Career Risk and Market Discipline in Asset Management

Andrew Ellul

Kelley School of Business, Indiana University, CSEF, CEPR, and ECGI

Marco Pagano

University of Naples Federico II, CSEF, EIEF, CEPR, and ECGI

Annalisa Scognamiglio

University of Naples Federico II and CSEF

We establish that the labor market helps discipline asset managers via the impact of fund liquidations on their careers. Using hand-collected data on 1,948 professionals, we find that top managers working for funds liquidated after persistently poor relative performance suffer demotion coupled with a significant loss in imputed compensation. Scarring effects are absent when liquidations are preceded by normal relative performance or involve midlevel employees. Seen through the lens of a model with moral hazard and adverse selection, these scarring effects can be ascribed to a drop in asset managers' reputation. The findings suggest that performance-induced liquidations supplement compensation-based incentives. (*JEL* G20, G23, J24, J62, J63)

Received July 31, 2018; editorial decision February 25, 2019 by Editor Wei Jiang. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.

We are grateful for insightful suggestions to the editor, two anonymous referees, Darwin Choi, Claudia Custodio, Sudipto Dasgupta, Carola Frydman, Nickolay Gantchev, Michael Halling, Byoung Kang, Preetesh Kantak, Chotibhak Jotikasthira, Roni Michaely, Darius Miller, Geoffrey Miller, Abhiroop Mukherjee, Martin Olsson, Paul Oyer, Carlo Pagano, Lorenzo Pandolfi, Luca Picariello, Farzad Saidi, Joacim Tåg, Karin Thorburn, Yizhou Xiao and participants at seminars at the Chinese University of Hong Kong, ESCP Paris, Frankfurt School of Finance, Georgia State University, Hebrew University of Jerusalem, HEC Lausanne, Hong Kong Polytechnic University, IFN, Indiana University, LUISS, University of Michigan, MIT, Stockholm School of Economics, Southern Methodist University, UNSW, University of Sydney, the 2017 EFA and 2019 AFA meetings, the CEPR Third Annual Spring Symposium in Financial Economics, the 2018 Global Corporate Governance Conference (Harvard), the 2018 ETH/NYU/SAFE Law & Banking/Finance Conference, the 2018 LBS Summer Finance Symposium and the UBC Summer Finance Conference. We thank Stephen Brown for access to his Lipper-TASS database, and Alessandra Allocca, Francesco Celentano, Riccardo Cioffi, Luca Coraggio, Clark Hays, Joe Hasell, Shahadat Hossain, Betsy Laydon, Lorenzo Trimarchi, and Salvatore Vatieri for helpful research assistance. We owe special thanks to Luca Coraggio for the machine learning algorithm described in Appendix A. This work was supported by the ERC (FINLAB project no. 295709), the Italian Ministry for Education, University and Research (MIUR) and the Einaudi Institute for Economics and Finance (EIEF). Supplementary data can be found on The Review of Financial Studies Web site. Send correspondence to Marco Pagano, University of Naples Federico II, Via Cinthia - Monte Sant'Angelo, 80126; telephone: (0039) 081675306. E-mail: pagano56@gmail.com.

[©] The Author(s) 2019. Published by Oxford University Press on behalf of The Society for Financial Studies. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. doi:10.1093/rfs/hhz062 Advance Access publication June 10, 2019

The salaries of employees of financial firms are typically much higher than those of non-finance employees with similar education (Philippon and Reshef 2012). This feature is more extreme in asset management, and particularly in the hedge fund industry. To some extent, these compensation differentials reflect agency rents: the discretion typical of asset management calls for high-powered incentive pay schemes, especially for professionals with the greatest decision-making power (see Murphy 1999; and Edmans, Gabaix, and Jenter 2017). Indeed, in this industry a substantial portion of compensation is performance-sensitive, with a fixed base salary supplemented by performancerelated bonuses. But the performance-based component is typically much more sensitive to upside than to downside risk, to the point that the resulting bonuses are often doubted to be a true reflection of managers' actual effort and talent.¹ For instance, in 2012 The Economist wrote: "It is ... easy to think of people who have become billionaires by managing hedge funds; it is far harder to think of any of their clients who have got as rich."² Indeed, recent evidence shows that "the risk-return trade-off for hedge fund investors is much worse than previously thought" (Dichev and Yu 2011, 249), to the point of raising "serious questions about the perceived superior skills of hedge fund managers" (Griffin and Xu 2009, 2531).

Therefore, it is worth asking whether asset managers are also exposed to the risk of permanent career setbacks when their fund is liquidated following underperformance. The question, that is, is whether the managerial labor market acts as a device for disciplining asset managers, over and above the incentives provided within the firm (Agarwal, Daniel, and Naik 2009). This is the research question we address here. In investigating it, we also consider the alternative hypothesis that fund liquidations induce career setbacks even in the absence of underperformance, as labor market frictions may prevent employees from finding an equally attractive job after the liquidation.

We focus on professionals working in hedge funds, as incentive concerns and their career implications can be expected to be particularly salient in this segment of asset management, for three complementary reasons. First, the hedge fund industry is the quintessential business of risk-taking, where a single bad decision may blow up an entire fund. Second, hedge fund managers have the greatest discretion in their investment choices, owing to the lightly regulated nature of the business: the difficulty of monitoring and reining in top talent creates severe moral hazard, typically addressed by up-or-out contracts with dynamic incentives (Axelson and Bond 2015). Third, the performances of hedge funds are more closely determined by the strategies of individual fund

¹ This applies particularly to hedge fund managers, whose performance-based incentive fee effectively amounts to a call option written on the hedge fund's asset value, with a strike price determined by the "high watermark" and "hurdle rate" provisions, together with the value at which investors underwrite the fund. The high watermark provision states that the manager receives the incentive fee only if the fund's net asset value exceeds its previous peak; the hurdle rate is the minimum return above which the manager gets the incentive fee.

² "Rich managers, poor clients," December 22, 2012.

managers than those of other institutional investors, which are typically larger and less nimble organizations. Hence, observing a hedge fund's performance can be quite informative about its managers' talent.

We manually collect data on the careers of 1,948 individuals who at some point worked in a hedge fund (according to the Lipper-TASS database) as low, middle, or top manager in the investment company managing the fund. Thus, not all our sample professionals eventually become CEOs (only 58% do); in this respect, our data differ from those used in most studies on managers' careers, which consider only CEOs. The resulting data set covers employment histories from 1963 to 2016. For each individual, we observe gender, education, year of entry in the labor market, and all job changes within and across firms (not only hedge fund companies but also banks, insurance companies, mutual funds and nonfinancial companies). We classify jobs according to position within the corporate hierarchy and, to measure the earnings potential associated with a specific job and sector, we impute to each job title its average sector-specific compensation.

Upon being hired by a managing company, the professionals in our sample experience a significant acceleration of their career. The acceleration is greatest for those with high talent, as measured by graduate degrees from top universities and previous job experience in asset management, and for men, consistent with other evidence on gender bias in the finance industry. Career progress is also faster for those who get jobs in funds that outperformed their benchmark in the previous three years, which suggests that the respective parent companies have more financial firepower to allocate to recruitment, possibly due to greater fund inflows from investors.³

While entry into the hedge fund industry typically propels professionals quickly to high-level positions, it also exposes them to the danger of permanent setbacks upon the liquidation of the funds they work for. Hedge funds are particularly well suited to investigating how careers are affected by liquidations, as these are not rare events, especially in the wake of unsatisfactory performance. We find that such setbacks are quite severe in both job level and imputed compensation, and are frequently accompanied by switches to other employers: the likelihood of switches to other employers rises by 20 percentage points in the two years after the liquidation, and that of leaving asset management is 5 percentage points greater in the five years after liquidation. The career slowdown is concentrated among high-ranking managers: following the liquidation of their funds, on average top executives (e.g., CEO, CFO, CIO, etc.) suffer an imputed compensation loss of about \$500,000, if the estimation is performed without conditioning on previous fund performance.

In principle, such "scarring effects" may result either from a loss of reputation or from the accidental destruction of the professionals' human

³ This is consistent with the evidence provided by J. Brown and Matsa (2016), based on applicants' responses to job postings during the recent crisis, that high-quality job seekers shy away from distressed financial firms.

capital, owing, say, to overall adverse market trends in the relevant fund class or the whole market. We refer to the scarring effects arising in these two cases as "reputational losses" and "accidental losses," respectively. To discriminate between these two cases, we investigate whether the scarring effects of liquidations depend upon the fund's previous relative performance: only liquidations that are preceded by poor relative performance should be associated with a drop in reputation. Furthermore, to affect a professional's subsequent career, the drop in reputation should be sufficiently large, which is typically associated with consistently poor relative performance. We find that scarring effects are present only in funds that consistently underperform relative to their benchmark before liquidation: high-ranking managers of funds liquidated after two years of average underperformance suffer job demotion and an imputed compensation loss over the subsequent five years, which is \$752,000 larger than if their fund had performed normally before liquidation. Hence, rather than accidental career setbacks, the scarring effects of liquidations appear to be associated with a drop in managers' reputation.

Seen through the lens of a model of career concerns, these empirical results suggest that the managerial labor market can provide a discipline device, over and above the incentives stemming from managerial compensation: incentives will then come not only from the "carrot" of performance pay but also from the "stick" of career damage.⁴ Performance-related liquidations should have a particularly strong incentive effect when professionals expect fund liquidations to occur almost exclusively in the wake of underperformance and to carry no penalty otherwise. In our sample, 79% of the liquidated hedge funds performed worse than their benchmark in the previous two years, and no career setbacks are associated with accidental liquidations.

Our findings nicely complement those of Chevalier and Ellison (1999), who show that the labor market provides implicit incentives to mutual fund managers via their career concerns: they find that managerial turnover is sensitive to a fund's recent performance and, consistently with the hypothesis that fund companies learn about managers' abilities, turnover is more performance-sensitive for younger fund managers. Kaplan (1994) documents a similar relationship between performance and managerial turnover for companies in the United States and Japan, while Cziraki and Groen-Xu (2018) document that the turnover of U.S. CEOs is more sensitive to firm performance when their contracts are closer to expiration. However, the poor firm performance that triggers CEOs' turnover may be caused by factors beyond their control, such as bad industry and market performance, as documented by Jenter and Kanaan (2015). There is also evidence that forced turnover has persistent scarring effects on CEOs' subsequent careers: using Danish administrative data, Nielsen (2017)

⁴ Besides penalizing low-performing managers via career setbacks, the managerial labor market can also reward high-performing ones with post-retirement board service, as documented by Brickley, Linck, and Coles (1999). Hence the indirect incentives provided by the labor market extend even beyond retirement.

shows that the personal income of ousted CEOs drops by 35–45% in the five years following dismissal.

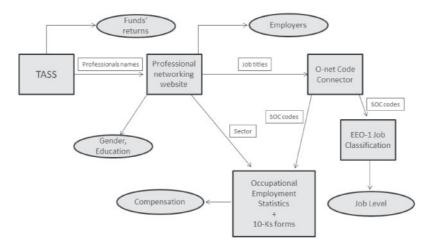
Our evidence is also reminiscent of Gibbons and Murphy (1990), who provide empirical support for relative performance evaluation in CEO pay and retention policies. While our data do not allow us to test explicitly for the effects of labor market discipline on managerial effort, documenting the scarring effects of performance-related liquidations is important because it shows that performance shapes managers' careers not only within the firm but also in the managerial labor market.

In the banking sector, the evidence of labor market discipline is less clearcut. According to Griffin, Kruger, and Maturana (2018), senior executives of top banks who signed residential mortgage-backed securities (RMBS) deals entailing large losses and misreporting rates or implicating the bank in lawsuits experienced no setbacks in their internal career or in their subsequent job opportunities. In contrast, Gao, Kleiner, and Pacelli (2017) document that, following negative credit events affecting their loan portfolios, managers working in banks underwriting syndicated loans were more likely to switch to a lower-ranked bank, and face demotion in their subsequent career.

Our evidence about the "scarring effects" of fund liquidations also relates to previous work on the effect of firm bankruptcies. Eckbo, Thorburn, and Wang (2016) report that only one-third of CEOs maintain executive employment after a bankruptcy filing, especially when their firm's previous profitability was below the industry average, and departing CEOs suffer large income and equity losses. Graham et al. (2017) study how bankruptcies affect the careers of rank-and-file employees: they analyze matched employer-employee panel data from the U.S. Census, documenting a persistent 15% drop in wages following bankruptcy.

Despite the superficial similarity, however, hedge fund liquidations are quite different from firm bankruptcies. As investment companies typically manage several funds, liquidating a fund rarely coincides with the closure of the firm and the forced reallocation of its employees to other employers. By the same token, the liquidation of a fund is a corporate decision that may convey information about the employees who worked for it. If it follows disappointing performance relative to other funds in the same class, the liquidation could reflect a negative judgment about their skills and potential; alternatively, it could result simply from overall market trends that induce the relevant investment company to redeploy its resources—including personnel—to other sectors. So it is important to condition the career effects of liquidations on previous fund performance, to infer whether they follow from a revision of beliefs about employees' skills or the fortuitous loss of valuable human capital.

Our paper also adds to a strand of work on careers that studies how macroeconomic or financial market conditions at the time of labor market entry affect employees' subsequent labor market outcomes: Oyer (2008) shows that a buoyant stock market encourages MBA students to go directly into investment banking upon graduation, with a large and lasting effect on their career. Schoar and Zuo (2017) find that CEOs' careers are durably affected by the macroeconomic conditions that prevail upon their original labor market entry. Similarly, Oreopoulos, von Wachter, and Heisz (2012) and Schwandt and von Wachter (2018) find that people who graduate during recessions suffer an earnings gap that lasts ten years. Our work differs from these studies in focusing on the role of the labor market in inflicting reputational losses (in case of low relative performance) rather than accidental ones (such as those arising from macroeconomic conditions).


