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Abstract

Structural VAR models (SVAR) produce results that can vary dramatically with

the choice of variables, because information is deficient and/or contaminated by

measurement errors. We argue that if the variables of interest belong to a High-

Dimensional Factor Model and are replaced in the SVAR by their common com-

ponents, both the information and the measurement issues find a solution under

the condition that the number of common components is larger than the number of

structural shocks, so that the SVAR is singular. This is the Common Components

Structural VAR (CC-SVAR). Our main contribution is a complete asymptotic the-

ory for the SVAR estimated using the finite-sample approximations to the common

components. We apply our procedure to monetary policy shocks, finding that, with

the CC-SVAR, results are robust to the choice of variables and well-known puzzles

disappear.
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1 Introduction

Since the seminal paper by Sims (1980), Structural Vector Autoregressive (SVAR) models

have become the main tool for applied macroeconomic analysis. In the SVAR approach,

the macroeconomic variables are driven by a vector of structural shocks, and react to these

shocks according to linear impulse-response functions (IRFs). The structural shocks are

obtained as linear combinations of the VAR residuals by imposing identifying restrictions

based on economic theory.

An unpleasant feature of SVARs is that results can change dramatically depending

on the choice of variables. This lack of robustness is a serious problem, since unavoidably

both the number and nature of the series to be included in the model is discretionary

to some extent. Figure 1 gives an effective idea of the magnitude of the problem, with

reference to the effects of monetary policy on real activity and prices. The black lines

are the IRFs obtained with the four-variable SVAR including the interest rate, the un-

employment rate, industrial production growth and CPI inflation, identified by using the

popular instrument of Gertler and Karadi (2015).1 Unlike in Gertler and Karadi (2015),

the Excess Bond Premium (EBP) is not included in the information set. As a result,

both industrial production and prices increase following a policy tightening, so that we

have the price puzzle and a real activity puzzle. The blue lines are the IRFs obtained

with 50 different specifications, including the four variables above plus four additional

randomly chosen macroeconomic series. What the figure tells us is that, by choosing

variables appropriately, we can obtain any result.

Why do the results of SVAR analysis vary so much across different specifications? In

our understanding, the lack of robustness is due to two main causes: VAR information

can be deficient (non-fundamentalness) and is often contaminated by errors.

It is well known by now that the structural shocks of interest not always are linear
1We use US monthly data from 1977:6 to 2008:12 and 6 lags in the VAR.
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combinations of current and lagged VAR variables. When they are not, the shocks are

non-fundamental for the variables, and SVAR analysis fails. Non-fundamentalness usually

occurs when the information set of the VAR variables is smaller than that of the agents.

An obvious example is that in which the number of variables is smaller than the number of

shocks. But even if the number of shocks and variables coincide, the information contained

in the history of the variables can be deficient, especially in presence of news technology

shocks (Forni et al., 2014), fiscal foresight (Leeper et al., 2013) or forward policy guidance

(Ramey, 2016).2 Adding variables to enrich information does not necessarily solve the

problem, since observables are usually contaminated by errors, so that, when adding

variables, often we add both genuine information and noise.

The fact that many macroeconomic aggregates are affected by measurement error is

indisputable. Still, the problem has been largely neglected in the literature. There is

an implicit widespread belief that the consequences on SVAR analysis are not serious.

However, Giannone et al. (2006) and Lippi (2021) show that this view is wrong (see also

Simulation 1, Section 2.2): even small measurement errors can generate substantial dis-

tortions in the estimates of the IRFs, yielding misleading results.3 Indeed, measurement

errors can be regarded as a source of non-fundamentalness. If m variables are driven by

q structural shocks, but are contaminated by m independent measurement errors, their

IRF representation will be driven by m+ q shocks, leading to non-fundamentalness.

The lack of robustness might be used to recommend not to use SVAR models for

macroeconomic analysis, an additional argument for authors who argue that Dynamic

Stochastic General Equilibrium (DSGE) models should become the standard tool in em-

pirical macroeconomics, see in particular Chari et al. (2008). The opposite view is upheld

in the present paper. We show that the problem can be overcome within the SVAR ap-
2Early papers containing examples of non-fundamental economic models are Hansen and Sargent

(1991) and Lippi and Reichlin (1993). More recent works are Fernández-Villaverde et al. (2007), Alessi
et al. (2011), Sims (2012), Leeper et al. (2013), Forni and Gambetti (2014), Forni et al. (2019).

3Measurement errors can be regarded as special cases of aggregation, as analyzed in Forni and Lippi
(1997) and Forni and Lippi (1999).
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proach, provided that the observed time series are replaced by their common components,

estimated by means of High-Dimensional Dynamic Factor techniques. We call our ap-

proach Common Component Structural VAR (CC-SVAR).

Before explaining the main features of our approach, let us show the results obtained

with the CC-SVAR for the effects of the monetary policy shock. Figure 2 shows the

IRFs of the same 50 specifications of Figure 1, obtained with the CC-SVAR. The result

is striking: the 50 lines are perfectly overlapping, so it looks as if there is only one line.

Note that neither the price puzzle nor the real activity puzzle show up, despite the fact

that the specifications do not include necessarily the EBP nor other financial series.

The main features of our solution are the following. We start with an m-dimensional

vector χt whose coordinates are the “true”, usually unobserved, macroeconomic variables

of interest. In particular, the variables χt can be interpreted as the “concepts” of a

DSGE model. We assume that χt is driven by a q-dimensional structural shock vector

ut by means of structural linear IRFs. Moreover, we suppose that m > q, so that

χt is (dynamically) singular, that is, its spectral density matrix has reduced rank at

all frequencies. Both singularity and linear structural IRFs are typical of the concepts

of DSGE models and the log-linear approximation of their dynamic reaction of these

concepts to the structural shocks.

Singular stochastic vectors, under the assumption of rational spectral density, have

been extensively studied starting with Anderson and Deistler (2008a). Building on their

results we argue that in singular rational representations χt = B(L)ut, where B(L) has

an economic-theory based parameterization and ut is the structural shock vector, ut is

generically fundamental for the vector χt.

The problem is that, when χt is replaced by its observed counterpart, call it xt,

singularity and the resulting generic fundamentalness of the structural shocks break down.

High-Dimensional Dynamic Factor techniques, by “cleaning” the observed variables from
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measurement errors, provide an estimate of χt, say χ̂t, so that fundamentalness is restored.

CC-SVARs consist in the application of SVAR analysis to χ̂t. From a theroretical

point of view, our approach improves over previous factor-based structural models, such

as the Structural Dynamic Factor Model (SDFM) of Stock and Watson (2005), Bai and

Ng (2007) and Forni et al. (2009), or the Factor Augmented VAR (FAVAR) of Bernanke

et al. (2005). First, the existence of a finite VAR representation in the structural shocks is

not assumed, but derived from the theory of singular stochastic vectors. Second, we show

that, in the singular case, a finite VAR representation does exist, under mild conditions,

even when χt includes the first differences of cointegrated variables. Third, we provide

a proof that the estimated structural shocks and IRFs are consistent. This result is

fairly trivial if χt is not singular. What we prove, this is our main technical result, is

that consistency holds even when χt is singular, so that its VAR representation is not

necessarly unique, a problem that has been overlooked in the above mentioned literature

dealing with SDFMs and FAVARs.4

The CC-SVAR procedure allows for the inclusion, in the vector χ̂t, of observable

variables, insofar as their measurement error is zero. Moreover, it allows for the inclusion

of estimated factors in place of common components. Hence it unifies and encompasses

previous structural factor model methods. The CC-SVAR procedure essentially reduces

to the SDFM method when the number of common components included in the VAR is

equal to the number of factors.5 On the other hand, the CC-SVAR reduces to a FAVAR

when some variables are included in the vector χ̂t without treatment and the common

components are replaced by the estimated factors.6

In the empirical part of the paper, we apply the CC-SVAR method to the study of
4In Forni et al. (2009), consistency is proved for a singular VAR(1), a special case in which the VAR

representation is unique.
5Notice however that the CC-SVAR procedure is simpler, in that it does not require estimation of

the number of primitive shocks q.
6Notice however that the identification of structural shocks is more direct and transparent when the

restrictions are imposed on the common components of the variables rather than the factors.
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the effects of monetary policy shocks on the main macroeconomic variables, an highly

debated problem in macroeconometrics. As shown above, the results of SVAR analysis

are not robust. By contrast, with the CC-SVAR, the puzzles disappear and the results

are robust both across specifications and across different identification schemes.

The paper is organized as follows. Section 2 discusses the implications of measurement

errors and non-fundamentalness for SVAR analysis within a simple Real Business Cycle

Model. Section 3 presents the model, the estimation procedure and the consistency

results. Formal proofs are given in the Online Appendix. In Section 4 the estimation

procedure described in Section 3.6 is applied to simulated data based on the model

discussed in Section 2. Section 5 presents the empirical application. Section 6 concludes.

2 Illustration by a simple model

The model discussed in Leeper et al. (2013) is employed here as a laboratory to discuss

the consequences of narrow information sets (non-fundamentalness) and measurement

errors. The model is a simple Real Business Cycle (RBC) model with log preferences,

inelastic labor supply and two shocks: ua,t, a technology shock, and uτ,t, a tax shock. A

non-standard feature of the model is the fact that the tax shock has a delayed effect on

taxes, the so-called fiscal foresight. The equilibrium capital accumulation is

kt = αkt−1 + at − δ

∞∑
i=0

θiEtτt+i+1,

where 0 < α < 1, 0 < θ < 1, δ = (1 − θ)τ/(1− τ), τ being the steady state tax rate,

0 ≤ τ < 1; at, kt and τt are the log deviations from the steady state of technology,

capital and the tax rate, respectively; Et denotes expectation at time t, conditional

on at−j, kt−j, τt−j, j ≥ 0. Technology and taxes are assumed, for simplicity, to be i.i.d

processes, i.e. at = ua,t and τt = uτ,t−2, where uτ,t and ua,t are shocks that economic

agents can observe. The equation for taxes implies a delay of two periods. Solving for kt
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we obtain the following equilibrium ARMA representation:
1 0 0

0 1− αL 0

0 0 1

χt =


0 1

−δ(L+ θ) 1

L2 0

ut, (1)

where L is the lag operator, χt = (at kt τt)
′ and ut = (uτ,t ua,t)

′.

2.1 Full versus narrow information sets

In the standard approach to the estimation of the impulse-response functions, as the

variables are driven by two shocks we should estimate a SVAR including two of the three

variables in the system. However, the vector ut = (uτ,t ua,t)
′ is non-fundamental for all

pairs of variables. Indeed, considering the square subsystems including technology and

capital, technology and taxes, capital and taxes, the determinants of the corresponding

submatrices of the moving average matrix polynomial in (1) are, respectively, δ(z + θ),

−z2, −z2. The second and the third vanish for z = 0. The first vanishes for z = −θ if

τ ̸= 0, for all z ∈ C if τ = 0. This implies that standard SVAR techniques are unlikely

to correctly estimate the dynamic effect of the fiscal shock.

A quantitative assessment of the distortion caused by non-fundamentalness in the

two-dimensional SVARs within system (1) is obtained here by a simulation exercise (Sim-

ulation 1). We generate 1000 different dataset with 200 time observations from model

(1) using the parameterization in Leeper et al. (2013) for α, θ, τ and ut. For each of the

datasets we estimate a VAR(4) including taxes and capital and we identify the tax shock

by imposing that it is the only one driving cumulated taxes in the long run, a restriction

that is satisfied in the model. Panel (a) of Figure 3 plots the estimated impulse-response

functions for a tax shock. The red dashed lines are the theoretical impulse response func-

tions. The solid lines represent the mean (across datasets) of the point estimates. The

grey areas represent the 16th and 84th percentiles of the point estimate distribution, cor-
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responding to the 68% confidence interval commonly used in macroeconometrics. As the

red lines lie outside the bands, the true effects are very badly estimated. The responses

obtained by the SVAR neatly anticipate the peak response in the true impulse response

functions. Both taxes and capital react immediately and then the effects vanish.

Thus when only part of the information is used, current and past values of taxes and

capital, the estimates of the impulse-response functions can be substantially distorted.

However, the information contained in current and past values of technology, capital and

taxes is sufficient to recover the vector ut. Precisely, provided that τ ̸= 0, the matrix B(L)

in (1) has a left-inverse, so that the vector χt = (at kt τt)
′ has the VAR(3) representation

1 0 0

(θ − L)L
θ2

(1− αL)(θ2 − θL+ L2)
θ2

δL
θ2

−L2

δθ
(1− αL)L2

δθ
1 + L

θ




at

kt

τt

 =


0 1

−δθ 1

0 0


uτ,t
ua,t

 . (2)

Note that the autoregressive matrix is stable, since its determinant is (1−αL) and |α| < 1.

Note also that, despite singularity of the spectral density matrix, in the present case the

covariance matrix which is necessary to estimate a VAR is not singular. Therefore, using

the same data as in the previous exercise, we estimate a VAR(3) for χt. We identify the

tax shock by assuming that it is the only one affecting cumulated taxes in the long run,

thus a Blanchard and Quah (1989) identification scheme with the tax shock ordered first.

Results are displayed in Panel (b) of Figure 3. Using the full information set, the

impulse response functions are estimated extremely well, the red dashed and solid black

lines perfectly overlapping. Note that correct estimation crucially depends on the fact

that information is enlarged without adding further shocks or noise, which is tantamount

to saying that the enlarged vector of variables is singular.
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2.2 Measurement errors

Typically, many of the macroeconomic variables used in SVAR models are affected by

measurement error. To understand the implications of this, we modify model (1) by

adding measurement errors, i.e. we consider the vector variable xt = χt + ξt, where the

vector ξt = (ξat ξ
k
t ξ

τ
t )

′ is white noise and orthogonal to the shocks ua,t and uτ,t at all

leads and lags. The data are generated using the same parameterization of the previous

section, with ξτt = ξkt = 0 and ξat accounting for 5% of the variance of the series at. Using

the full vector we estimate again a VAR(3) with the same identification scheme.

Panel (c) of Figure 3 reports the estimated impulse-response functions. Surprisingly,

with a measurement error as small as that used in the generation of the data, and affecting

only one of the variables, the effects of the tax shock are very badly estimated. Thus, even

when information seems sufficient to correctly recover the impulse-response functions, a

small measurement error may cause substantial distortion in the estimates. We come

back to this point in Section 3.7.

3 Common Component Structural VARs

Let χt be an m-dimensional vector whose coordinates are the “true” macroeconomic

variables of interest. We assume that χt has an ARMA structural representation driven

by a q-dimensional structural shock vector ut and that m > q, so that χt is (dynamically)

singular (more variables than shocks). This implies that generically χt has a finite-length

VAR representation and that ut is fundamental for χt. On the other hand χt can only

be observed with measurement errors. We obtain a consistent estimate χ̂t by means

of factor-model techniques and show that the CC-SVAR, i.e. the SVAR applied to χ̂t,

produces consistent estimates of ut and the IRFs of χt with respect to ut.
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3.1 The Impulse-Response Function representation

Assumption 1. Structural representation. The zero-mean m-dimensional vector χt is

the stationary solution of the vector ARMA equation:

H(L)χt = K(L)ut, (3)

where: (a) ut is a serially independent, q-dimensional vector of orthonormal shocks, with

q ≤ m. (b) H(L) is an m×m polynomial matrix such that detH(z) = 0 implies |z| > 1.

