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Abstract

Many countries are taking measures stopping productive activities to slow
down the spread of COVID-19. At times these measures have been criticized as
being excessive and too costly. In this paper we make an attempt to understand
the optimal response to an infectious disease. We find that the observed policies
are very close to a simple welfare maximization problem of a planner who tries to
stop the diffusion of the disease. These extreme measures seem optimal in spite of
the high output cost that it may have in the short run, and for various curvatures
of the welfare function. The desire for cost smoothing reduces the intensity of the
optimal quarantine while extending it for longer, but it still amounts to reducing
economic activity by at least 40%. We then study the possibility of either comple-
menting or substituting the quarantine policy with random testing. We find that
testing is a very close substitute of quarantine and can substantially reduce the
need for indiscriminate quarantines.
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1 Introduction

The arrival of COVID-19 at the beginning of 2020 took most of the world by surprise.
It was quickly understood that even though related to SARS, its fatality rate was sig-
nificantly lower. This drove many governments to deem it as a mild illness, resulting
in very few initial measures to stop it.1 However, soon after the outbreak it became
clear that COVID-19 was substantially more contagious than SARS. This worried lo-
cal and national officials because if the virus could spread freely the hospitals would
not be able to treat the large inflow of potential patients: the health systems were
facing a capacity constraint.

This per se would not be a daunting feature if it weren’t because the fatality rate
among untreated elderly (those above 60 years of age) was alarmingly high, with
some studies estimating above 5% for patients between 60 and 70, and around 15%-
20% for individuals above 70.2 The combination of rapid diffusion and the need of
intensive care units (ICU) to prevent a high mortality rate resulted in many admin-
istrations taking aggressive measures to either stop the infection or, at the very least,
slow down the diffusion, which is known as “flattening the curve.”

The approach to deal with the treatment capacity problem has been heterogenous
across countries. China took initial drastic measures stopping all economic activity in
the most affected areas, while the Japan and South Korea have implemented policies
to slow down the diffusion without greatly affecting economic activities.3 As long as
the number of affected individuals do not reach the treatment capacity constraint, the
disease should be manageable. Other countries have taken intermediate approaches,
but the common language appears to be to “flatten the curve”, without necessarily
eliminating the threat, mitigation rather than suppression.

Since any intervention that affects GDP is costly, and exponentially so as the interven-
tion deepens, these different approaches raise many questions about the right policy:
should countries follow the Chinese approach taking drastic measures until the virus

1One example of this is the fact that the Wuhan doctor who discovered the virus was initially
disciplined for “spreading rumors” that could create paranoia. On the other hemisphere, President
Trump in public appearances argued that it was no more than a seasonal flu.

2All available data shows that the fatality rate among individual under 40, without pre-existing
conditions, is no different than a seasonal flu.

3The strategy of trying to eliminate the virus is also termed Suppression as in Ferguson et al. (2020),
while flattening the curve is termed Mitigation.
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is extinct? Or is it better to do enough intervention to keep the affected population
under the capacity constraint? If so, how much is enough? Wouldn’t a combination
of the two be better? What should the role of testing be in this context?

In this paper we aim to provide a preliminary answer to the aforementioned ques-
tions and try to rationalize the diverse observed policies. To this end we build on
Atkeson (2020) who incorporates a SEIR epidemiology model into well known eco-
nomic setups.4 In this environment there is an outbreak of an infectious disease which
spreads out continuously over time. Some affected individuals are initially asymp-
tomatic and engage in economic activities (meeting) with healthy, but susceptible,
subjects who then contract the illness and pass it to others. Unlike Atkeson (2020) we
assume that exposed individuals are also asymptomatic carriers who can transmit the
virus to other susceptible agents. Once the subject is symptomatic and recognized as
infected, it is contained and cannot transmit the illness. However, in this period she
may need medical care. If she is not able to receive medical care, she dies with a
higher probability than with proper care. We assume that the country has a capacity
constraint on how many people can be treated at a given time. Once the capacity is
exceeded, the average fatality rate in the economy starts to sharply rise.

In this context whether to choose a suppression or mitigation strategy depends on the
possibility of eliminating the virus. Many epidemiologists argue that it is not possible
to completely eliminate the virus, and that it would eventually be endemic. For in-
stance, actions like those taken against the SARS in 2002 and Wuhan in 2020 are futile.
Thus, governments should only seek mitigation. To give a chance to the suppression
strategy, we further assume that there could be a critical mass of individuals, which
we assume is 1 person, such that if at some point the number of contagious carriers
is below that critical mass, the virus is completely eliminated.

We stress in this paper the two fundamental issues that we think should drive the op-
timal intervention. The first one, as we mentioned above, is the capacity of the health
system to deal with a large inflow of patients. By many accounts COVID-19 does not
seem to be an extremely deadly illness when the carriers are properly treated. Hence,
the need to incorporate a hospital capacity constraint is a first order issue. Second,
but no less important, in the standard SIR model, the main (implicit) friction creating

4In two contemporaneous paper Eichenbaum, Rebelo, and Trabandtz (2020) and Alvarez, Argente,
and Lippi (2020) rely on the classical SIR model that does not distinguish between symptomatic and
asymptomatic individuals.
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the need for indiscriminate quarantines, is the inability of the policy maker to dis-
tinguish the asymptomatic infected (exposed in the terminology of Atkeson (2020))
from the susceptible but still unaffected. If it could, the decision maker would quaran-
tine only the affected, letting the unaffected population to continue with their normal
activities. Even though this appears as a natural information friction, the technol-
ogy available to test individuals, identify them and be able to impose personalized
quarantines rather than indiscriminate ones, exists and could be a welfare improving
substitute of what is nowadays termed lockdowns. Of course, testing the whole pop-
ulation at once would completely eliminate the problem, but it could be prohibitively
expensive. But this is a cost-benefit analysis that should be properly addressed in the
current state of affairs. We analyze these two issues in sequential order. First, we take
as given the information friction, then we analyze policies that relax it.

When the policy maker cannot separate an exposed, but asymptomatic, from a sus-
ceptible individual, it directly stops some or all of the economic activity to avoid the
spread of the illness. By doing so, it prevents the realization of meetings that repro-
duce the virus. How much and for how long should production be restricted? In the
current jargon, how strict and how long should the quarantine be?

We calibrate the model to the preliminary data arising from the outbreak in Italy and
we find that the observed set of policies are in line with our estimations. A complete
lockdown for three weeks appears optimal when the planner is not concerned about
consumption smoothing and the measure is implemented at the same time as the
Italian government did. This policy aims to achieve suppression: after three weeks
the virus is completely eliminated and there are no further waves.5 A positive critical
mass of 1 person makes sure that the virus is eliminated once and for all. Instead, if
the critical mass is 0, i.e, the virus cannot be eliminated, the optimal policy with linear
utility resembles that of the planner with concave preferences seeking mitigation.

When the planner has concave preferences that favor cost smoothing, the intensity
of the optimal policy is substantially reduced and closely follows the pattern of the
number of infected individuals. Placing the results in the Italian context, the interven-
tion starts mildly at the beginning of March. Then sharply increases as the number
of infected cases accumulates, to reach around 50% of GDP at the beginning of April.

5The first documented case in Italy was on February 24th. Several epidemiologist have inferred
that the virus was circulating in the country by the third week of January. The Italian government
implemented the quarantine in March 8th, which is about 48 days after the presumed arrival of COVID-
19 to Italy.
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Then it starts to reduce the intensity again, by the beginning of May is around 15% of
GDP and remains relatively stable, but reducing, until July. All in all, the intervention
lasts for 90 days. It is worth noting that the measures introduced by the Italian gov-
ernment in March 8th affected around 16% of the economic activity, the tightening of
the intervention in March 22th increased the intensity to around 50%, and in April 10th

the Italian Prime Minister announced a relaxation bringing it down to around 20% of
GDP. Unlike the linear utility case, the optimal policy with concave preference aims
to achieve mitigation, or “flattening the curve”. Thus, it builds a large mass of im-
mune individuals, with the implied cost of a substantial number of fatalities.

When comparing both policies with the observed quarantines, we find that the cur-
rent quarantine is too “soft” to achieve suppression and too “harsh” to be an optimal
mitigation strategy. We also find that if the “value of life” is sufficiently large, above
8 years of annual income, the concave planner should also pursue suppression, im-
plementing a policy that shuts down 2/3 of economic activity for two months.

