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Abstract: This paper introduces a general method for computing equilibria with heterogeneous

agents and aggregate shocks that is particularly suitable for economies with private information. It then

applies the method to two examples: a Mirlees economy and an Hopenhayn-Nicolini economy. After

providing a sharp analytical characterization for the Mirlees economy with logarithmic preferences, the

paper finds that the method reproduces those analytical results perfectly. It also finds that, even under

more general preferences, the private information turns out to be completely irrelevant for the aggregate

dynamics of the Mirlees economy. In contrast, it plays a crucial role in the Hopenhayn-Nicolini economy.
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1 Introduction

This paper introduces a general method for computing recursive equilibria of economies with both id-

iosyncratic and aggregate shocks and applies it to economies with private information. Economies with

private information are particularly difficult to solve because optimal promised values are contingent on

the realization of the aggregate shocks. This makes one of the endogenous state variables, the distribution

of agents across individual states, not only infinite dimensional but state-contingent. The computational
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method can handle this case without difficulty. Additionally, it has three features that make it partic-

ularly attractive as a general computational method: 1) it keeps track of the full distribution of agents

across individual states as a state variable, 2) it handles irregular shapes for this distribution, and 3) it

incorporates the distribution’s exact law of motion.

My basic strategy for the computational method is to parametrize individual decision rules as spline

approximations and to keep long histories of the spline coefficients as state variables. Starting from the

deterministic steady-state distribution, I use the history of decision rules implied by the spline coefficients

to obtain the current distribution of individuals across individual states. I do this by performing Monte

Carlo simulations on a large panel of agents. All individual first-order conditions and aggregate feasibility

constraints are then linearized with respect to the history of spline coefficients.2 The resulting linear

model is then solved using standard methods. I show that a simple transformation can be applied to this

solution in order to handle the case of contingent endogenous state variables.

After describing the computational method, I use it to solve the mechanism design problems for two

examples of private information economies. These economies are of interest on their own and illustrate

very different types of interaction between private information and aggregate dynamics. The first one

merges two basic benchmarks in the macroeconomics and public finance literatures: a standard real busi-

ness cycle (RBC) model and a Mirleesian economy. In this economy, risk-averse agents value consumption

and leisure and receive idiosyncratic shocks to their value of leisure. These shocks, which are i.i.d. over

time and across individuals, are assumed to be private information. The production technology is stan-

dard. Output, which can be consumed or invested, is produced using capital and labor. The production

function is subject to aggregate productivity shocks that follow an AR(1) process.

A social planner designs dynamic contracts for the agents in this economy. Following the literature, a

dynamic contract is given a standard recursive formulation where a promised value to the agent describes

its state. Given the current state, the contract specifies current consumption, current hours worked, and

next-period state-contingent promised values as a function of the value of leisure reported by the agent.

Since the model has a large number of agents and the shocks to the value of leisure are idiosyncratic,

the social planner needs to keep track of the whole distribution of promised values across individuals as

a state variable. Given this distribution, the aggregate stock of capital, and the aggregate productivity

level, the social planner seeks to maximize the present discounted utility of agents subject to incentive

2Since the method heavily relies on Monte Carlo simulations, sampling errors may be a concern for linearizing the model.

For this reason, it is important to simulate a large panel of individuals. In this paper, I work with panels of about 10 million

individuals. In order to do this, I heavily rely on GPU computing.
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compatibility, promise keeping, and aggregate resource feasibility constraints.

This Mirlees economy turns out to provide an ideal test case for the computational method because

for the case of logarithmic preferences (a benchmark case in the RBC literature), I am able to provide a

sharp analytical characterization of the solution to the mechanism design problem. In particular, I show

that the utility of consumption, utility of leisure, and next-period promised values are all linear, strictly

increasing functions of the current promised value. The slopes of these functions are all independent of

the reported value of leisure and, while the utilities of consumption and leisure have a common slope less

than one, the slope of next-period promised values is equal to one (as a consequence, promised values

follow a random walk). Over the business cycle, all of these functions shift vertically while keeping con-

stant the differences across reported values of leisure. In turn, the distributions of promised values and

log-consumption levels shift horizontally over the business cycle while maintaining their shapes. While

consumption inequality is constant, the dispersion of the distribution of log-hours worked is countercycli-

cal. In terms of aggregate dynamics, I find a striking irrelevance result: The business cycle fluctuations of

all macroeconomic variables (i.e, aggregate output, consumption, investment, hours worked, and capital)

are exactly the same under private information as under full information. Once the information frictions

are dealt with in an optimal way, they have no implications for the aggregate dynamics of the economy.

I find that the computational method passes the test perfectly well: Under logarithmic preferences, it

recovers all the analytical results described above. Since the computational method does not rely on the

particular functional form of the utility function, this provides significant evidence about its accuracy.

Having established this, I then use the method to analyze more general preferences. However, I obtain

the same basic irrelevance result for all the CRRA preferences that I consider: The stationary behavior

of all macroeconomic variables in the economy with private information is numerically indistinguishable

from the same economy with full information. This is true even though the cross-sectional distributions

of promised values, instead of shifting horizontally over time, now changes its shape.

The Mirlees RBC economy provides a valuable test case scenario for the computational method,

represents an interesting theoretical benchmark, and illustrates a case in which there is no interaction

between the private information and aggregate dynamics. An unappealing feature of this economy,

however, is that the i.i.d. structure of its idiosyncratic shocks is highly unrealistic and precludes giving

any empirical content to it.3 The second example considered differs from the Mirlees economy in that it

has a much more realistic structure of idiosyncratic uncertainty, and in that it illustrates a case in which

3As I describe later on, introducing persistent shocks to the Mirlees economy would be extremely costly from a compu-

tational point of view.
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the information frictions play an important role for aggregate dynamics.

The second economy merges a RBC model with an important benchmark in the optimal unemploy-

ment insurance literature: the Hopenhayn and Nicolini (1997) model. In this economy, all the production

is done in a central island. Agents become exogenously separated from the production island and in order

to get back to it, they need to search. The probability of arriving at the production island depends on

the search intensity of the agent, which is private information. While the search intensity of agents is

not observable, their location (either inside or outside the production island) is and, therefore, recursive

contracts can be made contingent on this information. Agents are risk-averse, value consumption, and

dislike having to search.

I calibrate this Hopenhayn-Nicolini RBC model to U.S. observations and compare its optimal aggre-

gate dynamics under full and private information. Contrary to the Mirlees economy, this model captures

a realistic amount of idiosyncratic risk since it is calibrated to reproduce the average duration of employ-

ment and non-employment observed in U.S. data. Also contrary to the Mirlees economy, I find that the

presence of information frictions has important effects on its aggregate dynamics. In terms of steady-state

dynamics, I find that the private information reduces aggregate employment, capital, investment, and

output by 19% and creates a significant amount of consumption inequality: The cross-sectional standard

deviation of log consumption goes from zero to 0.26. In terms of impulse responses to an aggregate

productivity shock, the private information reduces the peak response of aggregate employment by 20%

and increases its half-life from 3.5 years to 6.5 years. The reason why the private information matters

so much for aggregate dynamics is that the social planner faces a nontrivial trade-off between aggregate

employment and insurance provision: Given that the separation rate is exogenous, the planner can only

increase aggregate employment by inducing agents to increase their search intensity. However, since their

search intensity is private information, this can only be done by increasing the differences between the

promised values of becoming employed and the promised values of continuing to be unemployed (thus

reducing the amount of insurance provision). Given this trade-off, the social planner chooses to generate

a lower aggregate employment level at the deterministic steady state and to respond less to aggregate

productivity shocks at business cycle frequencies.

In short, the paper introduces a general computational method and illustrates its applicability with

two examples that provide a clear economic message: that the importance of private information for

aggregate dynamics critically depends on the exact nature of the information frictions considered.

The paper is organized as follows. Section 2 discusses the related literature. Section 3 presents

the general computational method. Section 4 presents the Mirlees economy. Section 5 presents the

Hopenhayn-Nicolini economy. Finally, Section 6 concludes the paper. All proofs are provided in an
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accompanying Technical Appendix.

2 Related Literature

This paper is closely related to a vast literature on computational methods, but it has salient differ-

ences.4 The seminal papers by Krusell et al. (1998) and Den Haan (1996) summarize the cross-sectional

distribution with a small set of moments. In contrast, the method in this paper keeps track of the whole

distribution. Den Haan (1997) and Algan et al. (2008) also keep track of the whole distribution but

parametrize the distribution with a flexible exponential polynomial form, allowing them to solve the

model using quadrature and projection techniques. For many applications this may be an accurate and

convenient approach, but for economies with odd-shaped distributions (such as the Hopenhayn-Nicolini

RBC model in this paper), it may not be. The method in this paper is able to handle odd shapes for

the cross-sectional distribution as long as it is generated by smooth individual decision rules. In addi-

tion to projection methods, the literature has explored perturbation methods, which are essentially local

approximation methods around a deterministic steady state. Early versions include Campbell (1998),

Dotsey et al. (1999), and Veracierto (2002) – the last two in the context of (S,s) economies.5 Perhaps the

most widely known perturbation method is Reiter (2009), which is closely related to Campbell (1998).6

Instead of parametrizing the cross-sectional distribution as a polynomial, Reiter (2009) keeps a finite

histogram of the distribution as a state variable. While the perturbation method allows him to greatly

reduce the coarseness of the histogram, a limitation of Reiter’s method is that the law of motion for

the distribution needs to be approximated, and this can be a highly non-linear mapping. Instead, my

method here embodies the exact law of motion for the distribution. Winberry (2018) introduces a very

interesting perturbation method which, similarly to Algan et al. (2008), parametrizes the distribution

4See Algan et al. (2014) for a survey of computational methods.

5The method in this paper is actually a generalization of the approach used in Veracierto (2002). In that paper, histories

of past decision rules were also used as state variables. However, under (S,s) adjustments, lower and upper adjustment

thresholds could be used to parametrize the complete individual decision rules. In this paper, decision rules are smooth

functions and therefore parametrized as spline approximations. Also, in Veracierto (2002) the (S,s) adjustments together

with a finite number of idiosyncratic shocks led to a finite support for the distribution of agents and, therefore, to a finite

dimensional aggregate state. Here, the support of the distribution of agents is infinite.

6The recent method in Ahn et al. (2018) is essentially an adaptation of Reiter’s method to continuous time. Other

perturbation methods in the literature include Preston and Roca (2007) and Mertens and Judd (2018), both of which

perturb a deterministic steady state with no aggregate or idiosyncratic shocks. In contrast, the method in this paper

perturbs a deterministic steady state with no aggregate shocks but positive idiosyncratic uncertainty.
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with a flexible exponential polynomial form. The perturbation method allows him to carry a polynomial

of large order as a state variable (or, equivalently, a large number of moments), which greatly improves

the description of the distribution. However, his method also relies on an approximation for the law of

motion of the cross-sectional distribution. Furthermore, it is important to emphasize that none of the

papers cited above addresses the case of state-contingent cross-sectional distributions, which is a key

feature of economies with private information. This paper does address this case.

The Mirlees RBC economy I consider in this paper is closely related to previous work in the social

insurance and dynamic public finance literatures (e.g, Atkeson and Lucas (1992), Green (1987), Golosov

et al. (2007), Farhi and Werning (2012)). However, interactions with aggregate fluctuations have been

mostly neglected in the literature. Notable exceptions are Phelan (1994), da Costa and Luz (2018),

Werning (2007), and Scheuer (2013). Phelan (1994) considered a production economy without capital,

hidden actions, i.i.d. aggregate shocks, and unobservable i.i.d. idiosyncratic shocks. Under assumptions

of CARA preferences and agents facing a constant probability of dying, he characterized the model ana-

lytically and found two main results: that the cross-sectional distribution of consumption levels depends

on the entire history of aggregate shocks, and that there is a well defined long-run distribution over cross-

sectional consumption distributions. The Mirlees RBC model in this paper differs from Phelan (1994),

not only because it has hidden types instead of hidden actions, but because it has CRRA preferences

and a neoclassical production function with capital and persistent aggregate shocks. In terms of results,

an apparent similarity between the papers is that even in my model with logarithmic preferences, the

cross-sectional distributions of consumption and leisure depends on the entire history of aggregate shocks.

However, this is only due to the presence of capital. Without it, the cross-sectional distribution would

depend only on the current realization of aggregate productivity.

In fact, this lack of memory in the case of no capital and logarithmic preferences has already been

shown by da Costa and Luz (2018). In that paper, da Costa and Luz consider a finite horizon version of

Phelan’s economy in which agents have CRRA preferences and live as long as the economy. Contrary to

Phelan (1994), their cross-sectional distribution of consumption becomes degenerate as the time horizon

of the economy becomes large. Interestingly, da Costa and Luz find that when log preferences are used,

the cross-sectional distribution of consumption does not depend on the entire history of aggregate shocks

but only on the current realization. However, when the elasticity of intertemporal substitution is different

from one, the cross-sectional distribution of consumption has memory of the past history. Relative to

da Costa and Luz (2018), a major contribution of the analysis of the logarithmic Mirlees economy in

this paper is that, in addition to an economy with capital and persistent aggregate shocks, I am able

to provide a tight analytical characterization of the optimal contracts and an irrelevance result of the
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information frictions for aggregate dynamics. Da Costa and Luz focus on the dependence of the cross-

sectional distribution on past aggregate shocks and they provide no comparisons of aggregate dynamics

under full and private information. For preferences different from the logarithmic case, I am able to

compute solutions for infinite horizon economies.

