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1 Introduction

The study of household and firm heterogeneity plays a crucial role in understanding macroeconomic

fluctuations. Extensive research has recently focused on household heterogeneity and its implica-

tions for aggregate fluctuations within both fully structural and semi-structural frameworks (Aiya-

gari 1994; Kaplan et al. 2018; Bayer et al. 2019; Bilbiie et al. 2023; Chang et al. 2022). Analogously,

heterogeneous firm models often suggest that firm heterogeneity offers additional nuanced insights

for understanding macroeconomic fluctuations (Winberry 2018; Koby et al. 2020; Winberry 2021;

Ottonello et al. 2020a). In this paper, we propose a semi-structural model based on a Functional

Augmented Vector Autoregression (FunVAR) framework to model the dynamic interaction between

the multidimensional distributions of firm-level characteristics and the macroeconomic aggregates.

Our approach builds on recent advancements in the estimation of functional VARs, where macroe-

conomic aggregates evolve jointly with the distribution functions of micro-level variables (Chang

et al. 2021; Huber et al. 2024; Bjørnland et al. 2023; Chang et al. 2025). Distinct from prior

contributions, our methodology explicitly tackles the complexity of modeling a multidimensional

distribution of the micro-level observables. We do so by leveraging dimensionality reduction tech-

niques for tensor data objects to non-parametrically approximate the joint distribution of firm-level

characteristics. These techniques make it easier to handle complex, high-dimensional dependencies

compared to splines, Bernstein polynomials, and other basis function approximations. They also

offer better scalability in multidimensional environments, where such basis functions can become

computationally intensive and impractical.

We emphasize the necessity of modeling joint distributions of micro-level observables, not only

for validating macroeconomic theories and testing predictions derived from heterogeneous agent

models, but also for more broadly identifying and evaluating macroeconomic shocks and their dis-

tributional effects. First, modeling the joint distribution of micro-level characteristics, rather than

marginal distributions, is crucial for qualitative assessing the distributional effects of macroeconomic

shocks on the micro-level distributions. Imagine, for example, having two structural heterogeneous

firm models that differ fundamentally in terms of how firm’s reallocate labor and capital after the

realization of a shock. In one structural model, after the aggregate shock, some firms with inter-

mediate labor and capital levels expand both labor and capital while other similar firms reduce

both inputs. In the other structural model, some firms with intermediate labor and capital increase

capital while reducing labor, while others do the opposite. Importantly, the same changes in the
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marginal distributions are compatible with both structural models. Figure 1, upper panel, shows

(in blue) the changes in mass of the marginal distribution functions after the realization of the

shock, relative to the steady-state value, alongside the steady-state distribution itself (in red).

Figure 1: Marginal and joint functional IRF of labor and capital

Notes: The figure shows the functional IRFs of the marginal labor and capital distributions to a shock (upper panel).

The lower panel reports the contours from two different bivariate functional IRFs, both equally compatible with the

changes in the marginal distributions in the upper panel. The red dashed lines in the lower panel represent the steady

state mean values.

After the shock, the mass of firms both with low and high capital endowment increases, as does

the mass of firms with low and high laborendowment. However, the marginals alone do not indicate

how capital and labor are adjusting relative to each other. In the lower panel, the figure shows the

two contour plots of the change in the mass of the bivariate density of labor and capital with respect

to the bivariate steady-state distribution implied by the two structural models. In the scenario on

the left, some firms with intermediate levels of capital and labor expand both inputs while others
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reduce both. In the scenario on the right, some firms specialize by increasing capital while reducing

labor, while others specialize by increasing labor and reducing capital. This simple example shows

that, while challenging, modeling the joint distribution rather than just the marginal distributions

of the observed micro variables is essential for qualitatively evaluating the effects of macroeconomic

shocks on the micro-level distributions and understanding whether the data favor a certain scenario,

supported for example by a specific structural model, over another. In the empirical analysis, we

use the FunVAR to evaluate the effects and propagation of aggregate TFP shocks and monetary

policy shocks both on macroeconomic aggregates and on the joint distribution of firms-level labor

and capital .

Moreover, modeling the multidimensional joint distribution of micro-level observables can also

be instrumental for identifying macroeconomic shocks—especially when these shocks are naturally

defined as exogenous shifts in specific features of this joint distribution. A prominent example are

cross-sectional uncertainty shocks, which can be interpreted as an exogenous shift in the cross-

sectional dispersion of firm-level productivity (Bloom 2009; Christiano et al. 2014; Arellano et

al. 2019; Dew-Becker et al. 2023). In observable terms, these shocks manifest as exogenous changes

in the cross-sectional dispersion of firms’ output, conditional on their capital and labor inputs. Such

shocks, sometimes referred to as risk shocks, have been shown to play a significant role in driving

business cycle fluctuations. To identify and quantify the macroeconomic effects of these cross-

sectional uncertainty shocks, we therefore adopt a Functional VAR framework that links the joint

distribution of firms’ output, capital, and labor with the macroeconomic aggregates. Consistently

with the theoretical literature, we exploit this framework to identify cross-sectional uncertainty

shocks as distributional shocks which maximize the variation in the dispersion of firms’ output

conditional on firms’ capital and labor.

Our econometric approach leverages dimensionality reduction techniques for tensor data objects

to non-parametrically approximate the multidimensional distribution of firm-level characteristics.

Specifically, in the paper we discuss three alternative approaches. First, we consider applying prin-

cipal component analysis (PCA) to the unfolded tensor—a process known as flattening or unfolding

in the context of tensor analysis (Kolda et al. 2009). Next, we examine multilinear principal com-

ponent analysis (Tucker 1966) and CP - canonical decomposition/parallel factor decomposition -

(Carroll et al. 1970; Harshman 1970). Unlike PCA on unfolded data, both multilinear PCA and

CP decomposition preserve the tensor’s multi-dimensional structure, yielding more parsimonious

representations, though being more sensitive to misspecification. All these methods have been
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widely applied in feature extraction and pattern recognition tasks, particularly in contexts such

as 2-D/3-D images and video sequences, where data are naturally represented as tensors. We

show that they can also be successfully used to non-parametrically approximate an unconstrained

transformation of the multidimensional distribution function—specifically, the joint distribution of

firm-level characteristics in our application.

In our empirical analysis, we focus on firm heterogeneity, an aspect that is typically addressed

within fully structural models in the literature. These models are often calibrated or estimated

using only macroeconomic data.1 In contrast, semi-structural models—commonly employed to

assess the impact of macroeconomic shocks on aggregate fluctuations—tend to neglect firm-level

heterogeneity (see Ramey (2016) for a general review).2 We employ the Compustat database,

exploiting both the Quarterly and the Annual datasets to recover the cross sectional distribution

of firm-level production, capital and labor for the US companies from 1984-Q4 to 2019-Q4.

In the first part of our empirical analysis, we use an internal instrument identification strategy

to evaluate the effects of aggregate TFP shocks and monetary policy shocks on both macroeconomic

aggregates and the joint distribution of firm-level labor and capital, through the lens of the FunVAR

model. We find that TFP shock have a persistent effect on the joint labor-capital distribution, with

the effects peaking between one and two years after the shock. TFP shocks lead to a simultaneous

increase of both capital and labor above their steady state level and an increase in the dispersion

of the two inputs across the pool of firms. The effects of monetary policy shocks are found to be

less persistent and vanish within one year. A contractionary monetary-policy shock reduces, on

average, both labor and capital inputs across firms, but weakens their co-movement: the cross-

sectional correlation between labor and capital falls in the short run and gradually recovers as the

two factors realign.

In the second part of our empirical contribution, we use the funVAR model for a “micro-to-

macro” application. We identify shocks to the dispersion of cross-sectional firm’s productivity and

evaluate their effects on aggregate macroeconomic fluctuations. We find that cross sectional un-

certainty shocks are associated with declines in investment, output, employment and consumption,

consistent with theoretical predictions.

