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Fluctuations in uncertainty are a key driver of asset prices, risk premia, and welfare. This

thesis considers two distinct aspects of fluctuations in uncertainty: (1) stochastic volatility

of shocks occurring at regular frequencies, and (2) stochastic disaster risks pertaining to

rare but extreme left tail events. Using a novel calibration strategy relying on VIX and

macro data, we quantify the fluctuations in these two aspects of uncertainty. We then find

that stochastic disaster risks are substantially more important than stochastic volatility for

explaining movements in (1) the VIX, (2) the conditional equity risk premia, and (3) welfare

fluctuations.
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1 Introduction

Fluctuations in uncertainty are widely recognized to be a key driver of asset prices, risk

premia, and economic welfare. There are abounding examples of sharp fluctuations in un-

certainty being forcefully translated into rapid price swings of various assets. However, there

are different aspects of uncertainty that fluctuate over time, and they can affect asset prices

and welfare outcomes in different ways with varying magnitudes. This thesis exploits the

information encoded in asset prices to quantify fluctuations in distinct aspects of uncertainty,

hence contributing to our understanding of the relative importance of different aspects of

uncertainty shocks for fluctuations in overall uncertainty, time-varying risk premia, and eco-

nomic welfare.

We focus on two key aspects of fluctuations in uncertainty: (a) stochastic volatility of

shocks occurring at regular frequencies, and (b) stochastic disaster risks pertaining to rare

but extreme left tail events. These two aspects of uncertainty differ in terms of their magni-

tudes and frequencies, as the former has smaller magnitudes with higher frequencies, while

the latter has large magnitudes but lower frequencies. In addition, they have significantly

different implications for asset prices and economic outcomes. For instance, in a business

cycle model with financial frictions, credit spreads and default decisions on debt were shown

to be very sensitive to disaster risk shocks, rather than volatility (Gourio, 2013). As another

example, the conditional Sharpe ratio has been shown theoretically to be very sensitive to

disaster risk shocks but is largely insensitive to volatility shocks (Gourio, 2008). Further-

more, quantitative welfare evaluation exercises seem to suggest that reductions in disaster

risks are much more important for welfare than reducing ordinary volatility (Barro, 2009).

These key examples from the literature illustrate critical and economically meaningful differ-

ences in the implications of volatility shocks versus disaster risk shocks. This then highlights

the importance of quantifying the relative importance and magnitudes of stochastic volatility

and disaster risk shocks.

Furthermore, there is a large and expanding literature studying the business cycle effects

of various uncertainty shocks. The quantification of the relative importance of stochastic

volatility and disaster risk shocks can help discipline modelling in this literature. For in-
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stance, Basu and Bundick (2017) is a seminal paper that uses VIX data in conjunction with

macro data to calibate a stochastic volatility process and studies its business cycle effects. In

contrast, Gourio (2012) study a business cycle model with stochastic disaster risks shocks,

but also uses a similar approach in assessing the model quantitatively against asset market

and macro data, including risk premia and the VIX. In these contrasting approaches, the

VIX is commonly used as a proxy for “uncertainty”, but it is assigned to distinct aspects of

uncertainty. The quantitative results from this thesis can help discipline modelling in these

contexts, especially in relation to VIX data.

In this thesis we will focus on properties of the VIX to identify the processes for stochastic

volatility and stochastic disaster risks. However, the key challenge that we face in conducting

our exercise arises from the observation that both elevated disaster risks and volatility can

cause an increase in the VIX. Therefore, fluctuations in the VIX alone cannot be used to

identify the relative importance of these different aspects of uncertainty shocks. We overcome

this challenge by proposing a calibration strategy based on an analysis that characterizes

key differences in how disaster risks shocks and volatility shocks affect the VIX.

We first present an analytical result that characterizes the pass-through of disaster risk

shocks and volatility shocks to the VIX. A volatility shock is directly translated to the VIX,

in the sense that there is no "distortion" in volatility arising when we switch from the physical

probability measure to the risk-neutral measure. Conversely, the impact of a disaster risk

shock on the VIX is "amplified" under the risk-neutral distribution, so that a small change in

disaster risks from an objectively statistical point of view can generate a significant change

in the VIX.

This analytical result is then illustrated through a simulation exercise which visually

displays the differences in the pass-through of disaster risk shocks versus volatility shocks for

the VIX. As suggested by the analytical result, an increase in the VIX caused by an increase

in volatility can be detected through an actual increase in volatility from an objectively

statistical point of view. Conversely, an increase in the VIX caused by an increase in disaster

risks is barely detectable at all from a statistical point of view. Consequently, given a disaster

risk shock and a volatility shock that causes the identical response in the VIX, there are stark

statistical differences that can be measured objectively.
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We then leverage the results above to build a Simulated Method of Moments calibration

strategy that sharply identifies the processes for stochastic disaster risks versus stochastic

volatility. The centerpiece of our calibration strategy is a simple regression that uses the

current level of the VIX to predict the occurence of future realizations of moderately large

consumption shocks. In a world with large volatility shocks relative to disaster risk shocks,

the coefficient on this regression should be positive, reflecting the fact that an increase in the

VIX is associated with an objectively higher volatility. Conversely, in a world dominated by

disaster risk shocks, fluctuations in the VIX reflect very small changes in disaster risks, lead-

ing to a very small coefficient near zero. Therefore, by targeting these regression coefficients

in conjunction with other standard moments, we are able to identify the key parameters of

interest.

Equipped with the results from this calibration, we then produce quantitative results

regarding the relative importance of disaster risk shocks versus volatility shocks for fluctua-

tions in (1) the VIX, (2) conditional equity risk premia, and (3) welfare costs. Our results

consistently indicate that disaster risk shocks are quantitatively more important than volatil-

ity shocks for all three of these variables, and this is especially the case for fluctuations in the

VIX. This provides a quantitative benchmark for understanding that disaster risk shocks are

more important and larger in fluctuations than volatility shocks. In addition, these results

raise questions for a common approach to modelling uncertainty shocks with purely stochas-

tic volatility and using the VIX data to estimate the stochastic volatility process (e.g. Basu

and Bundick, 2017).

Related Literature. There are two key strands of relevant literature. Firstly, there is a

copious literature in option pricing that estimates sophisticated jump-diffusion models for

equity prices, incorporating various forms of stochastic volatility and stochastic jump risks.

This literature began with the seminal work of Black and Scholes (1973), who provided the

famous Black-Scholes formula that relates option prices to their implied volatility under the

risk-neutral measure, assuming a constant-volatility lognormal equity price process without

jumps. Then, Merton (1976) extended the model to incorporate jumps and Heston (1993)

also incorporated stochastic volatility as well. Finally, Duffie et al. (2000) extended the
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analysis to a very flexible and general class of affine jump-diffusion models that simultane-

ously allow for stochastic volatility and stochastic jump risks. Building on these theoretical

advances, there is a large body of empirical work, such as the seminal work of Broadie et al.

(2007), that estimate the processes for stochastic volatility and jump risks over time.

The success of this option pricing literature lies in its ability to closely match option

prices across various maturies and over time. They provide successful statistical models for

describing the evolution of option and stock prices over time. However, the key limitation

from the perspective of economic interpretation is the lack of meaningful microfoundations.

These models are concerned with modelling and estimating the risk-neutral distribution of

stock prices directly, which is in contrast to the macro-finance approach of building equilib-

rium models of the economy with asset prices computed as an equilibrium outcome. This

then makes it impossible to understand the objective sources of uncertainty in the economy,

as well as the welfare costs arising from such fluctuations.

