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Noisy News in Business Cycles†

By Mario Forni, Luca Gambetti, Marco Lippi, and Luca Sala*

We investigate the role of “noise” shocks as a source of business 
cycle fluctuations. To do so we set up a simple model of imperfect 
information and derive restrictions for identifying the noise shock 
in a VAR model. The novelty of our approach is that identification is 
reached by means of dynamic rotations of the reduced-form resid-
uals. We find that noise shocks generate  hump-shaped responses of 
GDP, consumption and investment, and account for a sizable frac-
tion of their prediction error variance at business cycle horizons. 
(JEL C32, D83, E12, E23, E32, E43)

There has recently been a renewed interest in the old idea that business cycles 
could be driven by changes in the expectations about future economic condi-

tions (early references are Pigou 1927, and Keynes 1936). The literature has focused 
mainly on anticipated changes in productivity, the  so-called “news shocks” (Cochrane 
1994). The seminal paper by Beaudry and Portier (2006)— henceforth BP—finds 
that news shocks account for the bulk of fluctuations in GDP and generate the pat-
tern of comovements among macroeconomic aggregates typically observed over 
the cycle.1 Several papers have provided theoretical foundations for these results, 
by proposing models in which news shocks can drive the business cycle (see e.g., 
Jaimovich and Rebelo 2009, Den Haan and Kaltenbrunner 2009,   Schmitt-Grohé and 
Uribe 2012). Key in these models is that news shocks are assumed to be observable 
by the agents.

One stream of the literature on news shocks has departed from the assumption of 
perfect information and proposed models where agents have imperfect information 
(Sims 2003, Beaudry and Portier 2004, Lorenzoni 2009, Angeletos and La’O 2010, 
among others). In the theoretical work by Lorenzoni (2009), for instance, agents 
base their optimal decisions on a mixture of a news on aggregate productivity and 

1 Beaudry and Lucke (2009) and Dupaigne and Portier (2006) find similar results. 
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noise. Though they can eventually disentangle news from noise, their current action 
can only rely on such a noisy signal. As a consequence, agents’ expectations take 
time to completely adjust, and the final outcome depends on the size of the noise 
within the observable signal. In particular, if the signal is just noise, the economy 
returns to its initial state, whereas if the signal contains productivity news, the econ-
omy gradually reaches a new level of activity.

Coibion and Gorodnichenko (2012) provide evidence in line with models with 
informational rigidities and in contrast with rational expectations  full-information 
models. In fact, the response of agents’ forecast errors to economic shocks smoothly 
vanishes, a finding that is at odds with the full information rational expectation 
paradigm, suggesting the existence of some type of learning mechanism. Assuming 
that agents base their decisions on noisy information seems plausible, in particular 
for events—like improvements in technology—whose effects propagate slowly and 
therefore are not immediately revealed by observable economic variables. In the real 
world, agents are often uncertain about the future effects of facts that they observe. 
Assuming that they are not aware of the exact nature of such facts is a simple and 
convenient way to model this kind of “conditional” uncertainty within the rational 
expectations paradigm.

Models with noisy information have important consequences for empirical analy-
sis. In particular, standard VAR methods cannot be employed (Blanchard, L’Huillier, 
and Lorenzoni 2013—henceforth BLL). The reason is that economic variables, by 
reflecting agents’ behavior, can only convey information that is available to them. 
If agents cannot observe current structural shocks, current (and past) values of 
the economic time series cannot contain the relevant information to estimate such 
shocks. As a consequence, an econometrician will not be able to recover the struc-
tural shocks by a rotation of the VAR residuals. After all, if this were possible for the 
econometrician, it would be possible for the agents as well, contradicting the initial 
assumption.2

An equivalent formulation is that under imperfect information the structural 
shocks are  non-fundamental with respect to agents’ information set (Hansen and 
Sargent 1991, Lippi and Reichlin 1993, 1994).3

This difficulty with the application of VAR methods is perhaps the main reason 
why the  noisy-information approach has been seldom applied in this literature. Most 
empirical works about the business cycle effects of news, for instance, assume that 
news is noise-free, i.e., that the structural shocks are observable (see e.g., Cochrane 
1994; Beaudry and Portier 2006; Barsky and Sims 2011; Forni, Gambetti, and Sala 
2014). However, if the information is corrupted by noise, what is interpreted as the 
news shock is actually a mixture of the structural shock and noise.

By contrast, BLL (2013) and Barsky and Sims (2012— henceforth BS) assume 
noisy information and try to assess the role of noise (“animal spirits” in BS’ termi-
nology) in driving output fluctuations. Both papers recognize that structural VARs 

2 Interesting and general results about the econometric implications of linear rational expectation models with 
incomplete information can be found in Baxter, Graham, and Wright (2011). 

3 This kind of  non-fundamentalness is different from the one that arises when the econometrician’s information 
set is narrower than that of the agents. In the latter case, the problem can be solved in principle by enlarging the 
dataset (Forni et al. 2009, Forni and Gambetti 2014). 
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are  ill-suited and resort to direct estimation of the theoretical model. Model estima-
tion, however, requires strong a priori restrictions on the dynamics of the structural 
shocks that may, in principle, have important effects on the results. In fact, the two 
papers reach opposite conclusions: in BLL, the noise has very large effects, whereas 
in BS, “animal spirits” have essentially no effects.

In this paper we provide a nonstandard structural VAR method, which allows 
estimation of the structural shocks and their effects under the assumption of imper-
fect observability. We begin the analysis by presenting a theoretical model in which 
agents observe the shock affecting future economic fundamentals, the  long-run 
shock, with noise. The signal observed by the agents—the “noisy news”—is the sum 
of the  long-run shock and a “noise” shock. As time goes by, agents learn how much 
of the observed shock was noise and how much was  long run. In other words, future 
data perfectly reveal current structural shocks. This is the key mechanism which 
allows us to estimate the structural shocks. Indeed, while a contemporaneous linear 
combination of the VAR residuals cannot deliver the correct shock, a dynamic com-
bination involving future residuals can. A general treatment of dynamic structural 
VAR identification is found in Lippi and Reichlin (1994). An application to fiscal 
policy is shown in Mertens and Ravn (2010). Here we propose a specific identifica-
tion scheme to recover the structural shocks along with the related impulse response 
functions within a noisy information framework.4

Our identification procedure is in two steps. In the first step, we use standard 
identification restrictions to disentangle the signal observed by the agents about 
future economic fundamentals and the “surprise” shock, reflecting new information 
coming from observation of current economic fundamentals. This step is not novel 
and is conceptually identical to the problem of identifying news and “surprise” 
shocks in the observable  news-shock literature. The novelty of our approach is that 
we interpret the news shock as a noisy signal and the surprise shock as reflecting 
the realizations of past noise and  long-run shocks. In a sense, we interpret news and 
surprise shocks as reduced-form shocks. In the second step, we use our dynamic 
rotation procedure to identify the underlying structural shocks, i.e., the  long-run and 
the noise shocks, from future values of the reduced form shocks.

Using this new approach, we study the role of noise shocks as sources of business 
cycle fluctuations. We find that  long-run and noise shocks together explain a sub-
stantial fraction of the forecast error variance of GDP, consumption, and investment. 
Expectations of future changes in economic fundamentals should be considered a 
major source of business cycle fluctuations. A sizable fraction of such fluctuations 
is due to noise shocks that generate  hump-shaped responses of GDP, consumption 
and investment. The role of noise is much larger than in BS, where “animal spirits” 
have negligible effects, and qualitatively different from BLL, where it is found to 
explain a very large fraction of consumption fluctuations on impact, but a relatively 
small fraction of consumption variance at the  three-year horizon and almost nothing 
of investment fluctuations.

4 See also the companion paper Forni et al. (2014), where a similar  news-noise setting is applied to dividends 
and stock prices. 
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The remainder of the paper is organized as follows. Section I discusses the eco-
nomic model and the econometric implications; Section II presents the econometric 
model; Section III presents the empirical evidence; Section IV concludes.

