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Abstract

Quantitative assessments of the relationship between health and medical treatment are of great
importance to policy makers. However, simply looking at the raw correlation between health
and medical care is unlikely to give the right answer because of endogeneity problems. We over-
come these problems by formulating and estimating a tractable dynamic factor model of health
and medical treatment where individual observed health outcomes are driven by the individual’s
latent health stock. The dynamics of latent health reflects both exogenous health depreciation
and endogenous health investments. Our model allows us to investigate the effect of medical
treatment on current health, as well as on future medical treatment and health outcomes. We
estimate the model by maximum simulated likelihood and minimum distance methods using a
rich longitudinal data set from Italy obtained by merging a number of administrative archives.
These data contain detailed information on medical drug use, hospitalization, and mortality
for a representative sample of elderly hypertensive patients. Our findings show that medical
care consumption is highly correlated over time, and this relationship depends on both perma-
nent and time-varying observed and unobserved heterogeneity. They also show that medical
drug use significantly maintains future health levels and prevents transitions to worse health.
These results suggest that policies aimed at increasing the awareness and the compliance of
of hypertensive patients help reduces cardiovascular risks and consequent hospitalization and
mortality.
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1 Introduction

Although medical treatment is expected to have a positive effect on health, in Grossman’s original

work (Grossman 1972) and in several papers since (see for example Muurinen 1982) the correla-

tion between health status and medical treatment has been found to be negative. This is hardly

surprising, as “people tend to seek medical care when they are sick, not when they are well” (Case

& Deaton 2005). In fact, simply looking at the raw correlation between health and medical care is

unlikely to give the right answer because of endogeneity arising from unobservable determinants of

health deterioration (Grossman 2000).

In this paper, we overcome the endogeneity problem by formulating and estimating a tractable

dynamic factor model of health and medical treatment. Dynamic factor models have been exten-

sively used in macroeconomics and finance since their introduction by Geweke (1977) and Sargent

& Sims (1977) as a way of capturing in a parsimonious way the cross-sectional and dynamic cor-

relations between multiple series. More recent applications in macroeconomics include also non

traditional topics such as mortality rates (French & O’Hare 2013). Moreover, there has been grow-

ing study in factor models for the kind of high-dimensional data increasingly available in economics

and finance, which are characterized by both a large cross-sectional dimension and a large time

dimension (see for example Bai & Wang 2014 and Bai & Li 2016. Nevertheless, to our knowledge

much less attention has been devoted to dynamic factor models for microeconomic panel data.

Specifically, we propose a dynamic factor model of health and medical treatment in which ob-

servable health outcomes are driven by latent individual health, lagged health outcomes, and other

observable individual characteristics. We extend the existing literature on the dynamic relation-

ship between health and medical treatment in several ways. First, we model the dynamics of latent

health as a function of both exogenous health depreciation and endogenous health investments.

This allows us to identify both the direct and the indirect effects – through latent health – of med-

ical treatments on health outcomes, and to investigate the role of medical treatments in the health

production function and their effect on future medical use and other health outcomes. Second,

by including mortality among the observed health outcomes, we account for endogenous attrition.

Third, we introduce nonlinearity in a natural way into our model to accommodate mixed (continu-

ous and discrete) outcomes. Finally, because we allow for both state dependence and latent health

dynamics, our model can be viewed either as a generalization of dynamic panel data models or as an

extension of state-space models to microeconomic panel data. As a result, our model encompasses

as special cases several models frequently found in the literature. Because of its generality, our
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model may also be applied to a variety of other settings.

We estimate the model by maximum simulated likelihood and minimum distance methods using

the annual longitudinal data employed by Atella et al. (2006). These data have been constructed

by combining a number of administrative archives maintained by one regional unit of the Italian

national health-care system and provide very detailed micro-level information on medical drug

use, hospitalization, and mortality. Because our data contain objective measures of health from

administrative health-care records, they offer two important advantages relative to studies based

on survey data that only record general self-reported health measures, such as self-rated health on a

Likert-type scale. First, they do not present problems of unit and item non-response, or bias effects

due to interaction with interviewers, typical of survey data. The chances of measurement errors is

also much smaller. Second, by providing detailed information on medical treatments, they make it

possible to explore patients’ decision-making in relation to specific clinical conditions, and therefore

allow one to derive more precise conclusions concerning the relation between medical treatment and

health, in particular the role of compliance with medical protocols.

Our sample consists of hypertensive patients born between 1920 and 1939 (aged 61–80 in year

2000) and followed each year from 1997 to 2002. The reason we concentrate on hypertensive patients

is because hypertension, by its distinctive nature, provides helpful insights into the relation between

medical care and health. In fact, hypertension is a chronic asymptomatic pathology affecting a large

share of the adult population, a fraction that actually rises with age. Since hypertension is a chronic

pathology, patients should take their medication regularly. However, since it is also asymptomatic,

they generally do not feel ill and so may not strictly adhere to medical prescriptions. Unfortunately,

if left untreated, hypertension can have very serious long-term health consequences.

Our results provide evidence that medical drug consumption of elderly patients is highly corre-

lated over time, and that this relationship depends on both permanent and time-varying observed

and unobserved heterogeneity. Our findings also suggest that medical drug use significantly main-

tains future health levels and prevents transitions to worse health. In terms of policy implications,

our results suggest that policies aimed at improving awareness of hypertensive diseases and the

importance of the treatment of high blood pressure may help reduce cardiovascular risks, and con-

sequent hospitalization and mortality. The presence of both state dependence and dynamics in the

latent health means that also short-term policy interventions may have longer-term implications.

The remainder of this paper is organized as follows. Section 2 describes our model. Section 3

presents our approach to estimation and inference. Section 4 describes the data we use in our
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empirical application. Section 5 presents our empirical results. Finally, Section 6 offers some

conclusions.

2 Model

This section presents a nonlinear dynamic factor model where observable individual health out-

comes are functions of observable and unobservable variables, including a latent factor, interpreted

as latent health, which depends on the past values of all the variables, both observable and unob-

servable. One of the observable outcomes in our model is a binary indicator that switches from

zero to one when a person dies. This is important because it allows us to control for endogenous

sample selection due to mortality.

2.1 Elements of the model

Let Yit = (Yi1t, . . . , YiJt) denote the vector of observable outcomes for individual i = 1, 2, . . . , n in

period t = 0, 1, . . . , Ti, where Ti may vary across individuals reflecting exit from the sample for

a variety of reasons, in particular mortality. In our application, the first J − 1 elements of the

vector Yit are observable measures of medical treatment (specifically, drug prescriptions and an

indicator of hospitalization), while the last element is an indicator that switches from zero to one

when a person dies. This setting is quite general because it allows the observable outcomes to

be continuous or discrete. Including an indicator of mortality is especially important in order to

control for endogenous sample selection due to dramatic health deterioration.

