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Abstract

We study how biases in expectations vary across different settings, through a large-
scale randomized experiment where participants forecast stable random processes.
The experiment allows us to control the data generating process and the participants’
relevant information sets, so we can cleanly measure forecast biases. We find that
forecasts display significant overreaction to the most recent observation. Moreover,
overreaction is especially pronounced for less persistent processes and longer forecast
horizons. We also find that commonly-used expectations models do not easily account
for the variation in overreaction across settings. We provide a theory of expectations
formation with imperfect utilization of past information. Our model closely fits the
empirical findings.
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1 Introduction

Expectation formation plays a critical role in economics. The benchmark model is ratio-

nal expectations, which assumes that agents process information optimally and without

bias. Empirically, however, a vibrant stream of recent studies uses survey data to docu-

ment systematic biases in expectations, with evidence of overreaction in some settings1

and underreaction in others.2 In particular, biases in expectations seem to vary across

different settings, but evidence and theory about how and why are still relatively sparse.

Knowledge about such variations is an important step towards a unified understanding

of findings on expectation biases. In this paper, we offer new experimental evidence and

a new theory on how expectation biases vary with the features of the data generating

process (DGP) as well as the forecast horizon.

We begin with a large-scale randomized experiment to cleanly document the rela-

tionship between biases in expectations and features of the process. Our experimental

approach allows us to address three major concerns in analyzing expectations using sur-

vey data. First, we can control the relevant information set of forecasters, which is not

observable to the econometrician in survey data.3 Second, we can control and vary the

DGP, whereas it is very difficult for the econometrician to know or control the DGP in

survey data. Finally, we can also control the payoff of forecasters, while in field data there

can be concerns that forecasters have considerations other than forecast accuracy. Over-

all, the experiment helps us measure biases in forecasts precisely, trace out the structure of

1A large share of this research follows up on the insight of Shiller (1981) that asset prices move more
than fundamentals. De Bondt and Thaler (1990), Amromin and Sharpe (2013), Greenwood and Shleifer
(2014), Gennaioli, Ma and Shleifer (2016), Bordalo, Gennaioli, La Porta and Shleifer (2019), and Barrero
(2020) document extrapolation and overreaction in expectations of corporate earnings and stock returns;
Bordalo, Gennaioli and Shleifer (2018) show over-optimistic forecasts of future credit spreads during credit
market booms.

2These papers have roots in both macroeconomics and finance. Mankiw and Reis (2002), Coibion and
Gorodnichenko (2012, 2015) present evidence of informational rigidity in inflation expectations; Abarbanell
and Bernard (1992), Bouchaud, Krueger, Landier and Thesmar (2019), and Ma, Ropele, Sraer and Thesmar
(2020) find underreaction in near-term earnings forecasts.

3One workaround is to predict forecast errors using forecast revisions, since revisions are supposed
to be within the forecaster’s information set (Bordalo, Gennaioli, Ma and Shleifer, 2020c). However, this
approach has limitations, which we explain in detail in Section 2.2. Among other things, this method may
be unreliable when the process is transitory, in which case the variance of forecast revisions may approach
zero if beliefs are close to rational.
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these biases and variations across settings, and then investigate whether commonly-used

models account for the key findings in the data.

In our experiment, participants make forecasts of simple AR(1) processes. They are

randomly assigned to a condition with a given persistence level, drawn from the set

{0, 0.2, 0.4, 0.6, 0.8, 1}. Participants observe 40 past realizations of the process at the begin-

ning, and then make forecasts for another 40 rounds. In each round, participants observe

a new realization from the process, and report one- and two-period-ahead forecasts be-

fore the next round begins. In follow-up experiments, we also extend the forecast horizon

and elicit five-period-ahead forecasts.

Our main empirical results are as follows. First, even though the process is simple

and stable, rational expectations are strongly rejected in our data, consistent with pre-

vious research. In particular, forecasts in the data display strong overreaction to recent

observations: they are systematically too high when the past realization is high, and vice

versa. This pattern is robust and it does not depend on whether participants know the

process is AR(1), which we show using a sample of MIT students who understand AR(1)

processes.

Second and importantly, we find that forecasts feature more overreaction when the

process is more transitory. This result echoes the patterns Bordalo, Gennaioli, Ma and

Shleifer (2020c) observe in survey data. In the experiment, however, we can measure

the degree of overreaction more precisely. Specifically, we can calculate the persistence

implied by participants’ forecasts, and compare it to the actual persistence of the process.

In our setting, this implied persistence is a clear measure of overreaction. We find that

the implied persistence is close to one when the process is a random walk, and decreases

when the actual process is more transitory, but only reaches 0.4 for i.i.d. processes (where

the actual persistence is zero).

Third, we find that commonly-used expectations models in the literature do not per-

form very well in accounting for how biases vary with the type of process. For exam-

ple, the older adaptive or extrapolative models do not generate enough variation in the

forecast-implied persistence based on the actual persistence of the process. In contrast,

more recent models such as constant gain learning (Evans and Honkapohja, 2001; Nagel
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and Xu, 2019) and diagnostic expectations (Bordalo, Gennaioli and Shleifer, 2018) adapt

too much: they overreact too little for transitory processes. Diagnostic expectations, for

instance, are the same as rational expectations for i.i.d. processes, which is not the case in

the data.

In light of the failure of these models to account for the key empirical features, in par-

ticular the variation of overreaction across different settings, we provide a new modeling

framework for biases in expectations. We consider the problem of an agent who forms

estimates of the long-run mean of the process. For each round of forecasting, she initially

observes a context, such as the most recent realization of a process, which automatically

forms the initial prior. Then, the agent decides how much additional past information to

utilize, subject to a cost of retrieval. The set of retrieved information, which is a subset

of the information that is available, captures what is “on top of the mind” when agents

make decisions. In our model, like in the experiment, forecasts tend to overreact, since

the agent partially relies on the most recent observation to estimate the long-run mean of

the process. This direct effect is, however, partially counteracted by the costly retrieval of

past information. As a result, in our model, as in the data, the forecast adapts partially to

the properties of the true process, but the adaptation is imperfect: there is a stronger ten-

dency to respond too much to recent realizations when the true process is less persistent.

When we fit our model to the forecast data, it matches the key empirical patterns very

closely, unlike other models used in the literature.

Finally, recent research also indicates that overreaction appears to be stronger when

the forecast horizon is longer (see Bouchaud et al. (2019) and Bordalo et al. (2019) for

evidence from analyst earnings forecasts, as well as Brooks, Katz and Lustig (2018), Wang

(2019), and d’Arienzo (2020) for evidence from interest rate forecasts). We also document

this pattern in our experimental data. Moreover, our model naturally generates more

overreaction at longer horizons. The intuition is that longer horizon forecasts are more

sensitive to the estimate of the long-run mean, so they are more affected if the estimate

of the long-run mean responds too much to recent observations. We take this model

prediction to the data, and find the model performs well along this dimension too. In

particular, we use the model parameters estimated using one-period-ahead forecasts, and
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compute the model-based forecasts for longer horizons as non-targeted moments. For

two-period-ahead and five-period-ahead forecasts that we have in the experimental data,

the model lines up very closely with the empirical evidence.

Literature Review. Our work is related to three branches of literature. First, our em-

pirical findings complement recent evidence from survey data discussed in the first para-

graph. As mentioned before, while analyses using survey data are very valuable, they

face major obstacles given that researchers do not know forecasters’ information sets,

payoff functions, and the DGP. A key contribution of our study is using a large-scale ex-

periment to cleanly connect the properties of the process with the structure of expectation

biases.

Second, our paper also contributes to the literature on experimental studies of fore-

casts (see for instance Assenza, Bao, Hommes and Massaro (2014) for a survey). Prior

work in this area includes Hey (1994), Frydman and Nave (2016) and Beshears, Choi,

Fuster, Laibson and Madrian (2013). Most closely related, Reimers and Harvey (2011)

also document that the forecast-implied persistence is higher than the actual persistence

for transitory processes, which indicates the robustness of this phenomenon, but they do

not test models or analyze the term structure of forecasts. We offer an extensive review of

the experimental literature in Table A.1. Overall, relative to existing research, we provide

an experiment with a large scale, a wide range of settings, and diverse demographics; we

also collect the term structure of forecasts. In addition, we use the experiment to test a

number of commonly-used models and to provide a unifying picture of expectation bi-

ases across different settings, while prior studies tend to focus on testing a given type of

model.

Finally, we contribute to the emerging literature which proposes portable and micro-

founded models of expectations formation that allow for deviations from rational expec-

tations. The diagnostic expectations model of Bordalo, Gennaioli and Shleifer (2018) is

a leading example, but it does not explain biases when the process is i.i.d. as mentioned

above. Some modeling techniques we use are related to the literature on noisy percep-

tion and rational inattention (Woodford, 2003; Sims, 2003). This literature has focused
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on frictions in the perception component of belief formation (e.g., imperfect perception

of recent observations), and there is perfect utilization of past information. Instead, our

model emphasizes frictions in exploiting past information, which is key for generating

overreaction.

Given the frictions in exploiting past information, our model is related to recent work

on memory and belief formation. Bordalo, Gennaioli and Shleifer (2020b) and Bordalo,

Coffman, Gennaioli, Schwerter and Shleifer (2020a) draw inspirations from representa-

tiveness (Kahneman and Tversky, 1972) and associative recall (Kahana, 2012). Wachter

and Kahana (2020) present a retrieved-context theory for belief formation to model asso-

ciative recall, and Enke, Schwerter and Zimmermann (2020) experimentally test the role

of associative recall in stock price formation.4 The most closely related analysis is da Sil-

veira, Sung and Woodford (2020): they present a dynamic model of noisy memory and

show its predictions for the empirical findings in our experiment. In their model, past

information is summarized by a memory state formed before each period, and imprecise

memory leads the agent to optimally put more weight on the latest observation, which

generates overreaction. In our model, the agent decides the amount of past information

to exploit depending on the current context, where the costly retrieval of past informa-

tion can reflect memory constraints, or “availability biases” more generally. We discuss

the relationship between our model and this literature in further detail in Section 5.3.

The rest of the paper proceeds as follows. Section 2 shows stylized facts from survey

forecast data, and discusses the limitations of field evidence on overreaction, which leads

us to conduct a simple experiment. Section 3 describes the experiment. Section 4 presents

our main result — that overreaction is stronger for less persistent processes — and shows

that commonly-used models fail at fitting it. We lay out our alternative model in Section

5 and show that it fits the data well. Finally, we discuss in Section 6 the additional predic-

tion that overreaction is more pronounced at longer horizons. We also discuss modeling

assumptions and robustness checks. Section 7 concludes.

4In addition, Nagel and Xu (2019) and Neligh (2020) study applications of memory decay. Hartzmark,
Hirshman and Imas (2020) and D’Acunto and Weber (2020) also find evidence consistent with memory
playing a role in decision making.
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2 Motivating Facts

To motivate our study, we first describe some stylized facts from survey forecasts of

macroeconomic variables and corporate earnings. We show some intriguing patterns that

emerge from survey forecast data, and discuss the key limitations of using survey data to

analyze the variation of expectation biases across settings.

2.1 Overreaction and Process Persistence: Evidence from the Field

A major challenge for analyzing expectations using field data like surveys is that the

true DGP and forecasters’ information sets are both unknown. Taking inspiration from

Coibion and Gorodnichenko (2015), Bordalo et al. (2020c) observe that one idea is to cap-

ture belief updating using forecast revisions by individual forecasters, which should in-

corporate news they respond to and should be part of their information sets. When fore-

casters overreact to information, forecast revisions at the individual level would over-

shoot: upward forecast revisions would predict realizations below forecasts. The empir-

ical specification is the following, which regresses forecast errors on forecast revisions in

a panel of quarterly individual-level forecasts:

xt+h − Fi,txt+h︸ ︷︷ ︸
Forecast Error

= a + b (Fi,txt+h − Fi,t−1xt+h)︸ ︷︷ ︸
Forecast Revision

+vit, (2.1)

where Fi,txt+1 is the forecast of individual i of outcome xt+h. For each series, we obtain a

coefficient b (henceforth the “error-revision coefficient”). When forecasters display over-

reaction, b is expected to be negative, and vice versa (Bordalo et al., 2020c).