The paper is structured as follows. Section 2 introduces the FunVAR model. Section 3 discusses

1. An exception is Liu et al. (2023), who develop a method for estimating heterogeneous agent models using both
micro and macro data, though they apply it solely to simulated firm-level data.

2. An exception is Lenza et al. (2024), that recently study the role of heterogeneity in the revenues of individual
firms for the transmission of a business cycle shock in the euro area using the framework of Chang et al. (2021).
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estimation and inference. Section 4 tests the FunVAR using simulated data from an heterogeneous

agents model. Sections 5 and 6 study the distributional effects of, respectively, TFP and monetary

shocks in the US. Section 7 studies the effects of cross-sectional uncertainty shocks. Section 8

summarizes and concludes.

2 Model

We assume that we observe a vector of macroeconomic variables yt and repeated cross sections of

firms level characteristics xit for t = 1, . . . , T periods and i = 1, . . . , N cross
t firms. We also assume

that the cross-sectional observations are drawn from a time-varying multivariate distribution with

density ft(x). To model the dynamic interaction between the distribution function of firms-level

characteristics and the aggregate macroeconomic time series, we consider the following function

augmented VAR model

yt = cy +

p∑
s=1

Bl,yyyt−s +

p∑
s=1

∫
Bs,yl(x)lt−s(x)dx+ uy,t , (1)

lt(x) = cl(x) +

p∑
s=1

Bs,ly(x)yt−s +
P∑

s=1

∫
Bll(x,x

′)lt−s(x
′)dx′ + ul,t(x) . (2)

The macroeconomic aggregates are stored in the ny × 1 column vector yt while lt(x) is defined to

be the Centered-Log Ratio (CLR) transform of the multivariate density function of the vector of

firms-level characteristics. For example, assuming that in each period we observe firms’ specific

labor and capital endowments, we have x = [x1, x2]
′ where x1 stands for the labor input while

x2 for the capital input. The function lt(x)
obs contains the information about the distribution

of the firm-level capital and labor at each time t. In particular, the CLR transformation of the

distribution function is given by

lt(x) := CLR(ft(x1, x2)) = log(ft(x1, x2))−
1

|Ω|

∫
Ω
log(ft(x1, x2)) dx1dx2 . (3)

This transformation greatly simplifies the econometric analysis of the time variation of the multi-

variate distribution function as it maps a density function, that needs both to integrate to one and

to obey non-negativity constraints, to an unconstrained real-valued space.3 We assume that the

3. The CLR transformation, traditionally used in the context of compositional data, has been used for modelling
distribution functions by Hron et al. (2016). For an extensive discussion on the use of the CLR transformation in the
context of distribution functions we refer to Petersen et al. (2022).
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lt(x) that we can observe, or estimate on a grid, is a noisy realization of the CLR transformation

of the true multivariate density function, namely

lt(x)
obs = lt(x) + εt, (4)

where εt is a noise with E[εt] = 0 and E[ε2t ] = σ2 and lt(x) is the true CLR transformation of the

distribution function evaluated at the grid points. For example, in the bivariate labor and capital

example we can denote X1 = {x1,1, x1,2, . . . , x1,N1} and X2 = {x2,1, x2,2, . . . , x2,N2} the sets of grid

points for labor and capital, respectively, and define x ∈ X1×X2, the Cartesian product of all pairs

(x1, x2). We can then estimate ft(x1, x2) from available data obtaining noisy observations of the

true CLR transformation of the distribution function on Ngrid = N1N2 grid points, where the noise

is due to the density estimation error. We assume that the true centered log-ratio transformation

of the multivariate density function admits the following finite basis expansion

lt(x1, x2) =

K∑
i=1

βi,thi(x1, x2) , (5)

which in a more general multidimensional setting can be written as

lt(x) =
K∑
i=1

βi,thi(x) . (6)

This expansion let us to rewrite the functional VAR model as a factor augmented VAR model for

the aggregate macroeconomic variables yt and the factors βt, that is
4

yt

βt

 = Φ0 +Φ1

yt−1

βt−1

+ . . .+Φp

yt−p

βt−p

+

uy,t

ũl,t

 . (7)

In this factor augmented VAR model, the dynamic behavior of the factors βt is governing the time

variation of firm-level characteristics over time. Macroeconomic shocks, such as aggregate TFP

shocks, are driving the joint dynamics of the cross-sectional distribution of firm level characteristics

and the macroeconomic aggregates through the vector [u′
y,tũ

′
l,t], that similarly to the standard

Structural VAR framework, can be interpreted as linear combinations of the structural shocks.

4. In the appendix A.1 we report the steps, which directly follow Chang et al. (2021), to derive the factor augmented
representation of the functional VAR.
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3 Estimation and inference

The CLR transformation maps the multivariate density function ft(x) to the space L2 of square-

integrable real measurable functions, where statistical methods for unconstrained data can be

applied. For any t we compute the CLR transformation as follows:

l(x)obs = CLR(f̂(x)) , (8)

where f̂(.) is a kernel density estimate of the distribution function on the set of grid points Ngrid.

For example, in the bivariate labor and capital example, it is obtained as

f̂(x1, x2) =
1

N1N2h1h2

N1∑
i=1

N2∑
j=1

K

(
x1 − x1,i

h1
,
x2 − x2,j

h2

)
. (9)

Considering all the points on the grid, our observation equation becomes

lobst = Hβt + εt , (10)

where lobst is the Ngrid×1 vector of observed values for the CLR transformation of the multidimen-

sional distribution function, H is the Ngrid ×K matrix of loadings, while βt is the K × 1 vector of

scores and εt is the vector of noises.

To estimate the model, two alternative two-step approaches can be considered. In the first,

one estimates the loadings H, and then directly substitutes them into the Factor-Augmented VAR

model. In the second approach, following Doz et al. (2011), the loadings H are first estimated

for the basis expansion approximation, and Bayesian posterior inference is then performed on

the parameters of the VAR model (7)—namely, (Φ,Σ)—and the latent factors β1:T . The former

approach neglects estimation errors in the scores, which can be justified when the cross-sectional

dimension is large. The latter takes it into account and can result in more efficient estimates, as it

considers dynamic properties in the factor extraction step.

In the next sections, we describe three approaches for estimating the loadings in H and the

scores β1:T , under a different set of assumptions concerning the approximation of the true CLR

transformed multidimensional distribution function in (6). We then detail the estimation of the

factor augmented VAR model approximation of the FunVAR model.
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3.1 Unfolding and approximation by principal component analysis

One approach for estimating the loadings H needed for the approximation of the multidimensional

distribution function consists in vectorizing the matrix of observable Lt = CLR(F̂t), where F̂t is

the matrix containing the value of f̂(x1, x2) when evaluated on the chosen grid, and then performing

principal component analysis on the T vectors lobst , each of dimension Ngrid × 1. This practice is

known as flattening or unfolding in the context of tensor analysis (Kolda et al. 2009). In particular,

going back to the labor and capital example, we can define the tensor object L ∈ RN1×N2×T ,

which is storing the values of the CLR transformation of the multivariate density function on the

finite grid for labor and capital, for all the time periods in the sample. First, we unfold the tensor

obtaining the N1N2 × T matrix L̃ = [lobs1 , ..., lobsT ]. Then, we perform principal component analysis

on L̃ since this matrix is stacking on its columns the N1N2 dimensional column vectors lobst for

t = 1, . . . , T . Doing so we aim at estimating the N1N2 × K loading matrix H minimizing the

reconstructing error, that is:

min
H,βt

1

T

T∑
t=1

∥vec(Lt)−Hβt∥2 . (11)

To estimate H we apply the singular value decomposition (SVD) to the unfolded matrix L̃, that

is:

L̃ = USV T ,

where U and V are orthogonal matrices, and S is a diagonal matrix containing the singular values.