We estimate that without any intervention there could be as many as 660, 000 fatal-
ities.6 With a suppression policy, either long (concave) or short (linear), there are
between 2.000 − 2.700 fatalities. With a mitigation policy the number of fatalities is
substantially larger, with at least 250.000, much larger than the 27.700 that we obtain
if the current intervention were to continue for at least three months.

We want to emphasize that the decision between mitigation and suppression is by
no means trivial. The welfare functions that we compute are not concave. Thus,
seemingly small changes in the parameters can have very important consequences
for the optimal policy. The linear utility planner has a tendency to choose suppres-
sion, except when the critical mass is zero. The concave planner has a tendency for
mitigation, except when the value of life is large enough. If the value of life where
above a reasonable 8 years of annual income, the concave planner would also choose
suppression. In other words, depending on how policy makers value fatalities, they
could choose extreme policies, even when they are concerned about cost smoothing.

Yet, these policies are drastic with large costs in terms of output, which falls by more
than 50% at the peak of the intervention. This brings about the possibility of comple-
menting the quarantines with massive testing to simultaneously decrease the speed

6This result is line with the calculations by the panel of experts in Walker et al. (2020), who estimate
around 645, 000 fatalities for Italy without any intervention
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COVID-19’s reproduction and be able to put to work a larger share of the popula-
tion. To do so we take seriously that the main problem is an information friction. We
consider the possibility that the government can initiate intense screening to identify
the exposed individuals. Once identified as positive, the subject is required to endure
a (personal) quarantine. This is done by randomly selecting individuals for which
there is no information yet: those who have never tested positive before.7 Identifying
a positive case has two beneficial effects. 1) It is possible to quarantine the individual,
even in a stricter way than the rest of the population to slow down the reproduction of
the virus. And, 2) once the individual is able to eliminate the virus from its biological
system, she is immune and can be allowed to work without any restriction, helping to
moderate the extent of the recession. This last contribution, is often overlooked and
it could be of considerable relevance, see for instance Dewatripont et al. (2020), es-
pecially when many subjects could remain asymptomatic during the whole duration
of the infection. Without the testing, we would quarantine many individuals that are
immune and could be working.

We lack reliable data on the cost of a test. Thus, we assume that the marginal cost
of the first unit is 1 day of daily output per worker and grows quadratically. The
speed at which the marginal cost grows is chosen in such a way that it would be
economically infeasible to test the entire population at once. We find that testing is
intensively used as a substitute of indiscriminate quarantines and generates sub-
stantial welfare gains. With the cost function that we assume, the output gains are so
large that lockdowns could be completely avoided. In our favorite scenario, testing is
used intensively, an average of 2% of the unidentified population is tested every day,
with a final cost of 1% of GDP.

1.1 Literature review

The literature on epidemiology control dates back to the model proposed by Kermack
and McKendrick (1927), also known as the SIR epidemiology model. However, to the
best of our knowledge there has not been many applications to economics. With the
recent outbreak of COVID-19, economic researchers have started to incorporate SIR

7If a subject has been tested before but the results were always negative, it is still susceptible to the
illness, and therefore is in the same situation as another who has never been tested. While those who
have been affected and tested positive and recover, are from then on immune, so that there is no need
to test them again.
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models in economic environments to assess the potential economic implications of
COVID-19.

Atkeson (2020) computes the projected paths of the disease and evaluates its eco-
nomic impact. We build on his work deepening the information structure. In this
work, it is implicitly assumed that only the symptomatically infected individuals are
contagious. We instead assume that, as it happens in many countries, the symptomat-
ically infected are isolated and therefore do not contribute to the speed of contagion.
It is what we call exposed but asymptomatic individuals, potentially unidentified
without testing, who actually fuel the spreading of the disease. This extension allows
us 1) to better fit the dynamics of the disease and 2) to have a well-defined informa-
tion friction calling for the need for testing. In addition, we optimize over the set of
policies rather than focusing on some, yet interesting, paths.

Eichenbaum, Rebelo, and Trabandtz (2020) construct what they call a SIR-macro model
with endogenous consumption and labor supply. The competitive equilibrium in
their model is suboptimal due to fact that agents do not fully internalize the exter-
nality of their economic interactions. They consider the optimal consumption tax
policy that can correct the externality. We differ in many dimensions. First, as Atke-
son (2020) they consider only the actively infected as potential carriers. Second, they
use a meeting technology that does not allow for congestion. Thus, the dynamics of
how infection spreads doesn’t feature our dilutive effect that kicks in later as immuity
expands. Third, we consider policies that directly control economic activities, rather
than altering marginal decisions.

As us, Alvarez, Argente, and Lippi (2020) also study the optimal lockdown policy.
To this end they use a meeting technology similar to Eichenbaum, Rebelo, and Tra-
bandtz (2020). They assume linear preferences, which weights output and the cost of
disease. They also explicitly consider the possibility that in some countries the lock-
down could be less effective or harder to implement. We differ from them in some
dimensions. Our structure and meeting technology allow us to focus on the funda-
mental information friction in distinguishing types, which necessitates quarantines
to stops the contagion or testing to overcome it. We consider also concave prefer-
ences, which generate a need to smooth the costs of the intervention, and show that
is very relevant reducing the intensity and increasing the length. Similarly, to incor-
porate the hospital capacity problem, they assume an exogenous fatality rate linearly
increasing in the number of infected. Instead, we model hospital capacity explicitly

6



and calibrate it to the Italian situation. Finally, they solve the optimal control prob-
lem, without restricting the policy space, while we look for the optimal lockdown
intensity in a restricted policy space.

Dewatripont et al. (2020) propose that testing, either prioritized or random, is essen-
tial to restart the economy. They argue that mass testing is technological feasible and
a mere logistic issue of scaling up. We assess a random testing policy and find that
some degree of testing joint with quarantines are welfare improving.

2 A SEIR model of disease contagion

Time is continuous and runs indefinitely, t ∈ [0,∞). At time t the economy is inhab-
ited by a population Nt with an initial mass of one: N0 = 1. Since the spread of the
illness is so fast that it can be measured by the day, we use the convention that one
unit of time is one day. At any given time, each individual can be one of five types:
susceptible, exposed, infected, and recovered. We denote by S the number of indi-
viduals still unaffected but susceptible to the virus. There are two types of carriers of
the virus: exposed asymptomatic E and infected symptomatic I . They both infected
and thus infectious. When an individual first becomes infected, it always starts in
the group E, it may develop symptoms and become I , or it may never show any
symptoms, in which case remains in E until it recovers.

When a subject recovers it becomes immune. Depending of the symptomatic history,
R will denote the number of immune recovered agents that were previously symp-
tomatically infected I , and Ru the also immune recovered subjects, but who where
previously only symptomatic E. The first groups have observable signals that make
them identifiable by the government, while Ru are immune individuals that with-
out additional information could remain unidentified. For this reason the distinction
between R and Ru is important. Clearly, it must be the case that

Nt = St + Et + It +Rt +Ru
t .

At t = 0, the economy is hit by a disease due to a deadly virus. If the exposed pop-
ulation is above a critical mass, E > E ≥ 0, then it starts to spread. Otherwise, it’s
self-contained and all patients gradually recover. The virus spreads through meet-
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ings between exposed and unaffected individuals. To avoid this, the government can
impose quarantines, which can be directed or indiscriminate. Directed quarantines
single out a proportion of the carriers and force them to stay at home in isolation.
Thus, a proportion qIt of infected individuals and a proportion qEt of exposed asymp-
tomatic are forced into quarantines. In addition, the government can force a propor-
tion qt of the whole population to refrain from engaging in economic activities. This
qt is what we call indiscriminate quarantine. We assume that symptomatic individu-
als, It infected agents, can be identified by their symptoms and are forced into a full
quarantine, so that qIt = 1.8 In this section we start by assuming that the government
has no information about the identity of either Et or Ru

t individuals, hence, it has no
choice but setting qEt = qR

u

t = 0.9 Therefore, the virus spreads only through meetings
between exposed asymptomatic and unaffected individuals. Finally, those who are
initially exposed after an incubation period become symptomatically infected. Those
who already have it and are recovered become immune permanently.