Our model consists of three basic relationships. The first reflects the assumption that each

of the observable outcomes depends on a continuous latent outcome through an observation rule

reflecting discretization or partial observability. Let Y ∗it = (Y ∗i1t, . . . , Y
∗
iJt) denote the vector of latent

outcomes for individual i at time t. The first J − 1 elements of Y ∗it may be interpreted as desired

health investments, the last element as unobservable frailty. Thus, the first relationship in our

model is

Yit = h(Y ∗it), (1)

where h is a known nonlinear noninvertible vector-valued function. If an outcome is fully observed

(e.g., medical drug prescription), then the corresponding element of the function h is the identity

function. If Yijt is instead a binary indicator (e.g., the indicator of hospitalization), then the jth

element of the function h is the indicator of the event that Y ∗ijt > 0.
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The second relationship is a law of motion for Y ∗it , relating the current value of the latent

health outcomes to the current value ηit of a latent factor, interpreted as the latent health stock of

individual i at time t,1 the value of l time-invariant observable covariates Wi (including a constant

term), the current value Xit of k time-varying observable covariates, past values Yi,t−1 of the

observable outcomes, and an unobservable error vector Uit. Assuming linearity, we specify this

second relationship as

Y ∗it = Aηit +BwWi +BxXit +ByYi,t−1 + Uit, (2)

where A is a J × 1 vector of factor loadings, Bw, Bx and By are respectively J × l, J × k and J ×J

matrices of unknown parameters, and the Uit are identically and independently distributed (iid)

random vectors, distributed independently of Wi and Xit, with zero mean and finite nonsingular

variance matrix Σ. Equation (2) formalizes the notion that the latent health outcomes are partly

driven by changes in the latent health stock. It also allows the past history of medical treatment to

directly affect desired health investments, reflecting habit persistence or the belief by the patient

that the effectiveness of a health investment depends on continuity of the treatment. Notice that

(2) allows lagged values of medical treatments to directly affect desired health investments, thus

capturing complementarity or a substitutability between the various treatments. Finally, because

Y ∗it includes frailty, our model also allows for endogenous sample selection due to mortality.

The third relationship is a law of motion for the latent factor

ηit = ρηi,t−1 + CwWi + CxXit + CyYi,t−1 + ωVit, (3)

where ρ is an autoregressive coefficient with |ρ| < 1, Cw, Cx and Cy are respectively 1 × l, 1 × k

and 1 × J vectors, ω is a scale parameter, and the Vit are iid random health shocks, distributed

independently of Wi, Xit and Uit with zero mean and unit variance. Equation (3) formalizes the

notion that the time-profile of the latent health stock reflects both health deterioration and health

investments (Grossman 1972, 2000; Muurinen 1982). The effect of health deterioration is captured

by the autoregressive coefficient ρ = 1 − δ, where δ is the rate of health depreciation, while the

effects of past health investments are captured by the elements of the vector Cy associated with

lagged medical treatments. In fact, lagged medical treatments can be viewed as inputs determining

current health through a health production function. The role of these inputs is to restore or

improve health and offset its future deterioration (preventive care). Notice that equation (3) also

includes socio-demographic characteristics of an individual. Finally, because ηit enters the equation

1 The model could be generalized in a straightforward manner to the case when health is treated as a multidi-
mensional latent factor (distinguishing, for example, between physical and mental health).
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for Y ∗it , the model allows lagged medical treatment to affect desired health investments indirectly

through the latent health stock.

Equation (3) implies the following distributed lag representation of the latent factor

ηit = ρtηi0 +
1− ρt

1− ρ
CwWi +

t−1∑
s=0

ρsCxXi,t−s +
t−1∑
s=0

ρsCyYi,t−s−1 + ω
t−1∑
s=0

ρsVi,t−s, (4)

where ηi0 is health at the beginning of the period in which an individual is first observed. This

representation shows that the effects of health shocks and health investments cumulate over time

although, if ρ is less than 1 in modulus, events that occurred sufficiently far away in the past receive

very little weight.

Given the relatively short dimension of our panel, we face an initial condition problem. We deal

with it by specifying a parametric approximation for ηi0, the latent health stock at the beginning

of the first period. Our model for ηi0 is

ηi0 = DZi + γVi0, (5)

where D is a 1×m vector of unknown parameters, the vector Zi includes both the value of time-

invariant covariates and pre-sample values of Yit, γ is an unknown scale parameter, and Vi0 is

a random pre-sample health shock with zero mean and unit variance. Substituting equation (4)

and (5) into equation (2) gives

Y ∗it = B∗wtWi +
t−1∑
s=0

B∗xsXi,t−s +
t−1∑
s=0

B∗ysYi,t−s−1 +D∗tZi +
t∑

s=0

R∗sVi,t−s + Uit, (6)

where the matrices B∗wt, B
∗
xs, B

∗
ys, D

∗
t and R∗s depend on ρ, γ, and the parameters in A, Bw, Bx,

By, Cw, Cx, Cy and D.

Notice that the linear model (5) for the initial conditions is better viewed as an approximation,

which may potentially cause specification error. Nonetheless, if |ρ| < 1, the influence of the initial

conditions declines in later periods and becomes negligible as t → ∞. Thus, there is a case for

leaving a gap of S periods between the first available period and the periods used to estimate

the model, that is, for estimating the model using only Yi,S+1, . . . , Yi,Ti . The choice of S involves

a trade-off between efficiency and possible misspecification bias. Actually, increasing S reduces

not only the influence of initial conditions but also the amount of data used for estimation, thus

alleviating the computational burden.
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2.2 Relationship with other models

Because the model discussed in the previous section allows for both state dependence and dynamics

in the latent factor, it can be viewed either as a generalization of dynamic panel data models or

as an extension of state-space models to microeconomic panel data. As such, it encompasses as

special cases several models frequently used in the literature.

Consider for simplicity the univariate version (J = 1) of our model. Under the restrictions

A = 0 and By = 0, (2) becomes

Y ∗it = BwWi +BxXit + Uit.

This corresponds to the assumption that latent outcomes are independent over time conditional on

Wi and Xit. We refer to this specification as the independence model.

Another special case of our general model, corresponding to the restrictions By = 0, Cw = 0,

Cx = 0 and Cy = 0 in (2), and ρ = 1 and ω = 0 in (3), is

Y ∗it = Aηi +BwWi +BxXit + Uit, (7)

where ηi is a time-invariant individual effect. Together with (1), this is the textbook static nonlinear

panel-data model with time-invariant individual effects (Baltagi 2001, Hsiao 2003). Although this

specification implies that the latent outcomes are correlated over time, state dependence is spurious

as it only arises from the fact that the individual effects are unobservable. Typically, there are two

ways of dealing with unobservable individual effects. One is to treat them as nuisance parameters to

be estimated jointly with the parameters of interest (fixed-effects approach). This approach avoids

distributional assumptions but, with a fixed panel length, it suffers from an incidental parameters

problem (Heckman 1981, Lancaster 2000). Another alternative consists of treating the ηi as random

draws from a common distribution and integrating them out under the assumption that they are

distributed independently of Wi, Xit and Uit (random-effects approach).

Relaxing the restriction that By = 0 gives yet another special case of our general model, namely

Y ∗it = Aηi +BwWi +BxXit +ByYi,t−1 + Uit. (8)

This specification introduces true state dependence by allowing the latent outcome Y ∗it to be directly

affected by the outcome observed in the previous period. When Yit = h(Y ∗it), we refer to this

specification as the dynamic nonlinear panel-data model with time-invariant individual effects.