More specifically, we select K columns from V , which represent the eigenbasis associated with the

K largest eigenvalues. Note that, in this approach, PCA on the flattened data identifies the top

K modes of variation without distinguishing between the individual dimensions. Consequently, it

treats all dimensions as a single combined dimension, ignoring the multi-dimensional structure and

the interactions specific to each dimension. The approach can be naturally extended to the case

in which we have more than two dimensions, for example when d is the number of micro-level

variables, we unfold the d+1 dimensional tensor L ∈ RN1×N2×...×Nd×T into a (
∏d

i=1Ni)×T matrix

and then perform principal component analysis for identifying the top K modes of variation. Note

also that, in general, this approach requires the estimation of Ngrid ×K loadings in the H matrix,

which in small samples can be challenging. In the next sections we consider two approaches for

reducing the number of parameters to be estimated, assuming specific basis expansions for the CLR

transformation of the multivariate density function.
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3.2 Approximation by multilinear principal component analysis

One approach that considerably reduces the number of loadings to be estimated and explicitly

leverages the multi-dimensional structure of the data, applying dimensionality reduction to each

mode separately, is multilinear principal component analysis. This methodology aligns with the

Tucker decomposition framework (Tucker 1966), which allows for the decomposition of a tensor

into mode-specific factors and a core tensor. Specifically, going back to the example on the approx-

imation of the bivariate labor and capital distribution, we assume that the true centered log ratio

transformation of the density function can be expanded as

lt(x1, x2) =

K1∑
i=1

K2∑
j=1

βij,thi(x1)hj(x2) (12)

Note that this expansion is a particular case of the more general basis expansion in (6). The

representation is bilinear, meaning it is expressed as a product of components that vary across two

separate dimensions, that is labor x1 and capital x2. This structure assumes that the function lies

in a lower-dimensional subspace (rank K1 ×K2) of the full space spanned by the basis functions.

In practice this implies a dimensionality reduction, as it approximates the full function by focusing

on the most important modes of variation in the two separate dimensions (controlled by K1 and

K2). The expansion can be written using the Kronecker product as

lt(x1, x2) = (h(x2)⊗ h(x1))
′βt . (13)

where h(x1)⊗h(x2) is of dimension K × 1 where now K = K1K2, while βt is of dimension K × 1:

h(x1) =


h1(x1)

h2(x1)
...

hK1(x1)

 , h(x2) =


h1(x2)

h2(x2)
...

hK2(x2)

 , βt =



β11,t

β21,t
...

βK11,t

β12,t
...

βK1K2,t


.
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Therefore, in terms of the observable CLR, (4) and (13), translate in the following bilinear form

Lt = H1BtH
′
2 +Et , (14)

where Lt is N1 ×N2 , H1 and H2 are the basis functions evaluated on the grid of values for labor

x1 and capital x2, respectively of dimension N1 ×K1 and N2 ×K2. Bt is the K1 ×K2 matrix of

factors at time t while Et is the N1×N2 matrix of noises. Vectorizing equation (14) and exploiting

the properties of the Kronecker product we get

lobst = (H2 ⊗H1)βt + εt , (15)

where lobst is the Ngrid×1 vector of observable with Ngrid = N1N2, βt = vec(Bt) and εt = vec(Et).

Note that the number of loadings is now equal to N1K1 + N2K2, while in the previous approach

based on principal component analysis on the vectorized data we had N1N2×K loadings. We apply

bilinear principal component analysis to estimate the loadings in H = (H2 ⊗H1). Estimation by

bilinear principal component (see Ye (2004)) seeks to minimize:

min
H1,H2,{Bt}

1

T

T∑
t=1

∥∥Lt −H1BtH
′
2

∥∥2 . (16)

Theorem 1 in Hung et al. (2012) let us re-frame the problem in terms of the population expected

Frobenius norm E{||L−H1BH ′
2||2}. In particular, the minimizers H1 ∈ OK1,K̃1

and H2 ∈ OK2,K̃2

will be equal to the maximizers of the following problem:

max
H1,H2

E{||H ′
1LH2||2} . (17)

We use an iterative approach to estimate H1 and H2. Starting with initial random matrices H
(0)
1 ,

H
(0)
2 we iterate the following steps:

1. For fixed H
(k)
2 update (H

(k+1)
1 ) by maximizing

H
(k+1)
1 = argmaxH1

T−1
T∑
t=1

∥∥∥H1LtH
′(k)
2

∥∥∥2 . (18)
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2. For fixed H
(k+1)
1 update (H

(k+1)
2 ) by maximizing

H
(k+1)
2 = argmaxH2

T−1
T∑
t=1

∥∥∥H(k+1)
1 LtH

′
2

∥∥∥2 . (19)

Both maximization problems are standard eigenvalue problems, which can be formulated in terms

of SVDs. As the algorithm may find only a local maximum, multiple random initial values are

considered to ensure that the global maximum is found. Iterations stop when the change in the

objective function is found to be lower than a predefined small ϵ, indicating convergence. Hung et

al. (2012) develop the asymptotic theory for this type of order-two multilinear principal component

analysis, addressing both asymptotic efficiency and the distributions of the principal components

and associated projections. Their work provides comprehensive details on convergence rates and

efficiency, which we refer to for further details.5 Because principal component analysis on unfolded

data requires the estimation of many parameters, multilinear principal component analysis is ex-

pected to outperform conventional principal component analysis, especially when the sample size

is small to moderate. However, principal component analysis in unfolded data may provide better

approximations when these interactions are weak or noisy, or the basis expansion assumed in the

Tucker decomposition is too restrictive.

In the multilinear principal component analysis, it is also natural to handle more than two

dimensions. For example, in the d dimensional case the basis expansion of the true CLR transfor-

mation of the distribution function just becomes

lt(x1, x2, . . . , xd) = (h(xd)⊗ · · · ⊗ h(x2)⊗ h(x1))
′βt , (20)

where (h(xd) ⊗ · · · ⊗ h(x2) ⊗ h(x1)) is of dimension
∏d

i=1Ki × 1. In terms of the observables we

have

Lt = Bt ×1 H1 ×2 H2 ×3 H3 · · · ×d Hd + Et , (21)

where the notation ×n refers to the mode-n product of a tensor and a matrix and Bt is the core

tensor of the Tucker decomposition. The iterative procedure described above is then just extended

to estimate all the matrices with the loadingsH1, . . . ,Hd, each of dimensionNi×Ki for i = 1, . . . , d.

5. Additionally, they propose a method for selecting the dimensionality parameters K1 and K2 based on a test
concerning the explained proportion of total variance. This test determines whether the variance explained by the
selected dimensions exceeds a predefined threshold, to which we also refer for guidance on dimensionality selection.
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3.2.1 CP decomposition

The multilinear decomposition is particularly well-suited for datasets with interactions across mul-

tiple modes, since it permits to perform dimensionality reduction in a flexible manner. An alter-

native to the multilinear decomposition is the canonical decomposition (CANDECOMP) (Carroll

et al. 1970) or parallel factors (PARAFAC)(Harshman 1970), henceforth CP decomposition. In

this decomposition, the rank is shared across all modes, which means that the same number of

components is used for each dimension of the tensor. In particular, going back to the bivariate

labor and capital example, it is assumed that:

l(x1, x2) =
K∑
k=1

βt,kh
(1)
k (x1)h

(2)
k (x2) . (22)

Note that in this case the number of loadings to be estimated becomes K(N1 +N2). The loadings

can be estimated by Alternating Least Squares (ALS) (Carroll et al. 1970; Harshman 1970). Babii

et al. (2024) have recently shown how to estimate the loadings of the CP decomposition by iterative

principal components on the unfolded tensor along each of its dimensions. They label this estimator

Tensor-PCA and derive its asymptotic properties. The CP decomposition framework also naturally

extends to more than two dimensional settings, developing the expansion:

l(x) =

K∑
k=1

βt,k

d∏
i=1

h
(i)
k (xi) . (23)

In terms of the observables we have:

Lt =
K∑
k=1

βt,k

d⊗
i=1

h
(i)
k + Et, (24)

where
⊗d

i=1 h
(i)
k denotes the outer product of vectors h

(i)
k across each dimension i = 1, 2, . . . , d.

