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Abstract

We develop a dynamic matched sample estimation algorithm to
distinguish peer influence and homophily effects on item adoption de-
cisions in dynamic networks, with numerous items diffusing simultane-
ously. We infer preferences using a machine learning algorithm applied
to previous adoption decisions, and we match agents using those in-
ferred preferences. We show that ignoring previous adoption decisions
leads to significantly overestimating the role of peer influence in the
diffusion of information, mistakenly confounding influence-based con-
tagion with diffusion driven by common preferences. Our matching-
on-preferences algorithm with machine learning reduces the relative
effect of peer influence on item adoption decisions in this network sig-
nificantly more than matching on earlier adoption decisions, as well
other observable characteristics. We also show significant and intuitive
heterogeneity in the relative effect of peer influence.

KEYWORDS: machine learning, dynamic networks, matching al-
gorithms
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1 Introduction

In recent years, social scientists have become increasingly interested in the
datasets generated by people interacting in online networks. When studying
these networks, an important issue is to estimate whether and how individ-
uals’ decisions are affected by the decisions of their peers, a concept known
as peer influence. Determining the impact of peer influence on the tendency
of two individuals to behave similarly is challenging primarily due to so-
cial selection. Social selection, otherwise known as sorting or homophily, is
the tendency of individuals to form and maintain links with those who are
already like them [17], i.e. who have similar preferences. Due to social se-
lection, individuals who are linked are already more similar than those who
are not linked, and that similarity could be self-reinforcing even without the
link. Hence, when we view behaviors or information spreading between con-
nected individuals, we need to account for similar preferences when trying to
estimate the impact of peer influence on contagion.

In this paper, we present a statistical framework for estimating the effect
of peer influence on item (aka product) adoption decisions in large dynamic
online networks. Our paper builds on a small literature in economics and
computer science which uses matched sampling to estimate causal peer in-
fluence effects on product adoption. Matched sampling is a non-parametric
method to control for confounding factors and to overcome selection bias by
comparing treated and non-treated observations that have similar values of
the matching covariates ([21]). The underlying assumption in this technique
is that the treatment and the reaction to treatment should be independent
conditional on the observable characteristics used in the matching process;
i.e., that those characteristics are proxies for the drivers of social selection.
There are two distinctive features of our method with respect to the existing
studies ([4], [22]). [4] adapt propensity score matching for use in a dynamic
online network to study the diffusion of a single item which is adopted by
a large number of agents. In contrast to [4], our method can be used to
study high-dimensional diffusion processes. Online social networks typically
feature diffusion of a multitude of items at any given time, and an individual
can adopt as many items as she would like. [22] study the effect of peer
influence on the adoption of a large number of items, but they apply their
method to a static online network, and they estimate peer influence for a
single time-period. In our model, at each time period, each individual can be
exposed to treatments on a large number of items (as many as the number of
items which the agent has not adopted yet), and the effect of peer influence
may vary depending on the item, the agent, her local network, and the time
period. In order to deal with the individual- and time-specific nature of peer
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influence, we develop a novel dynamic, distance-based matching procedure.
The key novelty of our method is that we use a machine learning al-

gorithm to predict agents’ adoptions by inferring a latent factor model of
their preference types ([11]). Previous research has used demographic as
well as behavioral variables to match agents, but has not matched agents
with similar past adoption behaviors. In their application to the yahoo IM
network, [4] include a large number of demographic and behavioral charac-
teristics for matching. Demographic variables are not always available for
online data, and even when they are, these variables alone are unlikely to
adequately control for homophily. This is important because to the extent
that the effects of homophily are underestimated, the impact of peer influ-
ence is over-estimated. Our method adopts the fundamental insight from
collaborative filtering that users with similar past adoption behaviors have
similar preferences. In addition, utilizing past adoption behaviors takes into
account the importance of past contagion in shaping the evolution of pref-
erence types. However, directly utilizing past adoption behaviors to match
agents may be ineffective because of the large number of items and the spar-
sity of individual adoption. [22] overcome this problem by matching dyads
(pairs of agents) based on having an approximately equal measure of past
adoption similarity for each dyad. This approach requires both of the agents
in a dyad to have enough past adoption behaviors in order to infer their pref-
erences. Moreover, just because two agents u, v are each equally similar to a
third agent w does not imply that u and v adopted the same types of items
in the past. Our method will instead first embed past adoption behaviors
into a low-dimensional preference type vector, and then match agents with
similar predicted vectors. The advantage of our method is that it ensures we
match agents who adopted similar items in the past.

We illustrate our method using data from Github, the popular website
for collaborative software development. On GitHub, users can create open-
source software projects known as repositories, or repos for short, and push
code to them. Other users can contribute to the repo (if given permission),
or just use the repo for their own purposes. GitHub also has resources to
help users find and share interesting repos. In particular, GitHub includes
a directed social network, similar in design to Twitter, in which users can
follow other users to receive notifications about some of their activities on
repos. GitHub users can also star a repo they find interesting, which is
similar to liking something on Facebook, and will result in a notification on
the activity feeds of their followers. GitHub is known as the “Facebook for
programmers” and prominent tech companies such as Microsoft want to reach
communities of developers with their open-source software on GitHub ([26]).
At the same time, rich longitudinal data concerning user activities on public
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repos and social network links can be accessed and analyzed.1 This makes
GitHub a useful environment in which to study the diffusion of knowledge
about software.

Our results show that the effect of peer influence on item adoption deci-
sions, relative to common preferences, is much smaller than it would appear
to be if we do not control for past adoption behaviors. In particular, we
demonstrate that using our machine learning algorithm leads to a signifi-
cantly lower estimate of peer influence. We also show that the marginal
influence of additional adopting peers is diminishing, and we find that the
peer influence effect is strongest immediately after a peer adopts. We fur-
ther examine other ways that the importance of peer influence varies with
the types of agents and items. Our algorithm detects lower peer influence
in contexts where past influence is likely to be important in shaping current
adoption behaviors, such as for items which are similar to those an agent has
adopted in the past. It also detects lower peer influence in contexts where it
is easier to learn about the item without the link, such as for highly popular
items. Taken as a whole, our empirical findings suggest exposure is the main
pathway for peer influence on Github. That is, peer influence occurs because
the links spread information that the agent would not otherwise have access
to, as opposed to other possible reasons for peer influence in product adoption
choices, such as information cascades ([7]) and (local) network externalities
([24]).

The overview of our paper is as follows. In Section 2, we summarize our
empirical method. Section 3 provides an overview of the data, as well as
preliminary evidence of assortative matching and social selection. Section
4 is where we present our results, including our evidence of identification.
Section 5 concludes.

2 Empirical Method

2.1 Preference Estimation

The adoption decision we focus on is whether or not to star a particular repo,
and we will consider an agent to have adopted a repo when they star it. Let
u denote agents, i denote items, and t denote periods (months). We will
refer to the agents whom u follows as her leaders. Our primary definition
of treatment is that one or more of agent u’s leaders have recently adopted
an item i, which agent u has not yet adopted. If agent u adopts the item

1GitHub does not require agents to provide detailed demographic data, and most do
not. This is typical of many online networks.
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during period t, then we measure treatment based only on her leaders who
had adopted the item as of the time that u adopted; i.e., excluding those who
adopt during period t and after agent u. By doing so, we alleviate concerns
related to a possible simultaneity of adoption choices (e.g. reflection, [16]).
Also, we fix the time of treatment for agent u and item i so that it is either
the beginning of the month, or it is the most recent time at which a leader
adopted the item, whichever comes later. Lastly, we restrict the duration
of peer influence by only defining adoption by a leader as treatment during
period t if it occurred since the beginning of period t − 3, and before the
end of period t.2 Note that there are many items and a separate treatment
occurs for each item and each agent who follows other agents who adopt the
item.

