g3,zt =
⇣
�y

Ẽt
+ �dpt + by⌘̌t (m

y) + Cy

Ẽt
my

⌘
zt (m

y) (74)

At the true value, g3,zt = �"yt zt. We thus have

E
h
g3,z
�d

i
= E [ptzt] = µE [uStu�t] , (75)
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which is nonzero because  6= 0 implies µ 6= 0, and (4) implies E [uStu�t] 6= 0. But all the other

derivatives E
⇥
g3,z
✓k

⇤
are 0. We verify this in the same way, e.g.

E
⇥
g3,z
by

⇤
= E [⌘̌tzt] = 0

E
h
g3,z
my

i
= E

✓
d

dmy

⇣
�y

Ẽt
+ �dpt + by⌘̌t (m

y) + Cy

Ẽt
my

⌘◆
zt � "yt

✓
d

dmy
zt

◆�

= E
✓

d

dmy
⌘̌t (m

y)

◆
zt

�
+ E ["yt�

0Cy

t ] = 0 + 0 = 0

Indeed, E ["yt�
0Cy

t ] = 0 as "yt = ⌘?1t + u
Ẽt
, with ⌘?1t and u

Ẽt
uncorrelated with Cy

t .

Hence, E
⇥
g3,z
✓

⇤
only has one non-zero component, the E

⇥
g3,z
✓k

⇤
corresponding to ✓k =  . Then,

applying Newey and McFadden (1994)’s Theorem 6.1 allows us to conclude that:

�2
�d

=
var

�
g3,zt

�
⇣
E
h
g3,z
�d

i⌘2 (76)

Given g3,zt = �"yt zt,
var

�
g3,zt

�
= �2

"y�
2
z
,

and given (75), and that "yt is homoskedastic conditional on ut,

�2
�d

=
E [z2

t
]

µ2E [uStzt]
2var ("

y

t ) .

The optimal � remains as in Proposition 3, even for �2
�d
. This is proven exactly as at the end

of the proof of Proposition 4.

C.3 Proof of Proposition 5

We use the controls ct (my) = (Cp

t , C
y

St
, ⌘̌t (my)). We define the function gt =

�
gk
t

�
k=1...3

by:

g1
t
(✓) :=

�
�y̌t + �̌⌘̌t (m

y) + Čy

t m
y
�0
WČy

t , (77)

g2
t
(✓) := (�pt + µzt (m

y) + bpct (m
y))0 (zt (m

y) , ct (m
y)) , (78)

g3
t
(✓) := (�ySt +Mzt (m

y) + byct (m
y))0 (zt (m

y) , ct (m
y)) . (79)

The reasoning is very similar to that in the proof of Proposition 4, so we are a bit more concise.

Indeed, the unicity of the solution E [gt (✓)] = 0, the consistency and
p
T -normality of the estimator

are exactly like for the proof of proof of Proposition 4. The calculations of the asymptotic variance

do change, however.
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Variance of M e

T
. We use the moment function

g3,zt = (�ySt +Mzt (m
y) + byct (m

y)) zt (m
y) .

At the true value ✓0, g
3,z
t = �eyt zt. We take all derivatives at the true value ✓0. For notational

simplicity, we again drop the t when the meaning is clear. We have E
⇥
g3,z
M

⇤
= E [z2

t
] and E

h
g3,z
by

i
=

E [ctzt] = 0. Less straightforwardly, but by the same reasoning as for the proof of Proposition 4, we

have E
h
g3,z
my

i
= 0. Indeed, using (70),

E
h
g3,z
my

i
= E

✓
d

dmy

(�ySt +Mzt (m
y) + byct (m

y))

◆
zt � ept

✓
d

dmy
zt (m

y)

◆�

= E
h⇣

�M�0Cy

t � by⌘̌R
�̌Cy

t

⌘
zt
i
+ E [ept�

0Cy

t ] = 0 + 0 = 0.

Hence, E
⇥
g3,z
✓

⇤
only has one non-zero component, the E

⇥
g3,z
✓k

⇤
corresponding to ✓k = M . Then,

applying Newey and McFadden (1994)’s Theorem 6.1 allows us to conclude that

�2
M

=
var

�
g3,zt

�

E
⇥
g3,z
M

⇤2 =
var (eyt zt)

E [z2t ]
=

E
h
E
h
(eyt )

2 |ut

i
z2
t

i

E [z2t ]
2 =

E [�2
eyz

2
t
]

E [z2t ]
2 =

�2
ey

�2
z

.

By the same reasoning (using g2,z rather than g3,z), we have �2
µ
=

E
h
(ept )

2
i

E[z2t ]
.

The optimal � remains as in Proposition 3. This is proven exactly as at the end of the proof of

Proposition 4.

C.4 Proof of Corollary 2

In this example � = ◆, where ◆ is an N -dimensional vector of ones. So, with E = ◆

N
a N-dimensional

vector with coe�cients equal to 1
N
:

Q = I � ◆ (◆0◆)�1 ◆0 = I � ◆◆0

N
= I � ◆E 0

For a vector u, ǔ := Qu = u � ◆uE, which means ǔit = uit � uEt. So, zt =
P

i
Siǔit =

P
i
Si (uit � uEt) = uSt � uEt. Finally, �u� = h�u comes from (57).

Generalization For instance, if �i = (1, xi) with xE = 0, the variance is �2
u�

= �2
u
S 0QS i.e.

�2
u�

= �2
u

✓
h2 � 1

N

x2
S

�2
x

◆
. (80)
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where �2
x
=

P
k x

2
k

N
. This illustrates how controlling for more factors reduces the standard deviation

of the GIV, resulting in a lower precision of the estimator (as in Proposition 2), especially if x2
S
is

large and N is small. An advantage of having lots of small firms (large N) is that they make the

estimation of the aggregate shocks ⌘̌t easier, and hence increase the precision of the GIV estimator

by shrinking the last term in (80), 1
N

x
2
S

�2
xi

).

Derivation of (80). First note that 1
N
�0� =

 
1 0

0 �2
x

!
. Define ⌦ := � (�0�)�1 �0 so thatQ = I�⌦.

With X = (xi)i=1...N , ⌦ = 1
N
◆◆0 + XX

0

N�2
x
. This implies:

S 0QS = S 0S � S 0⌦S = S 0S � 1

N
� (S 0X)2

N�2
x

= h2 � x2
S

N�2
x

,

where h2 = S 0S � 1
N

and xS = S 0X. So
�
2
u�
�2
u
= S 0QS = h2 � x

2
S

N�2
x
.

C.5 Proof of Proposition 6

We provide the proof in both the homoskedastic and heteroskedastic cases, anticipating Proposition

8. For that, we will use two useful lemmata.

Lemma 2 Suppose we have x = �b where x, � and b are matrices with dimensions N ⇥ k, N ⇥ r

and r ⇥ k respectively. Then, for any N ⇥N weight matrices W and W̃ , using the definition (52),

Q�,W̃ = Q�,W̃Qx,W (81)

Proof of Lemma 2. As Q�,W̃� = 0, we can write

Q�,W̃ �Q�,W̃Qx,W = Q�,W̃
�
I �Qx,W

�
= Q�,W̃

�
xRx,W

�
= Q�,W̃�bRx,W = 0,

so that Q�,W̃ = Q�,W̃Qx,W . ⇤

Lemma 3 With E = Rx,W and �0 = S 0Q�,W̃ , for W = (V u)�1 and W̃ any invertible N⇥N matrix:

E [Eutu�t] = 0, Ex = Ik. (82)

Proof of Lemma 3. We have Ex = Ik by (53). Moreover, using (81),

E [Eutu�t] = E [Eutu0
t
�] = EV u� = Rx,WV u

⇣
Q�,W̃

⌘0
S = Rx,WW�1

�
Qx,W

�0 ⇣
Q�,W̃

⌘0

S = 0,

as Rx,WW�1
�
Qx,W

�0
= 0, per the general properties in (53).44 ⇤

44We note that E [u�tuSt] = �0V uS = S0Q�,W̃V uS, which we need to be non-zero. This is generically the case.
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Proposition 9 Take a vector � satisfying (4), so that zt := �0 (yt � Cy

t m
y) = �ut, and a k ⇥ N

matrix E satisfying (82). Then, we can identify �̇d via the moment:

E
h⇣

E (yt � Cy

t m
y)� �̇dpt

⌘
zt
i
= 0, (83)

i.e. �̇d = E[Eytz]
E[ptzt] .

Note that (82) and (83), for the parametric-heterogeneous elasticity case, are the natural gener-

alizations of the homogeneous elasticity case, in particular of (10), which said that E [u
Ẽt
u�t] = 0,

and (11), which said that E
⇥�
y
Ẽt

� �dpt
�
zt
⇤
= 0: we replace Ẽ 0 by E .

Proof of Proposition 9. We have yt � Cy

t m
y � �dpt = �⌘t + ut and E�d = Ex�̇d = �̇d, so

E(yt � Cy

t m
y)� �̇d = E

�
yt � Cy

t m
y � �dpt

�
= E (�⌘t + ut) = E�⌘t + Eut

As E [⌘tzt] = 0 and E [Eutu�t] = 0, we have E
h⇣

E (yt � Cy

t m
y)� �̇dpt

⌘
zt
i
= 0. ⇤

Proof of Proposition 6. Together, Proposition 9 and Lemma 3 imply Proposition 6.

C.6 Proof of Proposition 7

WithQ◆ = I�◆E 0 the demeaning operator, we define the demeaned values y̌t = Q◆yt and Čy

t = Q◆Cy

t ,

and the function gt (✓) =
�
gk
t
(✓)
�
k=0,...,3

as

g0
t
(✓) :=

�
�y̌t + Čy

t m
y
�0
Čy

t , (84)

g1
t
(✓) :=

�
�y̌t + �̌⌘̌t

�
my, �̌

�
+ Čy

t m
y
�
⌘̌t
�
my, �̌

�0
(85)

g2
t
(✓) :=

�
�pt +  ySt + bp⌘̌t

�
my, �̌

�
+ Cp

t m
p
� �

zt
�
my, �̌

�
, ⌘̌t
�
my, �̌

�
, Cp

t

�
(86)

g3
t
(✓) :=

⇣
�y

Ẽt
+ �dpt + by⌘̌t

�
my, �̌

�
+ Cy

Ẽt
my

⌘⇣
zt
�
my, �̌

�
, ⌘̌t
�
my, �̌

�0⌘
(87)

The reasoning is very similar to that in the proof of Proposition 4, so we are a bit more concise.