K(L) is a full rank m× q polynomial matrix, i.e. rank(K(z)) = q but for a finite number

of complex numbers. Thus

χt = H(L)−1K(L)ut = B(L)ut = B0ut +B1ut−1 + · · · (4)

(c) The vector ut is structural, so that the matrices Bj = E(χtu
′
t−j) is structural. We sup-

pose that H(L) and K(L) are structural as well, although of course there exist alternative

ARMA representations of χt, with ut as the driving white noise.

Equation (1) is of course a special case of (3). Equations of the form (3) or (4) are

easily obtained from the the state-space representation of a linearized DSGE. Regarding

(c), to fix ideas we may suppose that the upper q × q submatrix of B0 in (4) is lower

triangular, so that the shocks ujt impact contemporaneously on the χit, i = 1, . . . , q,

according to a recursive (Cholesky) scheme. In Section 3.4 a recursive scheme will be

used as a simplifying assumption.

Assumption 2. Dynamic singularity, static non-singularity. (a) The number of variables

m is larger than the number of shocks q, so that χt is dynamically singular, that is, the

spectral density matrix Σχ(θ) = B(eiθ)B(e−iθ)′ is singular for all θ ∈ [−π, π], (b) The

covariance matrix of χt, denoted by Σχ
0 , is non-singular.

As already observed in the Introduction, dynamic singularity is a feature of most

DSGE models, a prominent example is Smets and Wouters (2007), see also Canova (2007),
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pp. 232-3, for general considerations. Moreover, we suppose that the number of structural

shocks driving the economy is independent of the dimension of χt. Thus, if in a first

formulation of the model we had m = q, the model obtained by augmenting χt with

auxiliary variables would fulfil the condition required in Assumption 2(a).

3.2 Existence of a finite-length VAR representation for χt

We now present and illustrate some basic consequences of Assumptions 1 and 2.

3.2.1 Zeroless m× q matrices and finite-length VARs

Let us start with an elementary example. Consider the 2-dimensional vector χt =

(χ1t χ2t)
′, where

χ1t = ut + k1ut−1, χ2t = ut + k2ut−1, (5)

ut being a scalar white noise and (k1 k2) any point in R2. The vector χt is dynamically

singular, since it has two entries (m = 2) driven by just one shock (q = 1). If k1 ̸= k2 we

have ut = (k2 − k1)
−1(k2χ1t − k1χ2t). This can be used to replace ut−1 in (5), obtaining

χ1t =
k1

k2 − k1
(k2χ1,t−1 − k1χ2,t−1) + ut, χ2t =

k2
k2 − k1

(k2χ1,t−1 − k1χ2,t−1) + ut, (6)

which is a VAR(1) representation for the MA(1) vector χt. Thus ut belongs to the space

spanned by current and past values of χt. Thus the white noise ut in (5) is fundamental

and that χt has a finite-length autoregressive representation for all values of the param-

eters k1 and k2, with the exception of the line k1 = k2.

Model (1) in Section 2 provides another example of a singular vector having a rational

MA representation, which admits the finite-length VAR representation (2), unless τ = 0.

It is easily seen that in both examples the existence of a finite VAR occurs when the

values of the parameters are such that the matrix K(L) has the property defined below:
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Definition 1. Zerolessness. The m× q matrix K(L), with m ≥ q, is zeroless if the rank

of K(z) is q for all complex numbers z. (Zerolessness implies full rank but not viceversa.)

Note that if m = q then K(L) is zeroless if and only if has a constant determinant

(K(L) is unimodular), a very special case. On the other hand, if m > q, a sufficient

condition for zerolessness of K(L) is that it contains at least two q×q submatrices whose

determinants have no common zeros. An crucial consequence of zerolessness is proved in

Anderson and Deistler (2008a):

Proposition AD1. Anderson and Deistler. Under Assumptions 1 and 2, if the matrix

K(L) is zeroless, there exists a finite m × m stable matrix polynomial K̃(L) such that

K̃(L)K(L) = K0 = B0 (we say that K̃(L) is a left inverse of K(L)), so that, setting

A(L) = K̃(L)H(L), χt has the finite-length VAR representation A(L)χt = K0ut = B0ut.

As K0 has maximum rank (because K(L) is zeroless), ut lies in the space spanned by

current and past values of χt, i.e. ut is fundamental for χt.

We see that in examples (1) and (5) the matrix K(L) is zeroless with the exception

of a lower dimensional subset of the parameter space. Precisely, in Example (1) the two-

dimensional subset of {0 < α < 1, 0 < θ < 1, 0 ≤ τ < 1} where τ = 0. In Example (5)

the one-dimensional subset of R2 where k1 = k2.

We say that K(L) is generically zeroless in examples (1) and (5), where “generic”

is informally used here as meaning “with the exception of a lower-dimensional subset

in the parameter space” (see Appendix A.1 for a formal definition). Now the question

is whether the result holding for such elementary cases can be extended to any model

fulfilling Assumptions 1 and 2. Relevant cases are:

(I) Like in example (5), each entry of K(L) has its own parameters which vary indepen-

dently of those of the other entries. In this case K(L) is generically zeroless. This is

shown in Anderson and Deistler (2008b), Proposition 1 and Forni et al. (2015).
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(II) However, in this paper we are interested in the case in which, like in example (1),

the entries of K(L) jointly depend on the parameters of an economic model. As observed

below Definition 1, a sufficient condition for zerolessness of K(L) is that K(L) contains

at least two q × q submatrices whose determinants have no common zeros. In Appendix

A.1 we prove that either (Z) that condition generically holds, or (W) it generically fails

to hold. Note that usually in the non-singular case neither of the alternatives holds

generically.

(III) Moreover, alternative (W) above holds only if the coefficients of K(L) fulfill a re-

striction which has a purely mathematical motivation (see Appendix A.1). Based on this

observation and our knowledge of theory-based macroeconomic models, we claim that

generic zerolessness is typical, with the possible exception of those cases in which χt is

the first difference of a cointegrated I(1) vector. In that case a zero of K(L) at z = 1

may be directly motivated by the theory. In the next section we show how such zeros

can be “removed”.

3.2.2 Singularity and cointegration

Now let χt = (1 − L)Xt, where Xit is I(1) for i = 1, . . . ,m. For simplicity suppose that

(1 − L)Xt = K(L)ut. If χt is not singular, cointegration of Xt implies that K(L) has a

zero at z = 1, so that a VAR in χt is misspecified and the estimation either of an Error

Correction Model (ECM) or a VAR in the levels Xt is recommended.

On the other hand, the rank at zero of the spectral density of a singular vector χt is

q at most, so that Xt is necessarily cointegrated with cointegration rank m− q at least,

that is c = m − q + κ, with 0 ≤ κ < q. As our aim here is to show how a zero at z = 1

can be assumed away, we suppose that K(L) is zeroless for z ̸= 1.

Assume firstly that κ = 0. In this case the rank of K(1) is q, i.e. K(L) is ze-

roless, Proposition AD1 applies and Xt has, despite cointegration, a finite-length VAR
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representation in differences. To illustrate this most important feature of singular vector

processes, let us go back to the example of equation (5), with χt = ∆Xt, and take the

linear combination

(1 + k2)χ1t

k2 − k1
− (1 + k1)χ2t

k2 − k1
=

(1 + k2)(1− L)X1t

k2 − k1
− (1 + k1)(1− L)X2t

k2 − k1
= (1− L)ut.

By integrating both sides we get the cointegration relationship

(1 + k2)X1t

k2 − k1
− (1 + k1)X2t

k2 − k1
= C + ut,

where C is a constant. Nevertheless representation (6) holds for χt, so that Xt has a

VAR(1) representation in differences. Thus, if κ = 0, singularity not only ensures generic

fundamentalness of ut, but also solves the representation and estimation difficulties aris-

ing from cointegration in the standard non-singular case. Simulation 7 in the Online

Appendix F.4 illustrates this point.

If κ > 0 the matrix K(1) has a zero at z = 1 and a VAR in differences is misspecified.

Barigozzi et al. (2020) show that generically the singular vector χt has several alternative

finite-length ECMs, with a number of error correction terms ranging from κ to m− q+κ,

see p. 20 (they also prove that all such autoregressive representations produce the same

impulse-response functions). The methods used in Barigozzi et al. (2020, 2021) and those

in the present paper are very close. Indeed, our definitions and results could be adapted

to include ECMs. This however is left for future research.

However, κ > 0 can be convincingly ruled out for macroeconomic applications in

which real variables like GDP, consumption or investment are jointly modeled with prices,

monetary aggregates or policy variables. Indeed κ > 0 implies that, for some of the

shocks, the IRF of all the variables has the factor (1 − L). Of course a demand shock

for example may well have transitory effects on trended real activity variables. But there

are no theoretical reasons why it should have transitory effect on prices and monetary

aggregates, or have the factor (1−L) in the impulse response functions of I(0) variables
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like interest rates, risk premia, term spreads or unemployment rates. This also suggests

that, in empirical situations, κ = 0 can be forced, so to speak, by augmenting χt with

suitable variables. See Appendix A.2 for a detailed version of the above argument.

3.2.3 Genericity of zerolessness

Based on the above discussion of a possible zero of K(L) at z = 1, and the arguments in

(I), (II) and (III) in Section 3.2.1, we believe that assuming that K(L) is zeroless, either

directly for χt or for an augmented version of it, has a sound motivation. Thus:

Assumption 3. Zeroless IRFs. The matrix K(L) is zeroless.

Under Assumptions 1, 2 and 3, by Proposition AD1, the vector χt has a finite-length

VAR representation

A(L)χt = B0ut = vt. (7)

where A(L) is stable. As B0 has full rank q, ut, as well as vt, is fundamental for χt.

3.3 Adding (and removing) measurement errors

We suppose that only xt = χt+ξt is observable. We also suppose that xt is a subvector of

an observable n-dimensional vector xxxnt = (xit), i = 1, . . . , n where n is large, possibly as

large or even larger than T , the number of observations for each series. High-Dimensional

Dynamic Factor Model techniques have been used to obtain estimators of χt, which are

consistent as n, T → ∞. Let us mention here Forni et al. (2000), Stock and Watson

(2002a,b), Bai and Ng (2002), Forni et al. (2015, 2017). Formally:

Assumption 4. Embedding χt in a Large-Dimensional Dynamic Factor Model.

(a) The vector χt is not observable. The observable vector, say xt, is given by

xt = χt + ξt = B(L)ut + ξt.
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(b) Without loss of generality, the entries of xt, i.e. xit, i = 1, . . . ,m, are the first

m series of the sequence xit = χit + ξit, i = 1, . . . ,∞. The variables χit are called the

common component and the variables ξit the idiosyncratic components. The idiosyncratic

component ξit and ut are zero-mean and mutually independent at all leads and lags, i.e.

ξit and ut−k are independent for all i ∈ N, k ∈ Z, so that ξit and χjt−k are independent for

all i and k. (c) The researcher observes the first n series xit, i = 1, . . . , n, with n ≥ m.

The idiosyncratic component of χit is usually interpreted as containing specific causes

of variation, plus measurement error. However, if χit is one of the main macroeconomic

aggregates, like GDP or consumption, specific causes of variation should cancel in the

aggregation and the idiosyncratic component is likely to contain only measurement error.

Different consistent estimators of χit, denoted χ̂it, have been proposed in the factor-

model literature. Some of them are mentioned at the beginning of Section 3.5. Of

course each one of them contains an estimator of the vector χt, denoted χ̂t. For the

moment we do not select a particular estimator χ̂t. Rather, we show that ut and the

IRFs implicit in equation (7) are consistently estimated using any estimator χ̂t fulfilling

the Assumptions A and B specified below. Then, starting with Section 3.5, we focus on

the static principal component estimator of Stock and Watson (2002a,b) and show that

under suitable assumptions it fulfills Assumptions A and B.

Notation 1. (a) Let (yt) and (zt) be zero-mean s-dimensional vector processes. Σyz
k

denotes the (population) s× s covariance matrix E
(
ytz

′
t−k
)
. Σ̂yz

k , the sample counterpart

of Σyz
k , is defined as

∑T
t=k+1 ytz

′
t−k/(T −k). The s×s autocovariance matrices of (yt) are

obviously denoted by Σy
k and Σ̂y

k. (b) By χ̂t = (χ̂it), i = 1, . . . ,m, t = 1, . . . , T , we denote

an estimator of χt based on xit, i = 1, . . . , n, t = 1, . . . , T , (c) π̂t = χ̂t − χt, (d) || · ||

denotes the euclidean norm for vectors and the spectral norm for matrices.

Assumption A. Properties of χ̂t. We have: ||χ̂t−χt|| = ||π̂t|| is Op(rn,T ), where rn,T → 0

as min(n, T ) → ∞. Moreover, ut is independent of χ̂t−k for k > 0.
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Assumption B. Covariance Ergodicity. For all k, ||Σ̂χ
k − Σχ

k || = Op

(
1/
√
T
)
.

Assumption A states that the estimator is consistent as min(n, T ) → ∞, the rate

being rn,T . Assumption B is a standard ergodicity property.

3.4 Estimating a singular VAR

It is convenient to re-write the population VAR in (7) as

χt = A1χt−1 + · · ·+ Apχt−p + vt = AZt−1 + vt, (8)

where Zt = (χ′
t χ

′
t−1 . . . χ′

t−p+1)
′, vt = B0ut is a white-noise vector of dimension m and

rank q, with vit orthogonal to χj,t−k and ξj,t−k for all i, j and all positive k.

A major difficulty with (8) is that, as pointed out in Anderson and Deistler (2008a),

the variance-covariance matrix of the regressors, ΣZ
0 , can be singular. A simple example

will suffice here. Consider the case m = 3, q = 1, B(L) = B0 + B1L + B2L
2 + B3L

3,

and suppose that the 12 entries in the matrices Bj can vary independently of one

another. The vector Zt−1 has 3p components, each being a linear combinations of

ut−1, . . . , ut−p, ut−p−1, ut−p−2, ut−p−3, thus the components of Zt−1 lie in a linear space

of dimension p + 3. This implies that if p ≥ 2, so that 3p > p + 3, the components

of Zt−1 are collinear and ΣZ
0 is singular. On the other hand, if p = 1 in (8), then

(I − A1L)(B0 + B1L + B2L
2 + B3L

3) = B0, which implies 12 linear equations for the 9

entries of A1, a system with no solutions for generic values of the entries of the matrices

Bj, j = 0, . . . , 3, see Appendix A.3 for details.