1. The Data

We collect data on the characteristics and career paths of professionals who are listed as employees—traders, analysts, portfolio managers, top executives in an investment company present in the 2007–2014 vintages of the Lipper Hedge Fund Database (TASS).⁵ Most of the professionals in the sample also held positions in other companies in the course of their careers, at other asset management companies (managing mutual funds, pension funds, private equity funds, etc.), banks, insurance companies, consultancies, or even nonfinancial companies. Some worked for more than one employer at the same time. This occurs almost exclusively for high-ranking positions: for instance, the COO of a company may also be the managing director of another, possibly within the same group. When employed by an investment company that manages several funds, the same professional may operate in multiple funds.

Figure 1 shows how we combine data sets drawn from different sources to construct our sample. We draw the names of 13,056 hedge fund professionals from the TASS database, the investment companies that employ them, and the funds managed by the company. Crucially, this database can link a professional employed by a given investment company with the hedge funds managed. This information allows us to identify the professionals that are potentially affected by fund-level events such as liquidations. For each fund, TASS typically lists the names of two employees, whose job titles vary from analyst to president/CEO. Each job title refers to the position held by the employee within the hierarchy of the investment company that manages the fund, not within the fund itself. In building our sample of professionals, we rely on information reported both in the "live funds" and the "graveyard" TASS databases, so as to avoid the potential survivorship bias that would arise if one were to consider only professionals working for live funds in 2007–2014 and then backfill their careers.

To complement the information provided by TASS with previous and subsequent work histories, we hand-collected data on education (degrees

⁵ TASS contains quantitative and qualitative information about 21,000 hedge funds, such as monthly performance, addresses, inception date, investment focus, management, and parent company, plus the names of employees, the investment company employing them, the hedge funds for which they worked, and their job title.

Figure 1 Construction of the data set

The figure shows how we combine data sets drawn from different sources to construct our sample. We draw the names of hedge fund professionals from the TASS database, the investment companies that employ them, and the funds managed by the company. This information is augmented with previous and subsequent work histories, education, start dates, end dates, employers, and job titles throughout the career, drawn from the individual resumes available on a major professional networking website. Job titles are matched with the Standard Occupational Classification (SOC) produced by the Bureau of Labor Statistics (BLS), via the O*Net code connector platform. To build the job level we group the SOC codes into six bins according to the EEO-1 classification system. To impute compensation, we map the SOC codes and the employment sector to average annual compensation statistics drawn from the Occupational Employment Statistics or computed from 10-K and proxy statements.

and dates, subject and school for each degree), year of the first job, and start dates, end dates, employers, and levels of all the employment positions held throughout the career. The data are drawn from the individual resumes available on a major professional networking website, and from Bloomberg, Businessweek, and company websites. A good many employment histories were excluded as missing or too incomplete, resulting in a final sample of 1,948 professionals. Our sample may underrepresent both the least and the most successful professionals, as professionals in both tails of the distribution may have less incentive to publicize their CVs, though for opposite reasons: the least successful because they have less to be proud of, the most successful because they are less likely to search for new jobs.⁶

Both of these types of sample selection go in the direction of attenuating our estimates of the scarring effects of liquidations. On the one hand, insofar as successful managers like George Soros are less likely to have experienced a fund

⁶ For example, George Soros makes only minimal biographical information available on LinkedIn, as he does not need to advertise it. Similarly, upon searching for the LinkedIn profiles of the twenty-five highest-earning hedge fund managers and traders listed by Forbes, one finds that only five provide information that is sufficiently complete as to qualify for inclusion in our sample. Similarly, a very unsuccessful employee may not post (or even remove) his or her CV from the web, in order not to publicize embarrassing information.

liquidation, the omission of their CVs from our sample lowers the estimated career path of non-liquidated fund managers, attenuating the difference between the career paths of liquidated and non-liquidated fund managers, that is, our estimate of scarring effects. On the other hand, if individuals who experience fund liquidation are more likely to have unsuccessful careers, omitting their data from our sample raises the estimated career path of liquidated fund managers, again attenuating our estimate of scarring effects.

1.1 Job levels

As shown in Figure 1, we classify the jobs in our sample along two dimensions: their position within the corporate hierarchy, and the typical compensation associated with each job title and sector. We first match the job titles reported in the resumes with the Standard Occupational Classification (SOC) produced by the Bureau of Labor Statistics (BLS). Then, to create a measure of the position of an employee in the company's job ladder, we group the SOC codes into six bins, designed to capture different degrees of decision-making power:⁷

- 1. Craft Workers, Operatives, Labors and Helpers, and Service Workers;
- 2. Technicians, Sales Workers, and Administrative Support Workers;
- 3. Professionals;
- 4. First/Mid Officers and Managers;
- 5. Top Executives (except for CEOs and similar positions);
- 6. CEOs, or other positions at the head of the corporate hierarchy.

1.2 Employment sectors

Since the same hierarchical position may have different compensation in different sectors (e.g., a chief operating officer (COO) typically earns more in asset management than in commercial banking), we assign the employers of the 1,948 individuals present in our sample to one of six sectors: (i) asset management (AM), (ii) commercial banking and other lending institutions (CB); (iii) financial conglomerates, defined as institutions encompassing lending, insurance, and/or asset management (CO); (iv) insurance (IN); (v) other finance, which includes mainly financial consultancy and portfolio advisors (OF); and (vi) nonfinancial firms, government entities, supranational institutions, and stock exchanges (NF). The total number of companies that employ the 1,948 professionals in our sample is 6,771. Of these, we identify the sectors of 2,129 companies based on information available in their websites, LinkedIn webpages, and online financial press. To determine the sectors of the remaining 4,642 companies, we use a machine learning algorithm that exploits the association between job titles and sectors: certain titles are found

⁷ These job bins are based on the EEO-1 job classification system, except for top executives, grouped in a separate bin.

exclusively, or at least much more commonly, in some sectors than in others. For instance, a loan officer is typically found in commercial banking, a trader in asset management, and an insurance agent in insurance. For the subsample of 2,129 employers sorted manually into our six sectors, we know the employee job titles. The algorithm detects systematic associations between sectors and job titles on the basis of this manually matched subsample and exploits them to sort the remaining 4,642 employers. A detailed description of the algorithm is provided in Appendix A.

1.3 Imputed compensation

Once all the individuals in our sample are sorted into sectors, we can impute their annual compensation. For job levels 1 to 4, the imputed compensation is the average salary corresponding to each SOC code and sector, based on the 2016 Occupational Employment Statistics (OES).⁸ Since the OES database does not contain information about the variable component of compensation, which is very large for job levels 5 and 6, we impute compensation for these job levels from data drawn from 10-K forms available through the Edgar system, which report both the fixed and variable components of top management pay. Specifically, we hand-collect data from the annual 10-K statements and proxy statements filed by firms with the SEC on total compensation and its components (salary, bonus, stock options, and stock-based remuneration) awarded in 2015 to the top five executives by the boards of the listed firms in the financial industry.⁹ We collect data for firms in each of the six aforementioned sectors, with the following breakdown: (i) 114 firms in asset management, (ii) 388 in commercial banking and other lending institutions, (iii) 22 financial conglomerates, (iv) 109 insurance firms, and (v) 244 firms defined as "other finance." To impute the executive compensation awarded by nonfinancial firms, we randomly choose 400 firms in the service sector.

The end result is an imputed compensation for each job title and sector. This imputed compensation gauges the typical earning capacity associated with an employee's position: it is not meant to capture the employee's actual pay, but rather to provide a measure of the earnings potential associated to a specific job in a specific sector, namely, a dollar-equivalent measure of the success attained by being in a given position and sector. This dollar-equivalent measure conveys additional information beside that contained in job levels alone: a regression of imputed compensation on job levels in our sample yields an R^2 of 0.76, so that a linear relationship with job levels leaves 24% of the variation

⁸ Since sufficiently disaggregated OES salary data are available only since 2000, we ignore time-series variation in salaries for the same SOC code and sector, so as to include pre-2000 data in the sample. However, our results are robust to the use of time-varying imputed compensation.

⁹ The titles of the top five executives vary across firms. We collect compensation data for Chief Executive Officers (or Chairmen and Chief Executive Officers) and other executives. Chairmen and CEOs are classified as job level 6, all the others as level 5.

in imputed compensation unexplained. There are three reasons for this. First, compensation is a convex function of job levels: promotions (demotions) at the top of the corporate hierarchy translate into much larger pay rises (drops) than at its bottom. Second, the mapping from job levels to compensation differs across sectors: imputed compensation provides a common monetary metric that makes careers comparable across sectors. Third, imputed compensation varies not only across the six aforementioned job levels, but also, within each level, with the SOC code for the relevant job title. For instance, the compensation of professionals (level 3 employees) ranges between \$30,000 and \$205,000, and that of mid-level managers (level 4 employees) between \$65,000 and \$221,000.

For individuals employed by more than one company at a time, we keep track of all their positions, defining their job level as the highest one held at any moment and their imputed compensation as that associated with the corresponding SOC code and sector. Table 1 reports the average imputed compensation of professionals for each level, where the average is computed for our entire sample. The table also lists examples of job titles associated with each level: for obvious reasons of space, the table cannot report the thousands of job titles present in our data. The ranking of job levels in the table is broadly consistent also with the pay scale reported for hedge fund professionals in the specialized press, by which CEOs and executives are paid substantially more than CIOs and other top managers, these are better paid than portfolio managers, which in turn earn more than analysts.¹⁰

The table shows that the steepest increases in imputed compensation come in the step from middle management (level 4) to top management (level 5), which brings more than a ninefold pay rise, and from the latter to positions such as CEO or executive director (level 6), where imputed compensation more than doubles. These two jumps arise mostly from the variable component (bonuses, stock, and options), which is included only for levels 5 and 6. On average, the variable component of imputed compensation amounts to \$1,247,797 for level 5 and \$3,214,088 for level 6 jobs, that is, 79% and 87% of total compensation, respectively.

1.4 Characteristics of professionals and careers

Table 2 reports the characteristics of the 1,948 individuals in our sample. The observed career of the average individual spans about 22 years, so that the total number of person-year observations is 42,339. All those who report educational attainment (83%) have at least one university degree: B.A. or B.S. for 39% of the sample, master's for 41%, and Ph.D. or J.D. for 3%. As one would expect, education in economics or finance is dominant: 59% of the individuals in the sample received their highest degree in these subjects. A sizable minority

¹⁰ See, for instance, the median total compensation reported for different job titles in hedge funds with more than \$250 million of assets under management in the SumZero Fund Compensation Report, 2017 Edition, https://sumzero.com/headlines/business_services/342-the-sumzero-2017-fund-compensation-report, p. 14.

Job level	Description	Average imputed compensation	Examples of job titles
6	CEOs	3,707,831	CEO, executive director, founder, managing director, managing partner
5	Top executives	1,590,858	CFO, CIO, COO, CRO, deputy CEO, partner, vice president
4	First/Mid Officers & Managers	158,150	director of sales, head of investor relations, invest- ment manager
3	Professionals	105,694	analyst, portfolio manager
2	Technicians, Sales Workers, Administrative Support Workers	101,851	trader, credit officer
1	Craft Workers, Operatives, Labors & Helpers, Service Workers	53,845	assistant, intern

Table 1 Job levels and imputed compensation

This table illustrates the two dimensions that characterize the employment positions of the individuals in our sample: their job level, that is, rank within the corporate hierarchy, and the typical compensation associated with that title and sector. Job levels are identified by first matching the job titles reported by individuals in their resumes with the Standard Occupational Classification (SOC) produced by the Bureau of Labor Statistics (BLS), and then grouping the SOC codes into six bins reflecting different degrees of decision-making power. To measure the average annual compensation associated in 2016 with each SOC code, for level 1–4 jobs we use the Occupational Employment Statistics (OES), allowing for differences in salary across the following six sectors: (i) asset management (AM), (ii) commercial banking and other lending institutions (CB); (iii) financial conglomerates, defined as institutions encompassing lending, insurance, and/or asset management (CO); (iv) insurance (IN); (v) other finance, which consists mainly in financial consultancies and portfolio advisors (OF); and nonfinancial firms and institutions, including government, supranational institutions, and stock exchanges (NF). For levels 5 and 6, we use data on total compensation (including the variable component) drawn from the 10K forms filed with the SEC in 2015 by companies belonging to the six sectors.

(16%) obtained their highest degree from a top-15 university, according to QS Ranking, and a smaller group (6%) received it from a mid-level university (ranked 16th to 40th). By age, the cohort that started working in the 1990s is overweighted (almost half the sample), those that started in the 1980s and 2000s are 22% and 28% respectively, and only 4% started before 1980. Consistently with anecdotal evidence about gender imbalance in finance, the sample is maledominated (83%).