At the true value, E [gt (✓0)] = 0. E [g0
t
(✓0)] = 0 is equivalent to E

⇥
Q◆ (�⌘t + ut)

0 Cy

t Q
◆
⇤
= 0,

which is true from our maintained assumption that Cy

t ? ⌘t, ut. E [g1
t
(✓)] = 0 is equivalent to

E [Q◆ǔt⌘̌0t] = 0, which is true as Lemma 1 implies ǔt ? ⌘̌t. E
⇥
gk
t
(✓)
⇤
= 0 with k = 2, 3 were verified

in the proof of Proposition 4

The solution of E [gt (✓)] = 0 is unique. We first show that the equation E [g0
t
(✓)] = 0 uniquely

identifies my. Indeed it is equivalent to my = E
⇥�
ČyČy

t

�⇤�1 E
h
Čy0

t Q
�̌y̌t
i
, since E

⇥�
ČyČy

t

�⇤�1
has

full rank by Assumption 5.
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Next, we show that the equation E [g1
t
(✓)] = 0 uniquely identifies �̌. To do so, we are going to

show that E [g0
t
(✓)] = 0 is equivalent to saying that �̌f is an eigenvector of V y̌t�C

y
t m

y
. The proof

goes as follows. For notational simplicity, let us replace yt � Cy

t m
y by yt. Given our normalization

�
0
�

N
= Ir, we have �̌

0
�̌

N
= Ir�1 so that R�̌ = 1

N
�̌0. Hence ⌘̌t = R�̌Q◆yt = 1

N
�̌0yt. The moment

E [g1
t
(✓)] = 0 is then E

⇥�
�y̌t + �̌⌘̌t

�
⌘̌0
t

⇤
= 0 i.e.

�̌E [⌘̌t⌘̌
0
t
] = E [y̌t⌘̌

0
t
] = E [y̌ty̌t]

1

N
�̌ = V y̌

1

N
�̌.

As part of our normalizations, E [⌘̌t⌘̌0t] is diagonal i.e. E [⌘̌t⌘̌0t] = Diag (df )f=1...r�1 for some df .45

Post-multiplying by ef , the basis vector with entry 1 at position f and 0 elsewhere,

�̌fNdf = V y̌�̌f

Therefore, �̌f is an eigenvector of V y̌, with eigenvalue Ndf . Given our normalizations stated before

Proposition 4.2, this ensures that �̌f is indeed uniquely identified: it is the f -th largest eigenvector

of matrix V y̌t�C
y
t m

y
.

Finally, given my and �, the other parameters of ✓ satisfy a linear equation, like in the proof of

Proposition 4. So, by the rank conditions of Assumption 5, the solution is unique.

The estimator is consistent. As in the proof of Proposition 4, we proceed to apply general

GMM results (Hansen (1982); Newey and McFadden (1994)). In particular under the regularity

conditions and i.i.d. sampling, by Newey and McFadden (1994), Theorem 2.6, the estimator is

consistent.

The estimator is
p
T -normally distributed. Under the regularity conditions we assumed (and

in particular that  �d 6= 1, which ensures bounded gradients), by Newey and McFadden (1994),

Theorem 3.4,
p
T (✓e

T
� ✓) converges in distribution to a normal distribution with mean 0 and

positive definite variance covariance matrix V ✓.

C.7 Proof of Proposition 8

The earlier proofs were written in such a way that they readily generalize, where one replaces Q�,

R� by Q�,W and R�,W as in (52), with W = (V u)�1 as spelled out in Proposition 8. Similarly, cross-

sectional moments in the proofs become weighted by W as stated in Proposition 8, for instance

g1
t
(✓) in (65) becomes g1

t
(✓) :=

�
�y̌t + �̌⌘̌t (my) + Čy

t m
y
�0
WČy

t . Then all the arguments above go

through, with heteroskedasticity. To generalize the optimality of �⇤ in Proposition 3, the arguments

just repeat the Cauchy-Schwarz arguments of the proof of Proposition 3 for the optimality of �⇤.

45Indeed, as is well-known, �̌⌘̌t can be expressed as �̌U 0U ⌘̌t for any unitary matrix U (with U 0U = Ir). We can
choose U so that U ⌘̌t has diagonal variance-covariance matrix.
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D Complements

D.1 Detailed links with previous literature

Procedures containing elements of GIVs A few papers have explored the idea of using

idiosyncratic shocks as instruments to estimate spillover e↵ects, such as Leary and Roberts (2014)

in the context of firms’ capital structure choice and Amiti et al. (2019) in the context of firms’ price

setting decisions. The structure of the estimating equations in these papers is similar to the model

that we consider here:46

yt = �ywt +mCt + ut,

where ywt = w0yt can be equally-weighted (Leary and Roberts (2014)) or size-weighted (Amiti et

al. (2019)), depending on the weights w. Both papers use industry and/or year fixed e↵ects, which

can be viewed as a choice of controls or exogenous factors, ⌘t, to which all firms in a given industry

have the same exposure.

There are two main di↵erences compared to GIV. First, both papers use idiosyncratic shocks

to another variable than yt, say gt, to construct an instrument for ywt. Leary and Roberts (2014)

use idiosyncratic stock returns and Amiti et al. (2019) use shocks to competitors’ marginal cost,

exchange rates, or export prices. We, instead, propose to use idiosyncratic shocks to yt rather than

another instrument (this way requiring fewer times series). Second, and related, we control for

heterogeneous exposures to common factors to extract the idiosyncratic shocks, which is important

in asymptotic theory and in practice in realistic samples (see Section H.3).

A third di↵erence is specific to Leary and Roberts (2014). GIVs crucially depend on the dif-

ference between size- and equal-weighted averages of variables. If the estimating equation depends

on equal-weighted averages, GIV cannot be applied. In most models, however, not all competitors

receive equal weight and larger firms, or perhaps firms that are closer in product space, receive a

larger weight.

Lastly, the use of model-based idiosyncratic shocks has some similarities with Amiti and Wein-

stein (2018), who extract bank supply shocks from Japanese data using a panel of fixed e↵ects, and

then estimate the sensitivity of aggregate investment to these shocks. However, unlike our model,

Amiti and Weinstein (2018) assume a uniform sensitivity to the aggregate shocks (�i⌘t with �i = 1

for all i), and do not allow for general equilibrium e↵ects: shocks to banks a↵ect aggregate invest-

ment, but aggregate investment does not circle back around to a↵ect individual bank behavior.

This is the key source of endogeneity in many of the models we consider, and by tackling it we are

able to estimate a richer set of parameters.

In a tangentially related recent paper, Sarto (2022) uses factor analysis to extract values of ⌘t
(much as we do when we “recover” a factor ⌘t). Take the basic example in our paper. Then, Sarto

46Amiti et al. (2019) study the price setting decision of firms. In their model, the pricing equation features two
endogenous variables, namely the same firm’s marginal cost and the size-weighted average of competitors’ prices. We
focus on the spillover e↵ects of competitors’ prices in our discussion in this section.
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does not identify �s = 1
 
: even if ⌘t (the aggregate shock to demand) were perfectly identified,

that would not allow to estimate pt. In the supply and demand example, Sarto’s approach would

identify the demand elasticity �d, but not the supply elasticity �s.

Other methods to estimate aggregate elasticities Rigobon (2003) introduces another

method that can be used to estimate spillover e↵ects and aggregate multipliers using time-variation

in second moments. If shocks are heteroskedastic and the structural parameters are stable across

regimes, then the di↵erent volatility regimes add additional equations to the system so that the

structural parameters can be identified. GIV does not require heteroskedasticity, but can accommo-

date it, and is therefore complementary to identification methods that rely on heteroskedasticity.

Spatial econometrics In some applications of GIVs we have considered separately, growth

in a region a↵ects that of the other regions. So there is a similarity between our setup and that of

spatial econometrics (e.g. Kelejian and Prucha (1999)). However, the estimators are quite di↵erent.

The reason is that spatial econometrics studies the “local” influence (e.g. of neighboring cities on

a city), while GIVs study the global influence. Hence, the sources of variation, identifiability

conditions and methods are quite di↵erent. Certainly, the spatial literature has not identified, as

we do, the GIVs as a simple way to estimate elasticities in contexts such as supply and demand

problems, and models with general equilibrium e↵ects as opposed to local e↵ects. Still, some of

the sophisticated techniques of the spatial literature might be used one day to enrich a GIV-type

analysis.

Quasi-experimental instruments and identification by functional form A large lit-

erature explores identification by functional form, where consistency of the estimator depends on

functional form or distributional assumptions. Classic examples include the Heckman (1978) se-

lection model, identification via heteroskedasticity, as in Rigobon (2003) and Lewbel (2012), and

Arellano and Bond (1991) and Blundell and Bond (1998) in the context of dynamic panel data

models. The typical concern with these approaches, compared to quasi-experimental instruments

that are outside of the model, is that the estimators are inconsistent when the model is misspecified.

In the case of GIVs, we generally start from a structural model that motivates the estimating

equation, as in our empirical example. This prescribes the definition of the size vector S and, in

some cases, the characteristics that determine the exposures xit. To extract idiosyncratic shocks,

we rely on statistical factor models.47

Instead of viewing this last step as a merely statistical exercise that is hard to validate externally,

GIVs provide an empirical strategy to understand the economic drivers of the instrument by screen-

ing the top shocks narratively. By understanding the nature of the shock based on news coverage

(as in the narrative examination we just discussed), for instance, we can ensure that the shocks are

47We discuss the robustness of GIVs to various forms of misspecification in Section 3.3.
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truly idiosyncratic and interpretable. For instance, a large negative return associated with a failed

stress test of a bank in the context of doom loops, a negative supply shock in Kuwait and Iraq

during the First Gulf War, or a positive demand shock in China in the early 2000s in the context

crude oil markets, are all valid instruments. While alternative identification methods might rely on

functional form assumptions only, GIVs, by being able to screen the shocks economically, provide

a systematic way to construct instruments more in the spirit of quasi-experimental instruments.

D.2 A benchmark model: A simple supply and demand model

For clarity, we lay out a concrete economic model of the equilibrium in, for instance, the oil market.

