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Abstract

We give a thorough analytic characterization of a large class of sticky-price models where
the firm’s price setting behavior is described by a generalized hazard function. Such a function
provides a tractable description of the firm’s price setting behavior and allows for a vast variety
of empirical hazards to be fitted. This setup is microfounded by random menu costs as in
Caballero and Engel (1993) or, alternatively, by information frictions as in Woodford (2009).
We establish two main results. First, we show how to identify all the primitives of the model,
including the distribution of the fundamental adjustment costs and the implied generalized
hazard function, using the distribution of price changes or the distribution of spell durations.
Second, we derive a sufficient statistic for the aggregate effect of a monetary shock: given an
arbitrary generalized hazard function, the cumulative impulse response to a once-and-for-all
monetary shock is given by the ratio of the kurtosis of the steady-state distribution of price
changes over the frequency of price adjustment times six. We prove that Calvo’s model yields
the upper bound and Golosov and Lucas’ model the lower bound on this measure within the
class of random menu cost models.
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1 Introduction and Summary of Results

Several sticky price models employ a “generalized hazard function”, a function relating the firm’s

price adjustment probability to its state. Such a function provides a tractable description of

the firm’s price setting behavior and allows for a vast variety of empirical hazards to be fitted.

Compared to the workhorse Calvo (1983) model, where the adjustment probability is constant,

a generalized hazard function Λ(x) allows this probability to depend on the state x, the firm’s

desired adjustment, like the markup deviation from the desired level. Such state dependence is

appealing theoretically, see e.g. Barro (1972); Dixit (1991); Caplin and Spulber (1987); Golosov

and Lucas (2007), and has been found to be relevant empirically, see e.g. Eichenbaum, Jaimovich,

and Rebelo (2011); Gautier and Saout (2015). The notion of a generalized hazard function, and

its derivation from first principles, were developed in seminal “menu-cost” papers by Caballero

and Engel (1993a, 1999, 2007) and Dotsey, King, and Wolman (1999), and later revisited using

information theoretical foundations by Woodford (2009) and Costain and Nakov (2011b). Several

authors have since employed the generalized hazard function in applications and empirical work.1

This paper mostly follows the setup introduced by Caballero and Engel (2007) to frame a broad

class of sticky price models where the firm’s pricing decisions are represented by a generalized

hazard function Λ (|x|). The symmetry of the function arises since we focus on economies where

the state is driftless and is subject to idiosyncratic productivity shocks, an accurate benchmark

for low-inflation economies.2 A large number of models are nested by this framework: starting

with two “extreme” versions such as the canonical Calvo model with a constant hazard Λ (x) = λ

and unbounded x, and the Golosov and Lucas (2007) model with x bounded by the adjustment

threshold ±X and a zero hazard on |x| ∈ (0, X) with a spike that can be thought of as an “infinite

hazard” at the adjustment thresholds,3 and other intermediate cases, such as the so called Calvo-

1For recent applications see e.g. Costain and Nakov (2011a); Carvalho and Kryvtsov (2018); Sheremirov (2019);
for empirical work see e.g. Berger and Vavra (2018); Petrella, Santoro, and de la Porte Simonsen (2018), and for
related theoretical work Baley and Blanco (2019).

2See proposition 7 in Alvarez, Le Bihan, and Lippi (2016) for a result explaining why inflation has no first order
effects on the propagation of monetary shocks in this class of models. See Baley and Blanco (2019) for extensions
to large drift, as in the case of large inflation.

3The infinite hazard at the threshold should be thought of as an approximation of the behaviour at an sS barrier.
In our results we make the different behaviour precise. In Proposition 4 we produce a rigorous approximation of
the behaviour at barrier as a very high hazard rate, which justifies this analogy.
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plus model by Nakamura and Steinsson (2010), the random menu cost problem of Dotsey and

Wolman (2020), as well as the cases discussed above which explicitly use a generalized hazard

function.

We employ this setup to prove five new analytical results which gives a thorough understand the

workings of sticky price models, their mapping to the data, and the propagation of monetary shocks.

First, we establish an invertible mapping between the fundamental cost of price adjustment (menu

cost or information cost) and the “reduced form” generalized hazard function. We consider two

possible foundations underlying this mapping. One, introduced in the seminal work by Caballero

and Engel (1993b), assumes the firm can change its price upon paying a fixed (menu) cost ψ

that is drawn every period from an unrestricted distribution of costs G(ψ). We prove that the

mapping between any given menu cost distribution G(ψ) and the generalized hazard function Λ(x)

is invertible. This means that any non-decreasing generalized hazard function can be rationalized

by a unique choice of the distribution of the random fixed costs G(ψ).

While the non-decreasing nature of the generalized hazard function was established by Caballero

and Engel (1993a), we prove the invertibility of the mapping and give an explicit formula to recover

G(ψ) from any Λ(x) non-decreasing in |x|. We also provide an identical result for an alternative

foundation with the firm optimally selecting the “probability” of adjustment opportunity in every

period subject to a cost c(·), a simplified version of Woodford (2009), where the cost is modeled

in a rational inattention framework.4 We show that every non-decreasing generalized hazard rate

Λ can be rationalized by a convex cost function c(·).

Second, we derive a mapping between the theory and the data on the size-distribution of price

changes, which have been heavily used to discipline sticky price models over the past two decades

(see e.g. Klenow and Malin (2010); Cavallo and Rigobon (2016)). We provide an invertible mapping

between the (observed) distribution of price changes Q(∆p) with density q(∆p), frequency of price

changes Na, and the generalized hazard function Λ(x). A price change ∆p = −x is chosen by a

firm with desired adjustment x that is given the option to adjust. A straightforward relation links

the density of price changes q(−x) to the hazard function and the cross-sectional distribution of

4See also Costain and Nakov (2011b) for a sticky price model where firms must pay a cost to increase the
probability of a price change.
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desired adjustments, f(x), namely q(−x)Na = Λ(x)f(x). Previous contributions such as Berger

and Vavra (2018) retrieve f(x) by postulating a parametric form for Λ(x) and then using this

relation. We show that, surprisingly to us, Λ(x) and f(x) are both fully encoded in q(∆p) and

Na, and that it is possible to identify both functions using the distribution and frequency of price

changes alone. We derive the expression to retrieve f(x) and Λ(x) from q(∆p) and Na in closed

form. The recovery of the function f(x) from observables relates to the work by Baley and Blanco

(2019) who obtain all the moments of f(x) even in the presence of drift and asymmetries. Using

our first result, we can then recover the entire distribution of random menu cost, G(ψ). We propose

an estimator for such distributions that is consistent with the theory, and allows for unobserved

heterogeneity among products.

We complement these results by establishing that, under regularity conditions, the survival

function S(t), measuring the distribution of durations of unchanged prices, uniquely identify Λ(x)

as well. Summarizing, the generalized hazard rate Λ is identified either by the distribution of price

changes Q and one temporal statistic (the frequency), or by the distribution of durations S and

one statistic on the size of price changes (the variance).

To illustrate our proposed procedure, we estimate the underlying distribution of price changes,

measure its kurtosis, and recover Λ(x), f(x), andG(ψ) using publicly available scraped-price data of

Cavallo’s (2015). Interestingly, accounting for measurement error and aggregation, and correcting

for unobserved heterogeneity, we find values around 2, much smaller values of kurtosis than those

typically reported in the literature, and roughly consistent with the quadratic generalized rate.

Furthermore, we define a statistic C (for “Calvo-ness”) that measures the fraction of price

changes happening independently of the state of the firm. Using our characterization of the rela-

tionship between the observed distribution of price changes and the generalized hazard rate, we

show that C is proportional to q(0), the density of price changes near zero. We estimate C in

Cavallo’s (2015) data set and found it to be about 6%, i.e. about 94% of price changes show some

state dependence.

Third, we establish that the cumulative impulse response (CIR) of output to a once-and-for-all

monetary shock in any model characterized by a generalized hazard function Λ(x) is a simple
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function of two steady state statistics: the Kurtosis of the distribution of price changes divided

by six times the frequency of price changes. The CIR, namely the area under the output impulse

response function, is a convenient summary measure of the non-neutrality of monetary shocks.

The notion of CIR was introduced in Alvarez, Le Bihan, and Lippi (2016), which showed that

the “kurtosis result” holds for a Calvo-plus model (and multi-product firms), a class that implies

a constant hazard function Λ(x) = λ in the inaction region. Alvarez, Lippi, and Paciello (2016)

showed that the kurtosis results holds in a large class of rational inattention models, as proposed by

Reis (2006), which are purely time dependent.5 This paper provides a substantive extension to the

previous cases: we establish that the kurtosis result holds for any symmetric Λ(x) function, allowing

for both finite and infinite X.6 This includes decreasing or non-monotone hazard functions (which

are not rationalized by random menu cost models), and hazards with discontinuities corresponding

to mass points in the distribution of menu cost. For instance, this provides a rigorous (negative)

answer to Dotsey and Wolman (2020) who conjecture, based on numerical simulations of a different

model, that the “kurtosis result” may fail to apply in a model with random menu costs.7

The fourth contribution establishes that within the class of non-decreasing generalized hazard

functions the largest Kurtosis is six, attained by the constant hazard rate model, like the pure

Calvo (1983) case. The smallest one, equal to one, corresponds to the pure (non-random) menu

cost model of Golosov and Lucas (2007). This result is interesting because non-decreasing hazard

rates are an implication of either the random menu cost or the information gathering setup, and

thus it establishes Calvo as an upper bound within this broad classes of models. Indeed, due to

our first result, the class of non-decreasing generalized hazard functions describes the entire set of

models with random menu costs or the entire class of information gathering models. For a Kurtosis

higher than six, the value of the pure Calvo model, one would need to come up with an economic

foundation for a (locally) decreasing hazard function.

5Our initial use of the cumulative response was restricted to problems with zero drift (inflation). In Alvarez and
Lippi (2019, 2020) we extend the result to the cumulated output response for problems featuring a non-zero but
small inflation. Baley and Blanco (2019) extend our result, characterizing the CIR in terms of objects related to the
distribution of price gaps, to any moment of interest for the CIR, and allowing for non-zero drift and asymmetries.

6The only case where this result was already established is the Calvo+ model with Λ(x) constant on (0, X).
7We conjecture that the reason their numerical simulations fail to establish this property is due to the presence of

a fraction of firms that have flexible prices. In such settings it is essential to properly aggregate across the different
types of firms. Failing to do so will obfuscate the result, which holds for each firm’s type.
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The fifth contribution studies the scope of the Flexibility Index, F , a notion introduced by Ca-

ballero and Engel (2007) to analyze the link between the microeconomic behavior and aggregate

stickiness. Subsequently this measure has been used by some authors as a summary measure of

monetary non-neutrality, see e.g. Berger and Vavra (2018); Petrella, Santoro, and de la Porte Si-

monsen (2018). We show that the index corresponds to the slope of the impulse response on

impact (right after the shock). For models with barriers, where X is bounded, the flexibility index

is not informative about the non-neutrality since it is always infinite. For models without barriers,

where X is unbounded, F is finite, and can be computed in closed form for isoelastic hazards Λ,

including the widely used quadratic case. We present non-pathological examples where the same

F corresponds to different values of the cumulative impulse response, and where F is not even an

accurate summary of the short-term response of output.

Structure of the paper. The next section provides two foundations for the generalized hazard

function. In the first one (Section 2.1), firms choose when to change prices subject to random

menu costs, distributed according to CDF G. In the second one (Section 2.2), firms choose the

intensity with which they can change prices, subject to a cost function c. In both models, the

optimal decision rule is summarized by a generalized hazard function Λ. We show that in both

models, given Λ, one can recover the primitive cost, either the G or c. Section 3 characterizes the

steady-state statistics of a model where the firms’ decisions follow a generalized hazard function.

Section 4 shows how to recover Λ starting from an observed distribution of the size of price changes,

and estimate it in Cavallo’s (2015) data set. Section 5 establishes that, under some conditions, the

information encoded by the size distribution of price changes can equivalently be obtained from

the distribution of spell durations. Section 6 discusses the propagation of a once-and-for-all small

aggregate shock in an economy characterized by a generalized hazard function, and proves that its

effect can be summarized by a simple sufficient statistic. Section 7 discusses scope and limitations

of the flexibility index, a summary measure for the non-neutrality of monetary shock that is often

used in the literature.
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2 Foundations of the Generalized hazard function Λ(x)

The generalized hazard function is a building block of several macro models featuring sticky prices.

It is a function that maps the state of the firm, x, e.g. the deviation of the current markup from

the profit maximizing one, into the likelihood of a price adjustment Λ(x). Such a function is

appealing to scholars because it allows for substantive flexibility in fitting cross-sectional data on

price setting behavior while, at the same time, having explicit microeconomic foundations. This

section presents two alternative settings for such foundations, and provides an invertible mapping

that allows one to recover the foundations from a given hazard function.

Our first setup uses a random menu cost model, first proposed by Caballero and Engel (1993a)

and elaborated in Caballero and Engel (1999, 2007). A particular case, the Calvo-plus model, was

analyzed by Nakamura and Steinsson (2010). The second setup relates to models of inattention as

in Woodford (2009), where firms choose the arrival rate of opportunities to change prices.8

Both setups feature a firm that maximizes the present discounted value of a per-period profit

function given by −Bx2, a second order approximation of the profit function, where x is the price

gap, and the parameter B > 0 measures the curvature of the profit function. If prices are not

changed, the price gap x evolves as a standard Brownian Motion with zero drift and variance σ2.

The lack of drift indicates that the economy under consideration has no inflation.9 The two setups

differ in the friction that prevents the firm from setting x = 0 at all times. In the first, the friction

is due to the presence of random fixed costs of price adjustment; in the second the friction is due

to an information cost.

2.1 The Random Menu Cost Model

The Calvo-plus model supplements the traditional Calvo model with the possibility that the firm

can change its price by paying a fixed menu cost at any time. The advantage of this model is

8In Woodford (2009) the form of the firm’s problem and the specification of c(·) are derived assuming constraints
on information flows.

9See The Online appendix B in Alvarez and Lippi (2014) for a detailed microfoundation of this model. The
focus on a model with zero inflation provides an accurate approximation for economies where inflation is low, as
the effects on decision rules are of second order when inflation is close to zero, as shown theoretically and validated
empirically in Alvarez et al. (2019); Alvarez and Lippi (2020).
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to eliminate a long tail of delayed adjustments that seems counterfactual. The generalized model

allows the firm to draw a fixed menu cost ψ from a distribution G at random times – arriving at

a Poisson rate κ > 0.

As in Caballero and Engel (1993a), we call the difference between the current price of the

firm and its ideal price a “price gap”. We will specify the process for the demand and cost of

the firm, so that the price gap is the state of the firm’s problem. The menu costs drawn by the

firm can be zero or strictly positive. If the cost is zero the firm changes its price to the ideal one

(i.e. it “closes its price gap”). If the firm draws a strictly positive cost, it will either ignore it

or change its price depending on the value of the “price gap” relative to the realization of the

fixed cost. In particular, the optimal decision rule will be characterized by a threshold rule that

gives the maximum adjustment cost that the firm is willing to pay for adjustment. For all fixed

costs smaller than the threshold the firm changes its price, while for larger costs it keeps the price

unchanged.

We also allow the firm to have a price change at any time by paying a (relatively large) fixed

cost, which we denote by Ψ > 0 and refer to as the “deterministic fixed cost”. If Ψ =∞, then the

firm has no such alternative. We can write the value function of the firm, v(x), as:

rv(x) = min

{
Bx2 +

σ2

2
v′′(x) + κ

∫ Ψ

0

min
{
ψ + min

x̃
v(x̃)− v(x) , 0

}
dG(ψ) , r

(
Ψ + min

x̃
v(x̃)

)}

Two points are worth making. First, given the symmetry of Bx2, the value function is symmetric

around x = 0. A proof can be constructed by a simple guess and verify argument. Second, if

Ψ = ∞ then X = ∞, and thus there is no second branch in the Bellman equation. Note that as

long that either r > 0 and/or that κ > 0, the value function v is finite and well defined in the case

of Ψ =∞.

The term minx̃ v(x̃) is the value right after adjustment, and given the symmetry of the return

function, we have v(0) = minx̃ v(x̃). Thus we can simply write that for all x

rv(x) = min

{
Bx2 +

σ2

2
v′′(x) + κ

∫ Ψ

0

min {ψ + v(0)− v(x) , 0}dG(ψ) , r (Ψ + v(0))

}
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For the case where Ψ <∞ we can use that the optimal decision rule has a threshold X <∞ such

that if |x| ≥ X the firm pays the fixed cost Ψ. Thus we can write

rv(x) =


Bx2 + σ2

2
v′′(x) + κ

v(x)−v(0)∫
0

ψdG(ψ) + κ [v(0)− v(x)]G (v(x)− v(0)) , |x| ≤ X

r (v(0) + Ψ) , |x| > X

(1)

Note that we can define the threshold function x̄ : [0,Ψ]→ [0, X] as solving

v(x̄(ψ)) = v(0) + ψ for all ψ ∈ [0,Ψ] (2)

It is easy to see that v is increasing in |x|, since the period cost Bx2 is strictly increasing in |x|,

the uncontrolled process is a brownian motion, and the adjustment cost is independent of x. Since

v is strictly increasing in [0, X], then x̄′(ψ) = 1/v′(x̄(ψ)) > 0. We can let the function ψ̄(x) be the

inverse of x̄(ψ).

For simplicity, in the characterization of the problem that follows we will assume a distribution

function G with a continuous density. We require G to be continuously differentiable at all points,

with the possible exception of ψ = 0. For completeness, Appendix C considers the case of a discrete

distribution G, where ψ takes finitely many values.10 In either case we have the following smooth

pasting and optimal return point conditions:

v′(−X) = v′(X) = v′(0) = 0 (3)

We are now ready to define the generalized hazard rate, Λ : (−X,X) → R+, which gives the

probability (per unit of time) that a firm with x ∈ (−X,X) will change its price. It is defined

by the optimal decision rule, or the value function, as well the Poisson arrival rate κ > 0 and the

distribution of fixed cost G:

Λ(x) = κG (v (x)− v (0)) for all x ∈ (−X,X) . (4)

10The two cases differ on whether x̄(·) is a continuous function, and on whether the value function v(·) is twice
differentiable everywhere or it has jump discontinuities on finitely many values. Indeed in the latter case we need
to rewrite the value function since v′′(x) is not defined at all points.
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The function Λ is symmetric around x = 0 and weakly increasing in |x|. It is continuous at x if G

is continuous at ψ = v (x) − v (0), and bounded above by κ. While the function Λ is not defined

at x = ±X, we abuse notation and let Λ(X) = limx→X Λ(x) = κG (Ψ) = κ.

2.1.1 Rationalizing a given generalized hazard Λ

We next show that any increasing, differentiable, symmetric and bounded hazard rate Λ can be

rationalized as the solution to the firm problem in equation (1) by a unique menu cost distribution

G and two parameters {κ,Ψ}. Our proof is constructive: we provide an algorithm to compute

{G, κ,Ψ} from Λ, proving existence and uniqueness. Indeed G is obtained by solving a linear

ordinary differential equation of the second order. Section 2.2 describes an alternative problem of

the firm that also generates a non-decreasing generalized hazard function. We find this interesting

because it allows us to relate to setups costly information collection, as in Woodford (2009).

The main result in this section shows how to recover the distribution G, with a density G′ = g,

given Λ and the values of three parameters: r, B, and σ2. Three remarks are in order. First, the

values of the fixed costs ψ are measured relative to B, and thus the optimal decision rules depend

only on the distribution of ψ/B. Second, we show that σ2, while in principle unobservable, is

encoded in the frequency and variance of price changes. Thus, once Λ is given, we can recover

all the parameters of the firm’s problem, except the discount rate r. Third, while in this section

we consider the case where G is differentiable for ψ > 0 to simplify the exposition, Appendix C

considers discrete distributions of costs which imply an hazard Λ that is a step function. In this

case we can recover G starting from Λ by solving a system of linear equations.

Assume the firm faces a distribution G of the menu costs with a density g for all ψ > 0, and

possibly a mass point at ψ = 0. In this case its Bellman equation solves

rv(x) = Bx2 +
σ2

2
v′′(x) +

v(x)−v(0)∫
0

κ[ψ + v(0)− v(x)]g(ψ)dψ + κ[v(0)− v(x)]G(0) (5)

for all x ∈ [−X, 0], and we can use the symmetry of v to define it as v(x) = v(−x). The boundary

conditions are v′(X) = 0 and v(X) = v(0)+Ψ, the smooth pasting and value matching. Note that
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in the interior (0, X) the function v solves a non-linear ordinary differential equation.