In general, the CP decomposition is less flexible when different modes of the data exhibit varying

complexity or correlation structures. In contrast, the multilinear decomposition allows for different

ranks in each mode, enabling more precise control over dimensionality reduction in each dimension.

In the empirical application, we rely on cross-validation in order to compare the basis function

approximation of the multivariate density function with the three different approaches.
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3.3 Factor augmented VAR

Once having obtained estimates for the loadings H and the scores β1:T , one straightforward ap-

proach is to plug these estimates directly into the Factor-augmented VAR model. An alternative

strategy, following Doz et al. (2011), is to condition on the estimated loadings and jointly estimate

the scores along with the parameters of the Factor-augmented VAR model. Besides accounting

for the uncertainty associated with the estimation of the scores, this approach also accommodates

missing densities and mixed-frequency data, as discussed in the Appendix, Section A.2. Here we

provide further details of this second approach. Conditional on the estimate of the loadings H in

the first step, obtained through one of the three alternative approaches proposed above, we perform

Bayesian inference on the parameters of the factor augmented VAR model:

wt = Φxt + ut , ut ∼ N (0,Σ) , (25)

lobst = Hβt + εt , εt ∼ N (0, INgridσ2) , (26)

where wt = [yt,β
′
t]
′ and xt = [1,w′

t−1, . . . ,w
′
t−p]

′. We cast the model in state space form and treat

β1:T as latent stochastic states. We need to specify a prior distribution for (Φ,Σ) and for the noise

variance σ2. A common approach is to use the standard Normal-Inverse Wishart conjugate prior

for (Φ,Σ), which is computationally attractive in large-dimensional settings (Carriero et al. 2009;

Bańbura et al. 2010). However, this imposes symmetric shrinkage across all equations in the VAR,

which can be restrictive. To address this issue, we utilize the asymmetric conjugate prior proposed

by Chan (2022), which permits to estimate the VAR parameters in high-dimensional settings while

maintaining computational feasibility and enabling asymmetric shrinkage across equations. For σ2,

instead, we specify a standard independent Inverse Gamma prior. We combine these prior distri-

butions with the likelihood implied by (26) and (25), obtaining the following posterior distribution

for (β1:T , σ
2,Φ,Σ),

p(β1:T , σ
2,Φ,Σ|y1:T , l1:T ) ∝ p(y1:T ,β1:T |Φ,Σ)p(l1:T |β1:T , σ

2)p(Φ,Σ)p(σ2) . (27)

In order to perform inference based on (27), we device a Gibbs sampler that iteratively draws from

the following conditional posterior distributions

1. Draw from p(σ2|Σ,Φ,β1:T ,y1:T , l1:T ).
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2. Draw from p(Σ|σ2,Φ,β1:T ,y1:T , l1:T ).

3. Draw from p(Φ0,Φ1, . . . ,Φp|Σ, σ2,β1:T ,y1:T , l1:T ).

4. Draw from p(β1:T |Φ0,Φ1, . . . ,Φp|Σ, σ2,Φ,y1:T , l1:T ).

Step 1 to 3 of the Gibbs Sampler are standard. In order to draw from the conditional distribution

of the latent states in step 4 of the Gibbs Sampler, we exploit the linearity of the system, and

sample the vector of the latent states jointly in a single step from t = 1, . . . , T . This approach

operationally borrows from Beyeler et al. (2018) and Chan et al. (2023). More precisely, we define:

w = Soy + Sb , (28)

where w = ([y′
1,β

′
1], . . . ([y

′
T ,β

′
T ])

′ = (w′
1, . . . ,w

′
T )

′ is a T (ny + K) × 1 vector that stores the

macro aggregates together with the latent factors from the cross sectional distribution, while y =

(y′
1, . . . ,y

′
T )

′ and b = (β′
1, . . . ,β

′
T )

′ respectively store the macroeconomic aggregates and the latent

states. The selection matrices So and S are given by So = IT ⊗ Soo and S = IT ⊗ Sff with

Soo = [Iny ;0K×ny ] and Sff = [0ny×K ; IK ]. Defining

cΦ =



Φ0 +
∑p

j=1Φjw1−j

Φ0 +
∑p

j=2Φjw2−j

...

Φ0 +Φpw0

Φ0

...

Φ0


, DΦ =



I 0 · · · 0 0 0 0

−Φ1 I 0 · · · 0 0 0

−Φ2 −Φ1 I · · · 0 0 0
...

...
. . .

. . .
... 0 0

−Φp · · · −Φ2 −Φ1 I 0 0

0
. . .

. . .
. . . −Φ1 I 0

0 · · · −Φp . . . −Φ2 −Φ1 I


, (29)

and the products Gy = DΦSo and G = DΦS, we can rewrite the factor augmented VAR as:

Goy +Gb = cΦ + u , u ∼ N (0, IT ⊗Σ) , (30)

and the observation equation in terms of β as follows:

l = Mb+ ϵ , ϵ ∼ N (0, σ2ITNgrid) , (31)

where l = vec([l1, . . . , lT ]) is N
gridT × 1 vector of observable values of the CLR transformation of
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the multidimensional distribution function on the grid points, while M = IT ⊗ H is the matrix

containing the loadings for the basis functions approximation of all cross-sectional distributions for

t = 1, . . . , T . Equations (30) and (31) imply that we can sample the latent states jointly from the

conditional posterior distribution of b given by

p(b|.) ∼ N
(
K̄−1

(
1

σ2
M ′l+Kµ

)
, K̄−1

)
, (32)

where

K̄ =
1

σ2
M ′M +G′(IT ⊗Σ)−1G ,

with µ = K−1G′(IT ⊗ Σ)(cΦ − Goy) and K = G′(IT ⊗ Σ)−1G. Note that the computational

intensity of this step does not depend on the number of grid points on which the CLR transformation

of the distribution function is evaluated Ngrid, since the product matrices M ′M and M ′l are

respectively of dimension TK × TK and TK × 1 and are a function of H which is computed

outside of the Gibbs Sampler. Computational complexity hinges instead on K, the number of

basis used for the expansion of the CLR transformation of the distribution function. When the

combination TK is large, the latent scores can alternatively be drawn exploiting the standard

Kalman filter and smoother step à la Carter et al. (1994).

4 Simulation from an heterogeneous firm model

In this section we assess the finite sample performance of the FunVAR model to recover the im-

pulse response functions of the macroeconomic aggregates and the cross-sectional distributions to

macroeconomic shocks generated by a fully structural heterogeneous firms model. We consider

the version of the standard heterogeneous firm model of Khan et al. (2008) extended in Winberry

(2018). Since the model by Winberry (2018), once solved and approximated around the steady

state, implies VAR dynamics in terms of the moments of the bivariate log-labor and log-capital

distribution, our FunVAR model is inherently misspecified. Aware of this misspecification, we use

this simulation study to assess whether and how well the FunVAR model can qualitatively replicate

the effects of macroeconomic shocks on both the cross-sectional distributions and macroeconomic

aggregates of the heterogeneous firm model.

In Winberry’s model, firms are subject to both idiosyncratic and aggregate productivity shocks.