There is a succession of i.i.d. economies indexed by t. Demand by country i at date t is Dit =

Q̄Si (1 + yit), where Q̄ is the average total world production, yit is a demand shift term, and Si is

country i’s share of demand, normalized to follow
P

N

i=1 Si = 1. The demand shift yit is

yit = �dpt + �i⌘t + uit, (88)

where pt =
Pt�P̄

P̄
is the proportional deviation from P̄ , which can be thought as the average price of

oil, �d is the elasticity of demand, ⌘t 2 Rr is an r�dimensional vector of common shocks, �i 2 Rr is

country i’s sensitivity to the common shocks, and uit is the idiosyncratic demand shock by country

i.

All shocks are i.i.d. across dates. Then, total world demand is Dt =
P

i
Dit = Q̄ (1 + ySt),

where ySt :=
P

i
Siyit is the size-weighted average demand disturbance. We suppose that supply is

Qt = Q̄ (1 + st), where the supply shift st is

st = �spt + "s
t
, (89)

where �s = 1
 
is the elasticity of demand and "s

t
is a supply shock. This can also be written as in

(2)

pt =  ySt + "t,  =
1

�s
(90)

with "t := � "
s
t
�s

Then, to equilibrate supply and demand (Dt = Qt), the price must adjust so that Q̄ (1 + ySt) =

Q̄ (1 + �spt + "t), i.e., ySt = st, which gives

pt =
uSt + �S⌘t � "t

�s � �d
= µuSt + "pt , (91)

where µ := 1
�s��d is the price impact of a demand shock uSt, and "

p

t
:= �S⌘t�"t

�s��d is made of aggregate
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shocks. The equilibrium quantity produced is given by:

st = ySt =
�suSt + �s�S⌘t � �d"t

�s � �d
= MuSt + "s

t
, (92)

where the multiplier M := �
s

�s��d is quantity impact of a demand shock uSt, and "st := �
s
�S⌘t��d"t
�s��d

is made of aggregate shocks. We want to estimate the elasticity of supply and demand, �s and �d,

and their related quantities, µ and M . A 1% demand shock leads to a µ% price increase and an

M% supply increase.

D.3 Estimating the variance of heteroskedastic idiosyncratic shocks

When the uit have a potentially di↵erent variance �2
ui
, we need to estimate � = diag (�ui). This is

not a di�cult problem, but it requires some care as the ui are estimated as residuals from a factor

model. Accordingly, we proceed in the following way. First, we make an observation.

Lemma 4 Suppose that we have recovered residuals ǔt = Q⇤,Wut for some arbitrary ⇤, with W =

(V u)�1 = diag
�
��2
ui

�
and Q⇤,W defined as in (52). Then,

var (ǔit) = Q⇤,W
ii

�2
ui

(93)

Proof. We have

V ǔ = E [ǔtǔ
0
t
] = QE [utu

0
t
]Q0 = QV uQ0 = QW�1Q0.

Using (I �Q)W�1Q0 = 0 (see (53)), V ǔ = W�1Q0 = V uQ0, so, using the fact that V u is diagonal,

we get (93). ⇤
Next, we have the following.

Proposition 10 (GIV estimation when the variances �2
ui

are estimated). Let the assumptions in

Proposition 8 hold, except that we now we need to estimate W = diag
�
��2
ui

�
. Take the system of

Proposition 8, and append
�
�2
ui

�
i=1...N

to the vector ✓ of parameters to estimate; and append the

collection of N moments:

TX

t=1

ǔ2
it
= TQ�,W

ii
�2
ui
, ǔt := Q�,W (yt � Cy

t m
y) (94)

to the moments of Proposition 8. Then, under the true value ✓0, all the moments, including (94),

hold in expectation. Furthermore, assuming  6= 0 and that ✓0 is the unique solution of the afore-

mentioned moment conditions, then the vector ✓0 is consistently estimated (with T ! 1 and fixed

N), and we have
p
T (✓e

T
� ✓0) ! N

�
0, V ✓

�
for a matrix V ✓.
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Proof. Using the matrix q := I � ◆Ẽ 0, we demeaned y̌t = yt � ◆y
Ẽt

is also

y̌t := qyt = q�⌘t + qut

Next, with � = (◆,⇤), we apply Q�,W . We remark that:48

Q�,W = Q�,W q (95)

Hence,

Q�,W y̌t := Q�,W qyt = Q�,W
�
�̌⌘t + qut

�
= Q�,Wut =: ǔt

Hence we obtain ǔt as the residual. We then use the moment (93), with W = (V u)�1 i.e. (94).

This shows that,

E
⇥
ǔ2
it

⇤
= Q�,W

ii
�2
ui

Formally, defining

gu
t
(✓) :=

⇣
ǔ2
it
(✓)�Q�,W

ii
(✓) �2

ui
(✓)
⌘

i=1...N
, ǔt (✓) := Q�,W (✓) (yt � Cy

t m
y (✓)) (96)

then we have, at the true value ✓0,

E [gu
t
(✓0)] = 0N .

We append gu
t
(✓) to the vector of conditions gt (✓). We just proved that at the true value,

E [gt (✓0)] = 0. We also assumed that this was the only solution.49

We thus proceed to apply general GMM results (Hansen, 1982; Newey and McFadden, 1994).

In particular under the regularity conditions and i.i.d. sampling, by Newey and McFadden (1994),

Theorem 2.6, the estimator is consistent.

The estimator is
p
T -normally distributed. Under the regularity conditions we assumed, by

Newey and McFadden (1994), Theorem 3.4,
p
T (✓e

T
� ✓0) converges in distribution to a normal

distribution with mean 0 and positive variance covariance matrix V ✓. ⇤
There is a fixed point in (94): given the �2

ui
’s, we form W = diag

�
��2
ui

�
, which in turns gives an

estimate of �2
ui

via (94).

Stochastic volatility This procedure assumes constant volatility. It could also be extended, to

stochastic volatility, along the lines of the GARCH literature. Recall that the generalization of

Ei =
1
N

was Ẽi :=
1/�2

uiP
j 1/�

2
uj

, see (54). Then, the correct generalization of (54) is Ẽit :=
1/�2

uit|t�1P
j 1/�

2
ujt|t�1

,

where �2
uit|t�1

= Et�1 [u2
it
] is the conditional expected variance.50 Then, with �t = S � Et, we have

48Indeed, we have Q�,W �Q�,W q = Q�,W (I � q) = Q�,W ◆Ẽ0 = 0.
49While so far we dealt with block-linear equations in ✓, now we have a non-linear equation. We suspect that in

most cases of interest, the solution is unique, but we assume this rather than attempt to prove it.
50The reason is that all we need is to control expressions of the type Et�1 [utu0

t], i.e. Et�1 [V u
t ].
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the generalization of (10),51

Et�1

⇥
u
Ẽtt

u�tt

⇤
= 0 (97)

Likewise, when constructing the weighing matrices (52) with W = (V u)�1, we replace W by Wt�1 =

(Et�1 [V u

t
])�1. Those remarks might be useful to a full econometric analysis of GIV with stochastic

volatility, but we leave such an analysis to future research.

D.4 Relation between Bartik instruments and GIVs

D.4.1 Relating the Bartik setup to the GIV setup

Bartik instruments are widely used to estimate parameters of interest. In this appendix, we compare

the assumptions under which Bartik instruments are valid to those under which GIVs are valid.

This comparison is useful also to highlight settings in which GIVs can and cannot be used (and

vice versa for Bartik).

As a general matter, in a number of cases where a cross-section is used (e.g. Autor et al. (2013)),

Bartik applies, but GIV does not apply, for instance because there is no large idiosyncratic shock

that one can use.

Next, to study the di↵erence between GIV and Bartik more analytically, we start from the setup

in Borusyak et al. (2022), and then map it to our model.52 Their model can be summarized as

yl = �xl + ✏l,

where we omit observable controls, w0
l
�. In this specification, l corresponds to locations. The

endogeneity concern is that E[xl✏l] 6= 0. The endogenous variable can be written in terms of

industry-location shares, where industries are indexed by n,

xl =
X

n

slngln,

and
P

n
sln = 1. To connect Bartik instruments to GIV, we assume a simple factor model in gln,

gln = gn + g̃ln,

51Derivation: with Ẽit := kt/�2
uit|t�1

, with
P

i Ẽit = 1,

Et�1

⇥
uẼtt

u�tt

⇤
=

X

i

Ẽit

⇣
Si � Ẽit

⌘
Et�1

⇥
u2
it

⇤
=
X

i

Ẽit

⇣
Si � Ẽit

⌘
�2
uit|t�1

=
X

i

kt
⇣
Si � Ẽit

⌘

= kt

 
X

i

Si �
X

i

Ẽit

!
= kt (1� 1) = 0.

52We are grateful to a referee for suggesting this connection.
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that is, the loadings on the common factor, gn, are equal to one. In Bartik applications, a concern is

typically that E[g̃ln✏l] 6= 0, for instance, when local economic conditions in location l are correlated

with the idiosyncratic growth rate of industry n in location l.

To express the identifying assumption in Borusyak et al. (2022), they write the model at the

industry level

ȳn = ↵ + �x̄n + ✏̄n, (98)

where b̄n =
P

l slnblP
l sln

, for some variable bl. The shares, sln, are assumed to be non-stochastic, and the

main identifying assumption is that E[gn✏̄n] = 0.

D.4.2 Defining and comparing the Bartik and GIV instruments

The Bartik instrument is defined as

zBartik

n
=

1

L

X

l

gln.

The GIV is defined as

zGIV

n
=
X

l

s̃lngln �
1

L

X

l

gln,

where s̃ln is the location share of industry n so that
P

l
s̃ln = 1. Hence, we have limL!1 zBartik

n
= gn

and limL!1 zGIV

n
= limL!1

P
l
s̃lng̃ln = g̃

S̃n
. In the remainder of this section, we work with the

large L version of the instruments to simplify the exposition.

For Bartik instruments to be valid in (98), we need E[gn✏̄n] = 0. For the GIV to be valid, we need

E[
P

l
s̃lng̃ln✏̄n] = E[

P
l
s̃lng̃ln

P
l sln✏lP
l sln

] = 0. As E[g̃ln✏l] may not be zero in cross-sectional settings, as

discussed before, GIV is not the most natural instrument in those circumstances.

By the same logic, the identifying assumption of the Bartik instrument may be less appealing in

settings where the identifying assumption of the GIV is more plausible. To connect the Borusyak et

al. (2022) setup to the one we consider in this paper, we relabel l to i = 1, ..., N and n to t = 1, ..., T .