The causal quantity we seek to identify is the relative risk of adoption,
RRt = p

(1)
t /p

(0)
t , where p

(1)
t is the probability of adopting an item during

period t for a treated agent, and p
(0)
t is the probability of adopting an item

during period t when not treated, for an agent who would have been treated.
3 Of course we do not actually observe the counterfactual quantity p

(0)
t and

it must be estimated from the data. Our definition of relative peer influence
is the same as the definition used in [4], allowing us to compare our results
to earlier findings.

Our estimation strategy is based on dynamic, distance-based matching.
The propensity score e(Xu,i,t) = Pr(Tu,i,t = 1|Xu,i,t) is the probability that
agent u is treated on item i in period t, where treatment status is denoted by
Tu,i,t and Xu,i,t are a set of time-varying covariates that describe the agent
and item. Our identification strategy relies on the standard assumptions
underlying matching studies. First, we need to assume conditional uncon-
foundedness, which is the assumption that the potential adoption outcomes
(Y

(1)
u,i,t, Y

(0)
u,i,t) are independent of treatment Tu,i,t, conditional on the covari-

ates Xu,i,t. The second assumption is overlap, which requires that units have
positive probability of being treated and non-treated, e(Xu,i,t) ∈ (0, 1).

Conditional unconfoundedness in social network analysis is challenging
primarily due to social selection, which results in connected agents having
more similar preferences for items than non-connected agents. In order to
identify the effect of peer influence, we would like to be able to control for
preference types. However, we do not observe the true preference types of

2In the full dataset, leader adoption happens up to 32 months before follower adoption,
but about 54% of the diffusion takes place within the current and previous 3 months. We
have tried using varying the duration parameter, and we find only small differences in the
peer influence estimate.

3We are interested in the effect of treatment on the treated, which is the (unobserved)
effect of withholding a treatment that has in fact been implemented.
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agents, and we will instead control for a set of proxy variables intended to
predict preference types. Our set of matching covariates Xu,i,t includes a
set of baseline characteristics which provide information about the agent’s
account age and activity but do not tell us information about the types of
items that the agent adopted in the past (we list the baseline covariates used
for matching in the appendix Table A.2). We will then include in Xu,i,t a
vector of additional covariates which are meant to summarize the types of
items that the agent has adopted in the past.

Note that, unlike [4], we cannot assume that social network link forma-
tion is independent of the adoption behavior. Furthermore, our definition of
treatment includes adoption by leaders during past time periods, and it is
possible that past contagion can affect the evolution of the social network
and adoption choices. Our peer influence effect ignores any indirect effects
which may occur because of a change in the matching covariates, as a result
of the change in treatment status leading to a different equilibrium in which
the matching covariates are different.4 It captures only the direct effect of
the change in treatment, conditional on everything in the past.

There are many different ways in which we can add covariates that cap-
ture the types of items adopted in the past. The simplest way is to use the
adoption vector, which is a long, sparse, binary vector which has a 1 for the
i-th component if the agent u adopted the item i by the beginning of period
t, and a 0 otherwise. However, the downside of this approach is that it would
require matching on a huge number of covariates, and matching estimators
are known to have greater finite-sample bias when the set of matching co-
variates becomes too large, relative to the number of observations ([1]). In
our results (Section 4.1) we will show that matching directly on all past
adoption choices leads to poor matching performance. Another simple ap-
proach would be to utilize an observable characteristic of the past adoptions
which allows us to reduce the dimensionality of previous choices; for exam-
ple, one possible approach would be to utilize the programming languages of
past adoptions. Hence, we could define a language vector, which is a (much
shorter) vector in which each component represents the fraction of items an
agent adopted which are (primarily) written in a particular programming
language. The downside of this approach is that our measure of past adop-
tions only measures one characteristic of the items, and there could be many
other characteristics that are important to agents. In our results (Section
4.1), we will also analyze the performance of past programming languages as

4A more exhaustive game-theoretic model of the problem would require a complex
dynamic model of product adoption choices and social network formation, and the results
would be conditional on the assumptions.
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a low-dimensional method to control for common preferences.
Our preferred empirical method will be a two-step method in which we

first infer vectors of agent characteristics which predict adoption choices.
The adoption matrix is a matrix with a 1 in the (u, i) position if agent u
has adopted item i before the beginning of period t, and 0 otherwise. We
use a well-known collaborative filtering algorithm for implicit feedback data
(clicks, views, purchases, etc.), based on the weighted, regularized matrix fac-
torization (WRMF) of the adoption matrix ([11]).5 We factorize the adoption
matrix in a given period, to obtain a latent factor vector for each agent u
and for each item i. Within the context of the model underlying WRMF, the
latent factor vector for agent u represents u’s preferences over characteristics
of items and the latent factor vector for item i represents the characteris-
tics of item i. Agent u’s estimated payoff from any item is given by the
inner-product of her latent factor vector with the item’s latent factor vector.
The latent factor vectors are chosen by the WRMF algorithm to best repre-
sent linear preferences over characteristics and the characteristics themselves,
based on a static model of past adoption choices.

In the appendix we provide a detailed overview of the statistical model un-
derlying WRMF (Section 6.2). Note that the preferences learned by WRMF
do not have a structural interpretation in our setting. The model under-
lying WRMF is static whereas our network is dynamic, and the WRMF
model does not incorporate past contagion (which we address in a robustness
check). However, we do not attempt to interpret the parameters estimated
by WRMF in a meaningful way, we only use them as inputs for matching.
What is important for our purpose is that the “preference” types inferred
by WRMF serve as effective proxy variables (in combination with the other
baseline characteristics) for the true, unobserved preference types. We will
provide evidence that this is indeed the case in our results (Section 4.1).

Under the assumptions of the WRMF model, the weighted maximum-
likelihood estimates of preference types will minimize the weighted (squared-
Euclidean) distance between the adoption matrix and the preference rep-
resentation, using a penalty function for the complexity of both the prefer-
ence and characteristic representations. The posterior weighted log-likelihood
equation for WRMF is derived in the appendix (Section 6.2), and the esti-
mation of the preference types is also detailed in the appendix (Section 6.3).

The WRMF algorithm has 4 hyper-parameters (aka tuning parameters),
which must also be estimated from the data. In order to set the hyper-
parameters, we use the approach which is typical in the machine learning

5The WRMF algorithm is based on the singular value decomposition of the adoption
matrix.
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literature. We partition our data into a training set and a test set; the train-
ing data is used to infer the model for a given value of the hyper-parameters,
and the test data is used to compute a statistic which measures the accu-
racy of the predicted preferences at out-of-sample prediction. We use ran-
dom search over a set of possible hyper-parameter values, and select for our
analysis the values of the hyper-parameters which optimize the value of the
statistic computed on the test data. Details are provided in the appendix
(Section 6.4).

2.2 Matching Strategy

We propose a dynamic, distance-based matching strategy, with exact-matching
on the item, and nearest-neighbor matching based on the distance between
agent characteristics. Let ||X||Σ =

√
X′ΣX be the vector norm induced by

the positive definite matrix Σ. We define ||Xu,i,t −Xv,i,t||Σ as the distance
between the vectors Xu,i,t and Xv,i,t, where Xv,i,t represents the covariate val-
ues for a potential match for agent u on item i. For the weighting matrix Σ
we use the inverse variance matrix. The inverse variance matrix is estimated
once per period using all of the agents included in the data for the period.6

This weighting accounts for differences in the scale of the covariates and it
places more weight on differences in covariates which do not vary much in
the population than it does on ones which do vary a lot. Agents who have
different covariates that others are very similar over are thus treated as sig-
nificantly different; while agents who have different covariates that vary a lot
in the population are treated as being more similar.