The number of meetings in the economy depends on the level of economic activity,
which in turn depends on the number of workers, Lt, who are not indiscriminately
quarantined: 1− qt. We denote by λm(Lt, Et) the meeting function between workers
and carriers of the virus. Potentially, the total number of carriers allowed to work is
(1−qIt )It+(1−qEt )Et. Because we are assuming that qIt = 1 and qEt = 0, the total num-
ber of carriers is just Et, hence the second term in the meeting function rather than
It + Et.10 Not all of these meetings generate an infection, since only St

Lt
of the work-

ers are susceptible and the government only allows a proportion qt of the individuals
to work, at every instant there are λSt

Lt
m(Lt, Et)(1 − qt) meetings generating new af-

fected (exposed) individuals. Once exposed, an individual becomes symptomatically
infected with intensity γ per unit of time, and can recover with intensity σ without

8This assumption is in line with the preventive measures taken by all the governments as soon as
they detect an infected subject.

9Alvarez, Argente, and Lippi (2020) assume that qIt = 0, as they merge all the carriers Et and It into
a single group It that is allowed to work as long as they are not subject to an indiscriminate quarantine.

10In Atkeson (2020) only the infected individuals can transmit the virus, so that the infectious meet-
ings in his economy are m(Lt, It). He does not distinguish between symptomatic and asymptomatic
carriers though. We borrow his notation and give it a different interpretation.
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ever been symptomatic.11 Thus, the law of motion of the exposed type satisfies:

dEt =


[
λSt

Lt
m(Lt, Et)(1− qt)− (σ + γ)Et

]
dt, if Et ≥ E

−(σ + γ)Etdt, if Et < E.
(1)

We assume that the symptom appearance γ and the recovery σ are independent of
time and the state of the economy. They just reflect the individual’s strength to fight
the virus inside their biological system. The same is true for the intensity of contagion
λ, which is a scale parameter capturing the level of interactions among agents in their
daily economic activity. The speed at which the illness spreads is clearly state depen-
dent, increasing in the number of exposed Et and the share of the population which
are still susceptible. The function m(Lt, Et) could incorporate potential “congestion”
effects. For instance, one may think that when most of the population are already
affected, most meetings would be between individuals who are either immune or
already infected and thus would not generate new infections. We later propose a
functional form for m(·) but we experiment with different alternatives.

We want to emphasize that the presence of the minimum critical massE could be very
important for the prescribed policy interventions. When E = 0 the virus never dies,
it could be forced to affect a negligible number of people, but it would be always
around to re-surface and spread again. Instead, when E > 0 it could be possible
to take drastic measures to force the affected population below the critical mass, so
that the virus disappears and the infection is definitively defeated. Instead, when
E = 0, since the virus would eventually spread anyway, a policy maker could choose
to simply regulate the speed at which the number of exposed and infected subjects
arrive. This would be important when we bound the capacity of the health system to
treat the illness.12

Exposed subjects become symptomatically infected at rate γ. Once they are infected
they would require medical assistance and potential hospitalization. When treated

11The asymptomatic status prior to becoming symptomatically infected clarifies the effects in pro-
duction, and it is instrumental in Section 5 when we analyze the information friction. Otherwise, we
could merge them into a single type as in Alvarez, Argente, and Lippi (2020).

12Another way to think about E is as a way to prevent the modeling strategy from forcing policy
prescriptions. For instance, because growth is proportional, one we can divide a positive number
indefinitely by other positive number and it would always be strictly positive. In the context of our
model we could end up with less than a person infected, which is not physically possible, but it would
imply that the infection would reappear in the future. E > 0 makes sure that, whenever fewer than a
minimum amount of person are infected, the disease would disappear.
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individuals recover at rate η and die at the rate ∆t per unit of time. The law of motion
of (symptomatic) infected individuals satisfies:

dIt = [γEt − (η + ∆t)It]dt.

As with γ and σ, here again η is independent of the economy’s state. The process by
which the body is able to eliminate the virus from the system is not affected by the
health system, it only depends on the strength of the subject’s immune system, condi-
tional on surviving. But notice that ∆t does depend on the state of economy. One may
think that the way in which the illness affect a particular individual depends only on
her/his biological characteristics and therefore should be independent of how other
individuals are affected. However, here we assume that the death rate depends on
the capacity of the health system to treat patients.

Hospitals can optimally treat onlyH patients at a time. Once that capacity is exceeded
the treatment received by each patient is diluted resulting in a suboptimal treatment.
Those who are optimally treated die with intensity θ, while does who are treated in
an overcrowded system die with intensity δ > θ. As a result, the average daily death
intensity in the economy satisfies:

∆t = θmin

{
1,
H

It

}
︸ ︷︷ ︸

fraction treated

+ δmax

{
1− H

It
, 0

}
︸ ︷︷ ︸

fraction untreated

. (2)

Given the previous assumptions, the number of recovered patients and total popula-
tion evolve according to:

dRu
t = σEtdt, (3)

dRt = ηItdt, (4)

dNt = −∆tItdt. (5)

From the previous structure it is straightforward, see Appendix A, to compute the
average death rate from the illness and the duration of sickness. This of course would
depend on whether the patients are treated or not. When all sick individuals are
treated, a patient recovers in η

(η+θ)2
days, and on average a fraction θ

(η+θ)
of the patients

die. When left untreated, the recovery happens in η
(η+δ)2

days, and the average death
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rate is δ
(η+δ)

. These are moments that it is possible to match with the already available
data. Note that due to selection, patients would appear to recover faster in countries
with higher fatality rates.

For simplicity we assume that the production technology is linear. Each meeting pro-
duces one unit of output per individual involved in the meeting. Infected hospitalised
individuals are unable to produce, since qIt = 1. In normal times the total production
would be Yt = Lt = Nt per day. However, during the spreading of the virus, only the
unaffected, fully recovered and those still undetected but yet exposed can produce, so
that Lt = St+Et+Rt+R

u
t . Hence, if the government allows for undistorted economic

activity, i.e. qt = 0, the total production would be Yt = St + Et + Rt + Ru
t . To prevent

the spread of the virus the government bans certain activities. It does so by forcing
quarantines among the population. Since the government is unable to distinguish St
and Ru

t from Et, it cannot condition the quarantine on each individual status, it sim-
ply ban a fraction qt ∈ [0, 1] of all economic activity. As result, the total production
after a policy intervention is Yt = (1− qt)(St + Et +Ru

t ) +Rt.13

We assume a closed economy. The only produced good is non-storable, and there is
no possibility of borrowing or saving in financial assets. This implies that consump-
tion is equal to production in every period: Ct = Yt. All individuals, and therefore
also society as whole, discount the future at rate ρ > 0. The government chooses a
path {qt}∞t=0 to maximize society’s welfare:

max
{qt:t≥0}

∫ ∞
0

e−ρtu ((1− qt)(St + Et +Ru
t ) +Rt) dt; (P1)

subject to equations (1), (4), and (5).

Notice that this setup allows for a variety of possibilities. A solution could be a forced
quarantine for every individual for a limited period. For instance, we can think about
Wuhan’s suppression policy intervention as setting qt = 1 for all t ≤ τ̄ and qt = 0

for all t > τ̄ , for some τ̄ > 0. In this case if in some point Et < E the virus dies
and never recovers. This problem would reduce to choosing the optimal length τ̄

of a complete lock down. Alternatively, one can think about policies that are more

13Notice that we are allowing the recovered subjects to return to work. This is clearly optimal and
the recover status is fully observable. In spite of this, most, if not all, countries include inefficiently the
recovered in the mandatory quarantines.
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moderated, mitigation policies, with qt < 1, but that last for a longer interval. Here
the strategy would be to try to maintain It belowH at all t until most of the population
becomes immune.

The choice of the welfare function is by no means trivial. In Problem (P1) we have
purposely excluded the welfare lost due to fatalities. We have done so because it is, at
the very least, highly controversial how to compare losses due to foregone consump-
tion with welfare losses due to fatalities. What is the value of a life? If one believes
that a human life is more important than everything else, then the correct welfare
function should only minimize the number of fatalities. In this case, as long as θ > 0

the solution to (P1) is almost trivial, setting qt = 1 for as long as is needed to locate Et
below E. If θ = 0 and δ > 0, then only policy paths that maintain It ≤ H would be
part of the solution. Here the output cost becomes the relevant factor pinning down
the optimal path.