By construction, our sample careers are dominated by the asset management industry, with 75% of all our person-year observations. However, some of the professionals in the sample spend part of their careers in commercial banking (6% of person-year observations) or outside finance (15%). The median job level in the sample is middle management (level 4 in our classification), with a median compensation of \$221,000. The average compensation is much higher (\$1,582,000), reflecting the extremely skewed income distribution of the financial industry. Individuals change not only job levels but also companies in

Table 2
Descriptive statistics

	Obs.	Mean	Median	St. dev.
Education level				
High school	1,948	0.00	0	0.05
College	1,948	0.39	0	0.49
Master	1,948	0.41	0	0.49
JD or PhD	1,948	0.03	0	0.18
Subject of highest degree				
Econ or finance	1,948	0.59	1	0.49
Science or engineering	1,948	0.08	0	0.27
Quality of highest degree institution				
Ranked top 15	1,948	0.16	0	0.37
Ranked 16-40	1,948	0.06	0	0.24
Ranked below 40	1,948	0.44	0	0.50
Cohort				
1962-1979	1,948	0.04	0	0.20
1980-1989	1,948	0.22	0	0.41
1990–1999	1,948	0.46	0	0.50
2000-2013	1,948	0.28	0	0.45
Male	1,889	0.83	1	0.37
Sector				
AM	42,027	0.75	1	0.43
CB	42,027	0.06	0	0.23
CO	42,027	0.01	0	0.09
IN	42,027	0.01	0	0.10
NF	42,027	0.15	0	0.36
OF	42,027	0.02	0	0.15
Career variables				
Job level	41,775	4.42	4	1.41
Imputed compensation (\$ thou)	40,558	1,582	221	1,639
Level 6 position	41,775	0.33	0	0.47
Level 5 position	41,775	0.15	0	0.36
Level 4 position	41,775	0.25	0	0.43
Level 3 position	41,775	0.15	0	0.35
Level 2 position	41,775	0.11	0	0.31
Level 1 position	41,775	0.01	0	0.10
Switch company	42,339	0.13	0	0.34

The table reports statistics on the characteristics of the individuals in our sample, based on data drawn from individual resumes available on a major professional networking website, together with information available from Bloomberg, Businessweek, and company websites. Education level variables are indicators for the highest degree held. Subject variables designate the subject of the highest degree. The quality of highest degree is defined on the basis of QS ranking, with three indicators depending on whether the university of the highest degree ranks in the top 15, 16th to 40th, or below 40th. Cohort dummies are defined by the starting date of the first job reported in the resume. Sector variables are dummies equal to 1 if the job is in that sector, and 0 otherwise. AM stands for asset management, CB for commercial banking and other lending institutions, CO for financial conglomerates, IN for insurance, OF for other financial companies, and NF for non-finance companies. The job level reflects different degrees of decision-making power and takes values from 1 (bottom of the hierarchy) to 6 (CEO). For levels 1-4, imputed compensation is the average annual salary associated in 2016 with each SOC code in these sectors; for levels 5-6, it is the total compensation reported in the 10K forms filed with the SEC in 2015 by companies belonging to the same six sectors. Level 6 position is a dummy variable indicating whether an individual holds a level 6 position (=1) or not (=0). Switch company is an indicator for whether at time reports working for a different company from the previous year. For some variables, fractional shares do not sum to 1 due to missing observations.

the course of their careers: 13% of person-year observations feature switches of employer.

A considerable number of individuals in our sample attain top positions: 33% of person-year observations refer to individuals holding level 6 jobs (Table 2). Mid-management positions are the next most common in the sample. The

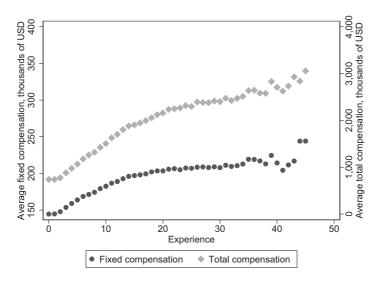


Figure 2 Career profile

The figure illustrates career paths by plotting the average imputed fixed compensation and the average imputed total compensation against work experience for the individuals in the sample. Imputed fixed compensation is the average annual salary in 2016 in each SOC code in the six sectors indicated in Table 2. For top executives imputed total compensation is the average annual total compensation associated in the 2015 10Ks with each job level (5 and 6) in the six sectors of Table 2.

prevalence of managerial positions reflects the fact that the sample consists entirely of professionals who at some point in their career held jobs in the hedge fund industry, which typically attracts highly talented individuals. That is, our data set presumably overrepresents talented workers, like those used in studies of careers of graduates from prestigious universities, such as Oyer (2008). However, our sample does not consist only of people who eventually become CEOs, as in Benmelech and Frydman (2015), Graham, Harvey, and Puri (2013), Kaplan, Klebanov, and Sorensen (2012), and Malmendier, Tate, and Yan (2011). Unlike these studies, ours also includes individuals who rise only to low- or mid-level managerial positions, or even drop from a top position to a lower one.

Figure 2 illustrates the career paths of the 1,948 individuals in our sample by plotting their average imputed compensation against work experience, showing total compensation and its fixed component separately. On average, the fixed component starts off at \$150,000 and levels off at \$200,000 after 15 years. In contrast, total imputed compensation starts at about \$1,000,000 and keeps rising throughout the career to triple after 45 years, although most of the increase comes in the first 25 years. This underscores the enormous importance of the variable pay component for asset management professionals.

Where Figure 2 illustrates the career path in terms of imputed compensation, Figure 3 describes it in terms of position on the corporate ladder, that is, job

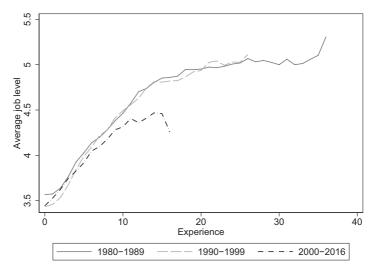


Figure 3 Career profile by cohort The figure plots average job level against work experience by cohort of individuals. The job level reflects different degrees of decision-making power and takes values from 1 (bottom of the hierarchy) to 6 (CEO).

level. The progression is shown separately for three cohorts, namely those who entered the labor market in the 1980s, 1990s, and 2000s. Those entering in the 1980s and 1990s feature the same typical career path, but that of the cohort entering in the 2000s differs significantly. These younger managers progress more slowly in the first 15 years of the career, and then experience a setback. This can probably be attributed to the fact that managers who started in the 2000s did not benefit from the earlier boom of the hedge fund industry and instead were hit by the crisis while still in the early phase of their careers, while their seniors had already reached top positions that sheltered them from the effects of the crisis.

1.5 Hedge fund returns

The data on hedge fund returns come from TASS. Hedge funds are classified by their strategy as described by TASS and are grouped into six classes by Agarwal, Daniel, and Naik (2009, 2252–53): relative value, security selection, multiprocess, directional trading, funds of funds, and "other." Panel A of Table 3 gives descriptive statistics for the 19,367 hedge funds in the TASS database; panel B compares the statistics for our sample of 4,944 funds with those for the TASS data.

The first two rows of panel A display the mean and the standard deviation of the benchmarks' monthly percentage returns, defined as the average monthly return of the funds in the class for the 1978–2014 period. As expected, in light of hedge funds' high-risk strategies, mean benchmark returns are high, ranging

	All funds	Relative value	Security selection	Multi- process	Direct. traders	Funds of funds	Other
Panel A. TASS	5 Database						
Mean, benchmark	1.05	0.73	1.32	1.04	1.09	0.78	1.24
St. dev., benchmark	2.83	1.06	3.05	2.09	3.08	2.05	4.15
St. dev., rel. perf.	2.97	2.21	3.62	2.24	4.37	1.73	4.23
Fraction of funds	100	4.80	25.61	18.23	10.77	31.77	8.76
Panel B. Differ	rences betwe	en our sample	and TASS				
Mean, rel. perf. Fraction of funds	0.00 (.01)	0.01 (0.03) 0.02*** (0.00)	0.03** (0.02) 0.08*** (0.01)	-0.13^{***} (0.02) -0.06^{***} (0.01)	0.05 (0.03) 0.00 (0.01)	-0.01 (0.01) -0.04^{***} (0.01)	0.10*** (0.03) 0.00 (0.00)
Fraction of liq. funds	-0.01 (0.01)	0.05 (0.03)	-0.04*** (0.01)	0.01 (0.02)	-0.01 (0.02)	0.00 (0.01)	-0.03 (0.03)

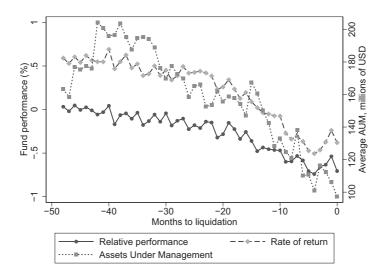
Table 3Fund descriptive statistics

The table presents summary statistics for the monthly returns of hedge funds in the TASS database and in our sample. All statistics are in %, and are broken down by fund classes following the TASS classification into six classes by type of strategy (Columns 1–6). Panel A refers to the entire sample of 19,367 hedge funds present in the TASS database at any time from 1978 to 2014: the first two rows show the mean and standard deviation of the monthly percentage benchmark returns (i.e., the cross-sectional average of the monthly returns of the funds in each class); the third row shows the standard deviation of funds' relative performance, defined as the difference between the monthly percentage return of a fund and its benchmark; the fourth row reports the percentage of funds in each class. Panel B refers to our own sample of 4,944 hedge funds: the first two rows report the mean and standard deviation of fund relative performances, the third row the percentage of funds in each class. Standard errors clustered at the fund level are shown in parentheses below the respective coefficients: * denotes p < 0.10, ** p < 0.05, and *** p < 0.01.

from 0.73% per month for relative value funds to 1.32% for security selection funds, and their volatility is correspondingly high. The third row shows the standard deviation of relative performance, computed as the difference between the absolute return of the relevant fund and the corresponding benchmark return: the dispersion of relative performance is especially high in the classes where the benchmark return is itself more variable. The fourth row gives the breakdown of funds across the six classes.

On average, the performance of the funds in our sample is quite close to that of the TASS fund population. The difference between the mean relative performance of the funds in our sample and that in the TASS database is zero when all fund classes are pooled together, and is small when the comparison is made by asset class, as shown by the top row of panel B in Table 3. The dispersion of the funds' relative performance in our sample is also comparable to that present in the entire TASS data set, as witnessed by the fact that the ratio between the two (not reported in the table) is very close to 1 (though statistically different from 1). The heterogeneity of funds' relative performance will prove to be important in analyzing the effect of liquidations on individual careers in Section 4, where we examine how the effect varies with the fund's relative performance.

Our sample features a broadly similar breakdown among the six fund classes as the TASS data, although it overrepresents security selection funds and underrepresents multiprocess funds and funds-of-funds. Importantly, in view of the role of fund liquidations in our empirical analysis, the fraction of liquidated funds in our sample is very close to that in the TASS database, both in the pooled data and within each fund class (except for security selection funds), as shown in the last row of the table.


1.6 Fund liquidations

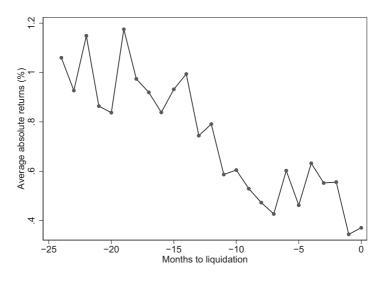
We identify fund liquidations based on the definition used in the TASS database. Liquidation is the most frequent reason why hedge funds exit the set of "live funds" in TASS and enter its separate "graveyard" database (48.44% of total exits in 1994–2014). The other seven reasons, which are not included in our definition of liquidation, are (i) "fund no longer reporting" (22.33%), (ii) "unable to contact fund" (18.58%), (iii) "fund has merged into another entity" (6.02%), (iv) "fund closed to new investment" (0.96%), (v) "fund dormant" (0.59%), (vi) "programme closed" (0.54%), and (vii) "unknown" (2.54%).¹¹

The literature identifies various reasons for hedge fund liquidations, the main one being the realization of large downside risk in their performance (Liang and Park, 2010; and Brown, Goetzmann, and Park, 2001, among others). However, successful hedge funds may also be liquidated voluntarily. For instance, even if the fund is doing well, its management may liquidate it out of dissatisfaction with the trend performance of the relevant asset class and fear of a future market crash. Another reason for liquidation is the investment company's wish to restructure its fund supply: Liang and Park (2010, 213) cite the example of a fund that produced a cumulative rate of return of 1,139% over its 67month history, yet was liquidated to be replaced with two new funds with the same strategy but different subscription and redemption policies. Finally, hedge fund liquidations may be forced by regulatory interventions in the wake of alleged misconduct. A famous example is S.A.C. Capital Advisors, a hedge fund founded by Steven Cohen, that in 2012 was implicated in an insider trading scandal: in 2013 the hedge fund pleaded guilty to criminal charges in a \$1.8 billion settlement that required it to stop handling investments for outsiders.

In line with the literature, we find that the 6,577 funds in the TASS database that were liquidated between 1994 and 2014 typically feature poor performance before the liquidation. As shown in Figure 4, both their rate of return and their performance relative to the relevant benchmark decline in the four years before liquidation. Their average rate of return turns negative six months before liquidation, and drops below the relevant benchmark as early as 40 months before liquidation. Indeed, 52.1% of liquidated funds feature a negative absolute rate of return in the six months before liquidation, and 74.5% perform worse

¹¹ In Section 3.1, we exploit these alternative reasons for fund terminations to conduct robustness tests.

Fund performance and Assets Under Management approaching liquidation


The figure shows average fund relative and absolute performance (left axis) and average assets under management (right axis) of liquidated funds in the 48 months preceding liquidations. Fund relative performance is computed as the difference between the monthly fund's absolute return and the monthly return of the relevant benchmark.

than their benchmark in the two preceding years. Figure 4 also shows that in these funds, the assets under management on average decline steeply before liquidation, indicating that this typically follows strong net outflows.

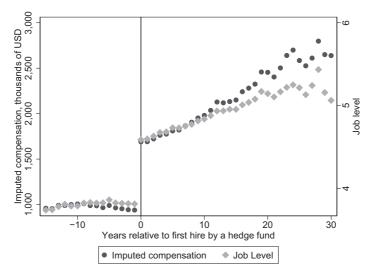
However, a sizable fraction of funds (25.5%) are liquidated despite performing better than their benchmark in the two years before liquidation. Some of these (7.2%) of the total) generate negative returns in the six months before liquidation: in their case, liquidation may still be triggered by dissatisfaction with performance. For the remaining funds in this group, which put in a positive performance in both relative and absolute terms, liquidation is likely to have been triggered by the other reasons highlighted above: negative trend in the relevant benchmark, reorganization of the fund family or regulatory interventions. In support of the first of these three hypotheses, Figure 5 shows that their absolute monthly returns feature a trend decline from about 1% to 0.4% in the 24 months before liquidation.