In addition, we set �i = 1, gln to yit, gn to ⌘t, g̃ln to uit, which implies yit = ⌘t + uit. For simplicity,

we assume that the shares do not vary across time (and thus across n in the Bartik setup). We use

Si, with Sit = Si, to denote the relative size such that
P

i
Si = 1.

We redefine the Bartik instrument and the GIV using these definitions:

zBartik

t
=

1

N

X

i

git = gEt,

and

zGIV

t
=
X

i

Sigit �
1

N

X

i

git.

Hence, we have limN!1 zBartik

t
= ⌘t and limN!1 zGIV

t
= uSt. As before, we work with the large N
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version of the instruments to simplify the exposition. To provide a simple example where the Bartik

instrument may be less appealing, we consider a trivial version of our baseline model in Section 2

(with �d = 0)

yit = ⌘t + uit,

st = �spt + "t,

where pSt = (⌘t + uSt � "t)/�s. If we average the model in the cross-section (again using the limit

when N ! 1)

yEt = ⌘t,

st = �spt + "t,

To estimate �S, we can use two instruments. First, we can use GIV, which requires

E ["tuSt] = 0.

Alternatively, we can use the Bartik instrument and assume

E ["t⌘t] = 0.

In this example, the Bartik instrument requires assumptions that are too strong in models in which

⌘t and "t are correlated. These are the settings that we focus on in this paper, and GIV is well

suited to estimate the parameters of interest.

D.5 More general setup and multipliers

We now propose a more general setup with potentially several factors and rich heterogeneity.

D.5.1 Framework

Consider the following model of outcome variables yit (such as employment, investment, TFP shocks,

returns, and so on)for “actor” i (e.g., a firm or industry i in a closed-economy setting, or a country

i in an international setting):

yit =
X

f

�f
it
F f

t + uit + Cy

it
m, (99)

where each F f

t is a factor, �f
it
is factor loading, uit is an idiosyncratic shock, and Cy

it
is a vector of

controls that may include lagged demands and other characteristics. We could also add constants,
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but we omit them for notational simplicity. Factor f follows:

F f

t = ↵fySt + ⌘ft + Cf

t m
f . (100)

It depends on an exogenous shock ⌘ft , and potentially on the mean action ySt, and on a set of controls

Cf

t (potentially di↵erent from Cy

it
). Those controls may include, for instance, lagged values. We

assume that the “size” weights have been normalized to add to one,
P

i
Si = 1.

We use the structure (99)-(100) because many economic models of interest follow this structure,

at least after linearization, so that the GIV allows to estimate some of their parameters.

We partition the factors into “exogenous factors”, where we know ↵f = 0, and “endogenous”

factors where ↵f may be non-zero. As in the rest of the paper, we make the mild assumption that

all our variables (e.g. ⌘ft , ut) have finite second moments

In the baseline case here we study the parametric case. We have some characteristics xit of

actors: for instance, depending on the application we know that the loading is an a�ne function of

log market capitalization, or the stock market beta of a bank, or OPEC membership. We also have

a priori knowledge that for some parameter �̇f to be estimated we have:

�f
it
= �̇f0 + �̇f1x

f

it
, (101)

This is consistent with the practice in modern finance in which risk exposures (betas) align with

characteristics (see e.g. Fama and French (1993)), so that parametric approaches are preferred, in

particular because they are more stable than non-parametric approaches.

We make the following identifying assumptions. For all f , i, the shocks uit are idiosyncratic:

E
h
uit

⇣
⌘ft , C

y

t , C
f

t , x
f

t

⌘i
= 0, (102)

but the ⌘ft may be correlated across f ’s, and ⌘ft may be correlated with the controls, Cy

t and Cf

t .

The uit may have some correlation across i’s and can be heteroskedastic, as we discuss later. For

expositional simplicity we assume that all dates are i.i.d.

We rewrite model (99) in vector form:

yt = �tFt + ut + Cy

t m, F f

t = ↵fySt + ⌘ft + Cf

t m
f , (103)

with �t a N ⇥ r matrix, Ft a r⇥ 1 vector, Cy

t an N ⇥ c matrix, m is c⇥ 1, where c is the dimension

of the controls.53

53Our initial examples are particular cases of the general procedure.

47



D.5.2 Multipliers

Solving the model gives ySt = �StFt + uSt +Cy

St
m, that is, ySt = �St↵ySt + uSt + "yt , where ↵ is the

vector stacking the ↵f ’s and "yt satisfies "yt ? ut. So, we can solve for the aggregate outcome ySt as

ySt =
uSt+"

y
t

1��St↵
, that is,

ySt = Mt (uSt + "yt ) , (104)

where the multiplier Mt measures the total impact of shocks, after going through all general equi-

librium e↵ects (where we assume that the denominator is not 0):

Mt =
1

1� �St↵
=

1

1�
P

f
�f
St
↵f

. (105)

Hence, an idiosyncratic shock has an impact on the aggregate action ySt that is Mt times bigger

than its direct e↵ect. Also, the total impact of an idiosyncratic shock on factor f is:

F f

t = Mt↵
fuSt + "ft , (106)

where it again holds that "ft ? uSt. This shows intuitively, and we will prove formally below, that

our regressions will allow to identify Mt and Mt↵f .

In some cases, we may not observe all endogenous factors, F f

t . In this case, we still recover the

correct multiplier, Mt, and it should be interpreted as accounting for all general equilibrium e↵ects

in the economy, including those operating via the unobservable, endogenous factors. However, we

can obviously not estimate ↵f for those unobserved factors.

D.6 The GIV with multi-dimensional outcomes for each entity

Suppose now that the outcome or action yit is q�dimensional, for some q � 1 – and so are uit. For

instance, yit’s components might be the growth rate and the labor share of firm i, and then q = 2.

Then, the general GIV procedure extends well, as we shall now see.

We call a 2 {1, . . . , q} (as in action) a component of y. We consider the model

ya
Sat =

X

f

�a
Sa,fF

f + ua

Sat,

F f

t = ⌘ft +
X

a

↵f

a
ya
Sa,t,

Here uit is q dimensional, ↵ is a r ⇥ q dimensional matrix, and �S is a q ⇥ r dimensional matrix.

We can also estimate M (hence
P

f
�f↵f ), the ↵f . Indeed, for "t a composite of aggregate

shocks,

ySt = HySt + uSt + "t,
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where

H = �A =
X

f

�f↵f ,

with �af = �a
Sa,f and Afa = ↵f

a
matrices with dimensions q ⇥ r and r ⇥ q respectively, so that H is

q ⇥ q, and

uSt = (ua

Sat)a=1,...,q .

This implies

ySt = M (uSt + "t) , (107)

where the multiplier M is now a q ⇥ q matrix:

M = (I �H)�1 .

We will form a GIV:

zt = u�t,

which is q�dimensional: u� = (ua

�a)a=1,...,q . We want, with Ea = Sa � �a,

E [uEtu
0
�t] = 0

i.e., for all a, b, ⌦ab = 0, where

⌦ab := E
⇥
ua

Eatu
b

�bt

⇤
.

Let us focus on the case where uit, ujt are uncorrelated for i 6= j, but for a given i, ua

it
, ub

it
can be

correlated. (If a firm has an investment boom, it will likely hire more labor, so that the components

of its idiosyncratic shock in yit 2 Rq will be correlated.)

We have:

⌦ab =
X

i

Ea

i
�b

i
vab
i
, vab

i
:= E

⇥
ua

it
ub

it

⇤
. (108)

For simplicity, we will suppose that that there are vab and �2
i
such that

vab
i

= �2
i
vab. (109)

Hence, we can simply take Ei =
k

�2
i
with k = 1P

j 1/�
2
j
and set, for all a, Ea

i
= Ei and �a = Sa � Ea.

Then,

⌦ab =
X

i

k

�2
i

�b

i
�2
i
vab = kvab

X

i

�b

i
= 0,

so that we have achieved our goal that E [uEtu0
�t] = 0. In the more general case, other �a

i
can

probably be found.
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Given (107), we have

ySt = M (uSt + "t) = M (u�t + uEt + "t) ,

so

E [yStz
0
t
] = ME [ztz

0
t
] ,

hence our estimator is

M = E [yStz
0
t
]E [ztz

0
t
]�1 . (110)

Finally, we can also estimate ↵fM by regressing on zt:

F f

t = ⌘ft +
X

a

↵f

a
ya
Sa,t = ⌘ft + ↵fySt = ⌘ft + ↵fM (u�t + uEt + "t) ,

so �f = ↵fM (a row vector) obtains by simply regressing

F f

t = �fzt + "ft ,

and get �f = ↵fM , �f = E
h
F f

t z
0
t

i
E [ztz0t]

�1.

Extension: causal estimation of the actor-specific multiplier The following is a refinement.

We can also identify causally µi := �i↵ =
P

f
�f
i
↵f . Indeed, use

u�t,�i := u�t � Su

i
uit, (111)

which is the granular shock purged of a correlation with uit. Then, a shock uSt creates an impact
dFt
duSt

= M↵, hence an impact
dyit
duSt

= �iM↵.

Hence, we can identify µi, by regression

yit = µiMu�t,�i + �iCt+"yit, (112)

with some noise "y
it
. This is the average impact of a causal impact of idiosyncratic shocks of the

other entities on entity i.

D.7 Nonlinear GIV

We imagine a nonlinear GIV. Suppose that instead of the simple pt =  ySt + "t (equation (1)) we

have a more complex

pt = � (ySt, ) + "t (113)
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for � a nonlinear function. We can use the moment:

E [(pt � � (ySt, )) zt] = 0 (114)

and can still identify a one-dimensional  . For a higher-dimensional  , we might add z2
t
as instru-

ment, though the instrument becomes weaker.

D.8 When the researcher assumes too much homogeneity

Take the supply and demand example, and imagine that the econometrician assumes a homogeneous

elasticity of demand �d, even though there are in fact heterogeneous elasticities �d

i
. What happens

then?

The model becomes, for the demand:

yit = �d

i
pt + �i⌘t + uit,

and for the supply

st = �spt + "t.