Werning (2007) considered an RBC Mirlees economy with different permanent types of agents, in

which the types are private information. Assuming separable utility functions, he provided a sharp

characterization of the optimal savings and labor wedges over the business cycle. In particular, he

showed that savings wedges are always zero in the cross-section and over the business cycle. In contrast,

labor wedges are positive in the cross-section and, if the distribution of labor productivity is fixed across

types, constant over time. The RBC Mirlees economy in this paper differs from his in that the source

of the private information is not permanent types but idiosyncratic i.i.d. shocks that change over time.

Consequently, instead of having incentive compatibility constraints only at time zero, here they must

hold at every time period and history of idiosyncratic and aggregate shocks. In addition to this difference

in environments, Werning focused on characterizing optimal wedges and not on the effects of the private

information on aggregate dynamics.

Scheuer (2013) considered a static economy with different types of agents subject to idiosyncratic and

aggregate shocks. Individual output levels depend on the realizations of the idiosyncratic and aggregate

shocks, probability distributions over idiosyncratic shocks depend on individual effort levels and on the

aggregate shock, and preferences depend on consumption and effort levels. All these dependencies differ

across agent types. While the agent types are public information, effort levels are hidden. Scheuer shows

that in a constrained efficient allocation, the ratios of expected inverse marginal utilities between different

aggregate shocks must be equalized across the different types of agents. The rest of the paper is devoted

to implementing the efficient allocation as a competitive equilibrium with transfers and taxes on financial

markets. In addition to corresponding to a dynamic economy with hidden types instead of a static

economy with hidden actions, the optimal allocation of my Mirlees RBC model is not characterized by

Scheuer’s intratemporal condition because the underlying economy has ex-ante identical agents instead of

heterogeneous types. I don’t address the issue of implementability, but focus instead on the consequences

of private information for aggregate dynamics and on characterizing the optimal amount of inequality

over the business cycle (issues not considered by Scheuer).7

The irrelevance result in my RBC Mirlees economy is related to others in the literature. Krueger and

7In principle, the implementation with non-linear taxes in Albanesi and Sleet (2006) could be extended to the stochastic

optimal allocation of my Mirlees economy.
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Lustig (2010) considered an incomplete markets endowment economy with idiosyncratic and aggregate

shocks. The economy has a Lucas tree that yields a fraction of an aggregate stochastic endowment,

and a continuum of agents that receive idiosyncratic shocks to their shares on the non-tree part of the

aggregate endowment. Agents cannot insure against their idiosyncratic shocks: They can only trade

in a risk-free bond and on the Lucas tree, subject to solvency constraints. Krueger and Lustig show

that if preferences are CRRA, the aggregate endowment follows a random walk, and the distribution of

idiosyncratic endowment shares is independent of the aggregate endowment shock, then there is no trade

in the bonds market and only the stock market operates. Moreover, the cross-sectional distributions of

wealth and consumption are independent of the aggregate shocks, and the absence of insurance markets is

completely irrelevant for the aggregate risk premium. On the surface, these results are closely related to

the irrelevance result for the Mirlees economy in this paper.8 However, while Krueger and Lustig consider

an endowment economy, I consider a production economy. Thus, while the incomplete markets in Krueger

and Lustig (2010) cannot affect aggregate dynamics by assumption, I am able to address the effects of

information frictions on aggregate dynamics. Furthermore, the structure of equilibria with incomplete

markets is very different from those of constrained-efficient allocations under private information, in which

incentive compatibility constraints must be satisfied.

This difference is most clearly seen when comparing this paper with Werning (2015). Most of Wern-

ing’s paper focuses on the demand side of a deterministic Bewley-Huggett-Aiyagari incomplete markets

model with a fixed outside asset, and shows that under certain conditions, aggregate consumption and

interest rates are related by the Euler equation of a representative agent. However, this representative

agent does not correspond to the one obtained under complete markets (in particular his discount factor

depends on the amount of idiosyncratic uncertainty while the complete markets representative agent

does not). As a result, aggregate consumption levels differ under incomplete and complete markets.9

By comparison, in this paper I provide conditions under which aggregate allocations are identical under

private or full information.10 In the last section of his paper, Werning introduces capital accumulation

8However, my irrelevance result does not require aggregate consumption to follow a random walk, only log preferences.

9However, if the amount of idiosyncratic uncertainty is constant over time, Werning argues that the responses of aggregate

consumption to changes in interest rates are the same under incomplete and complete markets. This is a potentially useful

result that could greatly simplify the analysis of aggregate dynamics in different contexts.

10The aggregate allocations under private and full information coincide with those of a common representative agent. If

the social planner uses a different social discount factor than the private discount factor, then this representative agent has

time varying discount factors (even though the amount of idiosyncratic uncertainty is constant over time). However, this is

completely unimportant for the irrelevance result.
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and aggregate shocks, and provides a full irrelevance result for an RBC economy that is closely related

to the one in this paper. In his economy agents value consumption, dislike working, and receive id-

iosyncratic shocks to their labor productivity. Agents can save in capital but cannot borrow. There are

spot markets for labor and capital that are used by firms as inputs to a production function, subject

to aggregate productivity shocks. For this economy, Werning shows that if agents value consumption

according to log preferences, their disutility of labor supply is isoelastic, the depreciation rate of capital

is equal to one, and the production function is Cobb-Douglas, then the aggregate dynamics of capital and

labor are identical to their counterparts under complete markets. In this equilibrium, aggregate hours

worked are constant over time. Moreover, if the initial distribution of wealth is at an invariant steady

state, the cross-sectional distributions of consumption and hours worked are also constant over time. In

contrast, the irrelevance result in my paper is obtained under any neoclassical production function and

depreciation rate of capital; and it holds even though aggregate hours worked and the cross-sectional

distribution of hours worked fluctuate over time. The only requirement is that preferences be logarithmic

with respect to consumption and leisure. The sharp differences between the conditions needed to obtain

the irrelevance results in Werning (2015) and in this paper point to the fundamentally different structures

of equilibria with incomplete markets and of constrained-efficient allocation under private information.

Neither irrelevance result reduces to the other.

The work that is most closely related to the irrelevance result in my paper is Farhi and Werning

(2012). Fahri and Werning consider a very similar Mirleesian economy, except that it has no aggregate

productivity shock, idiosyncratic shocks are persistent, and the social planner is only allowed to optimize

with respect to the consumption allocations (labor allocations are taken to be beyond the planner’s con-

trol). Starting from the steady state of a Bewley economy, Fahri and Werning perform the dynamic public

finance experiment of evaluating the welfare gains associated with moving to an optimal consumption

plan. They show that when preferences are logarithmic in consumption, along the transitionary dynamics

of the model all aggregate variables behave exactly the same as in the representative agent of the full

information case. Thus, my irrelevance result in this paper can be seen as extending Fahri and Werning’s

result to allow the social planner to optimize with respect to labor as well as consumption and to do so

in an environment subject to aggregate uncertainty.11

Finally, the Hopenhayn-Nicolini model in this paper is related to a vast literature on optimal unem-

11Contrary to Farhi and Werning (2012), the transitionary dynamics in my Mirlees RBC economy coincide with those

of a representative agent economy only if the agent’s preferences shift over time in a particular way. This is due to the

overlapping generations structure (introduced to obtain a stationary distribution of agents) and only happens if the social

planner discounts the future with a discount rate that is different from the agents’.
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ployment insurance. The model is tightly related to Hopenhayn and Nicolini (2009), since it is essentially

the same model but embodied in an RBC context.12 However, similarly to Hopenhayn and Nicolini

(1997), Werning (2002), and Shimer and Werning (2008), Hopenhayn and Nicolini (2009) analyzes opti-

mal UI insurance abstracting from business cycle considerations. Kroft and Notowidigdo (2011), Sanchez

(2008) and Williams and Li (2015) all consider business cycle effects but perform their analysis within

a principal-agent setup. In contrast, I consider an economy-wide social planning problem under aggre-

gate uncertainty that not only takes into account the individual incentive constraints, but the aggregate

feasibility constraints. While there is a large general equilibrium literature analyzing optimal UI pro-

vision in a deterministic environment, the analysis in business cycle settings is more limited. Recent

examples include Landais et al. (2018), Jung and Kuester (2015), and Mitman and Rabinovich (2015) in

Mortensen-Pissarides frameworks and Boostani et al. (2017) in a directed search environment. However,

all of these papers impose exogenous restrictions to the financial markets that agents have available (e.g,

exogenous borrowing limits, hand-to-mouth workers, etc.) and to the policy instruments that the govern-

ment has available (e.g, homogeneous UI benefits, infinite duration of UI benefits, constant probability

of UI termination, etc.). In contrast, the Hopenhayn-Nicolini RBC model in this paper analyzes the

true social optimum for the environment considered, in which the only restrictions to risk sharing arise

because of the presence of private information. Thus, it provides a useful benchmark to which equilibria

with exogenous restrictions to risk sharing and policy instruments could be compared.

3 A general computational method

This section describes a general method for computing equilibria of economies with heterogeneous agents

and aggregate shocks. Although the method will be applied later on to economies with asymmetric

information, this section makes it clear that it is applicable to a much wider variety of settings.13

The basic framework is as follows. The economy is populated by individual decision makers that solve

12However, instead of having indivisible search decision, search intensities in my model are continuous. Also, instead of

characterizing optimal allocations only at low promised values, I characterize them over the whole support of the distribution

(although my characterization is numerical instead of analytical).

13For example, it could be applied to economies without state-contingent distributions such as Bewley-Huggett-Aiyagari.
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maximization problems of the following form at every time period t ≥ 1:14
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where h is the permanent type of the individual (e.g, being a household or a firm), a is a vector of

individual states that take a finite number of values (e.g, persistent idiosyncratic shocks), zt is a vector of

aggregate shocks, x1 is a vector of individual state variables whose values are contingent on the realizations

of a and zt, x2 is a vector of individual state variables whose values are contingent on the realization

of a but independent of zt, s is a vector of i.i.d. idiosyncratic shocks with distribution ψ, uh1,t+1 is

a vector of (a′, zt+1)-contingent decision variables, uh2t is a vector of (a′)-contingent decision variables,

pt is a vector of equilibrium prices (whose stochastic process is taken as given by the individual), Gh1

and Gh2 define the laws of motion for x1 and x2, respectively, Ch is a vector valued function defining

constraints on uh1,t+1 and uh2t, βh is a function that describes the discounting of future payoffs (allowing

for idiosyncratic and/or aggregate preference shocks, as well as discounting using market prices), and πh

describes the transition probabilities for a (potentially affected by the individual’s decisions).15 While a

and s take a finite number of values, all other variables take real values.16 The solution to this sequence

14In what follows I use the convention that a variable is dated t if its value becomes known when the date-t aggregate

shocks are realized. If the dating of a variable x is clear from the context, I avoid dating it explicitly and its next period

value will be denoted by x′. In particular, I avoid dating the arguments of individual value functions and decision rules.

15While the dependence of uh1,t+1 or uh2t on a′ is not critical, the dependence of uh1,t+1 on zt+1 is what distinguishes it

from uh2t. Any decision variable that is not contingent on zt+1 is assumed to be included in uh2t. The same assumptions

apply to x1 and x2. The presence of individual state and decision variables that depend on the realization of the aggregate

shocks plays a crucial role in economies with private information.

16The reason I introduce the i.i.d. shocks s explicitly instead of subsuming them in the vector a is because of the restrictions

across realizations of s that equation (3.4) allows for. These cross-restrictions play a crucial role in certain economies with

private information (representing incentive compatibility constraints).
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of maximization problems is a stochastic process {vht, uh1,t+1, uh2t}∞t=1 of functions over (a, x1, x2). The

permanent type h implicitly defines the space in which (a, x1, x2) lie.17. There is a finite number of

different permanent types in the economy.

The distribution of h-type agents across individual states (a, x1, x2) at the beginning of period t is

described by a measure µht. The law of motion for µht is given by the following equation:
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for every a′ and Borel sets X1 and X2, where

B =
{

(a, x1, x2) : Gh1

(
a, x1, x2, s, a

′, uh1,t+1

(
a, x1, x2, s, a

′)) ∈ X1

and Gh2

(
a, x1, x2, s, a

′, uh2t

(
a, x1, x2, s, a

′)) ∈ X2

}
. (3.6)

and the initial distribution µh1 is given. The measure φh describes an exogenous endowment of new agents

(e.g, to accommodate exogenous entry of firms in a firm dynamics context or newborns in a households

life cycle context), while the second term describes the endogenous evolution of the distribution. Observe

that since uh1,t+1 is contingent on the realization of zt+1, the same is true for µh,t+1. I assume that µh1,

φh, and πh are such that the total number of h-type agents

∫
µht is constant over time and equal to Γh,

independent of the stochastic process {uh1,t+1, uh2t}∞t=1.