I. Some Theory

In this section we present a simple model where agents decide the current level 
of consumption on the basis of expected future economic fundamentals. Economic 
fundamentals are driven by a structural shock having the features of a “news” shock, 
i.e., its effects are delayed with respect to the time at which economic agents get 
information about it. Expectations are formed on the basis of a limited information 
set, in the sense that agents do not observe the current structural shock but only a 
noisy signal, the “noisy news.” Precisely, agents observe the sum of the structural 
and the noise shock. The implication is that consumption reacts both to disturbances 
that actually affect future economic fundamentals and disturbances that do not have 
any effect.

A. A simple Model

Let us assume that the fundamental   a t    follows the exogenous relation

(1)   a t   =  a t−1   +  ε t−1   ,  

where   ε t    is a Gaussian, serially uncorrelated process affecting   a t    with a  one-period 
delay. We refer to this shock as a “ long-run” shock. At time  t  consumers observe   ε t−1    
and a noisy signal   s t    of   ε t   :

(2)   s t   =  ε t   +  v t   . 

The noise shock   v t    is a Gaussian white noise, uncorrelated with   ε t    at all leads 
and lags. The variance of the signal is just the sum of the variances of the two 
shocks,   σ  s  2  =  σ  ε  2  +  σ  v  2  . In addition, agents observe the fundamental   a t    , so that the 
consumers’ information set is given by present and past values of   a t    and   s t    , i.e., 
   t   = span( a t−k  ,  s t−k  , k ≥ 0) . Given the delayed effects of the  long-run shock, this 
information is not sufficient to distinguish the current true  long-run shock from 
noise. At time  t + 1  , however, consumers learn about the past realization of the two 
shocks since they observe   ε t   = Δ  a t+1    and therefore   v t   =  s t   −  ε t   .

Following BLL, we assume that agents set consumption   c t    on the basis of expected 
 long-run fundamentals; precisely,

(3)   c t   =    lim  
j→∞

  
 
   E(  a t+j   |   t   ). 

Realized output,   y t    , is fully  demand-determined, i.e.,   y t   =  c t   ; employment adjusts 
to clear the labor market.
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B. solution and Economic implications

Given the process for   a t    , we have  E(  a t+j   |   t   ) = E(  a t+1   |   t   )  for any  j > 1  , so 
that

(4)   c t   = E(  a t+1   |   t   ) =  a t   + E(  ε t   |   t   ). 

Since   a t−k    and   s t−k    , for  k > 0  , are uninformative about   ε t    ,  E(  ε t   |   t   )  is simply the 
projection of   ε t    on   s t    , that is

  E(  ε t   |   t   ) = γ  s t     ,

where  γ =  σ  ε  2 / σ  s  2  . Therefore   c t   =  a t   + γ(  ε t   +  v t   )  and the change in consumption 
is

(5)  Δ  c t   = Δ  a t   + γΔ(  ε t   +  v t   )

 = γ  ε t   + (1 − γ )  ε t−1   + γ  v t   − γ  v t−1   . 

Following a  long-run shock, consumption immediately jumps by  γ  ε t    and in the 
second period reaches its new long-run level   c t−1   +  ε t   . Consumption reacts also to 
the noise shock: following a positive noise shock, consumption increases by  γ  v t    on 
impact and then reverts to its initial level   c t−1    after one period. Notice that the impact 
responses are identical, since agents cannot distinguish between the two shocks in 
the current period. However, after one period, observed potential output unveils the 
nature of the shock and agents, recognizing it was noise, undo the initial increase by 
reducing consumption by  γ  v t   . While the  long-run shock has a permanent effect, the 
noise shock has only a temporary effect.

It is instructive to compare these results with the case in which agents can observe 
the  long-run shock without error. In this case, equation (4) implies   c t   =  a t   +  ε t    and

  Δ  c t   =  ε t   ,  

so that after a  long-run shock consumption jumps immediately to its new long-run 
level.5 Imperfect information has two implications. First, agents are more cautious 
in changing their consumption pattern. More precisely, for a given variance of the 
 long-run shock, the higher the variance of noise, the smaller the contemporane-
ous change in consumption (recall that  γ =  σ  ε  2 / σ  s  2   ). Second, the noise shock can 
generate cyclical fluctuations in consumption and output completely unrelated to 
economic fundamentals.

5 Notice that consumption is a random walk in both cases of complete and incomplete information. To see this, 
consider that the first order autocovariance of  Δ  c t    in equation (5) is   σ  ε  2  γ(1 − γ )  −  σ  v  2   γ   2  =  σ  ε  2  γ −  γ   2  (  σ  ε  2  +  σ  v  2  )  
=  σ  ε  2   σ  ε  2 / σ  s  2  −  σ  ε  4 / σ  s  4   σ  s  2  = 0.  
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Let us see how quantitatively important these fluctuations can be. The total vari-
ance of consumption change is   σ  ε  2  .6 The contribution of the noise component is then

    2  γ   2   σ  v  2  _____ 
 σ  ε  2 

   = 2    σ  ε  2  ___ 
 σ  s  4 

    σ  v  2  =   2  σ  ε  2   σ  v  2  ________ 
 (  σ  v  2  +  σ  ε  2  )   2 

   , 

which depends on the variance of the noise component. Let us consider the two 
limiting cases   σ  v  2  = 0  and   σ  v  2  → ∞ . In the former case, there is no noise, so that 
its contribution to total variance is obviously zero. In the latter case, the signal is 
dominated by noise, so that it is not informative at all. Interestingly, the variance 
of the noise component approaches zero also in this case. The reason is that agents 
recognize that the signal is uninformative and do not react to it. Finally, it is easily 
seen that the above expression reaches its maximum when   σ  v  2  =  σ  ε  2  . In this case, 
50 percent of the fluctuations of consumption changes are due to noise.

C. The Failure of standard structural VAR Methods

Imperfect observability of structural shocks has important econometric implica-
tions. To see this, let us rewrite the solution of the model as

(6)   
(

 
Δ a t  

  Δ c t    
 s t  

  
)

   =   
(

  
L

  
0
   γ + (1 − γ)L  γ − γL   

1
  

1
  

)
     ( 

 ε t     v t  
  )  ,

where  L  is the lag operator. To simplify things, let us further assume for the moment 
that the econometrician can observe   s t   .

First, the econometrician (just like the agents) would not be able to recover 
 long-run and noise shocks from the present and past values of   a t    and   s t   . It is easily 
seen from (6) that the polynomial matrix of the subsystem associated to  Δ  a t    and   s t    
has determinant vanishing at zero, which implies that the corresponding bivariate 
MA representation is not invertible, so that a VAR representation in the structural 
shocks does not exist.

The econometrician could also use consumption, in addition to potential output 
and   s t    , but still he/she would fail to recover the shock. The rank of the polynomial 
matrix in (6) is one for  L = 0  , which means that even this “tall” representation 
is not invertible, or, more precisely, “ non-fundamental.” In other words, the two 
shocks cannot be obtained from present and past values of the three variables.

 Non-fundamentalness is a debated issue in the structural VAR literature. Early ref-
erences are Hansen and Sargent (1991) and Lippi and Reichlin (1993, 1994); more 
recent contributions include Giannone and Reichlin (2006);  Fernández-Villaverde 
et al. (2007); Chari, Kehoe, and McGrattan (2008); Forni and Gambetti (2014); and 
Chen, Choi, and Escanciano (2017); Forni, Gambetti, and Sala (2016). Essentially, 
the problem is that standard SVAR methods assume that the structural shocks are 

6 From (5) we have  var(Δ  c t   ) = [  γ   2  +  (1 − γ )   2  ]  σ  ε  2  + 2  γ   2   σ  v  2  = 2  γ   2   σ  s  2  + (1 − 2γ )  σ  ε  2  = 2  σ  ε  4 / σ  s  2  − 2  σ  ε  4 / σ  s  2  +  
σ  ε  2  =  σ  ε  2  . 
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linear  combinations of the residuals obtained by estimating a VAR. If the structural 
MA representation of the variables included in the VAR is  non-fundamental, the 
structural shocks are not linear combinations of such residuals, so that the method 
fails.7

In most of the economic literature, the structural shocks are elements of agents’ 
information set, and  non-fundamentalness may arise if the econometrician uses less 
information than the agents. In this case,  non-fundamentalness can in principle be 
solved by enlarging the information set used by the econometrician (Forni et al. 
2009, Forni and Gambetti 2014). But in the present setting  non-fundamentalness 
stems from agents’ ignorance and cannot be solved by adding variables to the VAR. 
The economic intuition is that agents’ behavior cannot reveal information that 
agents do not have. Consumption or other variables that are the outcome of agents’ 
decisions do not add anything to the information already contained in   a t    and   s t   . More 
generally, in models assuming that agents cannot see the structural shocks, the struc-
tural representation is  non-fundamental for whatever set of observable variables. 
For, if it were, agents could infer the shocks from the variables themselves, contrary 
to the assumption.

