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1 Introduction

Economists are often faced with the analysis of dynamic high dimensional objects, such as

cross sectional distributions of incomes, assets, markups, and other economic variables of

interest. This is the case for instance when studying impulse response functions, resulting

from the dynamics of selected moments computed on the distribution of interest. We present

a powerful method for such analyses, which typically require solving the partial differen-

tial equation that characterizes the evolution of the distribution of interest. The method is

the eigenvalue-eigenfunction decomposition that allows to solve the partial differential equa-

tion through a neat separation of the time-dimension from the state-dimension, providing

a tractable solution to a non-trivial problem. Few recent papers in economics have applied

such method to study the transition of the cross-section distribution of incomes, Gabaix,

Lasry, Lions, and Moll (2016), and to analyze asset pricing for long term risk, Hansen and

Scheinkman (2009).1

We apply this method to analytically compute the entire impulse response function to a

once and for all monetary shock in a broad class of sticky price models including versions of

Taylor (1980), Calvo (1983), Golosov and Lucas (2007), a version of the “CalvoPlus” model

by Nakamura and Steinsson (2010), as well as the multi-product models of Midrigan (2011),

Bhattarai and Schoenle (2014) and Alvarez and Lippi (2014), and the model with “price-

plans” as in Eichenbaum, Jaimovich, and Rebelo (2011) and Alvarez and Lippi (2019). In

these models firms are hit by idiosyncratic shocks and face a price setting problem featuring

(possibly random) menu costs, as well as “price plans” (i.e. the possibility of choosing 2 prices

instead of a single one upon resetting). As in most of the general equilibrium literature on the

topic we abstract from strategic complementarities to retain tractability. These problems are

typically computationally intensive and numerical solutions may hinder a clear understanding

of the mechanism at work. The approach we propose greatly facilitates the solution of such

1 See also Caballero (1993) for an early use eigenvalue-eigenfunctions to analyze the dynamics of a cross-
section distribution and Krieger (2002) for a related early attempt to represent the dynamics of a high-
dimensional state in macroeconomic models as eigenstates.
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models, which in many cases has a simple-to-derive analytic form, while at the same time

unveiling the key forces and deep parameters behind the results.

Our method delivers analytical representation of the whole profile of the impulse response

function, as opposed to previous analytic results on the impact effect of shocks, such as

Caballero and Engel (2007), or analytic results on the cumulated impulse response to shocks,

such as Alvarez, Le Bihan, and Lippi (2016) and Baley and Blanco (2019a). The results also

provide straightforward characterizations for several features of interest for a large class of

sticky price models, such as duration analysis and the dynamics of any moment of interest

after an aggregate shock. Moreover the analysis applies to shocks of any size as well as

to shocks to higher moments, such as uncertainty shocks, differently from previous analytic

investigations focusing mostly on approximations for small monetary shocks, as in e.g. Gertler

and Leahy (2008); Alvarez, Le Bihan, and Lippi (2016); Baley and Blanco (2019b). After

presenting the setup of the analysis and our main result in Section 3, we illustrate the power

of the method by discussing four substantive economic applications.

First, in Section 4, we provide an analytic characterization of the “selection effect”, which

is one of the main reason why different sticky price models yield different real effects. The

selection effect, first discussed by Golosov and Lucas, refers to the fact that the prices that

adjust following a monetary shock are those of a selected group of firms. For instance,

following a monetary expansion, it is more likely to observe price increases (price changes by

firms with a low markup) than price decreases. This contrasts with models where adjusting

firms are not systematically selected, such as models of rational inattentiveness, or models

where the times of price adjustment are exogenously given such as the Calvo model. We

present an analytic result showing how the selection effect creates a wedge between the

duration of price spells and the duration of the aggregate output response. The two durations

coincide when there is no selection. We show that such a wedge is visible in the magnitude

of the eigenvalues that control, respectively, the dynamics of the survival function of prices

and the dynamics of aggregate output.
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Second, Section 5 discusses the possibility to obtain a parsimonious approximate charac-

terization of the impulse response function by using selected eigenvalues. The question arises

since in Hansen and Scheinkman (2009) and Gabaix et al. (2016) the dominant eigenvalue

is a convenient and accurate description of an otherwise complicated infinitely dimensional

object. It is thus natural to ask whether a single eigenvalue might be found to represent

an approximate impulse response function. We present several results. We show that the

dominant eigenvalue, which characterizes the asymptotic behaviour of the income distribu-

tion in Gabaix et al. (2016), gives the asymptotic hazard rate of price changes in our class of

sticky price models. Yet the impulse response of output, including its asymptotic behavior,

is unrelated to the dominant eigenvalue. This is because the output’s IRF depends on the

difference between price increases and decreases, as opposed to the hazard rate of any price

change, i.e. the hazard rate of either increases or decreases. Indeed, as we consider models

with “less selection” on the price changes –say moving from the menu cost model of Golosov

and Lucas towards Calvo pricing, or increasing the number of products in the multi product

model–, the dominant and the second eigenvalues get closer to each other. We show that

in general it is not possible to summarize the impulse response function, nor its asymptotic

behavior, with a single eigenvalue-eigenfunction pair. As a concrete example of a case where

no single eigenvalue can be used to characterize the IRF we discuss a class of sticky price

models that gives rise to a hump-shaped impulse response function.2 We provide analytic

conditions for the hump-shaped impulse response to arise. Similar results are established

for multiproduct models. We show, however, that an interesting special case exists: the

canonical menu cost model with 1 good and no price plans can be effectively summarized by

a single eigenfunction.

Third, in Section 6, we study how the propagation of monetary shocks is affected by

the volatility of shocks faced by firms. Bloom (2009) analyzed the macroeconomic impact

of uncertainty shocks, and other scholars have shown that recessions are times in which the

2This hump-shaped behavior emerges in economies where the price setting technology features “price
plans” and some randomness in the cost of price changes (weak selection).
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volatility of shocks is higher. We use our method to analyze whether monetary policy is more

or less powerful in recessions, interpreted as times in which volatility is high. The question

relates to the recent quantitative investigation by Vavra (2014). We show that the answer

crucially depends on the time elapsed since the volatility shock occurred: the propagation of

a monetary shock that occurs together with the volatility shock differs substantively from the

propagation of a shock that occurs a long time after the new volatility is in place. The reason

is that in the first case, which we label the “short run”, the new volatility immediately affects

the firm’s decision rule, but the cross sectional distribution of firms is still the old invariant

distribution. For instance, an increase in uncertainty widens the inaction region, so that no

firm is initially located close to the boundary and the number of adjustments is lower (so

that monetary policy is more powerful). This effect reverses in the long run: as the new

invariant distribution gets settled, the higher uncertainty will trigger more adjustments and

thus a less powerful monetary policy. The model also allows us to quantify the time that it

takes for the long-run effect to settle in.

Fourth, we apply our method to study an economy with multiproduct firms in Section 7.

Such model assumes a firm produces n different products and that it faces increasing returns

in the price adjustment: if a pays a fixed cost it can adjust simultaneously the n prices.

Variations on this model have been studied by Midrigan (2011) and Bhattarai and Schoenle

(2014). These models are appealing because they match several empirical regularities: syn-

chronization among price changes within a store, and coexistence of both small and large

price changes. Their economic analysis is of interest because in an economy populated by

multiproduct firms the monetary shocks have more persistent real effects. In Alvarez and

Lippi (2014) we derived results for impulse responses to this multidimensional setup and

explore the sense in which such a model is realistic. Here we show that the characterization

of the selection effect, as the difference between the survival function and the output IRF

holds in this model, with the number of products n serving as the parameter that controls

selection.
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Section 8 concludes the paper by discussing how our method can be used in setups that,

unlike the workhorse sticky-price models described in this paper, allow for an asymmetric

return function as well as an asymmetric law of motion for the state (e.g. high inflation),

or both. We show that, although analytical results are now harder to obtain, the method

retains tractability. Such a framework is a promising avenue to study, among others, the

role of higher-order shocks of the kind discussed by Fernandez-Villaverde et al. (2011) and

Fernandez-Villaverde et al. (2015) in contexts where decisions rules and the state of the

economy feature various kinds of asymmetries. Section 9 discusses avenues for future work.

2 Set up

This section introduces the main objects of our analysis. First we set up a standard mathe-

matical definition of the impulse response. Second, we present a simple baseline sticky-price

model that is used to illustrate several applications of interest.

The standard set up is made by the following objects: the law of motion of the Markov

process {x(t)} for each individual firm, the function of interest f(x), the cross-sectional initial

distribution of x, denoted by P (x; 0). At this general level the set-up and definition of an

impulse response is closely related to the one in Borovicka, Hansen, and Scheinkman (2014).

The law of motion for the process f(x), with x ∈ X ≡ [x, x̄], is also Markov and is described

using

H(f)(x, t) = E [f (x (t)) |x(0) = x] (1)

where the operator H computes the t period ahead expected value of the function f : X → R

conditional on the state x = x(0). Next we describe the initial distribution of x, which

we denote by P (·; 0) : X → R. This represents the measure of firms that start with value

smaller or equal than x at time t = 0, each of them following the stochastic process de-

scribed in H(f), with independent realizations. We allow the distribution P (x; 0) to have

mass points. In particular P has a piecewise continuous derivative (density) which we extend
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to the entire domain, so that p(·, 0) : [x, x̄] → R, where P can have countably many jump

discontinuities (mass points), denoting the difference between the right and left limits by

pm(·; 0) : {xk}∞k=1 → R, so that xk is the location of the mass points.3 While the possibility

of handling a distribution with mass point is of theoretical interest, most of the economic

applications that we discuss have no mass points and hence the density p will suffice. Sum-

marizing, we assume that the “shocks” are idiosyncratic, and that the initial condition is

given by a cross sectional distribution P (·, 0).

We are interested in the standard impulse response function H defined for each t > 0 as:

H
(

t; f, P − P̄
)

=

∫ x̄

x

H(f)(x, t)
[

dP (x; 0)− dP̄ (x)
]

(2)

where P̄ is the invariant distribution of x, the distribution that x will converge to in the long

run.

We note that the impulse response can also be written in terms of the evolution of the

cross sectional distribution P (·, t), namely: H
(

t; f, P − P̄
)

=
∫ x̄

x
f(x)

[

dP (x; t)− dP̄ (x)
]

.

The two definitions are equivalent. To characterize equation (2) requires solving a Kol-

mogorov backward (KB) equation, while the latter requires solving a Kolmogorov forward

(KF) equation. In spite of the equivalence, there are two reasons why equation (2) is some-

times preferred. The first reason depends on how well behaved are P̂ vs f . If we start with

a distribution with mass points, as will be the case after a large shock, then initial condition

will not be a density. The dynamics of the distribution will then involve Dirac functions.

Instead, using the KB we do not need to deal with this. Notice the asymmetry: f are func-

tions, where P̂ is a generalized function, i.e. can include Dirac functions. Second, even if we

do not deal with generalized functions, so that both f and P̂ are functions, the boundary

3Given our assumption on P we can write the expectations of any function g as:

∫ x̄

x

g(x) dP (x; 0) =

∫ x̄

x

g(x) p(x; 0)dx +

∞
∑

k=1

g(xk) pm(xk; 0) .
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conditions can be trickier in the KF than in the KB. The boundary conditions for the KF are

stated in terms of right and left derivatives, and indeed the corresponding eigenfunctions are

not differentiable at the reinjection point. While using the KB the boundary conditions are

standard -just as the ones in a Bellman equation- and the eigenfunctions are differentiable

at the reinjection point.

The ergodicity of {x} implies that we can also write

H
(

t; f, P − P̄
)

=

∫ x̄

x

H(f)(x, t) dP (x; 0) −
∫ x̄

x

f(x)dP̄ (x) .

The interpretation of H(t) is the expected value of the cross-sectional distribution of f

in deviation from its steady state value, where each x(t) has followed the Markov process

associated with H(·) and whose cross sectional distribution at time zero is given by P (·; 0).

In other words, for ergodic processes we are forcing the impulse response to go to zero as

t diverges. Since we evaluate H only for the difference between two measures, i.e. only for

signed measures, when it is convenient we introduce the notation P̂ ≡ P − P̄ and likewise

for the densities p̂ = p− p̄. Thus

P̂ (x, t) ≡ P (x, t)− P̄ (x) for all x ∈ [x, x̄] and for all t ≥ 0 .

We also define the discounted cumulative response, given by the (discounted) area under

the impulse response function H(t; f, P̂ ):

H(r; f, P̂ ) =

∫ ∞

0

e−rtH(t; f, P̂ ) dt . (3)

For many problems, such as the sufficient statistics for monetary policy discussed in Alvarez,

Le Bihan, and Lippi (2016), the cumulative response H is a convenient summary for the

effects of a shock, but of course such statistics is not informative about the shape of the

impulse response function.
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We give an alternative definition of the impulse response, which uses a stopping time τ ,

and a modified expectation operator G defined as:

G(f)(x, t) = E
[

1{t≤τ}f (x (t)) |x(0) = x
]

(4)

The operator G computes the t period ahead expected value of the function f : X → R

starting from the value of the state x = x(0), conditional on x surviving. The indicator

function 1{t≤τ} becomes zero when the first adjustment following the shock occurs at the

stopping time τ .

In the context of the price setting models with sS rules we refer to the operator H as the

one for the problem with “reinjection”, i.e. one in which the operator keeps following the

firm until an adjustment occurs (at time τ). In contrast, we refer to the operator G as one

for the problem without “reinjection”, i.e. not tracking the firm after the first adjustment.

Note that G is losing measure with time, i.e. G(1)(x, t) ≤ 1, and the inequality can be strict

for most x’s. To be concrete, in the sticky price models discussed below the stopping time τ

will be given by the occurrence of a price adjustment.

We define the impulse response function G for each t > 0 as:

G(t; f, P ) =

∫ x̄

x

G(f)(x, t) dP (x; 0) . (5)

The interpretation of G(t) is the expected value of the cross-sectional distribution of f ,

conditional on surviving, where each x(t) follows the Markov process, and the cross-sectional

distribution at time zero is given by P (·; 0). Note the difference with H, which was defined

for measures relative to their steady state value. In the case without “reinjection” we don’t

need to subtract the invariant, since as t diverges the measure of surviving units converges

to zero, and so does the impulse response.

As done above for H , we define the cumulative effect as the area under the impulse
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response produced by G, formally:

G(r; f, P ) =

∫ ∞

0

e−rtG(t; f, P ) dt . (6)

While H is the impulse response as commonly defined, it turns out that G is simpler to

characterize and that in a large class of problems an equivalence holds so that the cumulative

impulse response G coincides with the cumulative response H (see Proposition 1 below).

Moreover, Proposition 2 below will show that under slightly more stringent conditions the

impulse response G(t; f, P ) will also coincide with H(t; f, P̂ ) for all t. Given the simpler

nature of G we first develop our main results for setups where the G = H equivalence holds,

and present more general results for the cases where it does not hold in Section 8.

The initial condition. The primal impulse in the setup is encoded in the initial condition,

P (x, 0), which denotes the distribution of the state variable x ∈ (x, x̄) at time zero. In

particular P (·; 0) describes the cross-sectional distribution of the state immediately after the

shock. As time elapses the initial distribution will converge to the invariant distribution

P̄ (x), tracing out the impulse response for the function of interest f(x). We discussed above

that our method allows the initial distribution to have mass points. This can be useful,

for instance, if the initial shock is large enough to displace a non-negligible mass of agents

onto the return point x∗. Also notice that our formulation allows us to handle a variety of

shocks. Several papers have focussed on a small uniform displacement δ > 0 of the whole

distribution relative to the invariant P̄ (x), what Borovicka, Hansen, and Scheinkman (2014)

label the “marginal response function”. In this case the initial condition is P (x, 0) = P̄ (x+δ)

and it is straighforward that we can rewrite the signed measure P̂ (x, 0) ≡ P (x, 0) − P̄ (x)

using a first order expansion as P̂ (x, 0) = δP̄ ′(x). We will sometime focus on such marginal

shocks for convenience and to relate to the literature. We stress, however, that our method

can handle any type of initial condition, such as one triggered by a large shock, or the one

triggered by a higher-order shock.
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2.1 A baseline price setting problem

This section lays out the price setting problem solved by a firm in the “Calvo plus” model.