Firms are subject to heterogeneous adjustments costs. These costs play a critical role in the decision-
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making process across different firms regarding both production and input-allocation.6 As a result

of this decision-making process, the cross-sectional joint distribution of firm-level capital and labor

evolves dynamically over time. Our specification of the FunVAR dynamics in terms of the joint

distribution of labor and capital, rather than the marginal distributions, is designed to precisely

capture the effects of structural shocks on the reallocation of both inputs. In other words, our model

aims to capture the interdependence between these inputs in response to shocks, showing how firms

adjust their allocation of labor and capital simultaneously. We simulate the heterogeneous firm

model for T = 250 periods. The calibration of the parameters to simulate from the heterogeneous

firm model directly follows Winberry (2018). Figure 2, shows one example of simulated bivariate

density of log(k), log(l) from the heterogeneous agents model and its approximation by multilinear

principal component analysis with 9 basis functions obtained with K1 = 3 and K2 = 3.

Figure 2: One period simulated bivariate density of log(k), log(l) from Winberry (2018) model and
its approximation though bilinear principal components analysis

Notes: The figure shows the true (red) and the approximated (black) bivariate log-capital and log-labor distribution
from for one sample period in the simulation.

To compare the approximation of the bivariate distribution across unfolded principal component

analysis, bilinear principal component analysis and CP and select the number of basis functions we

use cross-validation. In particular, we divide the sample in training set and test set, and compare

the Kullback–Leibler divergence to the kernel density estimate of log(k), log(l) in the test set.

Figure 3 shows the comparison of the as a function of the number of basis functions, used for

the approximation of the bivariate density. In this case, we find PCA on the unfolded data to

6. We refer to the paper of Winberry (2018) for further details on the model.
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perform better than both bilinear principal component analysis and the CP decomposition. Given

the simple bivariate log-normal specification, with time varying first and second moment, three

basis functions provide a reliable approximation of the bivariate density function. We focus on the

Figure 3: Cross-Validated Mean KL Divergence on the Test Set: PCA vs. Multilinear PCA vs. CP

Notes: The figure shows the average KL distance to the kernel density estimate of the bivariate density function
f(log(k), log(l)) in the test set in the cross-validation.

estimated responses of the aggregate macroeconomic time series and the cross-sectional distributions

to a one standard deviation aggregate TFP shock. Figure 4, shows the impulse response functions

of the main macroeconomic variables to a total factor productivity shock in the heterogeneous firm

model. The figure reports in black the true responses. The red dashed lines are the 5th and 95th

credible sets while the solid red line is the posterior median estimate obtained from our FunVAR.

The TFP shocks are identified exploiting the exogeneity of the simulated TFP series. The model

correctly recovers the dynamics of output, consumption, hours worked, investment and wages after

the aggregate TFP shock hitting the economy.

Figure 5 reports the Functional Impulse Response Functions (FIRF) of the bivariate distribution

of firm-level capital and labor. FIRFs are obtained by computing the difference in the mass between

the bivariate log-capital and log-labor distributions after the TFP shock has occurred and the steady

state distribution (this is reported in the z axis). We show the FIRF after 4 periods (one year),

8 periods (2 years) and 24 periods (6 years). In the figures in the left panels, we show the true

FIRF, while in those on the right panels we report the posterior median FIRF estimated with the

FunVAR on the simulated data. The posterior mean estimate from the FunVAR model correctly

tracks the evolution of the bivariate density after the aggregate TFP shock hitting the economy.

As we are also concerned about whether the effects of a TFP shock are efficiently estimated,
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Figure 4: Responses to a TFP shock in the heterogeneous firm model

Notes: The figure shows the Impulse Response Functions (IRFs) of the macroeconomic aggregates to a one standard
deviation TFP shock. In black we report the IRF of the Winberry (2018) heterogeneous firm model. In red bold line
we report the posterior mean estimate from the FunVAR while in dashed red line we report the 5th and 95th credible
sets.
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in Figure 6 we report the contours of the bivariate FIRF. The upper panels report the contours

from the true FIRF in the heterogeneous firm model. The lower panels instead report the posterior

median value, only in the case the 65 % credible regions of the posterior distribution do not contain

zero. The figure shows that the effects of the TFP shocks are precisely estimated, and in general

more accurately estimated at lower horizons.

Overall, this exercise with simulated data shows that the FunVAR is reliable also in finite

samples to recover the distributional effects of TFP shocks.

5 The distributional effects of TFP shocks

We now exploit the FunVAR model to examine the effects of TFP shocks on the US economy. An

extensive literature dating back to Kydland et al. (1982) has explored the role of TFP shocks in

driving business cycle fluctuations. This ongoing debate underscores the complexity of understand-

ing how technology shocks affect firms allocation of capital and labor inputs. We use the FunVAR

to investigate the effects of TFP shocks both on the macroeconomic aggregates and the firm-level

joint capital and labor distribution.

5.1 Aggregate and firm-level data

Our analysis leverages the Compustat dataset to extract the cross-sectional distribution of U.S.

firm-level labor and capital. The Annual Compustat dataset provides joint data on firm-level cap-

ital and employees, while firm-level capital data is also available at a quarterly frequency through

the Quarterly Compustat dataset. In what follows, we present results based a quarterly dataset

obtained by micro-level interpolation to estimate missing intra-year labor observations. An alter-

native approach is to rely on the annual micro-level dataset for both capital and labor, and use the

state-space framework outlined in Section A.2 to combine the yearly distributions with the quar-

terly aggregate macroeconomic time series. More specifically, we consider cross sectional data on

firm’s balance sheets from 1984-Q4 to 2019-Q4. The raw data are cleaned and transformed mostly

following Ottonello et al. (2020b), as detailed in Appendix A.3. The final dataset is comprised of

cross sections with an average size of 2.809 firms. Since balance sheet data are expressed in nominal

terms (millions of dollars), we obtain the value of real capital dividing by the implicit price deflator

of the nonresidential gross private domestic fixed investment. In order to clean the micro data from

low frequency fluctuations and concentrate on cyclical fluctuations, we log-linearly-detrend the
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Figure 5: Responses of f(log(k), log(l)) to a TFP shock in the heterogeneous firm model

(a) h = 4

(b) h = 8

(c) h = 24

Notes: The figure shows the bivariate FIRFS for 4,8 and 24 periods following the TFP shock.
On the left hand side the true FIRFS, while on the right hand side the posterior mean estimate from the FunVAR.
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Figure 6: Contours from the bivariate FIRF of f(log(l), log(k))

Notes: The figure shows the contours from the bivariate FIRFs for 4,8 and 24 periods following the TFP shock. The
upper panel reports the true FIRF from the heterogeneous firm model, while the lower panel reports value for the
posterior mean estimate from the FunVAR only if the 15th−85th credible set does not contain zero. Dashed red lines
are the steady state mean values in the heterogeneous firm model.

level of capital and labor at the firm level. Concerning the data on the macroeconomic aggregates,

these are taken from FRED-QD (Federal Reserve Economic Data Quarterly Dataset). We consider

real gross domestic product (GDPC1), real personal consumption expenditures (PCECC96), non-farm

payroll employment (PAYEMS), nonresidential real private fixed investment (PNFIx) and real hourly

non-farm business sector compensation (COMPRNFB) and the real interest rate (obtained as FEDFUND

- πCPIAUSL).7 All the variables, excluding the real interest rate, are log-linearly detrended.

5.2 Aggregate and disaggregated response to TFP shocks

We estimate bivariate density functions from 1985-Q4 to 2019-Q4 for f(log(K), log(l)) using the

Kernel density estimator in (9) with Gaussian Kernel and bandwidth set according to Silverman’s

rule (Silverman 1986). Figure 7 shows bivariate kernel density estimate of f(log(k), log(l)) for some

selected periods in the sample.

To choose among the principal component on the vectorized tensor, bilinear principal component

analysis and CP decomposition for approximating the bivariate density functions, we rely on cross

validation. Figure 8 shows the average KL divergence to the kernel density estimates on the test

7. πCPIAUSL is defined as the yearly inflation rate obtained from the CPIAUSL price series.
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Figure 7: Bivariate kernel density estimate of f(log(k), log(l)) for some selected periods.