What we learn from this example is that in the singular case the matrix A(L) is not

necessarily unique. On the other hand, equation (8) is a projection equation, so that,

by uniqueness of the orthogonal projection, the projection AZt−1 and the residual vt are

unique. Of course, the vector of structural shocks ut and the matrix of impulse response

functions B(L) are unique as well.7 As A(L) is not necessarily unique, the estimated
7 Note that, inverting the matrix A(L), we obtain χt = A(L)−1vt = A(L)−1B0ut. On the other hand,
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VAR coefficients do not necessarily converge. This is the problem, mentioned in the

Introduction, which has been overlooked in previous factor model literature.8 Here we

show that, even if the VAR in (8) is not unique, so that the estimated VAR coefficients

may not converge at all, the estimated VAR residual v̂t, the estimated vector of structural

shock ût and the estimated impulse-response matrix B̂(L) converge to vt, ut and B(L),

respectively.

The empirical counterpart of (8) is

χ̂t = Â1χ̂t−1 + · · ·+ Âpχ̂t−p + v̂t = ÂẐt−1 + v̂t, (9)

where ÂẐt−1 is the sample projection of χ̂t onto Ẑt−1 and v̂t is the residual. Even if ΣZ
0 is

singular, singularity of Σ̂Ẑ
0 is very unlikely, owing to the estimation error π̂t. In this case

Â is unique and can be estimated by a standard VAR. On the other hand, the entries

of π̂t can be collinear (the possibility that an entry of π̂t is null is discussed in Section

3.6), so that collinearity of Ẑt−1 might in principle occur. In this case, we evaluate the

regressors in Ẑt in reverse order from the last to the first and discard them whenever

they are redundant, see Deistler et al. (2011). The corresponding columns of Â are set

to 0. This defines uniquely Â and therefore Â(L) = I − Â1L − · · · − ÂpL
p. Of course

v̂t = Â(L)χ̂t is unique because it is the residual of the sample projection equation (9).

Our first result concerns the consistency of v̂t.

Proposition 1. Consistency of the VAR residuals. Under Assumptions 1 through 4, A

and B, we have ||v̂t−vt|| = Op

(
max(rn,T , 1/

√
T )
)
, or, equivalently, ||ÂẐt−1−AZt−1|| =

Op

(
max(rn,T , 1/

√
T )
)
.

The proof is given in the Online Appendix B.

Let us turn now to the structural shocks and response functions. For simplicity we

χt has a unique MA representation in ut, so that A(L)−1B0 = B(L), independently of which matrix
A(L) we choose.

8If p = 1, ΣZ
0 = Σχ

0 , which is non-singular by Assumption 2(b). Thus (8) is unique. As mentioned in
footnote 4, Forni et al. (2009) assume p = 1, thus avoiding the difficulty we are dealing with here.
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specialize Assumption 1(c) by adopting the Cholesky scheme. Our consistency results

can be easily adapted to all the structural relations between ut and the matrices Bj that

are currently used to identify macroeconometric models.

Assumption 1(c)′. Cholesky scheme. We suppose that, after possible reordering of the

variables χit, i = 1, . . . ,m,

vt = B0ut =

Q
R

ut, (10)

where Q is q × q, lower triangular with positive entries on the main diagonal and R is

(m− q)× q.

Using (10) and partitioning vt and Σv
0 as

vt =

v[1]t
v
[2]
t

 , Σv
0 =

Σ[11] Σ[12]

Σ[21] Σ[22],

 , (11)

where v[1]t is q × 1 and Σ[11] is q × q, we see that ut = Q−1v
[1]
t and that Q is the lower-

triangular Cholesky factor of Σ[11]. Moreover, as is easily seen, R = Σ[21](Q
′)−1. Summing

up,

Σ[11] = QQ′, ut = Q−1v
[1]
t , R = Σ[21](Q

′)−1, B′
0 = (Q′ R′)

′
.

Correspondingly, partition v̂t and Σ̂v̂
0 as

v̂t =

v̂[1]t
v̂
[2]
t

 Σ̂v̂
0 =

Σ̂[11] Σ̂[12]

Σ̂[21] Σ̂[22],

 ,

where v̂[1]t is q× 1, Σ̂[11] is q× q. By Proposition 1, Σ̂[11] converges to Σ[11] in probability,

thus det Σ̂[11] is bounded away from zero in probability. Then let Σ̂[11] = Q̂Q̂′ be its

Choleski factorisation and define ût = Q̂−1v̂
[1]
t . Summing up,

Σ̂[11] = Q̂Q̂′, ût = Q̂−1v̂
[1]
t , R̂ = Σ̂[21](Q̂

′)−1, B̂′
0 =

(
Q̂′ R̂′

)′
. (12)
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Lastly, B̂k, k = 0, . . . ,∞, is defined by solving Â(L)
∑∞

k=1 B̂kL
k = B0, that is

−Â1B̂0 + B̂1 = 0, −Â2B̂0 − Â1B̂1 + B̂2 = 0, . . .

Proposition 2 establishes consistency and consistency rates for ût and B̂k.

Proposition 2. Consistency of the estimated structural shocks and IRFs. Under As-

sumptions 1, as specified in Assumption 1(c)′, through 4, A and B: (a) ||ût − ut|| =

Op

(
max(rn,T , 1/

√
T )
)
, (b) For any k ≥ 0, ||B̂k −Bk|| = Op

(
max(rn,T , 1/

√
T )
)
.

The proof is given in the Online Appendix C.

3.5 An estimator of χt fulfilling Assumptions A and B

From now on we focus on the ordinary principal component estimator. CC-SVAR analysis

with the estimators proposed in Forni et al. (2015, 2017) is left for future research. Hence

we assume that the x’s follow the structural dynamic factor model of Forni et al. (2009),

though we do not impose p = 1.

Assumption 5. Static factor representation. The common components χit are linear

combinations of orthonormal static factors Fkt, k = 1, . . . , r, where r > q. The r-

dimensional vector Ft has an ARMA representation like (3) in the structural shocks ut

and therefore a rational MA representation like in (4):

χit = λi1F1t + · · ·+ λirFrt = λiFt

Ft = BF (L)ut.

By Assumption 4(b), (i) χt = (χ1t · · · χmt)′ = ΛmFt, Λm being the m × r matrix with

rows λi, i = 1, . . . ,m, (ii) χt = B(L)ut, where B(L) = ΛmBF (L). Assumption 2(b) and

orthonormality of Ft imply that the rank of ΛmΛ′
m is m.

Some notation is needed for the following assumptions.
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Notation 2. (a) xxxnt = (x1t · · · xnt)′, χχχnt = (χ1t · · · χnt)′ and ξξξnt = (ξ1t · · · ξnt)′.

Note that, by Assumption 4(a), we have xt = xxxmt, χt = χχχmt and ξt = ξξξmt. (b) Γxk, Γ
χ
k

and Γξk are k-lag covariance matrices of the processes (xxxnt), (χχχnt) and (ξξξnt), respectively.

Σχ
k , see Notation 1, is the upper-left m × m sub-matrix of Γχk , which is n × n. Γ̂xk, the

sample counterpart of Γxk, is
∑T

t=k+1xxxntxxx
′
n,t−k/(T−k). (c) µχj and µξj , µ̂

χ
j and µ̂ξj , are the

j-th eigenvalues, in decreasing order of magnitude, of Γχ0 and Γξ0, Γ̂
χ
0 and Γ̂ξ0, respectively.

Assumption 6. Pervasiveness of the factors and the shocks, non-pervasiveness of the

idiosyncratic components. (a) There exists constants cj, cj, j = 1, . . . , r, such that

cj > cj+1, j = 1, . . . , r − 1, and 0 < cj < lim infn→∞ n−1µχj ≤ lim supn→∞ n−1µχj ≤ cj,

(b) There exists a real ℓ > 0 such that 0 < µξ1 ≤ ℓ.

Assumption 6(a) ensures that the static factors are pervasive; it could be replaced by

suitable assumptions on the factor loading matrices Λn. Assumption 6(b) is obviously

satisfied if the idiosyncratic components are mutually orthogonal and their variances are

uniformly bounded. However, it is milder than mutual orthogonality in that it allows for

a limited amount of cross-correlation.

Assumption 7. Uniform covariance ergodicity. Denote by γxk,ij, γ̂xk,ij, γ
χ
k,ij and γ̂χk,ij the

entries of Γxk, Γ̂xk, Γ
χ
k and Γ̂χk , respectively. There exists a ρ > 0 such that: (a) T E(γ̂xk,ij−

γxk,ij)
2 < ρ, (b) T E(γ̂χk,ij − γχk,ij)

2 < ρ, (c) T E(γ̂χξk,ij)
2 < ρ, for all i, j, k and T .

The above ergodicity properties can be obtained under the assumption of linearity

of the processes and finite fourth cumulants of the driving shocks (see Hannan, 1970,

Theorem 6). Here we assume in addition that the upper bound ρ is the same for all i.

Definition 2. The principal component estimator. Let ŵxj = (ŵj1 · · · ŵjn)′ be a nor-

malized column eigenvector of Γ̂x0 corresponding to µ̂xj (so that ŵx′j xxxnt is the j-th principal

component of xxxnt). Let Im be the n×m matrix with zeros in the last n−m rows and Im in

the first m. The principal component estimator of χt = χχχmt is χ̂t = I ′
mŴ

x′Ŵ xxxxnt, where
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Ŵ x is the n × r matrix with ŵxj on the j-th column, that is, χ̂it =
∑r

j=1 ŵ
x
ijŵ

x′
j xxxnt, i =

1, . . . ,m.

Proposition 3. Properties of the principal component estimator. Under Assumptions

1-7, for all k: (a) ∥π̂t∥ = ||χ̂t − χt|| = Op(max(1/
√
n, 1/

√
T )), (b) ||Σ̂χ

k − Σχ
k || =

Op

(
1/
√
T
)
.

Note that, since χ̂t is a linear combination of the present and past values of the

observables, independence of ut and χ̂t−k, k > 0, requested in Assumption A, is an

immediate implication of Assumptions 1(a) and 4(b). Thus χ̂t fulfills Assumption A,

with rn,T = max(1/
√
n, 1/

√
T ), and Assumption B. The proof of Proposition 3 is given

in the Online Appendix D.

3.6 Summary of the estimation procedure

Based on the above results, we propose the following estimation procedure.

(E0) Select a large data set with n series and T observations. Transform the series to get

stationarity and standardize them to have zero mean and unit variance. The standardized

series are the entries of our vector xxxnt.

(E1) Estimate r. Out of the vast literature, beginning with Bai and Ng (2002), proposing

consistent estimators r̂, in the application of Section 5 we use Alessi et al. (2010). Choose

m in such a way that q < m ≤ r̂. We discuss the choice of m in the next subsection.

(E2) Given r̂ and m, estimate the common components according to Definition 2. Pos-

sibly, de-standardize the series to get the common components of the non-standardized

variables.

If there is a strong a priori belief that the variable s is free of measurement error,

the variable itself can be included in the model without treatment, i.e. we can use for

this variable the alternative estimator χ̃st = xst in place of χ̂st. Moreover, any common

component χ̂st which is of no direct interest for the analysis can in principle be replaced
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by an estimated factor, i.e. any one of the first r principal components of xxxnt, provided

that the resulting vector has non-singular variance-covariance matrix.

(E3) Estimate a VAR for χ̂t (or χ̃t, χ̃t being the estimator having χ̃st in place of χ̂st), to

get an estimator of the matrix A(L) and the VAR innovations vt (see equation (7)).

(E4) Identify the structural shocks by SVAR techniques applied to Â−1(L) and vt.

3.7 The choice of m

The choice of m is a key step of the estimation procedure. Our first recommendation is

to set m larger than q+1. If χt were observable, the choice m = q+1 would produce the

correct result as shown in Simulation 1 and Simulation 5, Appendix F.2. However only

an estimate of χt is available; as n is finite, χ̂t still includes a residual of the idiosyncratic

components, so that it is not exactly singular. When m = q+1 the estimates can still be

inaccurate even if the residual idiosyncratic component is small. This problem disappears

when m > q + 1. This point is discussed thoroughly in Appendix E and illustrated with

Simulation 5, Appendix F.2.

A simple way to ensure that m > q + 1 is to set m equal to its largest possible value,

i.e. m = r. There are two additional arguments in favor of this choice. First, in empirical

applications, q is unknown and has to be determined by existing information criteria.

Such criteria, albeit consistent, may deliver wrong results in small samples. Thus setting

m to its maximum value r̂ is the safest choice. If we choose m = r̂, estimation of q in

a CC-SVAR is not strictly necessary. On the other hand, estimating q could be useful

to check that r is actually larger than q. Second, if m = r̂, the estimated shocks of

interest and the corresponding estimated IRFs are the same, irrespective of the choice of

the variables included in the VAR.9 The intuition is simple: since the entries of χ̂t are

linear combinations of the estimated factors in F̂t (i.e. the first m principal components
9This result holds only asymptotically in the case q < m < r.
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of our large data set), when χ̂t is m-dimensional it spans the same linear space as F̂t, for

any choice of the variables (provided that the loading matrix is invertible). This fact has

two important consequences. The first is that selecting the variables to be included in

the CC-SVAR is not an issue. The natural choice is the set of variables which are needed

for identification and, if required to complete the information set, we can include the

common components of other variables of interest, or even some of the estimated factors,

i.e. the principal components themselves. This is what is done in some of the simulations

below and in the empirical application. The second is that, if we are interested in the

IRFs of some variables which have not been included in the CC-SVAR, we can simply

estimate another CC-SVAR including these variables. This practice, which is common

in empirical work, is questionable within the standard SVAR framework, since, as shown

in the Introduction, changing the variables may change dramatically the information set

and therefore the estimated shock of interest. By contrast, it is perfectly justified within

the CC-SVAR approach, when setting m = r̂.

Despite recommending m = r̂, we should acknowledge that there might be situations

in which this choice is problematic. This is when r̂ is large, so that m = r̂ might entail

a too large number of parameters to estimate, particularly when the sample is small in

the time dimension. In this case it may be preferable to set m < r̂. We should however

estimate q by using a consistent criterion and check that m > q̂ + 1.

3.8 The choice of r

As stated above, r can be estimated by any one of the available consistent criteria.

However different consistent criteria often provide different estimates in small samples.

In Appendix F.3, we show that the estimates of the IRFs improve as r̂ increases from

values below r, the true value, to r and stabilize for values greater than r.

The feature that estimated IRFs do not change when r̂ > r is also useful to control for
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the presence of weak factors, that is, factors that explain a small fraction of the variance

and might not be captured by standard information criteria typically used to estimate r.

This finding can be used in empirical applications, where r is not known. We can use

the estimate r̂ as the baseline specification and estimate the IRFs. Then we can assess

the robustness of the results by using a range of values for r̂ around the baseline.