In this model, which can be seen as one with random menu costs, the firm is allowed to

change prices either by paying a fixed menu cost or upon receiving a random free adjustment

opportunity (a menu cost equal to zero). The setup nests several models of interest, from

the canonical menu cost problem to the pure Calvo model. Analogous results to the ones

described in this section can be derived for models with Price-plans as well as for the multi-

product price-setting problem with slight changes in the math of the problem (see Section 5

and Section 7 for such extensions).

The firm problem in the Calvo plus model. We describe the price setting problem for

a firm in steady state. The firm cost follows a Brownian motion with variance σ2 and drift

µ, where the latter is due to inflation. The firm can change its price at any time paying a

fixed cost ψ > 0. At exogenously given times, which occur with a Poisson rate ζ , the firm

faces a zero menu cost. The price gap x is defined as the price currently charged by the firm

relative to the price that will maximize current profits, which is proportional to the firm cost

(measured as the log of the ratio between these prices). The optimal policy is to change the

price when the gap x reaches either of two barriers, x < x̄, or when the menu cost is zero. In

either case, at the time of a price change, the firm sets a new price which determines a price

gap x∗, which is the optimal return point after the adjustment.

The flow cost of the firm is given by R(x). An example is R(x) = Bx2, where the

coefficient B measures the curvature of the profit function measured around the static profit

maximizing point. The firm maximizes expected discounted profits, using a discount rate

r > 0. Thus, the optimal policy can be describe by three numbers: x < x∗ < x̄, whose values

can be found by solving the value function for the cost in the inaction region:

(r + ζ)v(x) = R(x) + µv′(x) +
σ2

2
v′′(x) + ζv(x∗) for x ∈ [x, x̄] (7)
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and imposing the relevant boundary conditions: value matching, smooth pasting, and opti-

mality of the return point:

v(x̄) = v(x) = v(x∗) + ψ, and v′(x) = v′(x̄) = v′(x∗) = 0 . (8)

The density p̄ of the invariant distribution for price gaps generated by the policy {x, x∗, x̄}

and the law of motion of x is the solution to the Kolmogorov forward equation:

ζp̄(x) = −µp̄′(x) + σ2

2
p̄′′(x) for x ∈ [x, x̄], x 6= x∗ (9)

with boundary conditions at the exit points, unit mass, and continuity requirements:

p̄(x) = p̄(x̄) = 0,

∫ x̄

x

p̄(x)dx = 1, and p̄ continuous at x = x∗ .

The boundary conditions at the exit points are immediate in sS models with fixed costs since

no mass can accumulate at the boundary of the inaction region as long as σ > 0.

2.2 Cumulative impulse response

We now discuss a useful result concerning the cumulated impulse response function that holds

in all models described in the previous section. The result states that if the function of interest

is f(x) = R′(x), then the cumulated impulse response can be readily computed using the

derivative of the value function v, given any arbitrary initial distribution. The function R′(x)

is of interest because in several problems the derivative of the firm’s function is proportional to

the firm’s contribution to aggregate output. Recall that the initial condition for the problem

is the signed measure P̂ (·, 0) ≡ P (·, 0)− P̄ (·) where P̄ is the invariant distribution. We have

the following result (see Appendix A for the proof of all propositions):

Proposition 1. Consider the problem described by P ≡ {µ, σ, r, ψ, ζ, R(·)}. Let {x, x∗, x̄}

and v(·) be the optimal policy and value functions solving the problem P, so the thresholds
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and value function solve equation (7) and equation (8). Let R′ be the derivative of the return

function R and P (·, 0) be the distribution of x right after the shock. Then:

H(r, R′, P̂ ) =

∫ x̄

x

v′(x)dP̂ (x; 0) = G(r, R′, P̂ ) .

The result is surprising to us. The problem features asymmetric sS bands and the state

has a drift, yet we can compute the cumulative IRF as in the symmetric case with no drift.

Moreover, when computed this way the value of the optimal return point x∗ is irrelevant

–literally it does not enter in the computations.4 We make several comments to this result.

First, notice that the proposition holds for f = R′, not for an arbitrary function f . The first

equality says that if one has solved for the value function in equation (7)-(8), then it has the

cumulative IRF for the function f = R′. Note that for R(x) = Bx2, i.e. for a second order

approximation to the profit function, the derivative R′(x) = 2Bx, and hence it is proportional

to the firm’s contribution of the IRF of output. In particular, the cumulative IRF of output

after a monetary shock is obtained by setting p(x, 0) = p̄(x+ δ) and f(x) = −R′(x)/(2B) =

−x. Second, we stress that the proposition holds for any initial condition P̂ . This allows us

to study either small shocks, such as a marginal displacement of the invariant distribution

P̄ , as well as large shocks that give rise to any type of initial signed mass P̂ = P (0)− P̄ .

Proposition 1 yields a straightforward analysis of an otherwise computationally intensive

question. The last equality states that we can obtain the cumulative IRF by simply keeping

track of each firm until the time it makes the first adjustment following the shock. This is

convenient both for analytical computation as well as for simulations. Figure 1 illustrates this

point by exploring how the the cumulated output response, following a small monetary shock,

changes with the inflation rate. To this end we use a simple Golosov-Lucas menu cost model

calibrated to produce 1 price adjustment per year, on average, at zero inflation. We then vary

4 An identical result holds for the model with price plans. We relegate this result to an appendix since
the math is more cumbersome in that case.
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the inflation rate and compute the cumulated area as H(r, R′, P̂ ) =
∫ x̄

x
v′(x)p̄′(x; 0)dx where

the value function v(x) solves equation (7) and equation (8), and the density function p̄(x)

solves equation (9). The small shock assumption is used by postulating that the distribution

right after the shock is equal to a small displacement of the invariant, namely that p(x, 0) =

p̄(x+δ), so that p̂(x) = p(x, 0)− p̄(x) ≈ p̄′(x)δ, where δ is the aggregate monetary shock. The

figure shows that the cumulated output effect is not responsive to inflation when inflation

is low (it is easy to prove that the function has a zero derivative at π = 0). As inflation

increases however the real (cumulated) effect of policy vanishes fast. At an inflation rate

equal to 50% per year the effect is about 1/5th of the effect at low inflation.

Figure 1: Cumulative output response at different inflation rates
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Note: cumulated output response triggered by a small monetary shock, at different inflation rates, com-
puted using Proposition 1 with a return function R(x) = x2. The cumulated output, measured on the
vertical axis, is normalized relative to the one at zero inflation rate (µ = 0). The underlying menu cost
model is calibrated to produce 1 price adjustment per year at zero inflation.

2.3 Impulse Response Functions for symmetric sS problems

We define a problem and its associated sS rule to be symmetric if the state variable has

no drift, so that µ = 0, and if the return point x∗ is equidistant from the upper and lower

barriers: x∗ − x = x̄ − x∗, so that x∗ = (x + x̄)/2. Indeed, when µ = 0 and R(x) is
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symmetric the optimal decision rule is symmetric. Let {x(t)} be the value of the state for

a firm following the optimal policy. Let g(x; t, x∗) be the density of distribution of x(t),

conditional on x(0) = x∗. This distribution is symmetric with respect to x around x∗ for all

t > 0, i.e. its density is given by g(z+x∗; t, x∗) = g(−z+x∗; t, x∗) for all z ∈ [0, x̄−x∗]. This

symmetry comes from the combination of the symmetry of the distribution of a BM without

drift, and the symmetry of the boundaries relative to the optimal return point.

Next we present a proposition, for the symmetric case, under which the standard IRF

H(t) coincides with G(t), i.e. the simple IRF computed stopping after the first adjustment

(see Appendix A for the proof). The conditions for this to happen are that either the function

of interest f , or that the initial distribution P (·, 0) are antisymmetric, where a function ν(x)

is antisymmetric about x∗ if it satisfies ν(x− x∗) = −ν(x∗ − x) for all x ∈ [x, x̄].

Proposition 2. Assume the problem is symmetric. Then if either

(i) the function of interest f : [x, x̄] → R is antisymmetric and P (·, 0) is arbitrary

(ii) the signed measure (initial condition) p(·, 0)− p̄(·) : [x, x̄] → R as well as its mass points

pm(·, 0)− p̄m(·) : {xk}∞k=1 → R are antisymmetric and f(·) is arbitrary

we have that G(t; f, P ) = H
(

t; f, P − P̄
)

for all t.

The proposition’s requirement that either the function of interest f , or the initial dis-

tribution P − P̄ , is anti-symmetric is not that restrictive for our applications. The main

function of interest for the paper, used to compute the IRF for output, is anti-symmetric

in the class of models we analyse. For example f(x) = −x in the Calvo+ model. Also, our

benchmark case in this class of models is that the density p − p̄ is anti-symmetric. This is

because in our setup what matters is p− p̄, namely the deviation from a symmetric steady

after a monetary shock, which can be shown to be antisymmetric –we will state and prove

this later. We believe that the strongest assumption is the symmetry on the sS decision rules,

which is appropriate for monetary models in the neighborhood of price stability, but it may
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be inappropriate for other set-ups. An extension to analyse problems with asymmetries is

studied in Section 8.

3 Analytic Impulse Response Functions

This section presents a fundamental decomposition that allows us to develop an analytic

solution for the operator G(f)(x, t) defined in equation (4). The main assumption of this

section is that the problem is symmetric, i.e. that x has no drift (µ = 0), and that the

stopping barriers x, x̄ are symmetric around the optimal return point x∗ (see Section 2.3).

As shown in Proposition 2 we know that in this case the impulse response is equivalent to

the one of a problem without reinjections and is given by G(t, f, P ). We see the symmetric

setup as a convenient starting point for the analysis and one which is relevant to analyze

most state of the art sticky price models. In Section 8 and Appendix B we show how

to extend the analysis presented here to problems with asymmetries and drift, which will

involve reinjections. While such problems are in principle more involved we show that the

method retains tractability and remains useful.

Assume the process for the firm’s price gap is given by a drift-less brownian motion, with

instantaneous variance per unit of time σ2. The stopping time, i.e. the rule at which prices are

change, is given by the first time at which x(t) hits either x or x̄, or that a Poisson counter,

with instantaneous rate ζ , changes its value. The definition of G (f) (x, t) as an expected

value implies that this function must satisfy the following partial differential equation:

∂tG (f) (x, t) =
σ2

2
∂xxG(f)(x, t)− ζG(f)(x, t) for all x ∈ [x, x̄] and t > 0 (10)

with boundary conditions

G (f) (x, t) = G (f) (x̄, t) = 0 for all t > 0 and (11)

G (f) (x, 0) = f(x) for all x ∈ [x, x̄] (12)
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where boundary conditions for t > 0 are an implication from x̄ and x being exit points, and

hence close to them the survival rate goes to zero. The boundary condition at t = 0 follows

directly from the definition of G(f).

Two key steps, based on the properties of eigenvalues and eigenfunctions proved below, al-

low us to solve for G (f). First, that the function f can be represented by a linear combination

of eigenfunctions, with typical member ϕj, as follows f(x) =
∑∞

j=1 bj [f ]ϕj(x), where bj [f ]

are coefficients. Second, that the solution for G (ϕj) for each eigenfunction is multiplicatively

separable in (x, t):

G(ϕj)(x, t) = eλj t ϕj(x)

for some constant λj. Thus the partial differential equation in (10) becomes the following

ordinary differential equation:

λjϕj(x) = ϕ′′
j (x)

σ2

2
− ζϕj(x) for all x ∈ [x, x̄] with boundary conditions ϕj(x̄) = ϕj(x) = 0 .

Note that the boundary condition for G(ϕj) at t = 0, in equation (12), holds by construc-

tion. We will denote the ϕj as eigenfunctions and the corresponding λj as eigenvalues. The

eigenvalues and eigenfunctions are:

λj = −
[

ζ +
σ2

2

(

j π

x̄− x

)2
]

and ϕj(x) =
1

√

(x̄− x)/2
sin

(

[x− x]

[x̄− x]
j π

)

for j = 1, 2, 3, ...

(13)

This is the solution to a well known problem which has been studied extensively.5 A key

property of the set of eigenfunctions {ϕj} is that they form an orthonormal base for the

functions f : [x, x̄] → R and for which
∫ x̄

x
[f(x)]2dx <∞ so that we can write:

f̂(x) ≡
∞
∑

j=1

bj [f ]ϕj(x) for all x ∈ [x, x̄]

5That this is the solution of the o.d.e. follows since sin(0) = sin(jπ) = 0 for all j ≥ 1 and also because
sin′′(x) = − sin(x) for all x. Matching coefficients in the o.d.e. we obtain the eigenvalues.
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where
∫ x̄

x
(f̂(x)− f(x))2dx = 0 and the projection coefficients bj [f ] are:

bj [f ] =

∫ x̄

x

f(x)ϕj(x)dx for all j ≥ 1 ,

which uses that {ϕj} is an orthonormal base. Next we present a Lemma for the representation

of the projections (expectations) of the function of interest f :

Lemma 1. Assume that f : [x , x̄] → R is piece-wise differentiable, with countably many

discontinuities, and
∫ x̄

x
[f(x)]2 dx <∞ then:

G(f)(x, t) =
∞
∑

j=1

eλj t bj [f ]ϕj(x) for all x ∈ [x, x̄]

Now we turn to the impulse response. We define the projection coefficients for the initial

distribution P (·, 0) as follows:

bj [P (·, 0)] =
∫ x̄

x

ϕj(x)dP (x; 0) ≡
∫ x̄

x

ϕj(x)p(x; 0)dx+
∞
∑

k=1

ϕj(x)pm(xk; 0)

so that if P has no mass points, it coincides with the definition for a function f . Using

Lemma 1 and the definition of the projection coefficients bj [P ] we can write the impulse

response function in equation (5) as follows:

Proposition 3. Assume that f : [x , x̄] → R is piece-wise differentiable, with countably

many discontinuities, and
∫ x̄

x
[f(x)]2 dx < ∞. Furthermore assume that P has a piecewise

continuous density and at most countably many mass points, then:

G(t; f, P ) =
∞
∑

j=1

eλjt βj where βj ≡ bj [f ] bj [P (·, 0)] . (14)
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For the cumulative impulse response defined in equation (6) we then have:

G ≡
∫ ∞

0

G(t)dt =
∞
∑

j=1

βj
−λj

(15)

For instance, the impulse response of output can be obtained using f(x) = −x, since the

contribution of output of each firm is proportional to their price gap. It is also straightforward

to analyze the slope of the impulse response at t = 0, a model feature we discuss later in the

application to the Calvo+ model.

3.1 Application to the canonical menu cost model.

We illustrate a concrete application of the above results using the menu-cost model, obtained

by setting µ = ζ = 0 in the problem of Section 2.1, which yields the symmetric inaction region

x = −x̄ with optimal return x∗ = 0. To compute the impulse response of output we use

f(x) = −x since the contribution of a firm to the deviation of output (relative to steady

state) is inversely proportional to its price gap. Integrating f(x) against ϕj(x) we find the

projection coefficients bj [f ] in equation (14):

bj [f ] =
4x̄3/2

j π
for j = 2, 4, 6, . . . , and bj [f ] = 0 otherwise. (16)

In this example we consider a small monetary shock so that the initial condition is given

by p(x, 0) − p̄(x) = δp̄′(x), as discussed above. The invariant distribution for this model is

readily derived from equation (9) and the associated boundary conditions, which gives the

triangular density p̄(x) = 1/x̄ − |x|/x̄2 for x ∈ (−x̄, x̄). It is apparent that p̄′(x) is a step

function, equal to 1/x̄2 for x ∈ [−x̄, 0) and equal to −1/x̄2 for x ∈ (0, x̄]. We thus construct

the projection coefficients bj [p̄
′] by integrating p̄′(x) against ϕj(x). This gives

bj [p̄
′] =

8

j πx̄3/2
if j = 2 + i4 for i = 0, 1, 2, . . . , and bj [p̄

′] = 0 otherwise. (17)
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Thus the impulse response bj [p̄
′]bj [f ] coefficients for equation (14) are:

bj [p̄
′]bj [f ] =

32

(j π)2
if j = 2 + i4 for i = 0, 1, 2, . . . , and bj [p̄

′]bj [f ] = 0 otherwise.

and the output impulse response, which we denote by Y (t) = G(t)/δ is:

Y (t) =

∞
∑

i=0

32

((2 + 4i) π)2
e−N

((2+4i)π))2

8
t (18)

where N = σ2/x̄2 is the average number of price changes per period, the only parameter in

this expression.