Each period, we create a matched sample of treated and untreated agent-
items, for each agent and each item on which they have been treated, but not
yet adopted themselves. For each agent, we first compute their M nearest
neighbors, based on the past data. Then, for each item i on which an agent u
is treated during t, we find the matched pair of agents u and v such that u and
v have the most similar preferences (as predicted by our covariates) for i, but
only agent u is treated during t. We compute the nearest-neighbor for each
treated observation (agent-item), with replacement. If we cannot find a valid
non-treated agent in the first M matches, then there is no match for agent u
and item i, and we remove this treated observation from consideration. M

6In a typical application of distance-based matching to estimate the average treatment
on the treated for a single treatment, one would include only the non-treated agents to
estimate Σ ([23]). We cannot do this because then we would need to estimate a separate
Σ for each treatment. However, since very few agents are treated for the large majority
of items, it should be the case that for almost all items, Σ for all agents is approximately
equal to Σ for only the non-treated agents for a particular item.

8



needs to be large enough so that we are can match sufficiently many treated
observations. We chose a value of M = 50 which allowed us to match over
99.99% of the observations. The benefit of our approach is that we only need
to compute the nearest neighbors of each agent once per period, and so this
approach can be used for the large number of items diffusing in our data.

Next, for each item i we can compute the fractions of treated (p̂
(1)
i,t ) and

non-treated (p̂
(0)
i,t ) agents who adopt the item. Finally, the estimates for all of

the items in the period are combined by weighting the estimate for each item
by the fraction of exposed pairs for that item. Let α

(1)
i,t denote the fraction

of treated observations in period t which correspond to item i. We have

p̂
(1)
t =

∑
i

α
(1)
i,t p

(1)
i,t p̂

(0)
t =

∑
i

α
(1)
i,t p

(0)
i,t (1)

In our results, we report the ratio p̂
(1)
t /p̂

(0)
t . Note that p̂

(1)
t /p̂

(0)
t simplifies to

the number of treated agents who adopt an item, relative to the number of
matched, non-treated agents who adopt an item. The probability of a follower
adopting any given item is very small, but our statistic is uncontaminated
by observations in which an agent does not adopt an item. In our results
(Section 4) we will refer to the estimated treatment effect simply as n+/n−,
ignoring the time period subscript.

Also, note that although we match pairs of agents, the statistic we use
to measure peer influence relative to the effect of homophily uses only data
about populations of matched pairs. That is, we do not directly compare
matched agent-pairs; rather, we compare matched populations. We could
instead match agents based on binning, and then directly compare binned
populations, but this would require us to define bins of similar agents and
items. Binning is problematic as the results may depend on the definitions
of the bins and how they are filled. We view it as a benefit of our matching
method that we do not need to specify bins.

Since our treated observations are not independent, we cannot rely on
standard formulas to compute the asymptotic variance of our estimator. In-
stead, we will compute confidence intervals using bootstrap re-sampling sim-
ulations applied to the matched sample.7 8 We draw 100 samples from the
matched pairs and compute the test statistic on each sample. We then use

7A similar inferential methodology has been used by [5] for the case of a single, binary
treatment.

8[2] show that matching estimators do not satisfy the required smoothness conditions
for consistency of the bootstrap. We include as a robustness check a type of bootstrap
which is known to produce confidence intervals that are too large, in our setting (see
appendix Section 6.6).
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the 2.5 and 97.5 percentiles of the empirical distribution of the test statistic
over the generated samples as the endpoints of our 95% confidence interval.
A confidence interval with lower endpoint greater than 1 implies that the
treatment has a significant effect.

3 Data and Descriptive Evidence

Our data is time-stamped GitHub data collected from the GitHub Archive
that includes user activities on public repos and social network links created
over a 32-month period, from February, 2011 to October, 2013. We provide
a more detailed background on GitHub in the Appendix (Section 6.1). We
estimate peer influence during the 10 months from January to October, 2013;
earlier data will be used for learning preferences, observing the evolution
of the social network, and observing item adoptions. We define period 1
to be January, 2013; earlier months have period less than 1, and the final
month is period T = 10. Since we will use earlier starring behaviors to
learn preferences, we will restrict our data to include only agents who have
enough stars to accurately infer their preferences. In order to do this, in
a given period t ≥ 1 we will estimate peer influence effects on the adoption
behaviors of agents who have at least 10 stars prior to the start of the period.9

Our final sample consists of 163,458 unique agents for whom we are able to
estimate social influence in at least one month from January to October, 2013.
These agents create a total of 10,036,987 stars of 855,317 unique repos, and
they create a total of 1,662,393 links to 363,598 unique leaders.10 Summary
statistics for our sample are provided in the Appendix (Table A.1). On
average, an agent stars 61 repos, and follows 10 leaders. A repo receives
on average 12 stars, with a large dispersion about this mean value. We will
also use the (primary) programming languages of repos in our analysis, to
provide a benchmark for how well we can match on preferences using only
the features available in the data, without collaborative filtering.11 We graph
the composition of stars by language over time in the Appendix (Figure A.1)
According to this measure, the most popular language is Javascript, followed
by Ruby, and the popularity of the languages is fairly stable over time.

9We exclude inactive agents, that is those that do not take any action for six subsequent
months.

10The agents in our sample are responsible for approximately 86% of the stars in our
dataset, and they create 56% of the links.

11If a repo contains multiple programming languages, then GitHub sums up the file
size associated with each programming language, and the largest one is designated as the
primary programming language.
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Figure 1 (a) plots the fraction of adopters and non-adopters of a repo
during period T , as a function of the number of leaders in their local network
who have adopted the repo (since the beginning of period T − 3). Figure 1
(b) depicts the probability of adoption as a function of the number of leaders
who have adopted the repo (since the beginning of T − 3). In Figure 1 (a),
we see that agents who star a repo during T tend to follow significantly more
agents who also starred that repo recently. In Figure 1 (b), we see that the
probability of adoption increases significantly when 1 or more agents whom
an agent follows have starred the repo recently. Interestingly, the effect is
non-linear. The probability of adoption decreases when more than 5 leaders
whom an agent follows have adopted the repo, though it remains significantly
higher than when 0 leaders have adopted.

In Figure 1 (c) we implement a version of the well known “shuffle test”
of social influence ([3]), modified for multi-dimensional diffusion and for a
directed network. We randomly reassigned all of the adoption times for all
items, so that the adoption frequency over time remained constant. We then
compared the fraction of observed dyadic differences in adoption times (in-
cluding only the observations for which the follower adopts after the leader)
for the original network relative to the network with the shuffled adoption
times. In comparison to the randomly shuffled adoption times, we find that
followers are about 1,788% more likely to adopt an item within the same
week as the leader, and that the temporal interdependence persists; the fol-
lower is about 205% more likely to have adopted the item during the first 16
weeks with the actual adoption times.

