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1 Introduction

The papers by Oster (2017) (henceforth Oster) and Pei, Pischke and Schwandt (2017) (henceforth

PPS) contribute to the development of inferential procedures for causal effects in the challenging and

empirically relevant situation where the unknown data-generation process (DGP) is not included in

the set of models considered by the investigator. Based on Altonji, Elder and Taber (2005), Oster

analyzes the relationship between the change in the OLS estimates of a causal effect due to the

inclusion of additional controls and the omitted variable bias in the associated long regression. She

shows that, under certain conditions, this change depends on the improvements in the regression

R-squares going from the short regression to the long regression and from the long regression to

the unknown DGP.

In contrast, PPS analyze the power properties of two alternative strategies for testing the

consistency of the OLS estimator of a causal effect when the control variables in the long regression

are subject to various forms of measurement error. The two approaches are closely related, as they

involve comparing the bias or the sampling variance of OLS estimators from misspecified models

with different sets of regressors. The general misspecification framework recently proposed by De
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Franco Peracchi acknowledge financial support from MIUR PRIN 2015FMRE5X.
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Luca, Magnus and Peracchi (2018) (henceforth DMP) is therefore particularly suited to analyze

and understand the restrictions needed by the two approaches.

2 A general misspecification framework

The models in Oster and PPS are both special cases of the misspecification framework in DMP.

Since Oster and PPS focus on the case where there is a single regressor of interest, we consider a

simplified version of the DGP in DMP, namely

y = β1x1 + β′2X2 + ξ + ε, (1)

where x1 is an observable scalar treatment, X2 is a set of k2 observable control variables, β1 and β2

contain the unknown parameters, ξ is an unobservable misspecification term capturing, for example,

the contributions of omitted variables (as in Oster) or measurement errors (as in PPS), and ε is an

unobservable error term satisfying E(ε|x1, X2, ξ) = 0. Without loss of generality, all variables are

centered to have mean zero. The parameter of interest is the scalar β1, which is interpreted as the

causal effect of x1 on y. The population second moments of (x1, X2, ξ) are denoted by

Σ = var

x1X2

ξ

 =

 σ21 σ′21 σ1ξ
σ21 Σ22 σ2ξ
σ1ξ σ′2ξ σ2ξ

 .
When k2 = 1, we write x2 instead of X2 and σ22 instead of Σ22.

Since ξ is unknown, we consider two alternative estimators of β1: the restricted OLS estima-

tor from the “short regression” of y on x1 only, with probability limit denoted by β1r, and the

unrestricted OLS estimator from the “long regression” of y on x1 and X2, with probability limit

denoted by β1u. From DMP, the inconsistencies of these two estimators are

b1r = β1r − β1 = τ1 + ψ′(β2 + τ2), b1u = β1u − β1 = τ1, (2)

where ψ = σ21/σ
2
1 contains the population coefficients in the linear projection of X2 on x1 (or

balancing regression, using the terminology of PPS), τ1 = σ11σ1ξ − ψ′Σ22σ2ξ and τ2 = Σ22(σ2ξ −

σ1ξψ) are the population coefficients in the linear projection of ξ on x1 and X2, σ
11 = 1/σ21 +

ψ′Σ22ψ, and Σ22 = (Σ22 − σ21σ′21/σ21)−1. The expression for b1r generalizes the classical omitted

variables bias formula to settings where the long regression is smaller than the unknown DGP.

Since the DGP (1) encompasses a variety of misspecification problems, the expressions for b1r and

b1u are completely general and can easily be extended to the case when x1 contains more than
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one regressor. An immediate implication of (2) is that b1r − b1u = β1r − β1u = ψ′(β2 + τ2), which

shows that the strategy of evaluating coefficient stability by augmenting the short regression with

an additional set of regressors is only informative about the sign and magnitude of the difference of

the inconsistencies, not about the sign and magnitude of the two inconsistencies separately. In fact,

depending on the conditions discussed in DMP, the difference b1r−b1u can be large or small, positive

or negative. Thus, the two estimators may differ by little even when their inconsistencies are large.

Furthermore, coefficient instability may arise when the inconsistencies of the two estimators have

opposite signs and |b1u| > |b1r|.

3 Inconsistencies and regression R-squares

To map our notation into Oster’s notation, let x1 = X, β1 = β, X2 = ωo, β2 = Ψ, and ξ = W2.