4 Simulations

The procedure described in Section 3.6 is now applied to simulated data sets based on

the model of Section 2. Firstly we write our variables at, kt and τt as linear combinations

of 5 factors: kt, ua,t, uτ,t, uτ,t−1, uτ,t−2. Then we generate a data set with 200 variables, by

taking random linear combinations of these factors. Finally, we add errors to all variables

to get the observable series. Details are reported in Appendix F.1.

In Simulation 2 we compare the CC-SVAR with the estimation procedure of Forni

et al. (2009) (Standard Procedure SDFM henceforth) and the FAVAR. Firstly, we es-

timate: (a) a Standard Procedure SDFM, with two lags in the VAR, with a too small

number of common shocks, i.e. q̂ = 1, and (b) a Standard Procedure SDFM, two lags,

with the correct number of shocks, i.e q̂ = 2. In both cases r̂ is, correctly, equal to 5.

Secondly, we estimate (c) a CC-SVAR(2) with m = r̂ = 5. Finally, we estimate (d) a

FAVAR(2) including capital, taxes, technology and the first two principal components.

In all cases we use two lags in the estimation. Again, we perform 1000 replications.

The results are reported in Figure 4. Panel (a) shows the results for the mis-specified

SDFM. Not surprisingly, with this data generating process, where q = 2, setting q̂ = 1

has dramatic consequences on the estimates of the impulse response functions. With a

different DGP and a larger q we can expect a smaller bias. However, the point is that,

in real data applications, q can be underestimated, leading to sizable estimation errors.

Panels (b) and (c) refer to the correctly specified SDFM and the CC-SVAR, respec-
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tively. It is hard to see any difference between the two figures. This suggests that the rank

reduction step typical of the factor model can be ignored with no consequences on the

quality of the estimates. Moreover, as argued above, with the CC-SVAR (with m = r)

we do not need an estimate of q, which is safer, in view of the results of Panel (a).

Finally, panel (d) reports the results for the FAVAR model. Owing to measurement

errors, the estimates are clearly worse than those in panels (b) and (c).

Simulation 3 deals again with the choice of the specification of the variables included

in the model. Here, we use just one data set and compare the SVAR, the FAVAR and

the CC-SVAR. Regarding the SVAR model, we estimate one hundred of three-variable

VAR(2) specifications, including capital, taxes, and the (3 + i)-th variable, i = 1, ..., 100.

The results are reported in Figure 5, Panel (a). The figure shows that the choice of the

third variable produces huge differences in the estimated impulse response functions, both

because of the information delivered by the common component of the third variable and

the extent of the contamination induced by the measurement error. Panel (b) refers to

FAVAR models including capital, taxes, the (3 + i)-th variable, i = 1, ..., 100, plus the

first two principal components. Again we use two lags. Here the estimated IRFs are

much closer to each other, since information is not deficient. However, there is still some

variability due to the size of the measurement error included in the third variable. Panel

(c) refers to the CC-SVAR, where, as already argued in Section 3.7, all IRFs are identical.

5 Empirical application

In this section we illustrate the advantages of CC-SVAR analysis by means of an ap-

plications on monetary policy shocks. Our main results are the following. (I) As a

consequence of non-fundamentalness and measurement errors the results of the SVAR

analysis are rather unstable, depending on which variables are included in the vector.

Thus the conclusions on the effects of structural shocks on macroeconomic variables are
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not robust. (II) Some improvement is obtained with FAVAR models, although the effects

of measurement errors are still evident. (III) With CC-SVAR, instability disappears and

robust conclusions can be drawn. Independently of the choice of variables, contractionary

monetary policy shocks reduce prices and economic activity.

To estimate the common components we use the monthly dataset of McCracken and

Ng (2016).10 We exclude a few variables to obtain a balanced panel and we end up with

a monthly dataset with 122 variables. We transform each series to reach stationarity. We

apply the criterion proposed by Alessi et al. (2010) and find a number of static factors

r̂ = 8. Thus we use, as baseline specification, r̂ = 8. In the Online Appendix G we show

that CC-SVAR results are robust to changes of the number of factors.

We consider 50 different VAR specifications characterized by different vectors xjt ,

j = 1, ..., 50. Each of them includes five variables. Four of them are common to all

vectors: the unemployment rate, industrial production growth, inflation and a policy

rate. Each model includes an additional variable of the panel which differs across models

and is chosen randomly. The sample spans from 1977:6 (the beginning of the Volcker

era) to 2008:12 (to exclude the ZLB period).

For each of the 50 specifications, we identify the shock using three different identi-

fication schemes. Firstly, a Cholesky scheme. The ordering of the five variables is the

following: the unemployment rate, industrial production growth, inflation, the 1-year

bond rate and the fifth additional variable. The monetary policy shock is the fourth one.

The second and the third schemes are based on the proxy SVAR method (Mertens

and Ravn (2013) and Stock and Watson (2018)). In the second we use the Gertler and

Karadi (2015) instrument (GK henceforth). In the third the Miranda-Agrippino and

Ricco (2021) instrument (MAR henceforth). The policy rate is the 1-year bond rate, to

be consistent with the specifications used in both the above mentioned papers.
10The data set is available at https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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The first column of Figures 6-8 reports the estimated IRFs for a VAR(6). Each blue

line represents the impulse response function of a particular specification, so that each

box contains 50 different lines. A striking result is the high degree of heterogeneity

in the estimated responses, despite the fact that specifications differ only for the fifth

variable. The result resembles the one in the simulation exercise of Figure 5. With

the GK instrument, in particular, not only the magnitude, but even the sign of the

responses may change, depending on the choice of the fifth variable. With the Cholesky

identification we have the price puzzle for all specifications but one. When using the

GK instrument the effects of a contractionary shock appear to be expansionary for most

specifications. All in all, the results suggest that drawing robust conclusions about the

propagation mechanisms of monetary policy shocks is very hard. Indeed, the effects differ

substantially across specifications both qualitatively and quantitatively.

To understand the effects of enlarging the information set, we augment each 5-variable

specification with the first 3 principal components. We then run a FAVAR(6) and apply

the three identifications schemes. In this case information is enhanced but still the model

can suffer the problem arising from the presence of measurement error.

The results are reported in the second column of Figures 6–8. Completing information

seems to have important consequences, particularly because the price puzzle disappears

with the Cholesky identification scheme, as observed in Bernanke et al. (2005). However,

three principal components are not enough to solve the puzzles of the GK identification,

and still results vary considerably across specifications with all identification schemes.

To understand the implications of measurement errors we repeat the same exercise as

before but replacing the variables with their common components. So, we estimate 50

different CC-SVAR specifications which include the common components of the interest

rate, industrial production growth, inflation and unemployment, plus a fifth common

component which changes for each specification, and either two principal components
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(m = 7, third column), or three principal components (m = r = 8, fourth column).11 To

verify whether the condition m > q is fulfilled, we estimate the number of shocks q by

using the log criterion of Hallin and Liska (2007), which gives q̂ = 4. We see in the third

column of the figures that results are much more robust to specification changes. In the

fourth column, as argued in Section 3.7, all lines are perfectly overlapping.

Importantly, with the CC-SVAR all puzzles disappear; moreover, results are quan-

titatively similar not only across different VAR specifications, but also across different

identification schemes, a result that runs counter the growing consensus that high fre-

quency identification with external instruments is a better approach to identify monetary

policy shocks, in comparison to the Cholesky scheme.

6 Conclusions

CC-SVARs apply SVAR techniques to singular vectors including the common components

of the variables of interest. We claim that CC-SVARs provide a solution to the difficulties

arising with possible non-fundamentalness of the structural shocks and measurement

errors in macroeconomic variables. In our empirical application the CC-SVAR produces

results that, unlike those obtained with SVAR analysis, are both sensible and robust with

respect to changes in specification.

Although we have introduced and discussed the CC-SVAR technique with reference

to the DFM model described in Section 3.5, a similar method applies in the General

Dynamic Factor Model, that is when the assumption of a finite number of static factors

does not necessarily hold and the common components are estimated by frequency-domain

methods, see Forni et al. (2000) and Forni et al. (2015, 2017). This however is left for

future research.
11Notice that when m = r = 8 using any triple of variables in place of the first three principal

components would yield the identical results.
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Figures

Figure 1: US monthly data from 1977:6 to 2008:12. The IRFs of a monetary policy shock, identified
with the proxy of Gertler and Karadi (2015). The black lines are the IRFs of the SVAR(6) with just
four variables: the 1 year bond rate, industrial production growth, unemployment and CPI inflation.
The blue lines are the IRFs for 50 eight-variable specifications, including the above four variables, and
differing for the (random) choice of 4 additional variables.

Figure 2: US monthly data from 1977:6 to 2008:12. The IRFs of a monetary policy shock, identified
with the proxy of Gertler and Karadi (2015). The blue line is obtained by plotting the IRFs for the same
50 eight-variable specifications of Figure 1 obtained with the CC-SVAR.
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Panel (a)

Panel (b)

Panel (c)

Figure 3: Simulation 1. Non-fundamentalness and measurement errors. Estimated IRFs for the tax
shock. The red dashed lines are the theoretical IRFs. The solid lines represent the mean (across 1000
simulated datasets) of the point estimates. The grey areas contain the point estimates between the 16th
and 84th percentiles. Panel (a): SVAR(4) with Capital and Taxes. Panel (b): SVAR(3) with Capital,
Taxes and Technology. Panel (c): SVAR(3) with Capital, Taxes and Technology when Technology is
measured with a 5% error.

Panel (a) Panel (b)

Panel (c) Panel (d)

Figure 4: Simulation 2. Standard Procedure SDFM, CC-SVAR, FAVAR. Estimated IRFs for the tax
shock. The red dashed lines are the theoretical IRFs. The solid lines represent the mean (across 1000
simulated datasets) of the point estimates. The grey areas contain the point estimates between the 16th
and 84th percentiles. Panel (a): Standard Procedure SDFM, with two lags, with q̂ = 1 < q (r̂ = r = 5).
Panel (b): Standard Procedure SDFM, two lags, with q̂ = q = 2 (r̂ = r = 5). Panel (c): CC-SVAR(2)
with Capital, Taxes and the first 3 principal components (m = r̂ = 5). Panel (d): FAVAR(2) with
Capital, Taxes and the first 3 principal components.
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Panel (a) Panel (b)

Panel (c)

Figure 5: Simulation 3. Different variable specifications for a deficient VAR, the FAVAR and the
CC-SVAR. Estimated IRFs for the tax shock, for a single simulated data set. The black lines are the
theoretical IRFs. The red lines are the CC-SVAR estimates obtained with different variable specifications.
Panel (a): SVAR(2) with Capital, Taxes and a third variable, changing across specifications. Panel
(b): FAVAR(2) with Capital, Taxes, a third variable, changing across specifications, and the first two
principal components. Panel (c): CC-SVAR(2) with Capital, Taxes, a third variable, changing across
specifications, and the first two principal components.

Figure 6: US monthly data. The IRFs of a monetary policy shock. Cholesky identification. The red
lines are the CC-SVAR estimates obtained with different variable specifications. First column: SVAR(6)
for 50 five-variable specifications, differing for the fifth variable. Second column: FAVAR(6) the variables
in the first column are augmented with the first 3 principal components. Third column: CC-SVAR(6):
the variables in the first column are replaced with their common components; in addition, we include
the first 2 principal components (m = 7). Fourth column: same as the third column, but 3 principal
components (m = r̂ = 8).
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Figure 7: US monthly data. The IRFs of a monetary policy shock. Proxy MAR identification. The red
lines are the CC-SVAR estimates obtained with different variable specifications. First column: SVAR(6)
for 50 five-variable specifications, differing for the fifth variable. Second column: FAVAR(6) the variables
in the first column are augmented with the first 3 principal components. Third column: CC-SVAR(6):
the variables in the first column are replaced with their common components; in addition, we include
the first 2 principal components (m = 7). Fourth column: same as the third column, but 3 principal
components (m = r̂ = 8)..

Figure 8: US monthly data. The IRFs of a monetary policy shock. Proxy GK identification. The red
lines are the CC-SVAR estimates obtained with different variable specifications. First column: SVAR(6)
for 50 five-variable specifications, differing for the fifth variable. Second column: FAVAR(6) the variables
in the first column are augmented with the first 3 principal components. Third column: CC-SVAR(6):
the variables in the first column are replaced with their common components; in addition, we include
the first 2 principal components (m = 7). Fourth column: same as the third column, but 3 principal
components (m = r̂ = 8).
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For Online Publication - Appendix

A Appendix to Section 3.2

A.1 Zerolessness of K(L)

We firstly need an explicit parameterization of the polynomial matrix K(L) in Assump-

tion 1. Let us write the entries of K(L) as

kij(L) = kij,0 + kij,1L+ · · ·+ kij,sL
s. (A.1)

The number of coefficients is ϖ = (s+ 1)mq.

Assumption P. Parameterization of the polynomials in equation (A.1). We suppose

that the entries of K(L) depend on ν parameters, where ν > 0. Precisely, let P, the

parameter space, be an open and connected subset of Rν. The ϖ coefficients kij,α, for

i = 1, . . . ,m, j = 1, . . . , q, α = 0, . . . , s, are rational functions defined on P, with no

poles for all p ∈ P.

Assuming that P is open is a convenient simplification. All the results below hold if

P contains a subset which is open in Rν and dense in P . Definition P includes:

(i) Structural economic models, like (1), with the minor modification τ > 0. As a rule,

in this case ν < ϖ, so that the parameterization produces restrictions on the coefficients

kiℓ,β.

(ii) The Free-Parameter case in which the parameters are the coefficients kiℓ,β themselves

and P ⊆ Rϖ.

Definition G. Generic property in P . We say that a property holds generically in P if

it holds in an open and dense subset of P.
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As we need explicit reference to the parameters p, we use K(p, L), kij(p, L), etc. Let

Da(p, L) = Da,0(p) +Da,1(p)L+ · · · , a ∈ M, M =

{
1, . . . ,

m!

q!(m− q)!

}
,

be the determinant of the a-th q×q submatrix of K(p, L) (the ordering of the submatrices

is immaterial). For a given p, a sufficient condition for zerolessness of K(p, L) is that for

at least a couple a, b ∈ M, a ̸= b, Da(p, L) and Db(p, L) have no common zero.

The following statement generalizes Anderson and Deistler (2008b), Proposition 1,

to the case in which the coefficients of the entries of the matrix K are restricted by the

parameterization in Definition P:

Proposition AD2. Assume that Assumption 1 holds and m > q. Define Z as the set

of all p such that for at least a couple a, b ∈ M, a ̸= b, Da(p, L) and Db(p, L) have no

common zero, and W as P − Z, i.e. the set of all p such that for all couples a, b ∈ M,

a ̸= b, Da(p, L) and Db(p, L) have common zeros. Then either

(Z) generically p ∈ Z, so that K(p, L) is generically zeroless, or

(W) generically p ∈ W.

Proposition AD2 can be restated by saying that if (Z) holds [if (W) holds] for an open

subset of P , then (Z) holds [(W) holds] generically in P .

Proof. We proceed by steps.