As supply equals demand, ySt = st, which gives the price

pt =
uSt + �S⌘t � "t

�s � �d

S

. (115)

In this thought experiment, the econometrician assumes identical elasticities of demand across

countries, �d

i
= �d. He runs a panel model for yit � yEt, and we assume that it’s large enough that

he can extract ⌘t successfully.54 The GIV (we use the notation Zt rather than zt to denote the GIV

before controls by ⌘t) is then

Zt := y�t = �d

�pt + ��⌘t + u�t =

✓
1 +

�d

�

�s � �d

S

◆
u�t + �Z ⌘̃t =

1

 
u�t + �Z ⌘̃t,

so

Zt =
1

 
u�t + �Z ⌘̃t,

1

 
=
�s � �d

E

�s � �d

S

, (116)

where 1
 
= 1 in the homogeneous-elasticity case, ⌘̃t = (⌘t, "t, uEt) gathers the common shocks, and

�Z is a vector of loadings.

Hence, when we run the first stage

pt = bpZt + �p⌘t + "pt ,

54One of the factors, formally, will be pt. We assume that it is not included in the vector of factors ⌘t.
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we will gather

bp =
1

�s � �d

E

.

If we run

st = bsZt + �s⌘t + "s
t
,

we will estimate

bs =
�s

�s � �d

E

.

The ratio of the two coe�cients still gives �s. Likewise, the IV on the elasticity of demand will give

�d

E
.

In the polar opposite case where ⌘t cannot be estimated or controlled for, then the simple

procedure becomes biased, however, as (116) shows. To fix it, one can estimate the model with

non-parametric coe�cients (Section D.9).

D.9 Heterogeneous demand elasticities: Non-parametric extension

Non-parametric version for �d We present a variant of the procedure in Section 4.1, but now

with non-parametric heterogeneous demand elasticities �d

i
. The model is

yt = �dpt + �⌘t + ut, (117)

We still assume parametric loading of unobserved factors ⌘.

We propose two procedures to estimate �d.

D.9.1 First procedure for the nonparametric estimation of heterogeneous demand

elasticities

Recall the model (117). We replace �d by � = (�1, . . . ,�N)
0 for notational simplicity:

yt = �pt + �⌘t + ut, (118)

We now need not assume parametric knowledge of �.

We define �⇤ :=
�
Qh�,�i�0 S, where Q is the usual projection operatoer Q⇤ = I � ⇤ (⇤0⇤)�1 ⇤,

with ⇤ formed by the span of � and �. We assume that �⇤ 6= 0: this is saying that S is not spanned

by the factor loadings � and the vector of demand elasticities �.

We propose the following procedure.

1. Guess a candidate for �, called �c, and W = (V u)�1 (initially, as it’s enough to know all those

up to a multiplicative factor, we might take �c = ◆, and W = I, or W = Diag (1/var (yit))).
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We define Q� := Q�
c
,W , keeping W implicit in this step and the next. If �c = �, then

Q�yt =
�
Q��

�
⌘t +Q�ut (119)

2. We estimate �̌ := Q��, ⌘e
t
= R�̌Q�yt, V u, ǔt = Q�̌,�ut. We form zt := S 0ǔt, and � :=

⇣
Q�̌,�

⌘0
S.

3. We estimate the vector of sensitivities �. We use a specific instrument zit for each entity i.

We proceed as follows:

(a) We define the debiasing vector ai. As ǔt = Qut, we have V ǔ = QV uQ0, and we define

ai
j
:=

V ǔ

ij

V ǔ

ii

(120)

(b) We define the instrument for entity i,

zit := S 0 �ǔe

t
� aiǔe

it

�
(121)

Morally, it’s the size weighted sum idiosyncratic shocks of the entities di↵erent from i.55

(c) We use the following moment to identify �i:

E [(yit � �ipt � �i⌘
e

t
) zit] = 0 (124)

4. Given this new estimates of � and V u, we go back to step 1-3, and loop until convergence.

This algorithm also applies to the parametric case where we know that �it = Xi�̇ (Section 4.1), but

keep the loadings � non-parametric. Then, in steps 1-2 we replace � by X, and in the last step we

replace � by X�̇ and estimate �̇.

Proposition 11 (Moment conditions to identify non-parametric elasticities). Define ǔt = Q�̌,�ut

in the notations above, and the entity-i specific GIV zit defined in (121). Then the moment condition

(124) holds.
55Indeed, if we had no common shocks, we’d have

aij = 1i=j (122)

so that zit =
P

j 6=i Sj ǔe
jt is a “leave one out” estimator. In the general case, zit is in some sense a refined quasi-leave

one out estimator, refined so that (126) holds. In the simple case of Section 2.1 with an additive shock (�i ⌘ 1), we
just have ǔit = uit � uEt, i.e. Qij = 1i=j � 1

N and

aij :=
1i=j � 1

N

1� 1
N

. (123)

This may be useful as a starting point numerically.
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Proof of Proposition 11. Definition (120), together with ǔt = Qut and V ǔ = QV uQ0, implies

ai
j
=

E [ǔjtǔit]

E [ǔ2
it
]

(125)

so that

E [zitǔit] = E
⇥
S 0 �ǔt � aiǔit

�
ǔit

⇤
= 0 (126)

As zit is also uncorrelated with ⌘e
t
, moment (124) holds. ⇤

D.9.2 Second procedure for the nonparametric estimation of heterogeneous demand

elasticities

We premultiply (117) by Q = Q� and set x̌t := Qxt. So y̌t = �̌dpt + ǔt. With � = Q0S, we have

y�t = �d

�pt + u�t. To ease on notations, we call  := �d

�. Given a candidate estimate  c of  we

form the associated GIV: zt ( c) := y�t �  cpt.

If we have the correct zt, the following moments hold56,57, with bp = 1
�s��dS

the coe�cient of the

first stage regression (205), pt = bpzt + "pt ,

E
⇥�
yt � �dpt

�
zt
⇤

= V u�, E [(pt � bpzt) zt] = 0 (129)

E
⇣

y̌it � �̌d

i
pt
⌘2�

= V ǔ

ii
, E

⇥
z2
t

⇤
= �0V u� (130)

which potentially allow to estimate, respectively, �d, bp (hence �s), V u

ii
and �d

�. Indeed, if we know

zt, we know �d and bp.58

We examine in more detail how to estimate  := �d

�. Calling the true value zt ( ) = u�t, we have

E [z2
t
] = �2

u�
, where �2

u�
= �0V u� is the theoretical variance of zt given in (130). So, we solve for

 c (a candidate answer for  ) so that the empirical variance of the GIV is equal to its theoretical

variance:

E
⇥
zt ( 

c)2
⇤
� �2

u�
= 0

i.e. E [p2
t
] ( c)2 � 2E [y�tpt] c + E [y2�t]� �2

u�
= 0. This is a quadratic equation in  c, which yields

56Indeed, we should have E
⇥�
yt � �dpt

�
zt
⇤
= E [utzt] = E [ut (u0

t�)] = V u�. Also, as ǔ = y̌��̌p, and V ǔ = QV uQ0.
57As a variant, we decompose into the equal weighted version, which gives �E (we premultiply by Ẽ0):

E [(yẼt � �Ẽpt) zt] = 0 (127)

and the deviation from the mean, which gives �̌i via:

E
⇥�
y̌it � �̌ipt

�
zt
⇤
= (QV u�)i (128)

58We recommend starting from the parametric estimates of Section 4.1, which gives potentially good starting
values for �d, zt and V u.
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two roots:59 a good (i.e. correct) root,  G =  , and a bad root,  B =  + 2E[z⇤t pt]
E[p2t ]

. Fortunately,

there is an economic way to determine which is the correct root. Calling G (resp. B) the estimation

with the good (resp. bad) root, one can show that:

bp,B = �bp,G, (131)

Hence, if we have a prior on the sign of of the first stage coe�cient bp (e.g. we know that bp > 0

in a demand and supply model), we can choose the correct root as the one yielding a positive bp in

the first stage.

Justification of the proposed procedure Consider an econometrician who would use the bad

root:

zB
t
= y�t � �B

� pt = u�t + ��pt � �B

� pt = zt � �pt, � = 2
E [ztpt]

E [p2t ]

This bad root satisfies E
⇥
zB
t
pt
⇤
= E [(zt � �pt) pt] = �E [ztpt], so:

E
⇥
zB
t
pt
⇤
= �E [ztpt] , E

h�
zB
t

�2i
= E

⇥
z2
t

⇤
(132)

Hence, when estimating bp in the “first stage” via E [(pt � bpzt) zt] = 0, the econometrician will

find:

bp,B =
E
⇥
ptzBt

⇤

E
h
(zBt )

2
i =

�E [ptzt]

E [z2t ]
= �bp,eG (133)

Hence, the coe�cient in the first stage will have the wrong sign. This allows to find the correct

root.

A more general argument We show how even with other procedures there are two roots for

a nonparametric model with heterogeneous elasticities, and that fortunately (as in our outlined

procedure) there is a simple economic way to identify the correct root. The model is, in vector

form:

yt = �⌘t + �pt + ut, pt = ↵ySt + "̇t

with ↵ = 1
�s
, and we use notation "̇t as we wish to keep the simpler notation "t for later. So solving

for ySt = M (�S⌘t + �S "̇t + uSt), M = 1
1��S↵ , we get, for a properly defined "̈t (an unimportant

59Indeed, calling  � :=  c �  the error, we have

0 = E
h
zt ( 

c)2
i
� �2

u�
= E

h�
z⇤t �  �pt

�2i� E
⇥
z⇤2t
⇤
= �2 �E [z⇤t pt] +

�
 �
�2 E

⇥
p2t
⇤
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linear combination of "̇t and ⌘t), pt = ↵MuSt + "̈t, hence:

yt = �⌘t + �"̈t + ↵M�uSt + ut, pt = "̈t + ↵MuSt

We wish to estimate � and ↵M.