Notes: The figure shows the bivariate kenrnel density estimates for 1985-Q4, 1991-Q4, 2008-Q4 and 2019-Q4.

set across the different methods. In the appendix we report results for the same cross-validation

exercise based on the average Root Mean Squared Error (RMSE) and the Mean Absolute Error

(MAE). Based on the cross-validation we find bilinear principal component analysis to outperform

both principal component on the unfolded tensor and CP decomposition and exploit this approach

for approximating the bivariate density in the FunVAR. In particular, we consider the bilinear

approximation with K1 = 5 and K2 = 5, for a total of 25 factors.

We estimate our model on the sample of US data that goes from 1984-Q4 to 2019-Q4. The Fun-

VAR comprises seven macroeconomic variables, being the Fernald (2014) TFP series, real personal

consumption expenditures, non-farm payroll employment, nonresidential real private fixed invest-

ment, real hourly non-farm business sector compensation and real interest rate.8 In what follows,

we present evidences based on the identification of the aggregate TFP shock trough the internal

instrument procedure, exploiting the TFP measure developed in Fernald (2014) as our exogenous

proxy for the TFP shocks. More in detail, we assume that the TFP proxy is contemporaneously

exogenous with respect to the other variables entering the VAR. We exploit the Cholesky decom-

8. We include non-farm payroll employment to match with the micro distribution of number of employees in from
Compustat.
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Figure 8: Cross-Validated Mean KL Divergence on the Test Set: PCA vs. Multilinear PCA vs. CP

Notes: The figure shows the average KL distance to the Kernel density estimate of the bivariate density function
f(log(k), log(l)) in the test set in the cross-validation.

position of the variance covariance matrix Σ to identify the column of the impact matrix of the

structural VAR, which relates to the effect of the TFP shock both on the aggregate macroeconomic

variables and the bivariate labor and capital distributions.

Using the FunVAR framework, we trace how a TFP shock propagates at the firm level by

examining its impact on the joint distribution of log labor and log capital. The shock produces a

persistent shift in this distribution: resources are reallocated toward both inputs, and the dispersion

of capital and labor across firms widens. Figure 9 shows the impulse response functions of selected

moments of the bivariate distribution, that are means, variances and correlation coefficient following

the one standard deviation TFP shock. After the shock, firms on average expand their endowments

of both inputs. The effects of the TFP the shock on the bivariate distributions are persistent, with

the increase in the mean of labor distribution peaking after 8 quarters. The dispersion of capital

across firms increases on impact, as it does the dispersion of labor after one year, while the effects

of the shock does not seem to affect the correlation between capital and labor. To analyze more

precisely heterogeneous adjustments in both inputs, we look at the bivariate functional impulse

response functions following the one standard deviation TFP shock. Figure 10 reports the posterior

median estimate of the steady state distribution of log-labor and log-capital (left upper panel) with

the corresponding contour levels (right upper panel). As expected, the steady state bivariate

distribution shows a clear positive correlation concerning the endowment of both inputs. The lower

panels report the contour plots relative to the change in the mass w.r.t the steady state value in

the bivariate density of labor and capital, for different horizons after the TFP shock has occurred.
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Figure 9: Impulse response functions of means, variances and correlation of the joint labor and
capital distribution to a TFP shock

Notes: The figure shows the Impulse Response Functions (IRFs) of the mean, variances and correlation of the joint
labor and capital distribution to a one standard deviation TFP shock. In red bold line we report the posterior mean
estimate from the FunVAR while in dashed red line we report the 15th and 85th credible sets.

We show the effect on impact h = 0, one quarter ahead h = 1, two quarters ahead h = 2, one year

ahead h = 4, two years ahead h = 8 and 15 quarters ahead h = 15. It turns out that after the

shock firms expand both capital and labor simultaneously, indicating that they are growing and

scaling their operations in response to the productivity gains from the shock. This is reflected by

the increase of the mass of firms with both capital and labor above their steady state level. The

peak of the effect on the bivariate distribution is between one year and 2 years. After 15 quarters,

the effects of the shock gets reabsorbed. In the appendix, Figure 17 and 18 show the functional

IRFs associated to the marginal distributions of log-capital and log-labor following the TFP shock.

In the appendix, Figure 16, we also report the impulse responses of the aggregate macroeconomic

variables to the aggregate TFP shock. The response of the macroeconomic aggregates broadly align

with the responses in the real business cycle model. In particular, following the TFP shock, real

output, real consumption and real investment all increase on impact, with the effect of the variables

peaking after 8 quarters (two years).
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Figure 10: Response of the cross sectional distributions to an aggregate TFP shock

(a) Posterior mean steady state distribution of log(l), log(k).

h = 0 h = 1 h = 2

h = 4 h = 8 h = 15

(b) Contours of the posterior mean estimate of the bivariate labor and capital distribution FIRF following
an aggregate TFP shock.

Notes: The panel above shows the estimated posterior mean steady state distribution of log(l) and log(k). The panel
below shows the contours of the posterior mean estimate of the bivariate FIRF following an aggregate TFP shock for
1, 4, 8, and 16 periods ahead. The dashed line reports the posterior mean steady state values.
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6 The distributional effects of monetary policy shocks

We also exploit our funVAR model to study the propagation of monetary policy shocks in the

U.S. economy, analyzing both the effects on the macroeconomic aggregates and on the joint firm-

level distribution of capital and labor. As in the previous section, we consider a functional VAR

model for the bivariate capital and labor distribution together with macroeconomic aggregates.

Concerning the macroeconomic aggregates, we consider industrial production, the unemployment

rate, commodity price index, CPI index, the excess bond premium (Gilchrist et al. 2012) and the

two-year Treasury yield. All variables exempt the excess bond premium are log-linearly detrended.

For the identification of the monetary policy shocks, we leverage an internal instrument, being the

orthogonalized series of high-frequency U.S. monetary-policy surprises by Bauer et al. (2023). This

series isolates the unexpected part of 30-minute eurodollar-futures rate jumps around Fed events

by removing variation predictable from pre-announcement macro-financial data, yielding a clean

proxy for exogenous monetary-policy shocks.

Figure 11 traces the effects of a restrictive monetary policy shock on the bivariate log-labor

and log-capital distribution. Figure 12, instead, shows the response of the bivariate capital and

labor distribution to monetary policy shocks, allowing the detection of heterogeneous adjustments

in the two inputs. Following the shock, firms on average reduce both labor and capital. The

effects of the restrictive monetary policy shock on the bivariate distribution are found to be less

persistent compared to the effects of TFP shocks, with the impact vanishing after one year. In

addition to reducing both labor and capital, the shock also attenuate their co-movement. In fact, the

labor–capital correlation falls sharply in the short run and only gradually normalizes as employment

and investment realign. In the appendix, Figures 20 and 21 report the functional IRFs associated

with the two marginal distributions. The aggregate effects of the restrictive monetary policy shock

are also reported in the appendix, in Figure 19, revealing a sudden increase in the excess bond

premium following the monetary policy shock and a contraction in industrial production peaking

after one year.