Also define the linear combination η = β′2X2 = W1 of the k2 control variables in X2. This gives

the additional set of population second moments σ2η = var(η) = β′2Σ22β2, σ1η = cov(x1, η) = σ′21β2,

and σηξ = cov(η, ξ) = β′2σ2ξ.

Oster’s main contribution are expressions for the inconsistency b1u of the unrestricted estimator

of β1. To derive these expressions, Oster imposes the following four assumptions:

Assumption 1 The controls in X2 are uncorrelated with the misspecification ξ, that is, σ2ξ = 0.

Assumption 2 x1, η and ξ are linked through the “proportional selection relationship”

ϕ
σ1η
σ2η

=
σ1ξ
σ2ξ

.

Assumption 3 The coefficients β2 = (β21, . . . , β2k2)′ are linked to the coefficients µ = (µ1, . . . , µk2)′

in the population regression of x1 on X2 through the relationship β2i/β2j = µi/µj for all i, j.

Assumption 4 σ1η has the same sign as cov(x1, η
∗), where η∗ = β′2uX2 and β2u is the vector of

coefficients on X2 in the population regression of y on x1 and X2.

None of these assumptions is particularly intuitive, plausible, or easy to verify. Assumption 4

is particularly obscure as formulated, but it amounts to assuming that σ1η and β1r − β1u have the

same sign.

Oster presents two main results. Both require Assumption 1, but while the first (Proposition 1)

also requires Assumption 2 with ϕ = 1 and Assumption 3, the second (Proposition 2) only requires

Assumption 2 with ϕ unrestricted.
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Oster’s Proposition 1 gives the following representation of b1u:

b1u = (β1r − β1u)
Rmax −Ru
Ru −Rr

, (3)

where Rmax is the unknown population R-square from the DGP (1), and Rr and Ru are the

population R-squares from the short and long regressions, respectively. Notice that Rmax−Ru and

Ru − Rr are both positive, so (3) implies that b1u has the same sign as β1r − β1u. As stressed by

Holly (1982), this is not generally true. Further, (3) also implies that b1r/b1u > 1, so adding X2 to

the short regression always reduces the bias in estimating β1. As stressed by DMP, this is also not

generally true.

Oster’s Proposition 2 tells us that b1u is a root of the cubic equation

a3z
3 + a2z

2 + a1z + a0 = 0, (4)

with real coefficients

a0 = ϕσ21σ
2
y(Rmax −Ru)(β1r − β1u),

a1 = ϕ(σ21 − σ2ν)σ2y(Rmax −Ru)− σ2ν
(
σ2y(Ru −Rr) + σ21(β1r − β1u)2

)
,

a2 = (ϕ− 2)σ21(β1r − β1u)σ2ν ,

a3 = (ϕ− 1)(σ21 − σ2ν)σ2ν ,

where σ2y and σ2ν = σ21−σ′21Σ
−1
22 σ21 are the population variances of y and ν = x1−µ′X2 respectively.

This confirms that the inconsistency of the unrestricted estimator depends on the differences β1r−

β1u, Rmax − Ru, and Ru − Rr, but tells us little about the nature of this dependence. Further,

when (4) admits three roots, it is unclear how to select one. Oster argues that the problem

does not arise when ϕ = 1 and Assumptions 1, 2, and 4 hold, because the quadratic equation

a2z
2 + a1z + a0 = 0 has a unique root.

To clarify the relations between β1r − β1u, Rmax −Ru, Ru −Rr, and b1u, we offer the following

result.

Theorem 1 Under the DGP (1), if Assumptions 1 and 2 hold, then

β1r − β1u =
σ1η − (σ21 − σ2ν)b1u

σ21
,

ϕσ2y(Rmax −Ru) =

(
σ2η
σ1η
− ϕb1u

)
σ2νb1u,

σ2y(Ru −Rr) = σ2η + σ2νb
2
1u −

1

σ21
(σ1η + σ2νb1u)2.

4



If k2 = 1, then b1u is a root of the quadratic equation c2z
2 + c1z + c0 = 0, with real coefficients

c0 = −ϕσ221σ22σ2y(Rmax −Ru), c1 = σ21σ
2
2(σ21σ

2
2 − σ221)(β1r − β1u), and c2 = (1− ϕ)σ221(σ

2
1σ

2
2 − σ221).