4 Characterization of the selection effect

This section uses the results of Section 3 to provide an analytic illustration of why different

models display different degrees of “selection”. To ensure the results are applicable we focus

on a symmetric problem (symmetric return function and law of motion). The term selection,

coined by Golosov and Lucas, refers to the fact that the prices that adjust following a

monetary shock are those of a selected group of firms. For instance, following a monetary

expansion, it is more likely to observe price increases (price changes by firms with a low

markup) than price decreases. This contrasts with models where adjusting firms are not

systematically selected, such as models of rational inattentiveness, or models where the times

of price adjustment are exogenously given such as the Calvo model. It is known that different

amounts of selection critically affect the propagation of monetary shocks. Our application

casts light on the mechanism behind this result.

We present an analytic result showing how the selection effect creates a wedge between

the duration of price changes and that of output. The two durations coincide when there

is no selection. In this case the frequency of price changes is a sufficient statistic for the

output effect of monetary policy. We show that such wedge is visible in the magnitude of
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the eigenvalues that control, respectively, the dynamics of the survival function of prices and

the dynamics of output. Next we illustrate this result using the Calvo-plus model, a model

that nests several special cases featuring different degrees of selection, from Golosov-Lucas to

the pure Calvo model. The result also holds in several other models, featuring multiproduct

firms or price plans.

Application to the Calvo+ model. Next we use the decision problem defined in Sec-

tion 2.1, and assume zero inflation (µ = 0) and a quadratic profit function R = x2. It is

straightforward that x̄ = −x > 0 and that the optimal return is x∗ = 0. Given the policy

parameters {−x̄, x̄} and the law of motion of the state dx = σdW it is immediate that the

eigenvalues-eigenfunctions of the problem are those computed in equation (13). Since the

eigenvalues depend on the speed at which prices are changed, we find it convenient to rewrite

them in terms of the average number of price changes per unit of time, N and φ.

To this end we compute the expected number of adjustments per unit of time, the recip-

rocal of the expected time until an adjustment,

N =
ζ

1− sech(
√
2φ)

where φ ≡ ζx̄2

σ2
.

Note that as x̄ → ∞ then N → ζ , which is the Calvo model where all adjustment occur

after an exogenous poisson shock. As ζ → 0 then N → σ2/x̄2 so that the model is Golosov

and Lucas. This single parameter φ ∈ (0,∞) controls the degree to which the model varies

between Golosov-Lucas and Calvo. Note that with this parameterization we can distinguish

between N and the importance of the randomness in the menu cost ζ vs the width of the bar-

riers, x̄2/σ2. Indeed ζ/N , the share of adjustment due to random free-adjustments, depends

only on φ. We let:

ζ

N
= ℓ(φ) where this function is defined as ℓ(φ) = 1− sech

(

√

2φ
)

.
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The function ℓ(·) is increasing in φ, and ranges from 0 to 1 as φ goes from 0 to ∞. Using

the formula for N and equation (13) we have:

λj = −ζ − σ2

x̄2
(jπ)2

8
= −ζ

[

1 +
(jπ)2

8φ

]

= −N ℓ(φ)

[

1 +
(jπ)2

8φ

]

. (19)

Interpretation of the Dominant Eigenvalue. The dominant eigenvalue has the inter-

pretation of the asymptotic hazard rate of price changes. In particular, let h(t) be the hazard

rate of price spells as a function of the duration of the price spell t. Let τ be the stopping

time for prices, i.e. τ is the first time at which σW (t), which started at W (0) = 0, either

hits x̄ or x = −x̄, or that the Poisson process changes. Let S(t) be the survival function,

i.e.: S(t) = Pr {τ ≥ t}. Notice that the function of interest to compute the survival function

is the indicator f(x) = 1 for all t < τ . The hazard rate is defined as h(t) = −S ′(t)/S(t).

Application of Proposition 3 gives the following:

Corollary 1. The Survival function S(t) depends only on the odd-indexed eigenvalues-

eigenfunctions, i.e. (λi, ϕi) for i = 1, 3, 5, . . . . Let h(t) be the hazard rate of price changes.

Then, the dominant eigenvalue λ1 is equal to the asymptotic hazard rate, i.e.

S(t) =

∞
∑

j=1

eλ2j−1t β2j−1 and − λ1 = lim
t→∞

h(t)

where βj ≡ bj [1] bj[δ0] where δ0 is the Dirac delta function.

Average survival function. Next we derive a result, closely related to the previous one,

showing that the even-index eigenvalue-eigenfunctions (j = 2, 4, . . . ) are irrelevant (literally

they do not appear) in the equation for the average number of price changes following a

monetary shock.

Define the average survival function Q(t) to be the number of firms that survive up to

period t among those that started at time zero with a distribution of x given by p(x; 0). In
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terms of our notation this corresponds to f(x) = 1, as in the survival function described

above. The difference with the survival function S(·) defined above, is that the initial con-

dition is p(·; 0) instead of the dirac function. Specifically, S(t) is the probability of a firm

surviving up to time t conditional on starting with x = 0 at time zero. Instead Q(t) is the

fraction of firms surviving up to t for a cohort that starts at zero with distribution p(·; 0).

The function Q(·) is important because our objective is to characterize the impulse response

after an aggregate shock, which is modeled as a particular initial distribution p(·; 0). Indeed,

together with the output impulse response, it allows us to decompose the effect of a monetary

shock into the effect on the probabilities of price changes vs the effect on the average price

level at each horizon.

The definition above gives us:

Q(t) =

∫ x̄

x

q(x, t) p(x; 0) dx where q(x, t) = G(1)(x, t)

so q(x, t) is the probability that a firm with x at time zero will survive until time t. Before

setting the next result we define as Q̄(·) the average survival function at steady state, i.e.

Q when p(x, 0) = p̄(x), where p̄ is the density of the invariant distribution. Application of

Proposition 3 gives:

Corollary 2. The average survival function Q(t) for the Calvo+ model after a small

monetary shock is equal to its steady state value, i.e. Q(t) = Q̄(t) for all t ≥ 0. The function

Q̄, depends only on the odd-indexed eigenfunctions-eigenvalues (j = 1, 3, ...) and −λ1 is the

asymptotic hazard rate of Q, i.e.

Q(t) =
∞
∑

j=1

eλ2j−1t β2j−1 and − λ1 = lim
t→∞

h(t)

where βj ≡ bj [1] bj[p̄].

Corollary 2 means one should not expected to detect difference in the average hazard
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rates for price changes before and after a (small) monetary shock. This is because what

is important for the output IRF is the impact of the monetary shock on the average price

level. For example, an equal number of increases and decreases on prices do not contribute

to output IRF.

Irrelevance of dominant eigenvalue for output IRF. Next we show that the dominant

eigenvalue λ1, as well as all other odd-indexed eigenvalue-eigenfunction pairs, play no role in

the output impulse response. Consider the output coefficients in the impulse response, given

by equation (16). It is apparent that the coefficients bj [f ] for all the odd-indexed eigenvalues-

eigenfunctions (j = 1, 3, . . . ) are zero, i.e. the loading of these terms are zero. This implies

that the coefficient corresponding to the dominant eigenvalue λ1 is zero. The first non-zero

term, which we call the “leading” eigenvalue, involves λ2. This is because ϕj(·) is symmetric

around x = 0 for j odd, and antisymmetric for j even. Thus:

∫ x̄

x

ϕj(x)f(x)dx = 0 =⇒ bj [f ] = 0 for j = 1, 3, . . .

This happens since all the odd-indexed eigenfunctions ϕj (j = 1, 3, ...) are symmetric func-

tions, and thus the projection onto them of an asymmetric function, such as f(x) = −x,

yields a zero bj coefficient. We summarize this result in the next corollary:

Corollary 3. The output impulse response function for the Calvo+ model depends only

on the even-indexed eigenvalue-eigenfunctions (λj , ϕj), and has zero loadings on the odd-

indexed ones, such as the dominant eigenvalue. Thus the first leading term corresponds to

the second eigenvalue:

G(t) =
∞
∑

j=1

eλ2jt β2j and λ2 = lim
t→∞

log Y (t)

t

where βj ≡ bj [f ] bj[p(·, 0)].
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Figure 2: Selection effect in Calvo+ model
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The corollary states that only half of the eigenvalues (those with an even index) show

up in the output impulse response function. The largest eigenvalue is λ2, which we call

the “leading” eigenvalue of the output response function. It is interesting to notice that

the dominant eigenvalue λ1 does not appear in the impulse response for output. Notice the

difference with the survival function where the only eigenvalues that appear are those with

an odd-index. The right panel of Figure 2 plots the ratio between the leading eigenvalue

for output λ2 and the dominant eigenvalue λ1. It is straightforward to see that the ratio is

λ2
λ1

= 8φ+4π2

8φ+π2 depends only on φ, so that it can be immediately mapped into the “Calvoness”

of the problem ℓ(φ) ∈ (0, 1). It appears that the ratio, which can also be interpreted as the

ratio between the asymptotic duration of price changes over the asymptotic duration of the

output impulse response, is monotonically decreasing in ℓ, and converges to 1 as ℓ→ 1. The

economics of this result is that the shape of the impulse response of output depends on the

differential impact of the aggregate shock on price increases and price increases. Instead the

dominant eigenvalue controls the asymptotic behavior of price changes, both increases and

decreases. As ℓ → 1 selection disappears from the model and the two durations coincide.

The left panel of the figure uses the particular case of a small monetary shock (developed

in detail in the next subsection) to illustrate that as ℓ increases the cumulated output effect

24



becomes larger due to a muted selection effect.

4.1 How do monetary shocks affect the dispersion of prices?

We conclude this section with a discussion of a relevant topic in monetary models that

concerns the welfare effects of shocks. In many monetary models the presence of price

stickiness implies that welfare of the representative consumer depends on the dispersion

of prices, or the dispersion of markups (i.e. prices relative to a flexible price benchmark

where dispersion is nil). It is therefore of interest to analyze how the dispersion of markups

behaves following a small monetary shock of size δ.6 Let D(t, δ) ≡ var(x, t; δ) denote the

cross sectional variance of markups t periods after the monetary shock δ hits an economy at

the steady state. More in general let Mk(t) ≡ E [x(t)− E(x(t))]k, for k = 2, 4, ..., denote the

k-th even centered moment of x. We have the following result:

Proposition 4. Assume the initial condition p̂, the signed mass right after the aggregate

shock, is odd. Then the initial impulse p̂ does not have a first-order effect on any even

centered moment f(x) = xk with k =2,4,.....

The proposition shows that a small (marginal) monetary shock does not have a first order

impact on the dispersion of markups at all t > 0 after the monetary shock. An identical logic

(see the proof) shows that a zero first-order effect is predicted for all even centered moments

of the distribution of markups (such as Kurtosis). Instead, uneven moments, such as the the

mean markup (proportional to total output) or the the skewness of the distribution display

a non-zero first order effect following a small monetary shock.

5 On the shape of the impulse response function

This section discusses whether it is possible to approximate the impulse response function

in a parsimonious way, a question that is naturally related to the shape of the impulse

6We are thankful to Nobu Kiyotaki for posing this question to us.
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response. A natural candidate would be to analyze the impulse response associated to the

leading eigenvalue as defined in Section 4, namely the largest eigenvalue associated with

non-zero projection coefficient bj in equation (14), for a case in which the IRF is close to

exponential. We analyze this question by focusing on a small monetary shock that causes a

marginal displacement of the invariant distribution. We assume a symmetric problem and

present results for the baseline Calvo+ model as well as for a model with price plans.

Initial Condition p(·, 0) for the impulse response to a monetary shock. The in-

variant density function p̄ solves the Kolmogorov forward ζp̄(x) = σ2/2p̄′′(x) in the support,

except at x = 0, integrates to one and it is zero at ±x̄. This gives:

p̄(x) =
θ
[

eθ(2x̄−|x|)e − eθ|x|
]

2 (1− eθx̄)2
for x ∈ [−x̄, x̄] where θ ≡

√

2ζ/σ2 . (20)

(note that to simplify notation we define a new parameter θ). The invariant distribution

p̄(·) is symmetric with p̄(x) = p̄(−x) and p̄′(x) = −p̄′(−x) for all x ∈ [−x̄, 0). The density

of the distribution is continuous but non-differentiable at the injection point x = 0. For

concreteness we focus below on the response to a small monetary shock δ, starting at the

steady state. For a small shock we can disregard the fraction of firms that change prices on

impact, i.e. this effect is of order δ2. Thus the initial condition is

p(x, 0) = p̄(x+ δ) = p̄(x) + p̄′(x)δ + o(δ) for all x ∈ [−x̄, 0) and x ∈ (0, x̄]

Notice that we can write:

G(t, δ) =
∂

∂δ
G(t, δ)

∣

∣

δ=0
δ + o(δ)
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From now on for the Impulse response function of output we simply write

Y (t) ≡ ∂

∂δ
G(t, δ)

∣

∣

δ=0
=

∞
∑

j=1

eλ2j tb2j [f ]b2j [p̄
′]

which is the output impulse response per unit of the monetary shock. Application of Propo-

sition 3 gives the following:

Figure 3: Exact vs approximate IRF
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Proposition 5. The coefficients for the impulse response to a small monetary shock in

the Calvo+ model are given by:

βj(φ) ≡ bj [p̄
′]bj [f ] =



































0 if j is odd

−2

[

1+cosh(
√
2φ)

1−cosh(
√
2φ)

] [

1

1+ j2π2

8φ

]

if j is even and j
2
is odd

−2

[

1

1+ j2π2

8φ

]

if j is even and j
2
is even

(21)

Recall that φ ≡ σ2ζ/x̄2 ∈ (0,∞) is a single parameter that locates the Calvo+ model

between the Golosov-Lucas (φ = 0) and the Calvo (φ→ ∞) model. Each of these cases can
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be easily computed by simple calculus while keeping N constant. The solution for the first

case, φ → 0, was given in equation (16) and equation (17). The second case, φ → ∞, is

peculiar because in this limit the spectrum is no longer discrete. To see this notice that each

of the eigenvalues λj → −ζ and:

lim
φ→∞

βj(φ) =































0 if j is odd

2 if j is even and j
2
is odd

−2 if j is even and j
2
is even

Note that in this case, using just the “leading” eigenvalue, i.e. the term with the first non-

zero weight, gives an impulse response G(t) that is twice as large than the true one, for

each t. This is in stark contrast with the case when φ → 0 where the approximation is

extremely accurate. The difference is less than 1.5%, to see this note that when φ→ 0 then

G → 1/(6N) ≈ 0.1677/N . On the other hand, using only the term corresponding to the

second eigenvalue we obtain b2/(−λ2) = 16/(π4)/N ≈ 0.1643/N .

The next proposition gives a characterization of the ratio between the true area under

the impulse response and the approximate one, computed using only the leading eigenvalue:

Proposition 6. Define the ratio of the approximate cumulative impulse response based

on the second eigenvalue to the area under the impulse response as

m2(φ) =
β2(φ)/λ2(φ)

∑∞
j=1 βj(φ)/λj(φ)

= 2

[

1 + cosh
(√

2φ
)]

[

cosh(
√
2φ)− 1− φ

]

[

1 + π2

2φ

]2

We note that m2(0) =
16
π46 ≈ 0.98, m′

2(φ) > 0 and m2(φ) → 2 as φ → ∞.

We can also use the expression for the coefficients of the impulse response to show that

the slope of Y at t = 0 is minus infinity. This is intuitive since, after the shock, there are

firms that are just on the boundary of the inaction region where they will increase prices,

but there are no firms at the boundary at which they want to decrease prices.
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Figure 4: Calvo+ model
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Proposition 7. The derivative of the IRF with respect to t at t = 0 is given by:

∂

∂t
Y (t)

∣

∣

∣

t=0
= −∞ for 0 ≤ φ <∞.

Note that when φ → ∞, so we get the pure Calvo model, so that the impulse response

becomes Y (t) = exp (−Nt), and thus Y ′(0) is finite.7

Price Plans and the hump-shaped Output IRF. The model with price plans assumes

that upon paying the menu cost the firm can choose two, instead of one price. At any point

in time the firm is free to charge either price within the current plan, but changing to a new

plan (another pair of prices) is costly. The idea was first proposed by Eichenbaum, Jaimovich,

and Rebelo (2011) to model the phenomenon of temporary price changes (prices that move

from a reference value for a short period of time and then return to it). In Alvarez and Lippi

7 See the web Appendix F analyzes the the output IRF for the pure Calvo model.
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(2019) we provide an analytic solution to this problem and characterize the determinants of

x̄, the threshold where a new plan is chosen, as well as the optimal prices within the plan,

named x̃ and −x̃. When x ∈ [−x̄, 0] the firm charges −x̃ and when x ∈ (0, x̄] it charges x̃.