D. Agents’ innovations and structural shocks

As discussed above, the relevant shocks cannot be found by using standard VAR 
methods. Hence, a question arises: what shocks would the econometrician recover 
by running a VAR for potential output and the signal? To answer this question we 
need to find shocks that are fundamental for  Δ  a t    and   s t   . Starting with

   ( Δ  a t     s t  
  )  =  ( L  0  

1
  

1
 )  (  ε t     v t    ) ,  

we easily get the representation

(7)   ( Δ  a t     s t  
  )  =  

(
 1  L    σ  ε  2  __ 

 σ  s  2 
    

0
  

1
  

)
  (  u t     s t    )  ,

where

(8)   (  u t     s t    )  =  
(

 L    σ  v  2  __ 
 σ  s  2 

    − L    σ  ε  2  __ 
 σ  s  2 

    
1
  

1
  

)
  (  ε t     v t    ) . 

7 An MA representation is fundamental if and only if the associated matrix is full column rank (i.e., the rank 
is equal to the number of shocks) for all  L  with modulus less than one (see Rozanov 1967, ch. 2). This condition 
is slightly different from invertibility, since invertibility requires full column rank also for  L  with unit modulus. 
Hence,  non-fundamentalness implies non invertibility, whereas the converse is not true. When the variables are 
cointegrated, for instance, the MA representation of the first differences is not invertible, but nonetheless can be 
fundamental. In such a case, non-invertibility can be easily circumvented by resorting to structural ECM or level 
VAR estimation.  Non-fundamentalness is a kind of non-invertibility that cannot be solved in this way. 
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Notice that   u t    and   s t    are jointly white noise and orthogonal with variance 
  σ  u  2  =  σ  v  2   σ  ε  2 / σ  s  2   and   σ  s  2  , respectively.8 Moreover, the determinant of the matrix in 
(7) is 1, so that the MA representation (7) is fundamental, implying that   u t    and   s t    
are innovations of the agents’ information set. The shock   u t    can be interpreted as the 
“surprise” shock, and represents the new information about past structural shocks, 
resulting from observing present and past  Δ  a t    and   s t   .

In conclusion, by running a VAR for  Δ  a t    and   s t    , the econometrician would not 
recover the structural shocks   ε t    and   v t    , but rather two shocks—surprise and sig-
nal—which are combinations of present and past values of the structural shocks. Of 
course, standard identification schemes would fail, since no linear combination of 
the two innovations at time  t  can deliver the structural shocks.

The next question is: can the true structural shocks be recovered and how? The 
answer is positive, provided that the future values of the fundamental shocks are 
used. As already observed, after one period the observation of potential output 
unveils the  long-run or noise nature of the signal. Indeed, representation (8) can be 
inverted toward the future:

(9)   (  ε t     v t    )  =  

⎛

 ⎜ 
⎝

  
 L   −1 

  
   σ  ε  2  __ 
 σ  s  2 

  
  

−  L   −1 
  

   σ  v  2  __ 
 σ  s  2 

  
 

⎞

 ⎟ 
⎠

  (  u t     s t    ) . 

The above equation shows that the structural shocks, though not recoverable as static 
linear combinations of the VAR residuals, can be obtained as dynamic linear combi-
nations, involving future values. This is the key result we will use in the econometric 
section to identify  long-run and noise shocks.

E. Agents’ “Learning”: A comparison with BLL and Bs

A crucial novelty of our model with respect to existing literature is the agents’ 
learning process. For the sake of comparison, let us recast the BLL model, with 
minor modifications, in our notation. BLL assumes that   a t    is the sum of two compo-
nents: a permanent one (which may affect   a t    on impact), driven by the shock   ε t    , and 
a temporary one, driven by the shock   η t   . More specifically,

(10)   a t   =  a t−1   +  (1 − ρL )   −1   ε t   + (1 − L )  (1 − ρL )   −1   η t   . 

The signal is the same as in our model and is given by equation (2). As in our model, 
agents can observe   a t    and the signal   s t   .

The key difference between this model and ours is the reason why observing   
a t    and   s t    does not reveal the structural shocks. In our model, agents cannot see the 

8 To see that   u t    and   v t    are jointly white noise, observe that the covariance of   u t    and   s t−1    is 
  σ  v  2   σ  ε  2 / σ  s  2  −  σ  ε  2   σ  v  2 / σ  s  2  = 0 . 
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structural shocks essentially because they have delayed effects on   a t    , a feature 
which, combined with the noise, implies non-invertibility. On the other hand, in 
BLL, non-observability is due to the fact that there is also a temporary shock; that is, 
there are three shocks and only two dynamically independent observable variables. 
Similarly, the model proposed in BS for productivity and the signal has three shocks 
and just two variables.

This has a crucial implication. In our model, as time goes by, agents can recover 
past shocks exactly. In the simple version of the model described above, they learn 
everything after one period. In a more general setting (see Section II), agents 
learn gradually, but in the long run they can see past shocks without error. By con-
trast, in both BLL and BS, agents never learn completely the  long-run or noise 
nature of past shocks. In both models, the MA equilibrium representation for the 
observable variables is rectangular, with more columns than rows. For instance, in  
BLL we have

(11)   ( Δ a t    
 s t  

  )   =   ( (1 − ρL )   −1   0  (1 − L)(1 − ρL )   −1     
1
  

1
  

0
  )     

(
  
 ε t  

   v t    
 η t  

 
)

  .

Obviously, (11) cannot be inverted, not even in the future: past shocks cannot be 
written as dynamic linear combinations of the observables.

Similarly, the implications of our model for VAR analysis are different from what 
is found in the previous literature. In the frameworks of BLL and BS, VAR methods 
fail because it is impossible to estimate the impulse response functions of three 
independent shocks—as well as the shocks themselves—with a bivariate VAR. In 
our framework instead, as we will show below, SVAR models can be employed suc-
cessfully, as long as dynamic identification is used.

II. The Econometric Model

In this section, we generalize the simple model of Section D and propose our 
dynamic identification procedure.

Dynamic structural VAR identification is discussed in detail in Lippi and Reichlin 
(1994). In their more general framework, the conditions required to reach identifi-
cation are very demanding. The econometrician should know the relevant unitary 
dynamic transformation (the  so-called “Blaschke matrix”), which is characterized 
by the roots of the determinant of the structural representation that are smaller than 
one in modulus. Economic theory can hardly provide such information.

In the present setting, however, a restriction arises quite naturally from the theory: 
the conceptual distinction between  long-run and noise shocks requires that  Δ  a t    , the 
variable representing economic fundamentals, is not affected by noise at any lag. As 
a consequence, the reaction of  Δ  a t    to past signals   s t−1    , and “true”  long-run   ε t−1    , are 
equal, up to a multiplicative constant, which is given by the  signal-to-noise variance 
ratio. This in turn implies that the “wrong” roots of the structural representation 
are revealed by the impulse response function of  Δ  a t    to the signal   s t    , which can be 
estimated.
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A. structural and Fundamental Representations

Let us consider a more general specification for potential output,

(12)  Δ  a t   = c(L )  ε t   ,  

where  c(L )  is a rational function in  L  with  c(0) = 0 . The structural representation 
becomes

(13)   ( Δ  a t     s t  
  )  =  ( c(L )  0  

1
  

1
 )  (  ε t     v t    ) .  

This representation is  non-fundamental, since the determinant of the MA matrix,  
c(L )  , vanishes by assumption for  L = 0 . This means that present and past values of 
the observed variables  Δ  a t    and   s t    contain strictly less information than present and 
past values of   ε t    and   v t   .