The second strand of relevant literature is the macro-finance approach to asset pricing,

which focuses on equilibrium models with optimizing agents and market clearing. This liter-

ature began from the seminal work of Lucas (1978), which established the consumptionbased

framework for asset pricing, and has expanded in various directions as reviewed by Cochrane

(2017). In particular, disaster risks was first proposed by Rietz (1988) as a potential res-

olution of key asset pricing puzzles, including the high equity premium and low risk-free

rate (Mehra and Prescott, 1985; Weil, 1989). Empirical evidence for the presence of dis-

aster risks was then provided through an extensive historical data set under Barro (2006)

and Barro and Ursúa (2008). Then, Wachter (2013) and Gabaix (2012) extended this to a

stochastic disaster risks framework to explain, among other asset market phenomena, the

high volatility of equity returns. In addition, stochastic volatility - in the sense defined in

this thesis - has been widely incorporated throughout this literature as well. For instance,

Bansal and Yaron (2004) incorporated stochastic volatility into a long-run risk framework

with recursive preferences as in Epstein and Zin (1989), which demonstrated its contribution

to the equity premium and excess return volatility. Furthermore, stochastic volatility has

been widely incorporated in the macroeconomic literature as well, illustrating that uncer-

tainty shocks can be a source of business cycle fluctuations (Bloom, 2009; Basu and Bundick,
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2017; Fernández-Villaverde et al., 2011).

A key point of contrast for the macro-finance approach against the option pricing ap-

proach is that the former focuses on much simpler models for reasons of tractability and

because structural parameters are much harder to estimate. This has been reflected in the

modelling choices of key papers in the literature. For instance, Basu and Bundick (2017) im-

pose only stochastic volatility as the unique source of uncertainty fluctuations in the economy

and use VIX and macro data to estimate the process for this stochastic volatility process. As

a separate example, Barro and Liao (2021) estimate stochastic disaster probabilities using

options prices, but only allows for fluctuations in disaster probabilities and instead imposes

a constant volatility for normal shocks.

Overall, this thesis can be seen as situated in the midway point between these two

strands of the literature. It simultaneously incorporates stochastic volatility and stochastic

disaster risks in the style of the option pricing literature, but builds an equilibrium model

in the macro-finance tradition. Then, we incorporate analytical techniques from the option

pricing literature to derive results that will ultimately allow us to identify the key structural

parameters of interest - particularly, the relative importance of stochastic volatility versus

stochastic disaster risks.

2 Model

This section presents a consumption-based asset pricing model incorporating the two key

features of (1) stochastic volatility and (2) stochastic disaster risks. There is a representative

agent with Duffie-Epstein (1992) recursive utility who receives endowments and optimally

makes consumption and portfolio choices accordingly. In equilibrium, the agent consumes

his endowment, which allows us to tractably compute the equilibrium stochastic discount

factor and hence price assets. The model is built in continuous time for tractability.

2.1 The Consumption Process

The stochastic process for the consumption stream {Ct}t⩾0 is given by the stochastic differ-

ential equation below:
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dCt

Ct−
= µdt+

√
vtdBt +

(
eZt − 1

)
dNt (1)

where Ct−denotes the left-hand limit of the consumption at time t. The process Bt is a

standard Brownian motion and vt governs the time-varying volatility of the diffusion part of

the consumption process defined above. The stochastic differential equation for volatility vt

is given below:

dvt = κ (v̄ − vt) + σv

√
vtdBv,t (2)

where Bv,t is another standard Brownian motion, independent of Bt.

Furthermore, Nt is a jump process with each jump size equal to eZt − 1, where Zt follows

a time-invariant distribution denoted by ν. In this model of consumption growth, the re-

alization of a disaster corresponds to a jump in the Nt process. Since disasters are events

with very low consumption growth realizations, Zt is modelled as a negative random variable

and will very often have a large magnitude as well. Furthermore, the jump process Nt has

time-varying intensity λt which follows the stochastic differential equation defined below:

dλt = κ
(
λ̄− λt

)
+ σλ

√
λtdBλ,t (3)

where Bλ,t is another standard Brownian motion, and we assume that the three Brownian

motions ( Bt, Bv,t, Bλ,t ) are mutually independent. We will henceforth refer to vt as volatility

and λt as disaster risks at time t.

The stochastic processes for vt and λt above are from Cox et al. (1985) and follow a

standard framework for modelling stochastic volatility. The square root term multiplied to

the diffusion term ensures that vt and λt do not fall below 0 . The stationary distributions

for vt and λt as solved by Cox et al. (1985) follows a Gamma distribution with a rightward

skew.

2.2 Preferences

The representative agent is assumed to have recursive preferences as in Duffie and Epstein

(1992), which is a continuous-time analogue of Epstein and Zin (1989). The general frame-
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work of Duffie and Epstein (1992) allows us to freely calibrate risk aversion and the elasticity

of intertemporal substitution separately. However, we assume a unit elasticity of intertem-

poral substitution because it is known to be particularly tractable analytically and is widely

studied as a standard benchmark in the literature (Wachter, 2013; Seo and Wachter, 2018).

The lifetime utility of the representative agent is given by

Vt = Et

[∫ ∞

t

f (Cs, Vs) ds

]
(4)

f(C, V ) = β(1− γ)V

[
logC − 1

1− γ
log((1− γ)V )

]
(5)

where the parameter β is the time discount rate and γ is the risk aversion.

In Appendix A, we derive analytically that the lifetime utility takes the form below:

J(C, λ, v) =
(β−1C)

1−γ

1− γ
exp(a+ bλ+ cv) (6)

where C is current consumption level, λ is the current disaster risk, and v is the current

volatility. We will show in Appendix A that the current wealth level is proportional to

the current level of consumption with a proportionality constant of β−1. Furthermore, the

constants (a, b, c) in the expression above are all derived analytically.

Based on the derivations in Appendix A, we can show that lifetime utility is strictly

decreasing in λ and v, respectively, given any postivie risk aversion γ. Qualitatively, this

shows that an increase in uncertainty - whether it is from disaster risks or volatility - leads

to a strict decline in welfare. This is a fairly obvious result, but our key interest in the

calibration and analysis below will focus on a quantitative evaluation of the importance of

shocks in (λt, vt) for welfare fluctuations.

Under Duffie-Epstein preferences specified as in (4), the stochastic discount factor (SDF)

is given by

πt = exp

{∫ t

0

fV (Cs, Vs) ds

}
fC (Ct, Vt) . (7)

We can then compute based on (5) and (6) that
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fC (Ct, Vt) = βγC−γ
t exp (a+ bλt + cvt) (8)

and

fV (Ct, Vt) = −β [bλt + cvt + 1]−
[
(1− γ)µ+ bκλλ̄+ cκvv̄

]
, (9)

both of which are now expressed as functions of (Ct, λt, vt). Thus, based on the above, it is

clear that we can apply Ito’s lemma to derive the stochastic differential equation for πt. We

then obtain the result below:

dπt

πt−
= µπ,tdt+ σT

π,t


dBt

dBλ,t

dBv,t

+
(
e−γZt − 1

)
dNt (10)

where

µπ,t = −β − µ− Eν

[
e(1−γ)Z − 1

]
λt + γvt (11)

σπ,t =


−γ

√
vt

bσλ

√
λt

cσv
√
vt

 . (12)

For future reference, it is useful to note how each shock in this model economy translates

to movements in the SDF. Firstly, a positive diffusion shock to consumption growth dBt > 0

generates a diffusive decline in πt, which corresponds to the standard channel in which higher

consumption growth generates a decline in marginal utility.

Secondly, a positive shock to disaster risks dBλ,t > 0 or volatility dBv,t > 0 generates

an increase in πt if γ > 1.1 This is because whenever γ > 1, there is a preference for early

resolution of uncertainty (because we assume unit elasticity), which in turn implies that

negative shocks to lifetime utility directly generates an increase in current marginal utility

of wealth, independent of movements in the current level of consumption.