However, (P1) is also problematic because current and past choices reveal that soci-
eties are willing to trade off human life for economic activity. For instance, the U.S.
Center for Disease Control and Prevention (CDC) estimates that between 12.000 and
61.000 people die annually due to influenza. Yet, governments are not willing to stop
the economic activity to prevent it. Similarly, in 2018 around 36.000 people died in
car accidents in the U.S. But there has never been a discussion about banning circu-
lation in motor vehicles. One can interpret these choices as balancing individual and
collective responsibility. As long as the fatalities are not too large, society prefers to
delegate the choice of the “acceptable risk” to the individual, while if the fatality rate
is too high there maybe some frictions that prevent individuals from properly asses
the risk. Then, it becomes a collective responsibility and the government must in-
tervene. For this reason we also consider and alternative problem where the policy
maker trades off economic activity and lives:

max
{qt:t≥0}

∫ ∞
0

e−ρt [u ((1− qt)(St + Et +Ru
t ) +Rt)− v (∆tIt)] dt; (P2)

subject to equations (1), (4), and (5).

Here the function v(x) would be key in determining the number of acceptable deaths.
Admittedly, it is hard to parameterize it, but we use data for alternative activities
that generate fatalities to discipline its implications. In the sense that, if for instance,
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an activity is allowed when the fatalities are caused by influenza, it should also be
allowed when caused by COVID-19.

2.1 Functional forms

We consider alternative functional forms. We start assuming that welfare is linear in
consumption, so that the planner is only concern about productive efficiency. In this
case:

u(c) = c

Of course, variations of consumption across time could also be important for the plan-
ner. Thus, we also present welfare results in which the elasticity of intertemporal
substitution is not zero. In this case we use two alternatives:

u(c) = log(c) and u(c) = c− b

2
c2

All the functional forms are mathematically tractable and meaningful in one dimen-
sion or another, allowing for a wide range of interpretations.

The choice of v(x) is less straightforward. One maybe think that a quadratic loss func-
tion v(x) = d

2
x2 would be appropriated, because the cost grows exponentially with

the number of fatalities. However, it also has the potentially unappealing feature that
the planner would be wiling to accept many fatalities if they are sufficiently spread
out over time, while it wouldn’t accept it if all fatalities happen in a concentrated
interval of time. For instance, 1 dead today and 1 tomorrow is much better that 2
dead either today or tomorrow. An alternative is to use a linear function v(x) = dx,
and choose d in such a way that there is an “optimal” upper bound for the number
of fatalities. Alternatively, we could consider the cumulative number of fatalities and
define

∫ ∞
0

e−ρtv (∆tIt) dt =
d

2

[∫ ∞
0

∆tItdt

]2
.

Regarding the meeting function we do most of our calculations using a standard pro-
portion function:

m(Lt, Et) = Et.
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Finally, we present robustness using a Cobb-Douglas meeting function which allows
for more flexibility at targeting congestion on diffusion technologies.

3 Quantitative implications

3.1 Parametrization

There are several key parameters in the model. First, the parameters γ and σ de-
termine how long an individual can be contagious without potentially showing any
clear symptoms. The parameter γ is related to the incubation period, which is 6.5

days of generation time according to Ferguson et al. (2020), so that 1/γ = 6. For
η, which is the recovery rate of symptomatic subjects we also follow Ferguson et al.
(2020) and we set it such that on average it takes 9 days for a subject to recover. The
precise value for it would depend on the death rate which we discuses below. Nev-
ertheless, for any average fatality rate d, the daily fatality rate θ and the average time
to recovery η are jointly determined by the relationship show in the previous section.
The relationship is:

η

(η + θ)2
= Days;

θ

(η + θ)
= d.

The solution to this system is:

η =
(1− d)2

Days
; θ =

d

1− d
η,

where Days is the average number of days until recovery and d is the average death
rate. Thus, given any estimate for θ we can recover the implicity η that generate 9

days of recovery time using the last equation.

There are 4 parameters for which there is considerable uncertainty: θ, σ, λ and the
date of the first infection. The first is related the expected number of deaths for a
given number of infected agents. The second, determines for how long an asymp-
tomatic agent can be contagious and therefore is important for determining the dy-
namics. The third, has been the subject of considerable debate since it determines the
reproduction factor of the virus R0. One may think that σ is a fundamental property
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of the virus, in the sense that it should be the same across countries. However, both θ
and λ can be very specific to each country. For instance, the age structure of the pop-
ulation can affect the average death rates, while the nature of the social interactions
would determine λ.

To address this issue we estimate these four parameters to match the observed dy-
namics of COVID-19 in Italy. Ideally one should fit the dynamics of infected cases
and compute the implied death rate with the number of fatalities. The problem with
this approach is that the information for “cases” only reflects the number of individ-
uals who have been tested and generated a positive result. There are many reasons
to believe that this measure would not reflect the real state of the country in terms of
infected individuals. First, those who are asymptomatic are never tested and there-
fore are not recorded. Second, it is widely known that initially there was a scarcity of
test kits, which forced the authorities to tested only subjects that were likely to be in-
fected or vulnerable. Thus, many mildly symptomatic individuals were left untested.
Finally, the tests weren’t very precise at the beginning which delivered many false
negative.

To avoid this problem we target instead the path of fatalities. Given the parameters of
the model, there is a one to one mapping from the number of infected to the number
of fatalities. To be precise we target four moments to pin down the four parame-
ters. The number of fatalities at the beginning February 24th, at the introduction of
the first intervention on March 8th, the tightening of the restrictions on March 22th

and the status two weeks later on April 10th. Loosely speaking the first two moments
are mainly determined by the initial time of the outbreak and λ, which controls the
number of meetings generating infections. The outcomes after the consecutive inter-
ventions shed light on the number of asymptomatic agents, determined by σ and the
fatality rate θ.14

To implemented this strategy we need three additional pieces of information. First,
for a given number of initially recorded fatalities there are many combinations of
initial mass and outbreak date that are consistent with the observation. To avoid this
ambiguity we assume that e0 = 1/60.000.000. That is, there was initially only one
exposed individual (patient 0). Second, the effects after the interventions depend on

14Here is important that most of the symptomatic agents are in individual quarantines. If there were
no asymptomatic σ =∞ the infection would died out rapidly, while with many asymptomatic σ = 0,
the infection would keep spreading quickly. Similarly, the changes in the number of fatalities would
be larger the larger is θ.

15



their intensities. On this we rely on information provided by Guiso and Terlizzese
(2020) who estimate that the initial intervention on March 8th affected 16% of the
sectors and the second one on March 22th reached 40% of sectors. We adjust these
values upwards because these estimations do not consider the effect of school closing.
As stated by Basile and coauthors, the fact that workers must remain home taking
care of their children had an important impact on GDP. Thus, we assume that the
initial intervention was q = 1/4 and the second q = 1/2.

Finally, we assume that hospital capacity was binding at the moment of the initial
intervention, and that when the capacity is binding δ = 2 × θ. In the next subsection
we describe in detail why we make this assumption. This implies that initially the
number of fatalities were larger because some patients were untreated. In our model
we do not distinguish between patients who require critical care v.s. those who don’t.
For this reason we need to scale the observed capacity to the number of infected.
At the time of the outbreak in Italy there were 5, 343 beds for intensive care and a
population of 60, 000, 000 people.15 Since only 0.3×4.4% = 1.32% of the infected need
critical care, the country can treat no more than 5, 343/0.0132 infected individuals at
a time. Thus, the country is prepared to treat only 100× (5, 343/0.0132)/60, 000, 000 =

0.67% of the population. For this reason, in the baseline scenario we assume that
h is constant and equal to 0.00674. Of course, governments are taking measures to
increase this capacity. We will analyze this issue later. For instance the increased
capacity in Italy after the outbreak would implied that the new h is 0.0106 ≈ 1.1%.16

The resulting parameter values are shown in Table 1. We obtain λ = 0.6515, θ = 0.212,
η = 0.1070, σ = 0.22 and the day of the outbreak is January 21st. A few comments are
worth mentioning. First, the calibrated initial reproduction factor is R0 = 1.7, which
is relatively low compared with other estimates that situate it between 2 and 2.5.
Thus, the fact that σ is more than twice of η plays an important role. First, it implies
that there is roughly one asymptomatic individual for each symptomatic. Second, but
because they recover very fast, the quarantines become very effective. It is precisely
the large drop in cases after the successive interventions what identifies the value of
σ. Last but not least, the estimated daily death rate implies an average fatality rate

15Source: President Conte’s national speech on March 24th, 2020. He also mentioned that due to the
outbreak the numbers of beds increased to 8,370.