The invariant density of price gaps is still given by equation (20). For a given threshold x̄

the value of x̃ is given by:

x̃ = x̄

[

e
√
2φ − e−

√
2φ − 2

√
2φ√

2φ
(

e
√
2φ + e−

√
2φ − 2

)

]

≡ x̄ ρ(φ) > 0 where φ = x̄2ζ/σ2

and the function ρ(φ) gives the optimal price within the plan as a function of the adjustment

threshold, namely x̃ = ρ(φ)x̄, as a function of φ. Simple analysis shows that the images of

the function ρ(φ) lie in the interval (0, 1/3), that it is decreasing, and that it converges to 1/3

as φ → 0 (see Alvarez and Lippi (2019)).

In the model with plans the contribution to the aggregate of a firm with output price gap

x is, instead of f(x) = −x, the following function:

f̃(x) =















−x− x̃ if x ∈ [−x̄, 0)

−x+ x̃ if x ∈ (0, x̄]

By the linearity of Fourier series we can add to the coefficients of the function f(x) = −x,

shown in equation (16) the ones of the step function:

f0(x) =















−x̃ if x ∈ [−x̄, 0)

+x̃ if x ∈ (0, x̄]

Importantly, we note the function f̃(x) = f(x) + f0(x) is still an asymmetric function. The

function f0 has Fourier sine coefficients equal to:

bj [f0] = −8x̄3/2ρ(φ)

j π
if j = 2 + i4 for i = 0, 1, 2, . . . , and bj [f0] = 0 otherwise
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From here we conclude that:

β0
j (φ) = bj [f0]bj [p̄

′] =































0 if j is odd

−4 ρ(φ)

[

1+cosh(
√
2φ)

cosh(
√
2φ)−1

] [

1

1+ j2π2

8φ

]

if j is even and j
2
is odd

0 if j is even and j
2
is even

(22)

Thus the impulse response is given by:

YPlan(t) = YCalvo+(t) +

∞
∑

j=1

β0
j (φ)e

λj(φ)t

While the impulse response is monotone decreasing in the Calvo+ model, in the price plan

model the impulse response can be hump shaped. Indeed, as the φ increases, the impulse

response goes from decreasing to humped shaped. The reason for this difference is that in

the price plan model there is a non-negligible impact effect, due to the non-negligible set of

firms that within the plan adjust from one price to the other. The difference across models,

as we increase φ, is that invariant distribution has more firms with price gaps close to zero,

and hence more firms that can change from one price to the other within the plan. This is

because the higher is the impact effect on prices, the smaller is the effect on output. The

next proposition indeed shows that when φ = 1, so that ζ = σ2/x̄2, i.e. the number of plan

changes in a pure-barrier model equals the one in a pure-random-plan model, are equal. For

φ = 1 the impulse response has a “hump”, but it is infinitesimal.

Proposition 8. For 0 ≤ φ ≤ 1, the impulse response Y (t) is decreasing. For φ > 1,

the impulse response is hump shaped. The value for t0N at which the maximum is reached,

Y ′(t0N) = 0, increases relative to expected time to adjustment 1/N .

Given that the impulse response is hump-shaped any single eigenvalue cannot approximate

the impulse response. Even for low values of φ, where the impulse response is monotone,

using λ2 gives a very bad approximation.
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Figure 5: Price Plan model
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6 Volatility shocks and the propagation of monetary

impulses

This section discusses the effect that changes to the volatility of shocks exert on the propa-

gation of monetary shocks. The issue matters to e.g. the effectiveness of monetary policy in

recessions vs boom, when the state of the economy is assumed to feature, respectively, high

vs low volatility of shocks as in Vavra (2014). Our method provides a sharp analytic answer

to this question.

For concreteness we illustrate the problem by using the pure menu cost model (without

Calvo adjustment i.e. ζ = 0 so that φ = ℓ = 0), whose output response to a small monetary

shock was given in equation (18). We conduct comparative statics exercise to analyze how

the propagation is affected by an innovation of the “volatility shocks”, namely a permanent

change in the common value of the idiosyncratic volatility σ.8

8For simplicity and clarity of the results we consider here once and for all shocks to volatility. It is simple
to modify the setup to consider a two-state Markov switching volatility process and to solve the associated
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We start with a steady state for the model with idiosyncratic volatility σ. We characterize

the effect of a small monetary shock, δ > 0, which occurs τ ≥ 0 periods after a change in

idiosyncratic volatility from σ to σ̃, so that σ̃ =
(

1 + dσ
σ

)

σ. In particular we let Y (t; τ, dσ/σ)δ

denote the output’s IRF t ≥ 0 periods after of an unexpected monetary shock of size δ starting

with a cross sectional distribution that has evolved τ periods since the change in σ.9

While we characterize Y for all t and τ ’s, two interesting cases are worthwhile to mention

separately: the long-run and short-run effect of volatility. The long-run effect is Y (t;∞, dσ/σ),

or τ → ∞. It is equivalent to computing the effect of a monetary shock δ for a new steady

state with volatility σ̃. We refer to this as the long run effect of volatility on the output IRF

after a monetary shock, since it is the effect of an unanticipated monetary shock once the

distribution of price gaps has achieved its new invariant distribution. In this case the firm’s

decision rule corresponds to the new volatility σ̃ and the economy is described by the new

invariant distribution of price gaps.

The other case is the short-term effect, defined as Y (t; 0, dσ/σ), or τ = 0. This case

consists of starting with the original volatility σ and considering a simultaneous permanent

change of both σ (to σ̃) and δ > 0. As in the previous case, the forward looking firm’s

decision rules adjusts immediately to the new volatility σ̃. The difference with the long-run

case is that the initial distribution of price gaps corresponds to the stationary distribution

produced by the old decision rule, i.e the decision rules implied by volatility σ.

The general case characterizes an IRF whose coefficients are indexed by the parameter

0 < τ < ∞. The key feature of this case is that the monetary shock δ occurs τ periods

after the volatility shock, thus displacing a cross-section distribution of price gaps that is in a

transition towards the new invariant distribution. Our analytic method allows us to exactly

compute the evolution of this distribution and hence the effect of a monetary shock.

The next proposition uses the notation introduced above, which means that Y (t; 0, 0) is

firm’s decision rules.
9We will keep using the notation of Y as the output’s IRF per unit of monetary shock, and then omit the

δ in the expressions below.
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the impulse before any change in volatility occurs, which we use as a benchmark. Also, the

difference Y
(

t; τ, dσ
σ

)

− Y
(

t;∞, dσ
σ

)

is the correction to the long run effect of a volatility

shock dσ/σ due to a finite duration τ .

Proposition 9. Let Y (t) be the output impulse response to a small monetary shock for

the idiosyncratic volatility σ, and let the new volatility of shocks be σ̃ =
(

1 + dσ
σ

)

σ. The

long run effect of the volatility shock dσ
σ

on the impulse response of output to a monetary

shock is:

Y

(

t;∞,
dσ

σ

)

= Y

(

t

(

1 +
dσ

σ

)

; 0, 0

)

for all t ≥ 0 . (23)

The short run effect of the volatility shock dσ
σ
on the impulse response of output to a monetary

shock is:

Y

(

t; 0,
dσ

σ

)

=

(

1 +
dσ

σ

)

Y

(

t

(

1 +
dσ

σ

)

; 0, 0

)

for all t ≥ 0 . (24)

The deviation from the long run response as a function of τ is given by:

Y

(

t; τ,
dσ

σ

)

− Y

(

t;∞,
dσ

σ

)

=
∞
∑

k=1

eλ2ktb2k[f ] b2k [p̂
′(·, τ)] for all t, τ ≥ 0 . (25)

where p̂′(·, τ) is the initial condition (i.e. a displaced cross section) at the time of the monetary

shock, τ periods after the change in volatility, whose projection coefficients are given by:

b2k [p̂
′(·, τ)] = dσ

σ

∞
∑

j=1,3,5,...

eλjτ

(

2
4(−1)

j+3
2 − jπ

(j π)2

)

(

4kj

(4k2 − j2))

)

, k = 1, 2, 3, ... (26)

A few comments are in order.

(i) Figure 6 illustrates the difference between the short run and long run effect of an

increase in volatility on the output’s response to a monetary shock. The left panel compares

the IRF with no change in volatility, Y (t; 0, 0) to the one where the volatility increase has

occurred τ = ∞ periods ago, i.e. Y (t;∞, dσ/σ) the long run effect. The right panel compares
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the IRF with no change in volatility, Y (t; 0, 0) to the one where the volatility increase has

occurred at the same time as the monetary shock τ = 0 periods ago, i.e. Y (t; 0, dσ/σ) the

short run effect.

Figure 6: Short-run and long-run IRF vs. IRF before volatility increases
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Note: N = 1 (one price adjustment per unit of time, on average) and dσ/σ = 0.1.

(ii) For this proposition we use the form of the decision rules for the threshold x̄, which

as the discount rate goes to zero is x̄ =
(

6 ψ
B
σ2
)

1
4 where ψ is the fixed cost –as fraction of the

frictionless profit and B is the curvature of the profit function around the frictionless profit.

This implies that the elasticity of x̄ to σ is 1/2. This elasticity is the so called “option value”

effect on the optimal decision rules.

(iii) The rescaling of time in Y
(

t
(

1 + dσ
σ

)

; 0, 0
)

in the expressions for the long and short

run effect of volatility reflects the change in the eigenvalues, which depend on the value of

N , the implied average number of price changes per unit of time, as λj = −N (πj)2 /8 (see

equation (19) for ζ = 0). Recall that N = (σ/x̄)2, and hence all the eigenvalues change

proportionally with σ.

(iv) For the case of the impact effect and in which σ̃ > σ, the invariant distribution just

before the monetary shock is narrower than the range of inaction that corresponds to the

new wider barriers. This explains the extra multiplicative term level
(

1 + dσ
σ

)

in the impact

35



effect in equation (24): since firms have price gaps that are discretely away from the inaction

bands, then prices react more slowly, generating the extra effect on output. The logic for the

case where σ̃ < σ is similar.

(v) We have found that Y is differentiable with respect to σ̃, when evaluated at σ̃ < σ. It

may be surprising that the right and left derivatives (corresponding to the cases of increases

and decreases on σ) are the same, because in the case of a decrease in σ there is a positive

mass of firms that change prices on impact. Nevertheless, this effect is of smaller order of

magnitude than the change on σ.

(vi) In equation (25) we use only the even terms for the projections, i.e. the index for the

projection b2k[·] for runs on 2k because f is antisymmetric. This means that, as in the case

without volatility shocks, the eigenvalues that control the effect of the horizon t in the IRF

are the even ones, i.e. λ2, λ4, . . . , starting with the leading one λ2.

(vii) The expressions in equation (25) and equation (26) shows that what governs the

difference between the long run and the short run volatility effects are the odd eigenvalues,

i.e. λ1, λ2, . . . , since these are the only elements where τ affect the expressions. In particular,

λ1 is the dominant eigenvalue.

(viii) We note that the expression for correction term in equation (25) for the general case

of 0 < τ < ∞ involves no parameter for the model with the exception of N , which enters

only in the eigenvalues λj = −N(jπ)2/8. This gives a meaning to the units of t and τ , which

are measured relative to the (new) steady state duration of price changes 1/N .

(ix) To illustrate the general case of 0 < τ <∞ in Figure 7 we display two type of plots.

First, the left panel of Figure 7 plots equation (25), evaluating at 4 values of τ for an interval

of times t. It is apparent that as τ becomes bigger monetary policy becomes less effective

and gradually converges to the long run value. This can be seen comparing the correction

for any given t across the four values of τ . Second, in the right panel, we plot the cumulated

IRF of a monetary shock τ periods after the volatility shock relative to the cumulative IRF
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Figure 7: The propagation of monetary shocks as τ grows

Y (t; τ, dσ/σ)− Y (t;∞, dσ/σ) Change in Cumulated output: C(τ, dσ/σ)
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Note: N = 1 (one price adjustment per unit of time, on average) and dσ/σ = 0.1.

of a monetary shock when there is no volatility shock. In particular we plot:

C(τ, dσ/σ) ≡
∫∞
0
Y (t, τ, dσ/σ)dt
∫∞
0
Y (t, 0, 0)dt

− 1

We use the cumulated IRF to obtain a simple one-dimensional summary of this effect across

all times t. Notice the following properties of C: for all τ we have C (τ, dσ/σ) = (dσ/σ)C (τ, 1),

since it is based on a derivative, and for extreme values of τ we have C (∞, dσ/σ) = −dσ/σ,

and C (0, dσ/σ) = 0. From Figure 7 it is clear that the transition to the higher volatility

occurs very fast, a cumulative effect of C half as large as half of the one in τ = ∞ will

occur when τ1/2 ≈ 0.05, a half-life indicated by a vertical bar in the right panel. More

precisely, τ1/2 is defined as C(τ1/2, dσ/σ) = −(1/2)(dσ/σ). This effect is much faster than

the half-life corresponding to the dominant eigenvalue λ1 = −Nπ2/8, which is given by

t1/2 ≡ −8 log(0.5)/(Nπ2) ≈ 0.56, and it is indicated by another vertical bar in the right

panel. The ratio of the two times is very large: t1/2/τ1/2 ≈ 12, and it is independent of

any parameter of the model.10 From this comparison we conclude that for this particular

10The vertical distance on the correction between τ = and τ = ∞ plotted on the right panel is dσ/σ, which
is 0.1 for this example. For other values, the vertical axis scales proportionally.
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model using exclusively the dominant eigenvalue λ1 to approximate the time it takes for the

distribution to converge after the change in volatility will be misleading. Summarizing, in

the Golosov-Lucas model the short run effect of the volatility change is only relevant when

the monetary shock occurs almost immediately after the volatility change.

7 Sticky Price Multiproduct firms

Multiproduct models consider a firm that produces n different products and that faces in-

creasing returns in the price adjustment: if a pays a fixed cost it can adjust simultaneously

the n prices. Variations on this model have been studied by Midrigan (2011) and Bhattarai

and Schoenle (2014). These models are appealing because they match several empirical regu-

larities: synchronization among price changes within a store and the coexistence of both small

and large price changes. Their economic analysis is of interest because in an economy popu-

lated by multiproduct firms the monetary shocks have more persistent real effects. In Alvarez

and Lippi (2014) we derived results for impulse responses to this multidimensional setup and

explore the sense in which such a model is realistic. Here we show that the characterization

of the selection effect, as the difference between the survival function and the output IRF

holds in this model, with the number of products n serving as the parameter that control

selection. We also show that in this case a single eigenvalue gives a poor characterization of

the output IRF.

In the multiproduct model the price gap is given by a vector of n price gaps, each of

them given by an independently standard BM’s (p1, p2, . . . pn), driftless and with innovation

variance σ2. We are interested only on two functions of this vector, the sum of its squares

and it sum:

y =

n
∑

i=1

p2i and z =

n
∑

i=1

pi

It is interesting to notice that while the original state is n dimensional, (y, z) can be described
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as a two dimensional diffusion –see Alvarez and Lippi (2014) and Appendix C for details.

We are interested in the sum of its squares y because in Alvarez and Lippi (2014) under

the assumption of symmetric demand the optimal decision rule is to adjust the firm time that

y hits a critical value ȳ. We are interested in z, the sum of the price gaps, because this give

the contribution of firm to the deviation of the price level relative to the steady state value,

and hence −z is proportional to its contribution to output. Note that the domain of (y, z) is

0 ≤ y ≤ ȳ and −√
ny ≤ z ≤ √

n y. In Alvarez and Lippi (2014) we show that the expected

number of adjustments per unit of time is given by N = nσ2

ȳ
and also give a characterization

of ȳ in terms of the parameters for the firm’s problem. For the purpose in this paper we find

it convenient to rewrite the state as (x, w) defined as

x =
√
y and w =

z√
ny
.