(i) The coefficients of Da(p, L) are rational functions with no poles in P , hence each one

of them is either zero for all p ∈ P or generically non-zero. Thus, given a ∈ M, either

(A) there exists an integer da ≥ 0 such that generically Da(p, L) has degree da with

non-zero leading coefficient, or

(B) Da(p, L) is the zero polynomial for all p ∈ P . In this case we set da = −1.

(ii) If da = 0 for some a ∈ M, so that generically Da(p, L) has no roots, then (Z) holds.
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(iii) Because K(L) is full rank, Assumption 1(b), da > −1 for some a ∈ M.

(iv) If da = −1 for all but one c ∈ M with dc > 0, then (W) holds.

(v) It remains to prove the proposition under the assumption that da ̸= 0 for all a ∈ M,

so that (ii) does not apply, and that da > 0 for at least two distinct elements in M, so

that (iv) does not apply. Equivalently, we assume that {a ∈ M, such that da = 0} = ∅

and that the set

N = {a ∈ M, such that da > 0} = M−{a ∈ M, such that da = −1}

contains at least two distincts elements. We need the following definition and result:

Proposition R. The resultant of the scalar polynomials with real coefficients

A(x) = avx
v + · · ·+ a0, B(x) = bwx

w + · · ·+ b0,

with v > 0, w > 0, is a polynomial function R, depending on ai, i = 0, . . . , v and bj,

j = 0, . . . , w, with integer coefficients. If av ̸= 0 and bw ̸= 0, then

R(av, . . . , a0; bw, . . . , b0) = 0,

if and only if A(x) and B(x) have a common (complex) root. See e.g. van der Waerden

(1953), pp. 83-5.

Let P† be the subset of P such that for p ∈ P† the leading coefficient of Dc(p, L) is not

zero for all c ∈ N . P† is open and dense in P . Thus genericity in P† implies genericity

in P .

Let Rab(p) be the resultant of Da(p, L) and Db(p, L) and

R(p) =
∑

c,d∈N , c ̸=d

Rcd(p)
2. (A.2)
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As R(p) is a rational function with no poles in P , then one of the following alternatives

holds:

(1) Generically in P†, R(p) > 0. The leading coefficients of Dc(p, L) and Dd(p, L) are

not zero for c, d ∈ N and p ∈ P†. As each addendum in (A.2) is either zero or generically

positive in P†, by Proposition R, there exist c∗, d∗ ∈ N , c∗ ̸= d∗, such that, generically

in P†, Dc∗(p, L) and Dd∗(p, L) have no common roots, so that (Z) holds.

(2) R(p) = 0 for all p ∈ P†. By Proposition R, Dc(p, L) and Dd(p, L) have a common

root for all c, d ∈ N , c ̸= d and all p ∈ P†. Thus generically in P† (W) holds. Q.E.D.

The equation R(p) = 0 is the purely mathematical restriction we refer to in point (III),

Section 3.2.1.

Let us point out that the condition “p ∈ Z” is sufficient for “K(p, L) is zeroless” but

not necessary, as the following simple example shows. Let

K(p, L) =


L− p1 0

0 L− p2

L− p3 L− p3

 ,

where (p1 p2 p3) ∈ P , where P is an open subset of R3. We have D1(p, L) = (L−p1)(L−

p2), rows 1 and 2, D2(p, L) = (L−p1)(L−p3), rows 1 and 3, D3(p, L) = −(L−p2)(L−p3),

rows 2 and 3. We see that generically R(p) = 0, so that (W) holds, but generically

K(p, L) is zeroless.

The example above suggests that the result in Proposition AD2 can be improved.

However, we believe that Proposition AD2, as it stands, and our discussion of zerolessness

in Sections 3.2.1 and 3.2.2 are sufficient to motivate Assumption 3.
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A.2 More on cointegration in the singular case

Here the motivation for κ = 0 given at the end of Section 3.2.2 is presented in greater

detail. Consider a three-dimensional vector Xt with I(1) coordinates, driven by the two-

dimensional structural shock ut. Suppose that the effect of u2t on the three variables Xjt

is permanent and that the effect of u1t on X1t and X2t is transitory. Thus:


(1− L)X1t

(1− L)X2t

(1− L)X3t

 = K(L)ut =


(1− L)a(L) b(L)

(1− L)c(L) d(L)

f(L) g(L)


u1t
u2t

 , (A.3)

where the entries of the second column of K(L) do not vanish at z = 1.

(A) If, for example, the variables Xjt, j = 1, 2, 3, are GDP, consumption and investment,

respectively, and u1t is a demand shock, then f(1) = 0 and κ > 0.

(B) However, suppose that the variable X3t is an I(1) price or monetary aggregate. We

claim that there are no reasons based on economic theory why demand or monetary policy

shocks should have a temporary effect on X3t. The same conclusion holds if X3t is an

I(0) variable among interest rates, risk premia, term spreads or the unemployment rate.

Dropping (1−L) in front of X3t in (A.3), there is no reason why f(L) should contain the

factor 1 − L. In general, if the vector of interest contains both real and monetary I(1)

variables or both I(1) and I(0) variables, as is the case in the empirical application in

Section 5, we can safely assume that K(L) has no zero at z = 1.

(C) Moreover, suppose, as we do starting with Section 3.5, that the vector of interest Xt

is part of a large vector Xt, whose coordinate variables are all driven by ut. Suppose also

that the vector of interest Xt is I(1), cointegrated and, for example, κ = 1. It is highly

likely that Xt contains variables which, belonging to a different “family”, as X3t in (B),

can be used to augment Xt and obtain a larger vector with κ = 0.

(D) The simple idea of forcing, so to speak, κ = 0 in the case of singular I(1) vec-
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tors, by augmenting the vector of interest with suitable variables, is likely to apply to

any hypotetical situation in which non-zerolessness is implied by economic-theory based

restrictions.

The arguments in points (B) and (C) can be easily generalized. Let Xit be I(1), for

all i = 1, . . . ,m+ 1, q < m, Xt = (X1t X2t · · · Xmt)
′, X̃t = (X1t X2t · · · Xm+1,t) and let

(1− L)X̃t =

 (1− L)Xt

(1− L)Xm+1,t

 =

 K(L)

km+1(L)

ut = K̃(L)ut. (A.4)

Assume that the cointegration rank of Xt is c = m − q + κ with κ > 0. Because

rank K(1) = q − κ < q, it is possible that X̃t has no additional cointegration vector

with respect to Xt, i.e. km+1(1) can be independent of the rows of K(1). In that case

c = c̃ = m+ 1− q + κ̃, so that κ̃ = κ− 1:

Remark 1. If m > q and κ > 0 and we add to Xt the variable Xm+1,t, driven by ut,

and the cointegration rank stays the same, the value of κ decreases by one. This is a

generalization of our argument in (B), Section 3.2.2.

On the other hand, if κ = 0, so that rank K(1) = q, then km+1(1) is a linear com-

bination of the rows of K(1), that is c̃ = c + 1. Thus κ̃ = κ = 0. Moreover, looking at

(A.4), quite obviously,

Remark 2. If m > q and we add to Xt the variable Xm+1,t, driven by ut, the IRFs of

Xt do not change.

What may happen is that K̃(L) is zeroless whereas K(L) is not, so that ut may be

obtained by a finite-lenght VAR of X̃t.

Let us now replace Xit with Yit = Xit + ξit, the ξ’s being measurement errors. As a
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rule, the rank of Yt is m and that of Ỹt is m+ 1. Let

(1− L)Yt = C(L)wt, (1− L)Ỹt =

C̃(L) c̃1(L)

c̃2(L) c̃3(L)

 w̃t

be the IRFs that are consistently estimated by a SVAR for Yt and Ỹt, respectively, so

that wt and w̃t are fundamental for Yt and Ỹt, respectively. We suppose that wt and w̃t

have been identified consistently with the restrictions identifying ut. For example, ut, wt

and w̃t are identified by recursive schemes, as in Section 3.4.

Because the rank of Yt and Ỹt are m and m + 1, respectively, c = κ, c̃ = κ̃. As

c̃ ≥ c, we have κ̃ ≥ κ, so that no zero of C(L) at z = 1 can be removed by adding

variables. Moreover, it is fairly easy to see that generically C̃(L) ̸= C(L) and w̃jt ̸= wjt,

for j = 1, . . . ,m, see e.g. Lippi (2021). Thus, we see that neither Remark 1 nor 2 hold

for Yt and Ỹt.

A.3 Non-uniqueness of the VAR in the singular case

In Section 3.4 we consider the example with m = 3, q = 1, B(L) = B0 + B1L + B2L
2 +

B3L
3, where the 12 entries in the matrices Bj can vary independently of one another. If

we take p = 1 in (8), we have (I − A1L)(B0 +B1L+B2L
2 +B3L

3) = B0, that is

A1B0 = B1, A1B1 = B2, A1B2 = B3, A1B3 = 0. (A.5)

As the matrices Bj are 3× 1, generically B0, B1, B2 are independent and

B3 = α0B0 + α1B1 + α2B2.
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Using (A.5),

0 = A1B3 = A1(α0B0 + α1B1 + α2B2) = α0B1 + α1B2 + α2B3

= α2α0B0 + (α0 + α2α1)B1 + (α1 + α2
2)B2,

which implies α0 = α1 = α2 = 0, i.e. B3 = 0, which is not generic. In conclusion,

generically χt has no VAR(1) representation. On the other hand, as argued in Section

3.4, p > 1 implies singularity of Zt−1, i.e. non-uniqueness of A in (8).

B Proof of Proposition 1

B.1 Preliminary

The convergence of v̂t to vt may seem a trivial consequence of the continuity of the

orthogonal projection. That is, convergence of χ̂t and Ẑt−1 to χt and Zt−1, respectively,

should imply convergence of P (χ̂t | Ẑt−1) to P (χt |Zt−1) and of v̂t = χ̂t − P (χ̂t | Ẑt−1)

to vt = χt − P (χt |Zt−1). However, while continuity of the orthogonal projection with

respect to the regressand, given the regressors, is fairly obvious, continuity with respect

to the regressors does not necessarily hold if the covariance matrix of the regressors tends

to a singular matrix. An elementary example is the following. Let Y and Xk, k ∈ N,

be zero-mean stochastic variables with E(X2
k) = 1, and αk a sequence of non-zero real

numbers such that αk → 0 as k → ∞. Then

P (Y |αkXk) = P (Y |Xk) = E(Y Xk)Xk,

so that limk→∞ P (Y |αkXk) = 0 if and only if limk→∞ E(Y Xk) = 0. On the other hand,

P (Y | lim
k→∞

αkXk) = P (Y | 0) = 0.
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The proof below shows that the assumptions of Proposition 1 ensure convergence of the

projection P (χ̂t | Ẑt−1) to P (χt |Zt−1) even when the covariance matrix of Ẑt−1 tends to

singularity.

B.2 Proof

Let us denote by d the rank of ΣZ
0 and partition Zt (possibly after reordering) as Zt =

(Ω′
t S ′

t)
′, where det

(
ΣΩ

0

)
̸= 0. We have St = NΩt and Zt = MΩt, where M = (Id N

′)′,

so that we can re-write the projection equation (8) as

χt = αΩt−1 + vt = P (χt|Zt−1) + vt, (B.1)

where P denotes the population projection and α = AM is unique.

The empirical counterpart of the above equation is given by the regression equation

(9), i.e.

χ̂t = ÂẐt−1 + v̂t = P̂ (χ̂t|Ẑt−1) + v̂t,

where P̂ denotes the sample projection.

In analogy with Ωt and St, let Ω̂t be the vector including the first d entries of Ẑt and

Ŝt be the vector including the remaining mp− d entries. Now, let us consider the sample

regression equation

Ŝt = P̂ (Ŝt|Ω̂t) + ϑ̂t = N̂Ω̂t + ϑ̂t, (B.2)

where Σ̂ϑ̂Ω̂
0 = 0. Let us write ϑ̂t as ϑ̂t = Hϑ̃t, where H is (mp− d)× d̃, d̃ ≤ mp− d, and

ϑ̃t is standardized by imposing

(T − 1)−1

T−1∑
t=1

ϑ̃tϑ̃
′
t = Id̃. (B.3)
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Note that, since ϑ̂t depends on n and T , H and d̃ depend on n and T as well. The

vectors Ω̂t and ϑ̃t are sample orthogonal, i.e. Σ̂Ω̂ϑ̃
0 = 0, see (B.2). Moreover, they span

the same linear space as the entries of Ẑt. Hence we can decompose the sample projection

P̂ (χ̂t|Ẑt−1) into the sum of the projections P̂ (χ̂t|Ω̂t−1) = α̂Ω̂t−1 and P̂ (χ̂t|ϑ̃t−1) = β̂ϑ̃t−1,

i.e.

χ̂t = ÂẐt−1 + v̂t = α̂Ω̂t−1 + β̂ϑ̃t−1 + v̂t, (B.4)

where Σ̂v̂Ω̂
1 = 0 and Σ̂v̂ϑ̃

1 = 0, so that, defining

Σ̂Ω̂
0,T−1 = (T − 1)−1

T−1∑
t=1

Ω̃tΩ̃
′
t,

we have α̂Σ̂Ω̂
0,T−1 = Σ̂χ̂Ω̂

1 and β̂ = Σ̂χ̂ϑ̃
1 . Equation (B.4) is the sample analogue of (B.1).

Subtracting (B.1) from (B.4) we get

χ̂t − χt = π̂t = (α̂Ω̂t−1 − αΩt−1) + β̂ϑ̃t−1 + (vt − v̂t). (B.5)

Since the left-hand side is Op(rn,T ) by Assumption A, in order to prove Proposition 1,

that is ∥v̂t − vt∥ = Op

(
max(rn,T , 1/

√
T )
)
, it is sufficient to show that the norms of the

first two terms on the right side are Op

(
max(rn,T , 1/

√
T )
)
.

Lemma 1.

(i) ||α̂− α|| = Op

(
max(rn,T , 1/

√
T )
)
;

(ii) ||α̂Ω̂t−1 − αΩt−1|| = Op

(
max(rn,T , 1/

√
T )
)
;

(iii) ||Σ̂vϑ̃
1 || = Op(1/

√
T );

(iv) ||β̂ϑ̃t−1|| = Op

(
max(rn,T , 1/

√
T )
)
.