16Note that this is a very conservative estimation, the age distribution in Italy also increases the
number patients in need of critical care. However, we maintain the estimations from China to account
for emergency increases in the number of beds.
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Table 1: Parameter values

Parameter Symbol Value Moment

Contagion rate λ 65.15% Fit fatality’s path
Exposed to infected rate γ 16.67% 6 days incubation period
Recovery rate η 10.70% 9 days to recovery for I
Recovery rate σ 22.00% 4.5 days to recovery for E
Daily death rate if treated θ 0.21% 1.9% fatality rate if treated
Daily death rate if untreated δ 0.42% 3.8% fatality rate if untreated
Hospital capacity h 0.00674 5,343 ICUs for 60 million population
Initial exposed E0 1/60mn One individual in population
Critical mass E E0 Minimum possible number
Daily discount rate ρ 0.05/365 interest rate

of 1.9% of the infected individuals. This rate may seem high compare with many
studies which situate it around 1%. However, in Subsection 3.1.1 we do model-free
estimations that deliver 1.92%. Most of the difference with other estimates is due to
the age structure of the Italian populations.

Figure 1: Calibrated paths

Panel a): Cumulative Panel b): Daily

The implied path of fatalities by the model and the realized one in Italy can be seen in
Figure 1. In Panel a) we the show cumulative numbers, while in Panel b) we present
the daily numbers. Recall that the calibration only target cumulative numbers. Thus,
all daily changes are not targeted. In both panels the observed path of fatalities is de-
picted with the blue “+” mark. Each mark corresponding to one observation. The red
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dashed line corresponds to the model prediction that assumes qt = 0 until the govern-
ment intervenes on March 8th, where the intensity increased to q = 0.25 until March
22nd, when the intensity further increases to qt = 0.5 and remains that way until the
end of the simulation. In both panels the scale is logarithmic. As expected, since it
was calibrated to do so, the model fits very well the cumulative data. It predicts that
if the government continuous with the current intensity of the intervention the num-
ber of fatalities would reach 27.700 individuals by July. It also predicts that without
intervention the number of fatalities would be around 650.000. This last scenario will
be discussed in the next section.

In Panel b) of Figure 1 we show the implied daily paths by the model, this time in-
cluding the model infected individuals. The actual “measured” infected cases are
plotted with the red circles. There are two important takeaways from this figure.
The daily predictions are fairly good. The model predicts that there is at least one
more month in which the daily fatalities would be above 100 individuals. More im-
portantly, the model implied cases are substantially above the actual measured cases
(recall that the scale is logarithmic). To put it in a context, at the pick of the “measure”
increase in infected individuals, the data states that 6.550 became infected, while the
model states that the same day there were 29.000 new infections.

3.1.1 Estimating fatality rates

There is much controversy about the “true” value of the fatality rate, especially when
all the available data is too raw to provide a concrete answer. Most studies tend to
state that on average 1% of the infected die. However, this value could significantly
change with the demographic structure of the population. In particular, the fatality
rate appears to sharply increase with age and the lack of proper treatment. Since we
are focusing on the Italian case, both factors are first order issues for our estimations.
The study by Ferguson et al. (2020) estimates that the average fatality rate in Wuhan is
around 0.99%. The same paper states that around 4.4% of the infected subjects require
hospitalization. They also estimate that 30% of the hospitalised cases require critical
care; and even when the patient receives proper critical care she dies with 0.5 prob-
ability. If we assumed that without critical care the subject dies with certainty, that
implies that the fatality rate for the untreated is twice the analogous for the treated.
This indicates that δ ≈ 2× θ, providing a first support to our calibration.
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Another calculation to determine the difference between θ and δ is to compare the
fatality rates in a country that didn’t reached the health capacity with another that
did. A candidate for the first is South Korea, while Italy is a clear candidate for a
country in which the health system was overwhelmed. In Appendix B we present
the information for the fatality rates by age for both countries. To obtain the average
fatality rate, we multiply each age-specific rate by the relative weight of that age
group in the population. We obtain that the average rate for South Korea is 1.22%,
while for Italy is significantly larger at 4.09%. But, how much of this total difference is
due to the different age distributions and how much due to the difference in the health
systems? We made an intermediate calculation where we recompute the average
death rate for South Korea, but using the population weights of Italy, which delivers
1.92%. We interpret the difference 1.92%− 1.22% = 0.7% as the pure age composition
effect. This number is by itself substantial and informative about the significant risk
that COVID-19 represents for an “old” country as Italy. It is striking that only the age
adjustment generates a death rate almost identical to the calibration using the virus
dynamic’s information.

Still, the observed fatality rate in Italy is, so far, more than 4% and, if our adjustment
is correct, the additional two percentage points are not explained by the age com-
position. If we attribute the difference to the lack of proper medical attention, we
obtain again that δ ≈ 2 × θ. Since these two independent sources deliver consistent
estimations, we calibrate our model with δ = 2× θ.

3.2 Simulated paths without intervention

With these parameter values we can estimate what would be the evolution of the ill-
ness, and its economic impact, if it were to spread in an unrestricted fashion, i.e., with
qt = 0 for all t. In Figure 2 we plot the proportion of infected and exposed subjects at
each day. To clarify the dynamics we also the cumulative proportion of Total cases,
susceptible and immune individuals at each day. The economy starts with an initial
mass of 100

60.000.00
% of exposed individuals and 0 infected. Initially the exposed move

around and engaged in economic activities without necessarily knowing that they are
carriers. Soon after, some “confirmed” infected start to arise, but still those numbers
are very small, and definitively smaller than the number of exposed individuals. In
this period, the growth rate of the infection is large, around 100% per day, but the
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quantities do not seem alarming due to the still small number of affected individuals.
After 45 days, the number of infected are about the same as the number of exposed.
At this point, if a policy maker takes a picture of the situation, it can only see the type
i individuals, but the number of carriers is 2× i.

Figure 2: Potential path: no intervention scenario

Nevertheless, the number of infected cases are still small, although growing over
time. The initial slope is steep, with the growth in the number of total cases in an
apparent explosive path. The situation deteriorates after around 45 days when the
hospital capacity is reached. The fatality rate that was low at the beginning starts
to rise due to the infected that are either untreated or badly treated. After 80 days
the number of infected is at its maximum, with around 13% of the population symp-
tomatically infected and 10% have been affected, but do not show symptoms yet.
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At this point, the growth rate of the infected starts to decrease. The main reason
for this is that the number of susceptible people reached a point, around 75% of the
population with our calibration, such that the reproduction rate of the virus λ(S/N)

is smaller than its death rate, given by η + ∆t. After that, the virus starts to die by
itself. Eventually, it disappears with 75% of the population who have developed and
immunity. The cost in lives is large, without intervention 1.1% of the population dies,
with the analogous effect on total production and consumption.

There are two important takeaways from these simulations. First, the virus needs
unaffected individuals to reproduce. As the infection spreads, the number of sus-
ceptible unaffected individuals decreases. More and more meetings start to happen
between exposed and already immune individuals. It is true that still some new sub-
jects become infected, but every period less individuals are becoming infected than
the people who are either recovering or dying. For our calibration, 75% of the pop-
ulation immune is enough to eradicate the viruses. Of course, that depends on the
meeting function. With other meeting functions that could be different. This is impor-
tant because it determines the feasibility of a mitigation (flattening the curve) policy.
To take that approach, one must have a very good knowledge about the features of
the meeting function. Second, notice that there is a rebound in production after the
illness reaches the peak. This happens because the recovered patients are allowed to
return to their jobs. The contribution is not trivial and it must be properly considered
when designing contention policies. For instance, the current quarantines do not dis-
tinguish between subjects that are already immune from those with uncertain status.
If the recovered status is known to the planner, they must be allowed to work.