As we have seen above, stationarity of  Δ  a t    and   s t    entails that the two variables 
have a fundamental representation with orthogonal innovations. Such a representa-
tion can be found as follows. Let   r j    ,  j = 1, … , n  , be the roots of  c(L ) , which are 
smaller than one in modulus and

(14)  b(L) =   ∏ 
j=1

  
n
      

L −  r j   _____ 
1 −    r ̅   j   L

   ,

where     r ̅   j    is the complex conjugate of   r j   . Then let us consider the representation

(15)   ( Δ  a t     s t  
  )  =  

(
   
c(L ) ___ 
b(L )      c(L )  σ  ε  2  _____ 

 σ  s  2 
    

0
  

1
  

)
  (  u t     s t    ) ,  

where

(16)   (  u t     s t    )  =  
(

 b(L )    σ  v  2  __ 
 σ  s  2 

    − b(L )    σ  ε  2  __ 
 σ  s  2 

     
1
  

1
  

)
  (  ε t     v t    )  .

As before,   u t    and   s t    are orthogonal innovations for the agents’ information set, so 
that    t   = span(  u t−k   ,  s t−k   , k ≥ 0 ) .9

9 To see this, observe that the determinant of the matrix in (15), i.e.,  c(L)/b(L)  , vanishes only for  |L |  ≥ 1  
because of the very definition of  b(L ) . 
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The relation between the fundamental shocks and the structural shock is given by

(17)   (  ε t     v t    )  =  

⎛

 ⎜ 
⎝

  
b(F )

  
   σ  ε  2  __ 
 σ  s  2 

  
  

− b(F )
  

   σ  v  2  __ 
 σ  s  2 

  
 

⎞

 ⎟ 
⎠

  (  u t     s t    ) , 

where  F  is the forward operator, i.e.,  F =  L   −1  .10 As in the previous section, the 
structural shock depends on future fundamental innovations, with the difference that 
here the  long-run and noise shocks contained in the signal get unveiled in the long 
run, rather than after one period.

We further assume that the signal   s t    is not observed by the econometrician, but 
there is one observable variable,   z t    , which reveals the signal. In principle, such a 
variable may depend on both   s t    and   u t   . Therefore we can write the representation of  
Δ  a t    and   z t    as

(18)   ( Δ  a t     z t  
  )  =  ( 

 a 11   (L)
  

 a 12   (L)
   

 a 21   (L)
  

 a 22   (L)
 )  ( 

 u t  / σ u    
 s t  / σ s  

  )  =  
(

    
c(L )  σ u   ____ 
b(L )      c(L )  σ  ε  2  _____  σ s       

d(L )  σ u  
  

f (L)  σ s  
 
)

  ( 
 u t  / σ u    
 s t  / σ s  

  )  ,

where, following the usual econometric convention, the shocks are normalized to 
have unit variance.11

Moreover,

(19)   ( 
 u t  / σ u    
 s t  / σ s  

  )  =  
(

 
b(L )    σ v   __  σ s      

− b(L )    σ ε   __  σ s       
   σ ε   __  σ s    

  
   σ v   __  σ s    

  
)

  ( 
 ε t  / σ ε    
 v t  / σ v  

  )  

so that the structural representation is

(20)   ( Δ  a t     z t  
  )  =  

(
  

c(L)  σ ε  
  

0
     

f (L)  σ ε   + b(L) d(L)    σ ε    σ  v  2  ____ 
 σ  s  2 

  
  

f (L)  σ v   − b(L) d(L)    σ v    σ  ε  2  ____ 
 σ  s  2 

  
 
)

  ( 
 ε t  / σ ε    
 v t  / σ v  

  )  .

B. Dynamic identification

Dynamic identification of the structural shocks is done in two parts. First we 
estimate and identify the “reduced-form” representation (18). This first step is con-
ceptually identical to the estimation of a standard,  noise-free, news shock (which 
corresponds to our signal). Second, we identify (19): here is the novelty of our 

10 Observe that  1 / b(L )  = b(F ) . 
11 Observe that the above representation is not necessarily fundamental, since the determinant of the MA matrix 

depends on  d(L )  and  f (L ) . In order to have fundamentalness,   z t    has to be sufficiently informative to reveal   s t   . In the 
reminder of this section we assume fundamentalness of (18); in the empirical section we will test for this property. 
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approach. Given the estimates of (18) and (19), an estimate of representation (20) 
immediately follows.

More specifically, the steps are the following:

•	 Estimate	an	unrestricted	VAR	for		Δ  a t    and   z t    and compute the MA representation.
•	 Impose	that		 a 12   (0) = 0 . This condition implies that   s t    does not affect  Δ  a t    and 

comes from the theoretical restriction  c(0) = 0 . In the bivariate case, this is suf-
ficient to identify the two fundamental shocks   u t    and   s t    and obtain an estimate 
of all the elements of the matrix of the impulse response functions of (18).

•	 Let	us	call		  a ̂   12   (L)  the estimate of  c(L)  σ  ε  2 / σ s    (see equation (18)). An estimate   b ̂  
(L)  of  b(L)  can be obtained as follows. Compute the roots of    a ̂   12   (L)  and select 
the roots that are smaller than one in modulus (of course, one out of these roots 
will be zero by construction because of the identifying assumption  c(0) = 0  
of step (i)). Using the roots that are smaller than one in modulus, estimate the 
polynomial  b(L)  in equation (14).

•	 Let	 	  a ̂   11   (L)  be the estimate of   a 11   (L)  , i.e., our estimate of  c(L)  σ u   / b(L)  , and 
observe that  b(1) = 1 . Estimate   σ ε  / σ v    as the ratio12

      a ̂   12   (1) _____   a ̂   11   (1)   . 

•	 Using	the	property	that:		 σ  v  2 / σ  s  2  +  σ  ε  2 / σ  s  2  = 1  ,   ̂   σ ε  / σ s     and   ̂   σ v  / σ s     are obtained as  

sin (arctan ( ̂   σ ε  / σ v   ) )  and  cos (arctan ( ̂   σ ε  / σ v   ) )  , respectively.

These five steps give the estimates of all the elements of representations (18) and 
(19) and consequently of all the elements in (20).

The (normalized) structural shocks   ε t  / σ ε    and   v t  / σ v    can be estimated by inverting 
equation (19). Since the determinant of the matrix in (19)  1/b(L) = b(F )  involves 
future values of   u t    and   s t    , the structural shocks cannot be estimated consistently at 
the end of the sample. This is in line with the assumption that neither the agents nor 
the econometrician can see the current values of the structural shocks. However, in 
the middle of the sample the future is known and (17) can in principle provide reli-
able estimates of   ε t  / σ ε    and   v t  / σ v   . Such estimates can be used in combination with 
the corresponding response functions to decompose the series into the  long-run and 
noise components and assess their importance in terms of explained variance.

Let us note that the theoretical restrictions appearing in the first line of repre-
sentation (18) are only partially exploited for identification and therefore can be 
used for testing. Such restrictions entail that in the structural representation (20) the 
impulse response function of  Δ  a t    to a noise shock be identically zero, an hypothesis 
that can be easily verified by looking at the confidence bands.13

12 In practice, we compute the cumulated  long-run effects as the effects at 40 quarters. 
13 The identification restrictions  (i)–(v) impose a zero impact effect and a zero  long-run cumulated effect; but 

between lag 0 and the maximal lag the impulse response function can be significantly different from zero. 
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C. Multivariate specifications

Let us now consider a multivariate extension of the bivariate model described so 
far. Variations of this model will be used in the empirical section to investigate the 
role of noisy news in generating cyclical fluctuations.

Let   w t    be an  n − 2 -dimensional vector of additional stationary variables. In order 
to have a square system, it is convenient to assume that there are also  n − 2  addi-
tional shocks representing for instance sources of business cycle fluctuations unre-
lated to noise, like monetary or fiscal policy shocks. To be as general as possible, let 
us assume that such shocks may affect   a t   . Equation (1) becomes

(21)  Δ  a t   = c(L )  ε t   + g(L )  e t   ,  

where   e t    is an  n − 2 -dimensional white noise vector with identity variance covari-
ance matrix, orthogonal to   ε t    at all leads and lags, and  g(L )  is an  n − 2 -dimensional 
row vector of rational functions in  L . Moreover, we assume for simplicity that agents 
can observe   e t   .