Among the reasons why fund reorganization may lead to their liquidation, there may be the desire to reset a high-watermark clause in incentive fees, by setting up a new fund. However, we find that in our data, funds with high watermarks are less likely to be liquidated, and that the effect of a high-watermark clause on the likelihood of liquidation does not vary depending on previous fund performance.¹² Hence, the interaction of poor absolute

¹² These results are obtained by estimating a panel probit regression (not reported for brevity) using our entire TASS data set at monthly frequency, where the dependent variable is a fund liquidation dummy, and the explanatory

Absolute returns approaching liquidation: Funds with positive relative performance in the 24 months preceding liquidation

The figure shows the average monthly rate of return of funds that are liquidated irrespective of having positive relative performance in the 24 months before liquidations.


performance and high watermark does not appear to be a significant trigger of liquidations.

2. Career Paths in the Hedge Fund Industry

Our data on the career profiles of finance professionals enables us to determine whether the evidence is consistent with the popular belief that being hired by a hedge fund brings enormous career advancement and earnings gains, and to investigate whether such advancement is correlated with managers' talent and funds' performance. In Section 3, we will determine whether professionals who work in the hedge fund industry also face the danger of significant career setbacks.

Figure 6 provides descriptive evidence on career advancement after hiring by a hedge fund company, that is, the average job level and imputed compensation of 1,379 individuals joining such a company for the first time. Entry into the industry does in fact coincide with a remarkable career leap: the job level jumps by almost a full notch (from an average of 3.8 to 4.6) and then continues to

variables are the funds lagged absolute return, a high-watermark clause dummy, and its interaction with the funds absolute return: the coefficients of the funds return and of the high-watermark dummy are both negative and statistically significant, while that of the interaction is small and not statistically different from zero. Liang and Park (2010) also find that funds with a high watermark are less likely to be liquidated, and suggest that this may be due to the fact that better managers are more likely to accept a high watermark clause than others because they are able to produce a better performance, and thus are liquidated less often.

Figure 6 Entry into the hedge fund industry

The figure shows average job level (left-hand scale) and average imputed total compensation (right-hand scale) in the fifteen years before an individual is hired by a hedge fund and the thirty years after. The job level reflects different degrees of decision-making power and takes values from 1 (bottom of the hierarchy) to 6 (CEO). For those below level 5, imputed compensation is the average annual salary associated in 2016 with each SOC code in the six sectors listed in Table 2. For top executives (levels 5 and 6) imputed compensation is the average annual total compensation associated in the 2015 10Ks with each job level in the six sectors of Table 2.

rise gradually by a further half-notch over the subsequent 30 years; similarly, imputed compensation jumps by about \$750,000 in the first year and by another \$1,000,000 over the next 30 years. Interestingly, entering the hedge fund industry is associated with greater career advancement than switching employers earlier in one's career, which coincides with an average rise of 0.42 notches in job level and \$386,000 in imputed compensation.

In Table 4 we investigate how job levels and imputed compensation upon being hired by a hedge fund company relate to employee and fund characteristics. Column 1 reports the estimates of a regression of the job level upon hiring on education quality (a dummy equal to 1 if the individual has a graduate degree from a top-15 university and 0 otherwise), work experience, experience in asset management, and gender. Column 2 adds fund characteristics to the explanatory variables, namely, the average performance of the fund relative to its benchmark in the three years before the hiring, the average return of the fund's benchmark over the same interval, the logarithm of the fund's assets under management, and six dummies capturing the fund's investment style.¹³ Columns 3 and 4 replicate the specifications in Columns 1

¹³ Since the job level is an ordinal variable, in Table B.1 we estimate an ordered probit model that includes the explanatory variables in Column 2, and obtain results qualitatively similar to those shown in Table 4.

Table 4	
Career outcomes upon entering the hedge fund industry	

	Job	Job level		mpensation, s of USD
	(1)	(2)	(3)	(4)
Education quality	0.320***	0.338**	315.184***	225.842
	(0.090)	(0.145)	(118.886)	(199.941)
Experience	0.016***	0.022**	15.285**	21.356**
	(0.006)	(0.009)	(6.869)	(10.235)
Exp. in AM	0.024***	0.024**	22.009**	29.575**
	(0.007)	(0.011)	(9.644)	(13.624)
Female	-0.740^{***}	-0.514^{***}	-809.212^{***}	-611.079^{***}
	(0.075)	(0.106)	(77.454)	(109.666)
Previous job level	0.117***	0.130***		
	(0.019)	(0.029)		
Past performance		0.063**		51.713
		(0.025)		(31.525)
Past benchmark		0.073		103.130
		(0.079)		(76.758)
log(AUM)		0.004		19.568
		(0.027)		(30.681)
Previous compensation			0.296***	0.251***
			(0.034)	(0.053)
Constant	4.002***	4.242***	1294.877***	1070.533
	(0.061)	(0.539)	(60.545)	(657.081)
Fund style dummies	No	Yes	No	Yes
Observations	1,877	710	1,807	687

The table shows how career outcomes (job level and imputed compensation) upon being hired by a hedge fund company correlate with individual and hedge fund characteristics. *Job level* ranges from 1 (bottom of the hierarchy) to 6 (CEO). *Education quality* is a dummy equal to 1 if the individual has a graduate degree from a university ranked in the top 15 and 0 otherwise. *Experience (Exp. in AM)* is the number of years of work experience (in asset management) at the time of hiring. *Female* is a dummy equal to 1 for women and 0 for men. *Previous job level* (compensation) is the job level (imputed compensation) in the year before hiring. *Past performance* is the average difference between fund *j*'s monthly percentage return and its benchmark in the three years before hiring, *Log(AUM)* is the logarithm of lagged average assets under management of fund *j*. Fund style is a set of six dummies capturing the fund's investment style. Robust standard errors are shown in parentheses below the respective coefficients: * denotes p < 0.10, ** p < 0.05, and *** p < 0.01.

and 2, respectively, using imputed compensation as the dependent variable. All specifications include the individual's previous job level or imputed compensation, as employees starting from higher positions have less room for advancement.

The positive and significant coefficient of the education variable can be read as evidence that talent is rewarded in the hedge fund industry: a graduate degree from a top-15 university is associated with a job level one-third of a notch higher and an increase in imputed compensation ranging between \$225,000 and \$315,000 (though not significant in Column 4). The career advance upon entering the hedge fund industry is also strongly related to experience, and even more to the time spent working in asset management: each year of asset management experience is associated with a further increase in imputed compensation of \$22,000 to \$29,000, depending on specification. In line with much evidence about the gender gap in finance (Adams and Kirchmaier 2016; Bertrand, Goldin, and Katz 2010; and Bertrand and Hallock 2001), the career

progress of women upon entering the hedge fund industry is half a notch lower than that of men, and their rise in imputed compensation is between \$611,000 and \$809,000 lower depending on the specification.

The job level obtained upon entry in the hedge fund industry is also positively and significantly correlated with the previous relative performance of the relevant fund. A possible interpretation is that better relative performance enables the investment company to offer higher positions to new hires, because it can attract larger net inflows from investors that allow the company to expand. This does not apply to hedge fund classes as such, however: neither the job level nor the imputed compensation are significantly correlated with the benchmark return of the relevant fund. Nor does fund size appear to contribute to the career advancement of new hires.

Career advancement after the hire, instead, is not significantly correlated with the fund's current and past relative performance. This is shown in Table B.2 of Appendix B, where the dependent variable is the change in job level (panel A) or imputed compensation (panel B) of employees of hedge fund companies between year *t* and year t+k (for k=1,2,3,4,5), and the explanatory variable is the fund's relative performance, averaged over years *t* and year t+1: the estimated coefficients are positive, but invariably small and imprecisely estimated. But, as we shall see in the next section, relative performance has a significant explanatory power for career prospects in the context of fund liquidations.

To summarize, our data corroborate the common opinion that hedge fund managers are very well paid, even when benchmarked against their previous pay in other segments of the finance industry. But the data are also consistent with the idea that they are at least partly rewarded for their skills, as captured by the quality and level of their education, and their experience in asset management. The next section investigates whether the labor market also punishes them for poor performance, reassessing their talent and demoting them accordingly.

3. Career Paths After Fund Liquidations

Here we seek to determine whether the career path of asset managers is significantly altered after the liquidation of the funds where they work, by comparison with managers whose funds are not wound up. Hedge funds are particularly well suited to this issue, in that their performance is very volatile and they are liquidated often, especially when performance is unsatisfactory: 31% of the hedge funds in the TASS database between 1994 and 2014 were eventually wound up. Specifically, the question is whether, following the liquidation of a hedge fund, the labor market options of its employees are affected adversely, and in particular whether this effect is more pronounced for high-ranking managers, who have more to lose.

As we shall see, there is evidence of scarring effects, especially for highranking managers. Note that our sample is biased against such scarring effects, to the extent that people tend to underreport career setbacks in their profiles on professional websites. In this sense, the effects we estimate should perhaps be seen as a lower bound.

In what follows, we first document that fund liquidations are indeed associated with a subsequent career slowdown (Section 3.1). Next, we investigate whether the post-liquidation career slowdown is greater for high-ranking managers than for low-ranking ones (Section 3.2), and whether the scarring effects of liquidations extend to other aspects of managers' careers, such as the likelihood of exiting the asset management sector or that of founding a company (Section 3.3). We leave the analysis of the possible causes of these scarring effects to Section 4.

3.1 Scarring effect of liquidations

To determine whether fund liquidations adversely affect employees' subsequent job levels and salaries, we use a diff-in-diff framework combined with matching, so as to compare the evolution of the careers of employees that experience liquidation with that of similar employees who do not. This method controls for unobserved talent by including individual fixed effects, and for the differences in individual career paths associated with observable differences in education, experience, gender, and initial job level by building a control sample with matching characteristics. Both controls are required to clear the ground of the possible correlation between liquidations and career outcomes induced by assortative matching between funds and managers: the liquidated funds may have been run by less talented managers, who would have had lackluster careers anyway. Individual fixed effects remove the impact of differences in unobserved talent on job levels and salaries, while the matching procedure filters out the influence of observed characteristics.

In addition, there is substantial variation in the timing of the liquidations (Figure 7). Though there are peaks coinciding with the market turbulence of 2008–09 and 2011, many liquidations also occur in normal times. This strengthens the external validity of our estimates: if funds were wound up only in financial crises, their scarring effects might be compounded by a particularly unfavorable labor market for people seeking new jobs.

Our event of interest is the first fund liquidation that an employee experiences; in our sample this involves 661 employees, that is, 34% of the 1,948 professionals in our sample (close to the 31% frequency of liquidations in the TASS database). Each individual who experiences a fund liquidation is paired with a control individual in the calendar year before the liquidation via propensity score matching. The matching algorithm that we use is one-to-one nearest neighbor matching without replacement, and the propensity score is based on education, experience, education quality, gender, job level, change in job level, and an indicator for employment in asset management in the year

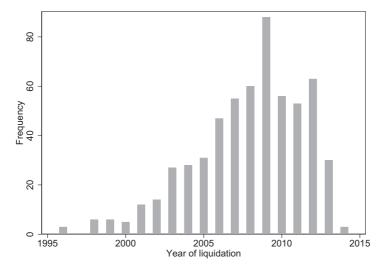


Figure 7 Histogram of hedge fund liquidations

before the liquidation.¹⁴ This provides a counterfactual career development, namely, the time path that the job level, imputed compensation, or company switches would have followed in the absence of liquidation. After the matching procedure, we are left with 587 individuals in the sample of liquidated funds and an equal number in the control sample. As a robustness check, we also estimate the same specifications on the whole sample of 661 individuals that experience a liquidation and 1,287 that do not, without matching: the resulting estimates (shown in Table B.3 of Appendix B) confirm those obtained with the matching methodology.

Our specification controls for individual effects and for time effects:

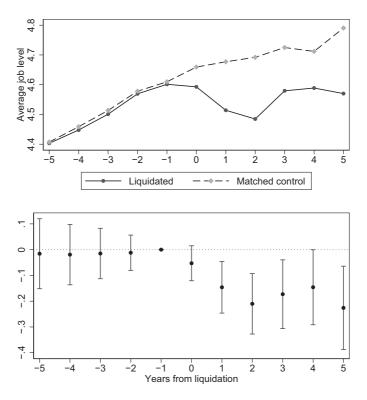
$$y_{it} = \alpha_i + \lambda_t + \sum_{k=-5}^{5} \delta_k L_{it}^k + \epsilon_{it}, \qquad (1)$$

where y_{it} is the variable of interest, namely, the job level, compensation, or switch to a new employer, α_i are individual fixed effects, λ_t are year effects (relative to the liquidation year, defined as t=0),¹⁵ and $L_{it}^k = L_i \times \mathbf{1}(t=k)$ are a set of 11 dummies, each equals to 1 k periods before or after the liquidation if individual i experiences it ($L_i = 1$), and 0 otherwise.

The figure plots the histogram of the years in which individuals experience for the first time the liquidation of a hedge fund for which they work.

¹⁴ As a robustness check, we implement another algorithm in which the propensity score is also based on the relevant fund's pre-liquidation performance, and obtain similar estimates.

¹⁵ All our results are robust to the inclusion of year fixed effects (in addition to year-from-liquidation effects), intended to control for aggregate shocks equally affecting managers of eventually liquidated funds and those of the control group.


We normalize the value δ_{-1} to 0 to identify the sequence of δ_k , which can be interpreted as the change in outcome (e.g., job level) from the year before the event to *k* periods after (or before) by comparison with individuals who did not experience a fund liquidation. Our empirical strategy requires the absence of trend differentials in the outcome variable before the liquidation event. If this assumption holds, then δ_k should be approximately zero for k < 0, and any effects of the liquidation should emerge as estimates of δ_k significantly different from zero for $k \ge 0$.

We use career data for five years before and after the liquidation event, to make sure that the endpoints of the leads and lags are not a mixture of further leads and lags. Since it has been shown that talented workers tend to leave their companies when these approach bankruptcy (Baghai et al. 2017), we count as affected employees all those who were employed in the relevant fund in a two-year window prior to the event. This avoids the selection bias that could be induced by considering only those still working at the fund when it is wound up.