Bordalo et al. (2020c) analyze professional forecasts of 22 series of macroeconomic and

financial variables. They find that the error-revision coefficient b is generally negative,

and more negative for processes with lower persistence. They interpret this pattern as an

indication that overreaction tends to be stronger when the true process is more transitory.

In Figure I, Panel A, we use Survey of Professional Forecasters (SPF) data and replicate

this finding. Here we use the simple one-period-ahead forecasts, namely h = 1. The y-

axis shows the coefficient b for different series, and the x-axis shows the autocorrelation
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of each series as a simple measure of persistence. We see that the coefficient b is more

negative when the actual series is less persistent (i.e., more overreaction).

In Figure I, Panel B, we also document similar results using analysts’ forecasts of firms’

sales from the Institutional Brokers’ Estimate System (IBES). Again we use one-period

ahead forecast, namely h = 1. We normalize both actual sales and projected sales using

lagged total assets, and the frequency is quarterly. Results are very similar if we use

an annual frequency, or using earnings forecasts instead of sales forecasts.5 We run one

regression in the form of Equation (2.1) for each firm i to obtain coefficient bi. We also

compute the autocorrelation of the actual sales process ρi. Figure I, Panel B, shows a

binscatter plot of the average bi in twenty bins of ρi. Here, the majority of firms exhibit

underreaction (as previously documented by Bouchaud et al. (2019)), but the key fact

remains: the coefficient bi is more negative when the actual sales process of the firm is

less persistent.

These motivating facts in the field data point to the importance of understanding how

subjective beliefs vary with the setting, which would be important for making progress

in unifying existing empirical results and for guiding models of expectations.

2.2 Challenges in Field Data

The results from the error-revision regressions in field data, however, can be difficult to

interpret unequivocally, for several key reasons.

First, it is difficult to estimate b precisely for transitory processes when expectations

are close to rational. In this case, revisions are close to zero, so the regression coefficient is

not well estimated. As an illustration, in Figure A.1, Panel A, we show the error-revision

coefficient b from simulations where we simulate forecasters under diagnostic expecta-

tions (Bordalo et al., 2018, 2020c) for AR(1) processes with different levels of persistence.

5Earnings forecasts have several complications relative to sales forecasts. First, earnings forecasts pri-
marily take the form of earnings-per-share (EPS), which may change if firms issue/repurchase shares, or
have stock splits/reverse splits. This requires us to transform EPS forecasts to implied forecasts about to-
tal firm earnings, which could introduce additional measurement error. Second, the definition of earnings
firms use for EPS can be informal (“pro forma" earnings, instead of formal net income according to the
Generally Accepted Accounting Principles (GAAP). As a result, matching earnings forecasts properly with
actual earnings can be more challenging. In comparison, sales forecasts are directly about total sales of the
firm, and the accounting definition of sales is clear (based on GAAP).

8



Figure I: Forecast Error on Forecast Revision Regression Coefficients

In Panel A, we use SPF data on macroeconomic forecasts and estimate a quarterly panel regression using
each individual j’s forecasts for each variable xi: xi,t+1 − Fi,j,txi,t+1 = a + bi(Fi,j,txi,t+1 − Fi,j,t−1xi,t+1) + vi,j,t,
where the left hand side variable is the forecast error and the right hand variable is the forecast revision for
each forecaster j. The y-axis plots the regression coefficient bi for each variable, and the x-axis plots the au-
tocorrelation of the variable. The variables include quarterly real GDP growth, nominal GDP growth, GDP
price deflator inflation, CPI inflation, unemployment rate, industrial production index growth, real con-
sumption growth, real nonresidential investment growth, real residential investment growth, real federal
government spending growth, real state and local government spending growth, housing start growth, un-
employment rate, 3-month Treasury yield, 10-year Treasury yield, and AAA corporate bond yield. In Panel
B, we use IBES data on analyst forecasts of firms’ sales and estimate a quarterly panel regression using indi-
vidual analyst j’s forecasts for each firm i’s sales xi,t+1 − Fi,j,txi,t+1 = a + bi(Fi,j,txi,t+1 − Fi,j,t−1xi,t+1) + vi,j,t,
where the left hand side variable is the forecast error and the right hand variable is the forecast revision for
each forecaster j. The y-axis plots the regression coefficient bi, and the x-axis plots the autocorrelation of
firm i’s sales. For visualization, we group firms into twenty bins based on the persistence of their sales, and
present a binscatter plot. Both actual and projected sales are normalized by lagged book assets.
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By construction, the simulated coefficient (shown by the solid line) is on average simi-

lar to theoretical predictions in the diagnostic expectations model (Bordalo et al., 2020c).

Meanwhile, the dashed lines show that the confidence intervals become very wide when

the process persistence is below 0.5.6 The intuition in this example is that the variance of

the right-hand-side variable, the forecast revision, goes to zero for i.i.d. processes when

expectations are close to rational (see discussion on asymptotic standard errors in Ap-

pendix C.1).

Second, the error-revision coefficient b is not necessarily a direct metric for the de-

gree of overreaction (i.e., how much subjective beliefs over-adjust relative to the rational

benchmark). This empirical coefficient does not directly map into a structural parameter,

and its interpretation can be model dependent. In particular, since the forecast revision in

period t is the change between the subjective forecast from t− 1 to t (Ftxt+h − Ft−1xt+h),

its size and variance are affected by the past forecast (Ft−1xt+h), so the magnitude of the

error-revision coefficient b can be path dependent. In addition, the error-revision coeffi-

cient b can be subject to the critique that if the forecast Ftxt+h is measured with noise, the

regression coefficient b could be mechanically negative, given that Ftxt+h affects both the

right-hand side (forecast revision) and the left-hand side (forecast error) of the regression.

Taken together, the error-revision coefficient is a popular empirical measure in the

field data, to circumvent issues arising from researchers not observing the forecasters’

information sets and the DGP. It is inadequate, nonetheless, for measuring biases in ex-

pectations.

A more precise way to study the properties of subjective beliefs is to estimate the

implied persistence from the forecasts ρs
h, which is the coefficient of regressing Ftxt+h on

xt when the process is AR(1). We can then compare it with the actual persistence ρ of

the process. When ρs
h > ρh, there is overreaction, in the sense that the forecast displays

excess sensitivity to the latest observation xt (i.e., when xt is high, the forecast tends to be

too high, and vice versa). Figure A.1, Panel B, shows via simulations that this approach

6For AR(1) processes, the diagnostic forecast is Eθ
t xt+1 = Etxt+1 + ρεt, where Etxt+1 is the rational

forecast in period t, ρ is the AR(1) persistence, and εt is the shock to the process xt in period t. When the
process is i.i.d., the diagnostic forecast becomes the same as the rational forecast, and the error-revision
coefficient is not well defined.
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is reliable for all levels of persistence. This alternative approach does not suffer from the

shortcomings of the error-revision coefficient for two main reasons. First, the variance of

the right-hand-side variable, the past realization, does not vanish to zero as ρ decreases.

Second, the magnitude of ρs
h is much easier to interpret. For instance, ρs

h can be translated

into a degree of overreaction by normalizing it using the rational sensitivity, ρh:

ζ = ρs
h/ρh. (2.2)

If ζ = 2, then the subjective forecast responds twice as much as the rational forecast.7

Nonetheless, this approach is only meaningful if forecasters’ information sets are re-

stricted to past realizations of the process, and it requires that the DGP is truly AR(1). This

is why we now turn to our experimental setting where we control both the forecasters’

information set and the DGP.

3 Experiment Design

We design a simple forecasting experiment, where the DGP is an AR(1) process:

xt+1 = (1− ρ)µ + ρxt + εt. (3.1)

The experiment begins with a consent form, followed by instructions and tests. Partici-

pants first observe 40 past realizations of the process. Then, in each round, participants

make forecasts and observe the next realization, for 40 rounds. After the prediction task,

participants answer some basic demographic questions.

Each participant is only allowed to participate once. Participants include both indi-

viduals across the US from Amazon’s online Mechanical Turk platform (MTurk) and MIT

undergraduates in Electrical Engineering and Computer Science (EECS). For MTurk, we

7There is an approximate relationship between ζ and the error-revision coefficient. Specifically, 1/(1 +

b) = Var(FR)
Cov(FE+FR,FR) . If we set Ft−1xt+h as a constant, then this coefficient is the same as ζ. Accordingly, a

negative error-revision coefficient, often interpreted as evidence of overreaction, implies ζ > 1, i.e., overre-
action of the subjective belief to the latest observation.
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use HITs titled “Making Statistical Forecasts.”8 For MIT students, we send recruiting

emails to all students with a link to the experimental interface.

3.1 Experimental Conditions

There are three main sets of experiments, which we describe below and summarize in

Table A.2 in the Appendix.

Experiment 1 (Baseline, MTurk). Experiment 1 is our baseline test, conducted in

February 2017 on MTurk. We use 6 values of ρ: {0, .2, .4, .6, .8, 1}. The volatility of ε is

20. The constant µ is zero. Participants are randomly assigned to one value of ρ. Each

participant sees a different realization of the process. At the beginning, participants are

told that the process is a “stable random process." In each round, after observing realiza-

tion xt, participants predict the value of the next two realizations xt+1 and xt+2. Figure

A.2 provides a screenshot of the prediction page. There are 207 participants in total and

about 30 participants per value of ρ.

Experiment 2 (Long horizon, MTurk). Experiment 2 investigates longer horizon fore-

casts. We assign participants to conditions identical to Experiment 1, except that we col-

lect forecasts of xt+1 and xt+5 (instead of xt+2), with ρ ∈ {.2, .4, .6, .8}. Experiment 3 was

conducted in June 2017 on MTurk. There are 128 participants in total.

Experiment 3 (Describe DGP, MIT EECS). In Experiment 3, we study whether pro-

viding more information about the DGP affects forecasts. To make sure that participants

have a good understanding of the AR(1) formulation, we perform this test among MIT

undergraduates in Electrical Engineering and Computer Science (EECS). Experiment 3

was conducted in March 2018 and there are 204 participants. We use the same structure

as in Experiment 1, with AR(1) persistence ρ ∈ {.2, .6}. For each persistence level, the

control group is the same as Experiment 1, and the process is described as “a stable ran-

dom process.” For the treatment group, we describe the process as “a fixed and stationary

8The MTurk platform is commonly used in experimental studies (Kuziemko, Norton, Saez and
Stantcheva, 2015; D’Acunto, 2015; Cavallo, Cruces and Perez-Truglia, 2017; DellaVigna and Pope, 2017,
2018). It offers a large subject pool and a more diverse sample compared to lab experiments. Prior research
also finds the response quality on MTurk to be similar to other samples and to lab experiments (Casler,
Bickel and Hackett, 2013; Lian, Ma and Wang, 2018).
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AR(1) process: xt = µ + ρxt−1 + et, with a given µ, a given ρ in the range [0,1], and et is

an i.i.d. random shock.” Thus there are 2× 2 = 4 conditions in total, and participants are

randomly allocated to one of them. At the end of the experiment, we further ask students

questions testing their prior knowledge of AR(1) processes.9

We focus on AR(1) processes because they are simple and therefore make the defini-

tion of rational expectations relatively clear. They are easy to learn as discussed more in

Section 4. In addition, as Fuster, Laibson and Mendel (2010) point out, in finite samples,

ARMA processes with longer lags are difficult to statistically tell apart from AR(1) pro-

cesses. Finally, as discussed in Section 2.2, it is also straightforward to assess the degree

of overreaction in this setting.