Under these assumptions, the “innovation” representation can be written as

(22)   
(
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 w t  
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⎞
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⎛
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⎝
 
 u t  / σ u  

   s t  / σ s    
 e t  
  

⎞
 ⎟ 

⎠
  ,

where  p(L )  ,  q(L )  ,  h(L ) , and  m(L )  are conformable vectors and matrices of rational 
functions in  L .14

Equation (22) is not identified. The condition that the  long-run shock does not 
affect   a t    on impact, i.e.,  c(0 )  = 0  , is no longer sufficient in the multivariate setting. 
We need additional restrictions to identify   u t    and   s t   . Once   u t    and   s t    are identified, 
the  upper left  two-dimensional subsystem of (22) reduces to the bivariate case. The 
structural shocks   ε t    and   v t    and the associated impulse response functions can then 
be obtained by using the method described in the previous subsection. In particular, 
the structural shocks are obtained via equation (19), whereas the impulse response 
functions are obtained by post-multiplying the matrix appearing in (22) by

(23)   

⎛

 ⎜ 

⎝

 

b(L)    σ v   __  σ s    
  

− b(L)    σ ε   __  σ s    
  

0′
      σ ε   __  σ s         σ v   __  σ s      0′   

0

  

0

  

 I n−2  

  

⎞

 ⎟ 

⎠

   ,

where  0  denotes the  n − 2 -dimensional column vector of zeros.

14 Again, we assume fundamentalness of such representation. 
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D. identification issues

As should be clear from the above discussion, the identification problem in the 
multivariate setting reduces to identification of   u t    and   s t   . As for   u t    , we assume that 
this shock is the only one affecting   a t    on impact, i.e.,  g(0) = 0  ,  c(0) = 0 . This is 
the restriction used to identify the “surprise” shock in Barsky and Sims (2011) and 
Forni, Gambetti, and Sala (2014). Indeed, if   e t    includes sources of business-cycle 
fluctuations like monetary or fiscal policy shocks,   a t    should be largely unaffected by 
them at least contemporaneously.

As for   s t    , following Forni et al. (forthcoming), we assume a Cholesky scheme, 
where   s t    is the shock associated with   z t   . Clearly, results depend heavily on the choice 
of   z t    and the position of   z t    in the Cholesky ordering. Let us discuss these two issues 
in order. First, the choice of   z t   . Such variables should be heavily affected on impact 
by news about future economic activity. As documented by Beaudry and Portier 
(2006), stock prices are good candidates in this respect and we use them in our 
benchmark specification. The Michigan sentiment index is another interesting can-
didate (Barsky and Sims 2012) and we use it in a robustness check.

As for the ordering,   z t    should ideally be ordered before variables like consump-
tion, investment and GDP, since noisy news may in principle affect consumption 
and investment decisions on impact. On the other hand, the proxy used for   z t    may 
be affected on impact by  short-run sources of variation unrelated to technology and 
noise shocks. Stock prices, for instance, are likely affected by interest rates and 
monetary policy. If the estimated signal is corrupted by such sources of fluctuations, 
they might be spuriously interpreted as noise and the  business-cycle effects of noise 
might be overstated. Hence, we split the variables in   w t    into two vectors,   w 1t    and   
w 2t    , and impose the ordering  [ Δ  a t   ,  w 1t   ,  z t   ,  w 2t   ] . The role of   w 1t    , the federal funds 
rate in the benchmark specification, is precisely to purge the signal from  short-run 
fluctuations unrelated to noise.

The above ordering implies that (i)   w 1t    is not affected by   s t    on impact and (ii)   z t    
is not affected on impact by the shock(s) associated with   w 2t   . The plausibility of (i) 
and (ii) depends on the proxies chosen for   w 1t    and   z t   . Let us discuss them briefly with 
reference to the variables used in our benchmark specification, namely stock prices 
and the federal funds rate. Assuming that the federal funds rate follows a standard 
Taylor rule, (i) is plausible, provided that news have no contemporaneous effects on 
GDP and inflation. This condition can in principle be checked empirically, since   w 2t    
is ordered after   z t   .15 Condition (ii) implies that stock prices only react on impact to 
fundamentals, the noise and the interest rate. Indeed, stock prices are likely to react 
to risk premia, too. For this reason, in the robustness section we use an interest rate 
spread in place of, and in addition to, the federal funds rate.

Alternative identification strategies have been used in the literature to identify 
the news shock. In Forni, Gambetti, and Sala (2014),   s t    is identified as the lin-
ear  combination of the  n − 1  shocks orthogonal to   u t    having maximal effect on   
a t    at a given  long-run horizon (ten years). Barsky and Sims (2011), uses a similar 

15 We show below that GDP does not react significantly on impact to noisy news. The same result holds for 
specifications including inflation, not shown here. 
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approach, by maximizing the explained variance of   a t   . These procedures, while not 
requiring the zero restrictions (i) and (ii), rely on the estimated  long-run effects of 
all shocks, which may be inaccurate. As a robustness check, we use the method of 
Forni, Gambetti, and Sala (2014) (see Section IV).

E. simulations

In order to assess the reliability of our approach, we generate artificial data from 
a  fully fledged DSGE model. The model is the one studied in BLL (2013) and 
is a  New-Keynesian model featuring habit persistence, variable capital utilization, 
sticky prices and sticky wages.16 We perform different simulations.

simulation 1.—We assume  c(L) =  L   4   so that the process for the fundamental 
becomes  Δ  a t   =  ε t−4   . We also assume  g(L) = 0  ,  d(L) = 1 + 0.2L  ,  f (L) = 1 + 0.8L , 
and  p(L) = 1 × 0.5L , where  1  is a vector of ones of either five or four elements. 
We generate 500 observations of a vector of seven artificial series,   x t   = [ a t    z t    w  t  ′   ] ′    ,  
where   w t   =  w 2t    includes consumption (C), output (Y), investment (I), hours 
worked, and inflation, and for simplicity we ignore   w 1t   . The variable   z t    is constructed 
from equations (22) and (23) with the above specified polynomials. With the sim-
ulated series, we estimate a VAR(8) with   x t    and apply our identification scheme. In 
the first step,   u t    and   s t    are identified by imposing a standard recursive ordering. We 
repeat the procedure 1,000 times. Figure 1 plots results. The solid line is the impulse 
response of the model, the dashed line is the average across simulations and the gray 
area represents the 90 percent confidence bands of the simulation. Despite the visi-
ble downward bias the identification approach captures fairly well the true impulse 
response functions, the solid line lying always within the bands.

simulation 2.—The second simulation is identical to the previous one, but we 
use only six shocks to generate the series because we switch off the noise shock. 
The VAR(8) is estimated using six variables:   a t    ,   z t   , and   w t    which now includes con-
sumption (C), output (Y), investment (I), and hours worked. Figure 2 plots results. 
The bands for the noise shock always include the zero line, correctly capturing the 
absence of noise.

simulation 3.—To check for the robustness of our procedure to the introduc-
tion of an additional unobserved shock affecting fundamentals, we assume  Δ  a t   =  
ε t−4   +  δ t    , where   δ t    is a Gaussian iid shock. The variance of   δ t    is set to  2  σ  ε  2  . With this 
model, agents cannot fully learn the past values of   ε t    , similarly to BLL (2013) and 
BS (2011). The VAR(8) is estimated by using seven variables:   a t    ,   z t    , consumption 
(C), output (Y), investment (I), hours worked, and inflation. Figure 3 plots results. 
The inclusion of the additional shock affects mainly the  impulse response functions 
of the  long-run shock, which are now slightly overestimated. The impulse response 
functions of the noise shock are well estimated.

16 We set parameter values equal to the posterior mean in BLL (2013). In particular,   σ ε   = 1.19  ,   σ v   = 1.47 . We 
have also experimented by changing few parameters. Results are robust. 
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All in all, our procedure seems to be successful in identifying the effects of the 
structural shocks.