Before the main result on the existence of a unique invertible mapping between Λ and G, we

state an intermediate result that provides a solution for the value function v and a new auxiliary

function that will be used to solve the general problem. Consider the function Λ describing the

probability per unit of time of a price adjustment if the price gap is |x| < X. We have the following:

Lemma 1. Let the function u solve the linear ordinary differential equation

[r + Λ(x)]u(x) = 2Bx+
σ2

2
u′′(x) for x ∈ [0, X] (6)

with boundary conditions u(0) = u(X) = 0. The solution for u is unique. Moreover, v is given by

v(x) = u′(0)
σ2

2r
+

∫ x

0

u(z)dz for x ∈ [0, X] . (7)

The auxiliary function u can readily be used to compute the value function and, as shown

below, to characterize the distribution of costs that rationalizes the postulated hazard function.

We now state the main result of this section:

Proposition 1. Fix a discount rate r > 0, the curvature of the profit function B > 0, the

volatility of shocks σ > 0, and the threshold X, with X ∈ R+ ∪ {+∞}. Consider a generalized

hazard function Λ(·) : (−X,X) → R+ that is symmetric around zero, increasing in |x|, differen-

tiable on (0, X), and bounded. There exist real numbers {κ > 0,Ψ > 0}, both positive, and a cost

distribution G(·) : [0,Ψ] → [0, 1] with a density g(·), continuous on (0,Ψ), and possibly a mass

point G(0) > 0, that uniquely rationalizes Λ with a value function that solves equation (5). Using

the auxiliary function u in Lemma 1 and U(x) =
∫ x

0
u(z)dz for x ∈ (0, X),

κ = lim
x↑X

Λ(x) , Ψ = U(X) , G(0) =
Λ(0)

κ
(8)

g (U(x)) =
Λ′(x)

u(x)κ
for all x ∈ (0, X) with ψ = U(x) (9)

10



The proposition allows us to retrieve the primitives of a fully specified price setting problem

starting from any given non-decreasing hazard function Λ. Note that whenever Λ(0) > 0 the model

implies a mass point at ψ = 0. Intuitively, rationalizing a non-zero probability of adjustment when

the gap is small requires a mass point of zero menu costs. Also note that g(·) > 0 requires Λ′(·) > 0.

Application: a quadratic hazard function. We conclude with an application to a quadratic

generalized hazard function Λ(x) = Λ0 + Λ2x
2 where Λ0 ≥ 0,Λ2 ≥ 0 and |x| ∈ [0, X].11 We can

solve for the auxiliary function u(x) using Lemma 1. This yields a polynomial:

u(x) =
∞∑
i=0

a2i+1 x
2i+1 (10)

satisfying the ODE in equation (6) and the boundary conditions u(0) = u(X) = 0. Straightforward

application of the method of undetermined coefficients gives the recursive relation

a3 =
(r + Λ0)a1 − 2B

3σ2
(11)

a2i+1 =
(r + Λ0)a2i−1 + Λ2a2i−3

σ2 i(2i+ 1)
for i = 2, 3, ... (12)

All coefficients are determined as a function of a1, which is pinned down by the boundary condition

u(X) = 0. Application of Proposition 1 gives U(x) =
∑∞

i=1
a2i−1

2i
x2i, the value function v(x) =

a1
σ2

2r
+ U(x), the arrival rate κ = Λ0 + Λ2X

2, the distribution function G(ψ) with

G(0) =
Λ0

Λ0 + Λ2X2
(13)

Note that if Λ0 > 0 the proposition implies a mass point at ψ = 0. For |x| ∈ [0, X], the proposition

gives the menu cost density function

11If Λ is symmetric and smooth, it often admits a quadratic approximation close to zero. This feature, mentioned
by Caballero and Engel (2007) and Berger and Vavra (2018), makes quadratic generalized hazard functions especially
appealing. In Appendix I we show that if Λ does not admit a quadratic approximation around x = 0, the underlying
density g exhibits non-generic behavior.
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g(U(x)) =
2Λ2x

κu(x)
(14)

The limit of the density is finite and positive, limψ↓0 g(ψ) = 2Λ2

κa1
. This happens because v(x) is

smooth and symmetric, so u(x) = v′(x) admits a linear approximation close to zero.

2.2 An Optimal Adjustment Intensity Model

In this section we describe an alternative setup that yields a similar mapping between an underlying

cost function and the generalized hazard. Now the firm does not face random menu cost. Instead,

it directly controls the arrival rate of a free opportunity to change prices. At each moment the firm

must pay a flow cost c(`) to obtain an arrival rate `. We assume that the flow cost is increasing

and convex. This will give rise to the choice of the optimal rate of price changes as a function of

the price gap, leading to a generalized hazard function Λ. As in the previous case, we also allow

the firm to pay a deterministic menu cost Ψ to change its price with certainty. This Ψ will give

rise to a barrier X, and we allow Ψ =∞, in which case this will never be used, so X =∞.

The main result of this section is that, analogously to the previous setup, any increasing

symmetric function Λ can be rationalized by some increasing and convex cost function c. One

difference between the two setups is that the resulting Λ in this setup does not need to be bounded

above. This justifies the use of some of our examples later on. Additionally, this setup imposes

fewer constraints on the tails of the implied distribution of price changes.

The firm’s problem is:

rv(x) = min

{
Bx2 +

σ2

2
v′′(x) + min

`≥0
{` (v(0)− v(x)) + c(`)} , r (Ψ + v(0))

}
(15)

We assume that the cost function c : R+ → R+ is increasing and convex in `, and that c(`)→∞

as ` → ∞. We can also allow c to have finitely many flat segments, and do not assume that c

is continuously differentiable. The possibility of kinks in c may be needed to rationalize constant

segments on Λ. Allowing for flat segments in c implies that the minimizer `∗ may be an interval

12



for some x, which we can represent with a discontinuity in Λ at that value of x. We can now state

a result that echoes the one in Proposition 1:

Proposition 2. Fix a discount rate, curvature, variance, and a value of the threshold (r, B, σ2, X),

all positive. Let Λ(·) : (−X,X)→ R+. Assume that Λ(·) is symmetric around zero, Λ(x) = Λ(−x),

increasing in |x|, and differentiable on (0, X). Then, there exists an increasing convex cost func-

tion c(·) : R+ → R+ that uniquely rationalizes the postulated decision rule as in equation (15).

Moreover, the marginal cost c′(·) can be constructed by solving a second order linear ordinary

differential equation.

The proof of the statement follows the same logic used in the proof of Proposition 1. Appendix D

provides more details on the solution of this model. Note that observation on the frequency and size

of price changes cannot in general distinguish between the random menu cost model of Section 2.1

and the optimal intensity of price adjustment of this section. In this sense, the generalized hazard

function Λ is a more fundamental object. Furthermore, as explained above, the model of this

section allows a slightly larger set of generalized hazard functions Λ.

3 Steady State observable statistics

In this section we show how to use the hazard function Λ to derive several observable statistics

produced by our model in the steady state. In particular, we solve for the implied invariant

distribution of price gaps, with density f(x), the number of price changes per unit of time, Na,

and the distribution of price changes, with density q(∆p). We focus on two moments of this

distribution, the variance and the Kurtosis, denoted V ar(∆p) and Kurt(∆p). The setup allows

for Ψ ∈ R̄+ ≡ R+ ∪ {∞}. If Ψ is finite then the inaction range is bounded, X < ∞. Otherwise,

the support is unbounded, X = ∞. Both cases are encompassed by the analysis of this section.

The starting point of this section is the function Λ that summarizes the firm’s optimal decisions:

Assumption 1. Let Λ : (−X,X)→ R+, be non-negative, piece-wise continuous, symmetric, i.e.

Λ(x) = Λ(−x) for all x, with at most finitely many discontinuities xk ≥ 0, and let J ≡ {xk}. If

X =∞, we assume that there is a λ > 0 and 0 < xH <∞ such that Λ(x) ≥ λ for all |x| > xH .

13



Note that if Λ is the solution to the firm problem studied in Section 2, then Λ(x) must be

weakly increasing for x > 0, although Assumption 1 does not impose that.

Next we define the invariant distribution of price gaps, with density f(·) : (−X,X) → R+.

Importantly, f must be continuous everywhere, continuously differentiable at |x| ∈ (0, X), twice

continuously differentiable at all |x| ∈ (0, X)/J, and symmetric around x = 0. Given the symmetry,

we only define f on positive real values. It solves the following equations:

f(x)Λ(x) =
σ2

2
f ′′(x) for all x ∈ [0, X) , x 6= 0 and x /∈ J (16)

with boundary conditions:
1

2
=

∫ X

0

f(x)dx and lim
x→X

f(x) = 0 . (17)

Note that if Ψ < ∞, then f(X) = 0 is an implication of X being an exit point, i.e. a barrier.

Otherwise it is a requirement for integrability. Figure 1 plots three examples of the invariant

distribution of price gaps which solves equation (16)-(17) for a hazard function with power form

Λ(x) = κ
(
x
X

)ν
. The quadratic case, ν = 2, has been considered for instance by Caballero and

Engel (1993a); Berger and Vavra (2018).

Figure 1: Density function f(x) for the invariant distribution of gaps

Power hazard function: Λ(x) = κ
(
x
X

)ν
, X <∞
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Frequency of price changes Na. There are two types of price changes: those that occur when

x reaches X, if it is finite, and those that occur when the firm draws a low enough fixed cost. Since

X is an exit point, the number of price changes of the first type is given by −2σ
2

2
f ′(X). The sign

is negative because f ′(X) is negative. The 2 in front is becaus the same number of price changes

happens when x reaches X as when x reaches −X. Note that if X = ∞ then f ′(X) = 0. The

second type of price changes occurs when |x| < X, which happens with density f(x), and draws a

sufficiently low fixed cost, which happens with probability Λ(x) per unit of time. This gives

Na = 2

[∫ X

0

f(x)Λ(x)dx− σ2

2
f ′(X)

]
. (18)

We remark for future reference that, as shown in Alvarez, Le Bihan, and Lippi (2016) for a very

wide class of models that includes the ones in this paper, the following relation holds for any

feasible policy in this class of menu cost problems:12

Na V ar (∆p) = σ2 (19)

This equation will be useful later in applications. We will use s for the fraction of price changes

that occur before hitting the boundary ±X. We can use equation (18) to replace the Kolmogorov

forward equation for f , and integrate by parts to obtain that:

s ≡
∫ X
−X Λ(x)f(x)dx

Na

= 1− σ2|f ′(X)|
Na

= 1− |f
′(X)|
|f ′(0)|

since Na = σ2|f ′(0)| (20)

where |f ′(0)|, with a slight abuse of notation, is the absolute value of either the right or left

derivative of f(x) evaluated at x = 0.

Distribution of price changes. Recall that upon any price change the firm “closes” its gap x,

i.e. the size of the adjustment is ∆p = −x. If X < ∞ then the distribution of price changes has

a mass point at ∆p = −X. The mass of such price changes is equal to σ2

2
|f ′(X)|. There are also

12The key assumption for this result to hold is that the price gap is closed upon adjustment. This assumption is
not true in e.g. models with high inflation or models with price plans, see Alvarez and Lippi (2020).
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price changes of size |∆p| < X that occur when a firm has x < X and draws a sufficiently low fixed

cost. This occurs with probability Λ(x) per unit of time for a firm with price gap x. Recall also

that at steady state, there is a density f(x) of firms with price gap x. This density is symmetric

around zero. The distribution of price changes is thus symmetric around zero as well. It has the

following form:

∆p =


−x w/ density q(−x) ≡ Λ(x)f(x)

Na
for x ∈ (0, X)

−X w/ probability
σ2

2
|f ′(X)|
Na

(21)

Note that 1−s, as defined in equation (20), is also twice the size of the mass point at the boundary

of the support of this distribution.

Figure 2: Density function q(∆p) of the distribution of price changes

Quadratic Hazard function: Λ(x) = κx2, X =∞, shape parameter: η ≡
(

2κ
σ2

) 1
4

Figure 2 plots a few examples of the density of price changes implied by a quadratic hazard

function Λ(x) = κx2 with an unbounded support X =∞. This uses the definition q(−x) ≡ Λ(x)f(x)
Na

from equation (21), where the density of price gaps f solves the Kolmogorov forward equation

equation (16). The generalized hazard function and frequency of price changes alone are sufficient

to construct both f and q.

We note that in the quadratic case the distribution of price changes is indexed by a single
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parameter η ≡
(

2κ
σ2

) 1
4 determining its shape, and features no mass points at the boundary of the

inaction region since X = ∞. This means s = 1 in terms of equation (20). The parameter η is

recurring in the class of generalized hazard functions of the power form, and generally determines

the shape of the distributions of price changes.

For future reference we define two useful moments. The variance and the Kurtosis of the price

changes Kurt(∆p) can be defined using the distribution in equation (21):

V ar(∆p) =
2
[∫ X

0
x2Λ(x)f(x)dx−X2 σ2

2
f ′(X)

]
Na

(22)

Kurt(∆p) =
2
[∫ X

0
x4Λ(x)f(x)dx−X4 σ2

2
f ′(X)

]
Na

1

[V ar(∆p)]2
(23)

Standardization. It is useful to rescale the firm’s decision rule to isolate the role of the shape

of Λ and of other parameters. Standardization clarifies which objects matter conceptually, and

also helps to bring the model to the data, as shown in Section 4. Let’s start with a price-setting

problem represented by the triplet {X,Λ, σ2} with σ2 > 0 and Λ : (−X,X) → R+ satisfying

Assumption 1. Given the triplet {X,Λ, σ2}, we can compute the corresponding density of price

changes q(·) : (−X,X)→ R, the variance of price changes V ar(∆p), the frequency of price changes

Na, and the share of price changes away from the boundaries s. We have the following result:

Proposition 3. Consider an economy characterized by {X,Λ, σ2}, and associated q, V ar(∆p), Na

and s. For any b > 0 define another economy {X̃, Λ̃, σ̃2, } where X̃ = bX, Λ̃(z) = Λ(z/b) for all

z ∈ (−X̃, X̃), and σ̃ = b σ. These economies feature: (i) the same frequency of price changes,

Ña = Na, (ii) the same fraction of price changes away from the boundaries, s̃ = s, and (iii) the

same shape of the density of price changes, namely: q̃(z) = q(z/b)/b for all z ∈ (−X b,X b) .

Note that we can choose b2 = 1/V ar(∆p), for instance, so that the variance of price changes

in the rescaled economy is one, Ṽ ar(∆p) = 1. This new economy can then be referred to as

“standardized”. The proposition shows that Kurt(∆p) and the share s only depend on the shape

of Λ, described by Λ̂. In general, the shape cannot be summarized by a finite number of parameters,

but in some situations a single parameter will suffice. For instance, below we consider a case where
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Λ is a power function and Λ̂ is described by a single parameter.

In addition to the standardization described above, we can also consider transformations akin to

changing the time units, thus only affecting the frequency of adjustment, but not the distribution

of price changes. In particular, consider a scalar k > 0, and define Λ̂(x) = Λ(x)/k for all x,

σ̂2 = σ2/k and X̂ = X. It easy to see that {X̂, Λ̂, σ̂2} has N̂a = kNa and Q̂(x) = Q(x) for all x.13

A useful approximation. We conclude with a proposition showing that for the case in which

Ψ < ∞, so that X < ∞, the invariant distribution can be accurately approximated by one

corresponding to a generalized hazard function Λ with unbounded support and arbitrarily large

values for x > X. This approximation is useful because the case with unbounded support is

somewhat simpler to analyze, since it does not involve discussing the mass points at the boundary

of the inaction region.

Proposition 4. Let X < ∞ and let Λ : [0, X) → R+ be a continuous generalized hazard

function, where f : [0, X] → R+ is its corresponding invariant density, assumed to be symmetric.

Let Λk : [0,∞) → R+ be defined as Λk(x) = Λ(x) if x < X and Λk(x) = k otherwise. Let also

fk : [0,∞)→ R+ be the invariant density associated with Λk, also assumed symmetric for negative

x′s. Then fk converges uniformly to f in [0, X] as k →∞.

4 From Price Changes to Price Gaps and Hazards

In this section we show how to recover the invariant density of price gaps f and the adjustment

hazard Λ from the observable distribution of price changes. These two objects then allow us to

recover the underlying distribution G of adjustment costs ψ in a random menu cost model of

Section 2.1. We apply the algorithm to data taken from Cavallo (2015), fitting the distribution of

price changes Q and recovering f , Λ, and G. For future reference, we pay particular attention to

estimate the kurtosis of the distribution of price changes.

To do this, we first characterize the restrictions that an increasing hazard function Λ imposes

on Q and establish a mapping from the observables (price changes) to the distribution of price

13In Appendix H we consider an alternative normalization, suitable for the case where X <∞.
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gaps f and adjustment hazard Λ. We then propose a non-parametric identification strategy to

identify the distribution of price changes which takes into account unobserved heterogeneity across

different products consistent with the theory as described in Proposition 3 . We illustrate these

results fitting a flexible functional form to the distributions Q for several product categories in the

dataset from Cavallo (2015). Interestingly, using this data set which have no time aggregation,

arguably minimum measurement error, and accounting for unobserved heterogeneity, we find dis-

tributions with much smaller Kurtosis than in the literature. From this estimated distribution, we

then recover f and Λ, and from them obtain the distribution of random menu cost G using the

characterization in Proposition 1.

Identification of f and Λ. We start with a lemma that describes the properties of the distribu-

tion of price changes generated by a generalized hazard function. It only requires Assumption 1:

Proposition 5. Let Q be the CDF of price changes corresponding to a generalized hazard

function Λ satisfying Assumption 1. Then, Q is absolutely continuous on (−X,X), so that Q(x) =

Q(−X) +
∫ x
−X q(s)ds for x < X. The density q(·) : (−X,X) 7→ R+ is symmetric around zero,

q(x) = q(−x), and continuous at x /∈ J. Q has mass points if and only if X < ∞, in which case

they are at −X and X, and is fully identified by the collection of all its moments.

The next proposition, which is one of the main results of the paper, obtains the density f of

price gaps from the distribution of price changes. The idea is simple: we integrate the Kolmogorov

forward equation twice and replace σ2 as in equation (19). Once we have f , it is straightforward

to get Λ using f(x)Λ(x) = q(x)Na.

Proposition 6. Let ∆p be price changes, and let Q and q be the CDF and corresponding density

of price changes corresponding to a generalized hazard function Λ satisfying Assumption 1. Let

Na be the frequency of price changes. The density for the invariant distribution f(x) is given by

f(x) =
2

V ar(∆p)

[∫ X

x

(1−Q(z)) dz

]
for all x ∈ (0, X) (24)

and f(−x) = f(x), where V ar(∆p) is the variance of the price changes computed using Q. The
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generalized adjustment hazard Λ(x) is given by

Λ(x) =
Na V ar(∆p)

2

q(x)∫ X
x

(1−Q(z)) dz
for all x ∈ [0, X) (25)

and Λ(−x) = Λ(x).

Recall that the function Λ implied by the models of Section 2.1 and Section 2.2 is increasing

in x ∈ (0, X). If Λ is increasing in (0, X), the right hand side of equation (25) must be increasing.

At any x where Λ is differentiable,

Λ′(x)

Λ(x)
=
q′(x)

q(x)
+

1−Q(x)∫ X
x

(1−Q(z)) dz
≥ 0 for all x ∈ (0, X), x /∈ J (26)

The model of Section 2.1 also implies that Λ(·) is bounded above on (0, X). If this is the case, the

right hand side of equation (25) must be bounded. If Λ is increasing, this is equivalent to

lim
x→X

q(x)∫ X
x

(1−Q(z)) dz
= lim

x→X

q′(x)

−(1−Q(x))
≤ C (27)

for some constant C. Moreover, if X < ∞, then limx→X(1 − Q(x)) > 0 and hence limx→X q
′(x)

must be finite. If X =∞, then limx→X
q′′(x)
q(x)
≤ C by L’Hopital rule. Note that if q has exponential

tails, equation (27) is satisfied even if X =∞. Moreover, since the model of Section 2.2 does not

imply a bounded Λ it does not require equation (27).

A simple measure of state dependence. The expression for Λ in Proposition 6 evaluated at

x = 0 can be used to measure a simple index of the lack of state dependence in pricing. We label

it as C, for “Calvo-ness”:

C ≡ Λ(0)

Na

(28)

The index C measures the fraction of price changes that happen independently of the price gap

x. In terms of the random menu cost model, it measures the fraction of price changes with no

adjustment cost paid. Alvarez, Le Bihan, and Lippi (2016) use the same statistic to index multi-
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product version of the Calvo+ model. In that special case, the function Λ is constant, equal to

Λ(0) for all |x| < X, and then it jumps to infinity, i.e. there is a barrier in this case X is simply

equal to the fraction of price changes that do not occur at the barriers ±X. Clearly, the setup

here is much more general, and the definition captures all the price changes that are unrelated to

the value of the price gap. Hence, C is a broad measure of lack of state dependence. The next

corollary of Proposition 6 shows that C can be measured using data on the distribution of price

changes.