3.2 Payments

We provide fixed participation payments and incentive payments that depend on the per-

formance in the prediction task. For the incentive payments, participants receive a score

for each prediction that increases with the accuracy of the forecast (Dwyer, Williams, Bat-

talio and Mason, 1993; Hey, 1994): S = 100×max(0, 1− |∆|/σ), where ∆ is the difference

between the prediction and the realization, and σ is the volatility of the noise term ε. This

loss function ensures that a rational participant will optimally choose the rational expec-

tation, and it ensures that payments are always non-negative. A rational agent would

expect to earn a total score of about 2,800.10 We calculate the cumulative score of each

participant, and convert it to dollars. The total score is displayed on the top left corner of

the prediction screen (see Figure A.2).

For experiments on MTurk (Experiments 1 and 2), the base payment is $1.8; the con-

version ratio from the score to dollars is 600, which translates to incentive payments of

9We do not disclose the values of µ and ρ, since the objective of our study is to understand how people
form forecasting rules; directly providing the values of µ and ρ would make this test redundant.

10E(1− |xt+1 − Ft|/σ) is maximal for a forecast Ft equal to the 50th percentile of the distribution of xt+1
conditional on xt. Given that our process is symmetric around the rational forecast, the median is equal
to the mean, and the optimal forecast is equal to the conditional expectation. Whether the rational agent
knows the true ρ (Full Information Rational Expectations) or predicts realizations using linear regressions
(Least-Square Learning) does not change the expected score by much. In simulations, over 1,000 realizations
of the process, we find that expected scores of the two approaches differ by less than .3%.
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about $5 for rational agents. For experiments with MIT students (Experiment 3), the base

payment is $5; the conversion ratio from the score to dollars is 240, which translates to

incentive payments of about $12 for rational agents.

3.3 Summary Statistics

Appendix Table A.3 shows participant demographics and other experimental statistics.

Overall, MTurk participants are younger and more educated than the U.S. population.

The mean duration of the experiment is about 18 minutes, and the hourly compensation

is in the upper range of tasks on MTurk. As expected, MIT EECS undergrads are younger.

Their forecast duration and overall forecast scores are similar to the MTurk participants.11

4 Main Empirical Findings

In this section, we present the main empirical findings from the experiment. In Section

4.1, we present the key stylized facts, connecting to the field data evidence discussed in

Section 2. In Section 4.2, we then analyze whether commonly-used models of expectations

are in line with these key facts.

4.1 Basic Fact: More Overreaction for More Transitory Processes

We begin by presenting the basic facts from our experiments. Figure II, Panel A, shows

that the feature in SPF and IBES data discussed in Section 2 also holds in our experiment.

Using data from Experiment 1, we have AR(1) processes with persistence from 0 to 1, and

we run the error-revision regression in Equation (2.1), as we did on field data, for each

level of persistence. As before, the y-axis shows the error-revision coefficient, and the x-

11The participation constraint is likely to be satisfied. For the MTurk tests, the average realized total
payment (participation plus incentive payment) is about $5 (for a roughly 15 minute task), which is high
compared to the average pay rate. For the MIT tests, the average realized total payment is around $15. The
payments are sufficiently attractive to recruit 200 EECS undergrads out of 1,291 students within 6 hours. For
the incentive compatibility constraint, recent work by DellaVigna and Pope (2017) show that participants
provide high effort even when the size of the incentive payment is modest, and the power of incentives
does not appear to be a primary issue in this setting.
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axis shows the persistence of the process. Like in the field data, we see that the coefficient

b is more negative for transitory processes.

Given the limitations of the error-revision regression approach explained in Section 2,

a natural and more precise alternative in our experiment is the persistence implied by the

forecast. The implied persistence is measured as the coefficient ρs
1 in the regression:

Fitxt+1 = c + ρs
1xt + uit, (4.1)

estimated in the panel of individual-level forecasts, for each level of AR(1) persistence

ρ.12 As the Full Information Rational Expectation (FIRE) is given by ρxt, the difference

between ρs
1 and ρ provides a direct measure of the extent of overreaction. This measure is

reliable for AR(1) processes as we show in Section 2, and forecasters’ information sets are

relatively clear in the experiment.

In Figure II, Panel B, we plot the implied persistence ρs
1 against the true ρ. We see that

when ρ = 1, ρs
1 is roughly one (i.e., the subjective and rational forecasts have roughly the

same sensitivity to xt). When ρ is smaller, ρs
1 declines, but not as much. When ρ = 0,

ρs
1 is roughly 0.45 (the sensitivity of the subjective forecast to xt is much larger than the

rational benchmark).13

Overall, in the experiment, by explicitly controlling for the DGP and the forecasters’

information sets, we can establish clearly that overreaction is stronger for more transitory

processes.

FIRE vs. In-Sample Least Square Learning. The comparisons above used the FIRE

benchmark of true ρ. The results are very similar if we instead use in-sample least square

learning as the rational benchmark. Specifically, the in-sample least square estimates are

12As in Bordalo et al. (2020c), we can also estimate the error-revision coefficient for each forecaster, and
take the mean or median coefficient for each level of ρ. Similarly, we can estimate the implied persistence
for each forecaster, ρs

1,i, and take the mean or median for each level of ρ. The results are very similar.
13We can also compute the ratio of relative overreaction ζ =

ρs
h

ρh as defined in Equation (2.2). Internet
Appendix Figure A.3 plots the value of ζ for each level of ρ (except when ρ = 0 where ζ is not well defined).
Since ρs

1 decreases less than one-for-one with ρ, the degree of overreaction is higher when the process is less
persistent.
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Figure II: Overreaction and Persistence of Underlying Process: Experimental Data

In Panel A, we use data from Experiment 1 and for each level of AR(1) persistence ρ, we estimate a panel
regression of forecast errors on forecast revisions: xt+1 − Fi,txt+1 = a + b(Fi,txt+1 − Fi,t−1xt+1) + vit. The
y-axis plots the regression coefficient b, and the x-axis plots the AR(1) persistence ρ. In Panel B, we estimate
the implied persistence ρs from Fitxt+1 = c + ρsxt + uit for each level of AR(1) persistence ρ. The y-axis
plots the implied persistence ρs, and the x-axis plots the AR(1) persistence ρ. The red line is the 45-degrees
line, and corresponds to the implied persistence under Full Information Rational Expectations (FIRE). The
vertical bars show the 95% confidence interval of the point estimates.
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formed as:

Êtxt+h = ât,h +
k=n

∑
k=0

b̂k,h,txt−k. (4.2)

In period t the forecaster predicts xt+h using lagged values from xt−k up to xt; parameters

ât,h and b̂k,h,t are estimated, on a rolling basis, using OLS and past realizations until xt.

The estimated coefficients may differ based on persistence ρ. We set n = 3, but results are

not sensitive to the number of lags.

In our data, the difference between Êtxt+h and FIRE is small. The top panel of Ap-

pendix Figure A.4 shows that the mean squared difference between these two expecta-

tions is small, and does not decrease much after 40 periods. This is because our AR(1)

processes are very simple, and a few dozen data points are enough for least square fore-

casts to be reasonably accurate. It also shows that the mean squared difference between

the least square forecast and the actual forecasts are substantial, and does not change

much across different periods. The bottom panel shows that the persistence implied by

least square learning is about the same as the true ρ. Accordingly, in the rest of the paper

we use FIRE in our baseline definitions, but all the results are very similar if we use the

in-sample least square Êtxt+h instead.

Effect of Linear Prior. We also analyze whether explicitly providing a linear prior

affects the results. In Experiment 1 with participants from the general population, we

describe the process as a “stable random process" (given that most of these participants

may not know what an AR(1) process means). In Experiment 3 with MIT EECS students,

we tell half of the participants that the DGP is AR(1) with fixed µ and ρ (treatment group),

and half of the participants the process is a “stable random process” (control group). In

Appendix Figure A.5, we show that whether this information was provided has no dis-

cernible impact no discernible impact on the properties of forecast errors. In Panel A , we

plot the distributions of the forecast errors, which are almost identical in the treatment

vs. control group. In Panel B, we find that the predictability of forecast errors conditional

on the latest observation xt is also similar in the treatment vs. control group. In both

samples, forecasts tend to be too high when xt is high (overreaction), and the magnitude

of the bias is about the same. Appendix Table A.4 shows that the implied persistence is

17



also similar in both the treatment and control groups. Overall, we find that explicit de-

scriptions of the AR(1) process do not seem to affect the basic patterns in the data. Put

differently, participants do not seem to enter the experiment with complicated nonlinear

priors.

Stability across Demographics. Figure A.6 in the Appendix shows both the error-

revision coefficient b and implied persistence ρs
1 against ρ in different demographic groups.

In all cases, the main patterns are stable.

4.2 Testing Models of Expectations

We now use the data from our experiments and the key fact above to examine the perfor-

mance of expectation formation models.

A. Models of Expectations

We begin by laying out commonly-used models of expectations below.

Backward-Looking Models

We begin with older “backward-looking” models, which specify fixed forecasting

rules based on past data and do not incorporate properties of the process (i.e., are not

a function of ρ). The term structure of expectations in these models is not well defined, so

we focus on one-period ahead forecasts.

1. Adaptive expectations

Adaptive expectations have been used since at least the work of Cagan (1956) on in-

flation and Nerlove (1958) on cobweb dynamics. The standard specification is:

Ftxt+1 = δxt + (1− δ)Ft−1xt. (4.3)

2. Extrapolative expectations
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Extrapolative expectations have been used since at least Metzler (1941), and are some-

times used in studies of financial markets (Barberis, Greenwood, Jin and Shleifer, 2015;

Hirshleifer, Li and Yu, 2015). One way to specify extrapolation is:

Ftxt+1 = xt + φ(xt − xt−1). (4.4)

That is, expectations are influenced by the current outcome and the recent trend, and

φ > 0 captures the degree of extrapolation.

Forward-Looking Models

We now proceed to “forward-looking" models, where forecasters do incorporate fea-

tures of the true process. Since these models contain rational expectations, the term struc-

ture of expectations is more naturally defined.

3. Full information rational expectations

Full information rational expectations (FIRE) is the standard specification in economic

modeling. Decision makers know the true DGP and its parameters, and make statistically

optimal forecasts accordingly:

Ftxt+h = Etxt+h = ρhxt. (4.5)

As explained in Section 4.1, in our data in-sample least square learning is very close to

FIRE, so we use FIRE as the benchmark .

4. Noisy information/sticky expectations

Noisy information models assume that forecasters do not observe the true underlying

process, but only noisy signals of it (e.g., Woodford, 2003). In our experimental setup,

where recent realizations are shown in real time, such frictions may correspond to noisy

perception. These models typically have the following recursive definition:

Ftxt+h = (1− λ)ρhxt + λFt−1xt+h + εit,h, (4.6)
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where Etxt+h is FIRE, and λ ∈ [0, 1] depends on the noisiness of the signal. εit,h also comes

from the noise in the signal.

Alternatively, this formulation could also represent anchoring on past forecasts. This

formulation is used in Bouchaud et al. (2019) to model earnings forecasts of equity ana-

lysts.

5. Diagnostic expectations

Diagnostic expectations are introduced by Bordalo, Gennaioli and Shleifer (2018) to

capture overreaction in expectations driven by the representativeness heuristic (Kahne-

man and Tversky, 1972). The specification is:

Ftxt+h = Etxt+h + θ(Etxt+h − Et−1xt+h). (4.7)

That is, the subjective expectation is the rational expectation plus the surprise (measured

as the change in rational expectations from the past period) weighted by θ, which indexes

the severity of the bias. Under diagnostic expectations, subjective beliefs adjust to the true

process and incorporate features of rational expectations (“kernel of truth"), but overreact

to the latest surprise by degree θ.