Fixed-effects versions of this model have been considered by Honoré & Kyriazidou (2000), Bartolucci
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& Nigro (2010) and Bartolucci, Nigro & Pigini (2018), among others. The special case when h(·)

is the identity function corresponds to the vector autoregressive models for panel data studied by

Holtz-Eakin, Newey & Rosen (1988) and Arellano & Bond (1991). Random effects versions of

this model have been considered by Contoyannis, Jones & Rice (2004) among others, while an

extension to the case of multivariate categorical longitudinal data has been studied by Bartolucci

& Farcomeni (2009).

A second way of introducing true state dependence consists of replacing Yi,t−1 with Y ∗i,t−1 in

(8). We refer to this specification as the latent auto-regressive model with time-invariant individ-

ual effects. Pudney (2008) discusses the univariate version of this model and uses it to analyze

households’ perceptions of their financial wellbeing.

A third way of introducing true state dependence is to maintain the restriction Cy = 0 but

allow the individual effects to be time-varying. One possibility is ηit = λ>i Vt, where λi is a vector of

individual-specific coefficients and Vt is a vector of time-varying factors common to all individuals.

This specification, which we refer to as the interactive-effects model, includes common time trends

(e.g., to capture macroeconomic effects) but allows for individual-specific reactions. Bai (2009)

discuss identification and estimation of the special case when h(·) is the identity function under

both large N and large T panel data. Another possibility is ηit = λ>t Vi, where λt is a vector of

time-varying coefficients and Vi is a vector of time-invariant individual factors. This specification

is employed by Cunha et al. (2005) to separate heterogeneity from uncertainty about the returns

to schooling. Eisenhauer et al. (2015) extend this model by assuming that individuals face a

sequence of binary choices, allowing them to move from one schooling state to the next. Yet

another possibility, corresponding to the restrictions By = 0, Cw = 0, Cx = 0, and Cy = 0 on (2)

and (3), is the following simple autoregressive specification of the latent factor

Y ∗it = Aηit +BwWi +BxXit + Uit,

Yit = h(Y ∗it),

ηit = ρηi,t−1 + ωVit,

(9)

where Vit is a serially uncorrelated error distributed independently of Wi and Xit. We refer to this

specification as the nonlinear panel-data model with time-varying individual effects. Bartolucci,

Belotti & Peracchi (2015) present a simple Hausman-type test of the static model with time-

invariant individual effects against this model. Notice that model (9) may be viewed as a nonlinear

state-space model (Tanizaki 2003), in which ηit is the unobservable state variable, the first two

equations correspond to the nonlinear measurement equations, and the third equation corresponds

7



to the state-transition equation. The model reduces to a standard linear state-space model when

Y ∗it is fully observable.

Heiss (2008) discusses the multivariate version of model (9), whereas Heiss (2011) presents an

application to jointly modeling self-rated health and mortality. In his application, Y ∗it consists of

observable self-rated health and unobservable frailty, ηit is the latent health stock, and death occurs

if frailty exceeds a threshold. Notice that his model implies that

ηit = ρtηi0 + ω
t−1∑
s=0

ρsωVi,t−s,

where ηi0 is initial health. Thus, an undesirable model feature in the context considered by Heiss

(2011) is that the health stock evolves outside of an individual’s control as a weighted-sum of past

health shocks, with geometrically declining weights. This is in sharp contrast with standard models

in health economics, such as the model of Grossman (1972), where current health is a function of

both past health and current health investments, as in equation (3).

2.3 Identification

The model consisting of (1), (2), (3) and (5) is heavily parameterized, so identification is an im-

portant issue. The conditions for parametric identification also play an essential role in the model

estimation strategy discussed in Section 3.

As usual in factor analysis, we assume that the latent outcomes are mutually independent

conditional on the observable covariates Xit, the common latent factor ηit, and the pre-sample

individual shock Vi0. Hence, the variance matrix Σ is diagonal, with diagonal elements σ2
j =

Var(Uijt), j = 1, . . . , J . To obtain a tractable parametric model, we assume Uit and Vit to be iid

Gaussian.

Moreover, as usual in latent variables models, our model requires that each latent variable is

assigned a location and a scale for identification. This is true for the latent outcomes in the vector

Y ∗it , as well as for the latent health stock ηit. For the binary outcomes we use the convention

of setting the threshold to zero and the errors variances to one. As a standard practice in factor

analysis, location and scale of ηit is normalized by setting the intercept in (3) to zero and the variance

ω2 of the random health shocks to one. With these normalizations the variance of the random term

in the initial conditions equation is equal to γ2. Thus, Vi0 is not normalized to have unit variance.

The total number of free parameters in our model is therefore equal to p = (J+1)(1+l+k+J)+m.

We refer to these parameters as the structural parameters and represent them as elements of a vector
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ψ in a parameter space Ψ, a subset of the p-dimensional real Euclidean space. From the reduced

form in (6) we have a total of q = J + JT (m + l + k + J + 1) estimable parameters. We refer to

these parameters as the reduced-form parameters and represent them as elements of a vector θ in

a parameter space Θ, a subset of the q-dimensional real Euclidean space. Note that while both p

and q depend on the number J of observable outcomes and on m, l and k, the number T of time

periods affects only q. Further, identification of ρ requires at least three panel waves.

Also note that if time-invariant variables Wi are included in the equation (5) for initial health,

then their coefficients in D are not separately identified from the coefficients Cw in the equation

(3) for current health. Thus, in this case we would set the coefficients Cw in equation (3) to zero.

Moreover, since time-varying variables Xit and Yi,t−1 are included both in the observable outcomes

equations (2) and in the equation (3) for current health, we can interpret their parameters Bx and

By in the former equations as their direct effects on the outcomes, and their parameters Cx and Cy

in the latter equation as their indirect effects – through the latent factor. Separate identification

of these direct and indirect effects crucially relies on the fact that both effects enter parameters

B∗x0 and B∗y0 in the reduced form (6), while parameters B∗xs and B∗ys, with s = 1, . . . , t − 1, only

depends on the indirect effects.

Finally, note that, as mentioned above, the first element of Yit may consist of a selection indicator

which is equal to 1 if a unit drops out of the sample from time t+ 1 and 0 otherwise. In this case,

the first element of Cy and Dy, and the first column of By and B∗ys are necessarily set to zero.

3 Estimation

We propose to estimate the model in Section 2 by combining the maximum simulated likelihood

(MSL) and the minimum distance (MD) methods. In what follows we denote by θ0 ∈ Θ the true

value of the vector of q reduced-form parameters in equation (6) and by ψ0 ∈ Ψ the true value of

the vector of p structural parameters in equations (2), (3) and (5).

3.1 Estimation of the reduced-form parameters

Let Yi = (Yi1, . . . , Yi,Ti), Xi = (Xi1, . . . , Xi,Ti), and Vi = (Vi0, Vi1, . . . , Vi,Ti) respectively denote the

histories of the observable outcomes, the observable time-varying covariates, and the latent health

shocks for individual i. Under our assumptions, conditional on Wi, Xi, Zi, Vi, the observable

outcomes Yi are independent over time. Hence, the conditional density of Yi given Wi = wi,
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Xi = xi, Zi = zi and Vi = vi, with xi = (xi1 . . . , xi,Ti) and vi = (vi0, . . . , vi,Ti), is of the form

f(yi |wi,xi, zi,vi; θ) =

Ti∏
t=1

f(yit | yi,t−1, wi, xit, zi, vit; θ),

where yi = (yi1, . . . , yi,Ti), f(yit | yi,t−1, wi, xit, zi, vit; θ) denotes the conditional density of Yit given

Yi,t−1 = yi,t−1, Wi = wi, Xit = xit, Zi = zi and Vit = vit, and θ is the vector of parameters entering

the model consisting of (2), (3) and (5).