If k2 > 1, then b1u is a root of the cubic equation (4).

An implication of Theorem 1 is that Oster’s Proposition 1 holds if and only if there is only one

control variable in X2.

Corollary 1 When ϕ = 1 and Σ22 is nonsingular, the relationship (3) holds if and only if k2 = 1.

When k2 = 1 but ϕ 6= 1, Theorem 1 implies the following result.

Corollary 2 When k2 = 1 and ϕ 6= 1, define

ϕ∗1 = 1−

√
1 +

1

ρ221

Ru −Rr
Rmax −Ru

, ϕ∗2 = 1 +

√
1 +

1

ρ221

Ru −Rr
Rmax −Ru

,

with ρ21 = σ21/(σ1σ2). Then the quadratic equation c2z
2 + c1z + c0 = 0 admits two distinct real

roots if ϕ∗1 < ϕ < ϕ∗2, one real root if ϕ = ϕ∗1 or ϕ = ϕ∗2, and no real root otherwise.

When k2 > 1, Theorem 1 implies Oster’s Proposition 2 but does not require the controls in X2

to be orthogonal to each other. In this more general case, the restriction ϕ = 1 yields a3 = 0 and

a2a0 = −σ2νσ2y(Rmax−Ru)σ41(β1r − β1u)2 < 0, so (4) reduces to a quadratic equation with two real

roots of opposite sign. When ϕ = 1, Assumption 4 allows one to select a unique root because it

restricts b1u to have the same sign as β1r − β1u. However, when ϕ 6= 1 or Assumption 4 does not

hold, then one may select the wrong solution even when the values of ϕ and Rmax are known.

Based on Proposition 2, Oster discusses three possible empirical strategies: (i) find the bounds

on β1 implied by given bounds on ϕ and Rmax; (ii) find the value of ϕ that is consistent with given

values of β1 and Rmax; (iii) find the value of Rmax that is consistent with given values of β1 and ϕ.

One problem with strategy (i) is that we would need a unique value of β1 for any possible choice

of ϕ and Rmax. When there are multiple roots, we have a problem. To illustrate, suppose that

y = z1 + z2 − z3 + z4 + ε, where the zj ’s are jointly normal with mean zero and second moment

matrix

Σ = var


z1
z2
z3
z4

 =


1 0.35 −0.30 −0.40

0.35 1 −0.25 0
−0.30 −0.25 1 0
−0.40 0 0 1

 ,
and ε ∼ N(0, 1) independently of the zj ’s. Setting x1 = z1, X2 = (z2, z3) and ξ = z4, we find

ϕ = −1.537 and Rmax = 0.833. Table 1 shows the OLS estimates of, respectively, the true DGP,
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Table 1: OLS estimates of the DGP, the long and the short regressions

DGP Long Short
Variable Coeff. SE Coeff. SE Coeff. SE
z1 0.995 (0.039) 0.509 (0.047) 1.231 (0.066)
z2 0.994 (0.036) 1.140 (0.047)
z3 −0.975 (0.034) −1.085 (0.045)
z4 0.963 (0.035)
R2 0.825 0.689 0.261

the long regression of y on x1 and X2, and the short regression of y on x1, from a pseudo-random

sample of 1,000 observations. In this example, Assumption 4 fails because adding X2 to the short

regression increases the magnitude of the bias in estimating β1 (in the terminology of DMP, X2 is

not a balanced addition). Following Oster, we set the lower bound for β1 equal to the value 0.509

from the long regression. To determine the upper bound, we employ Oster’s Stata routine with

ϕ = −1.537 and Rmax = 0.833. This gives three solutions for β1, namely β
(1)
1 = 4.590, β

(2)
1 = 1.087

and β
(3)
1 = 1.582. While the second solution is close to the true value β1 = 1, the routine selects

the first solution due to the failure of Assumption 4.

As for the other two empirical strategies suggested by Oster, note that fixing the value of β1 for

given values of β1r and β1u is equivalent to fixing the values of b1r and b1u. Under Assumption 1,

this allows us to identify σ1ξ and σ1η, and therefore also σ2η from the third equation in Theorem 1.