Corollary 1. The fraction of price changes independent of the price gap C defined in equa-

tion (28), is given by

C =
V ar(∆p)

2E[|∆p|]
q(0) . (29)

Moreover, using equation (18) for Na, C ≤ 1 if Λ is increasing.

The expression in Corollary 1 is intuitive: the fraction of price changes independent of the

state is proportional to the density of price changes at zero, a magnitude that can be estimated.

The constant of proportionality is a ratio of two easily measurable statistics. The importance of

Corollary 1 is that the right hand side of equation (29) involves three observable quantities which

depend exclusively on the distribution of price changes: the density at zero, q(0), and two of its

moments: the variance V ar(∆p) and the expected absolute value E[|∆p|].

Unobserved Heterogeneity. Armed with Proposition 6 we can recover f , Λ, and the model

primitives, like the distribution of menu cost, using Proposition 1. As an intermediate step,

we discuss how to account for a simple, yet pervasive, form of unobserved heterogeneity in the

estimation of q. We assume that products in a narrowly defined category have the same distribution

of price changes up to an (unobserved) shift in the size, i.e. the distributions have the same

shape but different scale. Proposition 3 discusses exactly this type of transformation that changes

the scale without affecting shape. The reason we want to account for this form of unobserved

heterogeneity is that, as is well known, a mixture of distributions with identical kurtosis but

different variances has itself a higher kurtosis.14 The setup is similar to a random effect model,

14See Appendix G for the formal treatment of this result.
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yet without assuming any functional form for the distributions. In particular we use a variation

of Kotlarski (1967)’s lemma. The products (within a category) are indexed by i, and t is the

chronological number of adjustment. Let I be the set of all products and T (i) be the set of

adjustment instances for a product i ∈ I. We use the following specification:

∆pit = bi∆p̃t for i ∈ I and t ∈ T (i) (30)

Here bi corresponds to the scaling factor b in Proposition 3. The six identification assumtpions are

1. #T (i) > 1, so there are at least two price changes for each i

2. ∆p̃t are drawn from a distribution Q, described by Proposition 5, for all t ∈
⋃
i∈I

3. ∆p̃t and ∆p̃s are statistically independent for all t, s ∈
⋃
i∈I T (i)

4. bi ≥ 0 are drawn from a distribution H for all i ∈ I

5. ∆p̃t and bi are statistically independent for all i ∈ I and t ∈
⋃
i∈I T (i)

6. E[(∆p̃t)
2] = 1 for all t ∈

⋃
i∈I T (i)

That the distribution Q is described by Proposition 5 means, in particular, that it is symmetric

around zero. The last assumption is a normalization, since the variances of H and Q are not

identified together. We can show the following result:

Proposition 7. Consider two pairs of integer numbers (j, k) and (j′, k′) such that j+k = j′+k′.

Under the assumptions stated above we have:

E[(∆p̃t)
j]E[(∆p̃t)

k]

E[(∆p̃t)j
′ ]E[(∆p̃t)k

′ ]
=

E[(∆pit)
j(∆pis)

k]

E[(∆pit)j
′(∆pis)k

′ ]
(31)

for any (t, s) with t 6= s.

This proposition has two important implications. First, we can establish a recursive expression

for the even moments of the distribution of ∆p̃t:

E[(∆p̃t)
2k+2] = E[(∆p̃t)

2k] · E[(∆pit)
2k+2]

E[(∆pit)2k(∆pis)2]
for all k ≥ 0 (32)
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which only uses equation (31) and the normalization assumed above that E[(∆p̃t)
2] = 1. Starting

from the normalized second moment, we can construct all even moments recursively using equa-

tion (32), thus obtaining a non-parametric identification of the density q.15 Second, for future

reference we display an expression for the Kurtosis of ∆p̃:

Kurt(∆p̃t) =
E[(∆pit)

4]

E[(∆pit)2(∆pis)2]
=

Kurt(∆pit)

1 + corr(∆p2
it,∆p

2
is)CV (∆p2

it)CV (∆p2
is)

for t 6= s (33)

The first equality is how we estimate kurtosis, correcting for this unobserved heterogeneity. The

second equality shows how our method to measure kurtosis amounts to a correction of the kurtosis

computed by pooling different goods without accounting for heterogeneity. Whenever the squares

of price changes of individual products are positively correlated, as we have systematically found

in the data, the correction leads to a substantial downward adjustment of the estimated kurtosis.

Data and estimation. We use the open access data from Billion Prices Project presented

by Cavallo (2015).16 We have chosen scraped price data to reduce the measurement error present

in other data sets for example due to time aggregation using average revenue. It is important to

avoid this form of measurement error to accurately estimate the kurtosis of the distribution of

price changes, one of the goals of this section. The time span of our sample is between May 2008

and June 2010. From daily data on prices we construct the series of spells together with the size

of the price change at the end of each spell. We trim the sample at price changes larger than 150

log points size in absolute value.17 To fit a symmetric density, for each value ∆p in the sample we

use points in the band around it and around −∆p as well. The left panel of Figure 9 plots the

histogram of price changes for a narrowly defined product category. The right panel presents the

symmetrized histogram with a fitted density. This fitted density is not the underlying density q,

since it is confounded by the unobserved values of bi.

Table 1 presents summary statistics on the seven categories we use, as well as the estimated

kurtosis. The kurtosis is estimated in two ways: first by (incorrectly, according to our assump-

tions) pooling different products in the same category (p), and second by accounting for product

15This fully characterizes the distribution of ∆p̃t, since its odd moments are equal to zero due to symmetry.
16Link: http://www.thebillionpricesproject.com/datasets/. We use the US store number 1.
17We remove 87 (larger than 150 log points) out of 326,570 price changes for products with at least three spells.
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Figure 3: Distribution of price changes in a narrow category

Histogram for ∆p Symmetrized histogram with a fitted density

Pooling all products for category 561, COICOP label “Non-durable household goods”

heterogeneity (u). To implement the latter procedure, we use equation (33). This equation is a

particular case of equation (31) with j = 4, k = 0, and j′ = k′ = 2. Importantly, the expectation is

taken over t 6= s, and any such pair (t, s) can be taken to estimate it. Our estimator is constructed

as follows: for any pair (j, k), we estimate E[|∆pit|j|∆pis|k] by

1

#I

∑
i∈I

1

#T (i)(#T (i)− 1)

∑
t,s∈T (i),t6=s

|∆pit|j|∆pis|k (34)

where # denotes the number of elements in the set. Note that this estimator includes all available

price changes t, s ∈ T (i) for every product, maximizing the use of the data. Individual products

in the sample have around 20 price changes each. Distributions are centered around zero, with

the mean being around one hundredth of the standard deviation. It is evident from the table

that properly accounting for heterogeneity reduces the estimated kurtosis to about half. This

points to a substantial correlation in absolute values of the consecutive squared price changes. In

Appendix B we tabulate implied correlations recovered from equation (33). These turn out to be

in the range between 0.29 and 0.45.

To estimate Q we use a Gamma distribution. In principle, the distribution could be estimated

non-parametrically, since every moment is identified. In practice, this would require estimating a

24



Table 1: Summary statistics and kurtosis estimates

Category Number Number Ê(∆pit) σ̂(∆pit) Kurtosis Kurtosis Cpooled C
Products P. changes Pooled w/Unobs. w/Unobs.

Heterog. Heterog.

111 3437 74464 0.002 0.341 3.418 1.656 0.077 0.071

(0.162) (0.071)

119 3225 56527 0.002 0.328 3.831 1.955 0.085 0.064

(0.092) (0.050)

1212 2551 30343 -0.001 0.245 3.524 2.052 0.040 0.039

(0.272) (0.162)

122 1401 27321 0.002 0.342 2.956 1.677 0.118 0.091

(0.089) (0.051)

118 1388 30111 0.003 0.308 3.624 2.044 0.080 0.078

(0.240) (0.118)

117 1154 20995 0.007 0.309 3.487 1.989 0.071 0.058

(0.135) (0.047)

561 1032 17724 0.002 0.260 3.324 1.778 0.034 0.030

(0.221) (0.133)

Categories legend: 111 “bread and cereals”, 119 “other food products”, 1212 “electric appliances for personal

care”, 122 “soft drinks”, 118 “sugar, honey, and confectionary”, 117 “vegetables”, 561 “non-durable household

goods”

large number of moments, substantially decreasing precision. Instead, we estimate the Kurtosis

and use the unit variance restriction to fit the scale and size. The fitted density q is presented

on the left panel of Figure 4 together with the underlying generalized hazard function Λ and the

density of price gaps f . In the Appendix B, we detail our algorithm and show extended results from

fitting a mixture of two Gamma distributions, for which we estimate moments using Proposition 7

to fit five parameters: scale and size of the distributions and the weight.

Finally, the right panel contains the distribution of menu cost recovered from the resulting

hazard Λ. The units on the horizontal axis correspond to the annual profit of the firm. There is no

mass point at zero, since the recovered generalized hazard function has Λ(0) = 0. Note that the

model with random menu cost can only rationalize a bounded generalized hazard function. Gamma

distribution is convenient, since by Proposition 6 it implies a bounded Λ. In the Appendix B, we

show the procedure to recover the cost function c corresponding to the model in Section 2.2.
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This model allows for an unbounded Λ, so we use a power specification Λ(x) = κxν , deriving the

moments of Q and using the analytical expressions to fit the parameters.

Figure 4: Estimated distribution of price changes and implied cost functions

Estimated q(·), recovered f(·) and Λ(·) Recovered CDF and density of menu costs

Estimating the degree of state dependence. We now turn to measuring C. We do this in

two ways. First, we ignore the unobserved heterogeneity and assume that the price data for the

narrowest category of goods all come from the same primitives of the model. These primitives

are the generalized hazard function Λ (including the value of X, the barrier) and σ2. Recall from

Proposition 6 that these objects fully describe the data-generating process, and this mapping is

injective. In this exercise we just estimate all the objects on the right hand side of equation (29).

The results are shown in the column labelled “Cpooled” in Table 1. Their average across categories

is 0.072, i.e. just above 7% of price changes are independent of the state. This small number is

due to the small value of the density q at ∆p = 0, which is apparent from the right hand side panel

of Figure 9.

Second, we account for unobserved heterogeneity of the type described above. If there is

heterogeneity of this type across products in the narrowest category, using the simple expression

for C from equation (29) produces an upward bias in the estimate. We derive an unbiased estimator,

the result being analogous to the one in Proposition 7. We express this estimator as a function of

the pooled estimator Cpooled and a correction due to the unobserved heterogeneity:
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Proposition 8. Under the assumptions 1-5 stated above,

C = Cpooled
(

1 +
Cov(b−1

i , b2
i )

E[b−1
i ]E[b2

i ]

)
< Cpooled (35)

where the two components are given by

Cpooled =
q(0)V ar(∆pit)

2E[|∆pit|]
and 1 +

Cov(b−1
i , b2

i )

E[b−1
i ]E[b2

i ]
=

E[bi]

E[b−1
i ]E[b2

i ]
=

E[|∆pit|−1|∆pis|2]

E[|∆pit|−1]E[|∆pit|2]
for t 6= s

The estimate for Cpooled is obtained from the pooled data, and the correction for unobserved

heterogeneity is measured using the (short) time dimension of the panel. The last column, la-

belled “C w/Unobs. Heterogeneity”, in Table 1 contains the estimation results. Averaging across

categories, the fraction of price changes independent of the state is 0.062 or just above 6%.

The correction multiplier is smaller than one because 1/bi and b2
i are negatively correlated. Of

course, if data for all products i in the narrowest category come from the same model primitives

(Λ, X, σ2), then there is no variation in bi, and C = Cpooled.

5 Duration Analysis and Generalized Hazard Rate

In this section we consider the Survival and the Hazard Rate as functions of the duration of the

price spells. Duration-based functions are often used in sticky price models. It is interesting

to know whether the information encoded in them is different from that encoded in the size-

distribution of price changes used above. We establish conditions for a non-trivial equivalence

result: the distribution of durations and the variance of price changes together contain the same

information about the fundamentals of the model as the distribution of price changes and frequency

of adjustment. The distribution of spells with one statistic on the size of changes (the variance) is

as informative as the size-distribution of changes and one temporal statistic (the frequency).

Denote by S(t) the Survival function, the probability that a price spell lasts at least t units of

time. We will show that, when X = ∞, an analytical Survival Function S uniquely identifies an
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analytical Generalized Hazard Rate function Λ. When X =∞, the Survival function is given by

S(t) = E
[
e−

∫ t
0 Λ(x(s))ds |x(0) = 0

]
for all t ≥ 0 (36)

where the expectation is taken with respect to the paths of the drift-less Brownian motion x with

variance per unit of time equal to σ2. The value of S(t) is the Feynman-Kac formula evaluated at

x = 0. The hazard rate h(t) = −S ′(t)/S(t) measures the probability per unit of time of a price

spell ending conditional on lasting at least t. For example, the Survival function and its associated

hazard rate for the case of a quadratic generalized hazard rate Λ(x) = Λ(0) + κx2 are:

S(t) =
e−tΛ(0)(

cosh
(
t
√

2κσ2
)) 1

2

and h(t) = Λ(0) +

√
κ
σ2

2
tanh

(
t
√

2κσ2
)

for all t ≥ 0 (37)

This was obtained by Kac in his seminal study of what we now know as the Kac formula. The

next lemma gives the main technical result to establish the link between the Survival function,

which can in principle be measured in the data, and the generalized hazard function Λ(x).

Lemma 2. Fix a value of σ2 > 0, and assume that X = ∞. Assume that S is related to Λ by

equation (36). The derivatives of the Survival function S a time t = 0 and the derivatives of Λ at

x = 0 are related by the recursively generated functions {Fn} as follows:

∂nS(t)

∂tn

∣∣∣
t=0

= Fn(0) and all n = 1, 2, . . . where Fn(·) are given by (38)

Fn+1(x) =
σ2

2

∂2Fn(x)

∂x2
− Λ(x)Fn(x) for all x ∈ R and n = 1, 2, . . . and (39)

F1(x) = −Λ(x) for all x ∈ R (40)

Lemma 2 is the base of an algorithm to compute the derivatives of S at t = 0 given Λ and the

derivatives of Λ at x = 0 given S. Using this lemma, we obtain the main result of this section:

Proposition 9. Assume that σ2 > 0, X = ∞, and Λ satisfies Assumption 1. Let S be the

Survival function of Λ, as in equation (36). If the generalized hazard function Λ is analytical, then
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the Survival function S uniquely identifies Λ. Likewise, if the Survival function S is analytical,

then the generalized hazard function Λ uniquely identifies S.

As remarked before, Lemma 2 gives an algorithm to recursively compute an expansion of S

based on the derivatives of Λ, or an expansion of Λ based on the derivatives of S. An implication of

Lemma 2 and Proposition 9 is that the hazard rate and its first three derivatives at zero duration

(t = 0) are given by particularly simple expressions involving the level and first two even derivatives

of the generalized hazard function evaluated at zero price gap, i.e. x = 0:

h(0) = Λ(0) ≥ 0 ,
∂h(t)

∂t
|t=0 =

σ2

2

∂2Λ(x)

∂x2
|x=0 ,

∂2h(t)

∂t2
|t=0 =

(
σ2

2

)2
∂4Λ(x)

∂x4
|x=0 ,

and
∂3h(t)

∂t3
|t=0 =

(
σ2

2

)3
∂6Λ(x)

∂x6
|x=0 − 4

(
σ2

2

∂2Λ(x)

∂x2
|x=0

)2

These formulas give a simple connection between the local behavior of Λ around x = 0 and h around

t = 0. Note that if Λ(x) is, in addition of being symmetric and differentiable in x, increasing in

|x| around x = 0, then Λ′′(0) > 0, and hence the hazard rate as function of duration, h(t), must

be increasing in duration, at least for small durations t. Likewise, if Λ(x) were decreasing in |x|

around x = 0, then Λ′′(0) < 0 and hence h(t) must be locally decreasing in duration.

Comparing with the case of Proposition 6, in this case we use much more restrictive conditions

for Λ, and obtain a more cumbersome representation — an infinite expansion instead of a closed-

form expression involving an integral. In spite of this Proposition 6 and Proposition 9 have the

same flavor: they show that if Λ is analytical and X = ∞, then Λ can be fully identified either

using the information contained in the Survival function, i.e duration on price changes, and σ2,

which can be recovered from Na and the variance of price changes with equation (19). Of course,

this also means that the information on the survival function and the size distribution of price

changes can be used as an over-identifying test of the model.

Finally, we can also estimate C ≡ Λ(0)/Na, the fraction of price changes independent of the

state, by using duration data. Given the results above, C can be estimated as h(0)/Na. This can

be an alternative to the estimates presented in Table 1 using the size distribution of price changes.

As in Section 4, a correction of unobserved heterogeneity may be important.
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6 A Sufficient Statistic for Monetary Shocks

This section characterizes the real output effect of monetary shocks using a simple summary

statistic, the cumulative output generated by a once and for all monetary shock. This is the area

under the output’s impulse response function. It combines in a single value the persistence and the

size of the output response. The key result we present is that for small monetary shocks, like the

ones typically considered in the literature, the area is completely encoded by the kurtosis and the

frequency of price changes. These two moments are thus sufficient to compare different models.

We also find that, among the models with non-decreasing adjustment hazards, the kurtosis of

price changes is maximized in the Calvo model. As was established above, only a non-decreasing

generalized hazard function can be rationalized by random menu costs. Calvo model is the limiting

case with no randomness and no option to adjust, so it minimizes the amount of selection and

hence maximizes the output response. To establish this, we develop a general result that compares

kurtoses generated by two different hazard functions.

The contribution to the cumulative impulse response of a firm with price gap x is

m(x) = −E
[∫ τ

0

x(t)dt |x(0) = x

]
(41)

where τ is the stopping time defined as the first time when x(t) hits ±X or a reduction in adjust-

ment costs causes the firm to change price. This stopping time is stochastic, so the expectation

accounts for both the diffusion of the firm’s price gap and the possible event of adjustment that

happens with a Poisson intensity Λ(x(t)). In words, m(x) is the expected (cumulative) price gap

of a firm that starts with a gap x. Notice that in the Calvo case, where Λ(x) = λ is independent

of x, we immediately obtain m(x) = −x/λ, where 1/λ is the expected duration of a price spell.

The definition above uses the steady state decision rule Λ(x), thus ignoring the general equi-

librium feedback effect of the shock on the firm’s decision. In Proposition 7 of Alvarez and Lippi

(2014) it is shown that, given a combination of the general equilibrium setup in Golosov and Lucas

(2007) and the lack of the strategic complementarities, these general equilibrium effects are of sec-

ond order. In addition, we use the fact that after the first price change the expected contribution
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to output of each firm is zero, since positive and negative output contributions are equally likely, so

m(0) = 0. This allows us to characterize the propagation of the monetary shocks without tracking

the time evolution of the whole price gap distribution.

The expectation in the right hand side of equation (41) is with respect to the process for x,

a jump-diffusion with jump intensity Λ(x), diffusion variance σ2, and zero drift. The function

m : [−X,X]→ R is once continuously differentiable, antisymmetric around x = 0, and satisfies:

m(x)Λ(x) = −x+
σ2

2
m′′(x) for all x at which Λ is continuous (42)

0 = m(X) if X <∞ and lim
x→∞

|m(x)|
x

≤ 1

infy Λ(y)
if X =∞ . (43)

Now we can define the cumulative impulse response to a monetary shock of size δ as

M(δ) =

∫ X

−X
m(x− δ)f(x)dx . (44)

This is simply the aggregate contribution of the firms to the cumulative impulse response. The

response of a firm with the price gap x before the shock is m(x− δ).

Let {X,Λ, σ2} characterize an economy, with its corresponding invariant density f and firm’s

contribution to CIR, m. Let {X̃, Λ̃, σ̃2} be the standardized economy, defined as in Proposition 3,

that has its associated {f̃ , m̃} with m̃ defined as m̃(z) = m(z/b)/b for b2 = 1/V ar(∆p) and

satisfying the corresponding ODE with the boundary conditions for σ̃2 and X̃. Define M̃(δ), the

cumulative impulse response of output to a monetary shock for the standardized economy, as

M̃(δ) =

∫ X̃−δ

−X̃
m̃(x) f̃(x+ δ) dx (45)

The next proposition relates the CIR of output in an economy to the one of its standardized

version by scaling the monetary shock with the steady-state standard deviation of price changes.

In words, for small monetary shocks the dispersion of price changes is immaterial, although in

general the size of monetary shocks should be measured relative to the steady-state dispersion of

price changes.
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Proposition 10. LetM and M̃ be the cumulative impulse responses of an economy {X,Λ, σ2}

with Std(∆p) = V ar(∆p)1/2 and the corresponding standardized economy {X̃, Λ̃, σ̃2}. Then

M(δ) = M̃
(

δ

Std(∆p)

)
Std(∆p) (46)

and thus M′(0) = M̃′(0).