Under the assumption that the observable outcomes are conditionally independent given Yi,t−1,

Wi, Xit, Zi, and Vit, the conditional density of Yit is simply the product of the conditional densities

of the J outcomes

f(yit | yi,t−1, wi, xit, zi, vit; θ) =
J∏
j=1

fj(yijt | yi,t−1, wi, xit, zi, vit; θ), (10)

where fj(yijt | yi,t−1, wi, xit, zi, vit; θ) denotes the conditional density of the jth outcome Yijt given

Yi,t−1 = yi,t−1, Wi = wi, Xit = xit, Zi = zi and Vit = vit. Since the health shocks Vi are

unobservable, they must be integrated out of f(yi |wi,xi, zi,vi; θ). The resulting conditional density

of Yi given Wi = wi, Xi = xi and Zi = zi is

f(yi |wi,xi, zi; θ) =

∫
f(yi |wi,xi, zi,v; θ) g(v) dv,

where g(v) is the joint density of the Ti+1 latent health shocks, which are assumed to be distributed

independently of Wi, Xi and Zi. The implied log-likelihood function for a random sample of n

individuals, each observed for Ti periods, is

Ln(θ) =

n∑
i=1

ln f(Yi |Wi,Xi, Zi; θ)

=

n∑
i=1

ln

[∫
f(Yi |Wi,Xi, Zi,v; θ) g(v) dv

]
.

(11)

A maximum likelihood (ML) estimator of the population parameter θ0 is a maximizer θ̂n of Ln(θ)

over Θ. As n → ∞, θ̂n is consistent for θ0 and asymptotically Gaussian under mild regularity

conditions (see, e.g, Gouriéroux & Monfort 1997). The multivariate integral in (11) can in principle

be evaluated by multivariate numerical integration methods, such as Gaussian quadrature on a

sparse grid (Heiss & Winschel 2008). Another alternative is nonlinear Kalman filters (Durbin &

Koopman 2001), for which Heiss (2008) proposes a convenient sequential Gaussian quadrature

method.
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The MSL method is simpler because it does not require evaluating the multivariate integral in

(11). Instead, it maximizes over Θ the following approximation to Ln(θ), obtained replacing the

multivariate integral by a sample average,

L∗n(θ) =
n∑
i=1

ln

[
1

R

R∑
r=1

f(Yi |Wi,Xi, Zi,V
r
i ; θ)

]
,

where V1
i , . . . ,V

R
i are R draws from the multivariate distribution g(v) of the health shocks. Under

mild regularity conditions, L∗n(θ) convergence in probability, uniformly in θ as R → ∞, to the

log-likelihood function (11). As a result, if the number of draws increases with n and n → ∞, a

maximizer θ̃n of L∗n(θ) is consistent for θ0, asymptotically Gaussian, and asymptotically equivalent

to a ML estimator θ̂n (Hajivassiliou & Ruud 1994; Gouriéroux & Monfort 1997).

Given the assumption on the Vit, we could generate the elements of the vector Vr
i as pseudo-

random draws from a multivariate standard Gaussian distribution. Instead, we base our simulations

on Halton sequences (Train 2003), as they provide a more systematic coverage of the domain of

integration than pseudo-random draws. This usually results in less draws, smaller integration

error, and faster convergence rates. Since Halton sequences are deterministic, following Wang &

Hickernell (2000) we introduce randomness by employing a random start procedure. Specifically,

we first randomly draw an integer N0 between 0 and some large value K, and then create a Halton

sequence starting from N0. The simulated log-likelihood function of factor models like ours may

have multiple local maxima. For this reason, we use multiple starting values and check whether we

end up with the same parameter estimates.

3.2 Estimation of the structural parameters

The MD approach to estimation of the structural parameters of our model relies on the fact that

the population parameters θ0 and ψ0 are linked through the nonlinear relationship θ0 = g(ψ0),

where g : Ψ → Ω is a differentiable function with Jacobian matrix G. For (local) identifiability,

we also need G(ψ) to be of full rank in an open neighborhood of ψ0. Appendix A presents the

structure of g and G, and illustrates with a simple special case.

Given a MSL estimate θ̃n, the MD method suggests estimating the vector ψ0 of structural

parameters by picking an element of Ψ such that the vector θ̃n − g(ψ) is smallest in a suitably

chosen metric. The resulting estimator of ψ0 is unique,
√
n-consistent and asymptotically Gaussian

under general conditions (Ferguson 1996). An asymptotically optimal MD estimator is a solution
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ψ̂n to the problem

min
ψ∈Ψ

Qn(ψ) = [θ̃n − g(ψ)]>Ṽ −1
n [θ̃n − g(ψ)], (12)

where the q × q matrix Ṽn is a positive definite estimate of the asymptotic variance of θ̃n. Under

general conditions,
√
n(ψ̂n − ψ0) converges in distribution, as n → ∞, to a multivariate normal

distribution with mean zero and variance matrix (G0V
−1

0 G>0 )−1, where G0 = G(ψ0) denotes the

p× q Jacobian matrix of g evaluated at ψ0 and V0 denotes the asymptotic variance of θ̂n.

The estimator ψ̂n can be computed using an iterative procedure. Specifically, starting from an

initial estimate ψ̂(0), the updated estimate at the (h+ 1)th iteration is given by

ψ̂(h+1) = (ĜhV̂
−1
n Ĝ>h )−1ĜhV̂

−1
n (θ̂n − ĝh + Ĝ>h ψ̂

(h)), h = 0, 1, . . . ,

where Ĝh = G(ψ̂(h)) and ĝh = g(ψ̂(h)). This corresponds to a GLS regression of the transformed

reduced-form estimates θ̂n − ĝh + Ĝ>h ψ̂
(h) on the columns of Ĝh with weighting matrix V̂ −1

n .

4 Data

We estimate the model presented in Section 2 using the longitudinal data set employed by Atella

et al. (2006). This data set – constructed by combining a number of administrative archives main-

tained by one regional unit of the Italian national health-care system – contains very detailed

micro-level information on medical drug use, hospitalization, and mortality. Because our data con-

tain objective measures of health from administrative health-care records, they offer an important

advantage relative to studies based on self-reported measures of health. For the reasons discussed

in the Introduction, we focus on hypertensive patients treated with active ingredients in five ther-

apeutic main groups (TMG) of the Anatomical Therapeutical and Clinical (ATC) Classification

System, namely antihypertensives, diuretics, beta blocking agents, calcium channel blockers, and

agents acting on the renin-angiotensin system. Our observable outcomes consist of medical drug

use, treated as a continuous variable, and binary indicators for hospitalization by diagnosis-related

group (DRG) and death. The inclusion of the latter is especially important, not only because it

is an objective – albeit extreme – measure of health, but also because it allows us to control for

endogenous sample selection due to mortality.