Figure 1 (a-c) shows us that connected agents tend to adopt more similar
items than non-connected agents, and that connected agents who adopt the
same items do so closer together in time than non-connected agents. Both
of these findings are consistent with peer influence. However, this evidence
is not sufficient to conclude that peer influence affects followers’ adoption
decisions. The choice of which repos to adopt and the choice of who to follow
are endogenous. Time-varying homophily could cause connected agents to
adopt similar items and to adopt them closer together. In Figure 1 (d),
we compute the cosine similarity of the adoption vectors for pairs of agents
who form a link and for random pairs of agents who do not form a link.
An adoption vector is a vector with a 1 in the i-th position if agent u has
adopted item i, and a 0 otherwise. For the agents who do form a link, we
compute the similarity of their adoption vectors at 30-day intervals leading
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up to and after the moment of link formation.12 13 For the agents who
do not form a link, we fix an arbitrary date of 5/1/2013, and compute the
cosine similarity during 30 day intervals before and after this date. We see
clearly that the adoption behaviors of agents who become linked are far more
similar than the behaviors of agents who do not form a link. Moreover, the
agents who form a link were already becoming more similar during the time
before they formed the link. Even though they continue to grow more similar
after link formation, that additional growth may be caused by homophily
rather than influence. In order to determine the impact of peer influence on
adoption decisions, we need to use our empirical methodology which allows
us to account for the impact of common preferences on adoption decisions
for a multidimensional diffusion process.

4 Results

4.1 Baseline

We will now show that our method is effective at controlling for common
preferences. First, we use simulations to analyze the finite-sample bias of
our matching algorithm, under the assumption that homophilous adoption
choices are determined by the WRMF preference types with the optimal
hyper-parameter values. We simulate the adoption choices during the first
period by assuming that each observed adoption is based on one of three
possible mechanisms:

1. Influence: An agent adopts the item most-recently adopted by one of
her leaders, which she has not already adopted.

2. Homphily: An agent adopts her most preferred but not yet adopted
item, as predicted by WRMF.

3. External Exposure: An agent adopts the most popular item (based
on adoptions since the beginning of period -2) which she has not already
adopted.

12We include all of the dyads in our data for which the follower is one of the valid agents
as defined above, and which we can observe for 180 days before and after the link forms.

13Cosine similarity between two non-zero vectors v1, v2 is defined as

cos(v1, v2) =
v1 · v2

||v1||2||v2||2
.
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In the simulations we randomly assign 90% of the adoptions during the
first period to be determined by the homophily rule, 5% to be determined
by the influence rule, and 5% to be determined by the external exposure
rule.14 We then replace the actual adoption choice in the data with the
adoption choice generated by the randomly selected rule, while keeping the
timing the same. We also estimate the nearest-neighbor for each agent, based
on our preferred set of matching covariates which includes WRMF, prior to
the beginning of period 1. We are interested in the ability of our matching
method to estimate the counterfactual number of agents who adopt the item;
i.e., the number of agents who adopt the item when not treated, for agents
who would have been treated. In our simulation, the true counterfactual is
given by the number of treated items adopted by the treated agent due to
the homophily rule (10,406) plus the number of treated items adopted by
the treated agent due to the external exposure rule (2,449). The estimated
counterfactual is given by the number of matched, non-treated agents who
adopt the item (10,907). Thus, we see that the estimated counterfactual
performs fairly well; it generates approximately 84.8% as many adoptions
as the true counterfactual. Table 1 shows the confidence intervals for the
number of adoptions from homophily and external exposure, as well as from
the estimated counterfactual, based on bootstrap resampling simulations.

Of course, as we stated earlier, the true underlying preference types are
different from WRMF and so simulations alone can only establish that our
matching algorithm has low finite-sample bias when we observe preference
types. We still need to establish that our matching covariates are effective
proxies for the true unobserved preference types. We do this by provid-
ing evidence that our covariates used to match agents in the first period
are related to adoption choices during the first period. Figure 2 (a) pro-
vides an overview of the most-preferred items in period 1, as predicted by
WRMF with the optimal hyper-parameter values, for each agent and each
item, based on adoption behaviors prior to the beginning of period 1. Figure
2 (a) shows that the preference types learned by WRMF are reasonable, in
the sense that agents are more likely to adopt items for which they had a
higher predicted preference. The correlation between predicted ranking and
adoption probability is negative and highly significant (−0.013, p < 0.001).
Figure 2 (b) provides an overview of adoption similarity during period 1 for
an agent and her nearest neighbors. In Figure 2 (b), we use the adoption
vector during period 1, which is a vector with a 1 in the i-th position if the

14In ([22]), the authors use a simulation with 90% homophily, 10% influence. We modify
their simulation to include all 3 mechanisms. We may want to add additional tests with
different fractions of adoptions determined by each mechanism.
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agent adopts i during period 1, and a 0 otherwise. We see that the cosine
similarity of items adopted during period 1 is higher for pairs of agents who
are lower-ranked neighbors than for pairs of agents who are higher-ranked
neighbors. Once again the correlation between distance-ranking and adop-
tion similarity is negative and highly significant (−0.012, p < 0.001). Figures
2 (a) and 2 (b) provide evidence that our covariates are effective proxies for
the true adoption preferences during the first period. The low p-values for
the correlation coefficients indicate a real relationship between similarity in
terms of our matching covariates, and revealed adoption preferences.15

Finally, to demonstrate that WRMF improves our ability to reduce ho-
mophily bias in the estimation of peer influence, we will compare several
different matching algorithms. Homophily generally leads to an upward bias
in the estimated peer influence effect, and our goal is to compare the ability
of the different algorithms to attenuate this bias. We consider the following
five algorithms:

• Random matching. The matching process selects random, non-
treated agents as controls for each treated observation.16 Since links
are not created randomly, the use of random matching cannot control
for homophily.

• Matching based on baseline agent’s characteristics (Baseline).
Nearest-neighbor matching using the covariates listed in the appendix
Table A.1. Importantly, the covariates do not measure the types of
items adopted in the past by agents. We include the nearest-neighbor
matching on baseline characteristics in order to understand the bias
created by excluding past adoption behaviors.

• Baseline+Adoptions Nearest-neighbor matching using the baseline
variables plus the adoption vectors for past adoptions. We include this
approach to demonstrate that matching performs poorly when we do
not reduce the dimensionality of the adoption vectors.

• Baseline+Languages. Nearest-neighbor matching using the baseline
variables plus the programming languages of past adoptions. We mea-
sure agents’ preferences by using the programming languages of their

15We can redo the regressions, excluding any observations on which an agent has been
treated, and the results are virtually identical.

16In order to reduce variance, we will use the adoption choice averaged over multiple
random neighbors, for each treated observation, as our counterfactual. For each treated
observation, we start with M = 50 random neighbors, and then remove any neighbors
who have already adopted the item or are themselves treated on the item. We average
over the remaining neighbors.
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adopted items. We encode the top-100 most popular programming lan-
guages using a one-hot scheme, and measure the fraction of an agent’s
adopted items in each language. 17 We include this approach to inves-
tigate whether our machine learning algorithm reduces homophily bias
more than any directly observable features of the data.

• Baseline+WRMF. Nearest-neighbor matching using the baseline vari-
ables plus the (normalized) WRMF preference type vectors.18

We present the results for period t = 1 in Table 2, which show that the use
of WRMF preferences results in the lowest estimate of peer influence, signifi-
cantly outperforming the other candidate sets of matching variables.19 With
random matching during the first period, the fraction of treated adopters
is 201.84 times greater than the fraction of non-treated adopters. When
we compare these results to our nearest-neighbor matching algorithm based
on WRMF, we see that the estimated peer influence effect is dramatically
reduced. During the first period the fraction of treated adopters is only
2.05 times greater than the fraction of non-treated adopters under matched
sampling with WRMF. The random matching result suggests that failing
to account for selection into treatment results in an overestimation of the
treatment effect by 9,744%. The language vectors result in the second lowest
estimate, but it is still 42.42% higher than with WRMF. The inclusion of the
adoption vectors actually causes the matching estimator to perform worse
than the baseline matching approach which does not control at all for the
types of items agent adopt in the past.