7 Cross-sectional uncertainty and macroeconomic fluctuations

In this last section, we exploit our funVAR model to leverage micro-economic distributional data

on firms output, labor and capital to identify the effects of cross-sectional uncertainty shocks on

aggregate macroeconomic fluctuations. Dating back to the seminal contribution of Bloom (2009), a
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Figure 11: Impulse response functions of means, variances and correlation of the joint labor and
capital distribution to a monetary policy shock

Notes: The figure shows the Impulse Response Functions (IRFs) of the mean, variances and correlation of the joint
labor and capital distribution to a one standard deviation TFP shock. In red bold line we report the posterior mean
estimate from the FunVAR while in dashed red line we report the 15th and 85th credible sets.

substantial body of literature has examined the macroeconomic effects of uncertainty shocks both

from a theoretical and empirical perspective. Within this strand of literature, empirical studies

have predominantly focused on aggregate uncertainty, aiming to measure it and trace its business

cycle implications (Jurado et al. 2015; Carriero et al. 2018). While much of the empirical work

emphasizes the effects of aggregate uncertainty shocks, a significant number of structural models

highlight the importance of cross-sectional uncertainty as a key driver of macroeconomic fluctua-

tions (Bloom 2009; Christiano et al. 2014; Bloom et al. 2018; Arellano et al. 2019). Indeed, several

theoretical contributions point to the cross-sectional component of uncertainty as the critical force

behind business cycle dynamics. For instance, Christiano et al. (2014) show that fluctuations in the

dispersion of firm-level productivity—so-called risk shocks—play a central role in driving macroeco-

nomic outcomes by influencing the availability of credit to entrepreneurs, reducing entrepreneurial

investment and thereby depressing output, consumption, and employment.

Despite these theoretical insights, empirical evidence on the dynamic macroeconomic effects of

cross-sectional uncertainty shocks remains scarce. A notable exception is the recent work by Dew-

Becker et al. (2023), who develop a forward-looking measure of cross-sectional uncertainty using
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Figure 12: Response of the cross sectional distributions to a monetary policy shock

(a) Posterior mean steady state distribution of (log(l), log(k)).

h = 0 h = 1 h = 2

h = 4 h = 8 h = 15

(b) Contours of the posterior mean estimate of the bivariate labor and capital distribution FIRF following
a monetary policy shock.

Notes: The panel above shows the estimated posterior mean steady state distribution of log(l) and log(k). The panel
below shows the contours of the posterior mean estimate of the bivariate FIRF following a contractionary monetary
policy shock for 1,2, 4, 8, and 15 periods ahead. The dashed line reports the posterior mean steady state values.
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stock options data from individual firms. Their analysis reveals a nuanced relationship between

cross-sectional uncertainty and aggregate activity, primarily based on correlation and predictive

regressions.

Here, we directly leverage micro-economic distributional data on firms output, labor and capital

to identify the effects of cross-sectional uncertainty shocks on the macroeconomic aggregates, by

considering the following FunVAR model:

yt = cy +

p∑
s=1

Bl,yyyt−s +

p∑
s=1

∫
Bs,yl(x)lt−s(x)dx+ uy,t , (33)

lt(x) = cl(x) +

p∑
s=1

Bs,ly(x)yt−s +
P∑

s=1

∫
Bll(x,x

′)lt−s(x
′)dx′ + ul,t(x) . (34)

where x = [log(output), log(k), log(l)] is the vector of firms characteristics and l(x) is the centered-

log-ratio transformation of the trivariate distribution of firm’s output, capital and labor, while yt

is a vector of macroeconomic aggregates. The finite dimensional approximation of the FunVAR

model is a reduced form factor augmented VAR model with transition equation given by:

wt = Φxt + ut , ut ∼ N (0,Σ) , (35)

where wt = [yt,β
′
t]
′. We assume that the relationship between the VAR residuals and the cross-

sectional uncertainty shocks εCSU
t , is as follows:

ut = Σtrqε
CSU
t (36)

where Σtr = chol(Σ) is the lower triangular Cholesky factor of the reduced form residuals variance

covariance matrix and q is an orthonormal vector. The contemporaneous effect of cross-sectional

uncertainty shocks on wt is therefore given by

amacro

amicro

 = Σtrq (37)

where amacro is the effect of the uncertainty shocks on the macroeconomic aggregates, while amicro

is the effect of the uncertainty shocks on the scores βt;K and consequently on the joint distribution

of firm level capital and labor. Following Bloom (2009) and Christiano et al. (2014), we think of

uncertainty shocks as the main drivers of cross-sectional dispersion of firm productivity. In terms
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of the observables, these shocks manifest as exogenous changes in the cross-sectional dispersion of

firms’ output, conditional on their capital and labor inputs.9 Accordingly, we label a cross-sectional

uncertainty shock as the structural shock which maximizes the unexpected variation of the cross-

sectional dispersion of firms sales on impact, conditionally on firm’s contemporaneous level of capital

and labor. In practice, cross-sectional uncertainty shocks are constructed as distributional shocks

that maximize the variation in the conditional variance of firm’s output on impact. These shocks

are operationally identified by finding the orthogonal rotation q that maximizes the change in the

variance of output given capital and labor on impact. The FunVAR comprises the same variables

considered in the empirical application concerning the effects of TFP shocks in Section 5. We focus

on investigating the effect of the cross-sectional uncertainty shocks on real GDP, consumption,

investment hours worked and real wages. Figure 13 shows the response of the macroeconomic

aggregates to the cross-sectional uncertainty shocks. The time series of the estimated cross-sectional

uncertainty shocks is instead shown in the appendix, Figure 22.

The posterior mean estimates of the impulse response function, show that cross-sectional un-

certainty shocks generate contraction in investment, output, employment and consumption. This

is in line with the theoretical predictions in Bloom (2009) and Christiano et al. (2014), where risk

shocks generate investment falls and a decline in the purchase of goods, output, consumption, and

employment. As a caveat, while the 15th–85th credible interval for the effect of cross-sectional

uncertainty on output is unambiguously contractionary and excludes zero, the credible intervals

for the effects on the other aggregates are relatively wide, reflecting less precise estimates of these

effects.

9. In particular, given a standard firm level production function:

log(outputit) = f(log(kit), log(lit)) + σtεit (38)

where εit is an idiosyncratic productivity shock with E[εit] = 0 and var(εit) = 1, cross-sectional uncertainty shocks
are driving exogenous shifts in σt.
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Figure 13: Impulse response functions to cross-sectional uncertainty shocks

Notes: The figure shows the Impulse Response Functions (IRFs) of the macroeconomic aggregates to a cross-sectional

uncertainty shock. In red bold line we report the posterior mean estimate from the FunVAR while in dashed red line

we report the 15th and 85th credible sets

8 Conclusion

We develop a Functional Augmented Vector Autoregression (FunVAR) model to explicitly incor-

porate firm-level heterogeneity observed in more than one dimension and study its interaction with

aggregate macroeconomic fluctuations. We remark the importance of modeling the joint distribu-

tion, rather than just the marginal distributions of the micro observables, for qualitatively assessing

the effects of economic shocks on the micro-level distributions and for determining which scenario,

potentially aligned with a specific structural model, the data support more. We address the chal-

lenge of approximating a multidimensional distribution using data reduction techniques for tensor

data objects. We use these methods for approximating multiple cross-sectional distributions of

micro-variables, which dynamically interact with the macroeconomic aggregates in a Functional

VAR framework. We use the model to study the transmission of aggregate TFP shocks and mon-

etary policy shocks both on the cross-sectional distribution of firm-level capital and labor and the

macroeconomic aggregates. Then, we exploit a functional VAR model which links the joint distri-

bution of firms output, capital and labor to identify the effects of cross-sectional uncertainty shocks
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on the macroeconomic aggregates. We find that cross-sectional uncertainty shocks—defined as dis-

tributional shocks that maximize the variation in the cross-sectional dispersion of firms’ output,

conditional on the contemporaneous level of firm capital and labor—are associated with declines

in investment, output, employment, and consumption consistent with theoretical predictions.
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A Appendix

A.1 Factor augmented approximation of the Functional VAR model

Thanks to the finite dimensional approximation (6), and taking sK(x′) as a K-dimensional vector

of functional basis such that ∫
sK(x)hK(x)′dx = Cβ , (39)

we can rewrite the function augmented VAR expanding the unknown functions of x as follows:

cl(x) = hK(x)′c̃l,t

Bs,yl(x) = Bs,ylsK(x)