In Lemma 2 in Appendix C we analyze the behavior of the (x, w) ∈ [0, x̄] × [−1, 1] process

with x̄ ≡ √
ȳ. Clearly we can recover (y, z) from (x, w). For instance, z = w

√
nx. Yet

with this change on variables, even though the original problem is n dimensional, we define a

two dimensional process for which we can analytically find its associated eigenfunctions and

eigenvalues for the operator:

G(f) ((x, w), t) = E

[

f (x(t), w(t)) 1y≥ȳ

∣

∣

∣
(x(0), w(0)) = (x, w)

]

where f : [0, x̄] × [−1, 1] → R. The relevant p.d.e. is defined and its solution via eigen-

functions and eigenvalues, is characterized in Proposition 15 in Appendix C. Moreover the

eigenfunctions and eigenvalues are indexed by a countably double infinity indices {m, k}.

Eigenfunctions. The eigenfunctions ϕ have a multiplicative nature, so ϕm,k(x, w) =

hm(w)gm,k(x) where for each number of products n then hm and gm,k are known analytic

functions indexed by k and by (k,m) respectively. Indeed hm are scaled Gegenbauer polyno-

mials, and gm,k are scaled Bessel functions –see Proposition C for the exact expressions and
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definition.11

Eigenvalues. For each n the eigenvalues can be also indexed by a countably double-infinity

{λm,k}. As in the baseline case, the eigenvalues are proportional to N , the expected number

of price changes per unit of time:

λm,k = −N
(

jn
2
−1+m,k

)2

2n
for m = 0, 1, . . . , and k = 1, 2, . . .

jν,k denote the ordered zeros of the Bessel function of the first kind Jν(·) with index ν.

The second sub-index k in the root of the Bessel function denote their ordering, so k = 1

is the smallest positive root. Also fixing k the roots jm+n
2
−1,k are increasing in m. Thus,

the dominant eigenvalue is given by λ0,1. We will argue below that the smallest (in absolute

value) eigenvalue that is featured in the (marginal) output IRF is λ1,1. A very accurate ap-

proximation of the eigenvalues consists on using the first three leading terms in its expansion,

as is given by: jν,k ≈ ν + ν1/32−1/3ak + (3/20)(ak)
221/3ν−1/3 where ak are the zeros of the

Airy function. 12 Using this approximation into the expression for the eigenvalues, one can

see that keeping fixed N , the absolute value both λ0,1 and λ1,1 go to infinity, and that the

difference between the two decreases and converges to N/2. Figure 8 displays the difference

between these two eigenvalues.

Impulse response. As before, we want to compute G(t), the conditional expectation of

f : [0, x̄] × [−1, 1] → R for (x, w) following equation (40)-equation (41), integrated with

respect to p(w, x; 0). We are interested in functions f : [0, x̄]× [−1, 1] that can be written as:

f(x, w) =

∞
∑

m=0

∞
∑

k=1

bm,k[f ]ϕm,k(x, w)

11The Gegenbauer polynomials are orthogonal to each other, and so are the Bessel functions when using
an appropriately weighted inner product, as defined in Appendix C.

12In our case, we are interested in k = 1 which is about a1 = −2.33811. See Figure 10 in the APP where
we plots both eigenvalues, as well as its approximation for several n.

40



Using the same logic as in the one dimensional case:13

G(t) =
∞
∑

k=1

∞
∑

m=0

eλm,k t bm,k[f ] bm,k [p(·, 0)/ω] 〈ϕm,k, ϕm,k〉

where the term 〈ϕm,k, ϕm,k〉 appears because the have, as it is customary in this case, use an

orthogonal, but not orthonormal base, and where ω(w, x) is a weighing function appropriately

defined – see Appendix C. So that bm,k [p(·, 0)/ω] are the projections of the ratio of the

functions p(·, 0) and ω.

Functions of interest. We analyze two important functions of interest f . The first one a

constant, f(w, x) = 1 which is used to compute the measure of firms that have not adjusted,

or the survival function S(t). The second one is the one that gives the average price gap

among the n product of the firm, i.e. f(w, z) = −z/n = −wx/√n. This is, as before,

the negative of the average across the n products of the price gaps. This is the function f

used for the impulse response of output to a monetary shock. An important property of the

Gegenbauer polynomials is that the m = 0 equals a constant, for m = 1 is proportional to

w, and in general for m odd are antisymmetric on w and symmetric for even m. Thus for

f = 1 we can use just the Gegenbauer polynomial with m = 0 and all the Bessel functions

corresponding to m = 0 and k ≥ 1. Instead for f(w, x) = wx/sqrtn = z we can use just the

Gegenbauer polynomial with m = 1 and all the Bessel functions corresponding to m = 0 and

k ≥ 1.

Initial shifted distribution for a small shock. We have derived the invariant distribution

of (z, y) in Alvarez and Lippi (2014). Using the change in variables (y, z) to y = x2 and

z =
√
ynw = we can define the steady state density as p̄(w, x) = h̄(w)ḡ(x) – see Appendix C

for the expressions. We perturb this density with a shock of size δ in each of the n price gaps.

We want to subtract δ to each component of (p1, ..., pn). This means that the density for each

x = ||p|| just after the shock becomes the density of x(δ) = ||(p1+ δ, . . . , pn+ δ)|| just before.

Likewise the density corresponding to each w becomes th one for w(δ) = (z+nδ)/(
√
nx(δ)).

13See Appendix C for a derivation
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We consider the initial condition given by density p0(w, x; δ) = h̄(w(δ))ḡ(x(δ)). We will use

the first order terms, which are appropriate for the case of a small shock δ. The expressions

can be found in Appendix C.

Interpretation of dominant eigenvalue, and irrelevance for the marginal IRF. We are

now ready to generalize our interpretation of the dominant eigenvalue (as well as those

corresponding to symmetric functions of z), as well as its irrelevance for the marginal output

IRF.

Proposition 10. The coefficient of the marginal impulse response of output for a monetary

shock are a function of the {λ1,k, ϕ1,k}∞k=1 eigenvalue-eigenfunctions pairs, so that:

Y (t) =

∞
∑

k=1

β1,k e
λ1,k t and − λ1,1 = lim

t→∞

log |Y (t)|
t

where β1,k = b1,k [wx/
√
n] b1,k [p̄

′(w, x)]. In particular, the dominant eigenvalue λ0,1 does

not characterize the limiting behavior of the impulse response. Instead the survival function

for price changes S(t), can be written in terms of {λ0,k, ϕ0,k}∞k=1, and hence the asymptotic

hazard rate is equal to the dominant eigenvalue λ0,1, i.e.

S(t) =

∞
∑

k=1

β0,k e
λ0,k t and − λ0,1 = lim

t→∞

log S(t)

t

where β0,k = b0,k [1] b0,k [δ0] where δ0 is the Dirac delta function for (p1, . . . , pn) transformed

to the (x, w) coordinates. Recall that 0 > λ0,1 > λ1,1.

Given the importance of the difference between the eigenvalues λ1,k and λ0,k we show that

for a fixed k they both increase with n, but it difference decreases to asymptote to 1/2.

Proposition 11. Fixing k ≥ 1, the kth eigenvalue for the IRF Y (·) given by λ1,k and the

kth eigenvalue for the survival function S(·) given by λ1,k both increase with the number of

products n, diverging towards −∞ as n→ ∞. The difference λ0,k − λ1,k > 0 decreases with

n, converging to 1/2 as n→ ∞.
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Figure 8: Shock propagation in Multiproduct models
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Keeping fixed N = 1 for all n

Figure 8 illustrates Proposition 11 for the case of k = 1, i.e. the eigenvalue that dominates

the long run behaviour of the survival and IRF functions. Proposition 11 extends the result

for all k. Increasing the number of products n in the multi product model decreases the

selection effect at the time of a price change. As n goes to infinity, the eigenvalues that

control the duration of the price changes (S) and those that control the marginal output

IRF (Y ) converge. This result shows that the characterization of selection effect in terms of

dynamics controlled by two different types of eigenvalues is present not only in the Calvo+

model, but also in this setup.

In Appendix C we include Proposition 16 which gives an closed form solution for p̄′(w, x; 0)

and for the coefficients for b1,k of the output impulse response function. All these expressions

depends only of the number of products n. Instead we include a figure of the impulse responses

for three values of n. It is clear both the output IRF and the survival function cannot be

well described using one eigenfunction-eigenvalue for large n. For instance, as n → ∞ the

output’s IRF Y becomes a linearly declining function until it hits zero at t = 1/N , and the

survival function S is zero until it becomes infinite at t = 1/N .
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8 Asymmetric problems: dealing with reinjection

In this section we study the impulse response function for problems where the symmetry

assumptions of Proposition 2 do not hold. In such a case the computation of the impulse

response function requires keeping track of firms after their first adjustment, so that the

impulse response function H(t) cannot be computed by means of the simpler operator G(t).

The solution to this problem is to compute the law of motion of the cross-sectional distribution

using the Kolmogorov forward equation, keeping track of the reinjenctions that occur after

the adjustments.

The nature of reinjection in our set up differs from the one in Gabaix et al. (2016) and

hence we cannot use their results for the ergodic case. The added complexity of our case

originates because the exit points (of our pricing problem) are not independent of where x

is, as in the case of poisson adjustments. Rather, prices are changed when either barrier x

or x̄ is hit, and then the measure of products whose prices are changed are all reinjected at

single value, the optimal return point x∗.

The set-up consists of an unregulated BM dx = µdt + σdB, which returns to a single

point x∗ the first time that x hits either of the barriers x or x̄ or that a Poisson counter with

intensity ζ changes. As implied by Proposition 2 we cannot ignore the reinjenctions at x∗

if either x∗ 6= (x̄ + x)/2 or µ 6= 0. For simplicity consider the case with no drift, so we set

µ = 0. We can use the method in Appendix B to modify the result accordingly. This set

up can be used to study the problem of a firm with a non-symmetric period return function

in an economy without inflation (µ = 0). In this case the optimal decision rule implies

x∗ 6= (x̄ + x)/2, i.e. the reinjection point (after adjustment) is not located in the middle of

the inaction region. Note that the number of price adjustment per unit of time is given by

N = σ2

(x̄−x)2α(1−α) .

Let p̂(x) denote the initial condition for the density of firms relative the invariant distribu-

tion p̄(x), i.e. p̂(x) = p(x)− p̄(x) for some density p, where p̄ is the asymmetric (steady state)

tent map. Notice that to analyze small shocks δ, i.e. an initial condition p(x) = p̄(x+ δ) the
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signed measure is p̂(x) = δp̄′(x) by a simple Taylor expansion and mass preservation requires

that
∫ x̄

x
p̂(x)dx = 0, so that

p̂(x)/δ =















2
(x̄−x)2α if x ∈ [x, x∗)

−2
(x̄−x)2(1−α) if x ∈ (x∗, x̄] .

(27)

We define the Kolmogorov forward operator H∗(p̂) : [x, x̄]×R+ → R for the process with

reinjection, where H∗(p̂)(x, t) denotes the cross-sectional density of the firms t periods after

the shock. In this case we have that for all x ∈ [x, x∗) ∪ (x∗, x̄] and for all t > 0:

∂tH∗(p̂)(x, t) =
σ2

2
∂xxH∗(p̂)(x, t)− ζH∗(p̂)(x, t) (28)

with boundary conditions:

H∗(p̂)(x, t) = H∗(p̂)(x̄, t) = 0 , lim
x↑x∗

H∗(p̂)(x, t) = lim
x↓x∗

H∗(p̂)(x, t) (29)

∂−x H∗(p̂)(x̄, t)− ∂+x H∗(p̂)(x∗, t) + ∂−x H∗(p̂)(x∗, t)− ∂+x H∗(p̂)(x, t) =
2ζ

σ2
(30)

H∗(p̂)(x, 0) = p̂(x) for all x ∈ [x, x̄] (31)

The p.d.e. in equation (28) is standard, we just note that it does not need to hold at the

reinjection point x∗. The boundary conditions in equation (29) are also standard, given that

x and x̄ are exit points, and that with σ2 > 0, the density must be continuous everywhere.

The condition in equation (30) ensures that the measure is preserved, or equivalently that

there is no change in total mass across time:
∫ x̄

x
H∗(p̂)(x, t)dx =

∫ x̄

x
p̂(x)dx for all t. This is

a small extension of Proposition 1 in Caballero (1993).

We can use H∗ to compute the Impulse response function defined above as follows:

H(t, f, p̂) =

∫ x̄

x

f(x)H∗(p̂)(x, t) dx . (32)
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If ζ > 0 and x̄→ ∞ as well as x = ∞, we will have the pure Calvo case, and we can use the

ideas in Gabaix et al. (2016), and thus the case without reinjection and with reinjection are

quite similar. To highlight the difference, we consider the opposite case, and set ζ = 0 and

use an eigenvalue decomposition of H∗.

Proposition 12. Assume that ζ = 0 and that α is not a rational number. The orthonormal

eigenfunctions of H∗ are:

ϕmj (x) =

√

2

(x̄− x)
sin

([

x− x

x̄− x

]

2πj

)

if x ∈ [x, x̄] (33)

ϕlj(x) =

√

2

(x∗ − x)
sin

([

x− x

x∗ − x

]

2πj

)

if x ∈ [x, x∗] and 0 otherwise (34)

ϕhj (x) =

√

2

(x̄− x∗)
sin

([

x− x∗

x̄− x∗

]

2πj

)

if x ∈ [x∗, x̄] and 0 otherwise , (35)

with corresponding eigenvalues:

λmj = −σ
2

2

(2πj)2

(x̄− x)2
, λlj = −σ

2

2

(2πj)2

(x∗ − x)2
, and λhj = −σ

2

2

(2πj)2

(x̄− x∗)2
, (36)

for all j = 1, 2, . . . . The eigenfunctions in the set {ϕmj }∞j=1 are orthogonal to each other,

and so are those in the set {ϕlj, ϕhj }∞j=1. The eigenfunctions {ϕmj , ϕlj, ϕhj }∞j=1 span the set of

functions g : [x, x̄] → R, piecewise differentiable, with countably many discontinuities, and

with
∫ x̄

x
g(x)dx = 0.

By defining H∗ for initial conditions given by the differences of a density relative to the

density of the invariant distribution, we are excluding the zero eigenvalue and its corre-

sponding eigenfunction, the invariant distribution p̄ from the its representation. From the

proposition we see what are the first two non-zero eigenvalues.

λ1 = −σ
2

2

(

2π

x̄− x

)2

> λ2 = −σ
2

2

(

2π

max {(x̄− x∗) , (x∗ − x)}

)2

(37)
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Notice that the difference between the first and the second eigenvalues depends on the asym-

metry of the bands.

The proposition also proves that the eigenfunctions ϕkj with k = {l, h,m} form a base, so

that projecting the initial condition onto them is possible. It is however more involved than

in the symmetric case since the eigenfunctions are not all orthogonal with each other, e.g.
〈

ϕmj , ϕ
h
j

〉

6= 0. Note however that {ϕmj , λmj } coincide withe the antisymmetric eigenfunction

and eigenvalues for the case without reinjection and µ = ζ = 0. Because of this, any

piecewise differentiable function g : [x, x̄] :→ R that is antisymmetric around (x + x̄)/2 can

be represented, in a L2 sense, as a Fourier series using {ϕmj }.