6. Constant gain learning

We also test a version of LS learning where weights decrease for observations further

in the past (Malmendier and Nagel, 2016). We use the specification:

Ftxt+h = Êm
t xt+h = âh,t + b̂h,txt, (4.8)

where âh,t, b̂h,t are obtained through a rolling regression with all data available until t. The

difference with the standard least square learning specification is that this regression uses

decreasing weights (i.e., older observations receive a lower weight) to reflect imperfect

retention of past information. Specifically, in period t, for all past observations s ≤ t, we

use exponentially decreasing weights: ws
t =

1
κ(t−s)

. These weights correspond to constant
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gain learning in recursive least squares formulations (Malmendier and Nagel, 2016; Nagel

and Xu, 2019).

Other Models

The above list leaves out three classes of models in the literature: simple bounded

rationality models, learning with nonlinear Bayesian priors, and natural expectations

(Fuster, Laibson and Mendel, 2010; Fuster, Hebert and Laibson, 2012). The reason is we

do not find evidence for these models in our data, by design or by outcome, as we explain

below.

First, a possible model for our key fact is the one in Gabaix (2018). He describes a

model where the forecaster faces a range of possible processes with varying degrees of

persistence. To limit computational cost, the boundedly rational forecaster anchors the

true persistence to a default level of persistence ρd: ρs = mρi + (1 − m)ρd. In such a

setting, forecasters would tend to overreact to processes that are less persistent than av-

erage, and underreact to processes that are more persistent than average. This model has

several limitations in our setting. First, it predicts underreaction for processes with high

persistence, which we do not find in the data. Second, it is not clear how m and ρd are

formed. Furthermore, models that solely work through misperceptions of the persistence

parameter would predict diminishing overreaction for longer horizons, which is also not

the case in the data as we discuss more in Section 6.

Second, we find no evidence of nonlinear priors in our data. Nonlinear priors may

arise, for instance, because of nonstationary environments or beliefs in regime switches

(Barberis, Shleifer and Vishny, 1998; Bloomfield and Hales, 2002; Rabin, 2002; Massey

and Wu, 2005; Rabin and Vayanos, 2010). As explained in Section 4.1, in Experiment 3

among MIT EECS students, we explicitly describe the linear AR(1) process to half of the

participants. We do not find that the information of a linear AR(1) prior affects the results.

Overall, our findings highlight that systematic biases in expectations can be significant

even in linear stationary environments.

Third, for natural expectations, the key observation is that forecasters may have dif-

ficulty differentiating processes with hump-shaped dynamics from simpler processes in
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finite samples (e.g., differentiating AR(2) or ARMA(p,q) from AR(1)), even based on sta-

tistical tools like BIC. In our tests, the emphasis is not the difficulty in detecting long-term

mean-reverting processes in-sample. We focus instead on deviations from rational expec-

tations for the simplest processes, an AR(1) which has much more simple dynamics.14

Yet, even in this case, we find biases that have a clear structure.

B. Estimating Models of Expectations

We now estimate the six models described above on one-period ahead expectations data

(i.e., with h = 1). We pool data from all conditions of Experiment 1 (i.e., with ρ ∈

{0, .2, .4, .6, .8, 1}). All models except FIRE (which has no parameter) and constant gain

learning (whose parameter lies in the decreasing weights) can be simply estimated us-

ing constrained least squares. We cluster standard errors at the individual level. The

constant gain learning model is estimated by minimizing, over the decay parameter, the

mean squared deviation between model-generated and observed forecasts. We estimate

standard errors for this model by block-bootstrapping at the individual level.

Table A.5 reports the estimated parameters. Each model is described by an equa-

tion and a parameter (in bold). The parameter estimate is reported in the third column,

along with standard errors in the fourth column. In the fifth column, we report the mean

squared error of each model, as a fraction of the sample variance of forecast. Since fore-

casts in the ρ = 1 condition are mechanically more variable than forecasts in the ρ = 0

condition, we compute one such ratio per level of ρ, and then compute the average ratio

across values of ρ.

Several patterns emerge from the model estimation. First, consistent with findings in

Section 4.1, rational expectations are strongly rejected, for at least two reasons. One is

that FIRE has the lowest explanatory power of forecast data. The other is that rational

expectations are nested in all three forward-looking non-RE models, and the coefficient

related to deviations from rational expectations is always significant at 1%.

14Fuster, Laibson and Mendel (2010) formulate an “intuitive model" Ftxt+1 = xt + φ(xt − xt−1) + εt+1,
when the true DGP is an AR(2) xt+1 = αxt + βxt−1 + ηt+1, and φ = (α − β − 1)/2. We could test this
model in our data, where α ≥ 0, β = 0, φ < 0, and the intuitive model has the same functional form as the
extrapolative expectation in Equation (4.4) with negative φ.
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Second, most models point to strong signs of overreaction. The adaptive model fea-

tures overreaction through the fact that the loading on the past realization xt is very high

(.83). This corresponds to overreaction whenever ρ is less than .83. The backward-looking

extrapolative model has a negative coefficient on the slope (xt − xt−1), but this again re-

flects that most overreaction is built into the past realization effect xt, whose coefficient

is estimated to be .93. The diagnostic expectations model has a θ of .34, which indicates

strong overreaction (forecasts react 34% “too much" to the last innovation).15 The con-

stant gain learning model features a significant decay in the weight of past observations,

a loss of 6% per period (i.e., it takes about 12 periods to divide the weight by 2), rejecting

the equal weights in benchmark least square learning. Last, the sticky/noisy expecta-

tions model is the only one that does not feature overreaction. The coefficient on previous

forecasts (Ft−1x+1) is statistically significant at .14∗∗∗, a magnitude consistent with earlier

analyses on individual analyst EPS forecasts (Bouchaud et al., 2019). This finding suggests

that there is some anchoring on the level of past forecasts, in addition to overreaction to

the recent realization.

C. Do Models Match the Relationships in the Data?

We first ask how the estimated models fit our key fact that overreaction is stronger for

more transitory processes (our Figure II). We start with the pattern on the implied persis-

tence, which is the most intuitive one. In Figure III, we compute the persistence implied

by forecasts based on the five models estimated above. For each model m and for each

observation in our data, we compute the predicted forecast F̂m
t xt+1, using the parameters

in Table A.5. We then group observations per level of ρ ∈ {0, .2, .4, .6, .8, 1}. For each

level, we regress the model-based forecast F̂m
t xt+1 on xt to obtain the implied persistence

according to the model.

In Figure III, the solid line represents the implied persistence based on actual forecasts

(same as Figure II, Panel B). The dots represent the forecast-implied persistence based on

the models. In all models, the implied persistence is an increasing function of ρ, and is

15The θ estimate is slightly lower than the typical estimate in Bordalo et al. (2020c) using macro survey
data (which find θ of around 0.5) and in Bordalo, Gennaioli and Shleifer (2018) and Bordalo et al. (2019)
using analyst forecasts of credit spreads and long-term EPS growth (which find θ of around 1).
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close to one for random walks as in rational expectations. However, the list of commonly-

used models performs quite poorly for transitory processes. Backward-looking expecta-

tions models generate “too much” overreaction for transitory processes, while on the con-

trary, most forward-looking models do not generate enough overreaction. By definition,

diagnostic and sticky expectations generate no overreaction for transitory processes (the

forecast implied persistence according to these models is equal to zero). The constant gain

learning model does slightly better: by giving larger weights to recent observations, the

model generates some excess sensitivity to recent realizations. Nonetheless, the weights

on past observations, as fitted on forecasting data, do not seem to decrease fast enough.

Figure III: Forecast-Implied Persistence: Data vs Models

For each model m, we compute the model-based forecast F̂m
t xt+1 for each observation in our data. We use

the model parameters reported in Table A.5. We then group observations per level of actual persistence
ρ ∈ {0, .2, .4, .6, .8, 1}. For each level of ρ, we regress the model-based forecast F̂m

t xt+1 on lagged realization
xt. The dots report this regression coefficient, which is the forecast implied persistence according to model
m for a given level of ρ. The solid line corresponds to the forecast implied persistence in the data, also
shown in Figure II, Panel B.
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To connect with results in field data and for completeness, we also report in Appendix

Figure A.7 the error-revision coefficients based on the models. Again, the solid line repre-

sents experimental data (same as Figure A.7, Panel A) and the dots represent predictions

from estimated models. In this figure we omit the adaptive and extrapolative models, be-

cause they do not impose an obvious structure on the two-period ahead forecasts Ftxt+2,
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which are needed to compute revisions. The conclusions are similar to those in Figure III.

For transitory processes, diagnostic and sticky expectations tend to lead to error-revision

coefficients that are too high. Constant gain learning, on the contrary, generates a coef-

ficient that is too negative.16 Overall, the core message remains that commonly-used ex-

pectations models have trouble fitting the variation of expectation biases across settings

with different levels of process persistence.

5 Model

Given the failure of commonly-used models to account for the empirical findings, we

now introduce a model with a different approach, which provides a general framework

for expectations formation that emphasizes recent data, context, and imperfect informa-

tion utilization. We show that the model performs very well in matching the evidence

described above.

5.1 Environment

Time is discrete and is indexed by t ∈ {0, 1, 2, . . . }. There is an agent who tracks an exoge-

nous stochastic process {xt : t ≥ 0} and produces forecasts for the future realizations of

this process at horizon h. The agent’s payoff at any given time t depends on the accuracy

of these forecasts and is given by:

−(Ftxt+h − xt+h)
2, (5.1)

where Ftxt+h is the agent’s time t forecast of x’s realization h periods ahead and xt+h is

the ex post realization of the variable at t + h.17

16This is in fact a mechanical effect of the error-revision coefficient, which divides by the variance of
forecast revision. In the constant gain learning model, forecast revisions tend to be very small for low
values of ρs (they are close to zero), which blows up the absolute value of the error-revision coefficient. The
implied persistence measure in Figure III is immune to this problem.

17It is important to note that xt+h is not fully known at time t and only realized h periods after the forecast
is made. Nonetheless, at time t, the agent knows that their payoff will be determined by the realization of
the process at t + h. This is similar to the score function in the experiment with one slight difference that
in the experiment, as discussed in Section 3.2, the score function does not have an exact quadratic form, to
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We assume that xt follows an AR(1) process with mean µ and persistence ρ:

xt = (1− ρ)µ + ρxt + εt, εt ∼ N (0, σ2
ε ). (5.2)

We assume that at the beginning of each period, the agent observes the context (de-

fined as the most recent realization of xt) and then decides whether to retrieve more data

before forming their beliefs. We let St denote the set that contains the context xt and all the

other data retrieved by the agent. Specifically, we assume that beliefs are formed based

on the set St and refer to the information revealed by this set as what is “on top of the

agent’s mind.”

The distinction between all potentially available information and what is on top of the

agent’s mind is the central component of our model. Although the agent may see many

things, only the information that is on top of the mind matters for their beliefs and deci-

sions. Accordingly, a key feature of our model is that it draws a distinction between data

that is potentially available, and the data utilized for the forecast. In our model, only a

subset of all available data might be on top of the mind, which shapes the forecast. In

the following, we model this notion, i.e., what comes to mind, by assuming that retrieval

is costly, and more importantly, that this cost increases in the amount of information re-

vealed by the retrieved set. Therefore, the agent has to weigh the benefits of retrieving

more information against the cost of having too many things on top of their mind.

Formally, we assume that at the beginning of each period, the agent observes the most

recent realization xt costlessly, so that xt is always in St. Furthermore, the agent can decide

to retrieve more information from the history of past observations, but at a cost. If the cost

is zero, then the model collapses to FIRE where all available data is retrieved as more data

always leads to better forecasts. While this decision is trivial when retrieval is costless, in

our setting, costly retrieval leads to a trade-off for information utilization. We assume that

the cost of retrieved information is increasing and convex in bits of information retrieved

by the agent. Formally, the cost of retrieval associated with St at time t, denoted by Ct(St),

ensure that payments in the experiment are always non-negative. We use this standard quadratic form for
simplicity of modeling, so we can derive closed-form solutions.