In what follows, it will be useful to differentiate the h-type of agents that are infinitely lived and

for which the maximization problem (3.1)-(3.4) is independent of a and s. Henceforth, all variables

corresponding to such “representative” types of agents will be denoted with a subscript r, while the h

subscript will be reserved for heterogeneous types. An important characteristic of representative types

of agents is that the measure µrt describing their distribution across individual states will have mass at

a single point (xr1t, xr2,t−1). Therefore, it will be convenient to replace µrt with that single point and

replace the law of motion (3.5)-(3.6) with

xr1,t+1 = Gr1 (xr1,t, xr2,t−1, ur1,t+1 (xr1,t, xr2,t−1)) , (3.7)

xr2t = Gr2 (xr1t, xr2,t−1, ur2t (xr1,t, xr2,t−1)) , (3.8)

where the initial (xr1,1, xr2,0) is given.

17I avoid introducing a subscript h for these variables in order to simplify notation. However, the context will always make

clear the permanent type h that they correspond to.
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The stochastic price process {pt}∞t=1, taken as given in the maximization problems (3.1)-(3.4), is an

equilibrium process if for every t ≥ 1,

Q

(
zt,

[∑
s

(∫
Mh(a, x1, x2,

[
uh2t

(
a, x1, x2, s, a

′)]
a′

)dµht

)
ψs

]
h

, [xr1t, xr2,t−1, ur2t (xr1t, xr2,t−1)]r

)
= 0,

(3.9)

where Q is a vector valued function (of the same dimensionality as pt) describing aggregate feasibility

and/or market clearing conditions, Mh is a vector valued function that determines which moments of

µht are arguments of Q, and (xr1t, xr2,t−1, ur2t) are the states and decision functions of the r-type of

representative agents. Observe that the zt+1-contingent decision variables uh1,t+1 and ur1,t+1 do not

enter Q.

The vector of aggregate shocks zt follows an AR(1) process zt+1 = Nzt + εt+1, where Et [εt+1] = 0

and z1 is given.

The high dimensionality of the equilibrium objects makes computing equilibria for this type of setting a

nontrivial task. My approach will be to replace these objects with a finite set of numbers that approximate

them arbitrarily well. Moreover, the finite representation will be chosen in such a way that the law

of motion corresponding to equations (3.5)-(3.6) will be a linear mapping. All first-order conditions

and aggregate feasibility constraints will then be linearized with respect to the variables in the finite

representation (at their deterministic steady state values), delivering a linear rational expectations model

that can be solved using almost standard methods.18 Since under the chosen finite representation the law

of motion corresponding to equations (3.5)-(3.6) is already linear, this method has the advantage that

the linearization does not introduce any further approximation errors to it: The method not only keeps

track of the distributions µht arbitrarily well over all of their supports, but also uses their exact laws of

motion. Since the method performs a linearization at the deterministic steady state equilibrium values

of all variables, it requires computing these values as a first step.

3.1 Computing the deterministic steady state

While computing a deterministic steady state for this type of model is standard, this section describes

in detail a specific algorithm that serves to introduce objects and notation that will be needed later on.

Throughout the section, I assume that a deterministic steady state equilibrium exists.

In order to compute a steady state, I start by making zt identical to zero and fixing the price vector at

some value p. For each r-type of representative agent, the vector of time invariant state and decision vari-

18The “almost” qualifier will be clarified later on.
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ables (x1r, x2r, u1r, u2r) can then be directly obtained from the first-order conditions of the corresponding

maximization problem.

I find it convenient to solve the maximization problems given by equations (3.1)-(3.4) using spline

approximations and value function iterations.19 To start, I restrict each component of the vector of

endogenous individual state variables (x1, x2) for each h-type agent to lie in a closed interval and define a

set of grid points in it that includes the extremes.20 The cartesian product of all these sets of grid points

defines a finite set of grid points for (x1, x2), which is described by a vector (x̄1j , x̄2j)
Jh
j=1. Given the

value function vh from the previous iteration, which is used to evaluate (x′1, x
′
2) (possibly outside the grid

points), the maximization problem in equations (3.1)-(3.4) is solved for at the grid points (x̄1j , x̄2j)
Jh
j=1.

Once, the vectors of new values v̄h = [vh (a, x̄1j , x̄2j)]a,j , ūh1 = [uh1 (a, x̄1j , x̄2j , s, a
′)]a,j,s,a′ , and ūh2 =

[uh2 (a, x̄1j , x̄2j , s, a
′)]a,j,s,a′ are obtained, I extend their values to the full domain of (x1, x2) using splines.

These value function iterations continue until v̄h converges. Observe that the solution obtained depends

on the price vector p, which has been fixed.

For heterogenous agents, the steady state version of equations (3.5)-(3.6) describes the recursion that

the time invariant distribution µh has to satisfy. This equation corresponds to the case of a continuum of

agents. However, I find it convenient to perform the recursion in the case of a large but finite number of

agents. In particular, consider a large but finite number Ih of h-type agents and endow them with some

individual states (a, x1, x2). Using the functions uh1 and uh2 already obtained, I simulate the evolution

of the individual states of these Ih agents for a large number of periods T . To be precise, if an h-type

agent i has the individual state (a, x1, x2) at the beginning of the current period, then the individual

state (a′, x′1, x
′
2) at the beginning of the following period is randomly determined as follows:

(i) with probability πh
[
a, a′, uh1

(
a, x1, x2, s, a

′) , uh2

(
a, x1, x2, s, a

′)]ψs, it is given by (3.10)[
a′, Gh1

(
a, x1, x2, s, a

′, uh1

(
a, x1, x2, s, a

′)) , Gh2

(
a, x1, x2, s, a

′, uh2

(
a, x1, x2, s, a

′))] ,
(ii) with probability 1−

∑
s,a′

π
[
a, a′, uh1

(
a, x1, x2, s, a

′) , uh2

(
a, x1, x2, s, a

′)]ψs it is determined by φh.

Observe that the transition in (ii) takes place when the individual dies and is replaced by a newborn

whose initial state is unrelated to the state of the predecessor.

19For representative agents with state contingent state variables x1r, it will be important to follow the procedure described

in this paragraph as well since the steady state objects described here will be needed later on.

20When restricting each of these variables to lie in a closed interval, one should modify the steady state maximization

problem (3.1)-(3.4) to incorporate the corresponding constraints on x′1 and x′2. The use of splines is what requires each

component of (x1, x2) to lie in a closed interval.

14



Simulating the Ih agents and their descendants for T periods using the law of motion in (3.10), I

obtain a realized distribution
(
ai, xi1, x

i
2

)Ih
i=1

of individual states across the Ih agents. Doing this for every

h-type, the aggregate feasibility conditions can then be computed as

Q

(
0,

[∑
s

(
Γh

1

Ih

Ih∑
i=1

Mh(ai, xi1, x
i
2,
[
uh2

(
ai, xi1, x

i
2, s, a

′)]
a′

)

)
ψs

]
h

, [xr1, xr2, ur2]r

)
= 0. (3.11)

Observe that by the law of large numbers, equation (3.11) will become an arbitrarily good approximation

of equation (3.9) as all Ih and T tend to infinity.

If equation (3.11) is not satisfied, the price vector p must be changed until it is. This represents a

standard root finding problem.

3.2 Computing the stationary stochastic solution

As I already mentioned, computing the stationary stochastic solution requires linearizing the first-order

conditions to the maximization problems given by equations (3.1)-(3.4), the laws of motion (3.5)-(3.6), the

laws of motion (3.7)-(3.8), and the aggregate feasibility conditions given by equation (3.9) with respect

to a convenient set of variables. It is important to point out from the outset that the method does not

handle occasionally binding constraints: It assumes that each component in equation (3.4) either always

holds with equality or always holds with strict inequality.

In order to illustrate some of the issues involved in the linearization of the first-order conditions, I

will use equation (3.1) as an example since it represents the most complex type.21 The first issue is the

existence of a continuum of equations (3.1), since (x1, x2) take a continuum of values. I solve this “curse

of dimensionality” by considering the equation only at the grid points (x̄1j , x̄2j)
Jh
j=1 that were used in

the computation of the deterministic steady state. Another issue is that each of this finite number of

equations depends on the infinite dimensional object vh,t+1, since it is a function of (x′1, x
′
2), and I need

to evaluate these variables outside the grid points. In this case, I solve the “curse of dimensionality” by

considering that vh,t+1 is a spline approximation and, therefore, is completely determined by the vector

v̄h,t+1 = [vh,t+1 (a, x̄1j , x̄2j)]a,j , i.e, by the value of the function at the grid points. Consequently, after

substituting equations (3.2)-(3.3) into equation (3.1) and linearizing at the corresponding steady state

21Equation (3.1) enters the set of first order conditions if the transition probabilities πh depend on uh1,t+1 or uh2t. In this

case, the level of vht enters the first order conditions and the definitional equation (3.1) must be included. If πh does not

depend on uh1,t+1 or uh2t, only the derivatives of vht enter the first order conditions. However, the issues discussed here in

the context of equation (3.1) apply to other first-order conditions, including the definitional equation for the derivatives of

vht. For reasons I will explain in Section 3.3, it is important to write first order conditions using the derivatives of the value

function and not as second order stochastic difference equations.

15



values, I am left with the following finite set of equations:

0 = Et {Lvh (v̄h,t, ūh1,t+1, ūh2t, zt, pt, pt+1, v̄h,t+1)} , (3.12)

where ūh1,t+1 = [uh1,t+1 (a, x̄1j , x̄2j , s, a
′)]a,j,s,a′ , ūh2t = [uh2t (a, x̄1j , x̄2j , s, a

′)]a,j,s,a′ and Lvh is a vector

valued linear function with the same dimensionality as v̄ht.

Particular attention should be given to the first-order conditions corresponding to grid points (a, x̄1j , x̄2j)

for which the deterministic steady state choice of some component of x′1 (s, a′) or x′2 (s, a′) hits one of the

extremes imposed by the use of spline approximations.22 At these grid points, the maximization problem

(3.1)-(3.4) should be modified by imposing the constraint that the corresponding component of equation

(3.2) or (3.3) must evaluate to the corresponding extreme. The first-order conditions used at these grid

points should be those of the modified problem. A consequence of this is that if the optimal choice of

some component of x′1 (s, a′) or x′2 (s, a′) hits an extreme in the steady state solution, it will always hit it

in the stochastic solution. This will certainly distort the stochastic decision rules close to the extremes,

so in practice one should choose these extremes far enough that the invariant distribution µh puts little

mass close to them (minimizing the relevance of these distortions).

Linearizing the aggregate feasibility conditions described by equation (3.9) presents more complicated

issues because of their dependence on the integrals
[∫
Mhdµht

]
h
. To make progress, these integrals must

be represented with a convenient finite set of variables. To do this, I follow a strategy that is closely related

to the one used in Section 3.1 for computing statistics under the invariant distributions. In particular,

for each heterogenous type of agent h, consider the same large but finite number of agents Ih used in

that section and endow them with the same realized distribution of individual states
(
ai, xi1, x

i
2

)Ih
i=1

that

was obtained when computing the steady state. Now, assume that these agents populated the economy

N time periods ago and consider the history {uh1,t+1−n, uh2,t−n}Nn=1 of decision rules that were realized

during the last N periods (where t is considered to be the current period). Since these decision rules are

spline approximations, this history can be represented by the finite list of values {ūh1,t+1−n, ūh2,t−n}Nn=1.

Using this history of decision rules, I can simulate the evolution of individual states for the Ih agents

and their descendants during the last N time periods to update the distribution of individual states from

the initial
(
ai, xi1, x

i
2

)Ih
i=1

to a current distribution
(
ait, x

i
1t, x

i
2,t−1

)Ih
i=1

. In particular, I can initialize the

distribution of individual states at the beginning of period t−N as
(
ait−N , x

i
1,t−N , x

i
2,t−N−1

)
=
(
ai, xi1, x

i
2

)
,

for i = 1, ..., Ih. Given a distribution of individual states
[(
ait−n, x

i
1,t−n, x

i
2,t−n−1

)]Ih
i=1

at period t− n, the

individual state
(
ait−n+1, x

i
1,t−n+1, x

i
2,t−n

)
of each agent i at period t− n + 1 is randomly determined as

22See footnote 19.
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follows:

(i) with probability πh
[
ait−n, a

′, uih1,t+1−n
(
s, a′

)
, uih2,t−n

(
s, a′

)]
ψs, it is given by

(
a′, Gih1,t+1−n

(
s, a′

)
,

Gih2,t−n
(
s, a′

))
, where

(
uih1,t+1−n

(
s, a′

)
, uih2,t−n

(
s, a′

)
, Gih1,t+1−n

(
s, a′

)
, Gih2,t−n

(
a′
))

are the

values of (uh1,t+1−n, uh2,t−n, Gh1, Gh2) evaluated at
(
ait−n, a

′, xi1,t−n, x
i
2,t−n−1, s, a

′) ,

(ii) with probability 1−
∑
s,a′

πh
[
ait−n, a

′, uih1,t+1−n
(
s, a′

)
, uih2,t−n

(
s, a′

)]
ψs, it is determined by φh.