In spite of the lack of orthogonality, the general logic for constructing the impulse response

function is the same. Given the projection of the initial condition on the eigenfunctions

p̂(x, 0) =
∑

k

∞
∑

j=1

akjϕ
k
j (x)

where k = {l, h,m}. We use the linearity of H∗ to write the operator in equation (32) as

H∗(p̂)(x, t) = H∗

(

∑

k

∞
∑

j=1

akjϕ
k
j

)

(x, t) =
∑

k

∞
∑

j=1

akjH∗(ϕkj )(x, t) =
∑

k

∞
∑

j=1

akj e
λkj tϕkj (x)

where the last equality uses that the ϕkj (x) are eigenfunctions. Thus, given the akj coefficients

(whose computation is discussed below), we can write the impulse response in equation (32)

as

H(t, f, p̂) =
∑

{k=l,h,m}

∞
∑

j=1

eλ
k
j t akj

∫ x̄

x

f(x)ϕkj (x) dx .

or, computing the inner products bkj [f ] =
∫ x̄

x
f(x)ϕkj (x) dx

H(t, f, p̂) =
∑

k={l,h,m}

∞
∑

j=1

eλ
k
j t akj b

k
j [f ] . (38)

A straightforward numerical approach to finding the projection coefficients akj requires
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running a simple linear regression of p̂(x, 0) on the basis {ϕhj (x), ϕlj(x), ϕmj (x)}Jj=1 (up to

some order frequency J). For the output impulse response, given the function of interest

f(x) = −x, the projection coefficients are also readily computed bkj [f ] =
∫ x̄

x
f(x)ϕkj (x)dx for

k = {m, l, h}, and j = 1, 2, 3.... which gives

bmj [f ] =
(x̄− x)3/2√

2πj
, blj [f ] =

(x∗ − x)3/2√
2πj

, bhj [f ] =
(x̄− x∗)3/2√

2πj
. (39)

Figure 9: Response to monetary shock for asymmetric problem
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Figure 9 displays some impulse response generated by asymmetric problems where α 6=

1/2 and contrasts them to the one produced by the symmetric problem where α = 1/2. Two

remarks are in order: first, modest degrees of asymmetry do not have a major effect on the

impulse response: the impulse response function for α = 0.4 would be barely distinguishable

from the symmetric impulse response. Second, once quantitatively large asymmetries are

considered, such as the small values of α considered in the figure, the impulse response

becomes more persistent than the symmetric one. The presence of the asymmetry makes the

convergence to the mean x value of the invariant distribution slower; this is intuitive since for
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symmetric problems the mean of the distribution is obtained right after the first adjustment,

while this is not anymore true.

Irrelevance of the sign of the reinjection point. We discuss here the irrelevance of

whether the optimal return point x∗ is to the left of the interval’s midpoint, as when x∗ < 0,

or to the right of it hence with x∗ > 0. Formally we consider two problems: the first one

has α = 1/2− z where z ∈ (0, 1/2) and the second problem has α̃ = 1/2 + z. We will show

that, somewhat surprisingly to us, the sign of the optimal return point x∗ is irrelevant for

the impulse response which is the same one for the problem with α and for the one with α̃.

We have the following result

Proposition 13. Consider the inaction region for x defined by the interval (−x̄, x̄), let

z ∈ (0, 1/2) be a non-rational number. Consider a problem with reinjection point α = 1/2−z

and another problem with reinjection point α̃ = 1/2+z. Then the impulse response function

is the same for both problems.

Figure 9 illustrates the results of the proposition by showing that the impulse response for

α = 0.2 coincides with the one for α = 0.8. An important implication of this property is that

the derivative of the impulse response function with respect to α evaluated at alpha = 1/2

must be zero, which explains why small deviations from the symmetric benchmark produce

results that are essentially almost indistinguishable from those produced by the symmetric

case. Overall this result suggests that the symmetric benchmark is an accurate approximation

of problems with modest degrees of asymmetry.

9 Conclusion and Future Work

(TBD)
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A Proofs

Proof. of Proposition 1. Using the definitions of H, H and H note that for any f :

H(r, f, p) ≡
∫ ∞

0

e−rtH(t; f, p)dt

=

∫ ∞

0

e−rt
[
∫ x̄

x

H (f) (x, t) p(x, 0) dx

]

dt

=

∫ ∞

0

e−rt
∫ x̄

x

E [f(x(t)) | x(0) = x] p(x, 0) dx dt

=

∫ x̄

x

∫ ∞

0

e−rtE [f(x(t)) | x(0) = x] p(x, 0) dt dx

=

∫ x̄

x

E

[
∫ ∞

0

e−rtf(x(t))dt | x(0) = x

]

p(x, 0) dx

where the first equality is the definition of H, the second and third lines use the definition of
H and H, the fourth line exchanges the order of integration, the fifth line uses the linearity
of the expectations operator (where p stands for a generic signed measure).

The rest of the proof consists of two steps. The first is to show that if f(x) = R′(x), then

v′(x) = E

[
∫ ∞

0

e−rtf(x(t))dt | x(0) = x

]

for all x .

This establishes the first equality in the proposition. The second step is to show that this
expression implies that its expectation over x using the signed measure p(·, 0) givesG(r, R′, p),
which establishes the second equality in the proposition.

For the first step we take the value function in inaction for the Calvo+ problem and
differentiate it with respect to x obtaining:

(r + ζ)v′(x) = R′(x) + µv′′(x) +
σ2

2
v′′′(x) for x ∈ [x, x̄]

Moreover the boundary conditions of the Calvo+ problem (smooth pasting and optimal re-
turn) give:

v′(x) = v′(x̄) = v′(x∗) = 0

Thus, given the ode stated above for v′ and v′(x) = v′(x̄) = v′(x∗), which act as value
matching, then:

v′(x) = E

[
∫ ∞

0

e−rtR′(x(t))dt | x(0) = x

]

which is the sequence problem corresponding to the Hamilton Jacobi Bellman equation writ-
ten above.

For the second step we notice that v′(x∗) = 0 and hence:

v′(x) = E

[
∫ τ

0

e−rtR′(x(t)) dt+ e−rτv′(x(τ)) | x(0) = x

]
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where τ is the stopping time denoting the first time that x hits either x or x̄ or that the free
adjustment opportunity occurs. Since x(τ) = x∗ and v′(x∗) = 0, then:

v′(x) = E

[
∫ τ

0

e−rtR′(x(t)) dt| x(0) = x

]

Thus to compute the cumulative impulse response it suffices to compute the stochastic inte-
gral up to the first price change. �

Proof. (of Proposition 2). Using the definitions of H, G and τ we have the following
recursion:

H(f)(x, t) = G(f)(x, t) + E
[

1{t>τ}H(f)(x∗, t− τ)
∣

∣x
]

for all x ∈ [x, x̄] and for all t > 0.

Let us begin by defining the following object: D(x, t) ≡ E
[

1{t>τ}H(f)(x∗, t− τ)
∣

∣x
]

. We
first consider case (i) and show that D(x, t) = 0 for all x and all t. This follows since
H(f)(x∗, s) = 0 for all s. This in turn follows because f is antisymmetric, thus we have
E [f(x(t)) |x(τ) = x∗] = 0, which follows immediately by the symmetry of the distribution
g(x, t) and the antisymmetric property of f . It follows that E

[

1{t≥τ}f(x(t)) |x(0) = x
]

= 0.
Hence, since H = G, this implies that G(t) = H(t) for any p(·, t).

Now we turn to case (ii). We note that D(x, t) is symmetric in x around x∗ = (x+ x̄)/2.
This follows since the law of motion of x is symmetric so g(x, t) is symmetric around x∗. This
in turn implies that the probability of hitting either barrier at time s, starting with x(0) = x,
is symmetric in x, which directly implies the symmetry of D(x, t). Now we use that D(x, t)
is symmetric and that

H(t, f, p)−G(t, f, p) =

∫ x̄

x

D(x, t) (p(x, 0)− p̄(x)) dx .

Since D(x, t) is symmetric and p(x, 0) − p̄(x) is antisymmetric we have that the right hand
side is zero so that H(t) = G(t). �

Proof. of Lemma 1. The proof uses the linearity of G to write G(f̂ + f − f̂) = G(f̂) +
G(f− f̂ ). The projection f̂ converges pointwise to f at any point at which f is differentiable.
Additionally, by hypothesis, f is not differentiable (at most) at countably many points.
Finally, we have defined G(f)(x, t) = E

[

1{t<τ}f(x(t))|x(0) = x
]

. We note that this expected
value is given by the integral that uses a continuous density, i.e. the density of BM starting
at x(0) = x and reaching x(t) = y at t, which is continuous on y for t > 0. Hence the
function f − f̂ is non-zero only at countably many points, and thus its integral with respect
to continuous density is zero, i.e. G(f − f̂)(x, t) = 0 for all x and t > 0. Then we have

G(f)(x, t) = G
(

f̂
)

(x, t) + G(f − f̂)(x, t) = G
(

f̂
)

(x, t)

= G
( ∞
∑

j=1

bj [f ]ϕj

)

(x, t) =
∞
∑

j=1

bj [f ]G (ϕj) (x, t) =
∞
∑

j=1

bj [f ]e
λjtϕj(x)
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where we have used the linearity of G, the definition of f̂ , and the form of the solution for
G (ϕj) (x, t). �

Proof. (of Proposition 3). The result follows by Lemma 1, the definition of the projection
coefficients {bj [P ]} and the definition of the response function in equation (5).

Proof. (of Proposition 4) Let us define the centered even k-th moment for the variable x:
Mk(t, δ) ≡ Eδ (x(t)− E(x(t)))k, where k = 2, 4.... and the subscript δ denotes that probabili-
ties are those of an impulse response following a marginal shock δ to the invariant distribution
of gaps at zero inflation.

The objective is to show that the ∂
∂δ
Mk(t, δ)

∣

∣

∣

δ=0
= 0 for all t, i.e. that a marginal shock

δ has no first-order effect on the even centered moments at every t. The proof follows two
steps. First, to show that the impulse response of any even moment is flat at zero. Second, to
show that the impulse response of any centered moment is well approximated, up to second
order terms, by the impulse response of the corresponding non-centered moment.

The first step is readily established since a marginal shock triggers an antisymmetric
displaced distribution p̂(x, 0) = p̄′(x)δ, whose projection coefficients on all even-indexed
eigenfunctions j = 2, 4, ... are zero (since such eigenfunctions are symmetric). Note next that
even (non-centered) moments k = 2, 4, ... are symmetric by definition, which immediately
implies that their projection coefficients on all odd-indexed eigenfunctions j = 1, 3, ... are
zero. It follows that none of the eigenfunctions will have a non-zero coefficient. This proves
the first step.

To prove the second step write in terms of the non-centered moments

Mk(t, δ) = B0Eδ

(

x(t)k
)

+B1Eδ

(

x(t)k−1
)

Eδ (x(t))+....+Bk−1Eδ (x(t)) (Eδ (x(t)))
k−1+Bk (Eδ (x(t)))

k

where the Bj are the binomial coefficients. Next, lets us replace each of the moments with
its first order expansion in δ, namely let Eδ

(

x(t)k
)

= akδ + o(δ) where ak is moment-k first
derivative. We get

Mk(t, δ) = B0(akδ + o(δ)) +B1(ak−1δ + o(δ))(a1δ + o(δ)) + .... +Bk(a1δ + o(δ))k

It is apparent that the only first order term in δ is ak, i.e. the coefficient of the non-centered
moment. This concludes the proof. �

Proof. (of Proposition 5) Straightforward differentiation of the density function p̄(x) gives

p̄′(x) =











−θ2[−e−θx−e2θx̄eθx]
2[1−2eθx̄+e2θx̄]

if x ∈ [−x̄, 0]

−θ2[eθx+e2θx̄e−θx]
2[1−2eθx̄+e2θx̄]

if x ∈ [0, x̄]
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where θ ≡ x̄2ζ/σ2. The linear projection of p̄′(x) onto ϕj gives the projection coefficients:

bj [p̄
′] =



















0 if j is odd

−
[

2θ2jπ
4θ2x̄2+j2π2

] [

1+cosh(x̄θ)
1−cosh(x̄θ)

]

if j is even and j
2
is odd

−
[

2θ2jπ
4θ2x̄2+j2π2

]

if j is even and j
2
is even

To see this compute:
∫ x̄

−x̄ p̄
′(x)ϕj(x)dx = 2

∫ 0

−x̄ p̄
′(x)ϕj(x)dx for j = 2, 4, 6, . . . . The

function p̄′ is antisymmetric and ϕj is antisymmetric for j even, with respect to x = 0. For
j = 1, 3, 5, ... this integral is zero, since ϕj is symmetric, see equation (13). For j = 2, 4, . . .
we thus have:

bj [p̄
′] = 2

∫ 0

−x̄
p̄′(x)ϕj(x)dx =

θ2

[1− 2eθx̄ + e2θx̄]

∫ 0

−x̄

[

e−θx + e2θx̄eθx
] 1√

x̄
sin

(

(x+ x̄)

2x̄
jπ

)

dx

=
ex̄θ4θ2x̄√

x̄ [1− 2eθx̄ + e2θx̄]

[

jπ
(

1− cosh (x̄θ) (−1)j/2
)]

4θ2x̄2 + j2π2

=
8φ e

√
2φ

x̄3/2
[

1− 2e
√
2φ + e2

√
2φ
]

[

jπ
(

1− cosh
(√

2φ
)

(−1)j/2
)]

8φ+ π2j2

=
jπ

4x̄3/2

(−2)
(

1 + j2π2

8φ

)

1− cosh
(√

2φ
)

(−1)j/2

1− cosh
(√

2φ
)

where we used that θx̄ =
√
2φ and that cosh(x) = (1 + ex)/(2ex). Combining it with the

expression for bj [f ] in equation (16) gives the desired result. �

Proof. (of Proposition 6) Rewriting the expression for m2:

m2(φ) =
β2(φ)/λ2(φ)

∑∞
j=1 βj(φ)/λj(φ)

=
β2(φ)/λ2(φ)

Kurt(φ)/(6N)

=

[

1+cosh(
√
2φ)

cosh(
√
2φ)−1

]

[

8(2φ)
4(2φ)+4π2

]

N ℓ
(√

2φ
)

[

1 + π2

2φ

]

N (exp(
√
2φ) + exp(−

√
2φ)− 2)2

(exp(
√
2φ) + exp(−

√
2φ))(exp(

√
2φ) + exp(−

√
2φ)− 2− 2φ)

= 2

[

1 + cosh
(√

2φ
)]

[

cosh(
√
2φ)− 1− φ

]

[

1 + π2

2φ

]2

where the first line follows from the definition, and the first equality from the sufficient
statistic result in Alvarez, Le Bihan, and Lippi (2016). The second line uses the expression
for β2, λ2 derived above, as well as the expression for the Kurtosis derived in Alvarez, Le
Bihan, and Lippi (2016). The third line uses the expression for ℓ. The remaining lines are
simplifications. �
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Proof. (of Proposition 7) First use Proposition 5 to write

∂

∂t
Y (t)|t=0 = lim

M→∞

M
∑

j=1

βj(φ)λj(φ) = lim
M→∞

M
∑

i=0

[β2+4iλ2+4i + β4+4iλ4+4i]

Using the coefficients for βj in Proposition 5 and the expression for the eigenvalues in equa-
tion (19) we write

∂

∂t
Y (t)|t=0 = −Nℓ(φ) lim

M→∞

M
∑

i=0

2

([

1 + cosh
(√

2φ
)

cosh(
√
2φ)− 1

]

− 1

)

= −2Nℓ(φ) lim
M→∞

M

([

1 + cosh
(√

2φ
)

cosh(
√
2φ)− 1

]

− 1

)

which diverges towards minus infinity for any 0 ≤ φ <∞. �

Proof. (of Proposition 8) We let φ̄ to be the value of φ for which the impulse response, as
a function of t, has a local maximum at t = 0. For larger values of φ the IRF will have an
interior maximum at some t > 0, and hence the IRF will be hump shaped. For lower values
of φ it will be monotonically decreasing in t. Thus we characterize the critical value of φ for
which the IRF has a local maximum, and also verify that the second derivative with respect
to time is negative at t = 0 for that critical value of φ. The slope of the impulse response
function at t = 0 is given by:

∂

∂t
Y (t)

∣

∣

∣

t=0

= lim
M→∞

M
∑

j=1

(

βj(φ) + β0
j (φ)

)

λj(φ) = lim
M→∞

M
∑

i=0

[(

β2+4i + β0
2+4i

)

λ2+4i +
(

β4+4i + β0
4+4i

)

λ4+4i

]

Using the coefficients for bj in Proposition 5, the expression for b0j (φ) given in equation (22)
and the expression for the eigenvalues λj in equation (19)

∂

∂t
Y (t)

∣

∣

∣

t=0
= −Nℓ(φ) lim

M→∞

M
∑

i=0

2

([

1 + cosh
(√

2φ
)

cosh(
√
2φ)− 1

]

(1− 2ρ(φ))− 1

)

= −Nℓ(φ) lim
M→∞

2M

([

1 + cosh
(√

2φ
)

cosh(
√
2φ)− 1

]

(1− 2ρ(φ))− 1

)

.