Bs,ly(x) = hK(x)′Bs,ly

Bs,ll(x,x
′) = hK(x)′Bs,llsK(x′)

ul(x) = hK(x)′ũl,t ,

(40)

where Bs,ll is a K ×K matrix, Bs,ly is a K ×ny matrix, and Bs,yl is an ny ×K matrix. Plugging

in (33) and (34) we get:

yt = cy +

p∑
s=1

Bs,yyyt−s +

p∑
s=1

Bs,ylCββt−s;K + uy,t (41)

hK(x)′βt = hK(x)′c̃l,t +

p∑
s=1

hK(x)′Bs,lyyt−s + hK(x)′
P∑

s=1

Bs,llβt−s;K + hK(x)′ũl,t , (42)

which becomes:

βt = c̃l,t +

p∑
s=1

Bs,lyyt−s +

P∑
s=1

Bs,llCββt−s;K + ũl,t . (43)

A.2 Missing densities and mixed frequency

In applied work, the macroeconomic aggregate variables y and the distribution of firm’s micro

level characteristics f(x) are often sampled at different frequencies. We adapt the standard factor

augmented VAR framework, to allow for the missing densities. Our model becomes:

lt(x)
obs =


Hβt + εt, if t = m, 2m, 3m, . . . , Tm

∅, otherwise

(44)
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yt

βt

 = Φ0 +Φ1

yt−1

βt−1

+ . . .+Φp

yt−p

βt−p

+

uy,t

ũq,t

 , (45)

where m is the number of high-frequency observations contained within the span of one low-

frequency observation period (for example in the case annual and quarterly observations m = 4),

and the full sample size is T in low frequency and Tm in high frequency. The observation equation

(44) assumes that the firm-level variables on labor and capital are reporting their end of the quarter

values. This would be for example the case of both output, labor and capital as reported in the

Compustat dataset.10 To estimate the model we proceed again in two steps. First, we estimate

the basis functions H using either principal component analysis or multilinear principal component

analysis or CP decomposition. In particular, for a sufficient large number of observed low-frequency

densities, we can still consistently estimate H by performing principal component analysis on the

sample of observed low frequency densities. Then, we estimate the factor augmented VAR model

using the Gibbs Sampler described in the previous section, which needs just to be adapted by

considering the following observation equation

l = Mb+ ϵ , ϵ ∼ N (0, σ2ITNgrid) , (46)

where now M = Q⊗H where Q = IT/m⊗ diag(01×m−1, 1) is a T ×T matrix selecting the factors

according to the observation equation (44). The posterior distribution of b is then just adjusted

with this new definition of M .

A.3 Details on Compustat data

We mostly follow Ottonello et al. (2020b) for what concerns data cleaning and variable transfor-

mations. In our analysis, we initialize the assessment of each firm’s investment behavior by setting

the initial value of capital stock for the next period, kj,t+1, based on the reported level of gross

plant, property, and equipment from Compustat (ppegtq, item 118). We continue by tracking the

evolution of this capital stock through changes in net plant, property, and equipment (ppentq, item

42), which usually offers more observations and incorporates adjustments for depreciation. When

encountering missing data points in ppentq between two periods, linear interpolation is employed

using the nearest available values to estimate the missing entry. However, we avoid interpolation

10. Accounting for flow variables in this framework would be more complicated, since the observed distribution
would most likely be a convolution of the unobserved missing distributions as noted in Marcellino et al. (2024).
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when the dataset exhibits two or more consecutive missing observations to maintain accuracy.

Our empirical analysis implements several exclusion criteria to ensure data quality and relevance.

Initially, we exclude firms operating within specific sectors deemed non-representative of typical

corporate investment behaviors. These sectors include finance, insurance, and real estate, which

are categorized within Standard Industrial Classification (SIC) codes ranging from 6000 to 6799,

as well as utilities with SIC codes from 4900 to 4999. Additionally, non-operating establishments

(SIC code 9995) and industrial conglomerates (SIC code 9997) are also omitted from our study.

Moreover, our analysis is restricted to firms that are incorporated in the United States, excluding

any firm-quarter observations that fail to meet this criterion. Within the retained data, we fur-

ther refine our sample by excluding observations that display characteristics of extreme financial

behavior or data anomalies. This includes observations with negative capital or assets, and those

involving significant acquisitions, defined as acquisitions where the acquired assets are greater than

5% of the firm’s total assets. We also exclude observations where the investment rate appears

anomalously high or low, falling in the top or bottom 0.5% of the distribution, as well as those

where the investment spell is shorter than 40 quarters. Additional exclusions apply to quarters

with real sales growth exceedingly high above 1 or significantly low below -1. Observations with

negative sales or liquidity are similarly omitted to maintain the integrity and reliability of our

analysis. We transform the nominal firm level capital into real firm level capital dividing by the

implicit price deflator of the nonresidential gross private domestic fixed investment available from

FRED (A008RD3Q086SBEA). We log-linearly detrend the level of capital at the firm level to concen-

trate on cyclical fluctuations. For the labor variable we consider emp from the Annual dataset and

interpolate quarterly observations from annual observations.
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A.4 Additional results from cross-validation

Figure 14: Cross-Validated RMSE on the Test Set: PCA vs. Multilinear PCA vs. CP

Notes: The figure shows the RMSE to the kernel density estimate of the bivariate density function f(log(k), log(l))
in the test set in the cross-validation.

Figure 15: Cross-Validated MAE on the Test Set: PCA vs. Multilinear PCA vs. CP

Notes: The figure shows the MAE distance to the kernel density estimate of the bivariate density function
f(log(k), log(l)) in the test set in the cross-validation.
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A.5 Additional results: The distributional effects of TFP shocks

Figure 16: Responses to a TFP shock

Notes: The figure shows the Impulse Response Functions (IRFs) of the macroeconomic aggregates to a one standard

deviation TFP shock. In red bold line we report the posterior mean estimate from the FunVAR while in dashed red

line we report the 15th and 85th credible sets.
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Figure 17: Functional impulse response functions of the marginal log-labor distribution to the TFP
shock

Notes: The figure shows the functional impulse response function of the marginal log(l) distribution following the

TFP shock. In plain blue the posterior median estimates, while in dashed red we report the 15th and 85th credible

sets.

Figure 18: Functional impulse response functions of the marginal log-capital distribution to the
TFP shock

Notes: The figure shows the functional impulse response function of the marginal log(k) distribution following the

TFP shock. In plain blue the posterior median estimates, while in dashed red we report the 15th and 85th credible

sets.
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A.6 Additional results Monetary policy shocks

Figure 19: Responses to a monetary policy shock

Notes: The figure shows the Impulse Response Functions (IRFs) of the macroeconomic aggregates to a one standard

deviation MP shock. In red bold line we report the posterior mean estimate from the FunVAR while in dashed red

line we report the 15th and 85th credible sets.
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Figure 20: Functional impulse response functions of the marginal log-labor distribution to the
monetary policy shock

Notes: The figure shows the functional impulse response function of the marginal log(l) distribution following the

monetary policy shock. In plain blue the posterior median estimates, while in dashed red we report the 15th and

85th credible sets.

Figure 21: Functional impulse response functions of the marginal log-capital distribution to the
monetary policy shock

Notes: The figure shows the functional impulse response function of the marginal log(k) distribution following the

monetary policy shock. In plain blue the posterior median estimates, while in dashed red we report the 15th and

85th credible sets.
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A.7 Additional results uncertainty shocks

Figure 22: Estimated cross sectional uncertainty shocks in the functional VAR

Notes: The figure shows the time series of the estimated cross sectional uncertainty shocks in the funVAR. In plain

black the posterior median estimates, while in dashed red we report the 15th and 85th credible sets. In shaded gray

NBER recession periods.
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