We consider the vector Yt = (y0
t
, pt)

0 stacking together yt and pt. Then, with Ut = (u0
t
, 0)0,

� = (�0, 1)0, � = (�0, 0)0, and adding a weight “0” to the last component of the vector S (extended

here to have 1 more component, with a mild abuse of notations) we have60

Yt = �⌘t + �"̈t + ↵M�uSt + Ut (134)

i.e., with  := ↵M�, and "t :=
1
↵M

"̈t,

Yt = �⌘t + "t + uSt + Ut = �⌘t + "t + (I + S 0)Ut (135)

All the information is in V Y = E [YtY 0
t
]:

V Y = �2
⌘
��0 + �2

"
  0 + �⌘" (� 

0 + �0) + (I + S 0)V U (I + S 0) (136)

= �2
⌘
��0 + �  0 + b0 + b 0 + V U (137)

b = �⌘"�+ V US (138)

� = �2
"
+ S 0V US (139)

The idea for the multiplicity of roots in  is that we have a second degree equation in  , so

that we can have multiple roots – like in the one-dimensional case. Let us next calculate the roots,

which will lead to a procedure to identify the correct root. Forming the vector a = �1
�
b, we have

( � a) ( � a)0 = C :=
1

�

�
V Y � V U � �2

⌘
��0
�
+ aa0 (140)

Suppose that we have estimated all the parameters, and it remains to estimate  , i.e. solve for  c

(as in a candidate value for  ) the equation:

( c � a) ( c � a)0 = C

We know that this identity holds under the correct root, so that C = ( � a) ( � a)0. Now, there

are two solutions to the equation XX 0 = DD0, with X the unknown vector and D a known vector:

X = D and X = �D. Hence, the two solutions are  c � a =  � a and  c � a = � ( � a). The

60This idea of stacking together then yt and pt, with a “size 0” for the innovations to the price, could be fruitfully
used more generally.
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first one is the good root,  G =  , and the second one is the bad root:

 B = 2a� (141)

Now, because �p and Sp (i.e., the component of those vectors on the last coordinate, corresponding

to p) are both 0, we have bp = 0 (see 138) and thus ap = 0. So the component of the bad root on

the price is  B

p
= 2ap � p = � p:

 B

p
= � p (142)

This allows to distinguish between the two roots, as the right one has  p = ↵M and the other one

has  p = �↵M . Hence, if economic reasoning tells us the sign of ↵M (e.g., it is positive in a supply

and demand context), we can pick the good root by inspecting the sign of  p.

D.10 When only some shocks are kept in the GIV

If we truncate the residuals, i.e. use

zt =
X

i

⌧ (Siǔit)

for the hard thresholding function

⌧ (x) = x1|x|�b

for some b > 0, then everything works too. Indeed, we have that ǔit := uit � uEt is orthogonal to

uEt. Let us assume that it is independent. Also, this could be narratively checked. In our basic

example of Section 2.1, we still have E [(pt �  ySt) zt] = 0, so that the IV procedure still works.

Furthermore, the OLS estimates still hold. The key is that we can write:

u�t = zt + z<
t
,

where z<t =
P

i
⌧< (Siǔit), using ⌧< (x) = x1|x|<b, so that zt ? z<t . Hence, regressing u�t on this

truncated zt gives a coe�cient of 1, and all the analysis goes through.

D.11 Sporadic factors

A potential issue is that of a “sporadic factor”, i.e. a factor ⌘t that a↵ects a few actors special

ways, but is not recurrent. An example would be a one-o↵ policy announcement by the European

Central Bank that they will buy both Italian and Spanish bonds, so that the truth is not that Italy

is a↵ecting Spain or vice-versa, but rather the ECB a↵ecting both.

One solution, besides the narrative check, would be to filter out days with a high “sporadicity

statistic” St that we now propose. Suppose that for each date we filter out the idiosyncratic shocks

ǔit. For each date and actor i we form bit = ǔ
2
it

�2
ui,t�1

, where a high bit is an indicator of extra

activity, and �2
ui,t�1 is a predictor of the volatility of uit. We may allow that one entity has a large
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idiosyncratic shock, but if two (or more) do, this is suspicious, and possibly the sign of a sporadic

factor. So, calling b(2)t the activity of the second more active actor, we form St = b(2)t.61 Over the

entire sample, we might remove the days with anomalously high sporadicity statistics, e.g. in the

top 5% by that metric.

D.12 PCA and IPCA

We can have time-varying factors. For instance, suppose that we have a vector of characteristics

Xit (with 1 as a first component). Then, we could have �it = Xit�̇ for some �̇ to be estimated. We

could also have a mixture, as in �it =
h
Xt�̇ : �̌Fixed

i

i
, where �̌Fixed

i
is fixed while Xit is allowed to

vary. We have �̇ has dimensions k ⇥ s with k > s, implying that we can model the loadings more

flexibly as a function of a larger number of characteristics. Kelly et al. (2020) refer to this model

as Instrumented Principal Components Analysis (IPCA) and they develop the asymptotic theory.

We can consider the case where we impose no structure on the loadings and we use PCA to

estimate the loadings and the factor realizations. One can use the GMM procedure of Proposition

7, which works with finite N . The asymptotic theory for PCA (with N ! 1) has been developed

in Bai (2003) and in the context of GIV by Banafti and Lee (2022).62 To compute standard errors,

we can use the GMM values from Proposition 7; or a bootstrap. The NBER Working Paper of this

version contains detailed guidance of this.

When using more flexible factor models, one can estimate the required number of common

factors (Bai and Ng (2002); Onatski (2009)). In addition, a missing factor may be detected by

testing the stability of estimates across GIVs as we add more factors. As is common practice in the

weak factors literature, one can verify the stability of the estimates by adding one or two factors

beyond what is estimated by formal procedures for the number of factors.

D.13 Full recovery when di↵erent factors have di↵erent “size” weights

In the basic model, we can identify ↵f , M = 1
1�

P
f �

f↵f , but not �f .

We give some conditions under which we can actually also identify the �f (in addition to ↵f

and M). We show here that this is the case if we assume that the size Sf di↵ers across all factors

f , and this knowledge is given to us (from a model).

Here we take the basic set up as in Section D.5.1, in the simplified case where �f
i
= �f for all

“endogenous” factors, i.e. for the factors f such that ↵f 6= 0, the other exogenous factors ⌘ all have

61We could also sum over the most active K entities, excluding the most active one.
62It is also possible to first extract factors using loadings that depend on observed characteristics, ⌘x,et , and then

estimate additional factors using PCA on the residuals, ⌘PCA,e
t . We then use the final residuals in constructing the

GIV and use ⌘et =
⇣
⌘x,et , ⌘PCA,e

t

⌘
as factors.
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an impact of 1:

yit = uit +
X

f

�fF f

t + ⌘yt , (143)

F f

t = ↵fySf ,t + ⌘ft . (144)

This implies

yt = ut + ◆
X

f

�fF f

t + ◆⌘yt = ut + ◆
X

f

�f
⇣
⌘ft + ↵fSf

0
yt
⌘
+ ◆⌘yt .

With “"k” denoting some combination of the various ⌘’s, and as usual M = 1
1�

P
f �

f↵f ,

yt =

 
I � ◆

X

f

�f↵fSf
0

!�1 �
ut + ◆"1

t

�

=

 
I +M ◆

X

f

�f↵fSf
0

!
�
ut + ◆"1

t

�

yt = ut +M ◆
X

f

�f↵fuSf ,t + ◆"yt , (145)

i.e., since F f

t = ⌘ft + ↵fySf ,t this gives:

F f

t = ↵f

 
uSf ,t +M

X

g

�g↵guSg ,t

!
+ "ft . (146)

Hence, suppose that we extracted the ǔit = uit � uEt (following our usual procedure). Then, we

form

z�f t := Sf
0
ǔt = uSf t � uEt. (147)

Then, regressing F f

t on the various z�gt

F f

t =
X

g

bf
g
z�gt + "f,1t (148)

(for "f1 some residual noise) yields a regression coe�cient:

bf
g
= ↵f (1f=g +M�g↵g) . (149)

This allows to recover everything, and with several overidentifying restrictions. Indeed,

bf :=
X

g

bf
g
= ↵f

 
1 +M

X

g

�g↵g

!
= ↵fM,
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which identifies ↵fM . Next, for f 6= g,
bf
g

bf
= �g↵g,

which gives �g↵g (and should be equal for all f), thus M . Hence, we obtained ↵fM , M and �g↵g

— therefore all quantities: ↵f ,�f ,M .

D.14 When we have disaggregated data for both the demand and the

supply side

To estimate supply and demand elasticities, it is enough to have idiosyncratic shocks to one side

of the market — demand in our basic example (Proposition 5). We complete our examination of

supply and demand, with disaggregated data for both the demand and the supply side.

We posit that demand and supply disturbances follow:

yk
it
= �kpt + �k

i
⌘k
t
+ uk

it
, (150)

for type k = s, d for supply and demand. Total quantity demanded or supplied in side k of the

market is (as a disturbance from the average), yk
Skt

:=
P

i
Sk

i
yk
it
, where Sd

i
(resp. Ss

i
) is the average

fraction of demand (resp. supply) accounted by country i) The price pt adjusts so that supply

equals demand, ys
Sst = yd

Sdt
, i.e.

pt =
ud

Sd � us

Ss + �d
Sd⌘dt � �s

Ss⌘st
�s

Ss � �d

Sd

(151)

So, the aggregate supply that was st = �spt + "t (see (200)) in the aggregated model is now

st = ys
Sst = �dpt + �s

Ss⌘st + us

Sst

so that the supply shock is

"t = �s
Ss⌘st + us

Sst.

We allow E
⇥
us

it
ud

it

⇤
to be nonzero: for instance, if the US has a “fracking shock” that a↵ects both

supply and demand, it will be captured by both us

it
and ud

it
for i = USA. Then, the initial exclusion

restriction E [uit"t] = 0 (see (3)) fails. A fracking shock in the US both increases idiosyncratic US

demand (as the US is richer) and also world supplies (as the US supplies more oil via its fracking

technology).

But the situation is not so bleak. We make the following assumption

E
h
uk

it
⌘k

0

t

i
= 0 for all k, k0 2 {s, d} . (152)

For instance, when k = d and k0 = s, (152) means that idiosyncratic demand shocks are uncorrelated
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with the aggregate supply shocks ⌘t — once we control for idiosyncratic supply shocks (i.e. they

may be correlated with "t but not with ⌘st ). For simplicity, we discuss the homoskedastic case (where

the
�
ud

it
, us

it

�
are i.i.d. across i, t).

Then, we can still identify the elasticity of supply and demand. Indeed, we can form two GIVs,

based on supply and demand respectively:

zk
t
:= �k0yk

t
= uk

�kt
, (153)

for k = s, d (with �k = Q�
k0Sk in the general case and �k = Sk � Ek in the simple case �k = ◆, as

in Corollary 2).

Then we have

E
h
zk
t
⌘k

0

t

i
= 0 for all k, k0 2 {s, d} .

and one can easily see (as in the main paper) that the following identification moments hold, for

k, k0 2 {s, d}
E
h�
yk
Et

� �kpt
�
zk

0

t

i
= 0. (154)

So, we can estimate the demand and supply elasticities.63
064.