Replacing the value of the value of the optimal decision rule for the plans model ρ(φ) in the
previous expression we have

∂

∂t
Y (t)

∣

∣

∣

t=0

= −Nℓ(φ) lim
M→∞

2M

([

1 + cosh
(√

2φ
)

cosh(
√
2φ)− 1

] [

1− 2

[

exp
(√

2φ
)

− exp
(

−
√
2φ
)

− 2
√
2φ√

2φ
(

exp
(√

2φ
)

+ exp
(√

−2φ
)

− 2
)

]]

− 1

)

= −Nℓ(φ) lim
M→∞

2M

([

1 + cosh
(√

2φ
)

cosh(
√
2φ)− 1

] [√
2φ cosh

(√
2φ
)

− 2 sinh
(√

2φ
)

+
√
2φ√

2φ
(

cosh
(√

2φ
)

− 1
)

]

− 1

)

.

Thus, this expression is equal to zero for φ̄ solving:

√

2φ
(

cosh
(

√

2φ
)

− 1
)2

=
[

1 + cosh
(

√

2φ
)] [

√

2φ cosh
(

√

2φ
)

− 2 sinh
(

√

2φ
)

+
√

2φ
]

.

Analysis of this function shows that φ̄ = 1. Next we check the value of the second derivative
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at φ = 1; we have:

∂2

∂t2
Y (t)|t=0 =

[(

β2+4i + β0
2+4i

)

λ22+4i +
(

β4+4i + β0
4+4i

)

λ24+4i

]

= Nℓ(φ) lim
M→∞

M
∑

i=0

2

([

1 + cosh
(√

2φ
)

cosh(
√
2φ)− 1

]

(1− 2ρ(φ)) |λ2+4i| − |λ4+4i|
)

= −∞

since |λ2+4i| > |λ4+4i and since:

[

1+cosh(
√
2φ)

cosh(
√
2φ)−1

]

(1− 2ρ(φ))− 1 = 0 at φ = 1 . To summarize:

at φ = 1 the slope of the impulse response at t = 0 is zero and the second derivative is
negative, thus it is a maximum. �

Proof. (of Proposition 9) First we consider case (i), i.e. the long run effect of a volatility
shock dσ

σ
, so that σ̃ =

(

1 + dσ
σ

)

σ on the impulse response of output to a monetary shock. We
note that the expression for Y (t) for the Golosov Lucas model does not feature x̄, which is a
function of σ (see equation (18)). Indeed the only place where σ enters in the expression for
Y (t) is in the eigenvalues (the parameter N(jπ)2/8 in equation (18)). Since, N = σ2/x̄2 and

x̄ =
(

6 ψ
B
σ2
)

1
4 , then d log x̄ = 1/2d logσ and d logN = 2 (d log x̄− d log σ), hence d logN =

d logσ. Substituting this into the eigenvalue λj = −Ñ(jπ)2/8 = −(1 + dσ
σ
)N(jπ)2/8 were N

is the average number of price changes before the volatility shock. Using the expression for
the impulse response in terms of the post-shock objects we have:

Ỹ (t) =

∞
∑

j=1

bj [f ]bj [p̄
′]e−(1+

dσ
σ )N

(jπ)2

8
t = Y

(

t

(

1 +
dσ

σ

))

and we obtain the desired result.
Now we consider case (ii), i.e. the impact effect of a volatility shock dσ

σ
, so that σ̃ =

(

1 + dσ
σ

)

σ on the impulse response of output to a monetary shock. As in the previous case
the eigenvalues can be written as functions of the shock and the old value of the expected
number of price changes. Also as the previous case we have f(x) = −x. The difference is on
the initial distribution p(x, 0). The initial condition is given by p(x, 0) = p̄(x+δ; x̄(σ)) where
we write x̄(σ) to indicate that the distribution depends on σ. Indeed, since we are using the
expression for Ỹ (t) in terms of the value of x̄ that corresponds to the post-shock value of σ,
we need to consider the effect on x̄ of a decrease of σ in the proportion dσ/σ. To do this we
take a second order expansion of p(x, 0) = p̄(x + δ; x̄(σ)) with respect to δ and σ evaluated
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at δ = 0 and dσ = 0.

p(x; 0) ≡ p̄(x+ δ; x̄(σ)) = p̄(x) +
∂

∂δ
p̄(x+ δ; x̄(σ))

∣

∣

δ=0
δ − ∂

∂x̄
p̄(x+ δ; x̄(σ))

∣

∣

δ=0

∂x̄(σ)

∂σ
dσ

+
1

2

∂2

∂δ2
p̄(x+ δ; x̄(σ))

∣

∣

δ=0
δ2

+
1

2

∂2

∂x̄2
p̄(x+ δ; x̄(σ))

∣

∣

δ=0

(

∂x̄(σ)

∂σ

)2

dσ2 +
1

2

∂

∂x̄
p̄(x+ δ; x̄(σ))

∣

∣

δ=0

∂2x̄(σ)

∂σ2
dσ2

− ∂2

∂x̄∂δ
p̄(x+ δ; x̄(σ))

∣

∣

δ=0

∂x̄(σ)

∂σ
dσδ + o

(

||(δ, dσ)||2
)

for x ∈ [x, x̄] and x 6= 0. Recall that the invariant distribution for this model is the triangular
density p̄(x) = 1/x̄− |x|/x̄2 for x ∈ (−x̄, x̄). Using this functional form we have:

∂

∂δ
p̄(δ + x; x̄) =

{

+ 1
x̄2

if x ∈ [−x̄, 0)
− 1
x̄2

if x ∈ (0, x̄]
,

∂

∂x̄
p̄(δ + x; x̄)

∣

∣

δ=0
=

{

− x
x̄2

2
x̄

if x ∈ [−x̄, 0)
+ x
x̄2

2
x̄

if x ∈ (0, x̄]

∂2

∂δ∂x̄
p̄(x+ δ; x̄) =

{

− 1
x̄2

2
x̄

if x ∈ [−x̄, 0)
+ 1
x̄2

2
x̄

if x ∈ (0, x̄]
,

∂2

∂x̄2
p̄(δ + x; x̄) =

{

+ x
x̄2

6
x̄2

if x ∈ [−x̄, 0)
− x
x̄2

6
x̄2

if x ∈ (0, x̄]

Notice that the first order derivatives with respect to δ as well as the cross partial derivative
are antisymmetric functions of x around x = 0, while the derivatives with respect to x̄ are
symmetric functions of x. Finally we have ∂2

∂δ2
p̄(x+ δ; x̄) = 0.

Now we use the expansion and compute the impulse response coefficients bj ≡ bj [f ]bj [p(·, 0)].
The first order term for dσ is zero because f is antisymmetric (so that bj [f ] = 0 for
j = 2, 4, 6, ... ) and the first derivative with respect to x̄ is symmetric (so that bj [p(·, 0)] = 0
for j = 1, 3, 5, ... ) hence the βj = 0 for j = 1, 2, 3, 4, .... Likewise the second order terms for
dσ2 are zero since f is antisymmetric and the first and second derivative with respect to x̄
are symmetric. The second order term δ2 is zero because the second derivative with respect
to δ is zero. This leaves us with two non-zero terms. The first order term on δ, which is the
term for the IRF with respect to a monetary shock, and the second order term corresponding
to the cross-derivative. For the cross-partial term we note that, using that x̄ has elasticity
1/2 with respect to σ, we can write

− ∂2

∂δ∂x̄
p̄(x+ δ; x̄)

∂x̄(σ)

∂σ
dσδ = − ∂2

∂δ∂x̄
p̄(x+ δ; x̄)x̄(σ)

[

∂x̄(σ)

∂σ

σ

x̄(σ)

]

dσ

σ
δ

= − 2

x̄(σ)

∂

∂δ
p̄(δ + x; x̄)x̄(σ)

1

2

dσ

σ
δ = − ∂

∂δ
p̄(δ + x; x̄)

dσ

σ
δ

Thus we have that each bj term is given by the sum of the (non-zero) terms corresponding
to the first order term on δ and the second-order term corresponding to the cross-derivative:

bj [f ]bj [p̄
′(·)] δ + bj [f ]bj [p̄

′(·)] δdσ
σ

= bj [f ]bj [p̄
′(·)] δ

(

1 +
dσ

σ

)
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This gives the second adjustment for Ỹ (t) in terms of the expression for Y (t). �

Proof. (of Proposition 12) The proof consists on checking that the functions described are
the only ones that satisfy the sufficient conditions equation (28), equation (29), equation (30)

and equation (31) for H∗(ϕkj (x)e
λkj t) for k ∈ l, m, j and j = 1, 2, . . . .

First, let’s consider the case of eigenvalues λ 6= 0. In this case the only non-constant real
function that satisfy the o.d.e.: λϕ(x) = ∂xxϕ(x)σ

2/2 for λ < 0 is ϕ(x) = sin (φ+ ωx) for
some φ and for λ = −σ2

2
ω2. The cases below use this characterization when the function is

not constant, to determine the values of φ and ω.
Second, consider the case of functions that are differentiable in the entire domain [x, x̄].

The continuity at x = x∗ is satisfied immediately. In this case, the o.d.e. : λϕ(x) =
∂xxϕ(x)σ

2/2, with boundaries equation (29) and equation (30) is satisfied only by ϕ(x) =
ϕmj (x) for all j = 1, 2, .... This gives the particular value of φ and ω, for j = 1, 2, . . . , and
hence no other differentiable function different from zero satisfy all the conditions.

Third, consider the case of functions ϕ(x) which are constant in an interval of strictly
positive length included in [x, x∗]. Then ϕ(x) = 0, to satisfy the boundary condition equa-
tion (29) at x = x. Then ϕ(x) = 0 for all x ∈ [x, x∗), since ϕ can only be non-differentiable
at x = x∗. Then, for x ∈ (x∗, x̄] it has to be differentiable, non-identically equal to zero,
satisfy ϕ(x∗) = 0 so that it is continuous at x = x∗, and also ϕ(x̄) = 0, to satisfy the bound-
ary condition equation (29) at x = x̄. Finally, to satisfy the measure preserving condition
equation (30), it has to be of the form of ϕlj(x) for j = 1, 2, . . . .

Fourth, consider the case of functions ϕ(x) which are constant in an interval of strictly
positive length included in [x∗, x̄]. Following the same steps as in the previous case, we obtain
that ϕ(x) = ϕhj (x) for j = 1, 2, . . . for this case.

For the fifth and remaining case, we consider the case of functions ϕ(x) which are non-
constant for all intervals included in [x, ]̄, and that ϕ(x) is not differentiable at x = x∗. To
satisfy the o.d.e. in each segment [x, x∗) and (x∗, x̄] then we must have ϕ(x) = sin

(

φ+ ωx
)

and ϕ(x) = sin
(

φ̄+ ω̄x
)

in each of the respective segments. Since the eigenvalue has to be
the same for all segments, then we have that ω = ω̄ ≡ ω. The eigenfunction ϕ must be
measure preserving, so that

0 = cos
(

φ+ ωx∗
)

− cos
(

φ+ ωx
)

+ cos
(

φ̄+ ωx̄
)

− cos
(

φ̄+ ωx∗
)

To satisfy the boundary conditions equation (29) we require sin
(

φ+ ωx
)

= sin
(

φ̄+ ωx̄
)

= 0.

Thus cos
(

φ+ ωx
)

= ±1 and cos
(

φ̄+ ωx̄
)

= ±1. Hence, we have that:

either 0 = cos
(

φ+ ωx∗
)

− cos
(

φ̄+ ωx∗
)

or ± 2 = cos
(

φ+ ωx∗
)

− cos
(

φ̄+ ωx∗
)

In the first case we have:

0 = cos
(

φ+ ωx∗
)

− cos
(

φ̄+ ωx∗
)

and 0 = sin
(

φ+ ωx∗
)

− sin
(

φ̄+ ωx∗
)

so the function is differentiable at x = x∗, which is a contradiction. So we must have the
second case, and because eigenfunctions are defined up to sign, must have:

2 = cos
(

φ+ ωx∗
)

− cos
(

φ̄+ ωx∗
)

and 0 = sin
(

φ+ ωx∗
)

− sin
(

φ̄+ ωx∗
)
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Using the properties of cos it must be the case that sin
(

φ+ ωx∗
)

= sin
(

φ̄+ ωx∗
)

= 0. Then,
ϕ must be zero in the extremes of each of the two following segment [x, x∗] and [x∗, x̄]. This
requires that [x, x∗] and [x∗, x̄] be an in an multiple integer of each other, since in each of the
segments ϕ is a sine function with the same frequency ω which is zero at the two extremes.
But this violate that [x, x∗]/[x∗, x̄] is not rational.

Now we show that the eigenfunctions span the densities for the signed measures. It suffices
to show that if g : [x, x̄] → R is in the domain of H∗, and 〈g, ϕmj 〉 = 〈g, ϕlj〉 = 〈g, ϕhj 〉 = 0 for
all j = 1, 2, . . . , then it must be that g = 0.

As a way of contradiction, suppose we have a function g 6= 0 that g is orthogonal to all
the eigenfunctions. Given that the eigenfunctions can span antisymmetric functions defined
in different domains as explained above, it must be that g is a symmetric function as defined
in [x, x̄], so that it is orthogonal to {ϕmj }∞j=1, and also a symmetric in the following restricted
domains [x, x∗] and [x∗, x̄], so that g is also orthogonal each of eigenfunctions {ϕlj}∞j=1 and
{ϕhj }∞j=1 when defined in the restricted domains.

Now, without loss of generality, assume that x∗ < (x + x̄)/2. Below we sketch a proof
that for a function g to be even (or symmetric) in these three domains, it must be the
case that [x̄ − x∗] is an integer multiple of [x∗ − x], which contradicts the assumption that
[x∗ − x]/[x̄− x∗] is not a rational number.

Let L = x∗−x. To arrive to this conclusion we first notice that since g must be symmetric
in the entire domain [x, x̄], then it must be the case that g has identical symmetric shape
in the segment [x, x+ L] than in the segment [x̄ − L, x̄]. Then using that g is symmetric in
the restricted domain [x∗, x̄], it must be that it also has the same symmetric shape in the
interval [x∗, x∗ + L] than in both intervals [x, x + L] and [x̄ − L, x̄]. If it is the case that
x∗ + L = x̄− L, then [x̄− x∗] is an integer multiple of [x∗ − x], and find a contradiction. If
this is not the case, i.e. if x∗ + L < x̄ − L, we use the g is symmetric in the entire domain,
to say that again g must take the same symmetric shape in the interval [x̄− 2L, x̄−L]. Now
either x ∗+L = x̄− 2L, which gives a contradiction, or we continue using the symmetry of g
in either the entire domain [x, x̄] or in the restricted domain [x∗, x̄] until we get that [x̄− x∗]
is an integer multiple of [x∗ − x], which is a contradiction with our assumption. Formally,
this can be set up as an induction step, but it requires to develop enough notation, which we
skip to shorten. �

Proof. of Proposition 13. Consider the first problem with α < 1/2. Normalize (WLOG)
the interval width to 2x̄ = 1 and rewrite the initial condition as p̂ = p̂s+ p̂a, respectively the
symmetric and antisymmetric component as

p̂s(x) =

{

1−2α
α(1−α)
−1

(1−α)
, p̂a(x) =

{

1
α(1−α) for x ∈ (−x̄,−z) ∪ (z, x̄)

0 for x ∈ (−z, z)

Notice that for α = 1/2 − z the slope of the antisymmetric part is either zero or 1
1/4−z2 .

The same obtains for α̃ = 1/2 + z. Thus the asymmetric component of the initial condition
p̂a(x) is the same for α and for α̃. The symmetric component p̂s(x) is as follows

p̂s(x, α) =

{

2z
1/4−z2
−1

1/2+z

, p̂s(x, α̃) =

{

−2z
1/4−z2 for x ∈ (−x̄,−z) ∪ (z, x̄)

1
1/2+z

for x ∈ (−z, z)
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which reveals that the symmetric component of the initial condition for the problem with α̃
is given by −1 times the symmetric component of the initial condition for the problem with
α.