4.1 Construction of the data set

Our data set has been constructed by combining three administrative registries maintained by

the Pharmaceutical Service Department of the local health authority covering the southern part
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of the Italian province of Treviso, one of the prosperous provinces of North-Eastern Italy. This

allows us to obtain a very rich, and to our knowledge unique, longitudinal data set containing

very detailed information on a representative sample of hypertensive patients treated with active

ingredients in five therapeutic main groups (TMG) of the Anatomical Therapeutical and Clinical

(ATC) Classification System, namely antihypertensives, diuretics, beta blocking agents, calcium

channel blockers, and agents acting on the renin-angiotensin system.

Specifically, the first administrative registry is the drug prescription database, which contains

records of patient prescriptions, including the date the prescription is made, the ATC code of the

substance prescribed, the number of packages prescribed, and the unit price of the package. The

unit price of the package allows us to recover information about the number of pills contained

in each package. This registry also includes gender and date of birth of the patient receiving the

medications, a unique anonymized patient identifier, a unique anonymized identifier of the physician

who prescribes the medication, and gender and date of birth of the physician.

The second administrative registry is the hospitalization registry, which contains records of

each single hospitalization episode, including date of entry and dismissal, primary DRG, and cost

of hospitalization. Through the anonymized personal identifiers, we link patient prescription and

hospitalization information to the last registry, the death and transfer registry. The resulting

dataset allows us to follow individual patients through all their accesses to public health-care

services until they either die or leave the local health authority. Complete data are available for all

registries from 1997 to 2002.

Relative to survey data, these administrative data have both advantages and disadvantages.

An important advantage is that they do not present problems which are typical of survey data,

namely unit and item non-response, measurement errors, and bias effects due to interaction with

interviewers. Another advantage is that they contain extremely rich information on health-care

services received by patients. Further, mobility is extremely low in our data and sample selection is

(almost) entirely due to mortality. The main disadvantage is that they contain little information on

a patient’s socio-economic characteristics. In particular, no information on income and education

is available.

4.2 Outcomes and controls

We consider three observable outcomes (thus, J = 3): medical drug, hospitalization, and mortality.

While drug use is a continuous variables, the other two are binary indicators. Since people who

13



die drop out of the sample, the equation for the first outcome can be interpreted as an endogenous

selection equation. The time unit is the year.

We observe whether an individual is alive at the end of period t, and whether she has been

hospitalized during period t. The associated outcome variables are binary 0-1 indicators. Finally,

medical drug use Cit is computed by average daily drug purchase,2 computed as the total number

of pills bought by patient i during period t divided by the number of days Tit the patient is observed

during the period. Thus

Cit =
1

Tit

Jit∑
j=1

Nij · Pij ,

where Jit is the number of prescriptions filled to patient i during period t, and Pij and Nij are

respectively the number of pills per pack and the number of packs contained in the jth prescription.

Since patients do not buy medical drugs when they are hospitalized or after they are dead, Tit is

given by the total number of days the patient is alive minus the number of days a patient is

hospitalized during such period.

Our set of control variables is quite limited and includes age and gender, an indicator for being

exempt from the payment of the prescription charge, an indicator for the gender of the patient, and

one for concordance between the gender of the patient and the gender of the physician prescribing

the drugs (physician and patient gender concordance). Specifically, the indicator for being exempt

is equal to one if an individual is exempt from the co-payment prior to 2001 (the year when co-

payment was temporarily abolished in Italy). Note that all patients in our sample were either always

or never exempt from the co-payment in all the sample years prior to 2001. Thus, this indicator

is time-invariant for all individuals. Patients in our sample were exempt from the ticket either

because of low income, or because they had disability or specific chronic rare pathologies diagnosed

by specialists. Thus, although the rules for exemption are somewhat complicated, including this

indicator allows us to somehow control for patients’ income. Finally, note that the gender of the

physician is constant over time for about 98.1% of the patients observed in our sample. To reduce

the computational burden, we treated this indicator as time-invariant for all individuals by assigning

the gender of the physician who made most of the prescriptions for the few patients who faced a

change.

We consider all patients who are present in the administrative archives in 1997, were born

2 Patients need not consume all the medical drug they purchase. Further, they may buy medical drug in a
pharmacy outside the boundaries of their local health authority. Because these events appear to be rare, we do not
worry about this source of measurement error.
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between 1920 and 1939 (aged 61–80 in year 2000),3 and received at least one prescription during

the period of a year.4 Since some of the medications considered here are also employed against

kidney failure, we drop patients who were hospitalized for renal diseases but never for cardiovascular

diseases (2.7% patients dropped), patients with missing data on any of the variables used (3.4%

patients dropped), and patients with an average drug use greater than 5 pills per day (2.9% patients

dropped). The last selection criterion reflects the fact that these outliers may represent cases of

co-morbidity. Finally, to apply our dynamic model we keep only patients observed for at least four

consecutive periods (2.5% dropped) The final sample consists of 4,296 patients observed for 5.9

years on average. Figure 1 shows the distribution of the patients included in our final sample by

gender and year of birth.

4.3 Descriptive statistics and preliminary evidence

Because we expect a possibly quite different relation between health and medical care depending

on gender, we carry out our analysis separately for males and females. Table 1 shows descriptive

statistics for our sample. Mortality, hospitalization and medical drug use are all higher for men than

for women. Most of the physicians in our sample are men. Finally, the percentage of individuals

who are exempt from paying the prescription charge is very low.

Figure 2 shows nonparametric kernel estimates of the density of medical drug use by gender.

Both densities display two peaks corresponding respectively to about half a pill per day and 1

pill per day. Figure 3 shows the age-profile of average drug use, hospitalization and mortality by

gender. All measures increase with age and are higher for men at all ages.

5 Results

Our observable health outcomes are mortality, hospitalization and medical drug use (hence, J = 3).

The corresponding vector of latent outcomes is Y ∗it = (Y ∗i1t, Y
∗
i2t, Y

∗
i3t)
′, where Y ∗i1t is the logarithm

of medical drug use, Y ∗i2t is the propensity to be hospitalized, and Y ∗i3t is latent “frailty”. We

think of all these latent outcomes as driven by the observable covariates and the latent health

stock. Although mortality is an extreme measure of health, it is an objective measure. As such,

it is not subject to problems like reporting bias or subjective response scales, that typically affect

other subjective measures like self-reported health or conditions. Moreover, the inclusion of this

3 We restrict attention to these cohorts because they comprise the bulk of the population suffering of hypertension.
4 Patients who do not receive prescriptions for more than 365 days are likely to be affected by mild hypertension

that could be treated simply by a healthy diet and by reducing stress factors.
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outcome is especially important because it allows us to control for endogenous sample selection

due to mortality. Given the peculiarities of our sample, panel attrition is (almost) entirely due to

mortality.5

Except for Y ∗i1t, which is always observable, we only observe binary indicators corresponding to

Y ∗i2t, and Y ∗i3t. Thus, the elements of the vector Yit of observable outcomes are

Yijt =

{
Y ∗ijt, if j = 1,

1[Y ∗ijt > 0], if j = 2, 3,
(13)

where 1[A] is the indicator function of the event A.