Finally, it is important to notice that a disaster realization generates a very significant

upward jump in the marginal utility of wealth (recall that Zt is a negative random variable,
1From the derivations in Appendix A, one can clearly see that b > 0 whenever γ > 1.
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reflecting a large negative shock to consumption). This naturally follows from the idea that

a steep decline in consumption growth generates a very large jump in marginal utility.

2.3 Risk-Free Rate

We also suppose that there is a risk-free asset in our economy. As is standard, the risk-free

rate rft denotes the (locally deterministic) instantaneous return on holding the risk-free asset

over an infinitesimal time interval [t, t + dt). Following standard derivations, one can show

that the risk-free rate is given by

rft = −Et−

[
dπt

πt−

]
= µ+ β − γvt + Eν

[
e−γZ

(
eZ − 1

)]
λt. (13)

We can observe that the risk-free rate is declining in vt, which reflects the standard

channel of precautionary motives to save. Furthermore, given that Zt is negative, we can

see that the risk-free rate is also declining in λt, which once again reflects a precautionary

motive to save in the presence of heightened disaster risks that may lead to a spike in the

marginal utility of wealth.

2.4 Dividend Strips and Equity Price

An equity claim in this economy is modelled as a claim to a stream of dividends defined by

Dt = Cϕ
t (14)

for some leverage parameter ϕ ⩾ 1.2 The case of ϕ = 1 corresponds to the standard Lucas

(1978) tree case of Ct = Dt. However, when ϕ > 1, any shock to consumption is amplified

by a factor of ϕ. This reflects the empirical observation that dividends are substantially

more volatile thatn consumption. In particular, it is consistent with the empirical result

from Longstaff and Piazzesi (2008) that dividend payments declined substantially more than

consumption during the Great Depression, which is a typical example of a disaster realization.
2This is a standard modelling assumption for equities as used by Gourio (2008) and Wachter (2013)

among others.
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In order to derive an analytical expression for equity prices, it is convenient to begin by

considering dividend strips. A period-s dividend strip is defined as an asset that pays out

Ds in period s. Then, the price of this period-s dividend strip at period t ⩽ s is given by

H (Dt, λt, vt, s− t) = Et

[
πs

πt

Ds

]
(15)

By extending the solution methodology of Wachter (2013), we can show that the price

function H for dividend strips can be found analytically using martingale methods. In

particular, we show in Appendix B that

H (Dt, λt, vt, τ) = Dt exp (aH(τ) + bH(τ)λt + cH(τ)vt) (16)

where (aH , bH , cH) are known in closed form as solutions to Riccati ODEs.

Based on the above dividend strip prices, we can then determine the prices of equities as

Ft = Et

[∫ ∞

t

πs

πt

Dsds

]
=

∫ ∞

t

H (Dt, λt, vt, s− t) ds (17)

where the final equality follows from interchanging the integral and the expectation. Notice

that the price-dividend ratio is then given by

G (λt, vt) =

∫ ∞

0

exp (aH(τ) + bH(τ)λt + cH(τ)vt) dτ (18)

Based on the above, we can then use Ito’s lemma to fully characterize the evolution of

equity prices as

dFt

Ft−
= µF,tdt+ σT

F,t


dBt

dBλ,t

dBv,t

+
(
eϕZt − 1

)
dNt (19)

µF,t = ϕ

(
µ+

1

2
(ϕ− 1)vt

)
+

Gλt

Gt

κ
(
λ̄− λt

)
+

1

2

Gλλt

Gt

σ2
λλt (20)

+
Gvt

Gt

κ (v̄ − vt) +
1

2

Gvvt

Gt

σ2
vvt
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σF,t =


ϕ
√
vt

Gλt

Gt
σλ

√
λt

Gvt

Gt
σv
√
vt

 (21)

where Gt is a short-hand notation for G (λt, vt) and the partial derivative notations are

defined similarly.

We will henceforth impose the following restriction on parameters:

ϕ ⩽ 2γ (22)

We show in Appendix B that dividend strip prices are weakly decreasing in λt and vt if

and only if the inequality above holds. The property that dividend strip prices are declining

in disaster risks and volatility is intuitive and clearly reasonable, since the claim to a more

uncertain dividend payout should decline in value. Then, given that this property holds, it

also follows that the price-dividend ratio is weakly decreasing in λt and vt. Finally, we note

that the restriction (22) above is satisfied in virtually all calibrations of models of the type

studied in this thesis.

Equipped with the restriction above, we can interpret the impact of various shocks on

the equity price in (19). Firstly, it is clear that a positive consumption growth shock dBt > 0

pushes up the equity price. Then, notice that an increase in uncertainty caused by either

dBλ,t > 0 or dBv,t > 0 leads to a decline in the equity price. This results from hightened risks

for holding equities leading to a decline in their equilibrium prices. Finally, it is clear that

a disaster realization will lead to a sharp decline in the equity price. In fact, the disaster

impact is amplified by a factor of ϕ which reflects the leverage that dividends have over

consumption.

3 Analysis

In this section we present key results that will later be used to provide the theoretical jus-

tification for the identification of key parameters in our calibration. The first subsection

provides some analytical results for the VIX, and the second subsection presents some sim-

12



ulation results building on the claims proved in the former. All proofs are relegated to

Appendix C.

3.1 Analytical Results for the VIX

Our aim is to provide a sharp analytical characterization of the VIX, which will show how

the VIX reflects volatility vt and disaster risks λt. Importantly, the result will show that

the VIX reflects λt in an amplified manner under the risk-neutral measure. Consequently,

fluctuations in λt that are small from a statistical point of view can generate substantially

amplified effects on the VIX.

The raw formula for the VIX represents an aggregation of the prices of put and call

options on the S&P500 across various maturities. As shown by Martin (2016), the VIX

defined in this way is a measure of the entropy of the aggregate equity price level under the

risk-neutral measure. Formally, we may write

V IXt(τ) =
2

τ
LQ
t

[
Ft+τ

Ft

]
(23)

where L(X) = logE(X) − E(log(X)) represents the entropy of a positive random variable

X, and Q is the risk-neutral measure. The entropy of a positive random variable can be

broadly considered as a measure of variability of the random variable, since it essentially

measures the "Jensen term" under the concave log function. Therefore, one can broadly

surmise that both volatility vt and disaster risks λt could play a key role in determining the

VIX.

In order to obtain sharper insights regarding the VIX, we must consider the distribution

of equity prices under the risk-neutral measure Q. The Radon-Nikodym derivative process

is given by the standard formula

Et

[
dQ

dP

]
= exp

(∫ t

0

rfs ds

)
πt

π0

(24)

where P is the objective probability measure. The key intuition conveyed by (24) is that

the risk-neutral measure overweights states of the world with high marginal utility (i.e. high

πt). Therefore, based on our previous discussion on the SDF πt, it is clear that the risk-
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neutral measure assigns greater weight to states of the world with (1) negative consumption

growth shocks dBt < 0, (2) positive disaster risk shocks dBλ,t > 0, (3) positive volatility

shocks dBv,t > 0, and (4) disaster realizations dNt > 0. In particular, given that the SDF

πt exhibits a large upward jump in the presence of a disaster realization, it is clear that

the prospect of disaster risks would be substantially "exaggerated" under the risk-neutral

measure.