Proposition 12 (Identification with disaggregated supply and demand data). Suppose that we

have disaggregated supply and demand data following (150). Suppose that the shock are idiosyncratic

in the sense of (152), and that we have i.i.d.
�
ud

it
, us

it

�
across i, t. Then, the GIVs zd

t
, zs

t
in (153)

identify �d and �s, via moments (154).

In summary, in that example, the GIV fails if aggregate shocks ("t) are importantly made of

idiosyncratic shocks. However, in the same example, having more disaggregated data (on both the

demand and supply side), together with a slightly di↵erent exclusion restriction, allow estimation

of both elasticities by GIV.

D.15 GIV for di↵erentiated product demand systems

We develop the basic ideas for the logit demand model and extend these ideas to the random-

coe�cients logit model as in Berry et al. (1995) in the next subsection.65

63The optimal instrument is zt = zdt � zst , as this is the most correlated with the price (151) (this generalizes the
reasoning of Proposition 3).

64One could imagine variants. For instance, if we assume only that E
⇥
z`t⌘

k
t

⇤
= 0 for a given (k, `), we can identify

�k via E
⇥�
ykEt � �kpt

�
z`t
⇤
= 0.

65We thank Robin Lee, Alex MacKay, and Ariel Pakes for very helpful feedback on this section.

61



D.15.1 Logit demand

The utility that household h derives from product i, for i = 0, ..., N, is given by66

Uhit = �it + ehit,

�it = ��pit + �0xit + ↵i + ⇠it,

where ehit follows a Type-1 extreme-value distribution, pit denotes the log price, xit observable

characteristics, and E [⇠it] = 0. We refer to i = 0 as the outside option and normalize �0t = 0. This

model implies that the market share sit is the probability that a given household selects product i,

meaning that sit = P (Uhit > maxj 6=i Uhjt), and can be expressed as

sit =
exp(�it)P
N

j=0 exp(�jt)
.

Firms set prices to maximize profits and we assume that each product is produced by a single firm,

which solves

max
Pit

Qit (Pit � Cit) ,

where Cit equals marginal cost and Qit = sitQt with Qt the total size of the market. The firm

optimally sets the price to

Pit =

✓
1� 1

✏it

◆�1

Cit,

where ✏it = �@ ln sit
@pit

, that is, the negative of the price elasticity of demand. The goal is to estimate

✓ = (�, �).

It is convenient to rewrite the model as

log

✓
sit
s0t

◆
= ��pit + �0xit + ↵i + ⇠it.

To identify �, it is commonly assumed that E [xit⇠it] = 0 and we maintain this assumption. However,

as prices respond to demand shocks, ⇠it, we cannot assume E [pit⇠it] = 0. There are three common

approaches to create instrumental variables in the demand estimation literature. First, variables

that capture variation in marginal cost, Cit, that is unrelated to demand shocks. Second, Berry et

al. (1995) suggest to use the average of characteristics of other firms

zBLP

it
=

1

N � 1

X

j,j 6=i

xjt,

which results in valid instruments under some assumptions (see Nevo (2000) and the references

66We use the log price, pit, instead of the price, Pit, in the formulation of �it to simplify some of the expressions,
but the basic logic extends to the case where �it depends on Pit.
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therein).67 The resulting moment is E
⇥
zBLP

it
⇠it
⇤
= 0.68 Third, one can use panel data for the

same firm that operates in di↵erent locations. Under the assumption that demand shocks are

uncorrelated across locations, prices in other locations of the same firm will be valid instruments.

The intuition is that prices across locations share the same marginal cost but the demand shocks

are, by assumption, uncorrelated, see Nevo (2001).

GIV provides an alternative by exploiting exogenous variation in markups due to idiosyncratic

demand shocks to large firms. We assume that demand shocks follow a factor model,

⇠it = ⌘t + uit, (155)

which can be extended to allow for heterogeneous exposures, i.e. replacing ⌘t by �i⌘t =
P

k
�k
i
⌘k
t
.

Also, we assume for simplicity that ⌘t and uit are i.i.d. over time, but the logic in this section can

be extended to persistent demand shocks (see also Sweeting (2013)).

We propose to use the GIV instrument as the weighted sum of idiosyncratic demand shocks of

the competitors:

zit =
X

j:j 6=i

s̄j,t�1ujt, (156)

where s̄j,t�1 is the average market share for product j up to time t � 1. This allows us to add a

moment condition

E [zit⇠it] = 0, (157)

which identifies �. Remember that we use E [xit⇠it] = 0 to identify �.

The intuition for why zit is a meaningful instrument is the following: if there is a high idiosyn-

cratic shock for Tesla cars (high ujt, with j being Tesla), this leads Ford (firm i) to reduce the price

of its cars (in this particular model, this is because the positive shock for Tesla cars reduces the

demand for Ford, which sees its market share sit fall, so that it wants to lower its price pit).

Generalizing this intuition, we sum over all the demand shocks of the competitors, zit =
P

j:j 6=i
s̄j,t�1ujt, weighing them by size, i.e. market share. As in our general GIV, even a single

shock ujt is a valid instrument (for j 6= i). The size-weighted sum is simply a typically useful way

to pool those idiosyncratic shocks. It is optimal in our basic GIV, and is likely to be reasonably

close to optimal in this IO context. The same idea generalizes: e.g. using a weighted sum of the

idiosyncratic cost shocks, rather than demand shocks, of the competitors would also be a valid GIV

instrument.

A motivation for the weighting in (156) is as follows. Recall that in this simple model the

demand elasticity is

✏it = �(1� sit),

67For other recent advances to construct instruments, see Sweeting (2013) and MacKay and Miller (2019).
68If a firm o↵ers multiple products, the average of characteristics of other products produced by the same firm can

be used as well.
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and also that @ log sit
@�jt

= �sjt, so that @ log sit
@ujt

= �sjt (controlling for the price pjt). This implies that

the direct impact of all idiosyncratic demand shocks to other companies on sit, and hence ✏it, is

X

j:j 6=i

@ log sit
@ujt

ujt = �
X

j:j 6=i

sjtujt. (158)

Hence, shocks to companies with larger market shares have a larger impact.

D.15.2 Random coe�cients logit as in BLP

Berry, Levinsohn and Pakes (1995) extend the standard logit model by allowing for random variation

in the preference parameters

✓h = ✓ + ⌫h,

where ⌫h =
⇣
⌫�
h
, ⌫�

h

⌘
and ⌫h ⇠ F⌫ (⌫;⇥), for some vector of parameters ⇥. The market share

equation modifies to

sit =

Z

⌫

shitdF⌫ (⌫;⇥) ,

where

shit =
exp

⇣
�it � ⌫�

h
pit + ⌫�0

h
xit

⌘

P
N

j=0 exp
⇣
�jt � ⌫�

h
pjt + ⌫�0

h
xjt

⌘ .

To estimate the model, Berry (1994) suggests to recover �it from the market shares using a contrac-

tion mapping (see Nevo (2000) for an introduction). With �it in hand, we form moment conditions

as before to estimate (✓,⇥).

To construct a GIV instrument in this model, one can also use (156) as an instrument.

One can also refine it. For instance, we can recompute the total impact of idiosyncratic shocks

to other firms on the demand elasticity, which is now slightly more involved. The negative of the

demand elasticity, which enters into the pricing equation via the markup, is given by

✏it =

Z

⌫

⌫�
h

shit
sit

(1� shit) dF⌫ (⌫;⇥) .

An approximation of the model around ✓h = ✓ yields the same weights as before, although it is

feasible to numerically calculate the optimal weights by computing

X

j,j 6=i

@✏it
@ujt

ujt.

This suggests forming

zit :=
X

j:j 6=i

si
j,t�1ujt, (159)
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where si
j,t

is

si
j,t

:= �@ log sit
@ujt

. (160)

Indeed, in the homogeneous elasticity case, si
j,t

= sjt. This generalization to heterogeneous elasticity

allows to capture that if firms i and j tend to serve the same consumers (e.g., both sell family cars),

then the si
j,t

will be high, and ujt receives a high weight in the firm-i specific GIV zit.

D.16 Dealing with fat tails

Here we provide a justification of the procedure in Appendix H.2 to dampen the influence of outliers.

For clarity, we consider the following problem first — our main problem is just a more complex

variant. Suppose that we want to estimate � in a regression:

yi = �xi + ui (161)

with xi independent of ui, and the ui’s are i.i.d. with density p (u) with mean 0. Suppose that there

are outliers, e.g. fat-tailed ui. What to do?

Background: Traditional winsorization yields biased estimates With outliers, a common

procedure is to winsorize yi, e.g. replace yi by

yW
i

:= sign (yi)min (|yi|, �) , (162)

a winsorization at � for some � � 0. This can be equivalently rewritten as:

yW
i

:= yi + r (yi) (163)

with

r (u) := r� (u) = �max (|u|� �, 0) sign (u) . (164)

While common, there are di�culties with this procedure. The OLS estimator is biased, as in general

E
⇥�
yW
i

� �xi

�
xi

⇤
6= 0 (165)

In addition, there is no clear micro foundation of this procedure, e.g. via MLE.

Winsorization of the residual, not of outcome variables Instead, we use a simple variant

that solves both those di�culties, following Huber (1964) and e.g. Sun et al. (2020). It uses the

following “winsorization of the residual”, by defining:

yw
i
:= yi + r (yi � �xi) (166)
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instead of the traditional (163), and then to run OLS of yw
i
= �xi + "i.

This is a fixed point problem, which leads following algorithm. We initialize �(0), e.g. setting it

to the plain OLS value. The two steps are as follows:

1. Define yw,(n)
i

:= yi + r
�
yi � �(n)xi

�
.

2. Run the OLS of

yw,(n)
i

= �xi + "i. (167)

which yields an update �(n+1), and we iterate until convergence.

We next justify this. Define L (u) = � ln p (u), the log likelihood of y is
P

i
L (yi � �xi), so the

maximum likelihood estimator is

min
�

X

i

L (yi � �xi) (168)

whose first order condition is X

i

L0 (yi � �xi) xi = 0 (169)

If the residuals ui are Gaussian distributed, we have L (u) = 1
2ku

2+ k0 for some constants k and

k0, so L0 (u) = ku, and we obtain the familiar OLS estimator. But otherwise, we have a nonlinear

equation, which is a bit painful to solve. In general, we express:

L0 (u) = k (u+ r (u)) (170)

where intuitively the residual term r (u) is “small”. For instance, for the log density

LHuber (u) =
u2

2
1|x|� +

✓
|u|� �

2

◆
�1|u|>� (171)

then we have LHuber0 (u) = u + r (u) with r (u) exactly as in (164). This is why we take this value

of r (u) in practice. But we continue the discussion for a general r (u).