Now let’s consider the consequences for the output impulse response as defined in equa-
tion (32). For the problem with α we use the decomposition p̂ = p̂s + p̂a and the linearity of
H∗ to write the IRF as

Hα(t, f, p̂(α)) = Hα(t, f, p̂
a(α)) +Hα(t, f, p̂

s(α))

where we use the subscript to emphasize that this is the impulse response for the problem
with reinjection point α. Using the properties for the initial condition associated to the
problem with α̃ discussed above we can the write its impulse response as

Hα̃(t, f, p̂(α̃)) = Hα̃(t, f, p̂
a(α)) +Hα̃(t, f,−p̂s(α))

where we used that p̂a(α) = p̂a(α̃) and that p̂s(α) = −p̂s(α̃).
It is immediate to see that Hα(t, f, p̂

a(α)) = Hα̃(t, f, p̂
a(α)), i.e. that the IRF component

triggered by the asymmetric part of the initial condition, is the same in both problems. This
follows since p̂a(α) = p̂a(α̃) and because both problems share the same identical base for
asymmetric functions, given by the eigenfunctions ϕmj .

Finally, we argue that Hα(t, f, p̂
s(α)) = Hα̃(t, f,−p̂s(α)). To see this notice that the

symmetric part of the impulse response function is obtained by projecting the initial condition
on the orthogonalized symmetric eigenfunctions vkj , where k = {l, h}, produced by e.g. the
Gram-Schmidt algorithm. The key is to notice that the symmetrized eigenfunction for the
problem with α̃, equals −1 times the eigenfunctions for the problem with α, formally vkj (α) =
−vkj (α̃). Inspection if the eigenfunctions ϕhj and ϕ

l
j reveals that, for all x ∈ (−x̄, x̄) they obey

ϕh1(x; x
∗ = −z) = −ϕl1(−x; x∗ = z). It therefore follows that Hα(t, f, p̂(α)) = Hα̃(t, f, p̂(α̃)).

�

B Symmetric problem with drift (inflation)

In this section we introduce a non-zero drift µ to the process for x and solve for the eigen-
functions and eigenvalues for G(f)(x, t), i.e. for the process without reinjection. To lighten
the notation we use g(x, t) = G(f)(x, t).

Proposition 14. Assume that the process has a drift µ, and variance σ2, so the Kol-
mogorov backward equation is:

∂tG(f)(x, t) = ∂xG(f)(x, t)µ+ ∂xxG(f)(x, t)
σ2

2
for all x ∈ [x, x̄]

with boundary conditions G(f)(x, t) = G(f)(x̄, t) = 0 for all t > 0 and G(f)(x, 0) = f(x) for
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all x. The eigenvalues, eigenfunctions, projections, and inner product are given by:

λj = −
[

1

2

µ2

σ2
+
σ2

2

(

j π

x̄− x

)2
]

for all j = 1, 2, . . .

ϕj(x) =

√

2

x̄− x
sin

([

x− x

x̄− x

]

jπ

)

e−
µ

σ2 x for all x ∈ [x, x̄] where

bj [f ] =
〈f, ϕj〉
〈ϕj, ϕj〉

where 〈a, b〉 ≡
∫ x̄

x

a(x)b(x)e2
µ

σ2 xdx

Thus the solution for G(f) is:

G(f)(x, t) =
∞
∑

j=1

eλjtbj [f ]ϕj(x) for all t ≥ 0 and x ∈ [x, x̄].

Proof. (of Proposition 14) To lighten the notation, denote g(x, t) = G(f)(x, t). We start by
rewriting g as

g(x, t) = h(x, t)s(x)

for some function s, so that the Kolmogorov backward equation is:

s(x)∂th(x, t) = [s′(x)h(x, t) + s(x)∂xh(x, t)]µ+[s′′(x)h(x, t) + 2s′(x)∂xh(x, t) + s(x)∂xxh(x, t)]
σ2

2

We will take s(x) = exp(ax) for some constant a to be determined. Replacing this function
and its derivatives, and cancelling we get

∂th(x, t) = [ah(x, t) + ∂xh(x, t)]µ+
[

a2h(x, t) + 2a∂xh(x, t) + ∂xxh(x, t)
] σ2

2

= h(x, t)

[

aµ+ a2
σ2

2

]

+ ∂xh(x, t)
[

µ+ aσ2
]

+ ∂xxh(x, t)
σ2

2

Setting a = − µ
σ2

into the p.d.e. for h we have:

∂th(x, t) = h(x, t)

[

−µ
2

σ2
+
µ2

σ4

σ2

2

]

+ ∂xxh(x, t)
σ2

2

= h(x, t)

[

−µ
2

σ2
+

1

2

µ2

σ2

]

+ ∂xxh(x, t)
σ2

2

= −h(x, t)1
2

µ2

σ2
+ ∂xxh(x, t)

σ2

2

Since s(x) 6= 0, the boundary conditions for h are the same as for g, namely h(x, t) = h(x̄, t) =
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0. The equation for the eigenvalues-eigenfunctions for h is the same as in the Calvo+ model

(

λj +
1

2

µ2

σ2

)

φj(x) = ∂xxφj(x)
σ2

2

so that we have the same expression for the eigenvalues-eigenfuctions:

λj = −
[

1

2

µ2

σ2
+
σ2

2

(

j π

x̄− x

)2
]

for all j = 1, 2, . . .

φj(x) = sin

([

x− x

x̄− x

]

jπ

)

for all x ∈ [x, x̄]

Thus we can write the solution for h as:

h(x, t) =

∞
∑

j=1

eλjt

∫ x̄

x
h(x′, 0)φj(x

′)dx′

∫ x̄

x
(φj(x′))2dx′

φj(x)

Multiplying both sides by s(x):

h(x, t)s(x) =

∞
∑

j=1

eλjt

∫ x̄

x
h(x′, 0)φj(x

′)dx′

∫ x̄

x
(φj(x′))2dx′

φj(x)s(x)

Thus we define

〈a, b〉 =
∫ x̄

x

a(x)b(x)
1

s(x)2
dx and

ϕj(x) = φj(x)s(x) so that

〈ϕj, ϕi〉 = 0 if i 6= j since

∫ x̄

x

φj(x)φi(x)dx = 0 for i 6= i

Note that we can write the solution for g as follows:

〈g(x, 0), ϕj〉
〈ϕj, ϕj〉

=

∫ x̄

x
g(x, 0)ϕj(x)

dx
s(x)2

∫ x̄

x
(ϕj(x))2

dx
s(x)2

=

∫ x̄

x
g(x,0)
s(x)

φj(x)dx
∫ x̄

x
(φj(x))2dx

=

∫ x̄

x
h(x, 0)φj(x)dx
∫ x̄

x
(φj(x))2dx

where we use that g(x, 0) = s(x)h(x, 0). �
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C Details of the multiproduct model

Law of motion for y, z.

dy = σ2n dt+ 2σ
√
y dW a

dz = σ
√
n





z√
ny

dW a +

√

1−
(

z√
ny

)2

dW b





where W a,W b are independent standard BM’s.

Lemma 2. Define

x =
√
y and w =

z√
ny

so that the domain is 0 ≤ x ≤ x̄ ≡ √
ȳ and −1 ≤ w ≤ 1. They satisfy:

dx = σ2n− 1

2 x
dt+ σdW a (40)

dw =
w

x2

(

1− n

2

)

dt+

√
1− w2

x
dW b (41)

We look for a solution to the eigenvalue-eigenfunction problem (λ, ϕ) given by equa-
tion (40) and equation (41). They must satisfy

λϕ(w, x) = ϕx(w, x)σ
2

(

n− 1

2x

)

+ ϕw(w, x)
w

x2

(

1− n

2

)

+
1

2
ϕww(w, x)

(1− w2)

x2
+

1

2
σ2ϕxx(w, x)

for all (x, w) ∈ [0, x̄]× [−1, 1], with ϕ(x̄, w) = 0, all w and ϕ2 integrable.

Proposition 15. The eigenfunctions-eigenvalues of (w, x) satisfying equation (40)-equa-
tion (41) denoted by {ϕm,k(·), λm,k} for k = 1, 2, . . . and m = 0, 1, . . . are given by:

ϕm,k(x, w) = hm(w) gm,k(x) where

hm(w) = C
n
2
−1

m (w) for m = 0, 1, 2, . . . and

gm,k(x) = x1−n/2Jn
2
−1+m

(

jn
2
−1+m,k

x

x̄

)

for k = 1, 2, . . . and

λm,k = −N
(

jn
2
−1+m,k

)2

2n
for m = 0, 1, . . . , and k = 1, 2, . . .

where C
n
2
−1

m (·) denote the Gegenbauer polynomials, and where Jn
2
−1+m(·) denote the Bessel

function of the first kind, jν,k denote the ordered zeros of the Bessel function of the first kind
Jν(·) with index ν.
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Note that the expressions for the eigenfunctions are only valid only for n > 2. For n = 2
the expression take a different special form, which we skip to save space. The expressions for
the eigenvalues are valid for n ≥ 2.

We remind the reader how the Gegenbauer polynomial and Bessel function, which form

an orthogonal base, are defined. The Gegenbauer polynomial C
n
2
−1

m (w) is given by:

C
n
2
−1

m (w) =

⌊m/2⌋
∑

k=0

(−1)k
Γ(m− k + n

2
− 1)

Γ(n
2
− 1)k!(m− 2k)!

(2w)m−2k (42)

For a fixed n, the polynomials are orthogonal on with respect to the weighting function

(1− w2)
n
2
−1− 1

2 so that:14

∫ 1

−1

C
(n
2
−1)

m (w)C
(n
2
−1)

j (w) (1− w2)
n
2
−1− 1

2 dw = 0 for m 6= j (43)

and for m = j we get

∫ 1

−1

[

C
(n
2
−1)

m (w)
]2

(1− w2)
n
2
−1− 1

2 dw =
π 21−2(n

2
−1)Γ(m+ 2(n

2
− 1))

m!(m+ n
2
− 1)[Γ(n

2
− 1)]2

(44)

The Bessel function of the first kind is given by :

Jν(x) =
∞
∑

k=0

(−1)k

k! Γ(k + ν + 1)

(x

2

)2k+ν

(45)

For a given ν, the following functions are orthogonal, using the weighting function xn−1 so
that:15

∫ x̄

0

[

x1−
n
2 Jν

(

jν,k
x

x̄

)] [

x1−
n
2 Jν

(

jν,s
x

x̄

)]

xn−1 dx

=

∫ x̄

0

Jν

(

jν,k
x

x̄

)

Jν

(

jν,s
x

x̄

)

x dx = 0 if k 6= s ∈ {1, 2, 3, . . .} and

∫ x̄

0

[

x1−
n
2 Jν

(

jν,k
x

x̄

)]2

xn−1 dx = x̄2
∫ x̄

0

x

x̄

[

Jν

(

jν,k
x

x̄

)]2 dx

x̄
(46)

=
1

2
( x̄ Jν+1 (jν,k) )

2 for all k ∈ {1, 2, 3 . . .} (47)

where jν,k and jν,s are two zeros of Jν(·).
14By this we mean that we define the inner product between functions a, b from [−1, 1] to R as : 〈a, b〉 =

∫ 1

−1
a(w)b(w)

(

1− w2
)

n

2
−1− 1

2 dw.
15By this we mean that we define the inner product between functions a, b from [0, x̄] to R as: 〈a, b〉 =

∫ x̄

0
a(x)b(x)xn−1dx.
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Figure 10: Eigenvalues for multiproduct model
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Kepping fixed N = 1 for all n

Derivation of IRF. Thus we have

G(t) ≡
∫ x̄

0

∫ 1

−1

G(f)(x, w, t) p(x, w; 0)dwdx

As in Section 3, we can write this expected value as:

Y (t) =

∫ x̄

0

∫ 1

−1

G
( ∞
∑

k=1

∞
∑

m=0

bm,k[f ]ϕk,m

)

(x, w, t) p(x, w; 0)dw dx

=

∫ x̄

0

∫ 1

−1

∞
∑

k=1

∞
∑

m=0

bm,k[f ]G (ϕk,m) (x, w, t) p(x, w; 0)dw dx

=

∫ x̄

0

∫ 1

−1

∞
∑

k=1

∞
∑

m=0

bm,k[f ] e
λm,k t ϕm,k(x, w) p(x, w; 0)dwdx

=

∞
∑

k=1

∞
∑

m=0

eλm,k t bm,k[f ]

∫ x̄

0

∫ 1

−1

ϕm,k(x, w) p(x, w; 0)dw dx

Then we get:

G(t) =
∞
∑

k=1

∞
∑

m=0

eλm,k t bm,k[f ] bm,k [p(·, 0)/ω] 〈ϕm,k, ϕm,k〉
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Inner product. We let ω(w, x) = x1−n (1 − w2)
n−3
2 . The inner product of functions a, b

from [0, x̄]× [−1, 1] to R is defied as

〈a, b〉 =
∫ x̄

0

∫ 1

−1

a(x, w) b(x, w) x1−n (1− w2)
n−3
2 dw dx

The term 〈ϕm,k, ϕm,k〉 is given by the product of equation (44) and equation (47) found above.
Indeed since the polynomials are orthogonal we have:

bm,k[f ] =
〈f, ϕm,k〉

〈ϕm,k, ϕm,k〉
=

∫ x̄

0

[

∫ 1

−1
f(x, w)hm(w)(1− w2)

n−3
2 dw

]

gm,k(x) x
n−1 dx

[

∫ 1

−1
(hm(w))

2 (1− w2)
n−3
2 dw

] [

∫ x̄

0
(gm,k(x))

2 xn−1 dx
]

=

∫ x̄

0

[

∫ 1

−1
f(x, w)C

n
2
−1

m (w)(1− w2)
n−3
2 dw

]

Jm+n
2
−1

(

jm+n
2
−1,k

x
x̄

)

x
n
2 dx

[

∫ 1

−1

(

C
n
2
−1

m (w)
)2

(1− w2)
n−3
2 dw

]

[

∫ x̄

0

(

Jm+n
2
−1

(

jm+n
2
−1,k

x
x̄

))2
x dx

]

Invariant Distribution. After the change in variables we have:

h̄(w) =
1

Beta
(

n−1
2
, 1
2

)

(

1− w2
)(n−3)/2

for w ∈ (−1 , 1) (48)

ḡ(x) = x (x̄)−n
(

2n

n− 2

)

[

x̄n−2 − xn−2
]

for x ∈ [0, x̄] (49)

Initial distribution after a small monetary shock.

p(w, x; 0) = h̄(w(δ))ḡ(x(δ)) = h̄(w)ḡ(x) + p̄′(w, x; 0)δ + o(δ) with

p̄′(w, x; 0) = ḡ(x)h̄′(w)w′(0) + h̄(w)ḡ′(x)x′(0)

where:

∂

∂δ
x(δ)|δ=0 = x′(0) =

√
nw and

∂

∂δ
h̄(w(δ))|δ=0 = h̄′(w)w′(0)

∂

∂δ
w(δ)|δ=0 = w′(0) =

√
n (1− w2)

x
and

∂

∂δ
ḡ(x(δ))|δ=0 = ḡ′(x)x′(0)

Proposition 16. The expressions for p̄′(x, w; 0) and the coefficients b1,k(n) for the impulse
response of output are given by:

p̄′(w, x; 0) = ḡ(x)h̄′(w)w′(0) + h̄(w)ḡ′(x)x′(0)

=
w (1− w2)

(n−3)/2

Beta
(

n−1
2
, 1
2

)

√
n

(

2n

n− 2

)

[(4− n)x̄n−2 − (4 + n)xn−2]

x̄n

and the coefficients for the impulse response b1,k(n) = b1,k[f ] b1,k[p̄
′(·, 0)/ω] 〈ϕ1,k, ϕ1,k〉 are
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given by

b1,k(n) = − Γ
(

n
2

)

Γ
(

n
2
+ 1
)

2n

(n− 2) jn
2
,k Jn

2
+1

(

jn
2
,k

)

[

(4− n)

(

21−
n
2

Γ(n
2
)
(

jn
2
,k

)2−n
2

−
Jn

2
−1

(

jn
2
,k

)

jn
2
,k

)

−(4 + n)2−1−n
2 (jn

2
,k)

n
2 Γ
(n

2

)

1F̃2

(

n

2
; 1 +

n

2
, 1 +

n

2
;−

(jn
2
,k)

2

4

)]

where 1F̃2(a1; b1, b2; z) is the regularized generalized hypergeometric function, i.e. it is defined
as 1F̃2(a1; b1, b2; z) = 1F2(a1; b1, b2; z)/ (Γ(b1)Γ(b2)) where 1F2 is the generalized hypergeomet-
ric function and jn

2
,k is the kth ordered zero of the Bessel function Jn

2
(·).

Note that, as our notation emphasizes, the coefficients bj(n) depends only on the number
of products.
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