III. Evidence

In this section, we apply the methods described above to study the role of  long-run 
and noise shocks as sources of business cycle fluctuations. The main conclusion is 
that both shocks explain a sizable fraction of the forecast error variance of GDP, 
consumption, and investment at business cycle horizons.

A. Data

The first step in our empirical analysis is to choose two series for   a t    and   z t   . Recall 
that the former is the variable representing economic fundamentals, which is unaf-
fected by noise, while the latter is a variable revealing the signal   s t   .

We use two VAR specifications, corresponding to two different choices of   a t   . In 
the former,   a t    is the log of US potential GDP from the CBO (GDPPOT), divided by 
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Figure 1. Impulse-Response Functions, Simulation 1

Notes: Impulse response functions to  long-run (left column) and noise (right column) shocks in simulation 1. Solid 
line: point estimate. Dashed line: average across 500 simulations. Gray area: 90 percent confidence bands.
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Figure 2. Impulse-Response Functions, Simulation 2

Notes: Impulse response functions to  long-run (left column) and noise (right column) shocks in simulation 2. Solid 
line: point estimate. Dashed line: average across 500 simulations. Gray area: 90 percent confidence bands.
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Figure 3. Impulse-Response Functions, Simulation 3

Notes: Impulse response functions to  long-run (left column) and noise (right column) shocks in simulation 3. Solid 
line: point estimate. Dashed line: average across 500 simulations. Gray area: 90 percent confidence bands.
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population aged 16 years or more (civilian noninstitutional population). In the latter,   
a t    is total factor productivity, corrected for capacity utilization and cumulated to get 
level figures (TFP).17

Following Beaudry and Portier (2006), we use stock prices (the Standard and 
Poor’s index of 500 stocks)18 to represent   z t   . In a robustness exercise, we use an 
alternative variable, i.e., the expected business conditions within the next five years 
(E5Y), which is a component of the consumer confidence index from the Michigan 
University Consumer Survey, extensively discussed in BS (2011).

Next, we specify the variables in   w t   = (  w  1t  ′    w  2t  ′   ) . As for   w 1t   , we take the federal 
funds rate, in order to purge the signal from stock price variations due to interest 
rates and monetary policy. In a robustness exercise, we use as an alternative con-
trol variable the spread between a risky interest rate (BAA corporate bonds) and 
the  ten-year treasury bond.19 As for   w 2t    , since we are interested in evaluating the 
business-cycle effects of  long-run and noise shocks, we take real GDP, real con-
sumption, obtained as the sum of consumption of nondurables and services, and real 
investment, obtained as the sum of private investment and durable consumption. All 
these variables are divided by civilian noninstitutional population and taken in logs.

Finally, in order to test for fundamentalness of representation (22), we use the 
principal components from a large dataset of macroeconomic variables. Such vari-
ables, along with the corresponding transformations, are reported in the online 
Appendix. The time span of our sample is 1960:I–2010:IV.

B. VAR specification and the Fundamentalness Test

Summing up, we have two  six-variable specifications. Specification I includes 
GDPPOT, the federal funds rate (FFR), stock prices (S&P500), real GDP (GDP), 
real consumption (CONS) and real investment (INV). Specification II includes TFP, 
FFR, S&P500, GDP, CONS, and INV. To avoid potential cointegration problems we 
estimate the VARs in levels. In both cases we include four lags.

As explained in Section III, identification of   u t    and   s t    is obtained by imposing a 
standard Cholesky scheme, with the above ordering, so that   u t    is the first shock and   
s t    is the third one. The structural representation is obtained by following the proce-
dure explained in Section II. Before identifying shocks, impulse response functions 
from the VAR in levels for the non-stationary variables have been  first-differenced.

As a first step, we test for fundamentalness of representation (22) as suggested in 
Forni and Gambetti (2014). The idea underlying their method is simple: if represen-
tation (22) is fundamental, i.e., if the variables used in the VAR span the information 
set of the agents, then the estimated shocks (surprise and   s t   ) must be orthogonal to 
all available past information. The same orthogonality necessary condition holds 
a fortiori for the structural shocks, which are a linear combination of present and 
future values of   u t    and   s t   .

17 See Basu, Fernald, and Kimball (2006). 
18 This is obtained from the monthly S&P500 index provided by Datastream. We converted the series in quar-

terly figures by taking simple averages. The resulting series is taken in logs. 
19 Monthly figures are aggregated across time to get quarterly data. 
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To represent available macroeconomic information we take the principal com-
ponents of the US macroeconomic dataset reported in the online Appendix. Table 1 
reports the  p-values of the  F-test of the regression of the estimated shocks on 2 and 4 
lags of the first  j  principal components, with  j = 1,  .  .  . , 6 . The null of orthogonality 
is never rejected for both specifications.

For comparison, we report the corresponding results for the VAR including only 
TFP and S&P500 in the right panel of the table. For the bivariate specification, 
orthogonality of both the signal and the  long-run shock is rejected, indicating that 
the two series do not convey enough information to recover the structural shocks.

C. impulse Response Functions

Figures 4 and 5 depict the impulse response functions of the six variables to sur-
prise and signal shocks obtained with Specification I. Shaded areas represent confi-
dence bands at the 90 percent level (light gray) and the 68 percent level (dark grey), 
constructed using the method proposed by Kilian, 1998. As expected, the signal 
shock anticipates significantly potential GDP. Moreover, it has a positive and sig-
nificant impact effect on consumption, investment, and GDP, reaching its maximum 
at the  one-year horizon. Afterward, the effect declines, while, at the same time, the 
effect of surprise increases and becomes significant. As agents learn about the past 
 long-run and noise shocks by looking at available information, they partially correct 
their previous response to the signal.

Figure 6 reports the impulse response functions of potential GDP and stock prices 
to  long-run and noise shocks. The noise, as predicted by the model, has no effects 
on potential output at all horizons. On the contrary, the response of potential output 
to the  long-run shock increases steadily, after a zero initial effect, reaching its new 
 long-run level after about ten years. The federal funds rate reacts positively to the 
noise shock, consistently with the positive effect on GDP (see below). As for stock 
prices, both  long-run and noise shocks have a significant impact effect, but the effect 
of noise is larger, reflecting the estimate of   σ ε  / σ s   , which is 0.57 (as against 0.82 of   
σ v  / σ s   ). Hence, news and noise shocks are approximately the same size, which is 
consistent with sizable  business-cycle effects of noise.

Table 1—Fundamentalness Test 

Number of principal components

Specification I Specification II Bivariate VAR

Shock Lags 2 4 6 2 4 6 2 4 6

Surprise 2 0.84 0.84 0.77 0.99 0.94 0.96 0.64 0.77 0.66
4 0.97 0.98 0.85 0.38 0.67 0.87 0.87 0.89 0.50

Signal 2 0.81 0.29 0.37 0.74 0.40 0.41 0.53 0.05 0.08
4 0.88 0.35 0.11 0.68 0.31 0.18 0.40 0.07 0.02

Long-run 2 0.98 0.94 0.68 0.57 0.40 0.60 0.75 0.87 0.34
4 0.95 0.48 0.28 0.89 0.40 0.14 0.40 0.19 0.05

Noise 2 0.95 0.38 0.51 0.21 0.43 0.46 0.98 0.04 0.11
4 0.98 0.68 0.54 0.35 0.79 0.61 0.97 0.22 0.29

Notes: Results of the fundamentalness test for Specifications I and II and the bivariate VAR with TFP and stock 
prices only. Each entry of the table reports the  p -value of the  F -test in a regression of the shock on 2 and 4 lags of 
the first differences of the first  j  principal components,  j = 2, 4, 6 . 
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Figure 4. Impulse-Response Functions to Surprise and Signal Shocks, Specification I

Notes: Impulse response functions to surprise (left column) and signal (right column) shocks with Specification I. 
Solid line: point estimate. Light gray area: 90 percent confidence bands. Dark gray area: 68 percent confidence 
bands.

Figure 5. Impulse-Response Functions to Surprise and Signal Shocks, Specification I

Notes: Impulse response functions to surprise (left column) and signal (right column) shocks with Specification I. 
Solid line: point estimate. Light gray area: 90 percent confidence bands. Dark gray area: 68 percent confidence 
bands.