The proof is immediate, using the properties of m̃ and f̃ established above, differentiating

equation (45), and evaluating at δ = 0. Summarizing, Proposition 10 says that for small monetary

shocks, the steady state standard deviation of the price changes is not important. For large shocks

it clearly is. For example, take the case X < ∞. For δ ≥ 2X̄, we have M(δ) = 0, because the

shock displaces all the firms far enough, and they adjust immediately. Since the standardized

version has X̃ = X/Std(∆p), this shows the importance of the size of the shock for large values.18

The marginal version of this cumulative impulse response is

M′(0) = −
∫ X

−X
m′(x)f(x)dx (47)

This term can be used for a linear approximation of M around zero. Our main result is that it

can be expressed as a function of two sufficient statistics: Kurt(∆p), the kurtosis of the steady

state distribution of price changes, and Na, frequency of price changes.

Proposition 11. Let Λ(x) be any function satisfying Assumption 1. Then the cumulative

impulse response for a small monetary shock is given by the ratio of two steady state statistics:

M(δ) =
Kurt(∆p)

6Na

δ + o(δ2) (48)

The approximation is accurate up to second order terms, so the remainder is of order δ3. This

happens since M′′(0) is zero, which follows from M being an antisymmetric function, because m

18A similar result was shown in Alvarez and Lippi (2014) for the case of multiproduct firms, which only overlap
with the current set up for the Golosov and Lucas case — with one product per firm.

32



is antisymmetric and f is symmetric.

Our results from Proposition 1 and Proposition 17 show that only weakly increasing Λ can be

rationalized by the solution of a firm problem subject to random menu costs. But Assumption 1

allows for a very large class of generalized hazard functions, including decreasing and non-monotone

ones. Proposition 11 holds for such functions too. It makes no reference to the micro-foundations

behind Λ and hence also applies to setups where firms’s behaviour is not described by an increasing

hazard. An example is the model in Woodford (2009), where firms conduct costly reviews and

have imperfect recall and access to their state. Also Costain and Nakov (2011b) use generalized

hazard functions, without linking them to random menu costs.

Aggregation across heterogenous firms. We briefly discuss how the above results can be

applied to economies composed of heterogenous firms. Assume that there are S groups of firms

with different parameters, each with an expenditure weight e(s) > 0, N(s) price changes per unit

of time, and a distribution of price changes with kurtosis Kurt(s). In this case, after repeating

the arguments above for each group and aggregating, we obtain that the area under the IRF of

aggregate output for a small monetary shock δ is

M(δ) = δM′(0) + o(δ2) =
δ

6

∑
s∈S

e(s)

Na(s)
Kurt(s) + o(δ2) =

δ

6
D
∑
s∈S

d(s)Kurt(s) + o(δ2) (49)

where D is the expenditure-weighted average duration of prices D ≡
∑

s∈S
e(s)
Na(s)

, and d(s) ≡ e(s)
Na(s)D

are weights that take into account both relative expenditures and durations. When all groups have

the same durations, then d(s) = e(s) and M is proportional to the average of the kurtosis of the

sectors. As explained in Section 4, and shown in Proposition 18 in Appendix G, this average

is also different from the kurtosis of the pooled data. This applies even if all the groups have

the same kurtosis.19 However, if groups are heterogenous in duration (or expenditures), then the

kurtoses of the groups with longer duration (or higher expenditures) receive a higher weight in the

computation ofM. Suppose for instance that a fraction of firms have flexible prices (zero duration

in our model, or infinitely many price changes per unit of time), as in Dotsey and Wolman (2020).

19The effect of heterogeneity in Na(∆pi) on aggregation is well known for the Calvo model: D is different from
the average of Na(∆pi)’s, see for example Carvalho (2006) and Nakamura and Steinsson (2010).
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The above formula implies that the group of the flexible price firms are excluded (zero duration

yields a zero weight), and that the cumulative impulse response (CIR) is computed on the mass of

firms with sticky prices. Notice that this is different from computing the CIR as the ratio of the

cross-sectional average kurtosis and the average frequency. Since the latter is diverging because of

the firms with flexible prices, the CIR computed this way would be zero, while obviously it is not.

Kurtosis. The next proposition shows the properties of generalized hazard functions that de-

termine the Kurtosis of price changes. We will concentrate on the case where we will hold the

adjustment frequency constant. Recall that that fixing the frequency of price changes can be ac-

complished as fixing the units of time. This procedure allows us to isolate the effect of a change

in Λ on selection from its effect on the frequency. Moreover, with the frequency fixed, the kurtosis

of price changes directly maps into the approximate cumulative impulse response.

Proposition 12. Fix Na and consider two hazard functions Λ1(x) and Λ2(x) with the corre-

sponding boundaries X1 and X2, where 0 < X2 ≤ X1 ≤ ∞. Let Λ1(0) > Λ2(0) and let the function

Λ1(x)−Λ2(x) change sign at most once. Then, Λ1(x) generates a higher kurtosis of price changes.

The condition that Λ1−Λ2 changes sign only once means that it is positive at first and maybe

negative for x far from zero. This is to say that Λ1 generates more adjustment for smaller x,

and Λ2 generates more for larger ones. Selection is therefore more pronounced with Λ2, and the

kurtosis of price changes is lower. There are two interesting corollaries of this result. The first is

that for a fixed X the highest kurtosis is attained by the constant generalized hazard function.

This corresponds to the Calvo+ case:

Corollary 2. Fix Na, the number of adjustments per unit of time, and X <∞. The function

Λ(x) that is constant on (−X,X) maximizes the kurtosis of the price changes over all functions

Λ(x) that are weakly increasing on (0, X) and satisfy Assumption 1.

Second, a constant hazard function in combination with the infinite boundary X maximizes

the kurtosis of price changes over all weakly increasing hazards. This is the pure Calvo case:
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Corollary 3. Fix Na. The constant function Λ(x) ≡ λ maximizes the kurtosis of the price

changes over all weakly increasing functions Λ(x) satisfying Assumption 1.

By Proposition 11, it also means a constant Λ maximizesM′(0) for a fixed Na. This highlights

the role of selection. A strictly increasing rate of adjustment Λ implies positive selection, so the

firms with larger deviations are more likely to adjust. When Λ is flat, there is no selection, so the

price changers are drawn randomly from the population. Shocks are accommodated more slowly in

this case, because the adjustment frequency does not depend on how much a firm needs to adjust,

so the response of price takes longer, and hence the response of output is larger.

Finally, Proposition 12 sheds some light on the relationship between the strength of state

dependence and the magnitude of output response. As we noted before, one measure of the strength

of state dependence is the index C ≡ Λ(0)/Na, the share of adjustment happening independently of

the price gap. We can show that, holding constant the shape of Λ (captured by its curvature) and

adjustment frequency, this index co-moves with the Kurtosis. Hence, a higher share of adjustment

independent of x means a stronger output response for the same shape of the hazard.

Define the curvature of the function Λ as

k(x) =
Λ′′(x)x

Λ′(x)
(50)

To understand what it means for two functions to have the same curvature, take some arbitrary

Λ and decompose it into two parts, the intercept and the rest: Λ(x) = Λ(0) + (Λ(x)−Λ(0)). Now

consider two simple linear transformations of the two parts of the hazard:

Λ1(x) = a1Λ(0) + b1(Λ(x)− Λ(0)), Λ2(x) = a2Λ(0) + b2(Λ(x)− Λ(0)) (51)

The transformation scales the intercept and the rest with different numbers, changing the strength

of state dependence but broadly preserving the shape (it is easy to see that both Λ1 and Λ2 have

the same curvature as Λ). When Λ1 and Λ2 generate the same adjustment frequency, the one with

a weaker state dependence (higher C) corresponds to a higher Kurtosis.
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Corollary 4. Consider two generalized hazard functions Λ1(x) and Λ2(x) with the same

boundary X ≤ ∞. Furthermore, assume that they have the same curvature k everywhere and the

frequency of adjustment Na. Then Kurt1(∆p) > Kurt2(∆p) if and only if C1 > C2.

An immediate implication of the Corollary 4 is that for two economies with the same frequency

of price changes and the same curvature of the generalized hazard function, the one with higher

value of C has a higher cumulative impulse response after a monetary shock.

6.1 Illustration with a power hazard function

In this section we describe the case where the generalized hazard function is a power function with

the power parameter ν. In particular, we let Λ(x) = κ|x/X|ν on (−X,X) for some ν ≥ 0. This

functional form nests Calvo-plus models with ν = 0 and quadratic generalized hazard functions

with ν = 2.

We use this example to illustrate how the parameters affecting the shape of Λ determine the

Kurtosis of price changes. To do this, we first show that, with ν fixed, the Kurtosis of price

changes varies one-to-one with the share of adjustments from strictly between the barriers, s.

This highlights the role of selection: the output response is weaker when fewer firms reach the

boundaries, because fewer firms are close to adjustment right before a monetary shock happens.

Second, we show that for any s the Kurtosis of price changes decreases monotonically with the

power ν, which governs the shape of Λ.

We now describe the invariant density f . Upon a renormalization, we can solve for a symmetric

density f̂(z) defined by f̂(z) = Xf (zX). The function f̂ satisfies

ρzν f̂(z) = f̂ ′′(z) with f̂(1) = 0 and

∫ 1

0

f̂(z)dz =
1

2
(52)

where ρ ≡ 2κX2/σ2. The solution to equation (52) is given by

f̂(z) = c1

√
z I 1

ν+2

(
2
√
ρ

ν + 2
z
ν+2
2

)
+ c2

√
z K 1

ν+2

(
2
√
ρ

ν + 2
z
ν+2
2

)
for all z ∈ [−1, 1] (53)
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This is a combination of modified Bessel functions of the first and second kind I 1
ν+2

and K 1
ν+2

of order 1
ν+2

, where the constants c1, c2 are chosen to satisfy the two boundary conditions described

in equation (52). The form f̂ depends on the parameters (ρ, ν) that capture adjustment coming

from random menu costs. Note that if X =∞ then c1 = 0.

From the previous result, we can see that if two models have the same (ν, ρ), then the distri-

bution of price changes in one is a rescaling of that in the other. The dimensionless statistics such

as the kurtosis, the fraction of adjustment strictly within the boundaries s, or equivalent the mass

of Q on ±X, are the same. We can summarize this result as follows:

Proposition 13. Let Λ(x) = κ|x/X|ν . The Kurtosis of price changes, the share of adjustments

strictly between the boundaries, and the frequency of price changes satisfy: Kurt(∆p) = K̂(ρ, ν),

s = Ŝ(ρ, ν), and Na = σ2

X2 N̂(ρ, ν) respectively, where these functions have no other parameters.

For fixed ν, the function Ŝ(·, ν) is increasing in ρ, and K̂(·, ν) is decreasing in ρ.

Using this proposition we can fix s, say to s = 1, or X =∞, then Kurt(∆p) is just a function

of ν only, displayed in Figure 5. Alternatively, fixing ν we have that Kurt(∆p) is only a function

of the fraction of price changes strictly between barriers, s as displayed in Figure 6 below.

Figure 5: Kurtosis of power hazard function as ν varies

Hazard function Λ(x) = κ xν and X =∞
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Figure 5 displays the value of Kurt(∆p) for the case where X = ∞ as a function of ν. Note

that Kurtosis goes from 6, corresponding to ν = 0, or pure Calvo, to a value of 1, corresponding

to ν → ∞ which approximates Golosov and Lucas. Increases in ν clearly change the shape of Λ,

making it more convex, which is reflected in lower kurtosis of price changes. This illustrates how

the shape of Λ determines the selection effect on price changes. Note that for ν = 2, the quadratic

case, Kurt(∆p) ≈ 1.75.

Figure 6: Kurtosis behavior with a power hazard function as s varies

Hazard function Λ(x) = κ
(
x
X

)ν
and X <∞

Figure 6 displays the value of Kurt(∆p) for the case of X <∞ as a function of s, the fraction

of price changes strictly between the boundaries. We display such relationship for three values of

ν. Note that fixing ν, as we change ρ, and obtain a larger share of price changes strictly inside the

barriers s, which corresponds to a lower Kurt(∆p). This illustrate the smaller selection effect of

price changes when barriers are hit less often. Recall that s = 0 is equivalent to X =∞. For each

value of s, the difference lines shows that curvature ν corresponds to lower Kurt(∆p).
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7 Flexibility Index: scope and limitations

Caballero and Engel (2007) introduced the concept of the Flexibility Index (F), subsequently

used in several studies such as Berger and Vavra (2018), as an inverse measure of monetary

nonneutrality. We show below that F measures the slope of the impulse response of prices right

after a small once-and-for-all monetary shock. Below we define F in terms of the model, using

Caballero and Engel’s (2007) formula, and study the extent to which it is an accurate summary of

the model’s non-neutrality. We show that for models with barriers, where X < ∞, the flexibility

index is always infinite. This prompts us to focus on the cases without barriers, X = ∞, where

F is finite. In such cases we can compare F with the summary measure given by the cumulative

impulse response defined in equation (44). We display non-pathological simple examples where

the F is not an accurate summary of the effect on output, neither of its cumulative response, nor

of its short term response.

The IRF of the aggregate price level after a shock δ can be written as

P(t, δ) = Ω(δ) +

∫ t

0

ω(s, δ) ds (54)

where ω(s, δ) is the flow contribution to the IRF at time s > 0, and Ω(δ) is the time t = 0 jump in

the price level. By definition ∂
∂t
P(t, δ) = ω(t, δ). The flow value of the IRF of the aggregate price

level at time t > 0 is given by

ω(t, δ) = −
∫ X

−X
xΛ(x)f(x, t)dx+Xσ2 [f ′(−X, t)− f ′(X, t)]

where f(x, t) is the distribution of the price gaps among the firms that have not adjusted prices t

units of time after the monetary shock. The first term is the change of prices across the distribution

of price gaps at time t, with f(x, t) solving the time dependent Kolmogorov Forward Equation:

∂tf(x, t) = −Λ(x)f(x, t) +
σ2

2
∂xxf(x, t) for all x ∈ [−X,X] and t ≥ 0, (55)

f(X, t) = f(−X, t) = 0 for all t > 0, and f(x, 0) = f0(x) for all x ∈ [−X,X] (56)
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The initial jump is given by

Ω(δ) =

∫ −X+δ

−X
(−x+ δ) f0(x) dx (57)

The initial distribution f0 that we consider is a uniform shift by δ of some distribution f̂ :

Assumption 2. The initial condition is f0(x) = f̂(x + δ), where f̂ i) equals zero at the

bounds, 0 = f̂(−X̄) = f̂(X̄), ii) increases close to the lower bound, 0 < f̂ ′(−X̄) < ∞, and iii) is

differentiable on (−X̄, 0).

We write f0(x) = f̂ ′(x)δ + o(δ) and consider the case of small δ. Note that the assumptions

allow f̂ to be the invariant distribution corresponding to {X,Λ, σ2}, but they do not require it. In

particular, f̂ can be any distribution that has for any strictly positive time evolved according to

equation (55) and equation (56). The Flexibility index is defined as F ≡ ∂
∂δ
ω(0, δ)|δ=0, which is

equivalent to the definition in equation (17) in Caballero and Engel (2007).

Proposition 14. Let Ω and ω be the jump and flow values of the IRF of prices at t = 0.

Let X < ∞, let Λ satisfy Assumption 1, and assume that the initial distribution f0 satisfies

Assumption 2. Then Ω(0) = Ω′(δ)|δ=0 = 0. Moreover, ∂δω(0, δ)|δ=0 =∞ and ω(0, 0) = 0. Thus, if

X <∞, the flexibility index is infinite for any Λ.

Because of this result we will move to analyze the flexibility index for models with X = ∞,

where it is finite. We will will do so for a family of hazard functions which is a slight generalization

of the one treated in Section 6.1.

7.1 Power plus family of generalized hazard functions

We consider a simple four parameter family of models where Λ(x) = Λ(0) + κxν . We label this

case as power-plus, because it adds a constant to the power case. Besides Λ(0), κ, and ν, the other

parameter of the model is σ2. We introduce the parameter η and let α be the adjusted intercept:

η =

(
2κ

σ2

) 1
ν+2

, α =
Λ(0)ην

κ
. (58)
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The quadratic case is ν = 2 and α = 0. This adjusted intercept measures the relative magnitude

of Λ(0) and the slope κ, increasing in the former and decreasing in the latter. We will show that

for a fixed power the Kurtosis, adjustment frequency, and the flexibility index only depend on α.

Proposition 15. Fix σ2 and let Λ(x) be a power-plus hazard function parameterized by

(κ,Λ(0), ν). The adjustment frequency, the kurtosis of price changes, and the flexibility index are

Na =
η2σ2

2
Ñ(ν, α) (59)

Kurt(∆p)

6Na

=
1

η2σ2
K̃(ν, α) (60)

F =
η2σ2

2
(Ñ(ν, α)(1 + ν)− να) (61)

where Ñ(ν, α) and K̃(ν, α) only depend on ν and α; Ñ(0, α) ≡ 1 + α, and K̃(0, α) ≡ 2/(1 + α).

With no intercept, the flexibility index and adjustment frequency are related by a simple formula

via the elasticity of the hazard:

F = Na(1 + ν) (62)

If two models have the same (ν, α), the density of price changes in one is a rescaling of that

in the other. This implies that kurtosis (and other dimensionless statistics) is the same. If η also

coincides in the two models, the distributions of price changes are identical.

The power-plus parameterization allows us to illustrate substantial disconnect between the CIR

and the flexibility index. In one example where we vary one parameter at time: in this case the

flexibility index and the cumulative IRF move in the same direction. In the second example we

change three parameters at a time and show how for the same flexibility index cumulative IRF

can vary substantially, even keeping the adjustment frequency fixed.

Proposition 16. Assume that Λ is given by a power-plus function. Fix (ν, σ2) and take two

different power plus generalized hazard functions Λ1 and Λ2. If they generate the same frequency

Na, then Kurt1(∆p) > Kurt2(∆p) if and only if F1 < F2.
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This result is not surprising, since we are varying one parameter only. This comparative static

exercise is very far away from the idea of a “sufficient statistic”, where one finds a statistic that

summarizes significant outputs of a class of models. Even the simple power-plus parameterization

affords much more flexibility than varying one parameter can offer.

Now we turn to the second case, where we argue that, however intuitive this might be, relying

on the flexibility index can be quite misleading. In Figure 7 we display a number of economies

with the same adjustment frequency Na, and with the same Flexibility Index F , but with very

different cumulative response to a monetary shock. That is, we vary the parameters in such a way

that both F and Na stay constant, while M′(0) varies substantially. This is done by increasing

the power parameter ν and finding the pairs (Λ(0), κ) that keep Na and F constant. We solve this

problem numerically and find that for the same Na and F the Kurtosis of price changes varies by

90% when ν increases from 2 to 20, as plotted on the Figure 7. The slope of the impulse response

at t = 0 does not capture the area under it quite well.

Figure 7: Values of Kurt(∆p) or CIR relative to the case of ν = 2, all cases have F = 3, Na = 1

In Figure 8 we take two examples from the previous plot, one with ν = 2 and the other with

ν = 10, and display the entire output impulse response function Y (t) as a function of time t. Thus,

both IRF’s have the same frequency Na and flexibility index F . The areas under both IRF’s are
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clearly different, the one for ν = 10 is at least 50% larger than the one for ν = 2, consistent with

the values displayed on Figure 7. By construction the slope of Y (·) at t = 0 is the same for both

cases (i.e. for ν = 2 and ν = 10), since both IRF’s have the same Flexibility index F . Yet, the

slopes of both impulse responses starts to differ substantially even for low values of t. Since in

both cases Na = 1, the values of time in the horizontal axis can be measured in terms of expected

adjustment time. For instance, if prices change on average three times a year, meaning Na = 3,

then t = 1 represents 4 months. The ratio of the two IRF evaluated at t = 1 is higher than 4,

namely Y10(1)/Y2(1) ≈ 4.4. This example shows that even the short run output effect can be

substantially different with the same flexibility index.

Figure 8: Impulse Responses for power plus case, both cases with same F and Na
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8 Conclusion

We discuss the economic foundations of the generalized hazard function, a flexible modeling block

used in several sticky-price setups, and map it to the primitives underlying the firm’s optimiza-
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tion. We show how to identify the generalized hazard function using observable objects, such as

the distribution of price changes, and provide a procedure to recover the hazard and the other

microeconomic primitives from data. On the analytical side, we extend the “Kurtosis result” of

Alvarez, Le Bihan, and Lippi (2016) to a considerably larger class of models and prove that the

Calvo model yields the maximum amount of monetary non-neutrality within the broad class of

models we consider. Within a narrower class where the inaction region is bounded, the upper

bound is Calvo+. Our empirical strategy addresses unobserved heterogeneity in different prod-

ucts, which we show can be important in estimating the Kurtosis of price changes, and hence in

quantifying the real effects of monetary shocks. Finally, we show that another convenient account-

ing measure for sticky price models, the flexibility index, can sometimes be a poor summary of

monetary non-neutrality, both over the long-term as well as over the short-term.
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Appendix of:

The Macroeconomics of Sticky Prices with Generalized
Hazard Functions

By Fernando Alvarez, Francesco Lippi, and Aleksei Oskolkov.