4 Optimal intervention

4.1 Simple quarantines

In most countries affected by COVID-19 the approach has been to impose quaran-
tines for a determined period of time. Moreover, the intensity of the quarantine has
been changing over time and it is expected to be decreased over time to a point in
which all restrictions would cease to exist. The response of the intervention has been
mainly driven by the information about the number of infected cases. As a result,
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we can think about these type of policies as restricting the set of policies qt to be a
three-parameter step function such that, for some q̃ ∈ [0, 1], b ∈ R and τ ≥ 0, the
government intervention satisfies:

qt =

q̃ + b× It, if t ≤ τ

0, if t > τ.
(6)

For instance, a complete shutdown of all economic activities for two weeks would be
represented by q̃ = 1, b = 0 and τ = 15, and any fixed intensity intervention would
be characterized by the set of policies with b = 0. The parameter b would capture the
time varying intensity component.17 Here we are assuming that qt depends only on
It, why not to make it depend on other state variables? Because of the structure of the
model, all variables are deterministically linked, thus all state variables contained the
same information. However, different state variables are potentially shaped in dif-
ferent ways, which could help to better approximate the optimal unrestricted policy.
To understand this potential concern we have estimated the optimal policy assuming
the dependency of qt on Et and ∆tIt, we found that the policy depending on It as in
(6) generates the highest welfare. In Appendix C we characterize the optimal path
for qt in an unrestricted functional space.18 Nevertheless, in this section we compute
the optimal “quarantine” duration and time varying intensity to provide some intu-
ition about the forces at play and to compare it with policies that have actually been
implemented.

One important determinant of the optimal policy is the existence of the critical mass
E. As long as E = 0 the suppression policy has little chances, no matter how small is
the exposed population, as long as it remains positive there would be new waves of
contagion. The only long term solution is to build a mass of immune individuals to
prevent the reproduction of the virus. However, when E > 0 the intervention could
aim to completely eliminate the virus without building a large stock of immune sub-
jects and still preventing further waves. To assess these two very different strategies
we assume that the critical mass is E = 1

60million . This means that if the government
manages to reduced the number of exposed to less than one individual in the popu-

17We have run experiments with qt functions that depend directly on t and allow time changing
shapes. We found that the optimal policy is initially increasing and then decreasing. This drives us to
believe that the shape embodied in It is not overly restrictive.

18See Alvarez, Argente, and Lippi (2020) for a solution in the unrestricted policy space.
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lation the virus disappears.

The main results are shown in Table 2 and Figure 3. We assume that the quarantine
is implemented in day 48, which corresponds to March 8th in the calendar of our cal-
ibration: the day in which the Italian government decided the first intervention. We
present two sets of results. The first set, in columns (2) and (3) of Table 2, is the op-
timal quarantine if the intended outcome is to suppress the virus, which is always
feasible when E > 0. The second set, columns (4) and (5), shows the optimal quar-
antine if the intervention only seeks to mitigate the spread. This corresponds to the
“flattening the curve” strategy. In both cases, we show the results with linear and log-
arithmic utility. Finally, column (1) shows some analogous statistics for the scenario
without intervention. An important consideration when reading these results is that
the value of life v(·) is innocuous shaping the dynamics of the optimal qt. As we
discuss later the value of life generates discrete changes in the long term strategies.
When E > 0 and v(·) is below a certain threshold v, the optimal intervention calls for
mitigation, while above v the optimal intervention is suppression. But conditional on
either suppression or mitigation the optimal qt is almost invariant to v(·).

Moreover, the estimated number of fatalities in the no intervention scenario, which
ranges from 600, 000 to 780, 000, is in line with the calculations by the panel of experts
in Walker et al. (2020), who estimate around 645, 000 fatalities for Italy without any
intervention.

There are many interesting results worth mentioning. First, suppose that E > 0 and
the policy is intended to suppress the virus. Then, the optimal intervention takes
the form of a fixed intensity for a determined time span. With linear utility, column
(2), it is optimal to implement a complete lockdown for three weeks (exactly 23 days),
which is very close to the initial recommendations by experts in epidemiology and the
announced initial time of quarantine by most governments. This policy is extremely
effective in reducing the number of symptomatic total cases from 41% to 0.11% of the
population, reducing also the total fatalities from 1.1% to 0.0035% of the population.
However, comparing with column (3), when there is a desire for cost smoothing, the
optimal policy reduces the intensity by about a third and it duplicates the length of
the quarantine. This “mild” quarantine last for more than seven weeks rather than
three weeks. The smoothed policy has a cost in terms of lives though, the fatality rate
is 0.0045% rather than 0.0035%, which implies 30% more fatalities. To put it in con-
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Table 2: Optimal fixed intensity quarantine

No Suppression (E > 0) Mitigation (E = 0)

Intervention Lin. Util. Log Util. Lin. Util. Log Util.
(1) (2) (3) (4) (5)

Quarantine:
Initial day - 48 48 48 48
Duration - 23 51 89 75
Maximum q - 1 0.71 0.41 0.4
Average q - 1 0.7 0.15 0.16

Symptomatic rate (per pers.) 33% 0.11% 0.15% 20% 20%
Symptomatic ppl. (number) 20mn 66,000 90,000 12mn 12mn
Immunity rate (per pers.) 76% 0.25% 0.35% 46% 46%
Immune ppl. (number) 45mn 150,000 210,000 28mn 28mn
Death rate (per pers.) 1.1% 0.0035% 0.0045% 0.53% 0.55%
Total fatalities 660,000 2,000 2700 320,000 330,000
Welfare gain - 0.82% -0.02% 0.42% 0.38%
(consumption equiv.)

text, with the Italian population, the number of deaths without intervention would
be around 660, 000 people, with the optimal linear utility intervention is only 2.000

individuals and with the optimal smooth intervention is 2.700 individuals.

In panel (a) of Figure 3 we plot both optimal policies and we compare them with the
calibrated intensity of the observed quarantine. A simple inspection reveals that this
quarantine is not enough to generate suppression. However, we are abstracting from
other measures, like social distancing, that could bring the implemented q (which
measures only economic impact) closer to the optimal suppression policy.

To avoid the high cost in output, or when E = 0, the optimal intervention could aim
to mitigate the spread of the virus. This possibility is shown in columns (4) and (5)
and panel (b) of Figure 3. In this case it is not very important whether there is a
concern for cost of smoothing. With both utility functions the optimal policy starts
slowly and grows fast reaching an intensity of qt = 0.4 by the end of March and
then starts to reduce the intensity lasting until June. Overall the intervention lasts
between 75 and 90 days with an average intensity of 0.15. This policy has a large
cost in terms of both lives and output. The number of fatalities are only half of those
without intervention whatsoever, 330.000 vs. 660.000, but there is a large build up of
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Figure 3: Optimal quarantines
Panel a): Suppression Panel b): Mitigation

immune individuals, around 28 millions, that prevent the arrival of future waves. The
desire for cost smoothing only makes the quarantine slightly shorter keeping more or
less the same intensity. The optimal policy with mitigation depends on the implicit
dynamics of the model rather than on the structure of the welfare function.

When comparing both suppression and mitigation with the observed policy, it is clear
that the observed policy is too strong to be a mitigation policy and too soft to be a
suppression policy. There are two caveats to this interpretation. First, we are only
considering policies that prevent economic interactions without affecting how the re-
maining interactions take place. The policy of “social distancing” can be understood
as a reduction in λ, so that each interaction generates less infections. This would con-
siderably reduce the number of fatalities. Nevertheless, the suppression results are
less affected by the way in which interactions take place: if there are no meetings, it
is not important how they happen. But, when the intended policy is mitigation social
distance is a very important complement. In this sense, we see these results as stress-
ing the relevance of social distancing as a fundamental complement to indiscriminate
economic quarantines.

The second caveat is that we have not considered the extra value of life yet. As we
show in the last row of Table 2, the suppression policy is optimal when the utility
is linear, but when the utility is logarithmic the mitigation policy is optimal. In fact,
when the utility is logarithmic, the suppression policy is worse than the no interven-
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Figure 4: Larger value of life

tion scenario. In unreported results we show that suppression is always optimal with
linear utility, except when E = 0, in which case a linear-planner would seek also
mitigation. Instead, when the utility is logarithmic the mitigation strategy is always
optimal when E = 0, and when E > 0 and the extra value of life is below a threshold
v. With our calibration that threshold is v = 2.800 days of output. That is, as long as
the statistical value of a life is smaller than 8 years of annual income the log-planner
would seek mitigation. Of course, because lives are more costly, the intensity of the
quarantine is larger.