Then, the FOC (169) becomes

X

i

(yi � �xi + r (yi � �xi)) xi = 0 (172)

To get more intuition, we define yw
i
:= yi + r (yi � �xi) as in (166), which has the interpretation of

sort of “winsorized” yi, hence the w superscript. Then FOC is

X

i

(yw
i
� �xi) xi = 0 (173)

Hence, we can estimate � by OLS, once we have an estimate of yw
i
.

We next state a simple proposition.
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Proposition 13 Suppose that E [r (ui) xi] = 0, for instance, because ui and xi are independent,

and E [r (ui)] = 0. Then, at the true value � we have

E [(yw
i
� �xi) xi] = 0 (174)

with yw
i
= �xi + r (yi � �xi) .

The proof is almost a tautology: the statement is equivalent to saying that E [r (ui) xi] = 0,

which is which exactly the main assumption of the proposition. But the advantage is that it lays

out a simple procedure to “winsorize” outliers: run the OLS (167), yw
i
= �xi+ "i . If ui is e.g. non-

symmetric, it shows a simple criterion for other residual functions, E [r (u)] = 0, e.g. by choosing a

function r (u) that is non-symmetric.

Link with the procedure in Appendix H.2. With the more complex factor model of Appendix

H.2, the arguments are exactly the same. We can state the following proposition, and prove it exactly

the same way. Hence moment conditions used in Appendix H.2 are valid.

Proposition 14 Suppose that E [r (ui) (�i, ai, ⌘t, bt)] = 0. Then at the true values, the following

moments hold

E [(yw
it
� (ai + bt + �i⌘t)) (�i, ai, ⌘t, bt)] = 0

where yw
it
= yit + r (yit � (ai + bt + �i⌘t)).

D.17 When aggregate shocks are made of idiosyncratic shocks

GIVs extend to economies where aggregate shocks ⌘t are themselves made of idiosyncratic shocks

uit. We summarize the situation here.

Take the basic supply and demand model of Section 2.1. We achieved identification provided that

u�t ? "t; we did not need u�t ? ⌘t, so aggregate demand shocks can be influenced by idiosyncratic

shocks, but not aggregate supply shocks. If aggregate supply shocks are a↵ected by idiosyncratic

shocks, the elementary strategy does not work, but a variant does work, with a slightly di↵erent

identification assumption. We suppose disaggregated supply and demand data (for the commodity

in question, e.g. oil) is available, at least for large countries. We model country i’s supply and

demand with the following factor model:

yk
it
= �kpt + �k

i
⌘k
t
+ uk

it
, (175)

where k = s, d indicates supply or demand, respectively. We allow E
⇥
us

it
ud

it

⇤
to be nonzero: for

instance, if the US has a positive “fracking shock” that a↵ects both supply and demand, it will be

captured by a positive us

it
and ud

it
for i = USA. This is a concrete case in which supply and demand

shocks are correlated: this happens via the correlations in country-level shocks. At the same time,
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we impose that the uk

it
are uncorrelated with the aggregate shocks ⌘k

0
t

for k, k0 2 {s, d}. Then,

Section D.14 shows how to identify the elasticities of supply and demand.

One can also consider an economy as a network (Long and Plosser (1983); Gabaix (2011);

Acemoglu et al. (2012); Carvalho and Gabaix (2013); Carvalho and Grassi (2019)). Under some

assumptions, one can obviate the network structure, for instance via aggregation theorems such

as Hulten’s theorem. This is developed in Section D.18. It shows that we can identify important

multipliers even if we have only crude proxies for the primitive shocks such as TFP. The GIV for a

general network is a rich topic, which are developing in another paper.

In conclusion, one can often handle cases where aggregate shocks are made of idiosyncratic

shocks: then, some more disaggregated data and economic reasoning allows to use a GIV to estimate

macro parameters of interest.

D.18 Identification of the TFP to GDP multiplier in a production net-

work economy

Suppose a two-period model with a production network, as in Long and Plosser (1983); Gabaix

(2011); Acemoglu et al. (2012); Carvalho and Gabaix (2013); Carvalho and Grassi (2019). There

are both idiosyncratic TFP shocks �̂it and a government reform that creates correlated shocks ⌘t
to TFP and change in labor supply L̂t. Utility is Ct � e⌘

L
t L1+1/�

t , so that � is the Frisch elasticity

of labor supply. We call �t total TFP, which depends on the industry TFPs �it. So, as Ct = �tLt,

labor supply is L̂t = �
⇣
�̂t � ⌘L

t

⌘
,69 and GDP is Ŷt = L̂t + �̂t, i.e.

Ŷt = m�̂t � �⌘L
t
, m = 1 + � (176)

We seek to find the “GDP multiplier” m = 1+�, so that a TFP increase of 1 percent translates

into a GDP increase of m percent.70

This is potentially a complicated problem, as for instance, in the Long and Plosser (1983) case

with input-output matrix A, output changes are Ŷt = (I � A)�1 �̂t + L̂t, so that output changes

are correlated in complicated ways. However, one can sidestep using this disaggregated production

data. We assume that TFP change in industry i is:

�̂it = �i⌘
�

t
+ uit. (177)

In the neoclassical equilibrium, TFP follows Hulten’s theorem, so is �̂t =
P

i
si�̂it where si is the

Domar weight (sales of industry i over GDP).

We can identify the multiplier m if we have disaggregated TFP data. In the simplest case, we

69The problem is maxLt �tLt�e⌘
L
t L1+1/�

t , which leads to
⇣
1 + 1

�

⌘
L1/�
t = �te�⌘L

t , hence the announced expression.
70If more than one factor changes, m has the broader interpretation of a multiplier between TFP and GDP.
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assume that industry-level productivities are available, and we get the residuals ue

it
. Then, we can

identify the multiplier m by GIV.

We can identify the multiplier m if we have even crude proxies for disaggregated TFP. The

same procedure works (with less e�ciency) if our data is made of proxies for productivity growth
˜̂�it (where the tilde indicates that we deal with a proxy). An example could be growth of sales per

employee, or even the growth rate of sales. We assume a factor model

˜̂�it = �̃i⌘̃
�

t
+ ũit. (178)

The proxy is of better quality when the proxy’s idiosyncratic shock ũit has a high correlation with

the true idiosyncratic shock uit. Then, we extract the ũe

it
from a factor model, form zt = ũe

St
� ũe

Et

(with Si =
siP
j sj

), and use the moment E
h⇣

Ŷt �m�̂t
⌘
zt
i
= 0, which identifies the TFP to GDP

multiplier m.

Using more general models (e.g. taking into account imperfections as in Baqaee and Farhi

(2020)) would be very interesting, but would be a new paper by itself. Indeed, even in that case

zt is likely to be a useful instrument, even though it won’t be the optimal one. In any case, those

examples show how GIV, with some economic reasoning, translate to more complex economies

where aggregate shocks can be made of idiosyncratic shocks.

D.19 Identification of the elasticity of substitution between capital and

labor / Elasticity of demand in partially segmented labor markets

Here we show how GIVs can estimate the elasticity of substitution between capital and labor; and

how to estimate the elasticity of demand in partially segmented markets. The first problem uses

the second one.

As a motivation, imagine that industry i has the CES production function71

Qit = Bit

✓
K

�i�1
�i

it
+ A

1
�i
it
L
�i�1
�i

it

◆ �i
�i�1

(179)

The first order condition of the problem maxKit,Lit Qit�RtKt�WitLit is A
1
�i
it

⇣
Lit
Kit

⌘� 1
�i = Wit

Rt
,i.e.

a demanded labor / capital ratio:
Lit

Kit

= Ait

✓
Wit

Rt

◆��i
(180)

We’d like to estimate the elasticity of substitution �i between capital and labor. This is the wage

elasticity of demand. GIVs allow to estimate that, as we shall see.

Let us use our general notations, and define yd
it
= lnLit, pit = lnWit, Cit = lnKit, and �d

i
= ��i

71We thank Julieta Caunedo for prompting us to think about this identification problem.
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(as this is the elasticity of labor demand). Then, we can write (180) as:

yd
it
= �d

i
pit + Cit + �d

i
⌘t + ud

it
(181)

where Cit is a control, and as usual vector ⌘t is a common shock, and ud

it
is a demand shock (those

in turn come from the productivity Ait). For notational simplicity we will drop Cit, but this is not

important.

Now, log labor supply is modeled as:

ys
it
= �s

i
pit �  ipSt + �s

i
⌘t + us

it
(182)

It is increasing in wage pit in industry i, and decreasing in the wage in the other industries (pSt).

One could imagine replacing  ipSt by a di↵erent average for each industry, and we will examine

that in an extension. But for now we keep the simple structure.

As supply equals demand in each market (yd
it
= ys

it
), we obtain the price of labor in each market

i:

pit =
 ipSt + ud

it
� us

it
+
�
�d
i
� �s

i

�
⌘t

�s

i
� �d

i

(183)

i.e.

pit = �ipSt + vit + �p
i
⌘it (184)

when we define �i =
 i

�si��di
, vit =

u
d
it�u

s
it

�si��di
, �p

i
= �

d
i��si
�si��di

.

Problem (184) is a standard GIV. In the general case, we can estimate �i as in Section (D.9).72

So, we obtain �i and ve
it
(the proxy for vit) in (184). We also form zit = S 0 (ve

t
� aive

it
) as in

(121). This is the GIV formed of the idiosyncratic shock of all industries but industry i. We will

use the shock to those other industries, and their impact on the outside wage, as an instrument to

estimate labor demand. Indeed, we go back to the labor demand equation (181), and instrument

for pit using the zit
pit = bizit + "p

it
(185)

we estimate bi, and define pe
it
= bizit as the price in industry i instrumented by the changes in other

industries. We use the estimated ⌘e
t
as controls, and run

yd
it
= �d

i
pe
it
+ Cit + �d

i
⌘e
t
+ ud

it
(186)

which yields a consistent estimate �d

i
of the labor demand.

72This procedure is much simplified if the �i and �pi are assumed to be constant. Then, we can just define

zt := p�t = pSt � pEt, so that zt = v�t and as pSt =
vSt+�p⌘s

t
1�� , regressing pSt = bzt + "pt yields b = 1

1�� .
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