A Proofs

Proof. (of Lemma 1). Define the function U(x) ≡ v(x)− v(0) and rewrite equation (5) as

rU(x) = Bx2 +
σ2

2
(U ′′(x)− v′′(0))− κ

∫ U(x)

0

G(ψ)dψ for x ∈ [0, X] (63)

with boundary conditions U ′(X) = 0 and U(X) = Ψ. Note that by definition U(0) = 0. To obtain
equation (63) we used integration by parts on the right hand side of equation (5):∫ U(x)

0

[ψ − U(x)]G′(ψ)dψ = G(ψ)ψ
∣∣∣U(x)

0
−
∫ U(x)

0

G(ψ)dψ − U(x)

∫ U(x)

0

G′(ψ)dψ

= G(ψ)ψ
∣∣∣U(x)

0
−
∫ U(x)

0

G(ψ)dψ − U(x) [G(U(x))−G(0)]

= −
∫ U(x)

0

G(ψ)dψ + U(x)G(0)

Next differentiate both sides of equation (63) with respect to x to obtain:

[r + κG(U(x))]U ′(x) = 2Bx+
σ2

2
U ′′′(x) for x ∈ [0, X] (64)

with boundary conditions given by: U ′(X) = 0 and U ′(0) = 0. The first boundary condition
is smooth pasting. Note that if X = ∞ we do not have smooth pasting, but since v is bounded
above so is U , then it must be that limx→∞ U

′(x) = 0, and hence the analogous boundary condition
holds in the case where X is unbounded. The second boundary is implied by the symmetry and
differentiability of v(·), and hence of U(·), around x = 0. Thus, solving for the value function in
equation (5) is equivalent to solving for U(·) in equation (64) with its corresponding boundary
conditions.

Now define u(x) ≡ U ′(x) and rewrite equation (64) using that Λ(x) = κG(U(x)), by equa-
tion (4). This gives the o.d.e. in equation (6). The boundary conditions described above in terms
of U ′ thus become u(X) = u(0) = 0.

Uniqueness and invertibility. Note that equation (6) is a linear second order ordinary differen-
tial equation of the Sturm-Liouville type with two Dirichlet boundary conditions, where we write:
L(u)(x) ≡ [r + Λ(x)]u(x)− σ2

2
u′′(x) and thus the equation above can be written as L(u)(x) = 2Bx.
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The function Λ(·) defining the operator L is continuous, so it has a unique solution u(·). To see this
let L(u)(x) = 2Bx and let {θj, ϕj} be the eigenvalues and orthonormal eigenfunctions of L satis-
fying the Dirichlet boundary conditions, i.e. solving L(ϕj) = θjϕj and with ϕj(0) = ϕj(X) = 0.
By linearity we have L(

∑
j αjϕj) =

∑
j θjαjϕj for any square integrable sequence {ϕj(·)}. Then

we can choose {αj} so that u(x) =
∑

j θjαjϕj(x), with the equality in the L2 sense. In particular
we can set αj = 〈ϕj, u〉/θj. Again, the case of X = ∞, requires a slightly different argument for
the existence of its solution. In particular, the existence of a solution is guaranteed by Theorem
3.1 in Lian, Wang, and Ge (2009). By the Maximum principle then u(x) > 0 since 2Bx > 0 in
(0, X). Since u > 0 then U is increasing and thus it is invertible.

Value function. We construct v(·) as follows. Recall u = U ′ and U(0) = 0, we have

U(x) =

∫ x

0

u(z)dz for all x ∈ [0, X] and Ψ = U(X) .

From the definition of U(x) = v(x)− v(0) and equation (5) we have

v′′(0) = U ′′(0) = u′(0) and rv(0) = v′′(0)
σ2

2
so v(0) = u′(0)

σ2

2r

which gives equation (7) in the lemma. Note that v(·) is increasing because u(x) > 0 on (0, X) as
established above. �

Proof. (of Proposition 1). We now construct the fixed cost Ψ, the Poisson arrival rate κ, the
value of G(0) and the density G′(·) that rationalize the generalized hazard rate Λ(·) using the
function u(·). We use equation (4), Λ(x) = κG(U(x)) for all x ∈ [0, X], which evaluated at x = 0
implies Λ(0) = κG(0). Denote by w(·) ≡ U−1(·), the inverse function of U(·), mapping [0,Ψ] onto
[0, X]. Set κ to be κ = Λ(X) to ensure that G(Ψ) = 1. Differentiating the expression above with

respect to x, we have G′ (U (x)))U ′(x) = Λ′(x)
Λ(X)

for all x ∈ (0, X) and thus

G′ (ψ) = G′ (U (w (ψ))) =
Λ′(w(ψ))

u(w(ψ))Λ(X)
=

Λ′(w(ψ))

u(w(ψ))Λ(X)
for all ψ ∈ (0,Ψ)

which gives the density of G′ in terms of the function u defined in Lemma 1. �

Proof. (of Proposition 3) To show this let the density of the invariant distribution be f̃(z) =
f(z/b)/b. This function solves the KFE for Λ̃ and σ̃2. This can be verified using that f solves the
KFE for Λ and σ2. Since Na = −σ2f ′(0) and Ña = −σ̃2f̃ ′(0) then it implies that Ña = Na for any
b. Also we can see that q̃(z) = q(z/b)/b, by using q(x) = Λ(x)f(x)/Na and q̃(z) = Λ̃(z)f̃(z)/Ña

for all z ∈ (−X b,X b). Using the formula for a change on variable, and the relationship between

q and q̃ and of Λ and Λ̃ we get
∫ X
−X Λ(x)f(x)dx =

∫ X̃
−X̃ Λ̃(z)f̃(z)dz, and thus s̃ = s. �

Proof. (of Proposition 4) We start by describing the o.d.e and boundary that f and fk satisfy.
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For f we have:

Λ(x)f(x) =
σ2

2
f ′′(x) for all x ∈ (0, X) (65)

f(X) = 0 (66)

1/2 =

∫ X

0

f(x)dx (67)

For fk we have

Λ(x)fk(x) =
σ2

2
f ′′k (x) for all x ∈ (0, X) (68)

kf(x) =
σ2

2
f ′′k (x) for all x ∈ (X,∞) (69)

1/2 =

∫ X

0

fk(x)dx+

∫ ∞
X

fk(x)dx (70)

and that pk has a continuous first derivative at x = X. We can then solve for fk for x > X,
obtaining fk(x) = fk(X)e−η(x−X) for all x > X, where η =

√
2k/σ. Thus, using the required

continuity we can write:

Λ(x)fk(x) =
σ2

2
f ′′k (x) for all x ∈ (0, X) (71)

f ′k(X) = −ηfk(X) (72)

1/2 =

∫ X

0

fk(x)dx+ fk(X)/η (73)

Now consider the solutions of the homogenous second order o.d.e. given by σ2/2f ′′(x) = Λ(x)f(x)
for x ∈ [0, X]. Given the assumption that Λ is continuous, we know that the solution is given
by linear combinations of two linearly independent functions g1, g2 defined [0, X]. This functions
depend on the interval (0, X), the constant σ > 0 only. Thus we can write the solution of each of
the two o.d.e. above as:

fk(x) = akg1(x) + bkg2(x) (74)

f(x) = ag1(x) + bg2(x) (75)

for all x ∈ [0, X]. The coefficients ak, bk, a, b can be chosen to satisfy the two boundary conditions
written for f and fk. We can use the homogeneity of the boundary conditions and preliminary set
ak = a = 1, drop the boundary conditions given by the integral equation for each system, use b̄, bk
to solve the remaining boundary conditions at X, and then find a, ak and rescale b, bk to satisfy
the two integral equations. To do so, let b̂ = b/a and b̂k = ak/bk. Thus we write the remaining
boundary conditions:

f(X) = 0 becomes 0 = g1(X) + b̂g2(X) (76)

f ′k(X) = −ηfk(X) becomes g′1(X) + b̂kg
′
2(X) = −η

[
g1(X) + b̂kg2(X)

]
(77)
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equivalently we can write:

b̂ = −g1(X)

g2(X)
and b̂k = −ηg1(X) + g′1(X)

ηg2(X) + g′2(X)
(78)

Furthermore let Ii ≡
∫ X

0
gi(x)dx for i = 1, 2 so that we can write the remaining boundary conditions

as:

1/2 = aI1 + bI2 =⇒ a =
1

2
(
I1 + I2b̂

)
1/2 = akI1 + bkI2 + ak

g1(X)

η
+ bk

g2(X)

η
=⇒ ak =

(
I1 + b̂kI2 +

g1(X)

η
+ b̂k

g2(X)

η

)
/2

Note that, given the expression for η, taking k →∞ it is equivalent to take η →∞. Then, using
L’Hopital in the second equation we obtain that b̂k → b̂, which them implies that ak → a and
finally bk → b. Now we can compare fk and f to obtain:

|fk(x)− f(x)| = |(ak − a)|g1(x) + (bk − b)g2(x)|
≤ |ak − a||g1(x)|+ |bk − b||g2(x)| for all x ∈ [0, X]

Since g1 and g2 are continuous in x, then they are bounded in [0, X]. Thus as k → ∞ we have
that fk converges uniformly to f . �

Proof. (of Proposition 5) Absolute continuity ofQ(·) follows from continuity of f(·) on (−X,X)/{0}
and boundedness of Λ(·) on (−X,X). Symmetry of q(·) follows from both f(·) and Λ(·) being
symmetric, and its continuity follows from the continuity of f(·).

That Q(·) is fully identified by all its moment requires either X < ∞ or the existence of its
moment generating function in some neighborhood of zero when X =∞. This is Theorem 2.3.11
in Casella and Berger (2002). Take the case X = ∞. We will show the existence of the moment
generating function in a neighborhood of zero, which amounts to convergence of a series

∞∑
n=0

(ia)nE[xn]

n!
(79)

for some a > 0. Due to symmetry, all odd moments are zero, so we will prove that the even
moments grow no faster than the factorial.

Consider an even moment E[x2k+2]:

E
[
x2k+2

]
=

∞∫
−∞

x2k+2q(x)dx =
2

Na

∞∫
0

x2k+2Λ(x)f(x)dx =
σ2

Na

∞∫
0

x2k+2f ′′(x)dx (80)

This uses the definition of and symmetry q(·) and the KFE. Integrate the right-hand side by parts
twice:

σ2

Na

∞∫
0

x2k+2f ′′(x)dx =
σ2(2k + 2)(2k + 1)

Na

∞∫
0

x2kf(x)dx (81)
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Here we used the fact that, due to Assumption 1, Λ(·) is bounded away from zero for x > xH ,
so the decay rate of q(·) is no slower than exponential. This drives the intermediate terms from
integration by parts to zero.

Now we will prove that

∞∫
0

x2kf(x)dx ≤ ξ

∞∫
0

x2kΛ(x)f(x)dx (82)

for some number ξ that does not depend on k. Two cases are interesting. First is when there is a
number λ1 > 0 such that Λ(x) > λ with probability one with respect to the measure defined by
f(·). In this case,

∞∫
0

x2kf(x)dx

∞∫
0

1

Λ(x)
x2kΛ(x)f(x)dx <

1

λ

∞∫
0

x2kΛ(x)f(x)dx (83)

and we are done. Now assume, on the contrary, for any positive number λ there is a positive
measure (corresponding to f(·)) of x such that Λ(x) < λ. Recall that, by Assumption 1, there
exist xH > 0 and λ > 0 such that Λ(x) > λ for x > xH . The there exists a pair of numbers (λ2, x2)
with and two sets A1 and A2 such that A1 = {x : Λ(x) < λ2}, A2 = [x2,∞), the measures of A1

and A2 associated with f(·) are equal to F > 0, and

∫
A1

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

 f(x)dx = −
∫
A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

 f(x)dx (84)

To see why these sets exist, take first x2 = xH . If there is no λ2 < λ such that the measure of
{x : Λ(x) < λ2} is equal to [x2,∞), increase x2 until there is. Since X = ∞, the measure of
[x2,∞) decreases continuously as x2 increases, so for any λ1 < λ the value of x2 ≥ xH such that
the measures of A2 and A1 are equal exists.

Now consider the difference

F

∫
A1∪A2

x2kΛ(x)f(x)dx−
∫

A1∪A2

Λ(x)f(x)dx

∫
A1∪A2

x2kf(x)dx

=

∫
A1∪A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx

=

∫
A1

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx+

∫
A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx

Consider the last line. We know from equation (84) that the expression in brackets under the first
integral is negative, and that under the second integral is positive. This is because they are the
sum to zero, and Λ(x) is greater on A2 then on A1. We also know that x ≤ xH on A1 and x ≥ xH
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on A2. Hence,

∫
A1

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx+

∫
A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx

≥
(
xH
)2k

∫
A1

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

 f(x)dx+

∫
A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

 f(x)dx


= 0 (85)

This insures∫
A1∪A2

x2kf(x)dx ≤ F∫
A1∪A2

Λ(x)f(x)dx

∫
A1∪A2

x2kΛ(x)f(x)dx = ξ1

∫
A1∪A2

x2kΛ(x)f(x)dx (86)

At the same time,∫
R+/{A1∪A2}

x2kf(x)dx ≤ 1

λ2

∫
R+/{A1∪A2}

x2kΛ(x)f(x)dx = ξ2

∫
R+/{A1∪A2}

x2kΛ(x)f(x)dx (87)

Hence,

∞∫
0

x2kf(x)dx ≤ max{ξ1, ξ2}
∞∫

0

x2kΛ(x)f(x)dx = max{ξ1, ξ2}E
[
x2k
]

(88)

Pluggin this to what was obtained before,

E
[
x2k+2

]
≤ σ2(2k + 2)(2k + 1) max{ξ1, ξ2}

Na

E
[
x2k
]

(89)

This implies that the series in question converges, and thus the moment generating function exists,
at least in the circle of the radius

√
Na/(σ2 max{ξ1, ξ2}). �

Proof. (of Proposition 6) Without loss of generality, given the assumed symmetry, let q(·) be the
density of minus price changes, so that q(x)Na = Λ(x)f(x). Denote the minus price changes by
∆p. We will use four equations for x > 0:

f ′′(x) =
2

σ2
q(x)Na (90)

f ′(x) = f ′(X)−
∫ X

x

f ′′(t)dt (91)

f(x) = −
∫ X

x

f ′(t)dt (92)

σ2 = NaV ar(∆p) (93)
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where we have used that f(X) = 0. Combining the first and the second equation we have ,

f ′(x) = f ′(X)− 2

σ2
Na

∫ X

x

q(x)dx = f ′(X)− 2

σ2
Na

(
1 + f ′(X)

σ2

2Na

−Q(x)

)
(94)

=
2

σ2
Na(Q(x)− 1) (95)

where we have used that limQ(x)→ 1 + f ′(X) σ2

2Na
as x→ X. Integrating further,

f(x) =
2

σ2
Na

∫ ∞
x

(1−Q(t))dt (96)

Now using the last equation,

f(x) =
2

V ar(∆p)

∫ ∞
x

(1−Q(t))dt (97)

Incurring the identity q(x)Na = Λ(x)p̄(x) once again,

Λ(x) =
NaV ar(∆p)

2

q(x)∫∞
x

(1−Q(t))dt
(98)

Finally, we check whether Λ(X) = κ <∞. If X <∞, then using L’Hopital we get

Λ(X) =
NaV ar(∆p)

2

q′(X)

−f ′(X)σ
2

2

<∞ (99)

If X =∞, we apply L’Hopital rule twice, since q(x)→ 0 and Q(x)→ 1 as x→∞. We obtain:

Λ(X) =
NaV ar(∆p)

2
lim
x→∞

q′′(x)

q(x)
(100)

which is finite given our assumption on the tail of q. This completes the proof. �

Proof. (of Proposition 7) Under the identification assumptions,

E[(∆pit)
j(∆pis)

k]

E[(∆pit)j
′(∆pis)k

′ ]
=

E[bj+ki (∆p̃t)
j(∆p̃s)

k]

E[bj
′+k′

i (∆p̃t)j
′(∆p̃s)k

′ ]
=

E[(bi)
j+k]E[(∆p̃t)

j]E[(∆p̃s)
k]

E[(bi)j
′+k′ ]E[(∆p̃t)j

′ ]E[(∆p̃s)k
′ ]

(101)

=
E[(∆p̃t)

j]E[(∆p̃t)
k]

E[(∆p̃t)j
′ ]E[(∆p̃t)k

′ ]
(102)

The first equality uses ∆pit = bi∆p̃t. The second one uses mutual independence of bi, ∆p̃t, and
∆p̃s. The last one uses the fact that ∆p̃t and ∆p̃s are identically distributed. �

Proof. (of Proposition 8) Start with Q(x):

Q(x) = P{∆pit ≤ x} =

∞∫
0

P
{

∆p̃t ≤
x

bi

∣∣∣bi} dH(bi) =

∞∫
0

P
{

∆p̃t ≤
x

bi

}
dH(bi) (103)
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The last equality uses the mutual independence of ∆p̃t and bi. Differentiate with respect to x:

q(x) = ∂xP{∆pit ≤ x} =

∞∫
0

1

bi
∂xP

{
∆p̃t ≤

x

bi

}
dH(bi) (104)

Evaluate at x = 0:

q(0) =

∞∫
0

1

bi
q̃(0)dH(bi) = E[b−1

i ] q̃(0) (105)

Now turn to Cpooled:

Cpooled =
q(0)

2

V ar(∆pit)

E[|∆pit|]
=
q̃(0)

2

E[b−1
i ]E[b2

i ]

E[bi]

V ar(∆p̃t)

E[|∆p̃t|]
= C E[b−1

i ]E[b2
i ]

E[bi]
(106)

Hence,

C = C E[bi]

E[b−1
i ]E[b2

i ]
= Cpooled

(
1 +

Cov(b−1
i , b2

i )

E[b−1
i ]E[b2

i ]

)
< Cpooled (107)

That the correction multiplier is smaller then one follows from the correlation between 1/bi and
b2
i being negative. Next we find the expression for the correction as a function of the moments:

E[|∆pit|]
E[|∆pit|−1]E[|∆pit|]

=
E[bi]

E[b−1
i ]E[b2

i ]

E[|∆p̃t|]
E[|∆p̃t|−1]E[|∆p̃t|2]

=
E[bi]

E[b−1
i ]E[b2

i ]

E[|∆pit|]
E[|∆pit|−1|∆pis|2]

(108)

Hence,

E[bi]

E[b−1
i ]E[b2

i ]
=

E[|∆pit|−1|∆pis|2]

E[|∆pit|−1]E[|∆pit|]
(109)

This completes the proof. �

Proof. (of Lemma 2) Denote Sn(t) ≡ ∂n

∂tn
S(t). We will derive the following recursion:

S(n)(t) = E
[
Fn(x(t))e−

∫ t
0 Λ(x(s))ds |x(0) = 0

]
for all t ≥ 0 and all n = 1, 2, . . . (110)

for a sequence of functions Fn : R → R. For n = 1 it follows from differentiating equation (36)
with respect to t:

S(1)(t) = −E
[
Λ(x(t))e−

∫ t
0 Λ(x(s))ds |x(0) = 0

]
(111)

thus F1(x) = −Λ(x). For the induction step, assume that equation (110) hold and we will differen-
tiate it with respect to t. To do this, since Fn(x(t)) is an Ito’s process, and thus not differentiable
with respect to time, we use Ito’s lemma for the product of two Ito’s process, namely Fn(x(t))

and Z(t) ≡ e−
∫ t
0 Λ(x(s))ds, the second one being a degenerate one, since it has bounded varia-

tion. We then use that dFn(x(t)) = ∂xxFn(x(t))σ
2

2
dt + ∂xFn(x(t)σdW , since x has no drift, and
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dZ(t) = −Λ(x(t))Z(t)dt. Thus,

S(n+1)(t) ≡ lim
∆↓0

S(n)(t+ ∆)− S(n)(t)

∆

= lim
∆↓0

1

∆
E [Fn(x(t+ ∆))Z(t+ ∆)− Fn(x(t))Z(t) |x(0) = 0]

= E
[(

σ2

2
∂xxFn(x(t))− Λ(x(t))Fn(x(t))

)
Z(t) |x(0) = 0

]
= E

[(
σ2

2
∂xxFn(x(t))− Λ(x(t))Fn(x(t))

)
e−

∫ t
0 Λ(x(s))ds |x(0) = 0

]
which give us a recursion for Fn:

Fn+1(x) =
σ2

2
∂xxFn(x)− Λ(x)Fn(x) for all x (112)

Finally, evaluating the nth derivatives of S at t = 0 we have:

S(n)(0) = Fn(0) and all n = 1, 2, . . . (113)

�
Proof. (of Proposition 9). We will make two observations, one about Λ and one about Fn required
to establish the two main results of the proposition. Then we will use Lemma 2 finish the proof.