Proof. (i). We have

α̂− α =
[(
α̂Σ̂Ω̂

0,T−1 − αΣΩ
0

)
− α̂

(
Σ̂Ω̂

0,T−1 − ΣΩ
0

)] (
ΣΩ

0

)−1
. (B.6)
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Now consider the first term of the difference in square brackets. Using (B.1) and (B.4), we

get α̂Σ̂Ω̂
0,T−1−αΣΩ

0 = Σ̂χ̂Ω̂
1 −ΣχΩ

1 =
(
Σ̂χΩ

1 − ΣχΩ
1

)
+Σ̂π̂Ω

1 +Σ̂χ̂ν̂
1 . Assumption B implies that

||Σ̂χΩ
1 −ΣχΩ

1 || = Op(1/
√
T ), while ||Σ̂π̂Ω

1 +Σ̂χ̂ν̂
1 || is Op(rn,T ) by Assumption A. Turning to

the second term, we have Σ̂Ω̂
0,T−1 − ΣΩ

0 =
(
Σ̂Ω

0,T−1 − ΣΩ
0

)
+ Σ̂ν̂Ω

0,T−1 + Σ̂Ω̂ν̂
0,T−1. Assumption

B implies that ||Σ̂Ω
0,T−1 − ΣΩ

0 || = Op(1/
√
T ), while ||Σ̂ν̂Ω

0,T−1 + Σ̂Ω̂ν̂
0,T−1|| is Op(rn,T ) by

Assumption A. Since ||α̂|| is Op(1), the norm of the factor in square brackets of (B.6) is

Op

(
max(rn,T , 1/

√
T )
)
. Since ||(ΣΩ

0 )
−1|| = O(1), (i) follows.

(ii). We have α̂Ω̂t−1 − αΩt−1 = α̂ν̂t−1 + (α̂ − α)Ωt−1. As ||α̂|| is Op(1), by Assumption

A the norm of the first term is Op (rn,T ). Moreover, by result (i) the norm of the second

term is Op

(
max(rn,T , 1/

√
T )
)

so that (ii) is proven.

(iii). Notice first that the entries of vt are linear combinations of the entries of ut, see

equation (7). But ut is independent of Ẑt−1, and therefore ϑ̃t−1, by Assumption A. Now,

let us consider the h-th row of the matrix Σ̂vϑ̃
1 , i.e. Σ̂vhϑ̃

1 =
∑T

t=2 vhtϑ̃
′
t−1/(T − 1). Let Ψh

1

be its population covariance matrix. As E
(
Σ̂vhϑ̃

1

)
= 0, we have

Ψh
1 =

T∑
t=2

T∑
τ=2

E(vhtϑ̃t−1ϑ̃
′
τ−1vhτ )/(T − 1)2.

Independence of vht and ϑ̃t−1 implies that

Ψh
1 =

T∑
t=2

T∑
τ=2

E(vhtvhτ )E(ϑ̃t−1ϑ̃
′
τ−1)/(T − 1)2.

But E(vhtvhτ ) = 0 for t ̸= τ , because of serial independence of ut, Assumption 1(a), so

that Ψh
1 =

∑T
t=2 E(v

2
ht)E(ϑ̃t−1ϑ̃

′
t−1)/(T − 1)2. Covariance stationarity of vht and (B.3)

imply that

Ψh
1 = E(v2ht) E

(
T∑
t=2

(ϑ̃t−1ϑ̃
′
t−1)/(T − 1)

)
= Id̃ E(v

2
ht)/(T − 1),
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so that, by Chebyshev’s inequality, each entry of Σ̂vhϑ̃
1 is Op(1/

√
T ) for all h. (iii) follows.

(iv). We have β̂ = Σ̂χ̂ϑ̃
1 = Σ̂χϑ̃

1 +Σ̂π̂ϑ̃
1 = αΣ̂Ωϑ̃

0 +Σ̂vϑ̃
1 +Σ̂π̂ϑ̃

1 . But Σ̂Ωϑ̃
0 = Σ̂Ω̂ϑ̃

0 − Σ̂ν̂ϑ̃
0 = −Σ̂ν̂ϑ̃

0 .

Hence β̂ = −αΣ̂ν̂ϑ̃
0 + Σ̂vϑ̃

1 + Σ̂π̂ϑ̃
1 . The norms of both the first and the third term are

Op(rn,T ) by Assumption A. The norm of the second term is Op(1/
√
T ) by (iii), hence

||β̂|| = Op

(
max(rn,T , 1/

√
T )
)
. Since ϑ̃t is Op(1), (iv) is proved. Q.E.D.

Proposition 1 follows from equation (B.5), Lemma 1 (ii) and Lemma 1 (iv).

C Proof of Proposition 2

Lemma 2. We have:

(i) ||Σ̂[11] − Σ[11]|| = Op

(
max(rn,T , 1/

√
T )
)
, where Σ[11] has been defined in (11);

(ii) ||Q̂−Q|| = Op

(
max(rn,T , 1/

√
T )
)
;

(iii) ||Q̂−1 −Q−1|| = Op

(
max(rn,T , 1/

√
T )
)
.

Proof. Let ψ̂t = v̂t − vt. We have Σ̂v̂
0 − Σv

0 = Σ̂ψ̂v
0 + Σ̂vψ̂

0 + Σ̂ψ̂
0 + (Σ̂v

0 − Σv
0). The norm

of the first three terms on the right-hand side is Op

(
max(rn,T , 1/

√
T )
)
, since so is ||ψ̂t||

by Proposition 1. The norm of the term in brackets is Op(1/
√
T ) by Assumption B.

Hence ||Σ̂v̂
0 − Σv

0|| = Op

(
max(rn,T , 1/

√
T )
)
. This proves (i). As for (ii), notice that the

entries of Q̂ and Q are the same elementary differentiable functions of the entries of Σ̂[11]

and Σ[11], respectively. As the denominators are bounded away from zero in probability,

result (ii) follows from (i). Since det Q̂ is bounded away from zero in probability, (iii) is

an immediate consequence of (ii). Q.E.D.

Proposition 2(a). ||ût − ut|| = Op

(
max(rn,T , 1/

√
T )
)
.

Proof. We have ût = Q̂−1v̂
[1]
t and ut = Q−1v

[1]
t . Hence ût − ut = Q̂−1(v̂

[1]
t − v

[1]
t ) +

(Q̂−1 − Q−1)v
[1]
t . The norm of the first term is Op

(
max(rn,T , 1/

√
T )
)

by Proposi-

tion 1 and the fact that ||Q̂−1|| is Op(1). Finally, the norm of the second term is also

Op

(
max(rn,T , 1/

√
T )
)

by Lemma 2 (iii). Q.E.D.
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Lemma 3. The following results hold:

(i) ||B̂0 −B0|| = Op

(
max(rn,T , 1/

√
T )
)
;

(ii) Let ϵ̂t = v̂
[2]
t − R̂ût, where R̂ is defined in (12). Then, ||ϵ̂t|| = Op

(
max(rn,T , 1/

√
T )
)
.

Proof. We have already shown, Lemma 2(ii), that ||Q̂ − Q|| = Op

(
max(rn,T , 1/

√
T )
)
.

Let us now show that ||R̂ − R|| = Op

(
max(rn,T , 1/

√
T )
)
. We have R̂ = Σ̂[21](Q̂

′)−1

and R = Σ[21](Q
′)−1. Hence R̂ − R = Σ̂[21]

(
(Q̂′)−1 − (Q′)−1

)
+ (Σ̂[21] − Σ[21])(Q

′)−1.

The norm of first term is Op

(
max(rn,T , 1/

√
T )
)

by Lemma 2 (iii). Moreover, in the

proof of Lemma 2 we have shown that ||Σ̂v̂
0 − Σv

0|| = Op

(
max(rn,T , 1/

√
T )
)
, so that

||Σ̂[21] − Σ[21]|| = Op

(
max(rn,T , 1/

√
T )
)
. As for (ii), we have

v̂
[2]
t − v

[2]
t = (R̂ût −Rut) + ϵ̂t = (R̂−R)ut + R̂(ût − ut) + ϵ̂t.

The norm of the left side is Op

(
max(rn,T , 1/

√
T )
)

by Proposition 1; the norm of the

second term on the right side is Op

(
max(rn,T , 1/

√
T )
)

by Proposition 2(a); the norm

of the term term on the right side is Op

(
max(rn,T , 1/

√
T )
)

by result (i). Hence ||ϵ̂t|| =

Op

(
max(rn,T , 1/

√
T )
)
. Q.E.D.

To prove Proposition 2(b) we introduce the companion form of our empirical VAR,

i.e.

Ẑt = D̂Ẑt−1 + ζ̂t, (C.1)

where

D̂ =



Â1 Â2 · · · Âp−1 Âp

Im 0m · · · 0m 0m

0m Im · · · 0m 0m

...
... . . . ...

...

0m 0m · · · Im 0m


, ζ̂t =



v̂t

0

...

0


.
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From (C.1), by recursion we get

Ẑt = D̂k+1Ẑt−k−1 +
k∑
j=0

D̂j ζ̂t−j, (C.2)

for any k ≥ 0. By taking the first m rows of (C.2) we get

χ̂t = Ĝk+1Ẑt−k−1 +
k∑
j=0

V̂j v̂t−j = Ĝk+1Ẑt−k−1 +
k∑
j=0

V̂jB̂0ût−j +
k∑
j=0

V̂j

 0

ϵ̂t−j

 , (C.3)

where Ĝk is the matrix formed by the first m rows of D̂k and V̂j is the m × m upper-

left sub-matrix of D̂j. Notice that Ĝ1 = Â, V̂0 = Im and V̂1 = Â1. Notice also that

V̂j, j = 0, . . . , k is the j-th matrix coefficient of Â(L)−1, so that B̂j = V̂jB̂0. Finally,

evaluating (C.3) for k − 1 and subtracting from (C.3), we get

ĜkẐt−k = Ĝk+1Ẑt−k−1 + B̂kût−k + V̂k

 0

ϵ̂t−k

 , (C.4)

which, letting Ĝ0 = (Im 0), holds for any k ≥ 0 and for k = 0 reduces to χ̂t = ÂẐt−1+ v̂t.

Similarly, from the population VAR (8) we get

χt = Gk+1Zt−k−1 +
k∑
j=0

Vjvt−j = Gk+1Zt−k−1 +
k∑
j=0

VjB0ut−j (C.5)

where G1 = A, V0 = Im and V1 = A1. We have already observed in the main text that A

is not necessarily unique, so that Gk+1 and Vj, j = 1, . . . , k, are not necessarily unique.

However, post-multiplying by u′t−k and taking expected values we get Σχu
k = VkB0, so

that VkB0 is unique and equals Bk for any k ≥ 0. Hence Gk+1Zt−k−1 = Gk+1MΩt−k−1 is
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unique, so that Gk+1M is also unique for any k. From (C.5) we get

GkZt−k = Gk+1Zt−k−1 −Bkut−k. (C.6)

Lemma 4. For any k ≥ 0,

(i) ||ĜkẐt−k −GkZt−k|| = Op

(
max(rn,T , 1/

√
T )
)
;

(ii)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣V̂k
 0

ϵ̂t−k


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = Op

(
max(rn,T , 1/

√
T )
)
;

(iii) ||B̂k −Bk|| = Op

(
max(rn,T , 1/

√
T )
)
, which is Proposition 2(b).

Proof. We proceed by induction on k. For k = 0, ||ĜkẐt−k−GkZt−k|| reduces to ||χ̂t−χt||,

which is Op(rn,T ) by Assumption A. Moreover, (ii) holds by Lemma 3(ii) and (iii) holds

by Lemma 3(i). Hence (i)-(iii) are true for k = 0. Let us now show that, if (i)-(iii) are

true for k = k̄, they are true for k = k̄ + 1. Subtracting (C.6) from (C.4) we get

Ĝk̄Ẑt−k̄ −Gk̄Zt−k̄ = (Ĝk̄+1Ẑt−(k̄+1) −Gk̄+1Zt−(k̄+1))− (B̂k̄ût−k̄ −Bk̄ut−k̄)− V̂k̄

 0

ϵ̂t−k̄

 .

(C.7)

By the inductive assumption the term on the left side, the second and third terms on the

right are Op

(
max(rn,T , 1/

√
T )
)
, so that the same holds for the first term on the right

and (i) is true for k = k̄ + 1. Next, let us replace k̄ with k̄ + 1 in (C.7), postmultiply by

ϵ̂′
t−(k̄+1)

and average over t = k+2, . . . , T + k+1. Using sample orthogonality of ϵ̂t−(k̄+1)

with both ût−(k̄+1) and Ẑt−(k̄+2) we get

Ĝk̄+1Σ̂
Ẑϵ̂
0 −Gk̄+1Σ̂

Zϵ̂
0 = (Ĝk̄+2Ẑ0 −Gk̄+2Z0)ϵ̂

′
0/T −Gk̄+2Σ̂

Zϵ̂
−1 +Bk̄+1Σ̂

uϵ̂
0 − V̂k̄+1

 0

Σ̂ϵ̂
0

 .

The norm of the left side is Op

(
max(rn,T , 1/

√
T )
)

because, as proved above, (i) holds
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for k = k̄ + 1. Let us now consider the first term on the right side. Going back to

(C.1), we see that D̂kẐt−k = D̂k+1Ẑt−k−1 + D̂kζ̂t−k, where the terms on the right side

are sample orthogonal and the term on the left side is bounded in probability for k = 0.

Hence ||D̂kẐt−k|| is Op(1) for any k and therefore ||Ĝk̄+2Ẑ0|| is Op(1). Of course, the same

holds for Gk̄+2Z0 and ϵ̂0, so that the norm of the first term on the right side is Op(1/T ).

Coming to the second term, let us observe that it is equal to Gk̄+2MΣ̂ν̂ϵ̂
−1, since Zt =MΩt,

see (B.1), Ωt = Ω̂t − ν̂t and ϵ̂t−(k̄+1) is sample orthogonal to Ω̂t−(k+2). Its norm is then

Op(rn,T ) since so is the norm of ν̂t by Assumption A, and the norm of Gk̄+2M , which,

as observed above, is unique, is O(1). Letting γ̂t = ût − ut, using sample orthogonality

of ϵ̂t−(k̄+1) with ût−(k̄+1), the third term on the right side is equal to −Bk̄+1Σ̂
γ̂ϵ̂
0 , whose

norm is Op

(
max(rn,T , 1/

√
T )
)

since so is the norm of γ̂t by Proposition 2(a). Hence the

norm of the fourth term is also Op

(
max(rn,T , 1/

√
T )
)
, which proves that (ii) is true for

k = k̄ + 1.

Lastly, let us again replace k̄ with k̄ + 1 in (C.7) and postmultiply by û′
t−(k̄+1)

and

average over t = k + 2, . . . , T + k + 1. Using sample orthogonality of ût−(k̄+1) with both

ϵ̂t−(k̄+1) and Ẑt−(k̄+2) we get

Ĝk̄+1Σ̂
Ẑû
0 −Gk̄+1Σ̂

Zû
0 = (Ĝk̄+2Ẑ0 −Gk̄+2Z0)û0/T −Gk̄+2Σ̂

Zû
−1 − (B̂k̄+1 −Bk̄+1)−Bk̄+1Σ

uγ̂
0 .

The norm of the left side is Op

(
max(rn,T , 1/

√
T )
)

since (i) holds for k = k̄+1. The norm

of the first term on the right side is Op(1/T ) for the same argument used above. The

norm of the second term is Op

(
max(rn,T , 1/

√
T )
)

for the same argument used above for

−Gk̄+2Σ̂
Zϵ̂
−1. The norm of the fourth term is Op

(
max(rn,T , 1/

√
T )
)

since so is the norm

of γ̂t by Proposition 2(a). Hence (iii) holds for k = k̄ + 1. In conclusion (i), (ii) and (iii)

are true for any k ≥ 0. Q.E.D.
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D Proof of Proposition 3

The proof below partly follows the proof of Proposition P in Forni et al. (2009), Appendix.