The resulting estimates are shown in Figure 8 (job level), Figure 9 (compensation), and Figure 10 (employer switches) for an interval of eleven years centered on the liquidation year. Each figure shows the paths of these three outcomes for the liquidated and control groups (upper panel) and the corresponding differences—that is, the estimated δ_k) with their 95% confidence intervals (lower panel). None of the three outcome variables shows any significant difference in pre-liquidation trends between the liquidated and control groups, that is, the coefficients δ_k are not significantly different from zero for k < 0, as our empirical strategy requires; but they are significantly different from zero afterwards.

In particular, both the job level and imputed compensation decline significantly after the liquidation, without noticeable reversion to their preliquidation level. The job level drops by 0.2 notches in the two years after liquidation and remains at this lower level for the next three years. The behavior of imputed compensation is similar: by the second year after liquidation, it drops about \$200,000 below the pre-liquidation level, and stays there in the subsequent three years.

A possible concern about our estimates of the drop in imputed compensation associated with fund liquidation is that our imputation is based on 2015–16 data only, and therefore exploits cross-sectional variation but neglects time-series variation in imputed compensation. This choice is aimed at maximizing our sample size, since we can construct a time-varying measure of imputed compensation only for the 2000–2015 interval. However, to test the robustness of our results in this direction, we repeat the estimation using time-varying imputed compensation for this shorter sample: the resulting estimates of the drop in compensation in the first three years after liquidation are very similar to those reported earlier—that is, about \$144,000, \$200,000, and \$160,000 below the pre-liquidation level, respectively.

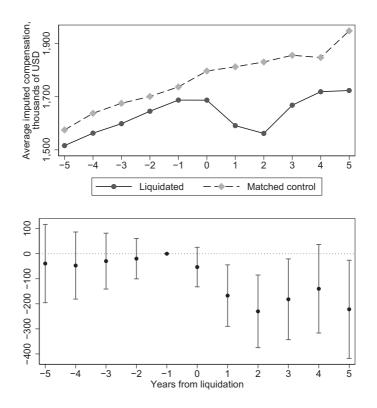
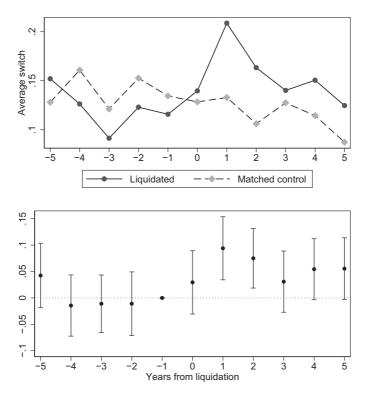


Figure 8 Job level around liquidations

The top panel shows the average job level in the five years before and after a hedge fund liquidation, for employees of liquidated funds and for the matched control sample. Job level reflects different degrees of decision-making power and takes values from 1 (bottom of the hierarchy) to 6 (CEO). The bottom panel of the figure shows the sequence of estimated δ_k coefficients from Equation (1) when the outcome variable is job level (i.e., the coefficients of the interaction terms between having ever experienced a liquidation and indicators for time from liquidation in a model that includes time-from-liquidation and individual fixed effects) and the corresponding 95% confidence intervals.

On the whole, Figures 8 and 9 suggest that individuals working for liquidated funds suffer a significant and durable career slowdown. The slowdown is specifically associated with liquidations, and not with fund terminations due to other reasons. In unreported regressions, we test whether careers feature a significant slowdown when individuals face for the first time a fund termination occurring for other reasons, specifically because, according to TASS, the fund is merged into another entity, is closed to new investment, becomes dormant, or has its program closed. We find no significant changes in the career paths of professionals following any of these events. Thus the scarring effects documented here are not merely associated with the fund being dropped from the database of live funds.

The post-liquidation career slowdown is accompanied by increased probability of switching employers. For employees with jobs in more than a



Imputed compensation around liquidations

The top panel shows the average imputed compensation in the five years before and after a hedge fund liquidation, for employees of liquidated funds and for the matched control sample. The bottom panel shows the sequence of estimated δ_k coefficients from Equation (1) when the outcome variable is compensation (i.e., the coefficients of the interaction terms between having ever experienced a liquidation and indicators for time from liquidation in a model that includes time-from-liquidation and individual fixed effects) and the corresponding 95% confidence intervals.

single company, a switch occurs when any of the employers change. However, moving to a different fund managed by the same parent company does not count as a switch (the employment relationship is at company and not fund level). The probability of switching, that is, job mobility, rises by 10 percentage points in the year after the liquidation, as shown by Figure 10). The figure also shows that, prior to the liquidation date, the managers of the funds that are later liquidated are no more likely to switch employers than those in the control group. This is consistent with the idea that it is the liquidation that triggers mobility, not managerial turnover (due, say, to resignations) that triggers liquidations.¹⁶

¹⁶ This test is possible only because the managers of the liquidated funds include all those who worked for those funds at any time during the two years prior to the event: if we had required them to work for those funds up to the year of the event, then by construction they could not have switched to a new employer beforehand.

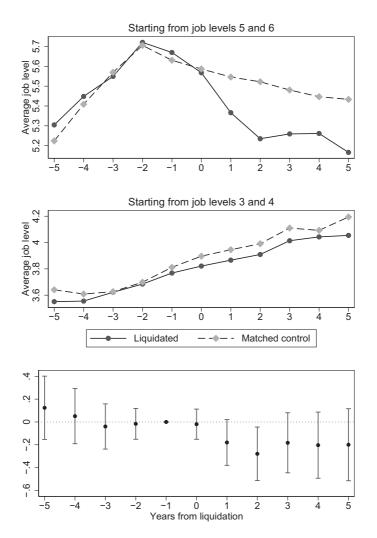
Figure 10 Mobility around liquidations

The top panel shows the fraction of individuals switching to a new company in the five years before and after a hedge fund liquidation, for employees of liquidated funds and for the matched control sample. Switch is equal to 1 if the employee switches to a new employer in the current year, and 0 otherwise. The bottom panel shows the sequence of estimated δ_k coefficients from Equation (1) when the outcome variable is switch (i.e., the coefficients of the interaction terms between having ever experienced a liquidation and indicators for time from liquidation in a model that includes time-from-liquidation and individual fixed effects) and the corresponding 95% confidence intervals.

In Figures 8, 9, and 10, the estimate of the effect of liquidation at each date (each δ_k) is based on a different sample, because sample composition changes over time. For example, asset managers whose funds are liquidated early in their careers are not observed several years prior to the event, and those who experience liquidation at the end of the career are not observed several years after. To allay this concern, as a robustness check, we also estimate Equation (1) using a balanced sample of managers of liquidated funds and matched controls, that is, manager pairs that are observed for all the eleven years surrounding liquidation. The results (not reported for brevity) are very similar to those shown in the above figures.

3.2 Scarring effects for high- and low-ranking employees

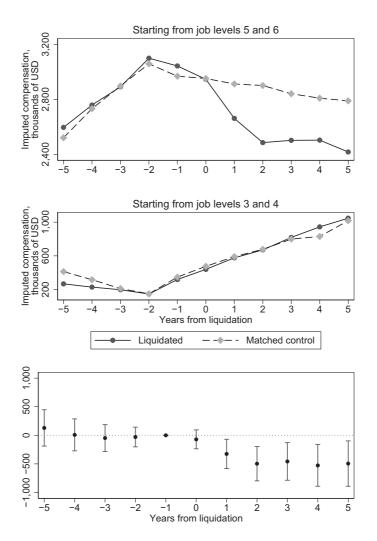
One may expect scarring effects to vary among professionals depending on their characteristics: for instance, better educated or more experienced individuals may suffer a smaller loss of reputation and find another job more easily. However, we find that post-liquidation career outcomes do not differ significantly by educational quality, work experience, or gender.


The only characteristic that does significantly affect the existence and magnitude of scarring effects is the previous job level. Specifically, high-ranking employees are hurt more severely than others following a liquidation, as is shown by repeating the analysis separately for two groups: individuals with high positions (job levels 5 and 6), and those with medium-level jobs (levels 3 and 4) prior to the liquidation. The classification is based on the position held two years before the liquidation to test for possible anticipated effects of the liquidation on job levels. Also in this case, we use observations for eleven years centered on the liquidation year, both for the employees of liquidated funds and for the control sample.

The top panel of Figure 11 displays the job level paths for high-ranking employees of liquidated funds and for the respective control group. The two groups advance at the same pace toward top jobs (level 6) before the liquidation, but diverge afterwards: the employees of the liquidated funds gradually lose 0.4 notches over the subsequent five years, the control group less than 0.2. The middle panel, by contrast, shows that mid-level employees keep advancing in their career paths after liquidation, albeit at a slightly slower pace than employees in the control sample. The bottom panel shows that the differences between the post-liquidation career paths of high- and mid-level employees relative to their respective controls (i.e., the differences in their estimated δ_k) are significantly different from zero in the first two years after liquidation. While the two top panels show how job levels change differentially for employees starting from a given level, the bottom panel shows the difference between the effect of liquidation for employees starting from top- and mid-level jobs, as well as the corresponding 95% confidence intervals.

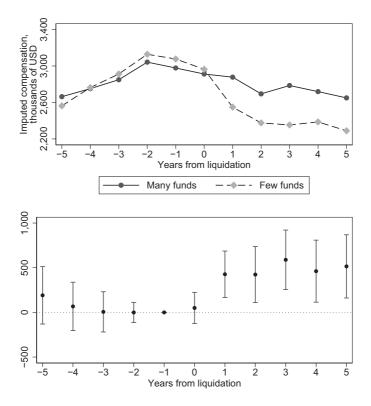
The behavior of the imputed compensation of the two groups of employees differs even more markedly (Figure 12). After liquidation, high-ranking employees face a much sharper cut in imputed compensation than their control group, while mid-level employees experience no decline relative to their peers in non-liquidated funds. The difference-in-difference between high-ranking and mid-level employees is about \$500,000 after five years, and statistically significant at the 5% level.

Job mobility also increases substantially after liquidations only for highranking employees: for them, the probability of switching to a new employer increases by 10% more than for mid-level employees in the year after the liquidation (not shown for brevity).


The fall in the post-liquidation job level implied by our estimates for toplevel employees may seem less striking than that documented for executives after bankruptcy by Eckbo, Thorburn, and Wang (2016): only one-third of their sample of executives retain CEO status after bankruptcy, while in our sample 71% of level 6 professionals retain this level in the subsequent five years. This

Job level around liquidations, for high- and low-ranking employees

The top panel shows the average job level in the five years before and after a hedge fund liquidation for employees of liquidated funds and for the matched control sample of individuals who held a top position (job level 5 or 6) two years before liquidation. The middle panel shows the average job level in the five years before and after a liquidation for employees of liquidated funds and for the matched control sample individuals who held a middle position (job level 3 or 4) two years before liquidation. The bottom panel shows the sequence of estimated coefficients of the triple interaction terms between having ever experienced a liquidation, holding a top position two years before liquidation, and indicators for time from liquidation, in a model that includes group-specific time-from-liquidation and individual fixed effects, and the corresponding 95% confidence intervals.


difference may be simply because hedge fund liquidations are far less traumatic than firm bankruptcies: investment companies typically manage a family of hedge funds, and therefore generally stay in business even after winding up a fund. Hence top-level professionals working for a liquidated fund can retain

Imputed compensation around liquidations, for high- and low-ranking employees

The top panel shows the average imputed compensation in the five years before and after a hedge fund liquidation for employees of liquidated funds and for the matched control sample of individuals who held a top position (job level 5 or 6) two years before liquidation. The middle panel shows the average imputed compensation in the five years before and after a hedge fund liquidation for employees of liquidated funds and for the matched control sample of individuals who held a middle position (job level 3 or 4) two years before liquidation. The bottom panel shows the sequence of estimated coefficients of the triple interaction terms between having ever experienced a liquidation, holding a top position two years before liquidation, and indicators for time from liquidation, in a model that includes group-specific time-from-liquidation and individual fixed effects, and the corresponding 95% confidence intervals.

their rank within the same company, working for another of its remaining funds. Indeed, the effects of liquidations on top-level professionals differ markedly depending on the number of funds that their investment company operates: five years after liquidation, 84% of level 6 professionals retain their job level if they

Imputed compensation around liquidations, by number of funds under management

The top panel shows the average imputed compensation in the five years before and after a hedge fund liquidation for top executives (job level 5 or 6) of companies that manage more than the median number of hedge funds (five) and those that manage less than five funds. The bottom panel shows the sequence of estimated coefficients of the triple interaction between having ever experienced a liquidation, working in a company that manages more than five funds, and indicators for time from liquidation, in a model that includes group-specific time-from-liquidation and individual fixed effects, and the corresponding 95% confidence intervals.

were employed by an investment company with a number of funds above the median, against 65% at companies with below-median number of funds (the median being 5).

The drop in imputed compensation of high-ranking managers also differs between these two types of investment companies: Figure 13 shows the average compensation for level 5–6 professionals at liquidated funds, separately for companies with above- and below-median numbers of funds. The average postliquidation loss is about \$500,000 less for managers employed by investment companies with more funds, and this difference is statistically significant. These results are consistent with the idea that multi-fund investment companies tend to retain valuable top-level employees, because the liquidation of one of the funds is less likely to be associated with the demise of the company.