In Figure 4 we plot the optimal quarantines with linear and log utility when the value
of life is 2.700 days of output. Including the value of life does not change the optimal
linear-policy. If the strategy is suppression and the number of deaths are reduced to
a minimum, how much those lives are valued does not significantly change the opti-
mal intervention. Although, it does reassure that suppression is optimal. When the
planner has a desire for smoothing, the optimal policy is still mitigation, but now the
intensity is higher, peaking at around 0.5. The intervention also last longer, remain-
ing until August, although the intensity is reduced to 0.15 in May, and from June on
is below 0.1. This stronger policy reduces the number of fatalities from 330.000 to
260.000, which is substantial, but still a large number. Increasing the value of life fur-
ther would not increase the intensity of the mitigation policy, it would just generate
a switch from mitigation to suppression even for the log-planner. Since the observed
policy seems to resemble better the optimal mitigation of a log-planner with a “high”
valuation of life, in Section 5 we will take this calibration as a benchmark.
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Figure 5: Intervention and effects
Panel a): Output

Panel b): Cases

Panel c): Fatalities

In Figure 5 we plot the effect of the optimal interventions described in Table 2 over
output, Panel a), number of cases, Panel b) and Fatalities, Panel c). All the pat-
terns are fairly intuitive. The linear utility intervention generates a large drop in
output, but also quickly reduces the number of cases and fatalities. In contrast, the
log-intervention has a smaller impact on production, but accumulates more infected
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cases and generates more fatalities.

5 Combining testing and quarantines

The main assumption generating the necessity of an indiscriminate quarantine policy,
is the inability of the policy maker to distinguish the exposed subjects from those that
are susceptible, but have not been affected yet. If the government knew at each time
who are the virus’ carriers, it could simply quarantine the exposed subjects and allow
everyone else to work to avoid the output cost. The technology to do so is certainly
available, but it could be prohibitively costly to undertake such an approach over a
vast proportion of the population. However, since the immediate output cost of the
quarantine appears to be also very large, it is worth evaluating how much the planner
would be willing to spend on testing to reduce the cost of the quarantine.

To deal with this problem we divide the population of exposed individuals in two
groups: the unidentified exposed and the exposed population that has been desig-
nated as a positive carrier of the virus. We maintain the notation Et for those subjects
that carry the virus, but do not know it. These individuals are indistinguishable from
those in the group St and therefore the government must still set qEt = qt. The same
rule must also apply to individuals who where previously Et and recovered without
ever exhibiting symptoms. To separate them, the government can test randomly a
subset of individuals in the set St +Et +Ru

t . If the test result is positive, it means that
the subject carries the virus, it is identified with the new group Ep

t , and it is forced
into mandatory quarantine, as the group It, until she fully recovers. i.e., the group
Ep
t is assigned a quarantine measure qIt . This group of individuals maybe asymp-

tomatic and they may remain so until they are fully recovered or develop symptoms.
Notice that we assuming that the testing technology cannot detect antibodies, for all
practical purposes when an individual test negative it could be either St or Ru

t , which
remains unknown to the tester. Now the total population is:

Nt = St + Et +Ru
t︸ ︷︷ ︸

unidentified

+ Ep
t + It +Rt︸ ︷︷ ︸

identified

.

To understand the relevance of testing it is useful to first present the new law of
motion for Et. Suppose the government randomly screens αt of the individuals in the
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group St+Et+Ru
t , it can identify αtEt individuals as positive carriers. Then, the new

law of motion for Et is:19

dEt =


(
λSt

Lt
(1− qt)2 − (γ + σ + αt)

)
Etdt, if Et ≥ E

− (γ + σ + αt)Etdt, if Et < E.
(7)

Equation (7) shows the first positive contribution of testing to welfare. Recall that
only the group Et can spread the disease, so the smaller the group, the smaller the
contagion rate. Comparing (7) with (1) is evident that testing adds a downwards drift
αt to the population of asymptomatic individuals. Before the group was reducing
only when they were either becoming actively infected at rate γ or recovering at rate
σ, but now some individuals are also exiting the group because some are identified,
at rate αt, as positive carriers and, hence, cannot infect anyone else.

As the unidentified exposed, the positively identified subjects can eventually become
symptomatic and join the group of infected at rate γ, or recover, at the same rate σ as
the E. Unlike the E subjects, when an Ep recovers she joins the group of recovered Rt

rather than Ru
t , and therefore she is allowed to work. The law of motion for Ep

t and
the new law of motion for Rt satisfy:

dEp
t = αtEtdt− (γ + σ)Ep

t dt (8)

dRt = (ηIt + σEp
t ) dt (9)

dRu
t = σEtdt (10)

Comparing equation (9) to (4) we can see the second important contribution of test-
ing. Since the recovered are immune and allowed to work, as they recover they rejoin
the labor force at rate σ, which is useful in reducing the output costs of the quaran-
tine. In short, the group of positively tested individuals generate a bulk that reduces
the speed of contagion and increases the available resources to get by the quarantine
times. This is especially important when the exposed may never be symptomatic.
Without the testing, they would never be sick, and therefore they would always be
treated as susceptible population subject to quarantines. In this new environment the
law of motion of infected is slightly modified to:

dIt = [γ (Et + Ep
t )− (η + ∆t) It] dt (11)

19Here we assume for m(·) the functional form described in Section 2.1.
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The only difference with the previous section is the inflow of positive exposed sub-
jects which happens at rate γ. The population’s law of motion remains exactly the
same dNt = −∆tItdt, since the infection only affects the population by the death rate;
and to die a subject must show symptoms first, which only happens if they previously
were part of the It group. Finally, the production feasibility set remains the same as
before, with the mass Et + St +Ru

t subject to quarantines but the Rt allowed to work.
We only subtract the cost of the tests.

Suppose the government test xt individuals at each instant, then the flow cost is gov-
erned by the convex cost function Φ (x), with Φ (0) = 0, Φ′ (x) > 0 and Φ′′ (x) > 0.
Given the previous description that the government screens the population with in-
tensity αt, the number of tests at each instant are xt = αt (St + Et +Ru

t ). As a result,
the feasibility constraint becomes:

Yt = (1− qt) (St + Et +Ru
t )− Φ (αt (St + Et +Ru

t )) +Rt

We maintain the previous parametrization, see Table 1. We maintain the assumption
that qt satisfies equation (6) and we assume a similar structure for the testing function:

αt =

α̃ + bα × It, if t ≤ τ

0, if t > τ.
(12)

We do not have information about the cost of each test. We start by assuming that
the minimum marginal cost is 1 day of output, and then the cost grows in a quadratic
way after that. We parameterize the quadratic component in such a way that testing
the whole population might not be economically feasible.

In Table 3 we present the optimal policies. We compare the optimal combination of
quarantine and testing policies in columns (4) and (5) with the optimal policy that
uses only indiscriminate quarantines, in columns (2) and (3), and the outcome with-
out intervention in column (1). The first thing to notice is that testing is used inten-
sively, 62% of the unidentified are tested when the utility is linear and, at the peak,
6% when the utility is logarithmic. These numbers, even with the logarithmic utility,
are far larger than the observed testing strategies. Also, in both cases there are wel-
fare improvements. With the logarithmic utility the consumption equivalent gain is
10% above the value of the policy without testing. The important takeaway from this
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Table 3: Optimal quarantine and testing policies

No Quarantine Only Quarantine & Testing

Intervention Lin. Util. Log Util. Lin. Util. Log Util.
(1) (2) (3) (4) (5)

Intervention:
Initial day - 48 48 48 48
Duration - 23 149 1 184

Quarantine:
Maximum q - 1 0.48 1 0.4
Average q - 1 0.17 1 0.11

Testing:
Maximum α - - - 0.62 0.06
Average α - - - 0.62 0.02
Total cost (% of GDP) - - - 0.7% 1%

Symptomatic rate (per pers.) 33% 0.11% 19.6% 0.11% 19.1%
Symptomatic ppl. (number) 20mn 66,000 11.8mn 66,000 11.4mn
Asymptomatic rate (per pers.) 0 0 0 0.04% 1.6%
Asymptomatic ppl. (number) 0 0 0 22,000 970,000
Immunity rate (per pers.) 76% 0.25% 45% 0.25% 44%
Immune ppl. (number) 45mn 150,000 27mn 150,000 26mn
Death rate (per pers.) 1.1% 0.0035% 0.43% 0.0035% 0.42%
Total fatalities 660,000 2,000 260,000 2,000 250,000
Welfare gain - 0.8% 0.3% 1.1% 0.32%
(consumption equiv.)

result is that testing is a substitute rather than a complement of quarantines. Looking
at the fatality numbers and the total infected cases is evident that these numbers are
very similar to those in which testing is not allowed. The main difference lies on the
path for output, which is what generates the welfare gains.