We now proceed to formally derive a characterization of the stochastic differential equa-

tion for equity price Ft under the risk-neutral measure Q. By employing Girsanov’s theorem

for semimartingales, we can derive the following lemma:

Lemma 1. The equity price Ft satisfies the following stochastic differential equation:

dFt

Ft−
= µQ

F,tdt+ σQ
F,t


dBQ

t

dBQ
λ,t

dBQ
v,t

+
(
eϕZt − 1

)
dNt (25)

where

1. µQ
F,t < µF,t

2. σQ
F,t = σF,t

3.
(
BQ

t , B
Q
λ,t, B

Q
v,t

)
constitute a standard Brownian motion

4. Under the Q measure, Nt has jump intensity λQ
t = Mν(−γ)λt > λt

5. Under the Q measure, the distribution νQ of Z satisfies

dνQ

dνP
=

e−γZ

Mν(−γ)
(26)

The results of Lemma 1 are consistent with the intuition that we established above

regarding the risk-neutral measure Q. In particular, the risk-neutral measure overweights
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states of the world with high marginal utility. Firstly, we have suggested above that Q

would overweight the diffusive shocks dBt < 0, dBλ,t > 0, and dBv,t > 0. All of these are

shocks that would lead to a decline in the equity price level. Therefore, this is captured in

the result of µQ
F,t < µF,t, which is precisely the consequence of overweighting states of the

world in which the equity price declines.

Secondly, we noted previously that disaster risks would be severely "exaggerated" under

the risk-neutral measure. This is precisely reflected under points 4 and 5 of Lemma 1 above.

In fact, there is both an increase in the jump intensity, as well as a distortion of the disaster

size distribution that biases it towards more extreme left tail (Z < 0) outcomes.

Equipped with the results of Lemma 1, we can then obtain a sharper characterization of

the VIX as promised earlier. The key result is presented in the proposition below:

Proposition 1. In the limit of short time horizons, the VIX is equal to the following

lim
τ↓0

V IXt(τ) = ∥σF,t∥2 + 2EνQ

[
∞∑
k=2

(ϕZ)k

k!

]
λQ
t (27)

Prior to interpreting equation (27), we recall once again that the risk-neutral measure

embodies a distortion of the physical probability measure based on the marginal utility

of wealth of the representative agent. States of the world with high marginal utility are

overweighted. Consequently, the immediate implication of this construction is that the risk-

neutral measure substantially overweights disaster states with large consumption declines. In

contrast, diffusive volatility is symmetric in the sense that it can generate both consumption

declines and increases. Although this can distort the expected drift under the risk-neutral

measure, we cannot expect any distortions to the magnitude of the volatility itself.

We can then interpret the result of Proposition 1 in light of the discussion above. Equation

(27) shows very transparently the components of the VIX. The first term of ∥σF,t∥2 is the

physical volatility of the diffusion part of the equity price process Ft under the objective

probability measure. This part shows up in the VIX without any distortion because as we

saw in Lemma 1, the volatility of the diffusion poart of the equity price process is unchanged
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under the risk-neutral measure as σQ
F,t = σF,t. Therefore, we can see that the impact of vt

on V IXt works through a direct channel in which a higher volatility vt boosts the physical

volatility of the equity price process, which in turn is transparently reflected in the VIX

measure without any distortion from the risk-neutral measure. It is also notable that ∥σF,t∥2

reflects a small component of λt as well, which arises from the assumption that the diffusion

component for the stochastic process of λt is increasing in the level of λt (see (3)).

The second key component of V IXt is the disaster risks component given by the second

term above. It is clear that any increase in λt would be substantially amplified by the

distortion induced through the risk-neutral measure. Firstly, we know that the intensity

λQ
t amplifies the true λt by a factor of Mν(−γ) > 1 as we saw in Lemma 1 . This is

quantitatively significant under any standard calibration of disaster risks, and so acts to

significantly amplify the effect of λt on V IXt. Furthermore, we know that νQ distorts the

true disaster size distribution in a way that biases it towards more extreme left-tail outcomes.

As a result, we can clearly see that the expectation term would also be distorted upwards

under the risk-neutral measure.

Overall, the key takeaway from Proposition 1 above is the following. The impact of

vt on V IXt works through a direct channel in which there is a higher volatility of equity

prices from an objectively statistical point of view. Conversely, the impact of λt on V IXt

is severely amplified through a distortion under the risk-neutral measure, so that a small

change in λt from a statistical point of view can generate a very large increase in the V IXt.

We will later see that these results will be very important for identifying key parameters in

our calibration.

3.2 Simulation Results

In this subsection we present some simulation results building upon the analytical results

presented in the previous subsection. In particular, the simulation results will provide a

quantitative comparison between (1) a volatility shock vt ↑, and (2) a disaster risk shock

λt ↑ which generate an identical response in V IXt. As suggested by the analytical results,

we will show that the volatility shock generates an increase in consumption growth volatility

that can be observed and measured from an objective statistical point of view, whereas the
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disaster risk shock generates an increase in disaster risks which is barely detectable at all,

even for long time series samples.

In Appendix D, we combine a log-linearization of the price-dividend ratio with the trans-

form analysis method of Duffie et al. (2000) to show that the VIX takes the form

V IX2
t = A0 + Aλλt + Avvt (28)

where A0, Aλ, Av > 0 are constants. Therefore, it follows that λt must increase by 1/Aλ in

order to raise V IX2
t by one unit, and that vt must increase by 1/Av to raise V IX2

t by one

unit.

Based on the above, we propose the following simulation experiment. Let us simulate a

long series (1000 months) of log consumption growth based on the following three separate

scenarios:

1. the steady state (λ̄, v̄)

2. a high disaster risk state (λ̄ + ∆λ, v̄) with ∆λ chosen so that V IX2
t rises by exactly

one standard deviation

3. a high volatility state (λ̄, v̄ + ∆v) with ∆v chosen so that V IX2
t rises by exactly one

standard deviation

Therefore, the shocks of ∆λ and ∆v are comparable in the sense that they induce the

identical one-standard-deviation increase in the VIX. However, Figure 1 below shows that

the resulting simulated series of log consumption growth are strikingly different.
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Figure 1. Disaster Risk Shock vs Volatility Shock for a 1-Std. Increase in VIX

Figure 1 shows simulation results for log consumption growth based on three different situations, defined in

the main text. For each situation, we draw 1000 periods of log consumption growth and plot the simulated

series in three different panels above. Note that the parameter values used for the simulation are based on

the main calibration described under the SMM calibration procedure section below.

It is immediately obvious that the high disaster risk state is essentially indistinguishable

from the steady state, whereas the high volatility state is clearly distinguishable from the

steady state. This is indeed consistent with the analytical results obtained in the previous

section. A slight increase in disaster risks which is very small from a statistical point of view

can generate a large increase in the VIX due to the "distortions" embodied in the riskneutral

measure. Conversely, the volatility is translated directly without any distortion into the VIX,

so a volitlity-induced increase in the VIX must be reflected transparently in the time series

of consumption growth over time. These key observations will be the cornerstone for our

identification strategy in the next section.

18



4 Calibration by Simulated Method of Moments

In this section we present the calibration strategy and results. The method of calibration

used will be Simulated Method of Moments (SMM). The main topic of interest in this thesis

pertains to the quantification of stochastic disaster risks and stochastic volatility. Therefore,

the first subsection is dedicated to presenting the identification strategy for the relative

magnitudes of fluctuations in disaster risks versus volatility (i.e. σλ vs σv ). Then, the

overall calibration procedure and results will be presented in the subsequent subsection.

Throughout our calibration, we will let 1 unit of time correspond to 1 month in the data.

4.1 Identifying the Relative Magnitudes of σλ versus σv

We begin by defining the following indicator variable

LCSt = 1
(∣∣∆ logCt −∆ logC

∣∣ > std(∆̂ logC)) (29)

where ∆ logCt is the log consumption growth realized at period t; ∆ logC is the sample

mean of log consumption growth; and std ̂(∆ logC) is the sample standard deviation of log

consumption growth. Essentially, LCSt is an indicator variable equal to 1 whenever the log

consumption growth is more than 1 standard deviation above its mean. This variable is

meant to capture moderately large consumption growth realizations, not necessarily disas-

ters.