5.1 Parameter estimates

We estimate the reduced-form parameters in (6) by MSL. The maximization routine that computes

the MSL estimates for these models is written in Mata, the matrix programming language of the

statistical package Stata, and is based on the Newton-Raphson algorithm with numerical first and

second derivatives. The MSL estimates are based on 50 draws, using Halton sequences, from the

multivariate standard Gaussian distribution of the unobservable health shocks. To reduce the

influence of the initial conditions and the computational burden, we leave a gap of S = 2 periods

after the initial period 0, so we estimate the model with t = 3, . . . , Ti periods.6

The time-varying variables included in our model are age, an indicator for being hospitalized

in t − 1, and the logarithm of medical drug use in t − 1. The time-invariant variables included

in our model are an indicator for gender concordance between the patient and the physician, and

an indicator for being exempt from the co-payment prior to 2001. The variables in the initial

conditions, which may be viewed as additional instruments, include the logarithm of medical drug

use in the first sample period, an indicator for being hospitalized in the first sample period, an

indicator for gender concordance between the patient and the physician, and an indicator for being

exempt from the co-payment prior to 2001. Appendix B presents the estimated coefficients of the

reduced-form parameters by gender.

Table 2 shows MD estimates of the structural parameters by gender. The iterative routine that

computes the MD estimates for these models is also written in Mata, the matrix programming

language of Stata. Estimated factor loadings of all heath outcomes have a positive sign, denoting

that outcomes are all positively related to the latent common factor. Because these outcomes,

5 The only other reason for losing a unit sample is mobility, but this is extremely rare in our data.
6 Estimation of model (6) required about 5 days for the subsample of men and 9 days for the subsample of women

on an Intel Dual Core i5-6500 CPU @ 3.20GHz computer running Windows 10 and Stata Version 15.
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namely mortality, hospitalization, and medical drug use, are all expected to increase as health

decreases, we interpret the latent common factor η as a measure of bad health. The importance of

modeling the latent health stock jointly with the health outcomes is to capture correlation in the

error terms associated with endogenous medical care inputs that affect health. Estimation of these

factor loadings are an important feature of our model, allowing for joint estimation of endogenous

medical care use and health outcomes.

The top panel of Table 2 shows the estimated coefficients of the equation (5) for the initial

conditions. Not surprisingly, the initial stock of bad health is positively related to both hospital-

ization and the level of medical drug use in the initial period, though the latter is not statistically

significant for women. Being exempt from co-payment is positive and significant for women. Note

that the exemption indicator is a proxy for either the presence of disability or low income. Having

a physician of the same gender is positively related to the initial stock of bad health for men, while

is negatively related for women. Thus a female physician prescribing medical drugs is associated

to better initial health for both male and female patients. The scale parameter γ in equation (5)

is highly statistically significant for women but not for men.

The second panel of Table 2 shows the estimated coefficients of the latent health equation, while

the following three panels show the estimated coefficients of the three equations for the observable

outcomes. Note again that including the mortality equation is another important feature of our

model, allowing for endogenous sample selection. Recall that when a variable is included in both

the equation for the latent health stock and the equations for the observed health outcomes, we

can interpret its coefficient in the latter equations as the direct effect on the outcomes, and its

coefficient in the former as the indirect effect – through the latent health stock. The autoregressive

coefficient ρ captures health deterioration. This coefficient is equal to .367 for men and to .621 for

women, suggesting a higher rate of health depreciation (1− ρ) for men.

In addition to health deterioration, captured by ρ, an age-related decline in the latent health

stock is also reported for men. This means that age indirectly increases the probability of death

and hospitalization, through latent health. The estimated direct effects of age are not statistically

significant for men. For women, a reduction of bad health as age increases is reported to mitigate

health depreciation captured by ρ. This means that age indirectly decreases the observable health

outcomes for women. Nonetheless, these negative indirect effects are dominated by the significant

and positive direct effects of age on the probability of death and hospitalization and, to a lesser

extent, on medical drug use.
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Being exempt from payment of the prescription charge increases both the probability of death

and hospitalization. This effect is what one would expect, because this indicator is a proxy for either

the presence of disability or low income. The partial effect on medical drug use is not significant. A

male GP is associated with a lower probability of hospitalization both for male and female patients.

Being hospitalized in period t − 1 significantly reduces health, especially for men. In fact, the

estimated coefficients of Y2,t−1 on the latent bad health equation is positive. For men, lagged

hospitalization has also a negative direct effects on the current probability of death and on the

probability of being hospitalized again in the current period. One interpretation is that an hospi-

talization episode makes it less likely to be hospitalized again or even dying in the following period,

possibly leading to a temporary health restore, but also reduces health, with negative indirect ef-

fects in the future years. This is consistent with findings from Yang, Gilleskie & Norton (2009). For

women, the direct effect of previous period hospitalization on the current probability of death is

also negative but not significant. For women, lagged hospitalization is instead positively correlated

with the probability of being hospitalized again in the current period. Thus, for women, both the

direct and the indirect effects of a hospitalization episode go in the same direction of increasing

the future probability of a subsequent hospitalization. Finally, hospitalization in a previous year

suggests a slightly lower use of medical drugs in the the following year, although the coefficient is

not significant for men.

Next, we investigate the effects of lagged medical drug use on health production and on current

observable outcomes and medical use. First of all, lagged medical drug use significantly reduces

latent bad health, especially for men. Thus, as expected, medical drug consumption acts as a health

investment. In fact, as long as differences in purchases reflect differences in consumption levels,

additional prescription drug use may prevent transitions to worse health.

Not surprisingly, lagged medical drug use significantly affects medical consumption today.

Specifically, previous prescription drug is positively correlated with contemporaneous drug con-

sumption. This may reflect both the fact that the specific illness considered here, i.e. hypertension,

is a chronic pathology, but also possibly the habitual or dependent nature of medical care use at

older ages. Moreover, individuals who used more prescription drugs in the previous year are more

likely to be hospitalized this year. These estimates suggest that previous medical drug use has a

direct effect on current use and hospitalization, independent of its indirect effect through changes in

health. Lagged medical drug use has also a positive direct effect increasing the current probability

of death for men. Nonetheless, this direct effect is then contrasted by an indirect effects through
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health going in the opposite direction. For women, both direct and indirect effects of lagged medical

drug use go in the same direction, reducing the future probability of death.

5.2 Direct, indirect and total partial effects

The estimated coefficients in the equations for mortality and hospitalization reported in Table 2

are not very easy to interpret. Table 3 reports estimated effects from the dynamic factor model by

gender. Specifically, we report estimates of the direct, indirect and total marginal effects implied

by our model. These effects are reported for lagged hospitalization, lagged medical drug use, and

age. Standard errors are based on the delta method. For the probabilities of hospitalization (Y2)

and death (Y3), these are the partial effects for the baseline individual. The baseline individual

is a man or woman aged 75 years, not exempt from the prescription charge, with a GP not of

the same gender, who in t − 1 had an average medical consumption of one pill per day and was

not hospitalized. For discrete variables, such lagged hospitalization, these are obtained by taking

differences. For continuous variables, such as lagged medical drug use and age, they are obtained

by taking the derivative of probabilities with respect to the variable in question. For the sake of

completeness we also report direct, indirect and total marginal effects for medical drug use (Y1).