However, here we need the consistency of χ̂it, which is not needed in that paper. Thus,

after some common lemmas, the proof here takes a different route.

To begin, let us introduce some additional notation and recall a standard result. If

A is a symmetric matrix, we denote by µj(A) the j-th eigenvalue of A in decreasing

order. Given a matrix B, we denote as above by ∥B∥ the spectral norm of B, thus

∥B∥ =
√
µ1(BB′), which is the euclidean norm if B is a row matrix. We will make use

of the Weyl inequality: letting A and B be two s× s symmetric matrices,

|µj(A+B)− µj(A)| ≤
√
µ1(B2) = ∥B∥, j = 1, . . . , s. (D.1)

Lemma 5. (Consistency of the covariance matrices). Let, as in Definition 2, Im be the

n×m matrix having the identity matrix Im in the first m rows and 0 elsewhere. For any

k and any (fixed) m we have:

(i) 1
n
∥Γ̂xk − Γxk∥ = Op

(
1√
T

)
;

(ii) 1√
n
∥I ′

m

(
Γ̂xk − Γxk

)
∥ = Op

(
1√
T

)
;

(iii) 1√
n
∥I ′

m

(
Γ̂χk − Γχk

)
∥ = Op

(
1√
T

)
;

(iv) 1√
n
∥I ′

mΓ̂
χξ
k ∥ = Op

(
1√
T

)
;

(v) ∥I ′
m(Γ̂

χ
k − Γχk)Im∥ = ∥Σ̂χ

k − Σχ
k∥ = Op

(
1√
T

)
;

(vi) 1
n
∥Γ̂xk − Γχk∥ = Op

(
max

(
1
n
, 1√

T

))
;

(vii) 1√
n
∥I ′

m

(
Γ̂xk − Γχk

)
∥ = Op

(
max

(
1√
n
, 1√

T

))
.

Proof. We have

µ1

(
(Γ̂xk − Γxk)(Γ̂

x
k − Γxk)

′
)
≤ trace

(
(Γ̂xk − Γxk)(Γ̂

x
k − Γxk)

′
)
=

n∑
i=1

n∑
j=1

(γ̂xk,ij − γxk,ij)
2.
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By Assumption 7(a), we have 1
n2

∑n
i=1

∑n
j=1 E(γ̂

x
k,ij − γxk,ij)

2 < ρ
T

for all positive integers

T , so that 1
n2∥Γ̂xk − Γxk∥2 = Op

(
1
T

)
by Markov inequality. Result (i) follows. Coming to

(ii), we see that, by the same argument, the squared norm of I ′
m

(
Γ̂xk − Γxk

)
is bounded

above by
∑m

i=1

∑n
j=1(γ̂

x
k,ij−γxk,ij)2, which is Op(n/T ). Statement (ii) follows. Results (iii)

and (iv) are obtained in the same way, by using Assumptions 7(b) and 7(c), respectively.

As for (v), the same argument shows that the squared norm of I ′
m(Γ̂

χ
k−Γχk)Im is bounded

above by
∑m

i=1

∑m
j=1(γ̂

χ
k,ij−γ

χ
k,ij)

2, which is Op(1/T ). The result follows. Let us now come

to (vi) and (vii). Orthogonality of χt and ξt at all leads and lags, Assumption 4(b), implies

that Γxk = Γχk+Γξk. Hence Γ̂xk−Γχk = Γ̂xk−Γxk+Γξk , so that 1
n
∥Γ̂xk−Γχk∥ ≤ 1

n
∥Γ̂xk−Γxk∥+ 1

n
∥Γξk∥.

The first term on the right side is Op

(
1√
T

)
by result (i). The second is bounded by 1

n
µξ1,

which is O
(
1
n

)
by Assumption 6(b). This proves (vi). Finally, statement (vii) follows

from the same argument, with result (ii) in place of result (i), n in place of n2 and 1/
√
n

in place of 1/n. Q.E.D.

Lemma 6. (Consistency of the normalized eigenvalues). Let Mχ and M̂x be the r × r

diagonal matrices having on the diagonal the eigenvalues µχ1 , . . . , µχr and µ̂x1 , . . . , µ̂
x
r , re-

spectively, in decreasing order of magnitude. Then,

(i) µ̂xj /n− µxj /n = Op

(
1/
√
T
)

for any j;

(ii) µ̂xj /n− µχj /n = Op

(
max(1/n, 1/

√
T )
)

for any j;

(iii) ∥Mχ/n∥ = O(1); there exist n such that, for n > n, Mχ/n is invertible and

||(Mχ/n)−1|| = O(1);

(iv) For any n ≥ n̄ and η > 0, there exists τ(η, n) such that, for T ≥ τ(η, n), M̂x

n
is

invertible with probability larger than 1 − η; moreover, if
(
M̂x

n

)−1

exists for n = n∗ and

T = T ∗, it exists for all n > n∗ and T > T ∗;

(v) ∥M̂x/n∥ and
∣∣∣∣∣∣∣∣(M̂x/n

)−1
∣∣∣∣∣∣∣∣ are Op(1).

Proof. Setting A = Γx0 , B = Γ̂x0−Γx0 and applying (D.1) we get 1
n
|µ̂xj−µxj | ≤ n−1∥Γ̂x0−Γx0∥,

which is Op

(
1/
√
T
)

by Lemma 5(i). This proves (i). Setting A = Γχ0 , B = Γ̂x0 − Γχ0 and
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applying again (D.1) we get 1
n
|µ̂xj − µχj | ≤ n−1∥Γ̂x0 − Γχ0∥, which is Op

(
max(1/n, 1/

√
T )
)

by Lemma 5(vi). This establishes (ii). As for (iii), by Assumption 6(a) there exists n

such that, for n ≥ n̄, µχr
n
> cr > 0, so that Mχ/n is invertible and ||(Mχ/n)−1|| < 1/cr.

Moreover, by the same assumption µχ1/n is asymptotically bounded by c1. This proves

(iii). As for (iv), by (D.1), µxr ≥ µχr . Hence, for some n and n > n, µxr/n is bounded

below by cr > 0. It follows that det(M̂x/n) is bounded away from zero in probability

as T → ∞. The last part of statement (iv) follows from the fact that the rank of the

observation matrix, and therefore that of Γ̂x0 , is non-decreasing in n and T . Turning to

(v), boundedness in probability of ∥M̂x

n
∥ and

∣∣∣∣∣∣∣∣(M̂x

n

)−1
∣∣∣∣∣∣∣∣ follows from statements (ii) and

(iii). This concludes the proof. Q.E.D.

Lemma 7. Let W χ be the n× r matrix having on column j, j = 1, . . . , r, the unit-norm

eigenvector of Γχ0 corresponding to the eigenvalue µχj . We have

(i) ∥
√
nI ′

mW
χ∥ = O(1);

(ii) ∥W χ′Ŵ x M̂x

n
− Mχ

n
W χ′Ŵ x∥ = Op

(
max(1/n, 1/

√
T )
)
;

(iii) ∥Ŵ x′W χW χ′Ŵ x − Ir∥ = Op

(
max(1/n, 1/

√
T )
)
.

Proof. Let us notice first that ζ =
∣∣∣∣∣∣I ′

mW
χ (Mχ)1/2

∣∣∣∣∣∣ = ∥I ′
mΓ

χ
0Im∥1/2 = ∥Σχ

0∥1/2 does not

depend on n. We have

∥
√
nI ′

mW
χ∥ =

∣∣∣∣∣
∣∣∣∣∣√nI ′

mW
χ

(
Mχ

n

)1/2(
Mχ

n

)−1/2
∣∣∣∣∣
∣∣∣∣∣ ≤ ζ

∣∣∣∣∣
∣∣∣∣∣
(
Mχ

n

)−1/2
∣∣∣∣∣
∣∣∣∣∣ ,

which is O(1) by Lemma 6(iii). Turning to (ii), we have ∥W χ′Ŵ x M̂x

n
− Mχ

n
W χ′Ŵ x∥ =

∥ 1
n
W χ′

(
Γ̂x0 − Γχ0

)
Ŵ x∥ ≤ 1

n
∥Γ̂x0 −Γχ0∥. Statement (ii) then follows from Lemma 5(vi). To

prove (iii), let

a = Ŵ x′W χW χ′Ŵ x = Ŵ x′W χW χ′Ŵ x M̂x

n

(
M̂x

n

)−1

,

b = Ŵ x′W χMχ

n
W χ′Ŵ x

(
M̂x

n

)−1

= 1
n
Ŵ x′Γχ0Ŵ

x
(
M̂x

n

)−1

,

c = 1
n
Ŵ x′Γ̂x0Ŵ

x
(
M̂x

n

)−1

= M̂x

n

(
M̂x

n

)−1

= Ir.
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We have ∥a− c∥ ≤ ∥a− b∥+ ∥b− c∥. Both terms are Op

(
max(1/n, 1/

√
T )
)
, the first by

statement (ii) and Lemma 6(v), the second by Lemma 5(vi) and Lemma 6(v). Q.E.D

Lemma 8. There exist diagonal r×r matrices Ĵr, depending on n and T , whose diagonal

entries are equal to either 1 or −1, such that

(i) ∥Ŵ x′W χ − Ĵr∥ = Op

(
max

(
1/n, 1/

√
T
))

;

(ii) ∥
√
nI ′

mŴ
x −

√
nI ′

mW
χĴr∥ = Op

(
max

(
1/
√
n, 1/

√
T
))

.

Proof. The reason why we need the matrices Ĵr is simply that the normalized eigenvectors

corresponding to distinct eigenvalues are only unique up to the sign. Let us denote by

ŵxj and wχj the j-th columns of Ŵ x and W χ respectively. By taking a single entry of the

matrix on the left side of of Lemma 7(ii) we get

1

n

(
µ̂xj − µχi

)
wχ′j ŵ

x
i = Op

(
max

(
1

n
,

1√
T

))
,

i ≤ r, j ≤ r. Now, for j ̸= i, 1
n

(
µ̂xj − µχi

)
is bounded away from zero in probability, since

µχi /n and µχj /n are asymptotically distinct by Assumption 6(a), while µ̂xj /n tends to µχj /n

in probability by Lemma 6(ii). Hence, by dividing both sides of the above equation by

n−1(µ̂xj −µ
χ
i ), we see that the off-diagonal terms of Ŵ x′W χ are Op

(
max

(
1
n
, 1√

T

))
. Turn-

ing to the diagonal terms, let us first observe that ŵx′i W χW χ′ŵxi = 1+Op

(
max

(
1
n
, 1√

T

))
by Lemma 7(iii). Since

ŵx′i W
χW χ′ŵxi = (ŵx′i w

χ
i )

2
+

r∑
j=1
j ̸=i

(
ŵx′i w

χ
j

)2
= (ŵx′i w

χ
i )

2
+Op

(
max

(
1

n
,

1√
T

))
,

then 1−(ŵx′i w
χ
i )

2 = Op

(
max

(
1
n
, 1√

T

))
.Hence (1− |ŵx′i w

χ
i |) (1 + |ŵx′i w

χ
i |) = Op

(
max

(
1
n
, 1√

T

))
,

so that 1− |ŵx′i w
χ
i | = Op

(
max

(
1
n
, 1√

T

))
. Statement (i) follows. Turning to (ii), set

a =
√
nI ′

mW
χĴr,

b =
√
nI ′

mW
χW χ′Ŵ x =

√
nI ′

mW
χW χ′Ŵ x M̂x

n

(
M̂x

n

)−1

,
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c =
√
nI ′

mW
χMχ

n
W χ′Ŵ x

(
M̂x

n

)−1

= 1√
n
I ′
mΓ

χ
0Ŵ

x
(
M̂x

n

)−1

,

d = 1√
n
I ′
mΓ̂

x
0Ŵ

x
(
M̂x

n

)−1

=
√
nI ′

mŴ
x.

Notice that ∥
√
nI ′

mW
χ∥ is O(1) by Lemma 7(i), so that we can apply result (i) to get ∥a−

b∥ = Op

(
max

(
1
n
, 1√

T

))
, and Lemmas 7(ii) and 6(v) to get ∥b−c∥ = Op

(
max

(
1
n
, 1√

T

))
.

Finally, Lemmas 5(vii) and 6(v) ensure that ∥c− d∥ = Op

(
max

(
1√
n
, 1√

T

))
. This estab-

lishes (ii). Q.E.D.

Lemma 9. (Consistency of the eigenvectors). We have

(i) ∥Ŵ x′ − ĴrW χ′∥ = Op

(
max

(
1/
√
n, 1/

√
T
))

;

(ii) ∥
√
n(I ′

mŴ
xŴ x′ − I ′

mW
χW χ′)∥ = Op

(
max

(
1/
√
n, 1/

√
T
))

.

Proof. Let as before ŵxj and wχj be the j-th columns of Ŵ x and W χ, respectively,

and let Ĵr(j, j) be the j-th diagonal element of Ĵr, which is either 1 or −1. We

have ||ŵx′j − Ĵr(j, j)wχ′j ||2 = 2 − ŵx′j w
χ
j Ĵr(j, j) − wχ′j ŵ

x
j Ĵr(j, j). By Lemma 8(i), the

last two terms are equal to 1 + Op

(
max

(
1/n, 1/

√
T
))

. Hence ||ŵx′j − Ĵr(j, j)wχ′j || =

Op

(
max

(
1/
√
n, 1/

√
T
))

. Statement (i) follows. As for (ii), set

a =
√
n(I ′

mŴ
xŴ x′ − I ′

mW
χW χ′);

b =
√
nI ′

mW
χĴr(Ŵ x′ − ĴrW χ′);

c =
√
n(I ′

mŴ
x − I ′

mW
χĴr)Ŵ x′.

We have a = b + c, so that ∥a∥ ≤ ∥b∥ + ∥c∥. Let us consider firstly b and observe that

∥
√
nI ′

mW
χ∥ is O(1) by Lemma 7(i). Hence ∥b∥ is Op

(
max

(
1/
√
n, 1/

√
T
))

by result (i).

Moreover, ∥c∥ is Op

(
max

(
1/
√
n, 1/

√
T
))

by Lemma 8(ii). Q.E.D.

We are now ready to prove Proposition 3, reported here for convenience, with rn,T =

max(1/
√
n, 1/

√
T )) and therefore 1/rn,T = min(

√
n,

√
T ).

Proposition 3. Properties of the principal component estimator.