We then consider the following regression:

LCSt+h = αh + βh log V IXt + ϵt+h. (30)

This is a predictive regression which uses the current level of the VIX to predict the

likelihood of future large consumption realizations. In particular, our key coefficient of

interest will be βh.

Based on the discussions in the previous section, it is immediately clear that the coefficient

βh will be very sensitive to the relative magnitudes of σλ versus σv. Suppose, for instance,

that σλ ≫ σv, which means that we live in a world with stochastic disaster risks but very

little fluctuations in volatility. Based on our previous analysis, we know that small changes
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in disaster risks from a statistical point of view generates large fluctuations in the VIX. Thus,

it follows that the coefficient βh will be close to 0 in this situation. By the converse logic, as

σv becomes relatively more important than σλ, the predictive coefficient βh will grow larger.

We first begin by running this regression in the data. The regression is based on monthly

data from 1990 January to 2024 January (409 months).3 The results are reported in Panel A

of Table 1 below. The coefficient βh is statistically significant and slowly decays in magnitude

as the horizon h becomes longer.

Next, we simulate the model and produce regression results as in Panel B of Table 1

below. The column of main calibration corresponds to the parameters that arise from the

main calibration, which is described in the subsection below. This is the result when the

parameters are chosen to fit the data, including the regression coefficients shown. However,

we also consider two other cases in the next two columns. Firstly, when we halve the value

of σλ to σλ/2 from the main calibration, we find that the coefficients βh rise substantially,

reflecting the fact that stochastic volatility becomes much more important than stochastic

disaster risks. The opposite pattern arises when σv is halved to σv/2 from the main cal-

ibration. Thus, the patterns that we observe over different parameter values are indeed

consistent with the theoretical predictions that we discussed above. Overall, the findings

from the simulation exercise in Panel B of Table 1 indicate that targeting βh will sharply

identify the relative magnitudes of σv versus σλ.
3The starting month of 1990 January is the first month in which the CBOE published its VIX data.
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Table 1. Predicting Large Consumption Shocks: Sensitivity to σλ and σv

Panel A: Regression Results (Data)

LCSt+h = αh + βh log V IXt + ϵt+h

βh 0.16∗∗ 0.13∗ 0.14∗∗ 0.11∗ 0.08 0.10∗

SE (βh) 0.08 0.07 0.06 0.06 0.06 0.06
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10

Panel B: Simulated Model Results

LCSt+h = αh + βh log V IXt + ϵt+h

h Data Main Calibration σλ/2 σv/2

1 0.16 0.16 0.36 0.06

2 0.13 0.15 0.32 0.06

3 0.14 0.13 0.29 0.05

4 0.11 0.11 0.24 0.04

5 0.08 0.09 0.20 0.03

6 0.10 0.08 0.18 0.03

Table 1 reports the results for the regression of (30). Panel A reports the regression results based on the

data. There are 409 months of observations based on monthly data from 1990 January to 2024 January.

In addition to βh estimates, we report Newey-West standard errors as well. Panel B reports the regression

results based on simulated data from the model as well. All reported values are βh coefficients. The Data

column is from the data, just as in Panel A, and are included just for comparison. The Main Calibration

corresponds to the parameters from the SMM calibration discussed in the next subsection. The σλ/2 column

halves the value of σλ from the main calibration. The σv/2 does the same by halving σv from the main

calibration. The simulation is based on the mean coefficients drawn from 100 separate simulations of 409

months of data, with each simulation containing 50 burned periods as well.
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4.2 SMM and Results

We now describe the SMM procedure used to obtain the results. Firstly, the set of model

parameters are divided into two groups. The first group of parameters (see Panel B of Table

2 below) are for those that are previously studied and estimated in the literature, and are

simply taken from such previous studies. In particular, the average disaster probability λ̄ is

taken from the extensive historical panel study of Barro and Ursua (2008). Also, we impose

for simplicity a normal distribution for the disaster size distribution, and we take the mean

and standard deviation parameters (µz, σz) from Barro and Ursua’s (2008) historical study.

Also, the risk aversion parameter is set at γ = 4, which is broadly consistent with the range

of values used in the disaster risks asset pricing literature (e.g. Barro, 2006; Wachter, 2013).

Secondly, the set of parameters that are calibrated based on SMM is listed in Panel C

of Table 2 below. Each of these parameters are identified by different statistics that are

targeted, which are listed under Panels A and B of Table 2. The parameter µ is simply

identified by the mean growth rate of consumption, and v̄ is identified by the standard

deviation of the growth rate of consumption. For the key parameters of (σλ, σv), the relative

magnitudes of these two are identified by targeting (βh)
6
h=1 as discussed previously. Then,

since the standard deviation of the VIX is increasing in both σλ and σv, these two parameters

are jointly identified as well. The mean reversion parameter κ is identified by the first-order

autocorrelation of VIX, as well as the rate of decay of (βh)
6
h=1. Furthermore, the discount

rate β is identified by the risk-free rate. Finally, the leverage parameter ϕ is identified by the

equity premium and the equity return volatility, both of which are increasing in leverage.

We run the SMM based on the following procedure. First, we draw 100 separate simu-

lations, where each simulation contains a total of 459 periods. Out of the 459 periods, 50

is discarded as part of a burned period, whereas 409 periods are used as simulated data

in correspondence with the 409 months of actual data used.4 Then, for each of the 100

simulations, the full set of targeted statistics are produced and recorded based on the 409

periods of data. We then compute the average of the produced targeted statistics over the

full set of simulations. Finally, we find the parameter values that minimize the squared
4Notice that convergence to the stationary distribution is very fast, as we only require the exogenous

stochastic processes for vt and λt to converge to the Gamma stationary distribution.
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sum of percentage deviations for each of the target statistics. This is taken to be the SMM

calibrated parameters reported in Panel D of Table 2 below.

Table 2. Parametrization

Panel A: Baseline Moments

Data Model

E(log g) 1.64 1.59

σ(log g) 4.24 4.22

E
(
rf
)

0.31 0.35

σ
(
rf
)

0.68 0.88

E(logR) 7.09 7.29

σ(logR) 12.60 12.33

E(log V IX) 2.92 3.00

σ(log V IX) 0.34 0.35

AC1(log V IX) 0.83 0.88

Panel B: Regression Coefficients

LCSt+h = αh + βh log V IXt + ϵt+h

h Data Model

1 0.16 0.16

2 0.13 0.15

3 0.14 0.13

4 0.11 0.11

5 0.08 0.09

6 0.10 0.08
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Panel C: Parameters from the Literature

λ̄ µz σz γ

0.036/12 -0.21 0.13 4

Panel D: Calibrated Parameters from SMM

µ v̄ σv σλ κ β ϕ

0.0013 0.0002 0.0039 0.0248 0.0985 0.0015 2.7827

Table 2 reports the target statistics and parameters for the SMM calibration. Panels A and B report the full

set of targeted statistics, both from the actual data as well as the simulated data from the model. All data

moments are produced from data for 1990 January to 2023 January ( 409 months in total). All moments

in Panel A are annualized except for those pertaining to the VIX, since the VIX variable by convention is

already an annualized quantity. All model moments follow the same conventions for the data. All simulated

model statistics are produced from2B00 separate simulations of 409 periods of data, with each simulation

including 50 burn periods as well. Panel C reports parameter values taken from the literature, and Panel D

reports the calibrated parameters estimated from the SMM procedure. Refer to the main text for additional

details on the calibration procedure.