The first observation is that the symmetry of Λ around x = 0 implies that all the odd numbered
derivatives evaluated at x = 0 of Λ are equal to zero.

The second observation is a property of the function Fn(x) generated by the recursion in
equation (112), which can be written as:

Fn(x) = F̃n(x)−
(
σ2

2

)n−1
∂2n−2Λ(x)

∂x2n−2

where F̃n(·) depends only on the level of Λ(·) and at most the first 2n − 1 derivatives of Λ(·),
evaluated at x. This property can be established by induction. It is true for F1(x) = −Λ(x) for
n = 1. Now assume it holds for n, and we will show that it holds n + 1. To do so we compute
Fn+1 according to the recursion. On this computation, the first term is the product of σ2/2
times the sum of the second derivative of F̃n(x) with respect to x and of the second derivative of
− (σ2/2)

n−1
∂2n−2Λ(x)/∂x2n−2 with respect to x. The remaining term, −Λ(x)Fn(x), involves no

derivatives. This finishes the induction step, and thus established the desired result for Fn.

1. If we know the function Λ(x), then we can recursively compute Fn(x) from equation (112).
Evaluating this expressions at x = 0 and using equation (113) we obtain all the derivatives
of S evaluated at t = 0. In particular, these expressions only use the level and the even
derivatives of Λ evaluated at x = 0.If S is analytical, the expansion of S at t = 0 gives the
values everywhere.

2. If we know the function S, we can take all its derivatives at t = 0, and by equation (113) we
know all the values of Fn(0) for n ≥ 1. Next we argue that the recursion in equation (112)
evaluated at x = 0, will give us all the even order derivatives of Λ evaluated at x = 0. Since
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Λ is symmetric, all the derivatives of odd order, evaluated at x = 0, so we are only interested
in the even derivatives at x = 0. Next we argue that, algorithmically, we can recursively
recover the derivatives up to order 2n − 2 with {Fn(0)}forj = 1, . . . , 2n − 2. First we note
that Λ(0) and Λ′′(0) are given by F1(0) and F2(0). Now assume we know all the derivatives
up to order 2n − 2. Then, given the value of ∂n+1S(0)/∂tn+1 = Fn+1(0), the known values
for Λ(0), Fn(0), and σ2/, using the recursion we obtain the implied value for ∂xxFn(0). Using
that Fn depend at most on 2n−2 derivatives of Λ, as well as the particular expression derived
above, we obtain the value of ∂2nΛ(0)/∂t2n. This completes the induction step, and hence
establishes the desired property, and hence the level and all the derivatives of Λ at x = −0
have been recovered. Finally, since Λ is assumed to be analytical, an expansion around x = 0
gives its value at any other x.

Proof. (of Proposition 10) In the text. �

Proof. (of Proposition 11) Since

σ2 = Na

∫∞
−∞ x

2Λ(x)f(x)dx∫∞
−∞ Λ(x)f(x)dx

or Na = σ2

∫∞
−∞ Λ(x)f(x)dx∫∞
−∞ x

2Λ(x)f(x)dx
(114)

we can write the formula for kurtosis over 6Na as:

Kurt(∆p)

6Na

=

∫∞
−∞ x

4Λ(x)f(x)dx
∫∞
−∞ Λ(x)f(x)dx

6Na

[∫∞
−∞ x

2Λ(x)f(x)dx
]2 =

∫∞
−∞ x

4Λ(x)f(x)dx

6σ2
∫∞
−∞ x

2Λ(x)f(x)dx
(115)

Using the Kolmogorov forward equation,∫ ∞
−∞

x4Λ(x)f(x)dx =
σ2

2

∫ ∞
−∞

x4f ′′(x)dx (116)

Integrating by parts twice, ∫ ∞
−∞

x4Λ(x)f(x)dx = 6σ2

∫ ∞
−∞

x2f(x)dx (117)

This allows us to write

Kurt(∆p)

6Na

=

∫∞
−∞ x

2f(x)dx∫∞
−∞ x

2Λ(x)f(x)dx
(118)

Now we work on the denominator: using again the Kolmogorov Forward equation we have:∫ ∞
−∞

x2Λ(x)f(x)dx =
σ2

2

∫ ∞
−∞

x2f ′′(x)dx (119)

Integrating by parts twice, using that f is a density, we have:∫ ∞
−∞

x2Λ(x)f(x)dx = σ2 (120)
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Thus we can write:

Kurt(∆p)

6Na

=

∫∞
−∞ x

2f(x)dx

σ2
(121)

Recall that we have a system of two equations:

Λ(x)f(x) =
σ2

2
f ′′(x) (122)

Λ(x)m(x) =
σ2

2
m′′(x)− x (123)

Eliminate Λ:

σ2

2

m(x)f ′′(x)

f(x)
= −x+

σ2

2
m′′(x) (124)

Multiply both sides by f(x)x and rearrange to get

σ2

2
[m(x)f ′′(x)−m′′(x)f(x)]x = −x2f(x) (125)

Integrate both sides from 0 to ∞:

σ2

2

∞∫
0

[m(x)f ′′(x)−m′′(x)f(x)]xdx = −
∞∫

0

x2f(x)dx (126)

Perform integration by parts in the left-hand side using the fact that [m(x)f ′(x)−m′(x)f(x)]′ =
m(x)f ′′(x)−m′′(x)f(x):

σ2

2

∞∫
0

[m(x)f ′′(x)−m′′(x)f(x)]xdx =
σ2

2
[m(x)f ′(x)−m′(x)f(x)]x

∣∣∣∣∣
∞

0

(127)

−σ
2

2

∞∫
0

[m(x)f ′(x)−m′(x)f(x)]dx

=− σ2

∞∫
0

m(x)f ′(x)dx

The last equality is just integration by parts again. We used E[m(x)] <∞ and m(·) being almost
linear at infinity to justify setting f ′(x)m(x)x and f(x)m′(x)x at infinity to 0. Hence, we have

σ2

∞∫
0

m(x)f ′(x)dx =

∞∫
0

x2f(x)dx (128)
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As we showed above, this is equivalent to

M′(0) =
Kurt(∆p)

6Na

(129)

This completes the proof. �

Proof. (of Proposition 12) Let the price gap distributions that correspond to Λ1 and Λ2 be f1

and f2. Recall that for a fixed Na and σ2 we have f ′1(0) = f ′2(0) and it is sufficient to compare∫ ∞
0

f1(x)x2dx against

∫ ∞
0

f2(x)x2dx (130)

(1) We first claim that the graph of the function f1(x)−f2(x) cannot cross the x−axis from above.
That is, there is no segment [a, b] such that f1(x)− f2(x) = 0 on this segment, f1(x)− f2(x) > 0
to the left of a, and f1(x)− f2(x) > 0 to the right of b. Note that this nests the case when a = b
and hence [a, b] is a single point. Suppose such a segment exists. Then one of the two statements
is true: either Λ1(x) ≥ Λ2(x) for all x ≤ a or Λ1(x) ≤ Λ2(x) for all x ≥ b.

In the first case, the graph of f1(x) − f2(x) never crosses the x−axis again to the left of a. If
it does cross it at some c < a, on (c, a) we have f1(x) > f2(x) and hence Λ1(x)f1(x) > Λ2(x)f2(x),
implying f ′′1 (x) > f ′′2 (x). But this contradicts f ′1(c) − f ′2(c) ≥ 0 and f ′1(a) − f ′2(a) ≤ 0 holding
simultaneously. Hence, for all x < a we have f1(x) > f2(x), implying Λ1(x)f1(x) > Λ2(x)f2(x)
and f ′′1 (x) > f ′′2 (x) on (0, a). But since f ′1(a) ≤ f ′2(a), in this region we have f ′1(x) < f ′2(x), which
contradicts f ′1(0) = f ′2(0).

In the second case, the graph of f1(x)−f2(x) never crosses the x−axis again to the right of b. If
it does cross it at some d > b, on (b, d) we have f1(x) < f2(x) and hence Λ1(x)f1(x) < Λ2(x)f2(x),
implying f ′′1 (x) < f ′′2 (x). But this contradicts f ′1(b) − f ′2(b) ≤ 0 and f ′1(d) − f ′2(d) ≥ 0 holding
simultaneously. Hence the graph of f1(x)− f2(x) never crosses the x−axis again to the right of b,
which already rules out X1 > X2. Moreover, if X1 = X2 ≤ ∞, it must hold that f ′1(X1) ≥ f ′2(X1),
which contradicted by f ′1(x) < f ′2(x) for x > b. The latter follows from f ′1(b) − f ′2(b) ≤ 0 and
f ′′1 (x) < f ′′2 (x) for x > b.
(2) Since the graph of the function f1(x)− f2(x) cannot cross the x−axis from above, it can only
cross the x−axis from below. We know that there must be at least one crossing, because f1 and
f2 are continuous and both integrate to one. Hence, the function f1(x) − f2(x) is non-positive
until some point ang non-negative after some point until X1. Morover, there are segments of strict
positivity ang strict negativity. Hence,∫ X1

0

(f1(x)− f2(x))x2dx > 0 (131)

This completes the proof. �

Proof. (of Corollary 2) Fix X and let Λ1(x) ≡ λ1 on (0, X) correspond to the Calvo+ model. The
other hazard function, Λ2, is at least somewhere strictly increasing. We claim it cannot be that
Λ2(x) ≥ λ1 for all x. Assume toward a contradiction that this is the case.

Then it cannot be that the graph of f2(x) − f1(x) crosses the x−axis from below on (0, X).
If it does, there is a segment [a, b] such that f2(x) − f1(x) is positive to the right of b. But then
the graph of f2(x) − f1(x) never crosses the x−axis on (b,X] again, because if it did cross it at
some d > b, we would have Λ2(x)f2(x) > Λ1(x)f1(x) on (b, d), implying f ′′2 (x) > f ′′1 (x) on (b, d),
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which contradicts f ′2(b) ≥ f ′1(b) and f ′2(d) ≤ f ′1(d) holding simultaneously. But we know that
f1(X) = f2(X) = 0, which yields a contradiction.

Neither can it be that the graph of f2(x)− f1(x) crosses the x−axis from above on (0, X). If it
does, there is a segment [a, b] such that f2(x)−f1(x) is positive to the left of a. But then the graph
of f2(x)−f1(x) never crosses the x−axis on [0, a) again, because if it did cross it at some c < a, we
would have Λ2(x)f2(x) > Λ1(x)f1(x) on (c, a), implying f ′′2 (x) > f ′′1 (x) on (c, a), which contradicts
f ′2(a) ≤ f ′1(a) and f ′2(c) ≥ f ′1(c) holding simultaneously. Hence, Λ2(x)f2(x) > Λ1(x)f1(x) on (c, a),
implying f ′′2 (x) > f ′′1 (x) on (c, a). But together with f ′2(a) ≤ f ′1(a) this contradicts f ′1(0) = f ′2(0).

Hence, the graph of f2(x) − f1(x) does not cross the x−axis from above or below on (0, X).
But Λ2 is not identically equal to λ1, so f2 cannot coincide with f1 everywhere. This yields the
contradiction. Now we know that Λ2(x) < λ1 for some x. Since Λ2 is non-decreasing, the conditions
of Proposition 12 are satisfy, and Λ1 generates a higher kurtosis of price changes. This completes
the proof. �

Proof. (of Corollary 3) Let X1 > X2 and let Λ1 and Λ2 be constants λ1 and λ2 on their intervals.
We claim that λ1 > λ2. Assume toward the contradiction λ1 ≤ λ2. We know that the graph of
the function f1(x)− f2(x) must cross the x−axis from below at some point, because f1(X2) > 0,
f2(X2) = 0, and both f1 and f2 integrate to one. Hence, there is a point a such that f1(x) < f2(x)
to the left of a. Then the graph of f1(x) − f2(x) never crosses the x−axis on (0, a) again, since
if it did there would be a point c < a such that on (c, a) we have f1(x) < f2(x) and hence
Λ1(x)f1(x) < Λ2(x)f2(x), implying f ′′1 (x) < f ′′2 (x) everywhere on (c, a). The latter contradicts
f ′1(a) ≥ f ′2(a) and f ′1(c) ≤ f ′2(c) holding simultaneously.

But that the graph of f1(x) − f2(x) never crosses the x−axis on (0, a) again means that
f1(x) < f2(x) and hence Λ1(x)f1(x) < Λ2(x)f2(x), implying f ′′1 (x) < f ′′2 (x) everywhere on (0, a).
Together with f ′1(a) ≥ f ′2(a) this contradicts f ′1(0) = f ′2(0). Hence, λ1 > λ2. The pair Λ1 and Λ2

thus qualify for the Proposition 12, and Λ1 generates a higher kurtosis of price changes. Hence,
within the space of constant hazard functions with barriers higher X generate higher Kurtoses. By
Proposition 4, the kurtosis for X = ∞ is the limit of any sequence generated by constant hazard
functions with Xk →∞. Without loss of generality, the sequence can be constructed as monotone,
so the kurtosis for X = ∞ is higher then any its element. But the kurtosis for an arbitrary Λ is
majorized by that corresponding to a constant Λ̃ with the same barrier. Hence, the kurtosis for a
constant Λ and X =∞ is the highest possible one. This completes the proof. �

Proof. (of Corollary 4) If the two hazard functions have the same curvature k(x), it means that

Λ1(x) = Λ1(0) + Λ′1(0)

x∫
0

e
∫ z
0
k(w)
w

dwdz (132)

Λ2(x) = Λ2(0) + Λ′2(0)

x∫
0

e
∫ z
0
k(w)
w

dwdz (133)

We have C1 > C2 if and only if Λ1(0) > Λ2(0). Using the same method as in the proof of
Corollary 2, we can show that, since the frequency of adjustment is the same, there exists a
z < X such that Λ1(z) < Λ2(z). Hence, Λ′1(0) < Λ′2(0), and Λ1(x) − Λ2(x) is a decreasing
function. The graphs of Λ1(·) and Λ2(·) thus only cross once, so they qualify for Proposition 12,
and Kurt1(∆p) > Kurt2(∆p). �
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Proof. (of Proposition 13) Fix ν ≥ 0. In Lemma 3, we know that s increases in ρ, so it is sufficient
to show that Kurt(∆p) also does. For this purpose, take some ρ1 = 2κ1X

2
1/σ

2
1. They generate

f1(·) with

κ1

(
x

X1

)ν
f1(x) =

σ2
1

2
f ′′1 (x) (134)

Now we want to increase ρ1 to some ρ2 > ρ1. This can induce multiple f2(·), since the distribution
of price gaps also depends on X and σ2. But the kurtosis of price changes only depends on ρ, so it
suffices to show that one of the densities f2(·) corresponding to ρ2 generates a higher Kurt(∆p).
Let the new ρ2 and the density f2(·) be such that σ2

1 = σ2
2 and f ′1(0) = f ′2(0). To compare the

Kurtosis in this case it is enough to evaluate the sign of∫ X2

0

f2(x)x2dx−
∫ X1

0

f1(x)x2dx =

∫ X2

0

(f2(x)− f1(x))x2dx (135)

First, from the proof of Lemma 3 we know that p̂′2(0) < p̂′1(0), which implies X2 > X1 because
f ′2(0) = f ′1(0). This, in turn, implies that f2(x) − f1(x) is positive on (a,X2) for some a < X1.
Since f1(·) and f2(·) integrate to the same number over their supports, there must be a crossing b,
to the left of which f1(x) > f2(x). At this crossing, f ′1(b) ≥ f ′2(b). Now we will argue that there is
no other crossing c < b.

Suppose, by way of contradiction, such a crossing exists. We have f ′2(c) ≤ f ′1(c) Subtract one
Kolmogorov forward equations from the other:

xν
[
κ2

Xν
2

f2(x)− κ1

Xν
1

f1(x)

]
=
σ2

2
[f2(x)− f1(x)]′′ (136)

Now there are two options: κ2/X
ν
2 ≥ κ1/X

ν
1 or κ2/X

ν
2 < κ1/X

ν
1 . In the first case, since f ′2(c) ≤

f ′1(c) and f2(x) > f1(x) to the left of c, from equation (136) we can conclude that f ′′2 (x) > f ′′1 (x)
for x < c, and hence f ′2(x)−f ′1(x) only increases as x decreases. But this contradicts f ′1(0) = f ′2(0).
In the second case, since f ′2(c) ≤ f ′1(c) and f2(x) < f1(x) to the right of c, from equation (136) we
can conclude that f ′′2 (x) < f ′′1 (x) for x > c, and hence f ′2(x)− f ′1(x) only decreases as x decreases.
But this contradicts f ′2(b) > f ′1(b). Hence, there is no crossing to the left of b.

This means that f2(x) − f1(x) is negative on [0, b) and positive on (b,X2). Since it integrates
to zero over this whole interval, its integral with any positive increasing function (such as x2) is
positive. Hence, the kurtosis is higher for ρ2 > ρ1. �

Proof. (of Proposition 14) Differentiating Ω

Ω′(δ) = X f(−X + δ) +

∫ −X+δ

−X
f(x) dx

taking δ → 0, since the invariant distribution satisfies f(−X) = 0, we have Ω′(0) = 0.
Now we seek to characterize limt↓0 ωδ(t; δ). We will show that limt↓0 ωδ(t; 0) =∞ if X <∞.
For this case we replace the initial condition by f(x+δ) by f(x)+f ′(x)δ where f is the density

of the invariant distribution. We can ommitt the contribution from the term f(x), since it is equal
to zero by virtue of being the invariant distribution.

The KFE gives the following properties:
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1. For all t > 0, since −X is an exit point, f(−X, t) = 0.

2. For all t > 0, there exists x(t) > −X, so that f(x, t) < f(x, 0) = f ′(x)δ > 0 for all
x ∈ [−X, x(t)]. This follows because f(x, t) is differentiable in x and f(−X, t) = 0.

3. For all x ∈ (−X, 0) we have: f(x, t) → f(x, 0) as t ↓ 0. This follows since f(x, t) is
differentiable in time t for all x.

From these properties we obtain that f ′(−X, t)→∞ as t ↓ 0. Hence, ωδ(0, 0) =∞. �

Proof. (of Proposition 15) The frequency of adjustment is given by

Na =

∫ ∞
−∞

f(x)(Λ(0) + κxν)dx =

∫ ∞
−∞

f̃(z)

(
Λ(0) + κ

(
z

η

)ν)
dz

=
κ

ην

∫ ∞
−∞

p(z)(α + zν)dz =
κ

ην
Ñ(ν, α) =

β2η2

2
Ñ(ν, α) (137)

The flexibility index is

F = −
∫ ∞
−∞

x(Λ(0) + κxν)f ′(x)dx = −
∫ ∞
−∞

z

(
Λ(0) + κ

(
z

η

)ν)
p′(z)dz

= − κ

ην

∫ ∞
−∞

z(α + zν)f̃ ′(z)dz =
κ

ην

(∫ ∞
−∞

f̃(z)(α + zν)dz + ν

∫ ∞
−∞

p(z)zνdz

)
(138)

=
κ

ην

(
Ñ(ν, α)(1 + ν)− να

)
=
β2η2

2

(
Ñ(ν, α)(1 + ν)− να

)
(139)

The distribution of price changes is given by

q(x) =
f(x)(Λ(0) + κxν)

Na

=
η(̃ηx)(α + (ηx)ν)

Ñ(ν, α)
(140)

To compute the kurtosis, we need the fourth moment and the variance:

E[∆p4] =

∫ ∞
−∞

x4q(x)dx =
1

η4N(ν, α)

∫ ∞
−∞

z4p(z)(α + zν)dz (141)

E[∆p2] =

∫ ∞
−∞

x2q(x)dx =
1

η2N(ν, α)

∫ ∞
−∞

z2p(z)(α + zν)dz (142)

These expressions imply that E[∆p4]/E[∆p2]2 only depends on (ν, α). �

Proof. (of Proposition 16) Let f1(x) and f2(x) be the price gap distributions generated by Λ1(x)
and Λ2(x). Assume without loss that κ1 < κ2. We will first prove that Λ1(0) > Λ2(0) whenever Na

is the same in the two models. That Kurt1(∆p) > Kurt2(∆p) will then follow from Proposition 12.
Finally, we will show that F1 < F2.
(1) Suppose by contradiction that Λ1(0) ≤ Λ2(0). Then, Λ1(x) < Λ2(x) for all x > 0. Since Na

and σ2 are the same in the two models, we know that f ′1(0) = f ′2(0).
Suppose there is a point a > 0 at which the graph of f1(x) crosses that of f2(x) from below.