26



is given by:

Ct(St) ≡ ω
exp (2 ln(2) · γ · I(St, µ|xt))− 1

γ
, (5.3)

where ω ≥ 0 governs the overall cost of retrieval by shifting the function, and γ ≥ 0 gov-

erns its convexity in Shannon’s mutual information function (I(St, µ|xt)) which measures

the amount of information retrieved by the agent in units of bits after observing xt.

The reason for assuming this functional form is that it embeds two useful cases. First,

it converges to be linear in I(St, µ|xt) when γ → 0, which is the classic case that Sims

(2003) assumed in introducing rational inattention and is widely used in that literature.

Second, with a quadratic objective and a Gaussian posterior, it collapses to an increasing

and convex cost in the precision of the agent’s posterior when γ > 1, which is also used

in the literature that assumes the precision of the agent’s information is a choice variable

(e.g., Myatt and Wallace, 2012).18

Feasible Retrieval Set. Finally, to ensure that the agent cannot retrieve information be-

yond what is available at a given time, we assume that any retrieved information set

should be independent of µ once we condition on the set of all available data at time t.

Formally, we define the set of feasible signals as follows.

Definition 1. Let S̄t be the set of all possible signals over µ at t. Then, given a history

of available data at t, denoted by xt, s ∈ S̄t is feasible to retrieve if it is independent of µ

conditional on xt. Formally, the feasible retrieval set for a given xt is given by

St(xt) ≡ {s ∈ S̄t|I(s, µ|xt) = 0}. (5.4)

Agent’s Problem. Given the primitives of the problem at time t, the agent solves:

18For a formal derivation of these claims, see the proof of Lemma 1.
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min
St

E

[
min
Ftxt+h

E
[
(Ftxt+h − xt+h)

2|St

]
+ Ct(St)

]
s.t. {xt}︸︷︷︸

observation

⊆ St︸︷︷︸
retrieved set

⊆ St(xt).︸ ︷︷ ︸
largest feasible retrieval set

(5.5)

5.2 Characterization

We make two simplifying assumptions for our benchmark model. First, we assume that

the agent’s prior beliefs about the long-run mean µ after observing xt is a normal dis-

tribution with mean xt and precision τ.19 Second, we assume that the agent knows the

correct ρ for the process of xt. As we discuss in Section 6, modeling frictions in beliefs

about the long-run mean µ is the most parsimonious way to unify empirical evidence on

expectation biases observed in the literature, while modeling frictions in beliefs about ρ

does not seem sufficient.

Under these two assumptions, the problem simplifies to a simple choice of precision

of the long-run mean estimate, summarized in the following Lemma:

Lemma 1. For a set of available data xt ≡ {xτ}t
τ=0, the agent’s retrieval problem can be simplified

to choosing the precision of the belief about µ:

min
τ

 (1− ρh)2

τ
+ ω

(
τ
τ

)γ
− 1

γ

 (5.6)

s.t. τ ≤ τ ≤ τ̄t ≡ var(µ|xt)−1. (5.7)

Proof. See Appendix C.2.

The presence of 1− ρh in the objective function captures the fact that the agent is seek-

ing to minimize prediction error over future outcomes xt+h, not directly over the long-run

mean µ. In the model, the assessment of the long-run mean is more important for longer

19This can be obtained by assuming that the agent’s prior before observing xt is an improper uniform
distribution.
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horizons (h ↑), or processes with lower persistence (ρ ↓). The following proposition

presents the solution to the retrieval problem.

Proposition 1. Suppose that the set of available data points is large enough that var(µ|xt)

is arbitrarily close to zero. Then the agent’s optimal posterior precision about the long-run

mean, τ∗ = var(µ|St)−1, is given by:

τ∗ = τ max

1,

(
(1− ρh)2

ωτ

) 1
1+γ

 . (5.8)

Moreover, the agent’s forecast for xt+h at time t, conditional on the true µ and realization

of xt, is distributed normally according to:

Ftxt+h|(µ, xt) ∼ N (µt, σ2)

µt ≡
(

ρh + (1− ρh)
τ

τ∗

)
xt (5.9)

σ2 ≡ (1− ρh)2 1
τ∗

(
1− τ

τ∗

)
(5.10)

where we have normalized µ = 0.

Proof. See Appendix C.3.

5.3 Model Predictions

We now explore the implications of our model for explaining the empirical evidence.

Overreaction. A key prediction of our model is that relative to rational expectations,

forecasts under costly retrieval exhibit overreaction to the most recent observation. The

reason is that the agent relies on the latest observation to predict the long-run mean of

the process. This is a fundamental difference between our model and models of sticky

information (which may use similar modeling techniques). In sticky information models,

agents are fully aware of the past but some of them do not have access to the most recent

observation, which can result in underreaction in the sense that forecasts rely more on the

past than the present. In our model, agents are fully aware of the most recent observation
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and they have to decide whether to retrieve past data or not, which results in overreaction

in the sense that forecasts rely more on the present than on the past data. To visualize this

algebraically, we rewrite the equations of Proposition 1 as:

Ftxt+h = Etxt+h︸ ︷︷ ︸
rational forecast

+ (1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
xt︸ ︷︷ ︸

overreaction

+ εt︸︷︷︸
retrieval noise

. (5.11)

which shows that the bias relative to the rational benchmark has the sign of xt, indicating

systematic overreaction.

Comparative Statics. In addition to predictions about overreaction in general, our model

also predicts that the degree of overreaction varies with the persistence of the process.

The reason is that for less persistent processes, the predictability of the long-run mean

based on the most recent observation is lower and the agent needs to rely more on costly

retrieval rather the most recent observation. The following proposition provides compar-

ative statistics with respect to the parameters of the model.

Proposition 2. Consider the regression estimating the implied persistence ρs
h from the

forecasts:

Ftxt+h = c + ρs
hxt + ut, (5.12)

and let ∆ ≡ ρs
h − ρh denote the difference between asymptotic estimator of ρs

h in the data

and the actual ρh of the process. Then,

1. ∆ ≥ 0 with ∆ = 0 if and only if, either ρ = 1, or information retrieval is free (ω = 0)

and past information available to the forecaster is infinite.

2. ∆ is increasing in τ and ω.

3. ∆ is decreasing in ρh if the cost function is weakly convex in τ, which is true if and

only if γ ≥ 1.
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Proof. See Appendix C.4.

Furthermore, connecting this result to the measure of overreaction in Equation (2.2)

yields the following corollary.

Corollary 1. Consider the relative measure ζ ≡ ρs
h/ρh. Then, ζ ≥ 1. Moreover, ζ is decreasing

in ρh, for all values of ρ and h, if and only if γ ≥ 1.

Proof. See Appendix C.5.

In summary, Proposition 2, along with its Corollary 1, delivers two main results of our

model. The first result is overreaction, a prediction that is consistent with the evidence

presented in Section 4: the gap between implied and actual persistence, ∆, is positive (or

equivalently, ζ, the relative measure of this gap, is greater than 1). The second result is

that if the cost of retrieval is convex in the precision of the agent’s forecast, the degree of

overreaction, as measured by ∆ or ζ, is larger for less persistent processes, as we observe

in the data.

Moreover, the model provides two further testable predictions, which we discuss in

more detail in Section 6. First, since what enters ∆ or ζ is ρh, our results also imply

that overreaction should be larger for longer-horizon forecasts (ρh is decreasing in h).

Second, ρh forms in a sense a sufficient statistic for overreaction: the implied persistence

parameter should be similar in settings that share similar values of ρh.

Our model connects to recent work on memory and overreaction in belief formation.

Wachter and Kahana (2020) construct a model of associative memory, which emphasizes

the role of context in shaping retrieval. In that model, cued recall reinforces the association

between two events, which may lead to overreaction. Nonetheless, the model does not

address variation of overreaction process persistence and forecast horizon. da Silveira,

Sung and Woodford (2020) present another approach of modeling overreaction through

memory, which also assumes that memory is costly. In that model, agents decide what

they want to remember in the future before an observation is revealed. In our model,

the recent observation forms the key context, and agents decide to retrieve relevant in-

formation after an observation has been realized. In other words, while our model and

31



the model in da Silveira, Sung and Woodford (2020) both deliver overreaction in poste-

rior beliefs, the prior beliefs are anchored to different values: in our model, the priors are

anchored to the present, namely the most recent observation; in da Silveira, Sung and

Woodford (2020), in contrast, the priors are anchored to the past, which is given by the

noisy memory state.

5.4 Model Fit

In the following, we present results on model fit for the case where the cost of retrieval is

quadratic (γ = 2). We set γ = 2 in order to minimize the degrees of freedom in the model.

We also present an alternative calibration in Section 6.2 where we jointly estimate γ with

the other parameters of the model. We study the implied persistence in the data, and that

predicted by our model when fitted to the realizations of xt in the data. As before, the

model is estimated by minimizing the mean-squared error (MSE) between the 1-period

forecast predicted by the model for a given parameter (using the realizations of xt in the

data) and the 1-period forecast observed in the data.

Figure IV shows the results for the baseline horizon h = 1: the solid line represents the

implied persistence ρs
1 in the data, and the red solid circles represent ρs

1 predicted by our

model. We see that the implied persistence ρs
1 predicted by our model is very similar to

that in the data. The fit is much better compared to what we obtained in Figure III for the

models in Section 4.2. Appendix Table A.6 further evaluates the model fit by calculating

the MSE between ρs
h in by the model and ρs

h in the data, as well as the MSE between Ftxt+h

in the model and Ftxt+h in the data. We calculate the MSE for our model and the models

in Section 4.2. This MSE calculation also confirms what is obvious visually and shows

that our model has better performance than models discussed in Section 4.2.

Finally, we discuss the intuition behind the better performance of our model. The al-

ternative models in Section 4.2 can be categorized into two groups. For the first group,

namely, adaptive expectations and traditional extrapolation, the models place a fixed

weight on past observations that do not vary with the actual persistence ρ. Consequently,

with a given parameter, these models generate implied persistence that adapts too little
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Figure IV: Model Fit: Implied Persistence

This figure shows the forecast implied persistence ρs
1 as a function of the objective persistence ρ. The implied

persistence ρs
1 is obtained by regressing Ftxt+1 on xt. The blue line represents the results in the forecast data.

The solid red dot represents ρs
1 from our model.
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to the situation (the curve is too flat). For the second group, namely, diagnostic expecta-

tions and noisy information/sticky expectations, the models rely on rational expectations

of the future forecasts. In particular, they converge to rational expectations when the true

persistence is zero. The dependence on rational expectations and the adaptation turn

out to be too strong in low persistence conditions (the implied persistence curve is too

steep). In our framework, due to costly retrieval of past information, the forecaster con-

flates part of the transitory shock with changes in the long-run mean of the process. The

agent adapts, but only partially because retrieval is costly. This partial adaptation is what

makes our model fit the data better than the alternatives when ρ = 0: it overreacts less

than backward-looking models, but more than the other non-RE forward-looking models.

6 Further Discussion

In this section, we present additional non-targeted results from our model about how

overreaction varies with the forecast horizon. We then show the robustness of our model
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formulations to different functional forms. We finally discuss the relevance and signifi-

cance of several modeling assumptions.

6.1 Additional Implications for Forecast Horizons

Some recent research suggests that overreaction in survey data is also more pronounced

for forecasts of longer horizon outcomes. Using the error-revision regression, Bordalo

et al. (2019) find a negative and significant coefficient for equity analysts’ forecasts of

long-term earnings growth, which points to overreaction, while Bouchaud et al. (2019)

document a positive error-revision coefficient for analysts’ forecasts of short-term earn-

ings. Wang (2019) and d’Arienzo (2020) use professional forecasters’ predictions of in-

terest rates, and show that the error-revision coefficient is negative and significant for

long-term interest rates, but not for short-term interest rates. Earlier work by Giglio and

Kelly (2018) using asset prices also points to “excess volatility" of long-term outcomes

relative to short-term outcomes. Brooks, Katz and Lustig (2018) documents the same fact

on the term structure of interest rates.