In Figure 3 we depict the total amount of contagion for treated agents,
and the total amount of contagion which can be attributed to homophily;
i.e., the total amount of adoption of items by (WRMF) matched, non-treated
agents, versus the total amount of adoption by treated agents. It appears
that homophily can explain over half of the contagion that we see in the data
(50.47%), which is similar to what was found in [4]. The estimated homophily
without collaborative filtering would be much lower (0.8% with Random,
5.8% with Baseline+Adoption Vectors, 20.69% with Baseline, 32.30% with
Baseline+Languages), thus producing an overestimation of the peer influence
effect on contagion.

17We use the same dimensionality as the preference types inferred by WRMF.
18The magnitude of the WRMF preference type vectors is proportional to the number of

items adopted by the agent. Therefore, we normalize the WRMF preference type vectors,
so they have unit length.

19We only include t = 1 for brevity; however, the results are similar in all of the time
periods.
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4.2 Treatment Intensity

Next we turn our focus to different intensities of influence, based on the
number of adopting leaders. Figure 4 (a-b) shows a comparison of WRMF-
based matching to random matching over time and for different numbers of
adopting leaders. With random matching, the estimated treatment effect of
having 2 and 3 (or more) adopting leaders is higher than that of having a
single adopting leader (Figure 4 a), and the results exhibit a downward time-
trend. Matched sampling with WRMF results in peer influence estimates
that are significantly lower, and the downward time-trend disappears (Figure
4 b). The marginal influence of adopting leaders is actually diminishing,
and the treatment level of 3 (or more) adopting leaders does not have a
statistically significant peer influence effect in most of the time periods. One
reason why random matching incorrectly suggests that marginal influence
is increasing may be that it fails to control for the greater homophily that
exists with larger groups of adopting leaders (inset in Figure 4 b).20

We can also examine how peer influence varies based on the timing of
adoption decisions, by defining treatment based on the most recent period
during which an agent’s leader adopted an item. Let ∆tu,i denote the number
of periods between the current period (t), and the most recent period that
one of agent u’s leaders adopted the item. Figure 4 (c-d) shows a compari-
son of random matching to WRMF-based matching over time and for items
which an agent’s leader(s) most-recently adopted during the current period
(∆tu,i = 0), or during an earlier period (0 < ∆tu,i ≤ 3). With both random
matching (Figure 4 c) and WRMF-based matching (Figure 4 d), the esti-
mated treatment effect is larger when ∆tu,i = 0, and smaller when ∆tu,i < 0.
In addition, random matching overestimates peer influence by more when
∆tu,i = 0 (17,000% in period 1) than when ∆tu,i < 0 (6,500% in period 1).
This may be because there is greater homophily between agents who adopt
closer together in time (inset in Figure 4 d). Overall, the results show that
both homophily and peer influence are strongest immediately after a leader
adopts an item.

4.3 Treatment Heterogeneity

We next use nearest-neighbor matching with WRMF to evaluate the treat-
ment effect (of at least 1 adopting leader versus none) under various types
of heterogeneity. To do this, we compare the fractions of treated and non-

20We measure the homophily between a pair of agents based on the cosine similarity
of their normalized attributes, which includes their learned preference types. See the
Appendix (Table A.3) for the full list of attributes used to measure homophily.
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treated adopters for observations with different types of followers, leaders
and/or items.

In Figure 5 (a) we examine whether or not peer influence plays a greater
role in adoption of items for agents who have adopted similar items in the
past. We estimate similarity by using the cosine similarity between WRMF
preference and characteristic type vectors. We group observations into those
for which a treated agent had similarity above or below the average similarity
for her treated items in the period.21 In Figure 5 (b) we analyze heterogeneity
by agents’ levels of experience, measured using the total number of adopted
items. We compare observations in which the follower has adopted at most
50 items versus observations in which the follower has adopted at least 75
items, measured as of the beginning of each period.

The results in Figures 5 (a, b) are consistent with our algorithm suc-
cessfully controlling for common preferences in instances when past influence
may affect the evolution of preferences. In 5 (a) we see that adoption of items
which are more similar to those an agent has adopted in the past tends to
be driven less by peer influence (although the difference is not statistically
significant in periods 5, 9 and 10). This result is in fact the opposite of what
was found in [4], in which it was found that agents with a greater interest in
news content are more susceptible to peer influence on an item that provides
news content. In 5 (b) we see that agents who have adopted fewer items
overall are more susceptible to influence than agents who have adopted more
items. The difference between our methodology and the one adopted by [4]
is that our algorithm takes into account past peer influence in shaping the
evolution of preferences. Agents with high preference similarity to an item,
as measured by WRMF, may have leaders who adopted more similar items
in the past, so that past influence already caused them to adopt these types
of items before. And agents who have adopted more items overall are also
more likely to have been already exposed to peer influence on similar items,
which affects the evolution of their preferences.

Previous research ([4]) suggests that homophily is greater amongst early
adopters of an item, but has not found that peer influence varies during an
item’s life cycle. We investigate how peer influence and homophily vary for
newer versus older items in our data. To do so, we define an item’s age in a
given period as the number of days since the item first appeared in the data,
computed at the end of the period. We compare items which first appeared
at most 180 days ago against items which first appeared at least 360 days
ago. We do indeed find that adoption of newer items is driven significantly
less by peer influence (Figure 5 c), and we find that greater homophily exists

21So we only include agents treated on at least two items.
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amongst the early adopters of an item (inset in Figure 5 c).22

We have already seen that peer influence plays a smaller role in the adop-
tion of items more similar to an agent’s preference type, which is consistent
with exposure as the primary reason for peer influence. On GitHub there
is a huge number of items diffusing simultaneously, making it difficult for
an agent to discover an item less similar to her previously adopted items,
without contagion. We look for additional evidence for exposure by examin-
ing heterogeneity with respect to popularity, as well as the number of items
adopted by an agent’s leaders. As mentioned earlier, popular items may be
easier for agents with similar interests to learn about, because more popu-
lar items have avenues other than contagion through which agents can learn
about them. For example, GitHub (similar to other online platforms) has
a special page listing recently popular repos, which are known as trending
repos. Popular repos may also be easier to find outside of GitHub, on social
media and independent websites. We measure the popularity of an item in
period t based on whether or not the item has (log+1) number of adopters
above or below the median for all observations during the period. We find
that peer influence is significantly lower for more popular items than for less
popular items (Figure 5 d). It may also be easier for agents to learn about
the items adopted by popular agents, even without following them, because
of the availability of alternative channels. In addition to listing trending re-
pos on a special page, GitHub also highlights trending programmers, defined
as those agents who receive many new followers. Those agents may be well-
known on other platforms popular with programmers too, such as Twitter
or Stack Overflow. Previous research into Twitter has shown that popular
agents are not necessarily more influential in terms of spawning retweets or
mentions ([6]), but this research does not estimate causal peer influence ef-
fects, which we now do. For each observation in a period, we define popular
leaders to be those whose average number of followers is above the median
for all observations in the period. We find that peer influence is significantly
lower for items adopted by more popular leaders than for items adopted by
less popular leaders (Figure 5 e).