5 Main Results

The main objective of this thesis is to quantify the importance of stochastic volatility and

stochastic disaster risks, respectively, for fluctuations in (1) the VIX, (2) conditional eq-

uity risk premia, and (3) welfare. Equipped with the calibration results from the previous

section, we are now able to present quantitative results pertaining to these questions. The

key quantitative results are presented in Table 3 below, with discussions in the following

subsections.
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Table 3. Main Results: Disaster Risk Shocks vs Volatility Shocks

Panel A: Variance Decomposition for VIX

All Shocks Only Disaster Risk Shocks Only Volatility Shocks

Var (V IX2
t /100) 12.90 11.97 0.94

Panel B: Variance Decomposition for Conditional Equity Risk Premia

All Shocks Only Disaster Risk Shocks Only Volatility Shocks

Var (RPt) 16.00 13.86 2.10

Panel C: Consumption-Equivalent Welfare Costs Comparison

Cλ Cv

1.08% 0.22%

Table 3 summarizes the main results for this thesis. Panel A reports a variance decomposition for the

quantity V IX2
t /100. Notice that each period is monthly, and the VIX is annualized just as in the data.

The division by 100 is simply a normalization that makes the results quantitatively neater. Also, Panel

A is an exact decomposition based on an affine decomposition of the VIX. Panel B reports the variance

decomposition for the quantity RPt, which is the annualized risk premium. Notice once again that each

period is monthly. Panel B is a non-linear decomposition computed based on a long simulation of RPt.

Finally, Panel C reports the consumption-equivalent welfare costs. Cλ is the consumption-equivalent welfare

cost of a 1 (unconditional) standard deviation shock to disaster risks, and Cv is defined similarly. See the

main text for a more formal definition.

5.1 Variance Decomposition for the VIX

Based on equation (28) above, we have an affine decomposition of the VIX which can be used

to perform an exact variance decomposition. The quantitative results are presented in Panel

A of Table 3 above. In percentage terms, 92.7% of fluctuations in the VIX are explained
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by stochastic disaster risks, whereas only 7.3% of fluctuations in the VIX are explained by

stochastic volatility.

These results provide a guideline for interpreting the origins of flucutations in the VIX.

In particular, given that most of the fluctuations in the VIX are explained by disaster risk

fluctuations, this raises questions about approaches in the literature that interpret VIX

fluctuations as arising from stochastic volatility. For instance, Basu and Bundick (2017)

build a business cycle model with stochastic volatility in the TFP process and the preference

shocks process. Then, they estimate the stochastic volatility process using a combination

of VIX and macro data. However, the results in this section suggest that approaches such

as this one wrongly assign VIX fluctuations to stochastic volatility, when in fact, they arise

primarily from disaster risk fluctuations.

5.2 Variance Decomposition for Conditional Equity Risk Premia

The instantaneous equity return is defined by5

dRt =
dFt

Ft−
+

Dt

Ft

(31)

Then, we may define the conditional equity risk premium at time t as

RPt = Et− [dRt]− rft (32)

It is well-known in the asset pricing literature that the conditional equity risk premium

is significantly time-varying, and that fluctuations in uncertainty can be a key driver of

this time-variation (Martin, 2016). Consequently, we perform a variance decomposition to

examine the relative importance of stochastic disaster risks versus stochastic volatility for

explaining this time-varying risk premium.6

The results shown in Panel B of Table 2 indicate that disaster risk shocks are once

again substantially more important than volatility shocks for explaining time-varying equity
5Notice that the price-dividend ratio exhibits no jumps.
6Unlike the affine equation for the VIX above, we have a non-linear variance decomposition in the case

of the conditional risk premium. Therefore, as seen in Panel B of Table 2, the decomposed variance from

each component does not add up to the total variance, although it is very close to being exact.
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risk premia. In fact, disaster risk shocks account for 86.6% of the toal variation, whereas

volatility shocks account for 13.1%. These results suggest once again that disaster risk shocks

are substantially more important for explaining asset market dynamics relative to stochastic

volatility.

5.3 Welfare Costs from Disaster Risk vs Volatility Shocks

A consumption-equivalent measure of welfare costs can be developed to quantify the welfare

loss from disaster risks versus volatility shocks. In order to define this measure, consider a 1

(unconditional) standard deviation increase in λt. Then, we define Cλ as the once-and-for-all

increase in log consumption required to exactly compensate for the λt increase. Formally,

Cλ is implicitly defined as below:

J (C exp (Cλ) , λ+ std(λ), v) = J(C, λ, v) (33)

where std(λ) is the unconditional standard deviation of λt. It is notable that the solution

for Cλ from above does not depend on the levels of (C, λ, v). This is a direct consequence of

the exponential linear form of the lifetime utility function (see Appendix A).

The welfare cost measure Cv is defined analogously to the above based on a 1 (uncondi-

tional) standard deviation shock to vt. Formally, we have

J (C exp (Cv) , λ, v + std(v)) = J(C, λ, v) (34)

Based on the computation of (Cλ, Cv) reported in Panel C of Table 3, it is clear once

again that disaster risk shocks induce a greater loss of welfare than volatility shocks. The

difference is substantial, with the welfare cost being about 5 times higher for disaster risk

shocks relative to volatility shocks. Therefore, the results from this exercise suggest that

uncertainty-induced welfare fluctuations arise more due to disaster risk fluctuations than

volatility shocks. However, it is also notable that the extent to which disaster risk shocks are

more important than volatility shocks is actually much lower than the relative magnitudes

absorbed in the variance decomposition exercises above.
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6 Conclusion

Fluctuations in uncertainty are known to be a key driver of asset prices, risk premia, and

welfare costs. However, there are distinct aspects to uncertainty, and the relative importance

of these different aspects of uncertainty shocks are not clear. This thesis has focused on two

particular aspects of uncertainty shocks - stochastic volatility and stochastic disaster risks -

which differ along the dimensions of magnitude and frequency. The overall aim of this thesis

was to horserace these two aspects of fluctuations in uncertainty in order to examine their

relative importance.

In order to identify the relative magnitudes of volatility vs disaster risk shocks, we es-

tablished key results characterizing the differential pass-through of these two shocks for the

VIX. The key result was that an increase in the VIX caused by a volatility shock will exhibit

a corresponding increase in objective volatility as measured statistically, whereas the same

increase in the VIX caused by a disaster risk shock would correspond to only a small change

in disaster risks when measured from a statistical point of view. Therefore, by targeting the

coefficients from a predictive regression of the current level of the VIX on future volatility

of consumption growth, we are able to sharply identify the relative magnitudes of volatility

vs disaster risk shocks.

The key quantitative conclusion which then arises is that stochastic disaster risks are

substantially more important than stochastic volatility for explaining variations in (1) the

VIX, (2) time-varying conditional equity risk premia, and (3) welfare costs. This is especially

the case for explaining fluctuations in the VIX. The results provided in this thesis then

provide a quantitative benchmark for understanding the relative importance of these distinct

aspects of uncertainty shocks. Furthermore, it raises questions about approaches in which

VIX data is used to estimate the stochastic volatility process without accounting for disaster

risk fluctuations.
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Appendix

A Lifetime Utility Function

The derivation of the lifetime utility function is based on the approach of Wachter (2013),

which has been extended to fit our current model context.

The representative agent in the model is entitled to the consumption endowment process

given by (1) in the main text. Let us consider a “consumption claim” asset that provides

a stream of payments equal to the stochastic process for tCtut¥0. Then, denote the price of

this consumption claim as St. In equilibrium, the price St will be equal to the total wealth

of the representative agent at any point in time. It will be convenient to denote the wealth

separately as Wt.