By restricting either Rmax or ϕ, we can then identify σ2ξ . Thus, under Assumptions 1 and 2, the

empirical strategies (ii) and (iii) amount to imposing arbitrary restrictions on all the unidentified

model parameters. Finally, the results obtained are very sensitive to the choice of Rmax for strategy

(ii) and of ϕ for strategy (iii). To illustrate, consider again our example with β1 = 1 and four

different values of Rmax, namely 0.7, 0.8, 0.9 and 1. In this case, the solutions for ϕ obtained from

Oster’s Stata routine range widely, being equal to −5.662, −1.765, −1.046, and −0.743, respectively.

4 Testing strategies

To map our notation into the notation in PPS, let x1 = s, β1 = βl, X2 = xm, β2 = 0, and

ξ = γ ′x = γ ′(δs + u). Given a classical measurement error model, PPS specify their balancing

regression as xm = x+m = δs+ u+m, where all components of (u,m) are uncorrelated with s

so that ψ = δ. When k2 = 1, they also consider a mean-reverting measurement error model of the

form x2 = xm = (1 + κ)x+ µ = (1 + κ)δs+ (1 + κ)u+ µ, where −1 < κ < 0 and all components of
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(s, u, µ) are uncorrelated with each other. In this case, the population coefficient of the balancing

regression is ψ = (1 + κ)δ.

The main contribution of PPS is to provide power comparisons between two alternative strate-

gies for testing the consistency of the restricted OLS estimator: an F -test on the population

coefficients ψ = σ21/σ
2
1 in the balancing regression, and a Hausman-type test on the difference

β1r − β1u = b1r − b1u = ψ′(β2 + τ2) between the coefficient of interest in the short and the long

regressions. PPS refer to these tests as the balancing test (BT) and the coefficient comparison

test (CCT), respectively. Their results show that, when the long regression is misspecified (i.e.

γ 6= 0), BT is generally more powerful than CCT because measurement errors are comparatively

less harmful when mismeasured variables are employed as outcome variables in the balancing re-

gression rather than as additional regressors in the long regression.

This useful insight reinforces our conclusion that adding control variables to the short regression

does not necessarily improve the estimation of the causal effect of interest. While DMP and Oster

are mainly concerned with the statistical properties of the restricted and unrestricted estimators

of β1, PPS focus on the implications of using the available control variables for testing purposes.

However, as shown by the MSE comparisons in DMP, these two approaches are closely related

to each other. Under certain conditions, MSE comparisons depend crucially on the noncentrality

parameter in the distribution of the statistic (either the classical F -statistic or the Hausman-type

statistic) used for testing the hypothesis H0 : β2 = 0 in the long regression.

Our general framework allows us to assess whether the poor power performance of CCT depends

on the particular specification of the measurement error models considered by PPS. It follows

immediately from (2) that BT and CCT provide tests of the null hypothesis of interest,

H0 : b1r = τ1 + ψ′(β2 + τ2) = 0, (5)

only if suitable restrictions are placed on b1u = τ1. If these restrictions are not valid, then there

exist regions of the parameter space where both BT and CCT have large size distortion and low

power. BT is concerned with the null hypothesis H0 : ψ = 0. Writing τ1 = σ1ξ/σ
2
1 − ψ′τ2, we see

that this is equivalent to (5) if and only if there exists a k2-vector ω 6= −β2 such that σ1ξ = σ′21ω,

so that

b1u = τ1 = ψ′(ω − τ2), b1r = ψ′(β2 + ω). (6)

CCT is instead concerned with the null hypothesis H0 : ψ′(β2 + τ2) = 0, which is equivalent to (5)
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if and only if there exist a scalar a 6= −1 such that

b1u = τ1 = aψ′(β2 + τ2), b1r = (1 + a)ψ′(β2 + τ2). (7)

The restrictions (6) and (7) may constrain the sign and magnitude of b1u and b1r. For example,

when k2 = 1, we have ψ = δ, τ1 = δγθ and τ2 = (1 − θ)γ, with θ = σ2m/(σ
2
m + σ2u). In this case,