142 AMERicAN EcoNoMic JouRNAL: MAcRoEcoNoMics ocToBER 2017

Next we turn our attention to GDP, consumption, and investment (Figure 7). The 
responses of the three variables have similar shapes. In the case of the noise shock, 
the responses are  hump-shaped with a relatively small, though significant, impact 
effect; they reach a maximum after about one year, then decline approaching zero 
after about three years. On the contrary, the responses to genuine  long-run shocks 
are permanent. As predicted by the model, noise shocks spur a wave of private con-
sumption and investment which vanishes once economic agents realize that the sig-
nal was just noise.

Figures 8, 9, 10, and 11 report the impulse response functions obtained with 
Specification II, with TFP in place of GDPPOT. A noticeable result is that the 
response of TFP to the signal is negative in the  short-run (Figure 8),  upper right 
panel), despite the large, positive  short-run effect of the signal on GDP (Figure 9, 
 upper right panel), similar to the evidence in Beaudry, Nam, and Wang (2011). 
However, as expected, the signal anticipates a positive and significant growth of 
TFP, GDP, consumption, and investment in the long run.

Figure 10 shows that the noise shock has a sizable effect on TFP, though the effect 
is not statistically significant. The impact effect of noise on stock prices is now 
smaller than the one of genuine news, reflecting a different  signal-to-noise ratio: 
  σ ε  / σ s    is now 0.85 as against 0.53 of   σ v  / σ s   . Again, the two shocks are similar in size, 
even if their relative importance is reversed.

The effect of  long-run and noise shocks on GDP, consumption, and invest-
ment reported in Figure 11 are qualitatively similar to those of Specification I.  
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Figure 6. Impulse-Response Functions to Long-Run and Noise Shocks, Specification I

Notes: Impulse response functions to long-run (left column) and noise (right column) shocks with Specification 
I. Solid line: point estimate. Light gray area: 90 percent confidence bands. Dark gray area: 68 percent confidence 
bands.
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Figure 7. Impulse-Response Functions to Long-Run and Noise Shocks, Specification I

Notes: Impulse response functions to long-run (left column) and noise (right column) shocks with Specification I. 
Solid line: point estimate. Light gray area: 90 percent confidence bands. Dark gray area: 68 percent confidence 
bands.

Figure 8. Impulse-Response Functions to Surprise and Signal Shocks, Specification II

Notes: Impulse response functions to surprise (left column) and signal (right column) shocks with Specification II. 
Solid line: point estimate. Light gray area: 90 percent confidence bands. Dark gray area: 68 percent confidence 
bands.
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Figure 9. Impulse-Response Functions to Surprise and Signal Shocks, Specification II

Notes: Impulse response functions to surprise (left column) and signal (right column) shocks with Specification II. 
Solid line: point estimate. Light gray area: 90 percent confidence bands. Dark gray area: 68 percent confidence 
bands.
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Figure 10. Impulse-Response Functions to Long-Run and Noise Shocks, Specification II

Notes: Impulse response functions to long-run (left column) and noise (right column) shocks with Specification II. 
Solid line: point estimate. Light gray area: 90 percent confidence bands. Dark gray area: 68 percent confidence 
bands.
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GDP,  consumption, and investment react similarly to the  long-run and noise shocks 
in the short run, when agents do not distinguish between them, but after about 
two years the effects of noise decline gradually and vanish after about four years, 
whereas the effects of genuine news are permanent.

Changing the reference variable implicitly changes somewhat the very definition 
of  long-run and noise shocks. Here the  long-run shock is essentially a technology 
shock, whereas in Specification I its meaning is broader. In this sense, the differ-
ences between Specifications I and II may be to some extent substantive, rather than 
merely reflecting the use of different measurements for the same phenomenon.

D. Variance Decomposition

Variance decompositions for Specifications I and II are reported in Tables 2 
and 3, respectively. Let us begin with Specification I (Table 2). The signal shock 
explains a relatively small fraction of potential output volatility (about 17 percent 
at the  ten-year horizon), but a larger fraction of realized GDP, consumption, and 
investment ( 27–37 percent at the  two-year horizon). This seems consistent with the 
general idea that news, while providing an imperfect anticipation of future changes 
of economic fundamentals, are an important source of business cycle fluctuations.

Turning to the analysis of  long-run and noise shocks, business cycle fluctuations 
are partly driven by noise, which accounts for about 16 percent of the forecast error 
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Figure 11. Impulse-Response Functions to Long-Run and Noise Shocks, Specification II

Notes: Impulse response functions to long-run (left column) and noise (right column) shocks with Specification II. 
Solid line: point estimate. Light gray area: 90 percent confidence bands. Dark gray area: 68 percent confidence 
bands.
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variance of GDP and 22 percent of investment at the  one-year horizon. The effect of 
the  long-run shock at the same horizon is somewhat larger for GDP and consump-
tion and smaller for investment.

Noise and  long-run shocks together explain about  40– 45 percent of GDP fluctu-
ations at horizons ranging from 2 to 4 years. This finding and the fact that the two 
shocks generate positive  co-movements between GDP, consumption, and invest-
ment in the short and medium run, drives us to the main conclusion that noisy 
expectations of future changes in economic fundamentals, which in large part do 
not eventually materialize, should be considered a major source of business cycles.

Similar results are found with Specification II (Table 3). The surprise shock 
explains about  30–32 percent of GDP variance at business-cycle horizons. This 
number is essentially in line with Barsky and Sims (2011) and Forni, Gambetti, 
and Sala (2014), which find similar figures for an observed news shock, which 
corresponds here to the signal. The noise shock explains about  20–25 percent of 
GDP, consumption, and investment at the  two-year horizon. The  long-run shock 
explains about  15–20 percent of real variables at the same horizon. As the horizon 

Table 2—Variance Decomposition, Specification I 

Variable Horizon

Impact 1-Year 2-Years 4-Years 10-Years

Surprise

GDPPOT 100.0 93.7 84.6 67.0 42.5
FFR 0.0 2.6 4.0 3.7 4.4
S&P500 0.0 0.1 0.8 4.7 11.5
GDP 9.4 7.6 9.4 17.4 22.5
CONS 17.3 9.2 9.8 17.1 24.1
INV 0.1 0.1 0.1 0.1 4.8

Signal

GDPPOT 0.0 1.5 7.8 17.9 17.2
FFR 0.0 6.5 7.2 10.9 20.2
S&P500 99.6 94.1 91.1 72.9 45.4
GDP 7.0 36.6 37.8 30.1 25.5
CONS 9.9 23.5 27.3 27.0 25.0
INV 6.2 33.8 30.8 24.1 26.1

Long-run

GDPPOT 0.0 74.7 82.3 80.9 58.1
FFR 0.0 0.6 0.8 4.0 9.7
S&P500 32.3 30.8 32.2 33.6 34.3
GDP 2.5 25.7 31.4 35.5 41.8
CONS 3.9 21.5 26.6 35.6 44.8
INV 2.0 11.6 10.4 9.0 17.0

Noise

GDPPOT 0.0 15.4 7.5 2.4 0.4
FFR 0.0 6.9 9.6 10.6 14.7
S&P500 67.3 63.3 59.7 43.6 22.2
GDP 5.2 16.4 14.3 10.4 5.5
CONS 8.1 8.7 8.7 6.6 3.4
INV 4.2 22.3 20.5 15.8 13.5

Note: Percentage of the forecast error variance explained by the shocks. 
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increases, the  long-run shock becomes more and more important, whereas the vari-
ance explained by noise reduces.