Not surprisingly, both the probability of death and hospitalization increase with age. Looking

at the total effects, all else equal, individuals are 0.1% more likely to die as they get one year

older. Each additional year, the probability of hospitalization increases 0.6% for men and 0.4%

for women. Being hospitalized in t − 1 increases the probability of death by 1% for men and by

0.7% for women. This is mainly due to the “long-run” indirect effects of hospitalization reducing

latent health. Lagged hospitalization strongly increases the probability of being hospitalized again

in the current period, despite the smaller direct effect reducing such a probability for men. The

indirect effect of lagged medical use preserving or restoring latent health is slightly overwhelmed

by the direct effect in the opposite direction both on the probability of death and hospitalization.

The only exception is the probability of death for women, where direct and indirect effects are

both negative. In this case, an increase in medical use reduces such a probability by 0.2% in the

next period. Finally, for medical drug use, estimated effects actually show the strong persistence

of medical consumption, typical of a chronic condition such as hypertension, under consideration

here. The total partial effects of lagged hospitalization and age are not significant.
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6 Conclusions

In this paper, we present a tractable dynamic factor model of health and medical treatment,

where observable health outcomes are driven by the latent individual health and lagged medical

treatment. This paper extends the existing literature on the dynamic relationship between health

and medical treatment in several ways. The dynamics of health arises from both exogenous health

depreciation and endogenous health investments. Our model allows us investigating the effect

of medical treatment on health production, and on future medical use and observable outcomes.

By including mortality among observable outcomes, our model accounts for endogenous attrition.

Because we allow for both state dependence and dynamics in the latent factor, our model can be

viewed as a generalization of dynamic panel data models or as an extension of state-space models

to microeconomic panel data. Thus, because of its generality, our method can be also applied in a

variety of other settings.

We estimate the model by maximum simulated likelihood and minimum distance methods using

a rich longitudinal data set containing very detailed information on medical drug use, hospitaliza-

tion, and mortality for a representative sample of hypertensive individuals. In particular, we focus

on patients who were prescribed medical drugs employed against hypertension, a chronic asymp-

tomatic pathology affecting a large share of the adult population. Due to the peculiarity of the

pathology considered here, focusing on such patients offers the possibility of having helpful insights

into the relation between health and medical care.

Our model allows us investigating the effect of medical drug use on health production, and on

future medical use and observable outcomes. Our study provides evidence that medical care con-

sumption is highly correlated over time, and that this relationship depends on both permanent and

time-varying observable and unobservable heterogeneity. Moreover, our study produces estimates

of both direct and indirect effects of medical care use on observable health outcomes. These indirect

effects can be viewed as longer-term effects through latent health. First of all, our findings suggest

that, medical drug use significantly maintains future health levels and prevents transitions to worse

health. Many previous analyses using simple empirical models to analyse the relationship between

medical care and health were not successful in this direction, because of simultaneity through the

unobservable components of health deterioration, failing to recognize the health investment role of

medical care. Considering observable health outcomes, these indirect effects of medical care use

have a clear role in reducing the future probability of hospitalization and death.

In terms of policy implications, our results suggest that policies aimed at improving awareness
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of hypertensive diseases and the importance of the treatment of high blood pressure may help

reduce cardiovascular risks, and consequent hospitalization and mortality. The presence of both

state dependence and dynamics in the latent health means that also short-term policy interventions

may have longer-term implications.
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Table 1: Descriptive statistics

Men Women
Mean SD Mean SD

Log. of medical drug use 0.097 0.643 0.012 0.647
Mortality 0.013 0.115 0.008 0.088
Hospitalization 0.214 0.410 0.179 0.383
Age 69.79 5.811 70.76 5.825
Exempt from charge 0.025 0.157 0.013 0.115
Same gender physician 0.849 0.358 0.159 0.366
Observations 10,143 15,338
Patients 1,717 2,579
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Table 2: Estimated coefficients of the structural parameters by gender (* significant at 10%; **
significant at 5%; *** significant at 1%)

Men Women
Initial conditions (bad health) η0
Y10 0.452 *** 0.035
Y20 2.390 *** 1.314 ***
Gender concordance 0.333 *** -0.495 ***
Exempt -0.275 0.974 ***
γ 0.002 1.598 ***

Latent common factor (bad health) η
Age - 75 0.057 *** -0.018 ***
Y1,t−1 -0.348 *** -0.067 ***
Y2,t−1 1.737 *** 0.624 ***
ρ 0.367 *** 0.621 ***

Log medical drug use Y1
Constant 0.033 0.059 ***
Gender concordance 0.033 0.024
Exempt 0.064 -0.081
Age - 75 -0.002 0.003 *
Y1,t−1 0.688 *** 0.720 ***
Y2,t−1 -0.052 -0.036 *
Factor loading 0.014 0.026 *

Hospitalization Y2
Constant -0.890 *** -1.600 ***
Gender concordance -0.071 *** 0.229 ***
Exempt 0.484 *** 0.132
Age - 75 -0.007 0.054 ***
Y1,t−1 0.243 *** 0.182 ***
Y2,t−1 -0.330 *** 0.136 ***
Factor loading 0.506 *** 0.983 ***

Death Y3
Constant -2.262 *** -2.568 ***
Gender concordance 0.142 *** 0.041
Exempt 0.360 *** 0.647 ***
Age - 75 0.010 0.056 ***
Y1,t−1 0.423 *** -0.055 **
Y2,t−1 -0.739 *** -0.046
Factor loading 0.564 *** 0.574 ***
No. of obs. 4,992 7,601
No. of patients 1,717 2,579
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Table 3: Estimated effects from the dynamic factor model by gender (standard errors based on the
delta method; * significant at 10%; ** significant at 5%; *** significant at 1%)

Men Women
Direct Indirect Total Direct Indirect Total

Y1t
Y1,t−1 0.69 *** -0.00 0.68 *** 0.72 *** -0.00 * 0.72 ***
Y2,t−1 0→ 1 -0.05 0.02 -0.03 -0.04 * 0.02 * -0.02
Age -0.00 0.00 -0.00 0.00 * -0.00 * 0.00

Pr[Y2t = 1] (%)
Y1,t−1 PE at ln(1) 5.8 *** -5.1 *** 1.7 *** 1.7 *** -0.8 *** 1.2 ***
Y2,t−1 0→ 1 -7.5 *** 30.9 *** 18.0 *** 1.7 *** 10.7 *** 14.3 ***
Age PE at 75 -0.2 0.8 *** 0.6 *** 0.6 *** -0.2 *** 0.4 ***

Pr[Y3t = 1] (%)
Y1,t−1 PE at ln(1) 0.8 *** -0.8 *** 0.5 *** -0.1 * -0.1 *** -0.2 ***
Y2,t−1 0→ 1 -1.0 *** 8.8 *** 1.0 *** -0.1 0.8 *** 0.7 ***
Age PE at 75 0.0 0.1 *** 0.1 *** 0.1 *** -0.0 *** 0.1 ***
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Figure 1: Distribution of patients by gender and year of birth
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Figure 2: Medical drug use by gender
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Figure 3: Age profile of average drug use, hospitalization and mortality by gender
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Appendix