Proceeding recursively for n = N,N − 1, ..., 1, I obtain a realized distribution
(
ait, x

i
1t, x

i
2,t−1

)Ih
i=1

at the

beginning of period t. This distribution can be used to compute statistics under the distribution µht. In

particular, having followed the above procedure for each h-type of heterogeneous agents, I can rewrite

equation (3.9) as

0 = Q

(
zt,

[∑
s

(
Γh

1

Ih

Ih∑
i=1

Mh(ait, x
i
1t, x

i
2,t−1,

[
uh2t

(
ait, x

i
1t, x

i
2,t−1, s, a

′)]
a′

)

)
ψs

]
h

,

, [xr1t, xr2,t−1, ur2t (xr1t, xr2,t−1)]r
)

(3.13)

Since uh2t and ur2t are spline approximations, they can also be summarized by their values at the grid

points ūh2t and ūr2t.
23 As a consequence, equation (3.13) can be linearized at the deterministic steady

state values to get the following finite set of equations:

0 = LQ
(
zt,
[
{ūh1,t+1−n}Nn=1 , {ūh2,t−n}Nn=0

]
h
, [xr1t, xr2,t−1, ūr2t]r

)
(3.14)

where LQ is a vector valued linear function.24

My approach of representing the distribution µht with a finite history of values greatly simplifies the

description of the law of motion in equations (3.5)-(3.6). In fact, updating the distribution µht is merely

reduced to updating those histories. In particular, the date-(t + 1) histories can be obtained from the

23For simplicity, I assume here that all representative agents have state-contingent states x1r. However, for representative

agents with no state-contingent states, instead of writing equation (3.13) in terms of their decision rules ur2t, it is often

more convenient to write it directly in terms of the values of their type-2 decision variables at date t. Consequently, for this

type of representative agents, ūr2t in equations (3.14) and (3.18) is not a vector of spline coefficients but a vector of values

for type-2 decision variables.

24Taking numerical derivatives of equation (3.13) with respect to each spline coefficient in the list[
{ūh1,t+1−n}Nn=1 , {ūh2,t−n}Nn=0

]
h

requires simulating Ih agents over N periods. Therefore, obtaining the linear func-

tion LQ requires performing a large number of Monte Carlo simulations. While this seems a daunting task, it is easily

parallelizable. Thus, using massively parallel computer systems can play an important role in reducing computing times

and keeping the task manageable.
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date-t histories and the current values ūh1,t+1 and ūh2t using the following equations:

ūh1,(t+1)−n = ūh1,t−(n−1) (3.15)

ūh2,(t+1)−n = ūh2,t−(n−1), (3.16)

for n = 1, ..., N . Observe that the law of motion described by equations (3.15)-(3.16) is already linear, so

no further linearization is needed. Also observe that the variables that are N periods old in the date-t

history are dropped from the date-(t+ 1) history. Thus, the law of motion described by these equations

introduces a truncation. However, introducing a life cycle structure to the h-type of heterogenous agents

will make the consequences of this truncation negligible. The reason is that the truncation only affects

agents surviving for N consecutive periods and, given sufficiently small survival probabilities and/or a

sufficiently large N , there will be very few of these agents. Apart from this negligible truncation, there are

no further approximations errors in the representation of the law of motion given by equations (3.5)-(3.6)

– a crucial benefit of using the computational method described in this paper.

Since all ur1t,t+1 and ur2t are also spline approximations they are summarized by their values at the

grid points ūr1t,t+1 and ūr2t. The laws of motion (3.7)-(3.8) can then be linearized to obtain

0 = LGr1 (xr1,t+1, xr1t, xr2,t−1, ūr1t,t+1) , (3.17)

0 = LGr2 (xr2t, xr1t, xr2,t−1, ūr2t) , (3.18)

where LGr1 and LGr2 are vector valued linear functions of the same dimensionality as xr1,t+1 and xr2t,

respectively.

Once all equations have been linearized, I am left with a stochastic linear rational expectations model

with a non-standard feature – namely, that some of the decision variables during the current period and

some of the endogenous states during the next period are contingent on the realization of the aggregate

shocks during the next period. Fortunately, this difficulty can be handled easily. The reason is that

the stochastic state contingent solution that I seek can be easily constructed from the solution to the

deterministic version of the model, and this version has a standard structure that can be solved using

well known methods. In what follows, I describe the linear stochastic model in detail and show how to

perform this transformation.
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3.3 Solving the linearized model

Define the following vectors:

x1
t =

[[
{∆ūh1,t+1−n}Nn=1

]
h
, [∆xr1t]r

]
, (3.19)

x2
t−1 =

[[
{∆ūh2,t−n}Nn=1

]
h
, [∆xr2,t−1]r

]
, (3.20)

y1
t+1 =

[
[∆ūh1,t+1]h , [∆ūr1,t+1]r

]
, (3.21)

y2
t =

[[
∆v̄ht,∆

(
∂v̄ht
∂x

)
,∆q̄ht,∆ūh2t

]
h

,

[
∆v̄rt,∆

(
∂v̄rt
∂x

)
,∆q̄rt,∆ūr2t

]
r

,∆pt

]
, (3.22)

where ∆ represents deviations from steady state values. ∂v̄ht/∂x and q̄ht are the derivatives of vht and

the Lagrange multipliers of constraints (3.4), respectively, evaluated at the grid points of the h-type of

heterogeneous agents. ∂v̄rt/∂x and q̄rt are similar objects but for the r-type of representative agents.

The linearized model can then be written as

0 = B11x
1
t +B12x

2
t−1 + C12y

2
t +D1zt, (3.23)

0 = A21x
1
t+1 +B21x

1
t +B22x

2
t−1 + C21y

1
t+1, (3.24)

0 = A32x
2
t +B31x

1
t +B32x

2
t−1 + C32y

2
t , (3.25)

0 = H41x
1
t +H42x

2
t−1 + J42y

2
t+1 +K41y

1
t+1 +K42y

2
t +M4zt, (3.26)

0 = Et
{
F52x

2
t+1 +G52x

2
t +H51x

1
t +H52x

2
t−1 + J52y

2
t+1 +K51y

1
t+1 ,

+K52y
2
t + L5zt+1 +M5zt

}
(3.27)

zt+1 = Nzt + εt+1, (3.28)

where (3.23) represents the aggregate feasibility constraints (equation 3.14), (3.24) is the law of motion

for x1
t (equations 3.15 and 3.17), (3.25) is the law of motion for x2

t−1 (equations 3.16 and 3.18), (3.26) is

the first-order conditions for uh1,t+1 and ur1,t+1 evaluated at the grid points, and (3.27) represents the

constraints (3.4), the first-order conditions for uh2t and ur2t, the definitions of v̄ht and v̄rt (e.g, equation

3.12), and the envelope conditions for ∂v̄ht/∂x and ∂v̄rt/∂x, all evaluated at the grid points.25 I seek a

recursive solution to equations (3.23)-(3.28) of the following form:

x1
t+1 = Ω11x

1
t + Ω12x

2
t−1 + Ψ1zt + Θ1zt+1, (3.29)

x2
t = Ω21x

1
t + Ω22x

2
t−1 + Ψ2zt, (3.30)

y1
t+1 = Φ11x

1
t + Φ12x

2
t−1 + Γ1zt + Λ1zt+1, (3.31)

y2
t = Φ21x

1
t + Φ22x

2
t−1 + Γ2zt. (3.32)

25Actually, only the constraints in (3.4) that hold with equality are included in the system of equations. Also, only the

Lagrange multipliers of these constraints are included in q̄ht and q̄rt in equation 3.22.
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My strategy will be to construct it from the recursive solution to the deterministic version of equations

(3.23)-(3.28), in which εt+1 is set to zero and the expectations operator is dropped.26 This deterministic

version has identical structure as the system analyzed in Uhlig (1999) and can be solved using identical

methods.27 Its solution has the following form:

x1
t+1 = P11x

1
t + P12x

2
t−1 +Q1zt, (3.33)

x2
t = P21x

1
t + P22x

2
t−1 +Q2zt, (3.34)

y1
t+1 = R11x

1
t +R12x

2
t−1 + S1zt, (3.35)

y2
t = R21x

1
t +R22x

2
t−1 + S2zt. (3.36)

Proposition 1 Let (3.33)-(3.36) be the solution to the deterministic version of equations (3.23)-(3.28).

Define Ω11 = P11, Ω12 = P12, Ω21 = P21, Ω22 = P22, Ψ2 = Q2, Φ11 = R11, Φ12 = R12, Φ21 = R21,

Φ22 = R22, Γ2 = S2, and

Θ1 = ΥA−1
21 C21K

−1
41 J42S2, (3.37)

Ψ1 = Υ
[
A−1

21 C21K
−1
41 J42R22Q2 +A−1

21 C21K
−1
41 K42S2 +A−1

21 C21K
−1
41 M4

]
, (3.38)

Λ1 = −K−1
41 J42R21Θ1 −K−1

41 J42S2, (3.39)

Γ1 = −K−1
41 J42R21Ψ1 −K−1

41 J42R22Q2 −K−1
41 K42S2 −K−1

41 M4, (3.40)

where

Υ =
[
I −A−1

21 C21K
−1
41 J42R21

]−1
(3.41)

Then, (3.29)-(3.32) solves the stochastic system (3.23)-(3.28).

Proof. The solution is verified using algebraic manipulations and the law of iterated expectations.28

The next section will apply the general computational method described so far to a Mirlees economy.

This economy happens to be an ideal test case scenario for the method’s accuracy because under loga-

rithmic preferences, its business cycle fluctuations can be characterized analytically. In this section, I will

26For this strategy to work it is important to write the first order conditions for the heterogeneous agents in equations

(3.26)-(3.27) using the derivatives of the value functions and not as second order difference equations. For representative

agents with no state contingent state variables it is often more convenient to write their first order conditions as second

order difference equations. It is only for this reason that x2
t , x

2
t+1 and zt+1 are included in equation (3.27).

27In fact, I use the same notation as Uhlig (1999), page 38, to facilitate comparisons. The only difference is that the

variables here written as x1
t and y1

t+1 are there written as x1
t−1 and y1

t . However, in a deterministic context this difference

is immaterial (it can be considered a simple notational issue).

28See Technical Appendix 7 for a complete proof.
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show that, while the computational method does not exploit the structure of the logarithmic preferences

in any way, it recovers those analytical results accurately.

4 A Mirlees economy

The economy is populated by a unit measure of agents subject to stochastic lifetimes. Whenever an agent

dies they are immediately replaced by a newborn, leaving the aggregate population level constant over

time.29 The preferences of an individual born at date T ≥ 0 are given by30

ET

{ ∞∑
t=T

βt−Tσt−T [u (ct) + αtn (1− ht)]

}
, (4.1)

where σ is the survival probability, 0 < β < 1 is the discount factor, αt ∈ {ᾱ1, ..., ᾱS} is the idiosyncratic

value of leisure, and u and n are continuously differentiable, strictly increasing and strictly concave

utility functions. Realizations of αt are assumed to be i.i.d. both across individuals and across time.

The probability that αt = ᾱs is given by ψs. A key assumption is that αt is private information of the

individual.

Output, which can be consumed or invested, is produced with the following production function:

Yt = eztF (Kt−1, Ht), (4.2)

where Yt is output, zt is aggregate productivity, Kt−1 is capital, Ht is hours worked, and F is a neoclassical

production function. The aggregate productivity level zt follows a standard AR(1) process given by:

zt+1 = ρzt + εt+1, (4.3)

where 0 < ρ < 1, and εt+1 is normally distributed with mean zero and standard deviation σε. The initial

z0 is given.

Capital is accumulated using a standard linear technology given by

Kt = (1− δ)Kt−1 + It, (4.4)

where It is gross investment and 0 < δ < 1. The initial K−1 is given.

29As in Phelan (1994), the stochastic lifetime guarantees that there will be a stationary distribution of agents across

individual states.

30Observe that I am deviating from Section 3 in that the initial time period is 0 instead of 1. The reason for doing this

will be explained below.

21



In what follows, I will describe the mechanism design problem for this economy. To do this, it will be

convenient to distinguish between two types of agents: young and old. A young agent is one that has been

born at the beginning of the current period. An old agent is one that has been born in some previous

period. The social planner must decide recursive plans for both types of agents. The state of a recursive

plan is the value (i.e, discounted expected utility) that the agent is entitled to at the beginning of the

period. Given this promised value, the recursive plan specifies the current utility of consumption, the

current utility of leisure, and next-period promised values as functions of the value of leisure currently

reported by the agent. The social planner is fully committed to the recursive plans they choose and

agents have no outside opportunities available.

A key difference between the young and the old is in terms of promised values. Since during the

previous period the social planner has already decided on some recursive plan for a currently old agent,

the planner is restricted to delivering the corresponding promised value during the current period. In

contrast, the social planner is free to deliver any value to a currently young agent since this is the first

period they are alive. Reflecting this difference, I will specify the individual state of an old agent to be

their promised value v and their current value of leisure s (henceforth, I will refer to the value of leisure

ᾱs by its subindex s). At date t, their current utility of consumption, utility of leisure, and next-period

promised value are denoted by uost (v), nost (v) and wos,t+1 (v), respectively, where wos,t+1 (v) is a random

variable contingent on the realization of zt+1. In turn, the individual state of a young agent is solely

given by their current value of leisure s. At date t, the agent’s current utility of consumption, utility of

leisure, and next-period promised value are denoted by uyst, nyst and wys,t+1 respectively, where wys,t+1

is also contingent on the realization of zt+1.