	Job in asset mgmt. (1)	Job in non-finance (2)	Being a founder (3)	No. of jobs (4)
Panel A. Starting from j	ob levels 5 and 6			
Liquidation	-0.049**	0.023	-0.044**	0.028
1	(0.021)	(0.020)	(0.020)	(0.040)
Observations	3,924	3,924	3,924	3,924
No. professionals	600	600	600	600
Panel B. Starting from j	ob levels 3 and 4			
Liquidation	-0.049	0.040	-0.003	0.035
1	(0.032)	(0.028)	(0.013)	(0.034)
Observations	2,994	2,994	2,994	2,994
No. professionals	463	463	463	463

Table 5Other post-liquidation career outcomes

The table reports estimates of the effects of liquidation on career outcomes. *Liquidation* is a dummy equal to 1 in the five years following liquidation (for funds that are liquidated), and 0 otherwise. *Job in asset mgmt.* is an indicator for working in asset management, *Job in non-finance* for working in a nonfinancial company; *Being a founder* designates a company founder, and *No. of jobs* is the number of companies employing the professional. Panel A reports the estimated effects of liquidation for professionals that held a level 5 or level 6 position two years prior to liquidation. Panel B reports the effects for professionals that held a level 3 or level 4 position two years shown in parentheses are clustered at individual level: * denotes p < 0.10, ** p < 0.05, and *** p < 0.01.

3.3 Other outcomes of liquidation

In principle, the liquidation of a hedge fund may be associated with even more drastic career outcomes than demotion in the corporate hierarchy or a pay cut. It could mean the exit from asset management or from the finance industry altogether. We investigate whether this is the case in the regressions shown in the first two columns of Table 5, which are based on the sample of individuals that experienced liquidation and their matched controls. For each individual, we use data from 1 year prior to liquidation, the year of liquidation and the five years following it (seven years in total). In Column 1 the dependent variable is a dummy equal to 1 if the individual works in asset management and 0 otherwise; in Column 2, it is a dummy capturing whether the individual works in the finance industry or not. The other regressions in Table 5 investigate two other outcomes of fund liquidations, namely the observed frequency of being a company founder and the number of employment positions held.

All the regressions in Table 5 are estimated separately for top- and mediumlevel employees, given the foregoing evidence that fund liquidations are associated with different career outcomes for the two groups. And in fact for these other outcomes too there are no statistically significant effects for mid-level employees, whereas for those starting from top-level positions the probability of remaining in asset management in the five years after liquidation is 5 percentage points lower than for their peers not exposed to liquidation (Column 1), although their probability of exiting the finance industry altogether is not significantly greater (Column 2). Three years after the liquidation, 86% of the employees associated with liquidated funds are still in asset management. Of those leaving asset management, 55% end up outside finance altogether, 27% in commercial banking, 11% in "other finance" (mainly financial advising), 4% in financial conglomerates, and 3% in insurance.

The probability of being the founder of a company drops by about 4 percentage points for top-level employees after a fund liquidation, suggesting that liquidation may depress entrepreneurship, possibly for reputational reasons (Column 3). Finally, liquidation does not appear to be significantly associated with change in the number of employment positions, that is, companies with which an individual is associated.

The main result of this section is that hedge fund liquidations entail significant and persistent scarring effects, mainly on high-ranking managers. In itself this finding does not help us to discriminate between reputational and accidental losses. One could argue that, given their decision-making power, high-ranking employees are subject to the greatest reputation loss. But they also are likely to be those with the most human capital at stake: they may have developed portfolio strategies, client relationships, and work habits that cannot be easily transplanted to a new job, possibly outside the hedge fund industry or even the finance industry altogether. Hence, they may stand to lose more than lowerranking employees. In the next section we use a different approach to distinguish between liquidations that tarnish the managers' reputation and those that do not.

4. Possible Causes of Scarring Effects

In principle, the scarring effect of fund liquidations may have two, not necessarily mutually exclusive, causes.

First, liquidation may trigger a reputation loss for the asset managers, with repercussions on their subsequent careers. However, this reputation loss should occur only when liquidation follows underperformance that persists sufficiently long and therefore is not just the reflection of high-frequency noise. In this case, the liquidation of the fund is prompted by dissatisfaction with the perceived skill of its managers. But, since fund performance is publicly observable, the managers also lose reputation with other potential employers, so that after liquidation they cannot find jobs of comparable level.

Second, fund managers may accidentally suffer a career slowdown, simply because the liquidation happens to force them to take new positions where they are less productive, rather than because of a reputation loss. That is, a liquidation can be associated with scarring effects even when the fund has performed broadly in line with its benchmark. For instance, this may occur when the benchmark itself performed poorly; or when liquidation resulted simply from an internal reorganization of the parent investment company or from reaching a planned terminal date. In these cases, the liquidation is due to circumstances outside the manager's control, and therefore should not convey any information about his quality, similarly to workers' dismissals due to plant closures in Gibbons and Katz (1991).¹⁷ It may nevertheless entail a subsequent career slowdown, by inflicting a loss of human capital on the professionals involved. For instance, the corporate reorganization may entail outright exit from the fund class in which the professional is specialized, causing redundancy and forced acceptance of a lower-level position elsewhere.

To discriminate between these two cases, in the Online Appendix we propose a career model featuring moral hazard and adverse selection, where funds' relative performance allows the market to gradually learn about managers' skills, and both performance pay and the danger of liquidation play a role in disciplining the choice of effort. In the model, liquidations can be driven either by consistently poor relative performance or by reasons that are not performance-related. Persistently poor performance leads investors to become so pessimistic about the manager's skill that they can no longer profitably incentivize him. At this point, the fund has to be liquidated, after which the manager's poor reputation prevents him from being hired elsewhere.

The model produces two results that are relevant to interpret our empirical findings. First, the scarring effects of liquidations that occur after persistently poor relative performance reflect reputation losses, unlike those that may arise after normal relative performance. Second, only the scarring effects triggered by these liquidations have a market discipline effect, but this effect is diluted if accidental liquidations are frequent and entail scarring effects: insofar as a manager expects to be terminated almost irrespective of his actions, he has little incentive to shine.

To test whether relative performance before liquidation affects postliquidation career slowdowns, we estimate the following variant of Equation (1):

$$y_{it} = \alpha_i + \lambda_{gt} + \gamma L_{it}^{post} + \delta L_{it}^{post} \times P_{it}^- + \epsilon_{it}, \qquad (2)$$

where L_{it}^{post} is a liquidation dummy equal to 1 in the five years after liquidation and 0 otherwise, and P_{it}^{-} is a "poor performance" indicator, thats is, a dummy equal to 1 if the liquidation follows a period (alternatively, 1 year or 2 years) in which the fund's average monthly return fell short of its benchmark. Equation (2) also includes individual fixed effects, α_i , and separate time effects for the two subsamples of control employees, λ_{gt} , where g = 1 for the control individuals matched with the employees of underperforming liquidated funds and g = 2 for those matched with employees of well-performing funds.

The coefficient γ in Equation (2) measures the effect on career outcomes of a liquidation preceded by normal relative performance. A negative estimate of

¹⁷ Gibbons and Katz (1991) develop and test an asymmetric information model of layoffs where individual dismissals lead to reputation loss, wage reduction, and long unemployment spells, while such scarring effects are lower for dismissals due to plant closings. In our setting, there is no distinction between individual dismissals and those associated with fund liquidations, but the market can condition on a noisy public signal (fund performance) to update its beliefs regarding the motives of liquidation, so that its scarring effects depend on the realization of this signal.

 γ would be evidence that also accidental liquidations occurring after normal performance have scarring effects, while a zero estimate of γ indicates that such liquidations have no scarring effects. The coefficient δ instead captures the incremental effect of poor performance: a negative estimate of δ measures the career slowdown due to reputation loss from liquidation.

The resulting estimates are shown in Columns 1, 2, and 3 of Table 6 for the job level, imputed compensation, and job mobility. We measure pre-liquidation performance over two years to filter out high-frequency noise in returns. The estimates of the coefficient γ are small and not significantly different from zero for job level and imputed compensation (Columns 1 and 2); hence, when there is no prior underperformance, liquidation has no scarring effect. By contrast, the estimates of the coefficient δ in these two regressions is significantly different from zero. We also estimate these regressions measuring pre-liquidation performance over a single year, and find that the coefficient of the interaction between the liquidation and the poor performance dummies is still negative but is no longer statistically significant. This result is in line with a learning model: the revision of the manager's reputation is more accurate when performance is averaged over two years, as time averaging increases the signal-to-noise ratio in pre-liquidation returns, and hence its informativeness about the manager's talent.

When a liquidation is preceded by underperformance, it triggers a job level drop of 0.32 notches larger than if the liquidation were preceded by normal performance, and an imputed compensation loss over \$460,000 larger, which is 26.8% of their imputed compensation in the pre-liquidation year. As a robustness check, we reestimate the same specifications on the whole sample of individuals, without matching: the resulting estimates (Table B.4 of Appendix B) are in line with those obtained with the matched sample. As a further robustness check, we also estimate Equation (2) using time-varying imputed compensation as the outcome variable: as shown in Table B.5 in Appendix B, in this case the imputed compensation loss is about \$390,000.

As these estimates condition on poor prior fund performance, one may have concerns about the reliability of imputed total compensation as a measure of the earnings capacity of fund managers around the liquidation date: insofar as their actual compensation is tied to their prior performance, managers of underperforming funds are likely to earn less than the variable compensation typically imputed to their job title, both before and after liquidation of their fund. Hence, to provide a lower bound for the change in compensation associated with the liquidation of underperforming funds, we reestimate the specification of Table 6 using only the fixed component of imputed compensation. The corresponding results are reported in Column 1 of Table B.6: when liquidation is preceded by two years of underperformance, it triggers a \$46,698 drop in the fixed component of imputed compensation, that is, 15% of their imputed fixed pay in the year before the liquidation (about \$303,000 on average). So the

	Job level	Imputed compensation, thousands of USD (2)	Switch (3)
Liquidation	0.099	216.836	0.059**
1	(0.119)	(148.207)	(0.027)
Liquidation × Poor performance	-0.322^{**}	-464.196***	-0.003
	(0.135)	(167.359)	(0.030)
Observations	12,097	11,863	12,097
No. professionals	1,174	1,168	1,174

Table 6 Fund performance and careers around liquidations

The table reports estimates of the career effects of liquidations after poor relative performance. *Liquidation* is a dummy equal to 1 in the liquidation year and in the five subsequent years (for funds that are liquidated), and 0 otherwise. *Poor performance* is a dummy equal to 1 for funds with average monthly return below the benchmark return in the two years period before liquidation, and 0 otherwise. Columns 1, 2, and 3 show the estimated coefficients of the liquidation dummy and of its interaction with the poor performance dummy. The equation is estimated using data for five years before and five years after the liquidation date. *Job Level* ranges from 1 (bottom) to 6 (top). *Imputed compensation* is the average annual salary associated in 2016 with each SOC code in the six sectors in Table 2 for professionals in job levels 1–4; for levels 5 and 6 it is the average annual total compensation associated in the 2015 10Ks with each job level in the six sectors in Table 2. *Switch* indicates that in year *t* an individual is employed by a different company relative to year *t* – 1. All specifications include individual level: * denotes p < 0.10, ** p < 0.05, and *** p < 0.01.

estimated loss is a sizable fraction of pre-liquidation pay even if one neglects the variable component of compensation.

By contrast, the effects of liquidation on job mobility do not appear to vary with pre-liquidation performance: Column 3 indicates that liquidation is followed by an increase of 6 percentage points in the probability of switching to a new employer, with no significant difference when liquidation is preceded by underperformance. Even liquidations that imply no information regarding the affected employees presumably induce some employees to switch to other companies for more suitable jobs. By the same token, the employees affected by liquidations preceded by poor performance (and by the associated reputation loss) have an equal probability of switching to a new employer, but suffer a career slowdown. This squares with the idea that the setback does not stem simply from the frictions associated with changing jobs.

To further corroborate the hypothesis that the scarring effects documented above are induced by reputation loss due to fund-specific underperformance rather than by low absolute returns, we estimate Equation (2) on the subsample of funds with positive absolute returns in the 24 months prior to liquidation. The estimated coefficients, not reported for brevity, are very close to those reported in Table 6: even conditioning on positive absolute returns, liquidations preceded by persistently poor relative performance are associated with significant career setbacks. Conversely, liquidations that follow negative absolute returns but positive relative performance are not associated with significant scarring effects. It is relative, not absolute, pre-liquidation performance that triggers scarring effects.

	Job level	Imputed compensation,	Switch
	(1)	thousands of USD (2)	(3)
Panel A. Positive benchmark			
Liquidation	0.186	255.921	0.037
	(0.135)	(162.891)	(0.032)
Liquidation × Poor performance	-0.427^{***}	-515.376***	0.018
	(0.152)	(182.855)	(0.035)
Observations	10,147	9,938	10,147
No. professionals	984	979	984
Panel B. Negative benchmark			
Liquidation	-0.122	117.603	0.114**
•	(0.238)	(322.379)	(0.052)
Liquidation×Poor performance	0.017	-283.578	-0.046
	(0.293)	(390.368)	(0.065)
Observations	1,950	1,925	1,950
No. professionals	190	189	190

Table 7 Fund performance and careers around liquidations, by benchmark returns

The table reports estimates of the career effects of liquidations after poor relative performance, when the average benchmark return in the 2 years prior to liquidation is positive (panel A) or negative (panel B). *Liquidation* is a dummy equal to 1 in the liquidation year and in the five subsequent years (for funds that are liquidated), and 0 otherwise. *Poor performance* is a dummy equal to 1 for funds with average monthly return below the benchmark return in the two years before liquidation. Columns 1, 2, and 3 show the estimated coefficients of the liquidation dummy and of its interaction with the poor performance dummy. The equation is estimated using data for five years before and five years after the liquidation date. *Job level* ranges from 1 (bottom) to 6 (top). *Imputed compensation* is the average annual salary associated in 2016 with each SOC code in the six sectors in Table 2 for professionals in job levels 1–4; for levels 5 and 6 it is the average annual total compensation associated in the 2015 10Ks with each job level in the six sectors in Table 2. *Switch* indicates that in year t an individual is employed by a different company relative to year t - 1. All specifications include individual and group specific time-to-liquidation fixed effects. The standard errors shown in parentheses are clustered at individual level: * denotes p < 0.10, ** p < 0.05, and *** p < 0.01.