A Structure of the function g and its Jacobian matrix

Write the vector of p structural parameters in the model as ψ = (ψ1, ψ2), where ψ1 is the subvector

of ψ containing the p1 parameters entering the function g linearly, and ψ2 is the subvector of ψ

containing the p2 parameters entering g non-linearly, with p1 + p2 = p. By convention, let ψ1 be

the p1-subvector of ψ containing the parameters of the low of motion of the outcomes equation

(2), andψ2 be the p2-subvector of ψ containing the parameters of the reduced-form equation (3)

and of the initial condition equation (5). Then, the following relationship links the reduced-form

parameters in θ to the structural parameters in ψ

θ = g(ψ) = Q(ψ2)ψ1,

where Q(ψ2) is a q × p1 matrix that does not depend on ψ1. The p× q Jacobian matrix of g(ψ) is

then

G(ψ) =
∂g(ψ)

∂ψ
=

[
∂g(ψ)
∂ψ1
∂g(ψ)
∂ψ2

]
=


Q(ψ2)>

ψ>1 Q1(ψ2)>

...
ψ>1 Qh(ψ2)>,

...

 .

where Qh(ψ2) is the q × p1 matrix of the partial derivatives of Q(ψ2) with respect to the h-th

element of ψ2.

To illustrate, consider the special case of three time periods (T = 2), one observed outcome Y

(J = 1), one exogenous time-varying regressor X (k = 1), one exogenous time-invariant regressor

W and a constant term (l = 2). Initial conditions include the initial value of the observed outcome

Y , the exogenous time-invariant regressor W , and no pre-sample health shock. In this case, the

low of motion of the outcome is

Y ∗it = aηit + b0 + bwWi + bxXit + byYi,t−1 + Uit.

The law of motion for the latent factor is

ηit = ρηi,t−1 + cxXit + cyYi,t−1 + ωVit.

The initial condition equation is

ηi0 = dwWi + dyYi0.
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The reduced-form equation is then

Y ∗it = b∗0 + b∗wtWi +
1∑
s=0

b∗xsXi,t−s +
1∑
s=0

b∗ysYi,t−s−1 + d∗ytYi0 +
1∑
s=0

r∗sVi,t−s + Uit, t = 1, 2.

Thus, in this case the vector of q = 11 reduced-form parameters is

θ = (b∗0, b
∗
w1, b

∗
w2, b

∗
x0, b

∗
x1, b

∗
y0, b

∗
y1, d

∗
y2, d

∗
y2, r

∗
0, r
∗
1).

Let ψ = (ψ1, ψ2) be the vector of p = 10 structural parameters, where ψ1 = (b0, bw, bx, by, a)

and ψ2 = (dw, dy, cx, cy, ρ). In this case, the relationship between θ and ψ can be rewritten as

θ = g(ψ) = Q(ψ2)ψ1, where

Q(ψ2) =



1 0 0 0 0
0 1 0 0 ρdw
0 1 0 0 ρ2dw
0 0 1 0 cx
0 0 0 0 ρcx
0 0 0 1 cy
0 0 0 0 ρcy
0 0 0 0 ρdy
0 0 0 0 ρ2dy
0 0 0 0 1
0 0 0 0 ρ



.

The 10× 11 Jacobian matrix of g(ψ) is then

G(ψ) =



1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 ρdw ρ2dw cx ρcx cy ρcy ρdy ρ2dy 1 ρ
0 ρa ρ2a 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ρa ρ2a 0 0
0 0 0 a ρa 0 0 0 0 0 0
0 0 0 0 0 a ρa 0 0 0 0
0 dwa 2ρdwa 0 cxa 0 cya dya 2ρdya 0 a


.

Notice that the matrix G(ψ) is of full row rank only if ρ 6= 0 and a 6= 0.
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B Reduced-form estimates

This appendix presents the estimated coefficients of the reduced-form parameters by gender (*

significant at 10%, ** significant at 5%, *** significant at 1%.). The MSL estimates of reduced-

form parameters are based on 50 draws, using Halton sequences, from the multivariate standard

Gaussian distribution of unobserved health shocks and the random pre-determined shock.

Men Women
Y1 Y2 Y3 Y1 Y2 Y3

γ1 -0.010 -0.073 0.742 *** -0.012 -0.832 *** -0.959 ***
γ2 -0.013 -0.521 *** -0.411 *** -0.017 -0.879 *** -0.881 ***
γ3 -0.009 -0.212 0.098 -0.007 -0.165 *** -0.351 ***
Y101 0.165 *** 0.058 0.315 *** 0.147 *** 0.063 * 0.044
Y102 0.044 ** -0.014 0.144 * 0.039 ** 0.056 0.200 **
Y103 0.040 * -0.033 0.190 ** 0.030 * -0.105 *** -0.210 ***
Y201 -0.003 0.528 *** 0.457 *** 0.049 * 0.803 *** 0.513 ***
Y202 -0.031 0.302 *** 0.289 *** 0.001 0.503 *** 0.203 *
Y203 -0.001 0.362 *** 0.035 0.024 0.271 *** 0.243 **
Same gender1 0.017 -0.020 0.006 -0.008 -0.104 -0.087
Same gender2 0.001 0.088 0.212 * 0.009 0.047 -0.276 *
Same gender3 -0.071 *** -0.271 *** 0.241 ** 0.026 0.137 ** 0.232 **
Exempt1 0.118 0.460 *** 0.939 *** -0.021 0.751 *** 1.006 ***
Exempt2 0.061 0.451 *** -0.555 * -0.093 0.262 0.972 ***
Exempt3 0.116 0.705 *** 0.559 *** -0.047 0.451 *** 1.337 ***
(Age - 75)1 0.001 0.022 *** 0.099 *** 0.000 0.035 *** 0.078 ***
(Age - 75)2 0.003 0.018 *** -0.067 *** 0.001 -0.013 ** -0.012
(Age - 75)3 -0.006 ** 0.006 0.063 *** -0.002 0.004 -0.047 ***
Y1t−1,1 0.570 *** 0.141 *** 0.298 *** 0.580 *** 0.067 ** 0.343 ***
Y1t−1,2 0.209 *** -0.132 *** 0.021 0.203 *** -0.009 -0.905 ***
Y1t−1,3 0.022 0.040 0.017 0.045 ** 0.035 0.352 ***
Y2t−1,1 0.026 0.768 *** 0.829 *** 0.015 0.798 *** 0.484 ***
Y2t−1,2 0.009 0.170 *** 0.071 0.007 0.524 *** 0.343 ***
Y2t−1,3 0.040 0.349 *** 0.349 *** -0.062 ** 0.111 ** 0.175 *
a1 0.022 *** 0.850 *** 0.732 *** 0.020 *** 0.826 *** 0.437 ***
a2 0.003 -0.030 -0.322 *** 0.011 0.412 *** 0.561 ***
a3 0.013 0.261 *** 0.429 *** 0.014 0.280 *** 0.178 *
Constant 0.106 *** -1.178 *** -3.138 *** 0.083 *** -1.634 *** -3.357 ***
Observations 4,992 7,601
Patients 1,717 2,579
Sim. log lik. -32,254.2 -46,572.8
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