(6) and (7) hold when ω = γ 6= 0 and a = θ/(1− θ) > 0, but this model is known to be restrictive

because it implies that b1r/b1u = 1/θ > 1. Similar considerations apply to the mean-reverting

measurement error model, where

ψ = (1 + κ)δ, τ1 = δγ
θ

(1 + k)2(1− θ) + θ
, τ2 =

γ

1 + k

[
1− θ

(1 + k)2(1− θ) + θ

]
,

with θ = σ2µ/(σ
2
µ + σ2u). Here, the restrictions (6) and (7) hold when ω = γ/(1 + k) 6= 0 and

a = θ/[(1 + k)2(1− θ)] > 0, but this implies that b1r/b1u = 1 + (1 + k)2(1− θ)/θ > 1. Like PPS, we

stress that this result is special and does not extend to more realistic settings in which s and m are

correlated (Frost 1979), or s is also measured with error (Barnow 1976). Also notice that, when

there are multiple controls subject to measurement error (i.e. k2 > 1), the condition b1r/b1u > 1

doesn’t need to hold (Garber and Klepper 1980). Although theoretical power comparisons for the

case of multiple controls are still lacking, the Monte Carlo simulations in PPS provide convincing

evidence in favor of the BT strategy.

Finally, as mentioned by PPS, pretesting may have nontrivial effects on the statistical properties

of these tests. Strategies for addressing this issue, such as post-model-selection inference (see

e.g. Berk et al. 2013 and Leeb, Pötscher and Ewald 2015) and model-averaging estimation under

a misspecified model space (see e.g. Zhang et al. 2016 and Ando and Li 2017), deserve careful

attention.
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Appendix

Proof of Theorem 1. The first three expressions follow from the fact that

σ21(β1r − β1u) =
[
β2 − Σ−122 σ21b1u

]′
σ21, (A1)

ϕσ2y(Rmax −Ru) =
σ21 − σ′21Σ

−1
22 σ21

β′2σ21

[
β2 − ϕΣ−122 σ21b1u

]′
Σ22β2b1u, (A2)

σ2y(Ru −Rr) =
[
β2 − Σ−122 σ21b1u

]′ [
Σ22 −

1

σ21
σ21σ

′
21

] [
β2 − Σ−122 σ21b1u

]
. (A3)

When k2 = 1, (A1) and (A3) do not allow separate identification of β2 and b1u. The result for

k2 = 1 follows by solving the system of equations (A1) and (A2) in the unknowns β2 and b1u, while

the result for k2 > 1 is the same as Oster’s Proposition 2.

Proof of Corollary 1. When ϕ = 1, it follows from (A1)–(A3) that

(β1r − β1u)
Rmax −Ru
Ru −Rr

=
z′Ωz

z′Ξz
b1u,

where z = β2 − Σ−122 σ21b1u, Ω = (σ21 − σ′21Σ
−1
22 σ21)Σ22β2σ

′
21, and Ξ = β′2σ21[σ

2
1Σ22 − σ21σ′21]. The

ratio z′Ωz/z′Ξz equals one for every z if and only if z′[Ω − Ξ]z = 0 for every z, and this occurs if

and only if Ω + Ω′ = Ξ + Ξ′ = 2 Ξ. Hence, z′Ωz/z′Ξz equals one for every z if and only if

(σ21 − σ′21Σ−122 σ21)
[
Σ22β2σ

′
21 + σ21β

′
2Σ22

]
= 2β′2σ21

[
σ21Σ22 − σ21σ′21

]
. (A4)

If (A4) holds, then postmultiplying by β2 gives

(σ21 − σ′21Σ−122 σ21)
[
Σ22β2(σ

′
21β2) + σ21(β

′
2Σ22β2)

]
= 2β′2σ21

[
σ21Σ22β2 − σ21(σ′21β2)

]
.

Hence, upon rearranging terms,

(σ21 + σ′21Σ
−1
22 σ21)(β

′
2σ21)Σ22β2 =

[
(σ21 − σ′21Σ−122 σ21)(β

′
2Σ22β2) + 2(β′2σ21)

2
]
σ21.

This shows that Σ22β2 is a multiple of σ21, say Σ22β2 = ασ21. Inserting β2 = αΣ−122 σ21 into (A4)

gives (Σ′21Σ
−1
22 σ21)Σ22 = σ21σ

′
21, which implies that Σ22 has rank one. Since Σ22 is nonsingular,

this is only possible if k2 = 1.

Proof of Corollary 2. The result follows by solving ϕ from the equation

0 = (σ21σ
2
2 − σ221)

σ41
σ421

(β1r − β1u)2 + 4ϕ(1− ϕ)
σ2y(Rmax −Ru)

σ22
,

and using the fact that σ2y(Ru −Rr)/(β1r − β1u)2 = σ21(σ21σ
2
2 − σ221)/σ221, from (A1) and (A3).
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