In Figure 5 (f) we compare the behavior of followers in each period for
whom the average (log+1) number of adoptions by their leaders, as of the end
of the previous period, is either above or below the median for all observations
that period. The results show that agents who follows leaders that adopt
many items are less influencible than agents who follow leaders that adopt
fewer items. On GitHub, followers get a notification for each star by one of
their leaders. When an agent follows leaders who are creating a large number

22The results for peer influence are significant in every period, including period 6.
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of stars, it seems reasonable to hypothesize that she is proportionally less
likely to pay attention to each star created by a leader, because the higher
volume of information being transmitted to the follower makes it more costly
for her to find each individual item.23

We believe that our findings with respect to the popularity of items and
leaders, as well as the number of items adopted by an agent’s leader(s),
support the hypothesis that exposure is the main pathway underlying peer
influence. It seems highly plausible that for each of these types of hetero-
geneity, the heterogeneous covariate affects the observed adoption outcomes
primarily through its effect on whether an agent is aware of the item at all.
Hence, the main reason that we observe peer influence is because a leader’s
adoption of an item increases the likelihood that the follower is exposed to an
item to which she would not otherwise have been exposed. For items to which
an agent was already likely to be exposed, even without leader adoption, the
peer influence effect is smaller.

4.4 Robustness Checks

Finally, we provide a couple of robustness checks, which are summarized in
greater detail in the appendix. First, we consider an extension of the WRMF
algorithm which incorporates past exposure, the details of which are provided
in the Appendix (Section 6.5). The results for the first period are in Table 3,
which shows that the extension reduces homophily bias less than our main
specification. Second, we consider an alternative bootstrap technique which
accounts for two-way random effects, which is discussed in greater detail in
the Appendix (Section 6.6). The results for the first period are in Table 4,
which shows that the extension does not change our main result.

5 Conclusion

We present a novel statistical framework to estimate peer influence effects for
a multidimensional diffusion process that uses machine learning to control
for common preferences that drive adoption decisions. Using this technique
allows us to account more effectively for the drivers of social selection. We
show that ignoring common preferences leads to significantly overestimating
the role of peer influence in the diffusion of knowledge on GitHub, mistak-
enly identifying homophily-driven diffusion as influence-based contagion. In

23It has been demonstrated in lab experiments that, when an individual’s peers are each
an equal source of information, then as the size of an individual’s peer group increases,
each peer has less of an impact ([13]).
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particular, we show that our preference-based matching algorithm is able to
reduce the estimate of peer influence effects significantly more than matching
with other observable variables in the data. We also find significant hetero-
geneity in peer influence for different types of items, leaders, and followers.
Peer influence is lower for agents who have been influenced on similar items
in the past, and it is lower for agents who are more likely to be exposed to
an item even in the absence of peer adoption. Our findings thus point to the
importance of exposure for diffusion processes in online networks. Although
we cannot be certain that we have captured all of the intricacies driving se-
lection bias, our approach provides a significant improvement in the ability
to sort out homophily and influence in a social network using observational
data.
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(a) (b)

(c) (d)

Figure 1: Suggestive evidence of social influence and social selection. (a) The fraction
of adopters and non-adopters of a repo for whom n of their leaders have adopted by the
end of the period. (b) The likelihood an agent adopts a repo given n of her leaders have
adopted. The number of leaders who adopt is measured at the time the agent adopts.
In (a) and (b), the results use data during period T . (c) The frequency of observed
dyadic differences in adoption times between leader and follower with actual adoption
times relative to randomly assigned adoption times. We include all adoptions for which
the follower adopts an item after the leader. ∆t = ti − tj , where ti is agent i’s (follower)
adoption time, and tj is agent j’s (leader) adoption time. The dashed blue line indicates
a ratio of 1, which means that there is no temporal clustering in adoption decisions. (d)
The average cosine similarity of pairs of agents who form a link during 30-day time periods
measured before and after link formation. For each dyad, the time periods are centered
so that period 0 is the period which begins at the moment of link formation. In (a) - (d),
the gray shaded area indicates the 95% confidence interval.
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(a) (b)

Figure 2: Evidence that WRMF and other matching covariates are proxies for true,
underlying preferences. (a) The likelihood an agent adopts her r ranked repo, as predicted
by WRMF, during the period. (b) The cosine similarity of an agent’s r-th nearest-neighbor,
as measured by our distance function including WRMF and other matching covariates.
The gray shaded areas indicate the 95% confidence interval.

(a) (b)

Figure 3: Aggregate influence and homophily in multi-dimensional diffusion. Treated
and homophilous adoptions per month (a) and cumulatively over time (b). Homophilous
adoption is adoption by a matched, non-treated agent, based on nearest-neighbor matching
with WRMF.
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(a) (b)

(c) (d)

Figure 4: Peer influence and homophily for different intensities of the treatment. (a)-(b)
The fraction of observed treated to untreated adopters (n+/n−) over time under random
matching (a) and nearest-neighbor matching with WRMF (b), for different treatments
defined by the number of adopting leader(s). The inset in (b) graphs the average cosine
similarity between the attributes of an adopter and her adopting leaders, for different
numbers of adopting leaders. We only include an observation if we can estimate preferences
with WRMF for at least 75% of a follower’s adopting leaders. (c)-(d) The fraction of
observed treated to untreated adopters (n+/n−) over time under random matching (c)
and nearest-neighbor matching with WRMF (d), for different treatments defined by the
recency of leader adoption. In (c) and (d), ∆t refers to the number of periods between
the current period and the most recent leader adoption. The inset in (d) graphs the
dyadic cosine similarity between an adopting follower and her adopting leader, based on
the amount of time between adoptions. In (b) and (d), the dashed blue line indicates
a ratio of 1, which means the treatment has no effect. In (a)-(d), the 95% confidence
intervals are computed using the non-parametric bootstrap. In the insets in (b) and (d),
the 95% confidence intervals are based on the formula for standard error.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Heterogeneity in peer influence and homophily. (a) An agent’s preference for
a repo is above or below her average preference for treated repos during the period. We
only include agents who are treated in a period on at least 2 repos. (b) The number of
stars by the follower up to the end of the period t−1 is at most 50, or at least 75. (c) The
repo first appeared at most 180 days ago, or at least 360 days ago, measured at the end
of the period. The inset in (c) graphs the average similarity of an adopter to each of her
adopting leaders, based on the number of months since the item first appeared in the data.
(d) The number of stars of the repo, as of the end of period t − 1, is above or below the
median for all observations in the period. (e) The average (log+1) number of followers of
the adopting leaders, as of the end of period t−1, is above or below the median for all the
observations in the period. (f) The average (log+1) number of stars by all of an agent’s
leaders, as of the end of period t− 1, is above or below the median for all observations in
the period. In (a)-(f), treatment is defined as having at least one leader who adopts the
repo, and the 95% confidence interval is computed using the non-parametric bootstrap.
In the inset in (c), the 95% confidence is based on the formula for standard error.
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Adoption Type Treated # Adoptions 95% C.I.
Homophily Yes 10, 406 [10, 229.93, 10, 572.28]

External Exposure Yes 2, 449 [2, 368.48, 2, 547.58]
Est. Counterfactual No 10,907 [10,707.95,11,064.1]

Table 1: Simulation Results. The number of items adopted by agents for the true coun-
terfactual and the estimated (est.) counterfactual. Homophily refers to the treated agents
who adopt an item due to preference, as measured by WRMF. External Exposure refers
to the treated agents who adopt an item due to its recent popularity. Est. Counterfactual
refers to the matched, non-treated agents who adopt the item. The 95% C.I. is estimated
using the non-parametric bootstrap.

Matching Variables n+/n− 95% C.I.
Random 201.84 [196.5, 207.33]
Baseline 5.57 [5.38, 5.75]

Activities+Baseline 18.18 [17.4528, 18.862]
Languages+Baseline 2.91 [2.85, 2.99]
WRMF+Baseline 2.05 [2.01,2.09]

Table 2: The performance of random matching, and nearest-neighbor matching with dif-
ferent sets of variables, for items on which an agent was treated during period 1. Treatment
is defined as following at least one agent who adopted the item, versus none. The outcome
measure is the fraction of treated to untreated adopters (n+/n−). The 95% confidence
interval is computed using the non-parametric bootstrap.