Interestingly, the labor market appears to penalize more severely the managers of funds that fall short of their benchmark in good times (namely, when the benchmark does well) than those that do so in bad times. A natural interpretation for this finding is that relative underperformance is a stronger signal of low managerial skill when it occurs in booming than in bear markets. We document this pattern by reestimating Equation (2) separately for the subsample where the benchmark features positive returns and for that where it features negative returns. Table 7 reports the coefficient of the liquidation dummy and that of its interaction with the relative prior (two-year) underperformance dummy for each of the two regressions.

When benchmark returns are positive (panel A), the interaction coefficient is estimated to be negative and significant, and larger in absolute value than in Table 6. In contrast, when benchmark returns are negative (panel B), the coefficient is not significantly different from zero.¹⁸ This finding contrasts with evidence from other industries that underperforming top executives are

¹⁸ It should be noticed that the coefficients of panel B are not significantly different from those of panel A. So the takeaway of Table 7 is that the labor market penalizes the managers of funds liquidated upon underperforming

	Job level	Imputed compensation,	Switch
	(1)	thousands of USD (2)	(3)
Panel A. Starting from job levels 5 and	16		
Liquidation	0.146	262.911	0.058
	(0.126)	(174.855)	(0.036)
Liquidation× Poor performance	-0.472***	-752.389***	0.014
	(0.148)	(205.515)	(0.040)
Observations	6,268	6,231	6,268
No. professionals	600	600	600
Panel B. Starting from job levels 3 and	14		
Liquidation	-0.057	60.930	0.084*
	(0.190)	(230.771)	(0.043)
Liquidation× Poor performance	0.044	37.619	-0.049
	(0.213)	(256.892)	(0.049)
Observations	4,736	4,585	4,736
No. professionals	463	459	463

Table 8 Fund performance and careers around liquidations, for high- and low-ranking employees

The table reports estimates of the career effects of liquidation after poor relative performance, separately for top-level (panel A) and mid-level employees (panel B), respectively defined as employees with pre-liquidation job levels 5 or 6 and 3 or 4. *Liquidation* is a dummy equal to 1 in the liquidation year and in the five subsequent years (for funds that are liquidated), and 0 otherwise. *Poor performance* is a dummy equal to 1 for funds with average monthly return below the benchmark return in the two years before liquidation, and 0 otherwise. Columns 1, 2, and 3 show the estimated coefficients of the liquidation dummy and of its interaction with the poor performance dummy. The regression is estimated using data for five years before and five years after the liquidation date for managers whose funds were liquidated. *Job level* ranges from 1 (bottom) to 6 (top). *Imputed compensation* is the average annual salary associated in 2016 with each SOC code in the six sectors in Table 2 for professionals in job levels 1–4; for levels 5 and 6 it is the average annual total compensation associated in the 2015 10Ks with each job level in the six sectors in Table 2. *Switch* indicates that in year *t* an individual is employed by a different company relative to year *t* – 1. All specifications include individual and group specific time-to-liquidation fixed effects. The standard errors shown in parentheses are clustered at individual level: * denotes p < 0.10, ** p < 0.05, and *** p < 0.01.

less penalized when their industry is doing well: Jenter and Kanaan (2015, 2156) document that "better peer group performance substantially reduces the probability that an underperformer is dismissed, which implies that many fewer underperformers are fired in good times than in bad times." This difference suggests that the labor market for asset managers may be more effective in filtering out aggregate noise when evaluating individual performance than the boards of public companies.

Since the previous subsection shows that only high-ranking managers suffer significant career slowdowns after liquidations, it is worth investigating whether this happens only in the wake of persistent pre-liquidation underperformance. This provides a sharper test of the thesis that the career slowdown arises from reputation loss among top executives. To implement this test, we reestimate Equation (2) separately for high- and mid-ranking employees. The results are reported in Table 8. Panel A reports the estimates for high-ranking employees;

a rising benchmark, but such penalty is not ruled out if liquidation occurs upon underperforming a declining benchmark.

panel B reports those for mid-level employees (level 3 or level 4) two years before the liquidation. Columns 1, 2, and 3 show the results for the job level, imputed compensation, and mobility.

In our estimates, only high-ranking employees (those with level 5 or level 6 jobs two years before liquidation) whose funds were liquidated after underperforming their benchmarks for two years suffer a post-liquidation career slowdown. The estimates for low-ranking employees reveal no significant scarring effects, also following underperformance: the relevant coefficients in panel B are significantly different from those shown in panel A.

Liquidations after normal performance are not followed by significant change in either the job level or imputed compensation of top employees, but those that come after persistent underperformance do have significant scarring effects. The interaction between liquidation and poor performance has a negative and significant coefficient in both the job level and imputed compensation regressions: the job level drops by 0.47 notches and imputed compensation by \$752,000 more than for top employees of funds that are liquidated in the wake of normal performance (i.e., 24.7% of their pre-liquidation imputed compensation).¹⁹ In contrast, the job mobility of top employees increases after liquidation regardless of the fund's previous performance: the probability of switching increases by 4 percentage points in the years following liquidations even of well-performing funds (though this coefficient is not precisely estimated).

To sum up, the scarring effects of liquidations preceded by poor performance are very large for high-ranking employees, but no significant effects are observable for mid-level employees. The evidence, then, is consistent with the idea that liquidations cause a career slowdown for managers who can be held responsible for their fund's poor performance. This squares with the thesis that the scarring effects depend mostly on reputation loss, and are not due to accidental liquidations.

Such effects may reveal the presence of "market discipline," providing incentives to fund managers over and above performance-based pay. According to our model, the disciplining role of the managerial labor market crucially depends on the frequency of liquidations not preceded by persistently poor relative performance: if such accidental liquidations are relatively infrequent, fund managers face relatively little risk of career setbacks for reasons outside of their control, and thus have more incentive to exert effort. In our sample, liquidations not preceded by poor relative performance are uncommon, being

¹⁹ Also in this case, the result is robust to the use of time-varying imputed compensation: as shown in Column 2 of Table B.5 of Appendix B, using this variable the estimated loss would be about \$621,000. The loss is sizable also if the specification of Table 8 is reestimated using only the fixed component of imputed compensation: as shown in Column 2 of Table B.6, liquidation after two years of underperformance triggers approximately a \$76,000 drop in this component of compensation, that is, 17.6% of their pre-liquidation fixed pay (about \$431,000 on average).

21% of total liquidations, and are estimated to have no scarring effects.²⁰ Hence, the disciplining role of performance-driven liquidations is not diluted by accidental career slowdown arising irrespective of performance.

5. Conclusions

We find that, although finance professionals experience a great career acceleration upon entering the hedge fund industry, they also face significant setbacks and are more likely to switch to other employers following the liquidation of their fund.

This "scarring effect" impinges only on high-ranking managers, and only when fund liquidation follows persistent underperformance. Top managers of funds wound up after two years of poor relative performance suffer job demotion and a sizable compensation loss. Instead, when it is preceded by normal performance, fund liquidation is not associated with career slowdown or significant compensation loss.

We interpret these findings as evidence that the scarring effects of fund liquidations are due to reputation losses: funds' relative performance enables investors to gradually learn about managers' skills, so that persistently poor performance tarnishes the managers' reputation in the labor market. Ex ante, this mechanism can act as a discipline device for managers, complementing performance pay, as we show using a model of career concerns featuring moral hazard and adverse selection.

On the whole, our results reveal a new facet of market discipline in asset management, operating via the managerial labor market. This labor market discipline is complementary to contractual incentives within the firm. The job market "stick" may indeed be a corrective to the tendency to motivate asset managers by generous "carrots"—performance-based remuneration that is far more sensitive to upside gain than to downside risk.

Appendix A. The Sector Imputation Algorithm

As is explained in the text, after manual identification of the sector of 2,129 employers ("classified companies"), we impute the sectors of the remaining 4,642 employers ("unclassified companies") via a machine learning algorithm. The algorithm exploits the association between job titles and sectors in the subsample of classified companies to assign unclassified companies to their respective sectors: it determines whether an unclassified company's jobs are typical of a certain sector, based on their prevalence in companies already classified as belonging to that sector.

The algorithm must perform three main tasks:

- · represent job descriptions in such a way that they can be processed with learning algorithms;
- · aggregate the information on job descriptions in order to define broader general tasks;

²⁰ Brown, Goetzmann, and Park (2001) also find that poor relative performance increases the probability of hedge fund termination.

• associate these broader tasks with sectors and use them to sort the unclassified companies into the sectors.

To overcome these difficulties, we proceed in five steps:

- 1. **Construct a vocabulary of job descriptions.** To this end, we adopt *term frequency-inverse document frequency (tf-idf)* method, a statistic reflecting the importance of a word in a document forming part of a collection of documents. This statistic increases in proportion to the number of times a word appears in the document, with a penalty for the frequency of the word in the collection of documents, so as to adjust for the fact that some words appear more frequently in general.
- 2. Express job descriptions as vectors. The *tf-idf* vectorization results in a matrix in which each row is a vector in [0, 1]^p representing a job description (*p* being the number of words in the vocabulary) and every column is the set of values of the *tf-idf* statistic measuring the prevalence of a given word across all job descriptions. Since this matrix is very large and sparse, in order to reduce its dimensionality without losing relevant information, we use a truncated singular value decomposition of the *tf-idf* matrix, known as *Latent Semantic Analysis*, which is very similar in spirit to *Principal Component Analysis*. The end result is a matrix with 200 columns and a number of rows equal to the number of job descriptions.
- 3. Aggregate job descriptions into broader tasks. The large number of different job descriptions necessitates the aggregation of similar ones into broader tasks, choosing their breadth optimally to learn the type of tasks performed in each sector. We use a clustering algorithm to identify clusters of similar jobs, and represent each job description in the original data set by its cluster. To cluster the jobs we apply the *k-mean* algorithm to the matrix constructed in step 2. Based on tuning, the number of clusters is set to 200.
- 4. Aggregate the information by company. We use a supervised learning algorithm to associate the broad tasks (clusters) obtained in step 3 with sectors. To do this, the data are reshaped into a matrix where each row is uniquely identified by a company name and each column refers to one of the 200 broader tasks identified in step 3. Each element of the matrix is an integer that counts the number of employees performing a specific task in a given company.
- 5. Sort the unclassified companies into their sectors. This task is performed with a Neural Network with one hidden layer of 110 nodes (obtained by tuning). The input is the matrix obtained in step 4 to which a further column is appended, whose elements are the number of employees in each company. We train the Neural Network using the classified companies to predict the sector of the unclassified ones.

These five steps form a single iteration of the entire code used to sort the unclassified companies into the six sectors. At each iteration, for each unclassified company the Neural Network generates a list of probabilities for the possible sector classification. In each round, we classify within a sector only the companies whose predicted probability of belonging to that sector exceeds some threshold (75% in the first iteration). That is, each round classifies only a portion of the unclassified companies. We use this augmented data set as the starting point for a new implementation of the entire procedure. Eventually we classify all the companies, with an average cross-validation error of 20%.²¹

²¹ The threshold is gradually lowered at successive iterations and is removed in the very last one (where we classify into the sector with the highest probability); cross-validation is computed on 10% of the data at every iteration before the classification; the total number of iterations is 30; all the code is written in Python 3 and uses the *scikit-learn* package (Pedregosa et al. 2011).

Appendix B. Robustness Checks

	Job level upon being hired					
	(1)	(2)	(3)	(4)	(5)	(6)
Education quality	-0.0054	-0.0408**	-0.0350**	-0.0183**	0.0195**	0.0800**
	(0.0033)	(0.0201)	(0.0172)	(0.0090)	(0.0097)	(0.0387)
Female	0.0082***	0.0617***	0.0530***	0.0277***	-0.0295^{***}	-0.1211^{***}
	(0.0031)	(0.0137)	(0.0119)	(0.0077)	(0.0066)	(0.0259)
Experience	-0.0004*	-0.0027^{**}	-0.0023^{**}	-0.0012^{**}	0.0013**	0.0053**
	(0.0002)	(0.0012)	(0.0010)	(0.0005)	(0.0006)	(0.0022)
Exp. in AM	-0.0004^{*}	-0.0033^{**}	-0.0028^{**}	-0.0015^{**}	0.0016**	0.0064**
	(0.0002)	(0.0015)	(0.0013)	(0.0007)	(0.0007)	(0.0029)
Past performance	-0.0011*	-0.0084^{**}	-0.0072^{**}	-0.0037^{**}	0.0040**	0.0164**
	(0.0006)	(0.0036)	(0.0029)	(0.0016)	(0.0017)	(0.0066)
Past benchmark	-0.0012	-0.0093	-0.0080	-0.0042	0.0045	0.0183
	(0.0014)	(0.0099)	(0.0086)	(0.0046)	(0.0048)	(0.0195)
log(AUM)	-0.0001	-0.0004	-0.0004	-0.0002	0.0002	0.0009
	(0.0005)	(0.0034)	(0.0029)	(0.0015)	(0.0016)	(0.0067)
Observations	710	710	710	710	710	710

Table B.1

Job level upon hiring: ordered probit estimates

The table shows how the job level upon being hired by a hedge fund company correlates with individual and hedge fund characteristics, estimating an ordered probit. Each column in the table shows the estimates of the marginal effect of the explanatory variables on the probability of being in the respective job level. *Education quality* is a dummy equal to 1 if the individual has a graduate degree from a university ranked in the top 15 and 0 otherwise. *Experience (Exp. in AM)* is the number of years of work experience (in asset management) at the time of hiring. *Female* is a dummy equal to 1 for women and 0 for men. *Previous job level* is the job level in the year before hiring. *Past performance* is the average difference between fund *j*'s monthly percentage return and its benchmark in the three years before hiring. *Log(AUM)* is the logarithm of lagged average assets under management of fund *j*. Robust standard errors are shown in parentheses below the respective coefficients: * denotes p < 0.05, and *** p < 0.01.