The social planner seeks to maximize the weighted sum of the welfare levels of current and future

generations of agents, subject to individual incentive compatibility and promise keeping constraints, as

well as aggregate feasibility constraints. To map the social planner’s problem into the structure described

in Section 3, it will be convenient to decompose it into a sequence of sub-planning problems, instead

of describing it as an economy-wide planning problem.31 In each period, there are two sub-planning

problems: one sub-planning problem concerned with providing insurance and incentives to individuals,

and another sub-planning problem concerned with making production and investment decisions. In

these sub-planning problems, the joint stochastic process for the shadow price of labor (in terms of the

consumption good), qt, and the shadow price of the consumption good (in utiles), λt, are taken as given.

The solutions to these sequences of sub-planning problems correspond to those of the economy-wide

31Technical Appendix 8 describes the economy-wide planning problem in detail.
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planning problem if certain side conditions are satisfied.

The sub-planning problems for individuals differ depending on whether the individual is young or old.

For t ≥ 1, the sub-planning problem for old individuals is as follows:

Pot (v) = max
∑
s

ψs

{
qth(nost)− c (uost) + θσEt

[
λt+1

λt
Po,t+1 (wos,t+1)

]}
(4.5)

subject to

uost + ᾱsnost + βσEt [wos,t+1] ≥ uojt + ᾱsnojt + βσEt [woj,t+1] , for every (s, j) , (4.6)

v =
∑
s

{uost + ᾱsnost + βσEt [wos,t+1]}ψs, (4.7)

where h (n) are the hours worked implied by the utility of leisure n (i.e. h (n) = 1 − n−1 (n)), and c (u)

is the consumption level implied by the utility of consumption u (i.e. c (u) = u−1 (u)). Observe that the

current “social profits” in equation (4.5) are given by the social value of the hours worked by the old agent,

net of the consumption goods that are transferred to them. Also observe that the sub-planner discounts

the future social profits of the old individual using the social discount factor θ, the survival probability σ,

and the stochastic social discount factor λt+1/λt. The social discount rate θ is the Pareto weight of the

next-period generation of young agents relative to the Pareto weight of the current generation of young

agents.32 I assume that βσ < θ < 1. Equation (4.6) is the incentive compatibility constraint. It states

that the expected value to the individual of truthfully reporting the value of leisure s must be at least as

large as the expected value to the individual of misreporting any other value of leisure j. Equation (4.7)

is the promise-keeping constraint. It states that the social sub-planner must deliver the expected value v

that was promised at the beginning of the period.

For t ≥ 1, the sub-planning problem for young individuals is as follows:

Pyt = max
∑
s

ψs

{
uyst + ᾱsnyst + βσEt [wys,t+1]

λt
+ qth(nyst)− c (uyst) + θσEt

[
λt+1

λt
Po,t+1 (wys,t+1)

]}
(4.8)

subject to

uyst + ᾱsnyst + βσEt [wys,t+1] ≥ uyjt + ᾱsnyjt + βσEt [wyj,t+1] , for every (s, j) . (4.9)

Observe that in this case the social surplus is given by the expected lifetime utility level of the young

agent (in current consumption units), plus the expected social value of the hours worked by the agent, net

of the expected consumption goods transferred to them. Since, conditional on surviving the young agent

becomes old after one period, the function used to evaluate next-period continuation values is Po,t+1.

32I assume that relative Pareto weights are constant across generations.
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For t ≥ 1, the sub-planning problems for production decisions is

Ppt (K) = max

{
eztF (K,Ht)− qtHt − It + θEt

[
λt+1

λt
Pp,t+1 ((1− δ)K + It)

]}
. (4.10)

Observe that the social surplus generated by this planning problem is given by output net of the value

of the labor input and the value of investment.

The economy-wide distribution of old agents across promised values v at the beginning of period t ≥ 1

is given by a measure µt, while the number of young agents is constant over time and given by 1 − σ.

Given the stochastic sequence of decision rules
{

[uost, nost, wos,t+1, uyst, nyst, wys,t+1]s
}∞
t=1

that solves the

corresponding sub-planning problems for individuals, the law of motion for µt is given as follows:

µt+1 (B) = σ
∑
s

∫
{v: wos,t+1(v)∈B}

ψsdµt + (1− σ)σ
∑

s: wys,t+1∈B
ψs, (4.11)

for every Borel set B and t ≥ 1. Equation (4.11) states that the number of old agents that have a

promised value in the Borel set B at the beginning of the following period is given by the sum of two

terms. The first term sums all currently old agents that receive a next-period promised value in the set

B and do not die. The second term does the same for all currently young agents.

The economy-wide stock of capital at the beginning of period t is equal to Kt−1. Given the stochastic

sequence of decision rules {Ht, It}∞t=1 that solve the corresponding sub-planning production problems, Kt

follows a stochastic process given by

Kt = (1− δ)Kt−1 + It (Kt−1) , (4.12)

for t ≥ 1.

Given the values for K0 and µ1 determined by the optimal choices made at t = 0 and the realized

value z1, the side conditions that the stochastic shadow prices {qt, λt}∞t=1 need to satisfy for t ≥ 1 are the

following:

(1− σ)
∑
s

c (uyst)ψs +

∫ ∑
s

c (uost (v))ψsdµt + It (Kt−1) = eztF [Kt−1, Ht (Kt−1)] , (4.13)

and

Ht (Kt−1) = (1− σ)
∑
s

h (nyst)ψs +

∫ ∑
s

h (nost (v))ψsdµt. (4.14)

Equation (4.13) describes the aggregate feasibility constraint for the consumption good. It states that the

total consumption of young and old agents, plus aggregate investment cannot exceed aggregate output.

Equation (4.14) is the aggregate labor feasibility constraint. It states that the input of hours into the

production function cannot exceed the total hours worked by young and old agents.
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Given values for K0, µ1 and z1, the continuation optimal plan starting at t = 1 and characterized

by equations (4.5)-(4.14) has the general structure described in Section 3.33 As a consequence, the

deterministic steady state optimal allocation can be computed as in Section 3.1 and the stationary

stochastic optimal allocation can be computed as in Section 3.2. However, for the analysis that follows

it will be necessary to complete the description of the optimal plan starting at t = 0. Date 0 is special

because it has no ongoing recursive plans in place for which promised values must be delivered. Thus,

at date 0 all agents must be treated as young, there is no sub-planning problem for old individuals,

the sub-planning problem for young individuals is given by equations (4.8)-(4.9) and the sub-planning

problem for production decisions is given by equation (4.10). The side conditions that the shadow prices

(q0, λ0) must satisfy in order to obtain the economy-wide social optimum are

∑
s

c (uys0)ψs + I0 (K−1) = ez0F [K−1, H0 (K−1)] , (4.15)

and

H0 (K−1) =
∑
s

h (nys0)ψs, (4.16)

which are analogous to equations (4.13)-(4.14) but reflect the fact that all agents at t = 0 are young. In

turn, µ1 is determined by

µ1 (B) = σ
∑

s: wys1∈B
ψs (4.17)

and K1 is determined by equation (4.12).

4.1 Logarithmic preferences

This section provides a sharp characterization of the optimal allocation when preferences are logarithmic.

To do this, it will be useful to introduce the following non-stationary representative agent planning

problem:

maxE0

{ ∞∑
t=0

φtθ
t [u (Ct) + ᾱn (1−Ht)]

}
(4.18)

subject to:

Ct +Kt − (1− δ)Kt−1 ≤ eztF (Kt−1, Ht) , (4.19)

where φt > 0 is a deterministic preference shifter with positive limit, ᾱ =
∑

s ᾱsψs is the expected

idiosyncratic value of leisure, and (z0,K−1) is taken as given. The following Lemma links the optimal

allocation of the Mirlees economy to the solution of this representative agent planning problem.

33Technical Appendix 9 describes in detail how to map this Mirlees economy into the general structure of Section 3.
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Lemma 2 Suppose that u and n are logarithmic. Define φ = {φt}
∞
t=0 as follows

φt =

 1, for t = 0

(1− σ) + ρt, for t ≥ 1,
(4.20)

where {ρt}
∞
t=1 is given by

ρt =


βσ
θ , for t = 1

βσ
θ ρt−1 + (1− σ) βσθ , for t ≥ 2,

(4.21)

Then, the optimal aggregate allocation of the economy with private information is identical to the

optimal allocation of the representative agent economy with preference shifters φ.

The proof of this Lemma, which is given in Technical Appendix 11, shows in detail why the logarithmic

preferences give rise to this exact aggregation result.34 The basic reason is that the inverse Euler equations,

which characterize an optimal allocation under private information, become linear when preferences are

logarithmic. This allows me to integrate the inverse Euler equations across all individuals and obtain a

relation between aggregate variables that reproduces the (direct) Euler equations of the representative

agent planning problem. The preference shifters φ are needed for obtaining the aggregation result only

because the social planner is allowed to discount the welfare of future generations at a different rate than

private agents discount future utility. In fact, if the relative Pareto weight θ is the same as the private

discount factor β, we see from equation (4.21) that ρt = σ for all t ≥ 1 and from equation (4.20) that

αt = 1 for all t ≥ 0. That is, in this case, the Mirleesian planner chooses the same aggregate allocation

as if they were deciding the optimal plan for a representative agent economy with stationary preferences.

Observe that the optimal allocation of the full information economy can be obtained by dropping the

incentive compatibility constraints (4.6) and (4.9) from the corresponding optimization problems. Since

none of these incentive constraints are used in the proof of Lemma 2, I have a second important result.

Lemma 3 Suppose that u and n are logarithmic. Define φ = {φt}
∞
t=0 as in equation (4.20). Then, the

optimal aggregate allocation of the economy with full information is identical to the optimal allocation

of the representative agent economy with preference shifters φ.

In addition, since the optimal aggregate allocations of the economy with private information and the

economy with full information are equal to the same object, I have the following Corollary.

Corollary 4 Suppose that u and n are logarithmic. Then, the optimal aggregate allocation of the econ-

omy with private information is identical to the optimal aggregate allocation of the economy with full

information.

34The proof of Lemma 2 is constructive.
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This Corollary provides a strong irrelevance result: Under logarithmic preferences, the information

frictions play no role for aggregate dynamics. The information frictions affect individual allocations since

agents are not fully insured and suffer from the lack of insurance. However, this has no effect on aggregate

variables.

Observe that independently of the value of θ, from equation (4.21) we verify that ρt converges to a

positive value and, therefore, that φt converges to a positive value as well.35 Since it is well known that

the solution to the representative agent economy with stationary preferences (constant φt) converges to a

stationary stochastic process, I can say the same about the aggregate optimal allocations of the economies

with private and full information (using Lemmas 2 and 3). Thus, I have the following result.

Corollary 5 Suppose that u and n are logarithmic. Then, the aggregate optimal allocations of the

economies with private and full information converge to a stationary stochastic process. Moreover, this

stationary process is the one associated with a representative agent economy with stationary preferences

(zero preference shifters).

This Corollary provides a natural test for the accuracy of the computational method introduced in

Section 3, since it is straightforward to compute the stationary stochastic solution to the representative

agent problem and compare the results. However, such a test would only consider aggregate variables. It

would be desirable to test the accuracy of the computed individual allocations as well. The purpose of

the following Lemma is to provide a strong characterization of the optimal individual allocation rules so

that it that can be used for such a test.

Lemma 6 Suppose that u and n are logarithmic. Define ∆ lnλt = lnλt− lnλ∗ and ∆ ln qt = ln qt− ln q∗,

where λ∗ and q∗ are the deterministic steady state values of λt and qt, respectively. Then, the stationary

solution to the private information planning problem satisfies that for every s,

uyst = u∗ys −∆ lnλt (4.22)

nyst = n∗ys −∆ lnλt −∆ ln qt (4.23)

wys,t+1 = w∗ys −
1

b
(∆ lnλt+1 + ∆πt+1) (4.24)

uost (v) = u∗os + bv + ∆πt (4.25)

nost (v) = n∗os + bv + ∆πt −∆ ln qt (4.26)

wos,t+1 (v) = w∗os + v − 1

b
(∆ lnλt+1 + ∆πt+1 −∆ lnλt −∆πt) (4.27)

35Recall that θ was assumed to be greater than βσ.
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where 0 < b = 1−βσ
1+ᾱ < 1 and ∆πt is given by

∆πt = −βσ∆ lnλt + (1− βσ)
∞∑
k=1

(βσ)k Et [∆ lnλt+k] + bᾱ
∞∑
k=0

(βσ)k Et [∆ ln qt+k] .