That is, f1(a) = f2(a) and f1(x) < f2(x) to the left of a. Then the graphs of f1(x) and f2(x) never
cross again to the left of a. If they did cross at some point b < a, we would have f ′1(a) ≥ f ′2(a)
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and f ′1(b) ≤ f ′2(b), so that f ′1(a)− f ′1(b) ≥ f ′2(a)− f ′2(b), but this is impossible, since f1(x) < f2(x)
and Λ1(x) < Λ2(x) on (a, b), while σ2f ′′i (x)/2 = Λi(x)fi(x) for i ∈ {1, 2}. Hence, f1(x) < f2(x) for
all x < a, which contradicts f ′1(0) = f ′2(0) for the same reason.

Suppose there is a point c > 0 at which the graph of f1(x) crosses that of f2(x) from above.
That is, f1(c) = f2(c) and f1(x) < f2(x) to the right of c. Then the graphs of f1(x) and f2(x) never
cross again to the right of c. If they did cross at some point d > c, we would have f ′1(d) ≥ f ′2(d)
and f ′1(c) ≤ f ′2(c), so that f ′1(d)− f ′1(c) ≥ f ′2(d)− f ′2(c), but this is impossible, since f1(x) < f2(x)
and Λ1(x) < Λ2(x) on (c, d), while σ2f ′′i (x)/2 = Λi(x)fi(x) for i ∈ {1, 2}. Hence, f1(x) < f2(x) for
all x > c, which contradicts f ′1(x)− f ′2(x) −→ 0 as x −→∞ for the same reason.

By what was said above, the graphs of f1(x) and f2(x) cannot cross, but they must, since these
functions integrate to the same number and have the same limit at infinity. Hence, Λ1(0) ≤ Λ2(0)
is impossible when σ2 and Na are the same in the two models.
(2) Now since κ1 < κ2 and Λ1(0) > Λ2(0), the two generalized hazard functions Λ1(x) and Λ2(x)
satisfy the conditions of Proposition 12. From this it follows that Kurt1(∆p) > Kurt2(∆p).
(3) The flexibility index for the power-plus case is given by

F =

∫ ∞
−∞

f(x)(Λ(x) + Λ′(x)x)dx = (1 + ν)Na − νΛ(0) (143)

Since the two models deliver the same Na and ν is fixed, the one with a greater intercept has a
smaller F . This completes the proof. �

Proof. (of Lemma 3) By the definition of f̂(·), we have

f̂(z) =Xf(zX) (144)

f̂ ′(z) =X2f ′(zX) (145)

The function f̂(·) itself is derived from

ρΛ̂(z)f̂(z) = f̂ ′′(z) with f̂(1) = 0 and

∫ 1

0

f̂(z)dz =
1

2
(146)

Computing the Kurtosis,

Kurt(∆p) =
12Na

σ2

∫ X

0

f(x)x2dx = −12f ′(0)

∫ X

0

f(x)x2dx = −12f̂ ′(0)

∫ 1

0

f̂(z)z2dz (147)

Since f̂(·) is completely determined by ρ and Λ̂(·), this quantity does not depend on other param-
eters. The share of adjustment between the boundaries is

s = 1− f ′(X)

f ′(0)
= 1− f̂ ′(1)

f̂ ′(0)
(148)

It also only depends on Λ̂(·) and ρ. The frequency of price changes is given by

Na =− σ2f ′(0) = − σ
2

X2
f̂ ′(0) (149)
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From this we have n̂(ρ) = −f̂ ′(0), so n̂(ρ) only depends on Λ̂ and ρ. In the case when ρ = 0 the
Kolmogorov forward equation is solved by a linear f̂(·), and the slope is −1 from the boundary
condition and the normalization. Hence, n̂(0) = 1. Now take the other statistic:

Kurt(∆p)

6Na

=
2X2

σ2

∫ 1

0

f̂(z)z2dz =
X2

6σ2
m̂(ρ) (150)

Here the function m̂(ρ) is twelve times the integral of f̂(z)z2 which only depends on Λ̂(·) and ρ.
In the case when ρ = 0 we have f̂(z) = 1− z for z ∈ [0, 1] and hence m̂(0) = 1.

Now fix the shape Λ̂(·). Consider two different values of ρ: ρ1 > ρ2. They generate two
distributions f̂1(·) and f̂2(·). Taking the difference between the Kolmogorov forward equations
that define them,

Λ̂(z)(ρ1f̂1(z)− ρ2f̂2(z)) = (f̂1(z)− f̂2(z))′′ (151)

It holds that f̂1(1) = f̂2(1), so there must be another point y ∈ (0, 1) where f̂1(y) = f̂2(y),
because f̂1(·) and f̂2(·) integrate to the same number. Moreover, this point must be a crossing,
meaning that f̂1(z) − f̂2(z) has different signs on to the left and to the right of it. Suppose
f̂1(z) − f̂2(z) is positive to the right of y. This means f̂ ′1(y) − f̂ ′2(y) ≥ 0. But then to the right
of y it holds that f̂ ′1(z) − f̂ ′2(z) > 0, since the left-hand side of equation (148) is positive. Hence,
the difference between f̂1(·) and f̂2(·) only increases to the right of y, and they cannot cross again
at z = 1 > y. This is a contradiction. The crossing is therefore such that f̂ ′1(y)− f̂ ′2(y) ≤ 0. But
then to the left of y it holds that f̂ ′1(z)− f̂ ′2(z) < 0, since the right-hand side of equation (148) is
positive in this region. The difference between f̂1(z) and f̂2(z) increases as z decreases, as does
he difference between f̂ ′1(z) and f̂ ′2(z). Hence, the crossing is unique and f̂ ′1(0) < f̂ ′2(0). Moreover,
f̂1(z)− f̂2(z) > 0 for z ∈ [0, y) and f̂1(z)− f̂2(z) < 0 for z ∈ (y, 1). From the latter fact together
with f̂1(1) = f̂2(1) it follows that f̂ ′1(1) > f̂ ′2(1). To summarize:

• there is a unique y ∈ (0, 1) such that f̂1(z) − f̂2(z) > 0 for z ∈ [0, y) and f̂1(z) − f̂2(z) < 0
for z ∈ (y, 1);

• f̂ ′1(0) < f̂ ′2(0)

• f̂ ′1(1) > f̂ ′2(1)

From the first bulletpoint it follows that m̂(·) decreases in ρ. This is because f̂1(·)− f̂2(·) integrates
to zero over (0, 1). Since it is positive until some z and negative afterwards, its integral with
increasing positive functions (such as z2) is always negative. From the second bulletpoint it follows
that n̂(·) increases in ρ, because n̂(ρi) = −f̂ ′i(0). From the second and the third bulletpoints
combined it follows that s increases in ρ, because f̂ ′(1) and f̂ ′(0) are both negative, so their ratio
decreases with ρ. This completes the proof. �
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B Estimation

In this appendix we present our estimation algorithm and some additional results. First, we plot
the symmetrized histograms with fitted densities for two data cleaning procedures: the one that
eliminates price changes smaller then 2 cents in absolute value, and the one eliminating those
smaller than 1 cent in absolute value. The distributions are very close, with immaterial differences
in the bars around zero.

Figure 9: Distribution of price changes in a narrow category

Smaller then 1 cent removed Smaller then 2 cents removed

Pooling all products for category 561 “Non-durable household goods”

We use the method of moments to estimate the mixture of two Gamma distributions with the
parameters ω (the weight), (α1, β1) and (α2, β2). The moments of |∆p̃t| we use are denoted by γj,k:

γj,k =
E[|∆p̃t|j+k]

E[|∆p̃t|j]E[|∆p̃t|k
(152)

For a mixture of two Gamma distributions with the weight ξ on the first one,

γj,k =

[
βj+k2 ω

Γ(α1 + j + k)

Γ(α1)
+ βj+k1 (1− ω)

Γ(α2 + j + k)

Γ(α2)

]
[
βj2ω

Γ(α1 + j)

Γ(α1)
+ βj1(1− ω)

Γ(α2 + j)

Γ(α2)

] [
βk2ω

Γ(α1 + k)

Γ(α1)
+ βk1 (1− ω)

Γ(α2 + k)

Γ(α2)

] (153)

Using these moments allows us to recover ω, α1, α2, and the ratio β1/β2. The exact values of β1 and
β2 are pinned down by the normalization E[|∆p̃t|] = 1. To estimate γj,k, we rely on Proposition 7:

E[|∆p̃t|j+k]
E[|∆p̃t|j]E[|∆p̃t|k

=
E[|∆pit|j+k]

E[|∆pit|j|∆pis|k]
(154)

For all seven product categories, we get four moments (γ̂1,1, γ̂2,1, γ̂3,1, and γ̂3,2) from the data and
solve the system of four analogs of equation (153). We minimize the sum of deivations squared
with equal weights. The results are presented in Table 2.
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Category γ̂11 γ̂21 γ̂31 γ̂32 α̂1 α̂2 β̂1/β̂2 ω̂ α̂22

111 1.248 1.406 1.507 1.787 2.099 12.190 228.677 0.161 4.248

119 1.282 1.507 1.702 2.381 1.058 6.012 91.439 0.109 3.747

1212 1.242 1.476 1.786 2.9230 0.599 3.873 73.414 0.000 4.151

122 1.243 1.397 1.508 1.903 1.848 9.779 173.048 0.131 4.460

118 1.289 1.539 1.777 2.552 3.123 9.836 0.628 0.580 3.610

117 1.281 1.511 1.721 2.484 0.967 5.442 84.154 0.089 3.801

561 1.216 1.394 1.586 2.271 0.998 5.783 103.470 0.031 4.782

Table 2: Moments taken from the data and the estimated parameters

Specializing to the case with a single Gamma distribution ω = 1 allows us to recover the
expressions for α in closed form. Consider γj,1 for some j:

γj,1 =
Γ(α + j + 1)Γ(α)

Γ(α + j)Γ(α + 1)
= 1 +

j

α
(155)

Hence,

α =
j

γj,1 − 1
(156)

Since we attach particula importance to the kurtosis, we would also like to use γ2,2:

γj,2 =
Γ(α + j + 2)Γ(α)

Γ(α + j)Γ(α + 2)
=

(α + j + 1)(α + j)

(α + 1)α
=

(
1 +

j + 1

α

)
γj,1
γ1,1

(157)

This leads to

α =
(j + 1)γj,2
γj,2γ1,1 − γj,1

(158)

Notice that β, the scale of the distribution, drops out from these expressions, because γj,k are
dimensionless moments. We use a linear combinations of expressions in equation (156) and equa-
tion (158) with γ̂j,1 for j ∈ {1, 2} and γ̂22 as estimators of α. Consistency requires the weights of
the combinations to sum to one, and we make them inversely proportional to the bootstrapped
variance of the estimators of summands. The stimates are presented in the last column of Table 2:
the estimate α̂22 is contructed from γ̂11, γ̂21, and γ̂22.

In Table 3 we present some additional statistics. First, we tabulate skewness of the distribution
of price changes to show that the distributions are close to symmetric. Then, we contrast the esti-
mates of the Kurtosis with the full sample and with the first two price changes only. The difference
between them is suggestive of a strong correlation between consecutive price changes (squared),
and of a weaker correlation between distant price changes. As can be seen from equation (33),
how much the underlying Kurtosis is different from that of the pooled distribution (without ac-
counting for product heterogeneity) increases with this correlation. The implied correlation and
the coefficient of variation (present in equation (33) as well) are tabulated in the remaining two
columns.
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Category Skewness Kurtosis Kurtosis (t = 1, 2) Implied Correlation CV (∆p̃t)

111 -0.121 1.656 1.426 0.440 1.555

(0.065) (0.071)

119 0.011 1.955 1.288 0.339 1.683

(0.050) (0.042)

1212 -0.020 2.051 1.710 0.284 1.589

(0.162) (0.186)

122 -0.025 1.677 1.189 0.390 1.398

(0.051) (0.019)

118 -0.012 2.044 1.663 0.295 1.620

(0.118) (0.150)

117 -0.004 1.989 1.422 0.303 1.577

(0.047) (0.089)

561 -0.006 1.778 1.403 0.374 1.524

(0.133) (0.066)

Table 3: Additional statistics

Now we present the estimation procedure to recover the flow cost function from Section 2.2.
The model in this section permits Λ to be unbounded. We take advatage of that and work with
a power hazard Λ(x) = κxν . This form of Λ gives rise to a specifica functional form of Q. We
compute the moments of Q as functions of (κ, ν) and then estimate them using the mothod of
moments.

Suppose Λ(x) = κxν . Denote ρ = 2κ/σ2. The corresponding density of price gaps has to obey
a Kolmogorov forward equation that has the form

ρxνf(x) = f ′′(x) (159)

With X =∞, the solution is

f(x) =

x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
2
∞∫
0

x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx

(160)

The distribution of price changes is then given by

q(−x) =
κxνf(x)

Na

=

κxν+1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
2Na

∞∫
0

x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx

(161)

xx



Figure 10: Estimated distribution of price changes and implied cost function

Estimated q(·) and f(·), assumed Λ(·) Recovered flow cost function

Since V[∆p̃t] = 1, we have σ2 = Na, so

q(−x) =
κxνf(x)

Na

=

ρxν+1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
4
∞∫
0

x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx

(162)

This has to be a probability distribution, so it integrates two one. We also have the moment
condition E[(∆p̃t)

4] = Kurt(∆p̃t). Writing the two restrictions in a convenient form,

∞∫
0

(ρxν − 2)x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx = 0 (163)

∞∫
0

(ρxν+4 − 2Kurt(∆p̃t))x
1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx = 0 (164)

From these two relations we can get (ρ̂, ν̂). After that, using σ2 = Na, we can recover κ̂:

κ̂ =
ρ̂Na

2
(165)

The system of two restrictions can be solved exactly, and the model is just identified. The
results for the category 561 (”non-durable household goods”) are presented on Figure 10. The
estimated parameters are ν̂ = 2.285 and κ̂ = 30.747, corresponding to the Kurtosis 1.64, slightly
below the quadratic case.
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C Discrete Distribution of Fixed Costs

Let gi > 0 be the probability of drawing a fixed cost ψi for i = 0, 1, . . . , n − 1, conditional of
drawing a low adjustment cost opportunity. We have 0 = ψ0 < ψ1 < · · · < ψn−1. A firm can
always pay a fixed cost Ψ ≡ ψn and change prices, with ψn > ψn−1. At all points x where v is
twice differentiable we have:

rv(x) =

min

{
Bx2 +

σ2

2
v′′(x) + κ

n−1∑
j=0

min {ψj + v(0)− v(x) , 0}gj , r (ψn + v(0))

}

The optimal decision rule can be described by n+ 1 thresholds 0 = x̄0 < x̄1 < x̄2 < · · · < x̄n ≡ X.
The optimal decision rule is that conditional on drawing the adjustment cost ψj an adjustment
takes place if |x| ≥ x̄j for j = 0, 1, . . . , n. Note that this implies that:

v(x̄j) + ψj = v(0) for j = 0, 1, 2, . . . , n.

To simplify the notation we let:

λj = κgj for j = 0, . . . , n− 1 and Λ(x) =
n−1∑
k=0

λk 1{x≥xk}

To summarize the firm’s problem is defined by parameters r, B, σ2, {λj}n−1
j=0 , {ψj}nj=1, and the two

normalized values ψ0 = 0 and x̄0 = 0. The solution is given by a set of thresholds {x̄j}nj=0 with
0 = x̄0 < x̄1 < · · · < x̄n.

We can write the value function for each segment j = 1, 2, . . . , n:(
r +

j−1∑
k=0

λk

)
v(x) = Bx2 +

σ2

2
v′′(x) +

j−1∑
k=0

[v(0) + ψk]λk for x ∈ (x̄j−1 , x̄j] (166)

The value function v must be differentiable at all x ∈ R, and twice differentiable for all x ∈ R,
except x = x̄j for j = 1, . . . , n. Thus we have the boundary conditions:

v′(x̄0) = v′(x̄n) = 0 (167)

C.1 Value function for discrete ψ distribution

The solution of the value function v is characterized by coefficients {aj, bj, cj}nj=0, roots {ηj}nj=1

and thresholds {x̄j}nj=0. In particular, given the thresholds {x̄j}nj=0 we write a linear o.d.e. for
each segment [x̄j−1, x̄j] for j = 1, . . . , n. This o.d.e. is parametrized by three constants aj, bj, cj as
follows:

vj(x) = aj + bjx
2 + cj

(
eηjx + e−ηjx

)
for x ∈ [x̄j−1, x̄j] and j = 1, . . . , n (168)

where ηj is given by:

ηj =

√
(r +

∑j−1
k=0 λj)

σ2/2
(169)
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Replacing the non-homogenous solution aj + bjx
2 into the o.d.e. in each segment we have:(

r +

j−1∑
k=0

λk

)
(aj + bjx

2) = Bx2 +
σ2

2
2bj +

j−1∑
k=0

[v(0) + ψk]λk for x ∈ [x̄j−1, x̄j] and j = 1, . . . , n

(170)
Matching the terms quadratic in x, and using that v(0) = a1 + 2c1, we get:(

r +

j−1∑
k=0

λk

)
bj = B for j = 1, . . . , n (171)

Matching the constant we have:(
r +

j−1∑
k=0

λk

)
aj = σ2bj +

j−1∑
k=0

[a1 + 2c1 + ψk]λk for j = 1, . . . , n (172)

The continuity and (once) differentiability at x = x̄j for j = 1, . . . , n− 1 gives:

aj+1 + bj+1 (x̄j)
2 + cj+1

(
eηj+1x̄j + e−ηj+1x̄j

)
= aj + bj (x̄j)

2 + cj
(
eηj x̄j + e−ηj x̄j

)
for j = 1, . . . , n− 1

(173)
and

bj+12x̄j + cj+1ηj+1

(
eηj+1x̄j − e−ηj+1x̄j

)
= 2bjx̄j + cjηj

(
eηj x̄j − e−ηj x̄j

)
for j = 1, . . . , n− 1 (174)

value matching and smooth pasting at x̄n gives:

ψn + a1 + 2c1 = an + bn (x̄n)2 + cn
(
eηnx̄n + e−ηnx̄n

)
(175)

0 = 2bnx̄n + cnηn
(
eηnx̄n − e−ηnx̄n

)
(176)

The optimal return point conditions, v′(0) = 0, is automatically satisfied.
Thus we have 4× n unknowns, namely {x̄j, aj, bj, cj}nj=1, and 4× n equations, namely n equa-

tions matching quadratic terms, i.e. equations (171), n equations matching constants, i.e. equa-
tions (172), n − 1 equations enforcing continuity, i.e. equations (173), n − 1 equations enforcing
differentiability, i.e. equations (174), value matching, i.e. equation (175), and smooth pasting, i.e.
equation (176).

C.2 Inverse problem: recovering the cost function

We now solve an inverse problem, namely how to recover the menu cost values ψj that underlie a
given observed hazard function Λ(x) at given thresholds {x̄j}. The main result is summarized by
the next proposition:

Proposition 17. Fix a discount rate, curvature and variance r, B, σ2 > 0, and a step function
Λ giving the probability per unit of time of a price adjustment for |x| < xn. The function Λ
is described by a set of probability rates for costs {λj}n−1

j=1 ∈ Rn
+ for n ≥ 1, and a set of n

thresholds {x̄j}nj=1 with 0 = x̄0 < x̄1 < · · · < x̄n. Then there is a unique set of n fixed costs
0 = ψ0 < ψ1 < · · · < ψn so that the n thresholds {x̄j}nj=1 solve the firm’s problem defined

by r, B, σ2, {λj}n−1
j=0 , {ψj}nj=1. Moreover, the fixed costs {ψj}nj=1 and the coefficients of the value
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function {aj, bj, cj}nj=1 solve a system of linear equations.

Proof. (of Proposition 17) We first solve for each of the coefficients bj using equation (171) for
each j = 1, . . . , n.

We note that the thresholds {x̄j}nj=1 are given and that roots {ηj}nj=1 can be computed as
functions of given parameters.

Using the coefficients {bj}nj=1, we solve for the coefficients {cj}nj=1. First we solve for cn enforcing
smooth pasting at x̄n given by equation (176). Using cn we recursively use cj+1 to solve for cj
imposing differentiability between adjecent segments, i.e. equations (174) for j = n−1, n−2, . . . , 1.

Next we solve for the {aj}nj=1, given {bj, cj}nj=1. First, use rv(0) = σ2

2
v′′(0) = σ2

2
(2b1 + (η1)22c1)

and v(0) = a1 + 2c1 to solve for a1, namely a1 = σ2

r
(b1 + η2

1c1) − 2c1 . Next, use equations (173)
to solve recursively for {aj}nj=2.