As noted above in Proposition 2 and Corollary 1, our model predicts that the degree of

overreaction increases with 1− ρh, so it naturally delivers more overreaction for longer-

horizon forecasts.

In the following, we present results for different forecast horizons in our data and

our model. We begin with the empirical results in our forecast data. In addition to the

one-period ahead forecast (Ftxt+1) that we focus on in Section 4, from Experiment 2 we

also have data on the two-period ahead forecast (Ftxt+2), as well as the five-period ahead

forecast (Ftxt+5). We cannot construct the error-revision coefficient for these long-horizon

forecasts, which will require information about (Ftxt+3) and (Ftxt+6) that is not available.

Instead, we can study the implied persistence ρs
h associated with the long-term forecasts

(Ftxt+2 and Ftxt+5) by regressing Ftxt+h on xt. To aid visualization, we can also renormal-

ize ρs
h to the implied per-period persistence as ρs = (ρs

h)
1/h. Internet Appendix Figure

A.8 shows ρs for h =1, 2, and 5. Consistent with the model’s prediction that 1− ρh is a

sufficient statistic for overreaction, we see that overall, the impact of increasing h (which
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leads to a smaller ρh) is similar to the impact of decreasing ρ, so that different setting with

the similar values of 1− ρh exhibit the same amount of bias.

We can also ask how well our model fits the data for the longer horizon forecasts,

which we show in Figure V, where Panel A studies the two-period-ahead forecast and

Panel B studies the five-period-ahead forecast. Again, we show ρs = (ρs
h)

1/h in the data,

as well as the same quantity based on models discussed in Section 4.2 (dropping the

adaptive model and the extrapolative model whose term structure of forecasts is not well

defined) and based on our model. In particular, we fit all models using h = 1 (i.e., the

model parameters are the same as those in Figure IV), so their performance for h = 2 and

h = 5 are non-targeted. We see that the implied persistence according to standard models

is too low: they do not produce sufficient overreaction for long horizon forecasts. Our

model, on the other hand, performs quite well for the long-horizon forecasts, despite the

moments being non-targeted. Appendix Table A.6 shows that our model also achieves

the best fit in terms of MSE with respect to the forecasts in the data.

Overall, the data shows that overreaction is stronger for longer horizon forecasts. The

commonly used models again do not seem to match the degree of overreaction for long

horizon forecasts. Our model fits them quite closely.

6.2 Robustness of Model Formulations

We now discuss several main assumptions in our baseline model in Section 5.

A. Convexity and General Functional Form

We have assumed in our benchmark calibration that the cost of retrieval is quadratic

(γ = 2) in the relative precision τ
τ . Here, we examine two alternative ways for calibrat-

ing γ and show the robustness of the results. First, we fit our model assuming the cost

is linear in the mutual information (γ 7→ 0), which is a standard approach in the ratio-

nal inattention literature (e.g. Sims, 2003). Second, we fully optimize over the convexity

parameter γ using a grid-search method.

Figure A.9 in the Internet Appendix shows the fit of both exercises. The linear ap-

proach does a reasonable job fitting the implied persistence, but overshoots slightly for
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Figure V: Model Fit: Longer Horizon Forecasts

This figure shows the implied persistence ρs as a function of the objective persistence ρ. The subjective
persistence ρs is obtained by regressing Ftxt+h on xt and taking the 1/hth power of the coefficient. Panels
A and B show results for h = 2 and h = 5 respectively. The solid lines represent the value in the data. The
solid red dot represents the value according to by our model. The dotted line is the 45-degree line.
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Panel B. h=5
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processes with higher persistence and undershoots slightly for processes with lower per-

sistence. The general γ approach produces very good fit (with the optimal value of γ

roughly equal to 10). Overall, however, we find that the model performance is not very

sensitive to the exact value one picks for γ.

B. Assumptions on τ

In our main model, we define τ as the baseline precision the agent has regarding the

long-run mean after seeing the most recent observation. For simplicity, we assumed τ to

be fixed across all experiments and across different persistence levels ρ.

In the following, we also consider an alternative approach, where we endogenize τ.

One natural candidate for τ is the inverse of the variance of the stationary distribution for

the AR(1) process:

τalt =
1− ρ2

σ2
ε

. (6.1)

This choice can have a Bayesian interpretation as the posterior variance given xt, for a

Bayesian with an improper uniform prior (or a sequence of priors that become increas-

ingly dispersed). In particular, τalt is decreasing in ρ: the agent is ex ante more uncertain

about the long-run mean when the process in unconditionally more volatile.

Figure A.10 in the Internet Appendix shows the fit of the alternative specification, and

confirms that the model performs well in this case too.

C. Assumptions about ρ

In the model, we assume that the forecaster uses the correct ρ but may have biased es-

timates of the long-run mean µ. We make this modeling choice because biases about the

mean are the most parsimonious way to account for the accumulating empirical evidence

on predictable errors in forecasts. Biases about ρ (Gabaix, 2018; Angeletos, Huo and Sas-

try, 2020) may not be sufficient. For instance, such models do not necessarily account for

the finding that overreaction is more pronounced in the long run than in the short run.

In these models, the bias in ρ is attenuated for long-run forecasts as forecasters predict

the long-run mean. On the other hand, our model, which focuses on inference about the

long-run mean, does not have this problem.20

20Consider the example case of regressing the forecast error on the current realization. If the bias takes
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Overall, while we do not rule out that forecasters can directly use an incorrect ρ, we

find that modeling biases about the mean µ is the most parsimonious way to capture

biases in beliefs, and the variations with both the persistence of the true process and

forecast horizons. This approach of modeling biases about the mean also has natural

synergies with frictions of retrieving past information (if retrieval is costly then the mean

can be estimated reasonably well). Thus our framework fits well with utilizing biases

about the mean as a useful modeling setup.

D. Incentives

A possible question is whether one can test the effect of variation in incentives, or the

relative trade-off between the cost of information retrieval and the benefit of obtaining

accurate beliefs. While in principle one might ask whether these predictions can be tested

in experiments, we have refrained from doing so for several reasons. First, to obtain

results that are statistically or economically strong, the magnitude of incentives may need

to be substantially different across treatment arms, which can raise issues of fairness. For

example, if an experiment randomly assigns participants to some conditions that pay ten

or twenty times as much as other conditions, this design may be questionable to human

subject reviews and may antagonize potential participants when they read disclosures

of payments in the consent form. Second, DellaVigna and Pope (2017) also suggest that

participants are often not only motivated by monetary incentives.

Another possible question is whether incentives for accuracy in practice could be so

large that decision makers will overcome all costs of information retrieval. A large lit-

erature document biases in high-stake settings (Malmendier and Tate, 2005; Pope and

Schweitzer, 2011; Ben-David, Graham and Harvey, 2013; Greenwood and Hanson, 2015;

Bordalo, Gennaioli, La Porta and Shleifer, 2019), which suggest that frictions may not be

fully eradicated in these situations. Furthermore, many decisions are made under time

constraints or with a fair bit of human discretion, in which case the frictions represented

by our model—namely, certain information is particularly on top of the mind—are likely

the form of using ρ̃ instead of ρ, then the coefficient of regressing forecast error of horizon h (xt+h − Ftxt+h)
on the current realization xt is ρ̃h − ρh, which decreases with h. If the bias takes the form of using µ̃ instead
of the true mean, then the coefficient of regressing forecast error of horizon h on the current realization xt is
(1− ρh)βµ̃|xt

(where βµ̃|xt
is the regression coefficient of µ̃ on xt), which increases with h.
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to be present.

7 Conclusion

Recent research using survey data from different sources points to varying degrees of

biases in expectations. A key question is how to unify the different sets of findings. To

have a better understanding of how biases vary with the setting, we conduct a large-

scale randomized experiment where participants forecast stable random processes. The

experiment allows us to control the DGP and the relevant information sets. This is not

feasible in survey data, which can give rise to major complications in interpreting results

in survey data.

We find that forecasts display significant overreaction: they respond too much to re-

cent observations. Overreaction is particularly pronounced for less persistent processes

and longer forecast horizons. We also find that commonly-used expectations models, es-

timated in our data, do not easily account for the variation in overreaction. Some predict

too much overreaction when the process is transitory (e.g., adaptive expectations and

simple extrapolation), while others predict too little (e.g., diagnostic expectations and

constant gain learning).

We propose a new framework for understanding biases in expectations formation,

where forecasters form estimates of the long-run mean of the process using a mix of the

recent observation and past data. They balance these two sources of information depend-

ing on the setting, but the utilization of past information can be costly and imperfect.

As a result, forecasts adapt partially to the setting, but recent observations can have a

disproportionate influence, resulting in overreaction. Over-adjusting the estimates of the

long-run mean in response to recent observations also naturally implies that overreac-

tion is more pronounced when the process is more transitory and the forecast horizon is

longer. We estimate the model in our data and find that it closely matches how overreac-

tion varies with process persistence. The model, when estimated on short-term forecasts,

also predicts long-term forecasts that closely match what we observe in the data.

While our current model can provide a unifying framework for how the degree of
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overreaction varies with the setting, it does not generate underreaction and neither does

our experimental evidence. Nonetheless, if there is noisy perception of the recent observa-

tion, then we can obtain underreaction too in the model. This is also a plausible reason for

underreaction sometimes observed in survey forecast data (Coibion and Gorodnichenko,

2012; Bouchaud et al., 2019). Taken together, we hope that the theory and evidence in the

paper contributes to the unification of findings on expectation biases.
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A Appendix Figures

Figure A.1: Estimation Error: Error-Revision Coefficient and Implied Persistence Coeffi-
cient

This figure shows simulation results on the error-revision coefficient and the implied persistence coefficient.
We start by simulating 10 datasets of 45 participants each, where each participant makes 40 forecasts of an
AR(1) process. Each of the 10 dataset has one level of the AR(1) persistence ρ, which goes from 0 to 1. In
each dataset, participants make forecasts using the diagnostic expectations model: Ftxt+h = ρhxt + 0.4ρhεt,
where xt is the process realization and εt is the innovation. In panel A, for each level of ρ, we estimate
the error-revision coefficient b from the following regression: xt+1 − Ftxt+1 = c + b(Ftxt+1 − Ft−1xt+1) +
ut+1. The dark solid line shows the theoretical prediction (Bordalo et al., 2020c). The light solid line shows
the average coefficient from 200 simulations. The dashed lines show the 90% confidence bands from the
simulations. In Panel B, we implement the same procedure and report the implied persistence coefficient ρ̂
estimated from the regression: Ftxt+1 = cst+ ρ̂xt + vt+1. The dark solid line shows the theoretical prediction
based on diagnostic expectations. The light solid line shows the average coefficient from 200 simulations.
The dashed lines show the 90% confidence bands from the simulations. The standard errors are very tight
so the three lines lie on top of one another.
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Figure A.2: Prediction Screen

This figure shows a screenshot of the prediction task. The green dots indicate past realizations of the sta-
tistical process. In each round t, participants are asked to make predictions about two future realizations
Ftxt+1 and Ftxt+2. They can drag the mouse to indicate Ftxt+1 in the purple bar and indicate Ftxt+2 in the
red bar. Their predictions are shown as yellow dots. The grey dot is the prediction of xt+1 from the previ-
ous round (Ft−1xt+1); participants can see it but cannot change it. After they have made their predictions,
participants click “Make Predictions" and move on to the next round. The total score is displayed on the top
left corner, and the score associated with each of the past prediction (if the actual is realized) is displayed at
the bottom.