Exposure n+/n− 95% C.I.
No 2.05 [2.01,2.08]
Yes 2.17 [2.12, 2.22]

Table 3: The performance of nearest-neighbor matching, for items on which an agent
was treated during period 1, with WRMF that either does (Exposure=Yes) or does not
(Exposure=No) allow for higher confidence for items that a follower does not adopt, but
one of her leaders does. Treatment is defined as following at least one agent who adopted
the item, versus none. The outcome measure is fraction of treated to untreated adopters
(n+/n−). The 95% confidence interval is computed using the non-parametric bootstrap.

Matching Variables n+/n− 95% C.I.
Random 201.84 [181.81, 224.7]
Baseline 5.57 [5.05, 6.24]

Languages+Baseline 2.91 [2.69, 3.19]
WRMF+Baseline 2.05 [1.92,2.24]

Table 4: Reproduction of Table 3, except that the 95% confidence interval is computed
using the non-parametric pigeonhole bootstrap.
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6 Appendix

6.1 Background on GitHub

GitHub is an online platform for collaborative software development, based
on the Git version control system. On GitHub, users create software projects
known as repos. Each repo is a directory which holds all of the files associated
with the project, such as source code and documentation files. The repo
exists both locally on a user’s machine, and remotely on GitHub. The user
makes changes to the repo on her local machine, such as adding code, and
then pushes the changes to the repo on GitHub, so that the online repo
matches her local copy. The user who creates the repo also designates a list
of collaborators; these are other users who can push changes to the content
of the repo. If the repo is public, then the collaborators are not the only
users who can contribute to the repo. In fact, any user on GitHub can
fork a public repo to create a copy of the repo with which they can freely
experiment. The user can then push changes to their forked copy without
affecting the original repo. The forked repo can be the starting point for
a new independent project, or it can be used to propose changes to the
original repo. If a user wishes to merge the changes in her forked repo back
into the original repo, and she is not a collaborator, then she can submit
a pull request. Any of the collaborators may decide whether to approve or
reject the requested changes. If approved, then those changes are merged
back into the original repo.

However, GitHub is more than just a code hosting service. It also offers
social networking features to help users find interesting projects and to sup-
port the community of developers.24 Users can star interesting repositories
that they want to bookmark for later reference, and/or to show their appre-
ciation to the project’s developer(s). The total number of forks and stars
of a repo are prominently displayed on the repo’s GitHub page. In addition
to that, GitHub users can follow other users, to be notified of some of their
activities. GitHub users can follow other users without the other user’s con-
sent, similar to following someone on Twitter. Once a following relationship
is established, the follower will receive notifications on her GitHub homepage
when the leader creates, forks, or stars a repo, when the leader is added as a
collaborator to a repo, and when the leader follows another user. However,
the leader will not receive notifications about the follower. Every GitHub
user has a profile page with optional information about the user, such as
the company for which the user works and her physical location. The user’s

24At the time of our study, GitHub did not have a recommendation system to help users
find interesting projects.
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profile page includes information about the public repos that the user has
created, forked or starred, and the contributions to public repos which she
has made. The user’s profile page also lists her total number of followers
and leaders, and links to the profile pages of all of the user’s followers and
leaders.

Besides its public open-source repositories, GitHub also sells private repos
which can only be accessed by collaborators, and it sells on-premise instances
of its software for businesses. However, we will focus exclusively on public
repos, because these are the repos for which we have data, and more impor-
tantly, they are the repos for which GitHub’s social networking features are
relevant.

Like many online networks, GitHub is popular with young people, but it
has some unique features. We do not have detailed demographic information
for most of the users in our main dataset, but a recent survey of GitHub users
can tell us about the types of individuals who currently use GitHub, which
is likely similar to the users in our data[27]. The survey results suggest that
the overwhelming majority of GitHub users are men, with 90.95% of survey
respondents identifying as male and only 3.36% identifying as female. This
is similar to the collaborative content creation sites Wikipedia and Stack-
Overflow. GitHub users are young, with over 63.45% of respondents being
under 34 years old. They are also well-educated, with 65.7% of respondents
having at least a bachelor’s degree. Results from [15], which were collected in
2011-2012, show that while GitHub users are located all over the world, the
majority of users are in North America or Western Europe, with the U.S.A.
having the largest fraction at 30.14%. Aside from gender, the demographics
of GitHub users are similar to those found in other online networks targeting
young people. GitHub is also a very prominent technology company, used
by companies including Google, Facebook, Twitter and Microsoft (and many
others) to house their open-source software projects and to reach out to the
developer community. As of early June, 2018, Github had over 27 million
active users ([9]), and according to the website traffic monitor Alexa, it is
the 60th most popular website on earth.25

The content creation patterns on GitHub are broadly similar to what has
been observed in other online social networks. The so-called “90-9-1” rule is
a commonly observed pattern of online user-generated content distributions,
in which 90% of users do not contribute anything, 9% of users occasionally
create content and 1% of users drive a large amount of the activity [18]. In

25www.alexa.com/siteinfo/github.com. The ranking is computed using a combination
of average daily visitors and pageviews on GitHub, over the 3-month period ending on
7/30/18.
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our data we cannot see the users who do not contribute anything, but we
can see that a small fraction of very active users create a large fraction of the
content. For instance, when we look at the 1,763,923 unique users in our data
who created at least one repo, 46.31% of the repos are created by the top 10%
of the users. For the 785,584 users who starred at least one repo, the top 10%
of users were responsible for 73.5% of the stars. The remaining behaviors in
we analyze in this paper fall in between these two extremes. Compare these
results to other platforms such as Wikipedia, in which the top 2.5% of users
contribute 80% of the content [25], and Twitter, in which the top 10% of
users write 90% of the Tweets [10]. If anything, the distribution of behaviors
is less skewed on GitHub than on these other platforms.

However, there are important differences between GitHub and more typi-
cal online social networks primarily about interaction, such as Twitter. Many
GitHub users do not even participate in the social network at all; for instance,
of the GitHub users in our data who created at least one repo, only 31.54%
are involved in the social network at all. For users in the social network
graph, their average degree of 3.65 is much lower than on Twitter [15]. Also,
only 9.6% of the pairs of connected users in our social network have a recip-
rocal relation between them, while the rest are one-sided. This is again much
lower than the rate on Twitter of 22% [15]. These numbers support the idea
that the social network is less central to the purpose of GitHub than it is for
Twitter, and that following users on GitHub can be more costly in the sense
that following many other developers on GitHub results in receiving many
notifications from them, which can be distracting. Even though the social
network is less central to GitHub’s purpose, it still is large and plays signif-
icant role in connecting the most active users; the 860,071 users involved in
the social network generate the majority of creates, forks, stars and pushes
in our data.

6.2 Maximum Posterior Weighted Likelihood based on
the WRMF Model

We will infer estimates of preferences based on the statistical model used
by the popular collaborative filtering algorithm referred to as WRMF ([11]).
The model is static and there is no social network. Let mt denote the number
of items on the platform by the end of period t, and let nt denote the number
of agents who belong to the platform by the end of period t. The adoption
matrix Yt = {Yu,i,t} at the end of period t is the nt × mt matrix with a 1
in its (u, i)-th position if agent u has adopted item i by the end of period
t, and zero otherwise. We assume that at the end of period t, each agent
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u has linear preferences over characteristics of items, represented by (N -
dimensional vector) Wu,t, and that each item has characteristics represented
by (N -dimensional vector) Vi,t. Hence, the utility for agent u from adopting
item i would be Wu,t ·Vi,t. Let Wt,Vt denote the matrices of stacked row
vectors for Wu,t,Vi,t, respectively.