Proof: These functional forms satisfy all constraints and first-order conditions.36�

Equations (4.22)-(4.24) indicate that for young agents the utility of consumption, the utility of leisure,

and next-period promised values shift over the business cycle by amounts that are independent of the

reported type. Equation (4.25) states that all uost (v) are linear parallel functions that shift vertically

over the business cycle by amounts that are independent of the reported type. While equations (4.26)

and (4.27) show that the same is true for the utility of leisure and next-period promised values, the slopes

of all wos,t+1 (v) are equal to one. Thus, promised values follow a random walk process with innovations

that depend on the realization of the idiosyncratic and aggregate shocks.37

The individual allocation rules described in Lemma 6 have strong implications for the cyclical behavior

of inequality. This behavior is described by the following Lemma and its Corollary.

Lemma 7 Let µt, ϕt and ζt be the cross-sectional distributions of promised values v, consumption utilities

u, and leisure utilities n, respectively. Let µ∗, ϕ∗ and ζ∗ be their deterministic steady state values. Then

for every real numbers a1 and a2, with a1 < a2,

µt

[(
a1 −

∆ lnλt + ∆πt
b

, a2 −
∆ lnλt + ∆πt

b

)]
= µ∗ [(a1, a2)] , (4.28)

ϕt [(a1 −∆ lnλt, a2 −∆ lnλt)] = ϕ∗ [(a1, a2)] , (4.29)

ζt [(a1 −∆ lnλt −∆ ln qt, a2 −∆ lnλt −∆ ln qt)] = ζ∗ [(a1, a2)] . (4.30)

Proof: Follows from equations (4.22)-(4.27) and the law of motion (4.11).38�

Since this Lemma implies that the distributions µt, ϕt, and ζt are mere horizontal translations of

their deterministic steady state values, I have the following Corollary.

36See Technical Appendix 12 for a complete proof.

37Even with no aggregate fluctuations, promised values follow a random walk. However, contrary to Atkeson and Lucas

(1992), an immizerizing result is not obtained because of the stochastic lifetimes. As people die and are replaced by young

agents, there is enough “reversion to the mean” in promised values that an invariant distribution is obtained (see Phelan

1994). The immizerizing result actually applies within each cohort of agents: Within each cohort the distribution of promised

values spreads out over time.

38See Technical Appendix 13 for a complete proof.
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Corollary 8 The dispersions of the cross-sectional distributions of promised values and log-consumption

levels are constant over the business cycle, while the dispersion of the cross-sectional distribution of log-

hours worked is countercyclical.

The first part of this Corollary follows directly from the fact that µt and ϕt do not change their shape

and that the utility of consumption is logarithmic. The second part of the Corollary holds because the

distribution ζt shifts to the left during a boom.39 Since log-hours worked are related to the utilities of

leisure according to ln(h) = ln(1 − en) and this is a strictly decreasing and strictly concave function,

when the distribution of utilities of leisure shifts to the left, the dispersion of the distribution of log-hours

worked decreases.

4.2 Testing the computational method

Now that I have provided an analytical characterization of the business cycles of the economy with

logarithmic preferences, in this section I test the computational method introduced in Section 3 by

evaluating to what extent it is able to recover those analytical results.40 This is an important test to

perform since nothing in the computational method exploits the structure of the logarithmic preferences.

To proceed, I first select numerical values for the model parameters. Whenever possible I choose parameter

values that are standard in the RBC literature. However, I do not claim empirical content for the model

since, being i.i.d., the shocks to the value of leisure are highly unrealistic. In order to bring the model

to the data, persistent shocks would be needed. The problem is that computing a solution for this case

would be extremely costly.41 In order to simplify computations, I select the model time period to be one

year and assume the idiosyncratic preference shock takes only two values: ᾱL and ᾱH , with ᾱL < ᾱH .

The production function is assumed to have a standard Cobb-Douglas form F (K,H) = KγH1−γ .

39This follows from Corollary 5 and the fact that in a representative agent economy with logarithmic preferences, aggregate

leisure is countercyclical.

40Technical Appendix 14 provides details on how to construct the linearized system (3.23)-(3.28) for the economy of this

Section.

41In order to keep the recursive structure required by the computational method of Section 3, one would have to follow

the approach introduced by Fernandes and Phelan (2000). Under persistent shocks, the state of the recursive contracts is

given by a vector of threat-keeping values, one for each possible value of the idiosyncratic shock. Thus, the dimensionality of

the individual allocation rules and, therefore, the computational complexity, grow exponentially with the number of possible

values for the idiosyncratic shock. On the contrary, under i.i.d. shocks, the state of a recursive contract is always a single

promised value, independent of the number of possible values for the idiosyncratic shock.
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Following the RBC literature, I select a labor share 1 − γ of 0.64, a depreciation rate δ of 0.10, a

private discount factor β of 0.96, a persistence of aggregate productivity ρ of 0.95, and a variance of the

innovations to aggregate productivity σ2
ε equal to 4 × 0.0072. The social discount factor θ is chosen to

be the same as the private discount factor β. The values of leisure ᾱL and ᾱH are chosen to satisfy two

criteria: Aggregate hours worked H equal 0.31 (a standard target in the RBC literature) and the hours

worked by old agents with the high value of leisure and the highest possible promised value noH (vmax)

be a small but positive number. The rationale for this second criterion is that I want to maximize the

relevance of the information frictions while keeping an internal solution for hours worked. The resulting

values for ᾱL and ᾱH are 1.164 and 2.218, respectively. The probability of drawing a high value of leisure

ψH is chosen to maximize the standard deviation of the invariant distribution of promised values. It

turns out that a value of ψH = 0.50 achieves this. In terms of the life-cycle structure, I choose σ = 0.975

to generate an expected lifespan of 40 years.

While the above parameters are structural, there are a number of computational parameters to be

determined. The number of grid points in the spline approximations J , the total number of agents

simulated I, the length of the simulations for computing the invariant distribution T , and the length of

the histories kept as state variables when computing the business cycles N are all chosen to be as large

as possible, while keeping the computational task manageable and results being robust to non-trivial

changes in their values. Their chosen values are 20, 223, 1000, and 273, respectively.42 It turns out that

under these computational parameters, the linearized system described in Section 3.3 has about 12, 000

variables (a large system indeed).

Finally, the lower and upper bounds for the range of possible promised values vmin and vmax were

chosen so that the fraction of agents in the intervals [v1, v2] and [vJ−1, vJ ] are each less than 0.1%. Thus,

truncating the range of possible values at vmin and vmax should not play an important role in the results.

The chosen values for vmin and vmax are −35.0 and −16.3, respectively.

Before turning to the business cycle results, I illustrate different features of the model at its deter-

ministic steady state. Figure 1.A shows the invariant distribution of promised values across the J − 1

intervals [vj , vj+1]J−1
j=1 , defined by the grid points of the spline approximations. While it is hard to see

at this coarseness level, the distribution is approximately symmetrical. More importantly, we see that

the invariant distribution puts very little mass at extreme values. In consequence, in what follows I will

report allocation rules only between the 7th and 15th ranges of the histogram. The reason is not only

42Given the value selected for the survival probability σ, less than 0.1% of individuals survive more than N periods. Thus,

the truncation imposed by keeping track of a finite history of decision rules introduces a very small approximation error.
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that there are too few agents at the tails of the distribution for them to matter, but also that being close

to the artificial bounds vmin and vmax greatly distorts the shape of the allocation rules.

While not apparent in Figure 1.A, the invariant distribution of promised values generates too little

heterogeneity. The standard deviations of the cross-sectional distribution of log-consumption levels and

log-hours worked are 0.04 and 0.35, respectively. This compares with values of 0.50 and 0.82 reported by

Heathcote et al. (2010) for 1981 (the year of lowest consumption heterogeneity in their sample).43 The

reason for the small amount of heterogeneity is that there is no persistence in the idiosyncratic shocks:

The only way that the model can generate large deviations from the mean is through long streams of

repeated bad shocks or good shocks, and these are unlikely to happen. Unsurprisingly, an unrealistic

idiosyncratic shock process generates an unrealistic amount of cross-sectional heterogeneity.44

Figure 1.B reports the utility of consumption for old agents uoL (v) and uoH (v) across promised values

v, as well as those of young agents uyL and uyH (which are independent of v). We see that, in all cases the

utility of consumption is higher when the value of leisure is low. Both uoL and uoH are strictly increasing

in the promised value v, are linear (with slope less than one), and are parallel to each other. Moreover,

the vertical difference between uoL and uoH is the same as between uyL and uyH . Figure 1.C reports the

utility of leisure for old agents noL (v) and noH (v) across promised values v, as well as those of young

agent nyL and nyH . In all cases leisure is lower when the value of leisure is low. Both noL and noH

are strictly increasing in the promised value v, are linear (with slope less than one), and are parallel to

each other. Moreover, the vertical difference between noL and noH is the same as between nyL and nyH .

In turn, Figure 1.D reports the next-period promised values for old agents woL (v) and woH (v) across

promised values v, as well as those of young agent wyL and wyH . We see that in all cases next-period

promised values are higher when the value of leisure is low. Both woL and woL are strictly increasing in

the promised value v, are linear (with slope equal to one), and are parallel to each other. We also see that

the vertical difference between woL and woH is the same as between wyL and wyH . Observe that Figure

1 verifies the linear functional forms given by the steady state versions of equations (4.25)-(4.27). Also,

the economics in Figure 1 is quite intuitive: When an agent (young or old) reports a high value of leisure,

the planner allows them to enjoy more leisure but, in compensation, they receive less consumption and

are promised worse treatment in the future.

The discussion of business cycle dynamics that follows will center on the analysis of the impulse

43See their Figures 10 and 13.

44For this reason, there is no point in reporting other features of the cross section, such as optimal labor and capital

wedges.
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responses of different variables to a one standard deviation increase in aggregate productivity. Figure 2.A

shows the impulse responses of the utility of consumption of young agents uyL and uyH . We see that both

impulse responses are identical and that their shape qualitatively resembles one for aggregate consumption

in a standard RBC model. Figure 2.B shows the impulse response of the utility of consumption of old

agents with a low value of leisure uoL (v), at each of the eleven grid points (vj)
16
j=6. While the figure shows

eleven impulse responses, only one of them is actually seen because they happen to overlap perfectly.

This means that, in response to the aggregate productivity shock, the function uoL depicted in Figure

1.B shifts vertically over time in a parallel way. Figure 2.C, which does the same for uoH , is identical to

Figure 2.B. Thus, uoH also shifts vertically over time in a parallel way and its increments are the same

as those of uoL. Figure 3 is analogous to Figure 2, except that it depicts the behavior of the utility of

leisure. Figure 3.A shows that the impulse responses of nyL and nyH are identical and that they resemble

the response of leisure in a standard RBC model, while Figures 3.B and 3.C indicate identical vertical

parallel shifts of the functions noL and noH in response to the aggregate productivity shock. Turning to

promised values, Figure 4.A shows that the impulse responses of wyL and wyH coincide. In turn, Figures

4.B and 4.C show that woL and woH shift vertically in a parallel way by identical amounts in response

to an aggregate productivity shock. Thus, taken together, Figures 2-4 reproduce the analytical results of

Lemma 6.

Figure 5.A shows the impulse responses of the cross-sectional standard deviations of promised values,

log-consumption, and log-hours worked. We see that in response to a positive aggregate productivity

shock, the standard deviations of promised values and log-consumption remain flat, while the standard

deviation of log-hours worked decreases. Thus, Figure 5.A reproduces the analytical results of Corollary

8.

Finally, Figure 5.B shows the impulse responses of aggregate output Y , aggregate consumption C,

aggregate investment I, aggregate hours worked H, and aggregate capital K in the benchmark economy

with private information. Figure 5.C reports the impulse responses for the same variables but for the

representative agent economy, revealing that both sets of impulse responses are identical.45 Thus, Figures

5.B and 5.C reproduce the analytical result of Corollary 5.

I have verified that while the computational method was not designed to exploit any of the properties

of the logarithmic case, it is able to exactly reproduce the analytical results derived for this case. Passing

this test so successfully suggests that the computational method introduced in this paper could be quite

45The solution for the representative agent economy is obtained using a separate and much simpler code. The associated

linear system has only 8 variables (compared to the about 12, 000 variables of the benchmark economy).
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useful as a general method for computing aggregate fluctuations of economies with heterogeneous agents.

4.3 Extension to other preferences

To complete this section, I report results for preferences of the following form:

ET

{ ∞∑
t=T

βt−Tσt−T

[
c1−ϕ
t − 1

1− ϕ
+ αt

(1− ht)1−π − 1

1− π

]}
,

where ϕ 6= 1 and π 6= 1. Since I don’t have analytical results for this more general functional form, I rely

on the computational method for evaluating business cycle fluctuations in this case.

Without recalibrating other parameters, I considered different values for ϕ and π but in all cases

I obtained similar results. For concreteness, I report results here for unit deviations from the ϕ = 1

and π = 1 case. For each of these cases, Table 1 reports the deterministic steady state values of all

macroeconomic variables for the economies with private information and full information. We see that

in each parametrization, all variables are nearly identical in both information scenarios.

In order to streamline the analysis of business cycle dynamics, I consider the ϕ = 2 and π = 2 as a

representative case. Figure 6.A reports that, contrary to the log-log case, the cross-sectional distribution of

promised values now follows some non-trivial dynamics: Instead of being constant, the standard deviation

of promised values decreases significantly in response to a positive aggregate productivity shock. Despite

this, the information frictions remain irrelevant for aggregate dynamics. Figure 6.B reports the impulse

responses of all macroeconomic variables in the economy with private information while Figure 6.C does

the same for the economy with full information. We see that both sets of impulse responses are identical.