The results on the relative role of  long-run and noise shocks differ substantially 
with what is found in previous literature. First, the role of noise is much larger 
than in BS, where “animal spirits” have negligible effects. Second, they are qual-
itatively different from what is found in BLL, where noise explains a very large 
fraction of consumption fluctuations on impact, a small fraction of consumption 
variance at the  three-year horizon, and almost nothing of investment fluctuations 
at all horizons. Such large differences call for some explanations. For the reasons 
explained in Section II, the results of BLL and BS are not obtained by estimat-
ing a structural VAR. They specify a theoretical model and estimate the parameters 
of the model. A shortcoming of such procedure is that it requires strong a priori 
restrictions on the dynamic responses of the variables to the structural shocks. For 
instance, BLL assumes that the impulse response function of  Δ  a t    to the  long-run 
shock is  1/(1 − ρL )  , whereas BS assumes  L / (1 − αL ) . Both models assume that 
there is a second shock affecting productivity. BS assumes a permanent shock with 

Table 3—Variance Decomposition, Specification I 

Variable Horizon

Impact 1-Year 2-Years 4-Years 10-Years

Surprise

TFP 100.0 78.8 70.1 61.5 46.4
FFR 0.0 6.1 9.7 10.9 19.2
S&P500 1.3 1.4 3.9 4.6 3.7
GDP 59.3 13.7 18.8 25.5 17.6
CONS 13.0 13.0 19.5 25.3 18.2
INV 22.1 7.3 13.2 19.3 16.6

Signal

TFP 0.0 6.5 9.3 7.0 21.1
FFR 0.0 6.1 9.7 10.9 19.2
S&P500 98.2 92.5 88.6 81.7 57.3
GDP 2.9 30.7 32.3 31.8 37.5
CONS 8.5 21.9 25.9 30.4 38.1
INV 4.2 34.5 34.4 32.3 41.7

Long-run

TFP 0.0 46.3 43.9 32.7 53.1
FFR 0.0 6.1 10.8 13.8 17.1
S&P500 71.5 65.7 60.1 57.8 46.1
GDP 5.0 15.4 18.6 23.6 43.8
CONS 7.0 11.5 13.3 22.5 45.2
INV 3.8 19.6 20.3 22.3 45.2

Noise

TFP 0.0 27.2 18.0 14.1 8.8
FFR 0.0 1.0 1.2 2.1 7.1
S&P500 28.0 28.2 32.2 28.0 14.3
GDP 2.0 24.3 24.0 21.7 7.8
CONS 2.7 16.1 22.0 20.4 6.7
INV 1.5 19.3 21.1 19.8 10.5

Note: Percentage of the forecast error variance explained by the shocks. 
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no dynamic at all, whereas BLL assumes a transitory shock with response function  
(1 − L )/(1 − ρL )  , the parameter  ρ  being the same as before. Clearly such restric-
tions are arbitrary to a large extent and may in principle have important effects on 
the final results. From this point of view, structural VAR methods have the advantage 
that the dynamic shape of the impulse response functions is essentially unrestricted.

E. Historical Decomposition

Figure 12 reports the  year-over-year growth rates of GDP and the  year-over-year 
growth rates of GDP due to the noise shock estimated with Specification I (top 
panel) and the  year-over-year growth rates of GDP and the  year-over-year growth 
rates of GDP due to the noise shock estimated with Specification II (bottom panel).

A few interesting results emerge. First, we see that during the boom of the late 
1990s, the noise is responsible for a large fraction of the growth rate of GDP. Second, 
the shock substantially contributes to the 2001 recession and the slow recovery of the 
following two years. The  low-pace consumption and investment growth of 2002 and 
2003, according to the picture, was largely attributable to bad signals about future 
potential output outcomes, which  ex-post turned out to be just noise. Between 2004 
and 2006, the shock again substantially contributed to the economic expansion. It 
is interesting to notice that the periods  1997–2000 and  2003–2006 were associated 
with asset price bubbles. In a companion paper, we show that noise in stock prices 
explains the information technology boom of the stock market at the end of the 1990 
and the subsequent burst (Forni et al. forthcoming).

F. Alternative Proxy for the signal

In this subsection, we change Specification I by using (I′ ), a different proxy for 
the signal, and (I′′ ), a different variable to purge stock prices from  short-run fluctu-
ations. In experiment I′, we replace stock prices with a component of the Michigan 
consumer sentiment indicator, i.e., expected business conditions within the next 
five years (E5Y), so that we have GDPPOT, FFR, E5Y, GDP, CONS, and INV. 
In experiment I′′, we replace the federal funds rate with the spread between the 
BAA Corporate Bond rate and the 10-Year Treasury Bond rate,20 so that we have 
GDPPOT, Spread, S&P500, GDP, Consumption, and Investment. Figures A.1 and 
A.2 in the online Appendix plot the impulse response to the  long-run and the noise 
shocks obtained with the two new specifications (dashed and starred lines) as well 
as the point  estimate and the confidence bands obtained in the benchmark specifica-
tion (solid lines and gray areas).

The results for the new specifications are qualitatively similar to those obtained 
in the benchmark case. For both Specifications I′ and I′′, the responses of GDP, con-
sumption, and investment to the noise shock are somewhat larger and more  persistent 

20 We have also experimented with the excess bond premium variable constructed in Gilchrist and Zakrajšek 
(2012). Unfortunately, that variable is available on a shorter sample, from 1973:I to 2010:III. In addition, we tried 
a specification including both FFR and the spread before stock prices. In both cases results, not shown here, are 
qualitatively similar to the benchmark. 
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than in the benchmark case. With Specification I′, noise shocks explain at most 
20 percent of GDP fluctuations, the maximum being at the  four-year horizon. With 
Specification I′′, the maximal explained variance is reached at the  two-year horizon: 
17 percent for GDP, 19 percent for consumption, and 29 percent for investment.

G. Alternative identification scheme

In this subsection, we take Specification II as the benchmark. We run two experi-
ments. In the former one (II′′ ) we use the interest rate spread above in place of FFR. 
In the latter one (II′′ ) we use the same variables as in the benchmark specification 
but impose different restrictions to identify the signal. Following Forni, Gambetti, 
and Sala (2014), we identify the signal by imposing that it does not affect TFP on 
impact and its effect on TFP at the  ten-year horizon is maximal.

Figures A.3 and A.4 in the online Appendix report the impulse response functions 
of  long-run and noise shocks for Specification II′ (dashed lines) and Specification  II′′ 
(starred lines). For comparison, in those figures we report the point estimates and 
the confidence bands obtained in the benchmark Specification II (solid lines and 
gray areas). The results of the three VARs are very similar. With Specification II′, the 
signal explains about 29 percent of TFP at the  ten-year horizon. The estimated value 
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for   σ v  / σ s    is as small as 0.43. Despite this, noise explains 30 percent of GDP fluctu-
ations at the  one-year horizon. With Specification II′′, the corresponding figures are 
26 percent, 0.50, and 21 percent, respectively.

H. Alternative Definition of Potential output

In this subsection, we go back to Specification I and use a different definition of 
potential output. Instead of using the CBO measure, we define potential output as 
a  one-sided (backward) moving average of log real  per capita GDP. The moving 
average we use weights equally 32 points in the past. Figures A.5 to A.6 in the online 
Appendix show impulse responses and confidence bands with Specification I (bold 
line and gray areas) and with the new definition of potential output (dashed). Results 
are qualitatively similar to the benchmark.

IV. Conclusions

In this paper, we have presented a business-cycle model where agents receive 
imperfect signals about future economic fundamentals. We have shown that in this 
model the structural MA representation of economic variables is  non-fundamental, 
so that standard structural VAR methods fail. We have argued that this is a general 
feature of models where economic agents cannot see the structural shocks.

As time goes by, both the agents and the econometrician learn about past struc-
tural shocks. A distinguishing feature of our model is that the structural shocks can 
be recovered exactly from future information. This is because, unlike existing mod-
els with imperfect information, the number of structural shocks is equal to the num-
ber of independent sources of informations observed by the agents. We have shown 
that in this case structural VARs can still be successfully used to estimate the struc-
tural shocks and the related impulse response functions, provided that identification 
is generalized to include dynamic transformations of VAR residuals.

In the empirical section, we have estimated a VAR and imposed a dynamic scheme 
to identify  long-run and noise shocks and the related impulse response functions. 
We have found that noise and  long-run shocks together explain a large fraction of 
the fluctuations of GDP, consumption, and investment at business-cycle horizons. A 
good deal of such fluctuations are due to noise shocks that generate  hump-shaped 
responses of GDP, consumption, and investment. The role of noise shocks is much 
larger than in BS, where “animal spirits” have negligible effects, and qualitatively 
different from BLL, where it explains a very large fraction of consumption fluc-
tuations on impact, but a relatively small fraction of consumption variance at the 
 three-year horizon, and almost nothing of investment fluctuations.
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