Let us then define V pWt, λt, vtq as the value function (i.e. liftetime utility function) of

the agent given current wealth Wt, current disaster risk λt, and current volatility vt. The

reason we work with the wealth Wt rather than Ct is because “standard” functional forms

for guessing the lifetime utility function in these contexts is based on the wealth, rather than

current consumption level.

Then, we will let the agent face a portfolio choice problem between two assets: (1)

the consumption claim asset defined above, with price St, and (2) the risk-free asset with

instantaneous rate rt. In equilibrium the agent will simply hold 1 unit of the consumption

claim and hold 0 units of the risk-free asset. Therefore, the availability of the risk-free asset

does not affect the agent’s lifetime utility function in any way – however, the reason we do

include it here is because the optimal portfolio choice condition between the risk-free asset

and the consumption claim actually helps us derive the proportion between consumption

and wealth, which is useful for deriving the liftetime utility function in terms of consumption

(this is necessary to derive the SDF in the main text). In addition, it is worth noting that

although we do not model the portfolio choice problem with respect to other assets (e.g.

equities, options, and long-term bonds), this does not mean that we are unable to price

these assets within our framework. Equipped with the equilibrium SDF derived in the main

text, we can price any well-defined asset.
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We will begin with the conjecture, later verified, that the wealth-consumption ratio is a

constant, denoted l below:
Wt

Ct

� l. (35)

This guess arises from previous results (e.g. Weil, 1989) which show that representative agent

models with recursive preferences and EIS � 1 tend to have a constant wealth-consumption

ratio.

Given the conjecture above, we know then that the stochastic process for St must satisfy

the following in equilibrium:

dSt

St�
� µdt�?

vtdBt � peZt � 1qdNt. (36)

Then, denoting the fraction of wealth invested in the consumption claim as αt, it follows

that wealth involves according to

dWt � rαtpµ� l�1q � p1� αtqrtsWt�dt� Ct�dt�Wt�αt

?
vtdBt �Wt�αtpeZt � 1qdNt. (37)

We are then able to formulate the HJB equation for the value function as below:

0 � sup
Ct,αt

fpCt, Vtq � VWtrWtpαtpµ� l�1q � p1� αtqrtq � Cts � 1

2
VWWtW

2
t α

2
t vt

� λtEνrV pWtp1� αtpeZt � 1qq, λt, vtq � V pWt, λt, vtqs � Vλtκλpλ̄� λtq

� 1

2
Vλλtσ

2
λλt � Vvtκvpv̄ � vtq � 1

2
Vvvtσ

2
vvt

(38)

where Vt is used as short-hand notation for V pWt, λt, vtq; VWt is used as short-hand notation

for VW pWt, λt, vtq; and similarly for other partial derivatives with a time index.

Let us then substitute the equilibrium conditions αt � 1 and Ct � l�1Wt. Then, we know

that the following HJB equation must hold:

0 �fpl�1Wt, Vtq � VWtWtµ� 1

2
VWWtW

2
t vt

� λtEνrV pWte
Zt , λt, vtq � V pWt, λt, vtqs � Vλtκλpλ̄� λtq

� 1

2
Vλλtσ

2
λλt � Vvtκvpv̄ � vtq � 1

2
Vvvtσ

2
vvt.

(39)
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Let us then guess the functional form below, which is a common guess for EIS � 1:

V pWt, λt, vtq � W 1�γ
t

1� γ
Ipλt, vtq. (40)

Now let us consider the FOC with respect to consumption in the HJB (38). Upon

algebraic manipulation, we can check that this FOC holds true in equilibrium if and only if

β � l�1. (41)

Now, let us plug in the guess (40) together with (41) into the HJB of (39). Upon algebraic

manipulation, we find that the guess is verified if and only if the following ODE for Ipλt, vtq
is satisfied:

log Ipλt, vtq �p1� γq log β � 1

β
p1� γqµ� 1

2

1

β
γp1� γqvt � λt

β
Eνrep1�γqZ � 1s

� 1

β

Iλt

It
κλpλ̄� λtq � 1

2

1

β

Iλλt

It
σ2
λλt

� 1

β

Ivt
It

κvpv̄ � vtq � 1

2

1

β

Ivvt
It

σ2
vvt

(42)

where It is used as short-hand notation for Ipλt, vtq and similarly for the partial derivatives

with the time index.

Then, let us guess the exponential linear functional form as the solution to the ODE

above:

Ipλt, vtq � exppa� bλt � cvtq. (43)

Plugging the above into (42), we find that the guess is verified if and only if the following

hold:

a � p1� γq log β � 1

β
p1� γqµ� 1

β
bκλλ̄� 1

β
cκvv̄ (44)

b � κλ � β �
a
pκλ � βq2 � 2σ2

λEνrep1�γqZ � 1s
σ2
λ

. (45)

c � κv � β �apκv � βq2 � σ2
vγp1� γq

σ2
v

. (46)

Notice that we have two candidates for b and c, respectively. However, we can easily rule out
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the � solution based on the following economic reasoning. Suppose that the disaster size is

always equal to 0 with probability 1 (i.e. Z � 0). In that case, disaster risk fluctuations

should have no impact at all on the liftetime utility function (i.e. b � 0). The solution of b

consistent with this is the � solution. In the case of c, consider the limiting case as γ Ñ 0 so

that the agent approaches risk-neutrality. It follows that volatility risk fluctuations should

have no impact at all on agent’s lifetime utility (notice that vt has no impact at all on future

expected consumption). The only solution consistent with this property is the case with the

� solution for c. Thus, we are able to pin down the unique solution for b and c.

Now, the only optimality that must be verified to complete our verification is the FOC

with respect to the risk-free rate. It is clear that this is indeed verified if and only if

rt � µ� β � γvt � λtEνre�γZpeZ � 1qs. (47)

Notice further that this risk-free rate is indeed consistent with the risk-free rate in the main

text which was derived based on the SDF.

This completes our derivation of the lifetime utility function V pW,λ, vq. However, it will
be convenient for us to express the lifetime utility function in terms of current consumption

level Ct when deriving the SDF. Based on (41), we can easily express with lifetime utility

function as

JpC, λ, vq � pβ�1Cq1�γ

1� γ
exppa� bλ� cvq. (48)

B Dividend Strips

In this section, we adapt the methodology of Wachter (2013) to our model, presenting an

analytical solution for the dividend strip price funciton. Firstly, let us fix some s ¡ 0 and

view tHpDt, λt, vt, s � tqu0¤t¤s as a stochastic process with time index t. At times we will

find it convenient to denote this process as Ht. Then, notice immediately that

πtHpDt, λt, vt, s� tq � EtrπsHpDs, λs, vs, 0qs, (49)
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from which it follows that tπtHpDt, λt, vt, s� tqu0¤t¤s – viewed as a stochastic process with

time index t – is a martingale.

Let us then conjecture the following functional form for the dividend strips prices:

HpDt, λt, vt, τq � Dt exptaHpτq � bHpτqλt � cHpτqvtu. (50)

Then, we may apply Ito’s lemma to characterize the stochasitc differential equation for Ht.