Thus, similar to the log-log case, the stationary behavior of the aggregate variables of the economy is not

affected by the presence of information frictions.

Is this irrelevance result under CRRA preferences a purely numerical result, or is it part of a more

general theoretical result that I have been unable to prove?46 While the latter is a logical possibility, I

strongly believe in the former. The reason for this is based on my proof of Lemma 2. The proof shows

that, under logarithmic preferences, the inverse Euler equations that characterize the optimal allocation

under private information become linear. This allows me to integrate the inverse Euler equations across all

individuals and obtain a relation between aggegate variables that coincides with the direct Euler equation

of the representative agent. When preference are CRRA, Jensen’s inequality breaks the integration of the

inverse Euler equations into an elemental relation between aggregate variables. I believe that the reason

46In either case, it is important to point out that the irrelevance result obtained here is not some artifact of the compu-

tational method, since it was already obtained when I compared deterministic steady states.
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for my numerical irrelevance result under CRRA preferences is that, under i.i.d. shocks, the amount of

cross-sectional heterogeneity is so small that Jensen’s inequality becomes negligible.

5 An Hopenhayn-Nicolini economy

The Mirlees economy of Section 4 provided a valuable test for the computational method introduced in

Section 3, and illustrated an interesting benchmark scenario in which there are no interactions between

private information and aggregate dynamics. An unappealing feature of that economy, however, was

that the i.i.d. structure of its idiosyncratic shocks precluded giving any empirical content to the model

economy. This section considers a second example that differs from the Mirlees economy in that it has a

much more realistic structure of idiosyncratic uncertainty, and in that it illustrates a scenario in which

the information frictions play an important role for aggregate dynamics. The economy considered is

an RBC model in which all production is done in a central island. Agents get exogenously separated

from the production island and to get back to it, they need to search. The probability of arriving at

the production island depends on the search intensity of the agent, which is private information. This

hidden action creates a moral hazard problem similar to Hopenhayn and Nicolini (2009). While the

search intensity of agents is not observable, their location (either inside or outside the production island)

is and, therefore, recursive contracts can be made contingent on this information.

The economy is populated by a continuum of agents with stochastic lifetimes. The preferences of an

agent born at date T are given by

ET

{ ∞∑
t=T

βt−Tσt−T [u (ct)− st]

}
, (5.1)

where σ is the survival probability, β is the discount factor, and st is the private search intensity.

The production function is the same as in equation (4.2), except that Ht is now interpreted as

employment instead of hours worked. The aggregate productivity shock follows the same AR(1) process

given by equation (4.3), and capital is accumulated as in equation (4.4). The search technology is such

that the probability of arriving at the production island at the beginning of the following period is given

by some increasing and concave function η (st). The exogenous separation rate is φ.

In what follows, agents located inside the production island are called employed (e) and agents located

outside are called unemployed (u). Similarly to Section 4, I group agents into two sets, young (y) and

old (o), and decompose the economy-wide planning problem (which seeks to maximize the weighted sum

of the welfare levels of the current and future generations) into a sequence of sub-planning problems and

side conditions. The sub-planning problems for production decisions are the same as in equation (4.10).
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The sub-planning problems for individuals differ depending on the age and employment status of the

agent. The date t sub-planning problem for employed old individuals is the following:

Poet (v) = max

{
qt − c (uoet) + θσEt

[
λt+1

λt
(φPou,t+1 (woeu,t+1) + (1− φ)Poe,t+1 (woee,t+1))

]}
(5.2)

subject to

v = uoet + βσEt [φwoeu,t+1 + (1− φ)woee,t+1] , (5.3)

where uoet is the utility of consumption, woee,t+1 is the next-period promised value in the event of

continuing employed, woeu,t+1 is the next-period promised value in the event of becoming unemployed,

c (u) = u−1 (u), qt is the shadow price of labor, λt is the shadow price of the consumption good, and

θ is the Pareto weight of the next-period generation relative to the current generation of young agents.

Observe that the current social value of an employed old worker is the value of their labor input, net of

the consumption goods transferred to them. Equation (5.3) is the promise-keeping constraint.

The date t sub-planning problem for unemployed old individuals is

Pout (v) = −c (uout) + θσEt

[
λt+1

λt
(η (sot)Poe,t+1 (woue,t+1) + [1− η (sot)]Pou,t+1 (wouu,t+1))

]
, (5.4)

subject to

v = uout − sot + βσEt [η (sot)woue,t+1 + [1− η (sot)]wouu,t+1] , (5.5)

η′ (sot)βσEt [woue,t+1 − wouu,t+1]− 1 ≤ 0, = 0 if sot > 0, (5.6)

where uout is the utility of consumption, sot is the search intensity, wouu,t+1 is the next-period promised

value in the event of continuing unemployed, and woue,t+1 is the next-period promised value in the event

of becoming employed. Observe that the current social value of an old unemployed agent is simply the

cost of the consumption goods transferred to them. Equation (5.5) is the promise-keeping constraint.

Equation (5.6) is the first-order condition for the individual’s optimal choice of search intensity. Since

the search intensity is not observable, the agent chooses it to maximize their private gains. In an interior

solution, this is attained by equating the marginal private benefits (given by the marginal impact on the

hazard rate times the expected gains of becoming employed) to the marginal private cost (which is equal

to one, given that sot enters linearly in the individual’s utility function 5.1).47

47Corner solutions could be ruled out by assuming, for example, that η (s) = sα, 0 < α < 1. However, it turns out that

the functional form is not able to generate large fluctuations in aggregate employment. The functional form used later on

leads to corner solutions in the search intensity.
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Since I assume that all agents are born unemployed, there is only one type of sub-planning problem

for young agents. It is given by

Pyt = max

{
uyt − syt + βσEt [η (syt)wye,t+1 + [1− η (syt)]wyu,t+1]

λt
− c (uyt) +

+ θσEt

[
λt+1

λt
[η (syt)Poe,t+1 (wye,t+1) + [1− η (syt)]Pou,t+1 (wyu,t+1)]

]}
, (5.7)

subject to

η′ (syt)βσEt [wye,t+1 − wyu,t+1] = 1 (5.8)

where uyt is the utility of consumption, syt is the search intensity, wyu,t+1 is the next-period promised

value in the event of continuing unemployed, and wye,t+1 is the next-period promised value in the event

of becoming employed. Observe that the present value of the lifetime utility of the young agent directly

enters the current social value, since the economy-wide social planner seeks to maximize the weighted sum

of the welfare levels of current and future generations. The consumption goods transferred to the young

agent are substracted from the current social value, since the transfer tightens the aggregate consumption

feasibility constraint of the economy-wide social planner. Equation (5.8) is similar to equation (5.6),

except that it assumes an interior solution for syt (as will always be the case in equilibrium).

The economy-wide distribution of employed old agents across promised values is denoted by µet. The

similar object for unemployed old agents is denoted by µut. The law of motion for µet is given by:

µe,t+1 (B) = (1− σ)ση (syt) I [wye,t+1 ∈ B] + σ

∫
{v:woue,t+1(v)∈B}

η (sot (v)) dµut

+σ

∫
{v:woee,t+1(v)∈B}

(1− φ) dµet, (5.9)

for every Borel set B, where I is an indicator function that takes a value of one if its argument is true and

zero, otherwise. This equation states that the number of employed old agents that have a promised value

in the set B at the beginning of the following period is given by the sum of three terms. The first term

includes all young agents that do not die, find the production island, and get a promised value in the set

B. The second term includes all unemployed old agents that do not die, find the production island, and

get a promised value in the set B. The third term includes all employed old agents that do not die, do

not get separated from the production island, and get a promised value in the set B. The law of motion

for µut, which is given by

µu,t+1 (B) = (1− σ)σ [1− η (syt)] I [wyu,t+1 ∈ B] + σ

∫
{v:wouu,t+1(v)∈B}

[1− η (sot (v))] dµut (5.10)

+σ

∫
{v:woeu,t+1(v)∈B}

φdµet,
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is similarly interpreted.

Given initial values for K0, µe1 and µu1, the side conditions that the stochastic process {qt, λt}∞t=1

must satisfy are

(1− σ) c (uyt) +

∫
c (uout (v)) dµut +

∫
c (uoet (v)) dµet + It (Kt−1) = eztF (Kt−1, Ht) (5.11)

and

Ht =

∫
dµet. (5.12)

Equations (5.11) and (5.12) are the feasibility conditions for consumption and labor, respectively.48

5.1 Quantitative results

This section evaluates the aggregate effects of the information frictions in a parametrized version of the

model. In particular, I compare the steady-state and business cycle dynamics of the model described

above with its full-information counterpart, which is obtained by removing the incentive compatibility

constraints (5.6) and (5.8).49 To do this, I set the time period to one year, make the utility function

u logarithmic, give the production function the same Cobb-Douglas form as in Section 4.2, assume the

search technology to be η (st) = D (1− e−τst), and choose parameter values as described next. The

technological parameters γ, δ, ρ and σ2
ε, the discount factors β and θ, and the survival probability σ

are all set to be exactly the same values as in Section 4.2. The only parameters that are specific to the

model of this section are the employment separation rate φ and the search technology parameters D and

τ . To determine φ I turn to Krusell et al. (2017) who measured a quarterly employment-to-employment

transition rate using CPS data, that implied an average duration of an employment spell equal to 8.9

years.50 Reproducing this observation requires setting φ = 0.112. In turn, the parameters D and τ

are chosen to satisfy two criteria: that aggregate employment under full information be equal to 0.60

48Contrary to Section 4, I do not specify the t = 0 planning problems because here I am only interested in computing the

stationary solution with the method described in Section 3. Taking the initial conditions at t = 1 as given suffices for this.

49Technical Appendix 15 shows how to map these economies into the structure of Section 3. In principle, equation (5.6)

poses some difficulty because, for some range of promised values, it may be an occasionally binding constraint. I avoid this

problem by imposing that the constraint binds for some promised value if and only if it binds at the deterministic steady

state. This should provide a good approximation for aggregate dynamics because the contribution to aggregate hiring of

agents close to the zero-search threshold is negligible. Therefore, it should make no difference if over the business cycle,

some of these agents fluctuate between zero search and an epsilon amount, or never search.

50Observe that average employment spells are much longer than average job spells, since many workers experience job-to-

job transitions without going through non-employment.
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(the ratio of employment to the working age population in U.S. data), and that the peak value of the

impulse response of aggregate employment to an aggregate productivity shock be as large as possible

(since models with search frictions tend to have difficulties generating large employment fluctuations).

The selected values of D and τ turn out to be 8.0 and 0.016, respectively. Observe that since the model

is calibrated to generate the observed average duration of employment and non-employment, it embodies

the empirically correct amount of idiosyncratic employment risk.51

Before turning to the business cycle results, I describe the deterministic steady-state properties of the

benchmark economy. I start with the green line in Figure 7.A, which depicts the job-finding probability

for old unemployed agents η (so) across promised values v. Not surprisingly, this function is decreasing

in v. That is, agents with higher promised values are required to search less. What is interesting is that

there exists a threshold promised value above which the job-finding probability becomes zero (marked as

a vertical dotted line). The orange line in Figure 7.A shows the job-finding probability η (sy) for young

agents. We see that agents start their lives with a high job-finding probability.

Figure 7.B depicts next-period promised values for unemployed agents as a function of v. The green

line is the 45-degree line, while the vertical dotted line marks the zero-search threshold promised value. In

turn, the yellow line describes wouu, while the blue line describes woue. We see that wouu coincides with the

45-degree line above the zero-search threshold. Thus, if some agent enters unemployment with a promised

value larger than that threshold, they remain unemployed forever and their promised value never changes

(effectively retiring at that promised value). However, the wouu function remains uniformly below the

45-degree line for promised values below the non-search threshold. Thus, an unemployed agent’s promised

value decreases during their unemployment spell. Moreover, the punishment for remaining unemployed

increases during the unemployment spell: The vertical difference between the 45-degree line and wouu

increases with lower values of v. However, when an unemployed agent finds employment, the agent gets

a significant reward in terms of next-period promised value (the vertical difference between woue and

the 45-degree line). Since woue is parallel to the 45-degree line, this reward is the same at all promised

values below the zero-search threshold. Observe that this reward is needed even when the agents put a

tiny amount of search (i.e, when their promised value v is an epsilon below the zero-search threshold).

The reason for this is that the search technology chosen has a finite slope at s = 0 and, therefore, the

incentive compatibility constraint (5.6) requires a positive reward for inducing the agent to do even an

infinitesimal amount of search. Also observe that, since no one with a promised value to the right of the

zero-search threshold makes a transition to employment, the portion of the woue function to the right

51It is in this sense that the model of this section is more realistic than the Mirlees economy of Section 4.
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of that threshold is completely meaningless. Figure 7.B also displays the next-period promised values of

young agents in the event that they become employed wye or continue to be unemployed wyu. We see

that both are quite low.