(a) ∥π̂t∥ = ||χ̂t − χt|| = Op(max(1/
√
n, 1/

√
T ));

(b) ||Σ̂χ
k − Σχ

k || = Op

(
1/
√
T
)
, for any k.
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Proof. Notice first that statement (b) has already be proved, see Lemma 5(v). Regarding

(a), let us firstly observe that, for n large enough, the principal components of χχχnt,

i.e. the entries of W χ′χχχnt, form a basis for the linear space spanned by the factors Fjt,

j = 1, . . . , r. Hence the linear projection of χt onto the space spanned by such principal

components is equal to χt and the residual is zero. This projection is I ′
mW

χW χ′χχχnt;

hence χt = χχχmt = I ′
mW

χW χ′χχχnt. On the other hand, our estimator of χt is defined as

χ̂t = I ′
mŴ

xŴ x′xxxnt. Thus

∥χ̂t − χt∥ =
∣∣∣∣∣∣(I ′

mŴ
xŴ x′xxxnt − I ′

mW
χW χ′xxxnt

)
+ I ′

mW
χW χ′ξξξnt

∣∣∣∣∣∣
= ∥a+ b∥ ≤ ∥a∥+ ∥b∥.

Regarding a, we have ∥a∥ ≤ ∥
√
n(I ′

mŴ
xŴ x′−I ′

mW
χW χ′)∥ ∥xxxnt/

√
n∥. Now, ∥xxxnt/

√
n∥2 =∑n

i=1 x
2
it/n is Op(1), since its expected value is

(trace Γx0)/n = (trace Γχ0 )/n + (trace Γξ0)/n ≤
r∑
j=1

µχj /n+ µξ1,

which is bounded by Assumption 6. Hence a is Op

(
max

(
1/
√
n, 1/

√
T
))

by Lemma 9(ii).

As for b, we have ∥I ′
mW

χW χ′ξξξnt∥ ≤ ∥I ′
mW

χ∥ ∥W χ′ξξξnt∥. The first factor is O(1/
√
n) by

Lemma 7(i). The second is Op(1), since the norm of its covariance matrix, i.e. W χ′Γξ0W
χ,

is bounded by µξ1 ≤ ℓ (see Assumption 6(b)). Hence ∥b∥ = O(1/
√
n). Statement (a)

follows. Q.E.D.

E Difficulties with m = q + 1: an example

The fact that χ̂t is not exactly singular may produce serious consequences: it is possible

that ut can be recovered using χt, but not using χ̂t. To see this, consider the following
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example:

χ1t = ut−1

χ2t = a2ut + ut−1.

Here B(L) is zeroless unless a2 = 0. If a2 ̸= 0,

1

a2
(χ2t − χ1t) = ut,

so that ut lies in the econometrician’s information set. Now suppose that χ̂2t = χ2t + ϵt,

ϵt being a small residual idiosyncratic term. For simplicity, assume that χ̂1t is estimated

without error, i.e. χ̂1t = χ1t. The above expression becomes

1

a2
(χ̂2t − χ̂1t) = ut +

1

a2
ϵt.

Now if |a2| is large, we can still get ut with a good approximation; but as |a2| approaches

0 (i.e. the non-zeroless region), the error grows without bound. For instance, if ut is unit

variance and ϵt has standard deviation 0.01, with a2 = 1 the error is negligible, but with

a2 = 0.01 the error has the same size as ut.

The above example and discussion sheds some light on the fact, observed in Section

2.2, that a small measurement error may have effects as large as those shown in Figure

3, Panel (c). Our simulation exercises in the Online Appendix, Section F, suggest that,

with m = q + 1, cases like the one of the example above may occur.

Clearly, the larger is m, the more unlikely they are. For instance, in the above

example, if we have a third common component χ3t = a3ut+ut−1, the non-zeroless region

is defined by a2 = a3 = 0, so that we only have problems when both |a2| and |a3| are

close to 0. In our simulations reported in the Online Appendix, Section F.2, problematic

cases no longer occur when m is larger than q + 1.

23



F Simulation details and additional simulation results

F.1 The factor model used for the simulations

Here we describe the factor model used for Simulations 2 and 3 of Section 4 and the

additional simulation described below. Firstly we rewrite model (1) in static-factor form.

Let

Ft = (kt ua,t uτ,t uτ,t−1 uτ,t−2)
′.

The 5-dimensional vector Ft has the following singular VAR(1) representation:



kt

ua,t

uτ,t

uτ,t−1

uτ,t−2


=



α 0 −δ 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0





kt−1

ua,t−1

uτ,t−1

uτ,t−2

uτ,t−3


+



1 −δθ

1 0

0 1

0 0

0 0



ua,t
uτ,t

 . (F.1)

Defining χt = (at kt τt)
′, we have

xt = ΛFt + ξt (F.2)

where

Λ =


0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

 .

We generate a vector zt including 100 additional time series (T = 200) as

zt = ΛzFt + ξzt (F.3)
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where Λz is the 100 × 5 matrix matrix of the loadings. The entries of Λz are generated

independently from a standard normal distribution. Hence xxxnt = (x′t z
′
t)

′ and ξξξnt =

(ξt
′ ξzt

′)′. We generate the measurement errors ξξξnt assuming that ξξξnt ∼ N(0, σi) where σi is

uniformly distributed in the interval (0, 0.5), so that different variables have measurement

errors of different size (on average, the idiosyncratic components account for about 11%

of total variance).

F.2 Changing m and the variable specification

In Simulation 4, we assess the performance of the CC-SVAR for different values of m. We

estimate the common components using the true number of factors, i.e. r = 5. We run:

(a) a VAR(4) with the common components of capital and taxes and the first principal

component (m = 3); (b) a VAR(1) with the common components of capital and taxes

and the first two principal components (m = 4); (c) a VAR(2) with the same variables

(again m = 4); (d) a VAR(1) with the common components of capital and taxes and

the first three principal components (m = 5). As above, we identify the tax shock by

imposing that it is the only one affecting cumulated taxes in the long run. We repeat the

exercise for 1000 data sets.

Figure 9 reports the results. The red dashed lines are the theoretical impulse response

functions. The solid lines are the mean point estimates (mean over the different datasets)

and the grey areas represent the 16th and 84th percentile of the point-estimate distribu-

tion. The results for specification (a) are reported in Panel (a). We see that there is a

sizable bias and a large variability of the results, especially for taxes. This disappointing

result is discussed below. Here we only observe that the number of lags included in the

VAR is not responsible for it. Indeed, a similar result (not shown) is obtained with 8 lags

instead of 4.

Panel (b) and (c) show results for specifications (b) and (c), respectively. The differ-
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Panel (a)

Panel (b)

Panel (c)

Panel (d)

Figure 9: Simulation 4. The choice of m. Estimated IRFs for the tax shock. The red
dashed lines are the theoretical IRFs. The solid lines represent the mean (across 1000
simulated datasets) of the point estimates. The grey areas represent the 16th and 84th
percentiles of the point estimate distribution. Panel (a): CC-SVAR(4) with Capital,
Taxes and the first principal component (m = 3). Panel (b): CC-SVAR(1) with Capital,
Taxes and the first 2 principal components (m = 4). Panel (c): CC-SVAR(2) with
Capital, Taxes and the first 2 principal components (m = 4). Panel (d): CC-SVAR(1)
with Capital, Taxes and the first 3 principal components (m = 5).

ence is the number of lags included: just one lag in Panel (b) and two lags in Panel (c).

Comparing the two panels, it is seen that when m = 4 we need two lags in the VAR to get

good estimates of the impulse response functions. Panel (d) confirms that, with m = 5,

just one lag is enough, consistently with equation (F.1). In both Panels (c) and (d), the

dynamics are estimated extremely well, with the mean impulse response functions almost

overlapping with the theoretical ones. Notice that, with the more parsimonious model in

(d), the variability of the estimates is somewhat smaller at large lags. In the present case
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the advantage of specification (d) is modest, since T is relatively large and the number of

parameters to estimate is small even for specification (c). But for shorter data sets or data

sets requiring a larger number of parameters, like the ones of the empirical applications

in Section 5, the advantage of a more parsimonious specification could be important.

To shed some light on the disappointing result obtained withm = 3, we run Simulation

5, analyzing what happens when changing the variables included in the CC-SVAR, for

different values of m. For this exercise, we generate just one data set. As above, we use

five principal components to estimate the common components.

To begin, we set m = 3. Then we estimate one hundred of different CC-SVAR(4)

specifications, including the common components of capital and taxes, plus the common

component of the 3 + i-th variable, i = 1, ..., 100. The result is reported in Figure 10,

Panel (a). The red lines are the 100 estimated impulse response functions, the black lines

are the true impulse response functions. We see that there are several specifications which

produce bad estimates, despite the fact that we have m = q+1. We repeat the exercise by

using the true common components in place of the estimated ones. The result is reported

in Panel (b). With the true common components the results are good, consistently with

the zeroless assumption (SDFM7). Hence the bad results of Panel (a) are due to the

fact that the estimated common components are close to singular, though not exactly

singular. When the specification is such that B(L) is close to the non-zeroless region, the

small idiosyncratic residual, which is still present in the estimated common components,

produces large estimation errors.

Panels (c) and (d) show results for m = 4 and m = 5, respectively. We use four lags as

before. In Panel (c) we include the same (estimated) common components of Panel (a),

plus the first principal component as the fourth variable, equal for all specifications. We

see that in this case the problem arising with m = 3 is solved. This is because matrices

B(L) very close to the non-zeroless region are much more unlikely, and actually never
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Panel (a)

Panel (b)
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Figure 10: Simulation 5. The choice of ψ with m < r and m = r. Estimated IRFs for the
tax shock, for a single simulated data set. The black lines are the theoretical IRFs. The
red lines are the CC-SVAR estimates obtained with different variable specifications. Panel
(a): CC-SVAR(4) with Capital, Taxes and a third variable, changing across specifications
(m = 3). Panel (b): same as Panel (a) with the true common components in place of the
estimated ones. Panel (c): CC-SVAR(4) with Capital, Taxes the changing variable and
the first principal component (m = 4). Panel (d): CC-SVAR(4) with Capital, Taxes, the
changing variable and the first 2 principal components (m = 5).

occur for this data set.12

Finally, in Panel (d) we have m = 5: the common components of capital and taxes,

the third common component, changing across specifications, plus the first two principal

components, which are kept fixed for all specifications. Consistently with the analysis

in Section 3.7, all specifications produce exactly the same result, so that they produce a

single line.
12Indeed, we did not find bad specifications for m = 4 even for several other data sets, not shown here.
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Panel (b)
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Figure 11: Simulation 6. The choice of r̂. Results for m = r̂ < r and m = r̂ > r.
Estimated IRFs for the tax shock. The red dashed lines are the theoretical IRFs. The
solid lines represent the mean (across 1000 simulated datasets) of the point estimates.
The grey areas represent the 16th and 84th percentiles of the point estimate distribution.
Panel (a): CC-SVAR(2) with r̂ = m = 2 (Capital and Taxes). Panel (b): CC-SVAR(2)
with r̂ = m = 3 (Capital, Taxes and the first principal component). Panel (c): CC-
SVAR(2) with r̂ = m = 7 (Capital, Taxes and the first 5 principal components).

F.3 Changing r

In Simulation 6 we suppose that r is not known and use the criterion (E5), see Section

3.6, to determine the final value of r̂. We try some values of r̂ between 2 and 7. In all

cases we set m = r̂. For m = r̂ = 2 we estimate a CC-SVAR(2) including the common

components of capital and taxes. For m = r̂ = 3 we estimate a CC-SVAR(2) including

the common components of capital and taxes and the first principal component. For

m = r̂ = 7 we estimate a CC-SVAR(2) including the common components of capital and

taxes and the first five principal components. As usual, we repeat the exercise for 1000

data sets.

Figure 11 shows the results. In panels (a) and (b), corresponding to m = r̂ = 2 and

m = r̂ = 3 respectively, the impulse response functions are badly estimated, whereas
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for m = r̂ = 7, panel (c), the results are pretty good, and very similar to those already

obtained for m = r̂ = 5. Thus, with our simulated data, the criterion (E5) to determine

the final value of r̂ produces the correct result.

F.4 Cointegration

In Simulation 7 we show results about cointegration. The model of equation (1) is mod-

ified in such a way to have cointegration. We assume now that technology at follows

the random walk model at = at−1 + ua,t and taxes are affected with one period of delay,

τt = uτ,t−1. The models is


∆at

∆kt

τt

 =


0 1

−δ(1− L)
1− αL

1
1− αL

L 0


uτ,t
ua,t

 = B(L)ut. (F.4)

Moreover, we use a slightly different parametrization to emphasize the problems aris-

ing from cointegration. We now set δ = 0.9 and α = 0.8. We generate 1000 data sets

with T = 1000, without measurement errors. First, we estimate a bivariate VAR(2) with

∆at and ∆kt, and identify the technology shock by imposing that it is the only shock

having long-run effect on technology. This model is not affected by non-fundamentalness,

but is affected by cointegration problems, since the upper 2 × 2 sub-matrix in (F.4) is

singular for L = 1, i.e. the VMA of the two variables in growth rates is non-invertible.

Then we estimate a VAR(2) model with ∆at, ∆kt and τt. Notice that this model is

singular, so that, apart special cases, it is not affected by cointegration problems, as

discussed in the main text. Finally, we add 200 artificial common components, obtained

by combining randomly the 4 factors technology, capital, taxes and the tax shock. To

simulate measurement errors we add to all common components independent unit vari-
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Panel (a)

Panel (b)
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Figure 12: Simulation 7. Cointegration. Estimated IRFs for the technology shock. The
red dashed lines are the theoretical IRFs. The solid lines represent the mean (across
1000 simulated datasets) of the point estimates. The grey areas represent the 16th and
84th percentiles of the point estimate distribution. Panel (a): VAR(2) with Capital and
Technology, without measurement error. Panel (b): VAR(2) with Capital, Technology
and Taxes, without measurement error. Panel (c): Large data set with measurement
errors. CC-SVAR(2) with Capital, Technology, Taxes and the first principal components.

ance white noises and estimate a CC-SVAR(2) with the estimated common components

of technology, capital, taxes and an additional variable (so that m = r = 4).

The results are shown in Figure 12. Panel (a) shows results for the bivariate VAR:

the long-run response of capital is underestimated by about 30% on average. Panel (b)

shows results for the trivariate singular VAR. Since B(L) is zeroless, we have a VAR for

the first differences and cointegration problems disappear. Panel (c) shows results for the

third model, the almost singular VAR obtained by estimating the common components

of 4 variables. The perfomance is similar to the one of the previous model.
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G Empirical application: robustness

To assess the robustness of the results to changes of the number of factors, we repeat

the CC-SVAR analysis using m = r̂ = 7, 8, 9, 10, 11 common components. To complete

information, we include in the VAR the five common components plus the first r̂ − 5

principal components. The results are displayed in Figure 13. We see that the results

obtained with different values of r̂ are very similar to each other for all identification

schemes.

Figure 13: US monthly data. The IRFs of a monetary policy shock. CC-SVAR(6) with m = r, using
different values of r. Black dotted line: r = 6. Blue dashed line: r = 8. Red solid line: r = 10.
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