Figure A.3: Implied Persistence and Actual Persistence

We compute the implied persistence ρs
1 from Fitxt+1 = c + ρs

1xt + uit for each level of AR(1) persistence
ρ. The y-axis plots the implied persistence relative to the actual persistence ζ = ρs

1/ρ, i.e., the measure of
overreaction, and the x-axis plots the AR(1) persistence ρ. The line at one is the FIRE benchmark.
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Figure A.4: Distance between Subjective Forecasts and Rational Expectations

The top left panel shows the root mean squared difference between in-sample least square expectations and
full information rational expectations (FIRE). The top right panel shows the root mean squared difference
between participants’ actual subjective forecasts and the least square forecasts. The data use all conditions
in Experiment 1. The bottom panel shows the implied persistence of least square forecasts for each level of
ρ, which is the regression coefficient of the least square forecast on xt.
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Figure A.5: Knowledge of Linear DGP and the Distribution of Forecasts

We use the data from Experiment 3 (MIT EECS), with 204 MIT undergraduates randomly assigned to AR(1)
processes with ρ = .2 or ρ = .6. 94 randomly selected participants were told that the process is a stable
random process (control group), while 110 were told that the process is an AR(1) with fixed µ and ρ (treat-
ment group). Panel A shows the distributions of the forecast error xt+1− Ftxt+1 for both treated and control
groups. Panel B shows binscatter plots of the forecast error as a function of the latest realization xt.
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Figure A.6: Overreaction and Persistence of Process: Results by Demographics

This figure plots the error-revision coefficient and the implied persistence for each level of AR(1) persis-
tence, estimated in different demographic groups. In Panel A, the solid dots represent results for male
participants and the hollow dots represent results for female participants. In Panel B, the solid dots rep-
resent results for participants younger than 35 and the hollow dots represent results for participants older
than 35. In Panel C, the solid dots represent results for participants with high school degrees, and the
hollow dots represent results for participants with college and above degrees.
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Figure A.7: Error-Revision Coefficient: Data vs Models

For each level of ρ, we regress the model-based forecast error xt+1 − F̂m
t xt+1 on the model-based forecast

revision F̂m
t xt+1 − ̂Fm

t−1xt+1. The dots report the regression coefficient obtained for each model m and each
level of ρ. The solid line reports the error-revision coefficient in the experimental data, as in Figure II, Panel
A.
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Figure A.8: Implied Persistence and Forecast Horizon

We report the forecast implied persistence for different horizons. For each horizon h and a given ρ, the
x-axis is based on ρh, and the y-axis shows ρs

h which is the regression coefficient of Ftxt+h on xt. Full dots
correspond to h = 1 (from Experiment 1 where the one-period persistence ρ ∈ {0, .2, .4, .6, .8, 1}), which
are identical to Figure II, Panel B. Empty circles correspond to h = 2 (also from Experiment 1). Crosses
correspond to h = 5 and come from Experiment 3, where the one-period persistence ρ ∈ {.2, .4, .6, .8}. The
solid orange line is the 45-degree line.
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Figure A.9: Model Functional Form: Robustness Checks

This figure shows the model fit under alternative model specifications of the cost function, for h = 1 in
Panel A and h = 5 in Panel B. The red dots represent the implied persistence from our model when γ = 1,
and the green diamonds represent result from our model when we do a full grid search for γ. The blue line
represents the value observed in the forecast data.
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Figure A.10: Model Functional Form: Robustness Checks

This figure shows the model fit under the alternative formulation of τ, as discussed in Section 6.2, for h = 1
in Panel A and h = 5 in Panel B. The red dots represent the implied persistence from our model, and the
blue line represents the value observed in the forecast data.
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Table A.2: Summary of Conditions

This table provides a summary of the experiments we conducted. Each panel describes one experiment, and
each line within a panel corresponds to one treatment condition. Columns (1) to (3) show the parameters
of the AR(1) process xt+1 = µ + ρxt + εt+1. Participants are only allowed to participate once.

(1) (2) (3) (4)
# Short AR(1) process Number

description persistence constant volatility of
ρ µ σε participants

Panel A: Experiment 1 – Baseline, MTurk

A1 Baseline ρ = 0 0 0 20 32
A2 Baseline ρ = 0.2 0.2 0 20 32
A3 Baseline ρ = 0.4 0.4 0 20 36
A4 Baseline ρ = 0.6 0.6 0 20 39
A5 Baseline ρ = 0.8 0.8 0 20 28
A6 Baseline ρ = 1 1 0 20 40

Panel B: Experiment 2 – Long horizon, MTurk

C1 Horizon: F1 + F5 0.2 0 20 41
C2 Horizon: F1 + F5 0.4 0 20 26
C3 Horizon: F1 + F5 0.6 0 20 31
C4 Horizon: F1 + F5 0.8 0 20 30

Panel C: Experiment 3 – DGP information, MIT EECS

D1 Baseline 0.2 0 20 42
D2 Baseline 0.6 0 20 52
D3 Display DGP is AR(1) 0.2 0 20 70
D4 Display DGP is AR(1) 0.6 0 20 40
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Table A.3: Summary Statistics

Panel A describes demographics of participants. Columns (1) and (2) provide information for participants
in Experiment 1 (Baseline, MTurk); columns (3) and (4) for Experiment 2 (Long horizon, MTurk); columns
(5) and (6) for Experiment 3 (Describe DGP, MIT EECS). Panel B reports basic experimental statistics, in-
cluding the total score, the total bonus (incentive payments) paid in US dollars, the overall time taken to
complete the experiment, and the time taken to complete the forecasting part (the main part).

Panel A. Participant Demographics

(1) (2) (3) (4) (5) (6)
Experiment 1 Experiement 2 Experiment 3
Obs. % Obs. % Obs. %

Gender Male 117 56.5 67 52.3 88 43.1
Female 90 43.5 61 47.7 116 56.9

Age

<= 25 30 14.5 18 14.1 197 96.6
25-45 138 66.7 89 69.5 7 3.4
45-65 35 16.9 20 15.6 0 .0
65+ 4 1.9 1 .8 0 .0

Education

Grad school 20 9.7 18 14.1 0 .0
College 132 63.8 74 57.8 207 100.0
High school 55 26.6 36 28.1 0 .0
Below/other 0 .0 0 .0 0 .0

Invest. exper.

Extensive 7 3.4 3 2.3 2 1
Some 58 28.0 29 22.7 43 21.1
Limited 71 34.3 56 43.8 138 67.7
None 71 34.3 40 31.3 21 10.3

Taken stat class Yes 90 43.5 48 37.5 - -
No 117 56.5 80 62.5 - -

Panel B. Experimental Statistics

Mean p25 p50 p75 SD N

Experiment 1

Total forecast score 2,004 1,690 1,990 2,335 462 207
Bonus ($) 3.34 2.82 3.32 3.89 .77 207
Total time (min) 18.01 10.92 13.11 21.85 11.34 207
Forecast time (min) 6.80 4.54 5.66 7.79 3.53 207

Experiment 2

Total forecast score 1,843 1,588 1,820 2,138 463 128
Bonus ($) 3.07 2.65 3.04 3.57 .77 128
Total time (min) 15.82 8.74 13.11 19.66 9.80 128
Forecast time (min) 6.70 4.54 6.02 7.58 3.17 128

Experiment 3

Total forecast score 2,071 1,755 2,046 2,326 430 204
Bonus ($) 8.63 7.31 8.53 9.69 1.79 204
Total time (min) 18.47 7.57 10.02 14.09 37.67 204
Forecast time (min) 8.78 4.03 5.09 7.46 19.72 204
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Table A.4: Effect of Knowing the Process

This table reports the implied persistence in Experiment 3 among MIT EECS students. Participants are
randomly assigned to ρ = 0.2 and ρ = 0.6. In addition, half of them are randomly assigned to the baseline
control condition (control) where the process is described as a stable random process, while the other half
are assigned to the treatment condition where they are told that the process is a fixed and stationary AR(1)
process.

Baseline Knows Test of difference
Condition AR(1) (p-value)

ρ = .2 0.56 0.65 0.14
ρ = .6 0.86 0.88 0.71
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Table A.6: Model Fit

This table shows the MSE between ρs
h in the model in columns (1), (3), and (5), and the MSE between Ftxt+h

implied by the model and Ftxt+h in the data in columns (2), (4), (6). Columns (1) and (2) report results
for the 1-period forecast; columns (3) and (4) report results for the 2-period forecast; columns (5) and (6)
report results for the 5-period forecast. The adaptive expectations model is: Ftxt+1 = δxt + (1− δ)Ft−1xt.
The traditional extrapolative expectations model is: Ftxt+1 = xt + φ(xt − xt−1). The sticky expectations
model is: Ftxt+h = (1− λ)ρhxt + λFt−1xt+h + εit,h. The diagnostic expectations model is: Ftxt+h = Etxt+h +

θ(Etxt+h − Et−1xt+h). The constant gain learning model is: Ftxt+h = Êtxt+h = at,h + ∑k=n
k=0 bk,h,txt−k.

Forecast horizon h = 1 h = 2 h = 5
MSE Type ρs

h Forecast ρs
h Forecast ρs

h Forecast
(1) (2) (3) (4) (5) (6)

Current model 0.003 496.1 0.001 719.2 0.001 691.0
Adaptive 0.035 495.7 . . . .
Extrapolative 0.064 527.3 . . . .
Sticy 0.117 556.2 0.140 786.1 0.197 814.6
Diagnostic 0.069 521.2 0.115 758.0 0.177 803.3
Constant gain 0.067 526.8 0.039 749.5 0.033 736.3
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C Proofs

C.1 Standard Errors of Error-Revision Coefficient
Proposition 3. Assume a univariate regression of centered variables:

yi = βxi + ui

Then, the standard error of the OLS estimate of β is given by:

s.d.
(

β̂− β
)
≈ 1√

N

(
varyi
varxi

− β2
)1/2

Proof. The OLS estimator of β is given by:

β̂ =
1
N ∑i xiyi

1
N ∑i x2

i
= β +

1
N ∑i xiui

1
N ∑i x2

i

Hence:

√
N(β̂− β) =

√
N 1

N ∑i xiui
1
N ∑i x2

i

By virtue of the CLT, we have:

√
N

1
N ∑

i
xiui → N(0, var(xiui))

while:

1
N ∑

i
x2

i → varxi

This ensures that:

√
N(β̂− β)→ N(0,

var(xiui))

(var(xi))2︸ ︷︷ ︸
=

varui
varxi

)

Note that the asymptotic variance can be rewritten:

varui
varxi

=
varyi + β2varxi − 2βcov(xi, yi)

varxi

=
varyi
varxi

− β2

Evidently, this ratio is bigger when the variance of xi is smaller.
Under the error-revision approach, it can easily be shown that:

varyi
varxi

=

(
1 + ρ2θ2)

ρ2 ((1 + θ)2 + θ2ρ2)
→ +∞ as ρ→ 0

This makes it clear that the error-revision approach does not work well for small ρ because the right-
hand-side variable has a small variance, which makes it hard to estimate λ precisely.
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The subjective persistence approach does not have this problem as the variance of the right-hand-side
variable is just the variance of the process itself, which is non-zero.

C.2 Lemma 1
Proof. The agent has two decisions: first, she decides what information to retrieve (choose St ⊆ St(xt), and
second, she chooses the optimal forecast Ftxt+h given the σ-algebra induced by St. We solve this backwards;
namely, we characterize the optimal forecast for any choice of St, and then solve for the optimal St given
the optimal forecast that it implies.