Table B.2
Careers in the hedge fund industry and fund relative performance

	$\begin{array}{c}\Delta y_{t+5,t}\\(1)\end{array}$	$\begin{array}{c}\Delta y_{t+4,t}\\(2)\end{array}$	$\begin{array}{c} \Delta y_{t+3,t} \\ (3) \end{array}$	$\begin{array}{c}\Delta y_{t+2,t}\\(4)\end{array}$	$\begin{array}{c} \Delta y_{t+1,t} \\ (5) \end{array}$
Panel A. Job level ch	ange				
$\bar{r}_{t,t+1}$ Constant	$\begin{array}{c} 0.038 \\ (0.037) \\ -0.012 \\ (0.012) \end{array}$	$\begin{array}{c} 0.044 \\ (0.038) \\ -0.014 \\ (0.013) \end{array}$	$\begin{array}{c} 0.027 \\ (0.027) \\ -0.009 \\ (0.009) \end{array}$	$\begin{array}{c} 0.004 \\ (0.014) \\ -0.001 \\ (0.005) \end{array}$	-0.003 (0.006) 0.001 (0.002)
Observations No. professionals	8,311 1,542	8,952 1,602	9,546 1,639	9,757 1,658	9,929 1,665
Panel B. Imputed con	npensation chang	e, USD thousands			
$\overline{\bar{r}_{t,t+1}}$ Constant	40.696 (44.761) -13.353 (14.687)	49.642 (44.986) -16.288 (14.760)	22.791 (28.624) -7.478 (9.392)	-7.261 (17.413) 2.382 (5.714)	-5.874 (8.823) 1.927 (2.895)
Observations No. professionals	8,161 1,513	8,801 1,574	9,395 1,610	9,614 1,628	9,798 1,639

The table shows the relationship between changes in the outcome variable *y* between year *t* and year *t+k*, for k = 1, 2, ..., 5, and average relative performance in years *t* and t+1, $\bar{r}_{t,t+1}$. In panel A, *y* is the job level; in panel B, it is the imputed compensation. Relative performance is the yearly average of the difference between the fund's monthly absolute return and the monthly average return of all funds in the relevant category. All specifications include year fixed effects. Standard errors clustered at the individual level are shown in parentheses below the respective coefficients: * denotes p < 0.10, ** p < 0.05, and *** p < 0.01.

	Job level	Imputed compensation, thousands of USD	Switch
	(1)	(2)	(3)
δ_{-5}	-0.036	-2.141	0.021
	(0.046)	(54.160)	(0.020)
δ_{-4}	-0.031	23.940	0.005
	(0.040)	(45.759)	(0.019)
δ_{-3}	-0.009	22.281	-0.020
	(0.034)	(38.900)	(0.019)
δ_{-2}	0.025	26.116	0.012
-	(0.024)	(27.791)	(0.020)
δ_0	-0.063***	-53.963*	0.022
-	(0.022)	(28.297)	(0.020)
$\delta_{\pm 1}$	-0.153***	-160.983***	0.103***
	(0.037)	(46.862)	(0.021)
δ_{+2}	-0.231***	-251.109***	0.053***
	(0.043)	(55.503)	(0.020)
δ_{+3}	-0.202^{***}	-212.069***	0.037*
15	(0.050)	(61.654)	(0.019)
$\delta_{\pm 4}$	-0.224^{***}	-213.951***	0.050**
	(0.054)	(68.110)	(0.021)
$\delta_{\pm 5}$	-0.277***	-237.881***	0.016
	(0.061)	(74.167)	(0.020)
Observations	34,009	33,137	34,400
No. professionals	1,948	1,940	1,948

Table B.3 Diff-in-diff estimates using the whole sample

The table reports estimates for the effects of liquidations on the job level, imputed compensation and employer switches, using the whole sample of 661 individuals that experience a fund liquidation (for the 11 years surrounding the liquidation) and 1,287 individuals that do not (for all the available years), rather than the matched sample used in Figures 8, 9, and 10. The estimates refer to a variant of Equation (1) that includes individual fixed effects and calendar year effects instead of time-from-liquidation effects. The parameters δ_k , for k = -5, ..., 5 are the coefficients of the 11 dummies L_{it}^k , each equal to 1 k periods from the liquidation if individual i experiences it, and 0 otherwise, normalizing the value δ_{-1} to 0. The standard errors shown in parentheses are clustered at individual level: * denotes p < 0.00, ** p < 0.05, and *** p < 0.01.

Table B.4

Liquidation and performance: estimates obtained using the whole sample

	Job level	Imputed compensation, thousands of USD (2)	Switch (3)
Liquidation	0.018	140.288	0.058***
1	(0.088)	(103.233)	(0.019)
Liquidation × Poor performance	-0.262^{***}	-438.848***	-0.012
	(0.097)	(115.827)	(0.021)
Observations	34,009	33,137	34,400
No. professionals	1,948	1,940	1,948

The table reports estimates for the career effects of liquidations after poor relative performances, using the whole sample of 661 individuals that experience a fund liquidation (for the 11 years surrounding the liquidation) and 1,287 individuals that do not (for all the available years), rather than the matched sample used in Table 6. *Liquidation* is a dummy equal to 1 in the liquidation year and in the five subsequent years (for funds that are liquidated), and 0 otherwise. *Poor performance* is a dummy equal to 1 for funds with average monthly return below the benchmark return in the two years before liquidation, and 0 otherwise. Columns 1, 2, and 3 show the estimated coefficients of the liquidation dummy and of its interaction with the poor performance dummy. All specifications include individual and year fixed effects. The standard errors shown in parentheses are clustered at individual level: * denotes p < 0.10, ** p < 0.05, and *** p < 0.01.

Table B.5 Fund performance and liquidations: time-varying imputed compensation

Dependent variable: Time-varying imputed compensation

	All professionals (1)	Top executives (2)
Liquidation	159.798	214.543
	(130.094)	(152.413)
Liquidation×Poor performance	-390.890***	-620.792***
	(146.151)	(174.645)
Observations	10,481	5,762
No. professionals	1,160	600

The table reports estimates for the effects of liquidations after poor relative performance. *Liquidation* is a dummy equal to 1 in the liquidation year and in the five subsequent years (for funds that are liquidated), and 0 otherwise. *Poor performance* is a dummy equal to 1 for funds with average monthly return below the benchmark return in the two years before liquidation, and 0 otherwise. Columns 1 and 2 show the estimated coefficients of the liquidation dummy and of its interaction with the poor performance dummy respectively, for all professionals and for those holding top-executive positions (job levels 5 and 6) two years before liquidation. The equation is estimated using data for five years before and five years after the liquidation date. All specifications include individual and group specific time-to-liquidation fixed effects. *Imputed compensation* is the average annual salary associated in each year (from 2000 to 2015) with each SOC code in the six sectors in Table 2 for professionals in job levels 1–4; for levels 5 and 6 it is the average annual compensation associated in each year (from 2000 to 2015) in the 10Ks with each job level in the six sectors in Table 2. The standard errors shown in parentheses are clustered at individual level: * denotes p < 0.01, ** p < 0.05, and *** p < 0.01.

Table B.6 Fund performance and liquidations: fixed compensation

Dependent variable: Imputed fixed compensation, in thousands of USD

	All professionals (1)	Top executives (2)
Liquidation	24.056	29.410*
	(14.686)	(16.188)
Liquidation×Poor performance	-46.698***	-76.545***
	(16.751)	(19.395)
Observations	11,863	6,231
No. professionals	1,168	600

The table reports estimates for the effects of liquidations on imputed fixed compensation after poor relative performance. *Liquidation* is a dummy equal to 1 in the liquidation year and in the five subsequent years (for funds that are liquidated), and 0 otherwise. *Poor performance* is a dummy equal to 1 for funds with average monthly return below the benchmark return in the two years before liquidation, and 0 otherwise. Columns 1 and 2 show the estimated coefficients of the liquidation dummy and of its interaction with the poor performance dummy respectively, for all professionals and for those holding top-executive positions (job levels 5 and 6) two years before liquidation. The equation is estimated using data for five years before and five years after the liquidation date. All specifications include individual and group specific time-to-liquidation fixed effects. *Imputed fixed compensation* is the average annual salary associated in 2016 with each SOC code in the six sectors in Table 2 for professionals in job levels 1–4; for levels 5 and 6 it is the average annual fixed compensation associated in the 2015 10Ks with each job level in the six sectors in Table 2. The standard errors shown in parentheses are clustered at individual level: * denotes p < 0.10, ** p < 0.05, and *** p < 0.01.

References

Adams, R. B., and T. Kirchmaier. 2016. Women on boards in finance and STEM industries. *American Economic Review* 106:277–81.

Agarwal, V., N. D. Daniel, and N. Y. Naik. 2009. Role of managerial incentives and discretion in hedge fund performance. *Journal of Finance* 64:2221–56.

Axelson, U., and P. Bond. 2015. Wall Street occupations. Journal of Finance 70:1949-96.

Baghai, R., R. Silva, V. Thell, and V. Vig. 2017. Talent in distressed firms: Investigating the labor costs of financial distress. Working Paper 2854858, SSRN.

Benmelech, E., and C. Frydman. 2015. Military CEOs. Journal of Financial Economics 117:43-59.

Bertrand, M., C. Goldin, and L. F. Katz. 2010. Dynamics of the gender gap for young professionals in the financial and corporate sectors. *American Economic Journal: Applied Economics* 2:228–55.

Bertrand, M., and K. F. Hallock. 2001. The gender gap in top corporate jobs. *Industrial and Labor Relations Review* 55:3-21.

Brickley, J. A., J. S. Linck, and J. L. Coles. 1999. What happens to CEOs after they retire? New evidence on career concerns, horizon problems, and CEO incentives. *Journal of Financial Economics* 52:341–77.

Brown, S. J., W. N. Goetzmann, and J. Park. 2001. Careers and survival: Competition and risk in the hedge fund and CTA industry. *Journal of Finance* 56:1869–86.

Brown, J., and D. A. Matsa. 2016. Boarding a sinking ship? An investigation of job applications to distressed firms. *Journal of Finance* 71:507–50.

Chevalier, J., and G. Ellison. 1999. Career concerns of mutual fund managers. *Quarterly Journal of Economics* 114:389–432.

Cziraki, P., and M. Groen-Xu. 2018. CEO turnover and volatility under long-term employment contracts. SSRN Working Paper 2343541.

Dichev, I. D., and G. Yu. 2011. Higher risk, lower returns: What hedge fund investors really earn. *Journal of Financial Economics* 100:248–63.

Eckbo, B. E., K. S. Thorburn, and W. Wang. 2016. How costly is corporate bankruptcy for the CEO? *Journal of Financial Economics* 121:210–29. ISSN 0304-405X.

Edmans, A., X. Gabaix, and D. Jenter. 2017. Executive compensation: A survey of theory and evidence. ECGI Finance Working Paper 514.

Gao, J., K. Kleiner, and J. Pacelli. 2017. Credit and punishment: The career incentives of wall street bankers. Kelley School of Business Research Paper 16-81.

Gibbons, R., and L. F. Katz. 1991. Layoffs and lemons. Journal of Labor Economics 9:351-80.

Gibbons, R., and K. J. Murphy. 1990. Relative performance evaluation for Chief Executive Officers. *Industrial* and Labor Relations Review 43:30S–51S.

Graham, J. R., C. R. Harvey, and M. Puri. 2013. Managerial attitudes and corporate actions. *Journal of Financial Economics* 109:103–21.

Graham, J. R., H. Kim, S. Li, and J. Qiu. 2017. Employee costs of corporate bankruptcy. SSRN Working Paper 2276753.

Griffin, J. M., S. Kruger, and G. Maturana. 2018. Do labor markets discipline? Evidence from RMBS bankers. Working Paper 2977741, SSRN.

Griffin, J. M., and J. Xu. 2009. How smart are the smart guys? A unique view from hedge fund stock holdings. *Review of Financial Studies* 22:2531–70. Jenter, D., and F. Kanaan. 2015. CEO turnover and relative performance evaluation. *Journal of Finance* 70:2155-84.

Kaplan, S. 1994. Top executive rewards and firm performance: A comparison of Japan and the United States. *Journal of Political Economy* 102:510–46.

Kaplan, S. N., M. M. Klebanov, and M. Sorensen. 2012. Which CEO characteristics and abilities matter? *Journal of Finance* 67:973–1007.

Liang, B., and H. Park. 2010. Predicting hedge fund failure: A comparison of risk measures. *Journal of Financial and Quantitative Analysis* 45:199–222.

Malmendier, U., G. Tate, and J. Yan. 2011. Overconfidence and early-life experiences: The effect of managerial traits on corporate financial policies. *Journal of Finance* 66:1687–733.

Murphy, K. 1999. Executive compensation. In *Handbook of Labor Economics*, vol. 3, ed. O. Ashenfelter and D. Card, 2485–563. (Amsterdam: Elsevier).

Nielsen, K. M. 2017. Personal costs of executive turnovers. SSRN Working Paper 2926751.

Oreopoulos, P., T. von Wachter, and A. Heisz. 2012. The short- and long-term career effects of graduating in a recession. *American Economic Journal: Applied Economics* 4:1–29.

Oyer, P. 2008. The making of an investment banker: Stock market shocks, career choice, and lifetime income. *Journal of Finance* 63:2601–28.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al. 2011. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research* 12:2825–30.

Philippon, T., and A. Reshef. 2012. Wages and human capital in the U.S. finance industry: 1909–2006. *Quarterly Journal of Economics* 127:1551–609.

Schoar, A., and L. Zuo. 2017. Shaped by booms and busts: How the economy impacts CEO careers and management styles. *Review of Financial Studies* 30:1425–56.

Schwandt, H., and T. M. von Wachter. 2018. Unlucky cohorts: Estimating the long-term effects of entering the labor market in a recession in large cross-sectional data sets. Working Paper 25141, National Bureau of Economic Research.