Figure 7.C depicts next-period promised values for employed agents as a function of v. The green line

again represents the 45-degree line, and the vertical dotted line marks the zero-search threshold. The

blue line describes woee, while the yellow line describes woeu. We see that wee coincides with the 45-degree

line at all values of v. That is, the promised values of employed agents do not change while they remain

employed, which is quite intuitive since employed agents face no incentive problems. Observe that woeu

also coincides with the 45-degree line but to the right of the zero-search threshold. That is, employed

agents with promised values higher than the threshold do not see their promised values change when they

become unemployed. This is also quite intuitive, since these agents will never search again (effectively

retiring). However, we see that woeu remains below the 45-degree line to the left of the zero-search

threshold, so in this range employed agents get punished when they become unemployed. In fact we see

that the punishment, given by the vertical difference between the 45-degree line and woeu, increases with

lower values of v. This is also intuitive since, besides what may happen with their consumption levels at

the time that they become unemployed (an issue that will be addressed below), their search intensities

(which reduce their welfare levels) increase with lower values of v.

Figure 8.A shows the log of consumption as a function of v. The vertical dotted line once again rep-

resents the zero-search threshold, while the blue line shows uoe and the yellow line uou. The interesting

feature of this figure is that at the right of the zero-search threshold, uoe and uou coincide: The consump-

tion level in that region is identical for employed and unemployed agents. Thus, when an employed agent

retires, their consumption level remains exactly the same as when last employed. Not surprisingly, to the

left of the zero-search threshold, uou must be higher than uoe since, in order to obtain the same promised

value v, the unemployed agents must be compensated with higher consumption for their positive search

effort.

More interesting is to analyze the consumption changes that take place as agents transition between

the different employment states, since this informs us about the amount of insurance provided. This is

shown in Figure 8.B. The red line shows the consumption changes that take place when an employed

agent continues to be employed in the next period. We see that their consumption levels do not change.

This is quite obvious, since these agents experience no idiosyncratic shock to their employment state

and since being employed entails no incentive problems, there is no reason to change their consumption

levels. Much more interesting is the blue line, which shows the consumption changes that take place when

an employed agent become unemployed in the following period. Again, we see that their consumption
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levels are not affected. This is actually quite intuitive: Since the idiosyncratic shocks that determine an

employment-to-unemployment transition are completely exogenous and current search decisions are not

affected by current consumption levels, there is no reason not to fully insure agents against those shocks.

The gray line shows the consumption changes that take place when an unemployed agent continues to

be unemployed the following period. For promised values larger than the zero-search threshold, we see

that there are no consumption changes: Agents receive a constant consumption stream during their

retirement. However, to the left of the zero-search threshold, we see that consumption drops if an

unemployed agent continues to be unemployed. The reason is that in order to induce the agent to search,

the planner needs to punish them in case that they continue to be unemployed (and reward them in

case they become employed) and does this partially by reducing the agent’s consumption level (recall

that the agents are also induced to increase their search intensity if they continue to be unemployed).

Observe that for promised values close to the zero-search threshold, the consumption change is small but

it becomes significant at lower promised values. Thus, if an agent remains unemployed for a long period,

the accumulated consumption loss can become quite significant. As a counterpart to this, the yellow line

shows that when an unemployed agent finds employment, their consumption level increases abruptly: The

increase is always larger than 18% and exceeds 40% for promised values close to the zero-search threshold.

Observe that the portion of the yellow line to the right of the zero-search threshold is meaningless since

no unemployed agent in that range makes a transition to employment.

Figures 8.C and 8.D report the implied invariant distributions µe and µu, respectively. We have

already encountered the least upper bound for the support of those distributions: In Figure 7.B the value

of the woue function at the zero-search threshold gives the highest promised value that an unemployed

agent can possibly get by becoming employed. Hence, it is the least upper bound for the support of µe.

Since we know from Figure 7.C that an employed agent with that promised value does not get punished

when they become unemployed and retire, this value is also a least upper bound for the support of

µu. While not shown in Figure 7.A, there exists a promised value at which the job-finding probability

becomes one. This promised value is then a lower bound for the support of µu, and the value of wue

evaluated at that promised value is a lower bound for the support of µe. However, Figures 8.C and 8.D

show that there is no mass at such low promised values. The reason is that promised values drift down

slowly while unemployment lasts (as shown by the vertical distance between the 45-degree line and wouu

in Figure 7.B), and job-finding probabilities increase sharply as the promised value decreases, escaping

unemployment very quickly already at the lowest promised values shown in the figures. Observe the large

mass that µe has at wye = −17.5. This is because most young agents find employment right away, every

new generation gets the same wye, and they accumulate at that value given the long average duration of
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employment. In contrast, the distribution µu does not get a large mass near wyu = −24.6 because young

agents find employment very quickly and, thus, they don’t accumulate near that value. Also observe

the rather odd shapes for µe and µu. The reason for this is that promised values do not change while

employed, that the average duration of employment is high, that promised values drift down slowly during

the relatively few unemployment episodes that agents experience during their lifetimes, that when they

get reemployed their promised values jump by the same large amount, that agents get absorbed into

retirement or death, and that newborns always start their second period of their lives either at wye or

wyu. Thus, there is not enough mixing in the distributions µe and µu.

Having characterized the deterministic steady state of the economy with information frictions, I now

evaluate the effects of those information frictions on aggregate dynamics. I start by comparing the steady-

states of the economy with information frictions and of its full-information counterpart. This is done in

Table 2. Contrary to the Mirlees economy of Section 4, the information frictions have huge effects on the

steady state dynamics of the Hopenhayn-Nicolini economy: They reduce aggregate employment, capital,

investment, consumption, and output by 18.9%. The intuition for this result is straightforward. Given

the constant separation rate, the only way that the planner can generate a high aggregate employment

level is by inducing agents to search more intensively. However, the only way that the planner can do

this is by increasing the difference between the promised values of becoming employed and the promised

values of continuing unemployed. Thus, the social planner needs to hit agents with their insurance in

order to do this. Since agents are risk-averse and the social planner cares for the welfare of agents, the

planner decides to generate a lower aggregate employment level (and with it, lower capital, investment,

and output). Despite this, the planner needs to tolerate very large consequences of the information

frictions for the amount of consumption heterogeneity: While everybody consumes the same amount in

the economy with full information (since they are fully insured), the standard deviation of log consumption

becomes 26% in the economy with private information.

I now turn to the business cycle effects of the information frictions.52 Figures 9.A through 9.D

show impulse responses of aggregate employment, output, consumption, and investment, respectively, to

a one standard deviation increase in aggregate productivity. The red lines report impulse responses

for the economy with private information, while the blue lines report them for the full-information

economy. Figure 9.A shows that the information frictions have significant effects on aggregate employment

dynamics. The information frictions reduce the peak employment response by 20% and increases the half-

52Computing business cycle dynamics for this economy is much more involved than for the Mirlees economy of Section 4.

Now histories of spline coefficients must be kept track for two distributions: µe and µu.
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life of this response from 3.5 years to 6.5 years. Thus, the information frictions reduce the variability of

aggregate employment and make it substantially more persistent. The intuition for why this is the case

is similar to the previous paragraph. When a positive aggregate productivity shocks hits the economy,

the planner becomes desperate to increase aggregate employment quickly for the standard reasons in an

RBC economy. However, since the planner can only do this by increasing the difference between we and

wu and hitting agents with the insurance that they receive, the planner decides to increase aggregate

employment more slowly but to keep it at a higher level for longer (in order to still reap the benefits of

the aggregate productivity increase). Figure 9.B reports similar qualitative results for aggregate output

(the quantitative effects are smaller since, this being an RBC model, the output dynamics are largely

determined by the direct effects of aggregate productivity). The same can be said about aggregate

consumption in Figure 9.C. However, the effects on aggregate investment in Figure 9.D are somewhat

different: While the information frictions make investment more persistent, they also make it a touch

more responsive. The reason for this is to provide workers with more capital as they remain employed

for a longer period.

To complete the analysis, Figure 9.E reports the impulse response of the cross-sectional standard

deviation of log consumption levels in the economy with private information (this statistic is always zero

in the full-information economy). We see that the amount of inequality decreases on impact but that it

subsequently reverses the initial response and increases. The reason why inequality decreases on impact

is that aggregate employment is predetermined at the time that the aggregate shock hits the economy.

Thus, there is no cost for the planner to reduce the amount of inequality at that point in anticipation of

the increase in inequality that they will have to generate in subsequent periods in order to induce agents

to search more intensively. However, the effects are rather small in magnitude: The peak response of the

cross-sectional standard deviation of log consumption is barely above 0.4%.

6 Conclusions

In this paper, I introduced a general method for computing equilibria of economies with heterogeneous

agents and aggregate shocks that is particularly suitable for economies with private information, and

applied it to two examples: a Mirlees RBC economy and an Hopenhayn-Nicolini RBC economy. These

economies illustrated very different types of interaction between private information and aggregate dy-

namics.

The Mirlees RBC economy had the particular advantage of lending itself to a sharp analytical char-

acterization when preferences were logarithmic. Since the computational method doesn’t use any of the
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structure of the logarithmic preferences, this provided an ideal test case scenario for it. The method

passed the test with flying colors, reproducing all the analytical results. Besides serving as a test for

the computational method, the analytical characterization provided a very interesting theoretical result:

Under logarithmic preferences, the aggregate fluctuations of the economy are exactly the same under

private or full information. This irrelevance result is related to others in the literature but, in the context

of a Mirlees economy with endogenous labor supply and aggregate shocks, it is completely novel. For

CRRA preferences, numerical results indicate that the irrelevance of the information frictions for aggre-

gate dynamics still holds. However, the cross-sectional distribution of promised values, instead of being

constant as in the logarithmic case, now changes its shape.

The Mirlees RBC economy was very interesting in illustrating a case in which the private information

did not matter for aggregate dynamics. However, it had the unappealing feature that its i.i.d. shocks

made it highly unrealistic. The second example considered, the Hopenhayn-Nicolini RBC model, had a

much more realistic structure of idiosyncratic uncertainty and illustrated a case in which the information

frictions played an important role for aggregate dynamics. Comparing the aggregate dynamics of this

economy under private and full information now indicated that the level and volatility of aggregate

employment becomes substantially smaller in the private information case. The basic reason for this is

that, under private information, higher aggregate employment can only be obtained at the expense of

lower insurance.

As a caveat to the computational method introduced in this paper, I would like to point out that,

while it should prove useful and accurate for many applications, it has two related disadvantages. The

first one is that is extremely slow. This should not be a problem when calibrating the steady-state of a

model, since the computational method needs to be applied only once to obtain its aggregate fluctuations

(once parameter values have been determined). However, it would be a problem in using it for estimating

a model with formal econometric methods. The second disadvantage is that the dimensionality of the

method grows exponentially with the number of endogenous state variables of the individuals. Therefore,

at the current time it is extremely costly to apply the method to economies with more than one endogenous

individual state variable. It is exactly for this reason that I was not able to analyze a much more realistic

version of my Mirlees RBC economy with persistent idiosyncratic shocks, which is left for future research.

Also observe that, for both the Mirlees and the Hopenhayn-Nicolini RBC economies, the constrained-

efficient aggregate fluctuations under private information were compared with their full information coun-

terparts. This isolated the importance of the private information for aggregate dynamics. However, it

would be extremely interesting to compare them with versions of the model with realistic financial mar-

kets and public policy in order to see how far from their socially optimum fluctuations actual economies
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may be. One could also compare them to the aggregate fluctuations obtained under optimal policy instru-

ments restricted to belong to a certain class, to see how close to achieving constrained-efficient outcomes

those policy instruments may be. I also leave these questions for future research.
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Table 1

Moral hazard economy: Steady state macroeconomic variables

(π, ϕ) Information Y C I H K

(1, 1) Private 0.52381 0.39070 0.13311 0.30999 1.3311

Full 0.52381 0.39070 0.13311 0.31074 1.3311

(1, 2) Private 0.42990 0.32065 0.10925 0.25441 1.0924

Full 0.42995 0.32069 0.10926 0.25444 1.0926

(2, 1) Private 0.75151 0.56054 0.19097 0.44474 1.9097

Full 0.75168 0.56066 0.19101 0.44483 1.9101

(2, 2) Private 0.64229 0.47907 0.16322 0.38010 1.6322

Full 0.64261 0.47931 0.16330 0.38029 1.6330

48



Table 2

Hopenhayn-Nicolini economy: Steady state effects

Information Y C I H K σ (ln c)

Private 81.1 81.1 81.1 81.1 81.1 0.26

Full 100 100 100 100 100 0.0
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Figure 1: Mirlees economy - Deterministic steady state
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Figure 2: Mirlees economy - Impulse responses for consumption utilities
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Figure 3: Mirlees economy - Impulse responses for leisure utilities
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Figure 4: Mirlees economy - Impulse responses for promised values
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Figure 5: Mirlees economy - Cross-sectional distributions and macro variables
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Figure 6: Mirlees economy - Cross-sectional distributions and macro variables
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Figure 7: Hopenhayn-Nicolini economy - Job finding probabilities and promised values
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Figure 8: Hopenhayn-Nicolini economy - Consumption and cross-sectional distributions
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Figure 9: Hopenhayn-Nicolini economy - Impulse responses for macro variables and inequality
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