It is straightforward to see that with a quadratic loss function the optimal forecast for a given choice of
St is simply the unbiased expectation of xt+h conditional on St. Formally, let F∗t xt+h(St) denote the optimal
forecast of the agent under St, then

F∗t xt+h(St) ≡ arg min
Ftxt+h

E[(Ftxt+h − xt+h)
2|St]⇒ F∗t xt+h(St) = E[xt+h|St]. (C.1)

It immediately follows that the firms’ loss from an imprecise forecast is the variance of xt+h conditional on
St

E[(F∗t xt+h(St)− xt+h)
2|St] = var(xt+h|St). (C.2)

Moreover, we can decompose this variance in terms of uncertainty about the long-run mean and variance
of short-run fluctuations:

var(xt+h|St) = var((1− ρh)x̄ + ρhxt +
h

∑
j=1

ρh−jεt+j|St) (C.3)

= (1− ρh)2var(x̄|St) + σ2
ε

h

∑
j=1

ρ2(h−j) (C.4)

where the second line follows from:

1. orthogonality of future innovations to St that follows from feasibility (εt+j ⊥ S(xt), ∀j ≥ 1);

2. var(xt|St) = 0 since xt ∈ St by assumption.

It is important to note that the second term in Equation C.4 is independent of the choice for St. We can now
rewrite the firms’ problem as

min
St

E[(1− ρh)2var(x̄|St) + C(St)|xt] (C.5)

s.t. {xt} ⊆ St ⊆ S(xt), (C.6)

where the expectation E[.|xt] is taken conditional on xt because the choice for what information to retrieve
happens after the agent observes the context but before information is retrieved.

The next step in the proof is to show that under the optimal information retrieval, the distribution of
x̄|St is Gaussian. To prove this, we show that for any arbitrary St ∈ S(xt), there exists another Ŝt ∈ S(xt)
that (1) induces a Gaussian posterior and (2) yields a lower value for the objective function than St. To see
this, let St ⊇ {xt} be in S(xt) and let Ŝt ⊇ {xt} be such that

var(x̄|Ŝt) = E[var(x̄|St)|xt].

Such an Ŝt exists because S(xt) is assumed to contain all possible signals on x̄t that are feasible, so if an
expected variance is attainable under an arbitrary signal, it is also attainable by a Gaussian signal. Since
both signals imply the same expected variance, to prove our claim, we only need to show that C(Ŝt) ≤
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C(St). To see this, recall that C(St) is monotonically increasing in I(St, xt+h|xt). Thus,

C(Ŝt) ≤ C(St)⇔ I(Ŝt, xt+h|xt) ≤ I(St, xt+h|xt). (C.7)

A final observation yields us our desired result: by definition of the mutual information function in terms
of entropy,21

I(St; x̄|xt) = h(x̄|xt)−E[h(x̄|St)|xt]. (C.8)

Similarly,

I(Ŝt; x̄|xt) = h(x̄|xt)−E[h(x̄|Ŝt)|xt]. (C.9)

It follows from these two observations that

C(Ŝt) ≤ C(St)⇔ E[h(x̄|Ŝt)|xt] ≥ E[h(x̄|St)|xt]. (C.10)

The right hand side of this condition is true by the maximum entropy of Gaussian random variables among
random variables with the same variance, with equality holding only if both St and Ŝt are Guassian (see for
example Cover Thomas and Thomas Joy (1991)).22 This result implies that C(Ŝt) ≤ C(St). Therefore, for
any arbitrary St ⊂ St(xt) such that x̄|St is non-Gaussian, we have shown that there exists Ŝt ⊂ St(xt) that
is (1) feasible and (2) strictly preferred to St and (3) x̄|Ŝt is Gaussian.

Hence, without loss of generality, we can assume that under the optimal retrieval of information, x̄|St is
normally distributed. Now, for a Gaussian {xt} ⊂ St ⊂ St(xt), since entropy of Gaussian random variables
are linear in the log of their variance, we have:

I(x̄; St|xt) = h(x̄|xt)− h(x̄|St) (C.11)

=
1
2

log2(var(x̄|xt))−
1
2

log2(var(xt|St)). (C.12)

For simplicity let us define τ(St) ≡ var(x̄|St)−1 as the precision of belief about x̄ generated by St and
τ ≡ var(x̄|xt)−1 as the precision of the prior belief of the agent about x̄. It follows that

I(x̄; St|xt) =
1

2 ln(2)
ln
(

τ(St)

τ

)
, (C.13)

C(St) = ω
exp(2 ln(2) · γ · I(x̄; St|xt))− 1

γ
(C.14)

= ω

(
τ(St)

τ

)γ
− 1

γ
. (C.15)

21For random variables (X, Y), I(X; Y) = h(X) − EY[h(X|Y)] where for any random variable Z with
PDF fZ(z), h(Z) is the entropy of Z defined as the expectation of negative log of its PDF: h(Z) =
−EZ[log2( fZ(Z))].

22For completeness, here is a brief outline of the proof for maximum entropy of Gaussian random vari-
ables. The claim is: among all the random variables X variance σ2, X has the highest entropy if it is normally
distributed. The proof follows from optimizing over the PDF of the distribution of X:

max
{ f (x)≥0:x∈R}

−
∫

x∈R
f (x) log( f (x))dx (maximum entropy)

s.t.
∫

x∈R
x2 f (x)dx− (

∫
x∈R

x f (x)dx)2dx = σ2 (constraint on variance)∫
x∈R

f (x)dx = 1. (constraint on f being a PDF)
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Hence, the agent’s problem can be rewritten as

min
St

E

 (1− ρh)2

τ(St)
+ ω

(
τ(St)

τ

)γ
− 1

γ

∣∣∣xt

 (C.16)

s.t. {xt} ⊆ St ⊆ S(xt). (C.17)

Finally, since the objective of the agent only depends on the precision induced by St, we can reduce the
problem to directly choosing this precision, where the constraint on St implies bounds on achievable pre-
cision: the precision should be bounded below by τ, since the agent knows xt at the time of information
retrieval. Moreover, it has to be bounded above by var(x̄|xt)−1 which the precision after utilizing all avail-
able information. Replacing these in the objective, and changing the choice variable to τ(St) we arrive at the
exposition delivered in the lemma.

C.3 Proposition 1
Proof. We start by solving the simplified problem in Lemma 1. The problem has two constraints for τ:
τ ≥ τ and τ ≤ τ̄(xt) ≡ var(µ|xt)−1. By assumption var(µ|xt) is arbitrarily small so we can assume that the
second constraint does not bind. The K-T conditions with respect to τ are

− (1− ρh)2

τ2 +
ω

τ

(
τ

τ

)γ

≥ 0, τ ≥ τ,

(
− (1− ρh)2

τ2 +
ω

τ

(
τ

τ

)γ
)
(τ − τ) = 0.

Therefore, the variance of the agent’s belief about the long-run mean is given by

var(µ|St) = τ−1 = τ−1 min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
. (C.18)

The next step is to find an optimal signal set St ⊇ {xt} that generates this posterior. Two cases arise:

1. if
(

ωτ
(1−ρh)2

)
≥ 1, then σ2 = (1− ρh)2τ and St = {xt} delivers us the agent’s posterior. In other

words, var(µ|St) = var(µ|xt) meaning that the agents does not retrieve any further information
other than what is implied by the context. In this case, E[µ|St] = E[µ|xt] = xt and

µt ≡ E[E[xt+h|St]|µ, xt] = (1− ρh)E[E[µ|St]|µ, xt] + ρhE[E[xt|St]|µ, xt] = xt (C.19)

and

σ2 ≡ var(E[xt+h|St]|µ, xt) = var(xt|µ, xt) = 0; (C.20)

2. if
(

ωτ
(1−ρh)2

)
< 1, then it means that the agent retrieves more information than what is revealed by

the context xt. Suppose a signal structure S̃t generates this posterior variance. By Lemma 1 this has
to be Guassian. Our claim is that the set Ŝt ≡ {xt, E[µ|S̃t]} also generates this posterior. Note that
elements of this set are also distributed according to a Gaussian distribution. To see the equivalence
of the two sets, note that by the law of total variance,

var(µ|xt) = var(µ|S̃t) + var(E[µ|S̃t]|xt)

var(µ|xt) = var(µ|Ŝt) + var(E[µ|Ŝt]|xt),

but note that

var(E[µ|Ŝt]|xt) = var(E[µ|xt, E[µ|S̃t]]|xt) = var(E[µ|S̃t]|xt).
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Thus, it has to be that

var(µ|S̃t) = var(µ|Ŝt)

and the two sets generate the same posterior variance for the agent. Now, note that by Bayesian
updating of Gaussians:

E[µ|St] = E[µ|S̃t] = E[µ|xt] +
cov(µ, E[µ|S̃t]|xt)

var(E[µ|S̃t]|xt)
(E[µ|S̃t]−E[µ|xt]).

Since E[µ|S̃t]−E[µ|xt] 6= 0 almost surely, this implies that

cov(µ, E[µ|S̃t]|xt) = var(E[µ|S̃t]|xt) = τ−1 − τ−1, (C.21)

where the last equality follows from the law of total variance. Now, consider the following decom-
position of E[µ|S̃t]:

E[µ|S̃t] = aµ + bxt + εt,

where a and b are constants and εt is the residual that is orthogonal to both xt and µ conditional on
S̃t. We have

xt = E[µ|xt] = E[E[µ|S̃t]|xt] = aE[µ|xt] + bxt = (a + b)xt,

so a + b = 1. Moreover, we also have

cov(µ, E[µ|S̃t]|xt) = avar(µ|xt),

so a = 1− τ
τ . Therefore,

E[E[µ|S̃t]|µ, xt] = (1− τ

τ
)µ +

τ

τ
xt

⇒µt ≡ E[E[xt+h|S̃t]|µ, xt] = (1− ρh)(1− τ

τ
)µ + (1− ρh)

τ

τ
xt + ρhxt. (C.22)

Moreover,

var(E[µ|S̃t]|xt) = a2var(µ|xt) + var(εt)

⇒var(εt) =
1
τ
(1− τ

τ
)

⇒σ2 ≡ var(E[xt+h|S̃t]|µ, xt) = (1− ρh)2var(εt) = (1− ρh)2 1
τ
(1− τ

τ
). (C.23)

Plugging in the expression for τ from (C.18) into (C.22) and (C.23) and setting µ = 0 gives us the
expressions in the Proposition.

Combining Equations (C.19), (C.20), (C.18), (C.22), (C.23) and setting µ = 0 gives us:

µt = min

{
1, ρh + (1− ρh)

(
ωτ

(1− ρh)2

) 1
1+γ

}
xt (C.24)

σ2 = (1− ρh)2τ−1 max

{
0,
(

ωτ

(1− ρh)2

) 1
1+γ

(
1−

(
ωτ

(1− ρh)2

) 1
1+γ

)}
. (C.25)
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C.4 Proposition 2
Proof. From Proposition 1 we can derive ∆ as

∆ = (1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
. (C.26)

1. Note that if ∆ = 0 then either ρh = 1 or ω = 0, but recall that this expression for the precision of the
long-run mean was derived under the assumption that var(µ|xt) is arbitrarily small. So ∆ = 0 if and
only if either ρ = 1 or ω = 0 and past information potentially available to the forecaster is infinite.

2. As long as γ ≥ 0, which is true by assumption, it is straightforward to verify that ∆ is increasing in
ω and τ.

3. For ∆ to be decreasing in ρh it has to be the case that (1− ρh)1− 2
1+γ is decreasing in ρh, which is the

case if and only if

1− 2
1 + γ

≥ 0⇔ γ ≥ 1. (C.27)

C.5 Corollary 1
Proof. From Proposition 2 we have

ln(ζ) = ln

(
1 + (ρ−h − 1)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

})
. (C.28)

First of all, it is straightforward to see that the term in side the log in the right-hand side is larger than 1,
so perceived persistence is larger than actual persistence — in other words, ζ is a measure of overreaction.

Moreover, for ζ to be decreasing in ρh it has to be the case that (1− ρh)1− 2
1+γ /ρh is decreasing in ρh, which

is true if and only if γ ≥ 2ρh − 1. Therefore for ζ to be decreasing for any value of ρh, it has to be the case
that γ ≥ 1.
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