Since testing is costly, there are important differences depending on the curvature of
the utility function. When the utility is linear, so that the concern is more about pro-
ductive efficiency, testing completely replaces the duration of the quarantine. Rather
than doing indiscriminate and inefficient quarantines, it is optimal to stop production
for one day, test unidentified subjects and resume production as soon as possible. The
time path for this testing policy can be seen in the blue line of Figure 6, panel b). Test-
ing spikes for a day, then it is reduced to zero from then on. In panel a) we plot the
simultaneous quarantine intervention in the blue line. Now, the quarantine is less
intense than without testing. The first day all production is completely shutdown,
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but after the second day there is no more intervention. Testing is costly, with our
calibration it amounts to 0.7% of GDP.

Figure 6: Optimal quarantine and testing
Panel a): Quarantine Panel b): Testing

When smoothing is a concern, the optimal policy generates the same duration as
without testing, but with a slowly growing testing policy. The quarantine has a sim-
ilar shape as when testing is not possible, but the intensity is reduced (compare with
Figure 4). The lower intensity is replaced with a continuous testing policy that en-
tails to about 6% of the unidentified population at its peak, but it is most of the time
around 2%.20 One way to think about this policy is to consider a situation with long
lasting restriction, around 6 months, with some constraints in economic activity and
continuous testing of unidentified subjects.

Again, the calibrated policy is expensive, at the end it amounts to around 1% of an-
nual GDP. Since we are assuming random testing, a planner could do it better using
additional information, such as the likelihood that an individual has been exposed or
the relevance of the subject in the production network. These considerations would
only tilt our result more in favor of testing rather than indiscriminate quarantines.
In any case, notice that the optimal testing policy follows the path of potentially ex-
posed individuals. The larger the fraction of exposed, the more likely that a test is
successful at identifying a positive case. The peak of testing is not at the beginning

20We want to emphasize that the percentage is with respect to the unidentified st + et, not with
respect to the entire population. So that the number of tests is continuously decreasing over time.

32



of the outbreak, but rather later on, in our case study mid April, enough time for the
governments to plan a testing strategy.

Figure 7: Output with testing

Panel a): Output

Panel b): Unidentified exposed

Panel c): Identified Recovered

The implied output and number of unidentified asymptomatic individuals by the op-
timal testing strategy can be seen in Panels a) and b) of Figure 7, respectively. Panel c)
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presents an additional measure that only exist with testing: the asymptomatic indi-
viduals what were previously identified as positive and then recovered. Because now
it is know that they are immune, they are allowed to work. This measure becomes
particularly relevant with the long quarantines. After three months, it amounts to
1.5% of the labor force.

6 Conclusions

In this paper we have extended the standard epidemiologic SIR model allowing for
asymptomatic subjects to be tested and consider the trade-off with output losses. We
show that if the government has not means to identify the carriers of the virus, the
observed mandatory quarantines around the world seem to be close to what it can be
considered optimal.

However, if the government can increase the intensity of testing over subjects, that
is a far superior strategy. We acknowledge that ultimately this statement depends
on the cost of actually performing those tests. The results of this paper indicate that
carefully analyzing and assessing this possibility should be a priority.
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Appendix

A Model calculations

Mapping to data moments: If untreated, the density function for dying after s units
of time is

fu (s) = δe−(η+δ)s

The death rate is ∫ ∞
0

fu (s) ds =

∫ ∞
0

δe−(η+δ)tds =
δ

η + δ
.

The density function for recovering after s units of time is

gu (s) = ηe−(η+δ)s.

The average recovery duration is∫ ∞
0

gu (s) sds =

∫ ∞
0

ηe−(η+δ)ssds =
η

(η + δ)2
.

Similarly, if treated, the death rate is θ
η+θ

. The average recovery duration is η

(η+θ)2
.

B Death rate data

Table 4: Fatality rates South Korea and Italy

Weight Lethality Weight

Number (%) Number (%) Rate (%)
age 

group
Number (%) Number (%) (%)

age 
group

9,137 100 126 100 1.38 1 35,731 100 3,047 100 8.5 1

Above 80 406 4.4 55 43.65 13.55 0.0342 5,352 15 1,243 50.2 23.2 0.0717

70–79 611 6.7 39 30.95 6.38 0.0672 7,121 19.9 1,090 35.8 15.3 0.0988

60–69 1154 12.6 20 15.87 1.73 0.1198 6,337 17.7 312 10.2 4.9 0.1216

50–59 1724 18.9 10 7.94 0.58 0.1648 6,834 19.1 83 2.7 1.2 0.1549

40–49 1246 13.6 1 0.79 0.08 0.1626 4,396 12.3 25 0.8 0.6 0.1531

30–39 943 10.3 1 0.79 0.11 0.1405 2,525 7.1 9 0.3 0.4 0.1172

20–29 2473 27.1 0 0 0 0.1327 1,374 3.8 0 0 0 0.1027

10–19 475 5.2 0 0 0 0.0954 270 0.8 0 0 0 0.0956

0–9 105 1.2 0 0 0 0.0828 205 0.6 0 0 0 0.0843

All

Age

South Korea Italy

Classification
Cases Fatal cases Cases Deaths

C Optimal control problem

Choose the path of quarantine policies:

max
{qt:t≥0}

∫ ∞
0

e−ρtu (ct) dt
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s.t, ct = nt − it − stqt
and (1), (4), and (5)

Utility options: linear, log, quadratic c– b
2
c2.

Hamiltonian:
max
{qt:t≥0}

∫ ∞
0

e−ρtU (nt − it − stqt) dt

subject to

det =

[
λ
st
nt

(1− qt)− γt
]
etdt

dit = [γet − (η + ∆t) it] dt

drt = ηitdt,

dnt = −∆titdt.

H (q, e, i, r, n) = U (n− i− sq)−φ1

[
λ
s

n
(1− q)− γ

]
e−φ2 [γe− (η + ∆) i]+φ3ηi−φ4∆i.

Keep notation c = n− i− uq.

[q] U ′ (c) S φ1λ
e

n

[e] U ′ (c) q + φ1λ
e

n
(1− q)− φ1

[
λ
s

n
(1− q)− γ

]
− φ2γ = ρφ1 − φ̇1

[i] −U ′ (c) (1− q) + φ1λ
e

n
(1− q) + φ2

(
η + ∆ +

∂∆

∂i
i

)
+ φ3η − φ4

(
∆ +

∂∆

∂i
i

)
= ρφ2 − φ̇2

[r] U ′ (c) q + φ1λ
e

n
(1− q) = ρφ3 − φ̇3

[n] U ′ (c) (1− q) + φ1λ
e

n

n− s
n

(1− q) = ρφ4 − φ̇4.

This will imply that with concave utility for example log utility, since in the beginning
n = s and i = 0, c = n (1− q), the optimal q is in the interior.

Steady state: e = 0, q = 0, φ4 = 1
ρ
U ′ (c), φ3 = 0,

−U ′ (c) + φ2 (η + ∆)− 1

ρ
U ′ (c)

(
∆ +

∂∆

∂i
i

)
= ρφ2

φ2 =
1

ρ

∆ + ρ

η + ∆− ρ
U ′ (c)

U ′ (c)− φ1

[
λ
s

n
− γ
]
− φ2γ = ρφ1

Initial conditions: e (0) = e0, i (0) = 0, r (0) = 0, n (0) = 1.
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Terminal condition: e (T ) = 0, i (0) = 0, q (T ) = 0, φ3 (T ) = 0, φ4 (T ) = 1
ρ
U ′ (n (T ))

Variables: e, i, r, n, q, φ1, φ2, φ3, φ4.

Simplifying, only when the eq [q] is with equality:

[q] U ′ (c) = φ1λ
e

n

[e] U ′ (c)− φ1

[
λ
s

n
(1− q)− γ

]
− φ2γ = ρφ1 − φ̇1

[i] φ2

(
η + ∆ +

∂∆

∂i
i

)
+ φ3η − φ4

(
∆ +

∂∆

∂i
i

)
= ρφ2 − φ̇2

[r] U ′ (c) = ρφ3 − φ̇3

[n] U ′ (c) (1− q)
(

1 +
n− s
n

)
= ρφ4 − φ̇4.
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