WRMF is estimated at the end of period t by using only the adoption
matrix; the algorithm assumes that the adoption of item i by agent u by the
end of period t is based on the following equation:

Yu,i,t = Wu,t ·Vi,t + µu,i,t, µu,i,t ∼ N(0, σµ) (A5)

Note that WRMF assumes that agents have a negative preference towards
any items which they have not adopted, but we can choose how confident
we are in that assumption through the use of confidence weights. Let Cu,i,t
denote the confidence weight for agent u and item i. WRMF assumes that
the confidence weights take the following form:

Cu,i,t = 1 + αYu,i,t (A6)

We incorporate the confidence weights by letting each observation serve as
Cu,i,t independent observations.26 By assuming that all of the observations
are independent, we can derive the weighted likelihood of our observations
Yt, given the parameters Wt,Vt:

L(Yt|Wt,Vt) =
∏
u,i

g(Yu,i,t|Wu,t,Vi,t)
Cu,i,t (A7)

g is the probability density function for a normal distribution.27 WRMF
assumes zero-mean spherical Gaussian priors for the preference and charac-
teristic vectors:

Wu,t ∼ N
(
0, ρ̃−1IN

)
, Vi,t ∼ N

(
0, ρ̃−1IN

)
. (A8)

We take the log of the posterior weighted likelihood and replace constant
terms with λ to get the following:

lnL (Wt,Vt|Yt) = −
∑
u,i

Cu,i,t (Yu,i,t −Wu,t ·Vi,t)
2−λ

(∑
u

||Wu,t||22 +
∑
i

||Vi,t||22

)
.

(A9)
We learn Wt,Vt to maximize the posterior weighted likelihood.

26This assumes that Cu,i,t is an integer, although that is not necessary to estimate the
model.

27Note that the data is binary but the distribution of our unobservable is normal. There
are other versions of collaborative filtering that use a logistic function to model the binary
outcomes.
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6.3 Details of Estimation for WRMF

Solving the log-likelihood equation for WRMF (Section 6.2) for a global max-
imum is not feasible with large datasets. Instead, the values of Wt,Vt can
be found by alternating least squares, because when we fix either Wt or Vt

the equation becomes quadratic and so its maximum can be easily computed.
To do alternating least squares, begin by randomly guessing values for Wt,
and then solve for the Vt that maximizes the log-likelihood. Then, fix the
values of Vt at what was just found, and solve for the Wt that maximizes the
log-likelihood. Repeat this process a pre-specified number of times, which
we will denote by A. α, λ, N and A are all different hyper-parameters which
must be set before we can do alternating least squares.

The models in this paper were estimated using the implementation of
alternating least squares available in the repo benfred/implicit on GitHub
([8]).

6.4 Details of Hyper-parameter Setting

The statistic we compute to set the hyper-parameters is known as the Dis-
counted Cumulative Gain, or DCG ([12]). Let Rank(u, i) denote the pre-
dicted ranking of an item adopted in the test set. We compute the following:

DCG =
∑
u,i

1

log2(Rank(u, i))
(2)

The reason we favor this statistic is because it places more emphasis on
getting rankings near the top correct. We drop any observations in the test
set with a predicted ranking greater than 100. The objective in selecting
hyper-parameters is to maximize the value of this statistic.

Preliminary tests revealed that a greater number of factors tends to lead
to a higher value of the statistic. Hence, to reduce the number of hyper-
parameters over which we need to search, we fixed the number of latent
factors at the largest value we tried, N = 100. We also fixed the number
of alternations at A = 15. We then tested random values of the hyper-
parameters α, λ. Each value was drawn from a uniform distribution over the
set of integers {1, ..., 1000}. We tested 120 pairs of values. In the end, we
use the values α = 95, λ = 864, which results in DCG = 0.468
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6.5 Extension of WRMF for Exposure by Leader Adop-
tion

For learning preferences in period t, define the exposure indicator Eu,i,t as
a variable which is equal to 1 if agent u would have been treated in the
past on item i, according to our definition of treatment (Section 2.1), and if
the treatment expired by the end of period t. In other words, we have the
following:

Eu,i,t =

{
1, if Yu,i,t = 0, Tu,i,s = 1 for some s < t− 3, Tu,i,t = 0
0, otherwise

We generalize Cu,i,t to be the following:

Cu,i,t =


1, if Yu,i,t = 0, Eu,i,t = 0
1 + α1, if Yu,i,t = 0, Eu,i,t = 1
1 + α2, if Yu,i,t = 1

We can now adjust the confidence in the case where an agent has not
adopted a given item, but was treated on the item sufficiently long in the
past. We use a value of α1 > 0, so that if agent u’s leaders adopted the item,
then we are more confident that a negative preference revealed by agent u
for item i (Yu,i,t = 0) is measured correctly. We also assume that α1 <= α2,
since we don’t know for certain if an agent was exposed to an item whenever
the revealed preference is negative.

6.6 Pigeonhole Bootstrap

We do bootstrap re-sampling on the matched pairs, as before. For each of
100 bootstrap replicates, we re-weight observations according to the following
procedure ([19], [20]). For a particular replicate, each agent is assigned the
outcome of a Bernoulli(p = 0.5) draw, and each item is also assigned the
outcome of a Bernoulli(p = 0.5). Each observation is then assigned the
product of the draws for the agent and item of that observation as its weight.
Hence, an agent-item pair appears in a bootstrap replicate if and only if both
the agent and the item are in the replicate.
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(a)

Figure A.1: The fraction of stars each period (beginning in period -9) of repos from
various programming languages. Missing means that the language field is empty, and
Other means that the language is some other language besides the ones listed.
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(a)

Stars Per Agent Stars Per Repo Follows Per Agent
Count 163,458 855,317 163,458
Mean 61.40 11.73 10.17

Std. Dev. 146.31 119.78 114.70
Min. 10 1 0
25% 16 1 1
50% 28 1 4
75% 60 3 10
99% 510 179 87
Max 28,148 37,959 38,541

(b)

Stars Per Period Follows Per Period
Count 33 33
Mean 304,151.12 50,375.55

Std. Dev. 151,236.57 19,769.92
Min. 67,443 5,724
50% 292,075 53,213
Max 537,477 93,400

Table A.1: Overview of the stars and follows by valid agents. (a) Summary statistics
of the distribution of stars per agent, stars per repo, and follows per agent, for the valid
agents. (b) Summary statistics of the distribution of total number of stars per period, and
follows per period, by the valid agents.
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Characteristic Type
Personal Experience (Months)
Behavior Number of followers

Number of followees
Number of Repos Starred

Average leader Personal Average leaders’ experience
Average leader behavior Average leaders’ number of followers

Average leaders’ number of followees
Average leaders’ number of repos starred

Table A.2: The demographic and behavioral covariates used for nearest-neighbor match-
ing, aside from previous adoption behaviors. We use logarithms (log + 1) of all covariates
except for experience.

Characteristic Type
Demographic Experience (Months)
Behavior Number of followers

Number of followees
Number of Repos Starred
WRMF Agent Preferences

Table A.3: The demographic and behavioral covariates used for estimating homophily.
We use logarithms (log +1) of number of followees, number of follwers, and starred repos.
All of the covariates are normalized before estimating homophily.
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