We then obtain the following:

dHt

Ht�
� µH,tdt� σT

H,t

�
��������

dBt

dBλ,t

dBv,t

�
�������

� peϕZt � 1qdNt (51)

µH,t �� ra1Hps� tq � b1Hps� tqλt � c1Hps� tqvts � µD,t

� bHps� tqκλpλ̄� λtq � 1

2
b2Hps� tqσ2

λλt

� cHps� tqκvpv̄ � vtq � 1

2
c2Hps� tqσ2

vvt

(52)

µD,t � ϕpµ� 1

2
pϕ� 1qvtq (53)

σH,t �

�
��������

ϕ
?
vt

bHps� tqσλ

?
λt

cHps� tqσv
?
vt

�
�������

. (54)

Then, consider the stochastic process for tπtHtu0¤t¤s. We may apply Ito’s lemma to derive

the stochastic differential equation for this process. Then, since we know that this process

must be a martingale, we can impose the following condition:

Et�rdpπtHtqs � 0, (55)
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which in turn translates to the condition

µπ,t � µH,t � σT
π,tσH,t � Eνrepϕ�γqZt � 1sλt � 0. (56)

We can express the left hand side as an affine function of pλt, vtq. Thus, the condition above

corresponds to three separate conditions, in which we set the constant component and the

two coefficients on pλt, vtq as equal to 0. These three respective conditions are listed below:

a1Hpτq � �β � µ� ϕµ� bHpτqκλλ̄� cHpτqκvv̄ (57)

b1Hpτq �
1

2
σ2
λb

2
Hpτq � pbσ2

λ � κλqbHpτq � Eνrepϕ�γqZ � ep1�γqZs (58)

c1Hpτq �
1

2
σ2
vc

2
Hpτq � rcσ2

v � κvscHpτq � p1
2
ϕ� γqpϕ� 1q. (59)

The three equations constitute a system of Riccati ODEs with known analytical solutions.

The solutions are presented below:

bHpτq � 2Eνrepϕ�γqZ � ep1�γqZs e�∆bH
τ � 1

pbσ2
λ � κ�∆bH qp1� e�∆bH

τ q � 2∆bH

(60)

∆bH �
b
pbσ2

λ � κq2 � 2σ2
λEνrepϕ�γqZ � ep1�γqZs (61)

cHpτq � pϕ� 2γqpϕ� 1q e�∆cH
τ � 1

pcσ2
v � κ�∆cH qp1� e�∆cH

τ q � 2∆cH

(62)

∆cH �
a
pcσ2

v � κq2 � σ2
vpϕ� 2γqpϕ� 1q (63)

aHpτq �p�β � µ� ϕµqτ
� 2Eνrepϕ�γqZ � ep1�γqZsκλ̄Γpτ ; ∆bH , bσ

2
λ � κq

� pϕ� 2γqpϕ� 1qκv̄Γpτ ; ∆cH , cσ
2
v � κq

(64)

where the Γ is a function defined as below:

Γpt; ∆, αq � 2

∆2 � α2
log

��
α

2∆
� 1

2

�
e�∆t � 1

2
� α

2∆



� t

∆� α
. (65)

We conclude this section by revisiting the claim in Section 2 that dividend strip prices
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are weakly decreasing in λt and vt if and only if ϕ ¤ 2γ. To see this result, it is sufficient to

note that dividend strip prices are decreasing in λt if and only if bHpτq ¤ 0 for all τ ¥ 0; and

dividend strip prices are decreasing in vt if and only if cHpτq ¤ 0 for all τ ¥ 0. In fact, we

can see that since ϕ ¤ 1 and Z   0 with probability 1, the former condition always holds.

In addition, we can show upon algebraic manipulations that cHpτq ¤ 0 for all τ ¥ 0 if and

only if ϕ ¤ 2γ holds. This establishes the claim from the main text.

C Proofs

Proof of Lemma 1. By applying Ito’s lemma, we can find that

d log πt � pµπ,t � 1

2
||σπ,t||2qdt� σT

π,t

�
��������

dBt

dBλ,t

dBv,t

�
�������

� γZtdNt, (66)

from which it follows that

πt

π0

� exp

�» t

0

pµπ,s � 1

2
||σπ,s||2q ds�

» t

0

σT
π,s

�
��������

dBt

dBλ,t

dBv,t

�
�������

�
» t

0

»
R�

p�γZqθpds� dzq


, (67)

where θ is the random counting measure associated with ZtdNt.

Furthermore, we may write the risk-free rate as

rft � �Et�

�
dπt

πt�

�
� �µπ,t � λtEνre�γZ � 1s. (68)

Then, recall that the Radon-Nikodym derivative process for the risk-neutral measure
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with respect to the physical probability measure can be written as

Lt � exp

�» t

0

rfs ds



πt

π0

� exp

�
� 1

2

» t

0

||σπ,s||2q ds�
» t

0

σT
π,s

�
��������

dBt

dBλ,t

dBv,t

�
�������


�
» t

0

»
R�

p�γZqθpds� dzq �
» t

0

»
R�

p1� e�γZqιspdzq ds


,

(69)

where ι is the intensity kernel associated with θ.

Based on the formulation above, we are ready to apply Girsanov’s theorem for semi-

martingales. This immediately allows us to obtain the following results:

�
��������

BQ
t

BQ
λ,t

BQ
v,t

�
�������

�

�
��������

Bt

Bλ,t

Bv,t

�
�������

�
» t

0

σπ,sds (70)

is a standard Brownian motion under Q. In addition, if we define ιQ to be the Q-intensity

kernel, we have the following:

ιQpRq � Eνre�γZsλt (71)

ιQpdzq
ιR

� e�γZ

Eνre�γZsνpdzq. (72)

Based on the results above, the claims in 2-5 are immediately obvious. Then, we can

observe that

µQ
F,t � µF,t � σT

F,tσπ,t. (73)

Finally, we can easily verify that σT
F,tσπ,t   0 so that the claim in 1 holds as well.
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Proof of Proposition 1. By an application of Ito’s Lemma, we have that

d logFt � pµQ
F,t �

1

2
||σF,t||2qdt� σF,t

�
��������

dBQ
t

dBQ
λ,t

dBQ
v,t

�
�������

� ϕZtdNt. (74)

Then, let us consider the limit

lim
τÓ0

V IX2
t pτq � 2 lim

τÓ0

LQ
t

�
Ft�τ

Ft



τ

� ||σF,t||2 � 2 lim
τÓ0

logEQ
t exppϕZpNt�τ �Ntqq � EQ

t ϕZpNt�τ �Ntq
τ

� ||σF,t||2 � 2EνQ

�
eϕZ � p1� ϕZq

�
λQ
t ,

(75)

which is then clearly equal to the expression in the proposition given a Maclaurin series

expansion of the exponential.

D Computing the VIX

We begin with a log-linearization of the price-dividend ratio around the steady state pλ̄, v̄q:

logGpλt, vtq � logGpλ̄, v̄q � Gλpλ̄, v̄q
Gpλ̄, v̄q pλt � λ̄q � Gvpλ̄, v̄q

Gpλ̄, v̄q pvt � v̄q

� ag � bgpλt � λ̄q � cgpvt � v̄q,
(76)

where pag, bg, cgq are constants defined implicitly above.

The key advantage of this log-linearization is that it allows us to cast the evolution of stock

prices Ft into the affine jump-diffusion framework of Duffie et al. (2000), under which there

are powerful computational and analytical tools. Notice that under this log-linearization, we
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may write

Ft�τ

Ft

� Gt�τ

Gt

�
Ct�τ

Ct


ϕ

� exp

�
bgpλt�τ � λtq � cgpvt�τ � vtq � ϕplogCt�τ � logCtq



. (77)

Then, notice that the Xτ defined below satisfies the assumption of affine jump-diffusion as

defined under Duffie:

Xτ �

�
��������

logCt�τ � logCt

λt�τ

vt�τ

�
�������

. (78)

Finally, notice that the expectations EQ
t

�
Ft�τ

Ft



and EQ

t

�
log Ft�τ

Ft

�
can be computed

tractably using Duffie et al.’s (2000) transform analysis tools. Therefore, the risk-neutral

entropy can be readily calculated, and it is easy to show using Duffie et al.’s (2000) results

that the VIX takes the form below

V IX2
t � A0 � Aλλt � Avvt. (79)
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