Finally, we solve for the fixed costs {ψj}nj=1 using value matching and the values of {aj, bj, cj}nj=1.
They give:

ψj = v(x̄j)− v(0) = aj + bj(x̄j)
2 + cj

(
eηj x̄j + e−ηj x̄j

)
− a1 − 2c1 (177)

for j = 1, . . . , n. �

D Solution for the firm’s alternative setup of Section 2.2

The first order condition for choice of ` in equation (15) are:

c′− (`∗ (x)) ≤ v(x)− v(0) ≤ c′+ (`∗ (x)) for all x

where `∗ (x) denotes the optimal policy, and where c′−(·) and c′+(·) denote the right and left
derivatives of c. As in the previous case, we have that if Ψ < ∞ there is a barrier X < ∞ for
which: v(X) = v(0)+Ψ and v′(X) = 0. Finally, by the same reasons as before, we have symmetry,
i.e. v(x) = v(−x), and `∗(x) = `∗(−x). As before we can summarize the decision rule of the firm
for x ∈ (−X,X) with a generalized hazard function:

Λ (x) = `∗(x) for all x

To simplify the discussion, next we describe the case of a cost c that is continuously differentiable
and strictly convex, where we simply have:

c′ (`∗ (x)) = v(x)− v(0) and Λ(x) = (c′)
−1

(v(x)− v(0)) for all x

We note that since v(x) is strictly increasing in x for x ∈ (0, X), and c(`) is convex, then Λ(x)
must also be increasing in x for x ∈ (0, X).

Replacing `∗ into the HBJ equation we obtain:

rv(x) = min

{
Bx2 +

σ2

2
v′′(x) + `∗(x) (v(0)− v(x)) + c(`∗(x)) , r (Ψ + v(0))

}
Let us assume that the cost function c has a continuous derivative. Defining, as before U(x) =
v(x) − v(0), with u = U ′ = v′, we can differentiate the HBJ equation in x ∈ (0, X), and use the
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envelope to obtain:

[r + Λ(x)]u(x) = 2Bx+
σ2

2
u′′(x) .

Using the boundaries u(0) = u(X) = 0, and the logic used in the proof of Proposition 1 it is then
straightforward to solve for `∗.

E Special Cases of Interest

E.1 m and f in the discrete, unbounded case

We assume that we can divide [0,∞) into N segments, each one where Λ(x) is constant at the
value ρk > 0 and with thresholds {x̄k}Nk=0 as follows. The values of {x̄k} and {ρk} are given. We
let

0 = x̄0 < x̄1 < x̄2 < · · · < x̄N−1 < x̄N =∞

The function Λ(x) takes N different strictly positive values denoted by {ρk}Nk=1, so that:

Λ(x) = ρk for x ∈ [x̄k−1, x̄k) for k = 1, 2, . . . , N

0 < ρ1 < ρ2 < · · · < ρN .

Since m(·) and f(·) solve Kolmogorov equations (backward for m(·) and forward for f(·)), on each
segment they can parametrized by a pair of unknown constants:

m(x) = Mk(x) = − x

ρk
+ uke

ηkx + vke
−ηkx for x ∈ [x̄k−1, x̄k] (178)

f(x) = P̄k(x) = pke
ηkx + qke

−ηkx for x ∈ [x̄k−1, x̄k] (179)

ηk =

√
2ρk
σ2

(180)

for k = 1, 2, . . . , N . We require that f(·) and m(·) be continuously differentiable on (0,∞). This
implies that

Mk(x̄k) = Mk+1(x̄k) and M ′
k(x̄k) = M ′

k+1(x̄k) for all k = 1, 2, . . . , N − 1 (181)

P̄k(x̄k) = P̄k+1(x̄k) and P̄ ′k(x̄k) = P̄ ′k+1(x̄k) for all k = 1, 2, . . . , N − 1 (182)

In addition we have the following conditions. Since m is antisymmetric around zero we require
m(0) = 0. Since f is a density, it must integrate to one, and since it symmetric it must integrate
to one half over positive x. Finally, both m and f should converge to −x/ρN and 0 as x → ∞.
These conditions are sometimes referred as no-bubble conditions. Hence:

M1(0) = 0,
1

2
=

∫ ∞
0

f(x)dx =
N∑
k=1

∫ x̄k

x̄k−1

P̄k(x)dx, and pN = uN = 0 (183)

Overall, we have 2N unknowns, namely {uk, vk}Nk=1, and 2N linear equations for m(·), namely
2(N − 1) from equation (181), that m(0) = 0, and the no-bubble condition. Likewise for f(·). We
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can write these equations and solve for the constants. Once we have them we can evaluate:∫ ∞
0

x2f(x)dx =
N∑
k=1

∫ x̄k

x̄k−1

x2P̄k(x)dx and (184)

∫ ∞
0

m(x)f(x)dx =
N∑
k=1

∫ x̄k

x̄k−1

M ′
k(x)P̄k(x)dx . (185)

and check if:

N∑
k=1

∫ x̄k

x̄k−1

x2P̄k(x)dx = −σ2

N∑
k=1

∫ x̄k

x̄k−1

M ′
k(x)P̄k(x)dx . (186)

Now we will determine the coefficients {pk, qk}Nk=1 and {uk, vk}Nk=1. Start with the ones for p̄(·).
Combining the continuity and differentiability conditions, we can write the coefficients recursively
for k = 1, 2...N − 1:

pk =
1

2

(
1 +

ηk+1

ηk

)
e(ηk+1−ηk)xkpk+1 +

1

2

(
1− ηk+1

ηk

)
e−(ηk+1+ηk)xkqk+1 (187)

qk =
1

2

(
1 +

ηk+1

ηk

)
e(ηk−ηk+1)xkqk+1 +

1

2

(
1− ηk+1

ηk

)
e(ηk+1+ηk)xkpk+1 (188)

We also have the terminal condition pN = 0 and the normalization (the density must integrate to
one half over positives). Observe that the coefficients are in fact linear in qN , so qN can easily be
found from the normalization. The integral is

1

2
=

∞∫
0

f(x)dx =
N−1∑
k=0

pk+1
eηk+1xk+1 − eηk+1xk

ηk+1

−
N−1∑
k=0

qk+1
e−ηk+1xk+1 − e−ηk+1xk

ηk+1

(189)

We can use linearity: letting pk = p̂kqN and qk = q̂kqN and plugging this into the normalization,
we can write

1

2
=

N−1∑
k=0

(
p̂k+1

eηk+1xk+1 − eηk+1xk

ηk+1

− q̂k+1
e−ηk+1xk+1 − e−ηk+1xk

ηk+1

)
qN (190)

The numbers {p̂k, q̂k}N−1
k=1 are easily obtained from {pk, qk}N−1

k=1 computed recursively for some pre-
supposed value of qN . Knowing them, we can recover the real qN from equation (190) and recom-
pute the real {pk, qk}N−1

k=1 .
Now we will determine the coefficients for m(·). The continuity and differentiability conditions

lead to the following recursivve representation:

uk =
1

2

(
1 +

ηk+1

ηk

)
e(ηk+1−ηk)xkuk+1+

1

2

(
1− ηk+1

ηk

)
e−(ηk+1+ηk)xkvk+1 (191)

+
1

2

(
x+

1

ηk

)(
1

ρk
− 1

ρk+1

)
e−ηkxk
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vk =
1

2

(
1 +

ηk+1

ηk

)
e(ηk−ηk+1)xkvk+1+

1

2

(
1− ηk+1

ηk

)
e(ηk+1+ηk)xkuk+1 (192)

+
1

2

(
x− 1

ηk

)(
1

ρk
− 1

ρk+1

)
e−ηkxk

We also have the terminal condition uN = 0 and the antisymmetry condition m(0) = 0. The
latter one reduces to u1 + v1 = 0. Now we can observe that all uk and vk are in fact affine in vN :
uk = ûkvN + ũk and vk = v̂kvN + ṽk. The condition m(0) = 0 can be written as

0 = u1 + v1 = (û1 + v̂1)vN + (ũ1 + ṽ1) (193)

The coefficients {ûk, v̂k}N−1
k=1 and {ũk, ṽk}N−1

k=1 can be found from {uk, vk}N−1
k=1 computed recursively

for two different presupposed values of vN (we need two because the functions are affine, not linear).
After that, we can recover the real vN from equation (193) and recompute the real {uk, vk}N−1

k=1 .

F Functional forms of 〈f (x),m(x), T (x)〉 for integer ν

The invariant density f has to be symmetric around x = 0, and has to satisfy:

Λ(x)f(x) =
σ2

2
f ′′(x) for all x ∈ [0, X] , (194)

1

2
=

∫ X

0

f(x)dx and f(X) = 0 . (195)

The contribution of an individual firm to the IRF is antisymmetric around x = 0 and satisfies the
following:

Λ(x)m(x) = −x+
σ2

2
m′′(x) for all x ∈ [0, X] , (196)

m(0) = m(X) = 0 . (197)

Fianlly, T (x) is symmetric around x = 0 and satisfies

Λ(x)T (x) = 1 +
σ2

2
T (x) for all x ∈ [0, X] , (198)

T (X) = 0 and T ′(0) = 0 . (199)

The latter equality is a consequence of T (·) being continuously differentiable ay zero and antisym-
metric.

Denote y = σ2/2a. We will assume that the functions of interest are analytical, so we can write

xxvii



them as:

f(x) =
∞∑
k=0

αkx
k for x ∈ [0, X] (200)

m(x) =
∞∑
k=0

βkx
k for x ∈ [0, X] (201)

T (x) =
∞∑
k=0

γkx
k for x ∈ [0, X] (202)

so that, in particular, γ0 = T (0). Inserting these expressions into the equations above and using
the functional form for Λ(·), we obtain:

a

∞∑
k=0

αkx
k+ν =

σ2

2

∞∑
k=2

αkk(k − 1)xk−2 for x ∈ [0, X] (203)

a
∞∑
k=0

βkx
k+ν =

σ2

2

∞∑
k=2

βkk(k − 1)xk−2 − x for x ∈ [0, X] (204)

a
∞∑
k=0

γkx
k+ν =

σ2

2

∞∑
k=2

γkk(k − 1)xk−2 + 1 for x ∈ [0, X] (205)

Matching the coefficient of each of the powers of x we have

αk = y(k + ν + 2)(k + ν + 1)αk+ν+2 for k ≥ 0 (206)

βk = y(k + ν + 2)(k + ν + 1)βk+ν+2 for k ≥ 0 (207)

γk = y(k + ν + 2)(k + ν + 1)γk+ν+2 for k ≥ 0 (208)

The symmetry and smoothness properties also lead to

β0 = β2 = γ1 = 0 (209)

Relabelling the coefficients, we can write the sums as

f(x) = α0

(
1 +

∞∑
j=1

ξp,jy
−jxj(ν+2)

)
+ α1x

(
1 +

∞∑
j=1

ηp,jy
−jxj(ν+2)

)
(210)

m(x) = β1x

(
1 +

∞∑
j=1

ξm,jy
−jxj(ν+2)

)
+ β3x

3

(
1 +

∞∑
j=1

ηm,jy
−jxj(ν+2)

)
(211)

T (x) = γ0

(
1 +

∞∑
j=1

ξt,jy
−jxj(ν+2)

)
+ γ2x

2

(
1 +

∞∑
j=1

ηt,jy
−jxj(ν+2)

)
(212)
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Here the coefficients ξ·,j and η·,j are given by

ξp,j =

j∏
i=1

1

i(ν + 2)(i(ν + 2)− 1)
ηp,j =

j∏
i=1

1

i(ν + 2)(i(ν + 2) + 1)
(213)

ξm,j =

j∏
i=1

1

i(ν + 2)(i(ν + 2) + 1)
ηm,j =

j∏
i=1

1

(i(ν + 2) + 2)(i(ν + 2) + 3)
(214)

ξt,j =

j∏
i=1

1

i(ν + 2)(i(ν + 2)− 1)
ηt,j =

j∏
i=1

1

(i(ν + 2) + 1)(i(ν + 2) + 2)
(215)

(216)

Now define the following parameter:

Z =
Xν+2

y
= 2aXνX

2

σ2
= 2κT0 (217)

It will be useful in pinning down the coefficients. Here Λ̃ is the left limit of the hazard rate when
x approaches X, and T0 is the expected time to adjustment when a = 0.

Consider first f(·). The boundary condition is

0 = f(X) = α0

(
1 +

∞∑
j=1

ξp,jy
−jXj(ν+2)

)
+ α1x

(
1 +

∞∑
j=1

ηp,jy
−jXj(ν+2)

)
(218)

= α0

(
1 +

∞∑
j=1

ξp,jZ
j

)
+ α1X

(
1 +

∞∑
j=1

ηp,jZ
j

)
(219)

Define additionally ξ·,0 = η·,0 = 1. The condition that f(·) is a density states

1

2
=

∫ X

0

f(x)dx = α0X

(
1 +

∞∑
j=1

ξp,jZ
j

j(ν + 2) + 1

)
+ α1X

2

(
1

2
+
∞∑
j=1

ηp,jZ
j

j(ν + 2) + 2

)
(220)

= α0X
∞∑
j=0

ξp,jZ
j

j(ν + 2) + 1
+ α1X

2

∞∑
j=0

ηp,jZ
j

j(ν + 2) + 2
(221)

This leads to

α1 =
1

2X2

(∑∞
j=0 ξp,jZ

j
)

∑∞
j=0

ηp,jZ
j

j(ν + 2) + 2

(∑∞
j=0 ξp,jZ

j
)
−
∑∞

j=0

ξp,jZ
j

j(ν + 2) + 1

(∑∞
j=0 ηp,jZ

j
)

=
1

2X2
α̂1(ν, Z) (222)
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α0 = − 1

2X

(∑∞
j=0 ηp,jZ

j
)

∑∞
j=0

ηp,jZ
j

j(ν + 2) + 2

(∑∞
j=0 ξp,jZ

j
)
−
∑∞

j=0

ξp,jZ
j

j(ν + 2) + 1

(∑∞
j=0 ηp,jZ

j
)

=
1

2X
α̂0(ν, Z) (223)

Now observe that the integral of f(x)x2 is in fact proportional to X2 for a fixed Z:∫ X

0

f(x)x2dx = α0X
3

∞∑
j=0

ξp,jZ
j

j(ν + 2) + 3
+ α1X

4

∞∑
j=0

ηp,jZ
j

j(ν + 2) + 4
(224)

=
X2

2

[
α̂0(ν, Z)

∞∑
j=0

ξp,jZ
j

j(ν + 2) + 3
+ α̂1(n, Z)

∞∑
j=0

ηp,jZ
j

j(ν + 2) + 4

]
(225)

To determine m(·) and T (·), it is useful to consider separately the cases ν ≥ 1 and ν = 0. Start
with ν ≥ 1. In this case, in addition to equation (209), we know that

3σ2β3 = 1 and σ2γ2 = −1 (226)

The boundary conditions are m(X) = T (X) = 0, so

−β1 =
X2

3σ2

(
1 +

∑∞
j=1 ηm,jZ

j

1 +
∑∞

j=1 ξm,jZ
j

)
(227)

γ0 =
X2

σ2

(
1 +

∑∞
j=1 ηt,jZ

j

1 +
∑∞

j=1 ξt,jZ
j

)
(228)

The functional forms are then

m(x) = −xX
2

3σ2

(
1 +

∑∞
j=1 ηm,jZ

j

1 +
∑∞

j=1 ξm,jZ
j

)
∞∑
j=0

ξm,jy
−jxj(ν+2) +

x3

3σ2

∞∑
j=0

ηm,jy
−jxj(ν+2) (229)

T (x) =
X2

σ2

(
1 +

∑∞
j=1 ηt,jZ

j

1 +
∑∞

j=1 ξt,jZ
j

)
∞∑
j=0

ξt,jy
−jxj(ν+2) − x2

σ2

∞∑
j=0

ηt,jy
−jxj(ν+2) (230)

Observe that for T (0) we have

T (0) =
X2

σ2

(
1 +

∑∞
j=1 ηt,jZ

j

1 +
∑∞

j=1 ξt,jZ
j

)
= T0

(
1 +

∑∞
j=1 ηt,j(2κT0)j

1 +
∑∞

j=1 ξt,j(2κT0)j

)
(231)

At a = 0 or, equivalently, κ = 0, we have T (0) = T0.
Now consider the case ν = 0. Here the conditions we add to equation (209) are

aβ1 = 3σ2β3 − 1 and aγ0 = σ2γ2 + 1 (232)
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Plugging them into the boundary conditions m(X) = T (X) = 0,

−β1 =
X2
∑∞

j=0 ηm,jZ
j

3σ2
∑∞

j=0 ξm,jZ
j + aX2

∑∞
j=0 ηm,jZ

j
(233)

β3 =

∑∞
j=0 ξm,jZ

j

3σ2
∑∞

j=0 ξm,jZ
j + aX2

∑∞
j=0 ηm,jZ

j
(234)

γ0 =
X2
∑∞

j=0 ηt,jZ
j

σ2
∑∞

j=0 ξt,jZ
j + aX2

∑∞
j=0 ηt,jZ

j
(235)

−γ2 =

∑∞
j=0 ξt,jZ

j

σ2
∑∞

j=0 ξt,jZ
j + aX2

∑∞
j=0 ηt,jZ

j
(236)

The functional forms in this case are

m(x) = −x
X2
(∑∞

j=0 ηm,jZ
j
)(∑∞

j=0 ξm,jy
−jxj(ν+2)

)
3σ2

∑∞
j=0 ξm,jZ

j + aX2
∑∞

j=0 ηm,jZ
j

+ x3

(∑∞
j=0 ξm,jZ

j
)(∑∞

j=0 ηm,jy
−jxj(ν+2)

)
3σ2

∑∞
j=0 ξm,jZ

j + aX2
∑∞

j=0 ηm,jZ
j

(237)

T (x) =
X2
(∑∞

j=0 ηt,jZ
j
)(∑∞

j=0 ξt,jy
−jxj(ν+2)

)
σ2
∑∞

j=0 ξt,jZ
j + aX2

∑∞
j=0 ηt,jZ

j

− x2

(∑∞
j=0 ξt,jZ

j
)(∑∞

j=0 ηt,jy
−jxj(ν+2)

)
σ2
∑∞

j=0 ξt,jZ
j + aX2

∑∞
j=0 ηt,jZ

j
(238)

Observe that in this case for T (0) we have

T (0) =
X2

σ2

( ∑∞
j=0 ηt,jZ

j∑∞
j=0 ξt,jZ

j + aX2

σ2

∑∞
j=0 ηt,jZ

j

)

= T0

(
1 +

∑∞
j=1 ηt,j(2κT0)j

1 + κT0 +
∑∞

j=1 ξt,j(2κT0)j +
∑∞

j=1 ηt,j(2κT0)j

)
(239)

When κ = 0, we have T (0) = T0.
We know that the adjustment frequency is given by

Na =
1

T (0)
(240)

Hence, the adjustment frequency can be represented as a function of κ and T0. The same is true
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for the kurtosis of price changes. From equation (23),

Kurt(∆p) =
2
[∫ X

0
x4Λ(x)f(x)dx−X4 σ2

2
f ′(X)

]
Na

1

[V ar(∆p)]2

=
2Na

[∫ X
0
x4Λ(x)f(x)dx−X4 σ2

2
f ′(X)

]
σ4

=
12Na

σ2

∫ X

0

f(x)x2dx

= 6Na
X2

σ2

∑∞
j=0

ηp,jZ
j

j(ν + 2) + 4

(∑∞
j=0 ξp,jZ

j
)
−
∑∞

j=0

ξp,jZ
j

j(ν + 2) + 3

(∑∞
j=0 ηp,jZ

j
)

∑∞
j=0

ηp,jZ
j

j(ν + 2) + 2

(∑∞
j=0 ξp,jZ

j
)
−
∑∞

j=0

ξp,jZ
j

j(ν + 2) + 1

(∑∞
j=0 ηp,jZ

j
)

= 6NaT0

∑∞
j=0 ϕK,j(2κT0)j∑∞
j=0 χK,j(2κT0)j

(241)

Here the coefficients {ϕK,j, χK,j}∞j=0 are given by

ϕK,j =

j∑
i=0

(
ξp,j−iηp,i

i(ν + 2) + 4
− ηp,j−iξp,i
i(ν + 2) + 3

)
(242)

χK,j =

j∑
i=0

(
ξp,j−iηp,i

i(ν + 2) + 2
− ηp,j−iξp,i
i(ν + 2) + 1

)
(243)

As expected, when κ = 0 we have Na = 1/T0 and

Kurt(∆p) = 1. (244)

The coefficients {ϕN,j, χN,j} for Na are taken from the corresponding formula for T (0) in the cases
ν = 0 and ν ≥ 1. In both cases ϕN,0 = χN,0 = 1. To verify ϕK,0 = −1/12 and ψK,0 = 1/2, plug
ξp,0 = ηp,0 = 1. For ϕK,1 and χK,1, recall that

ξp,1 =
1

(ν + 2)(ν + 1)
and ηp,1 =

1

(ν + 2)(ν + 3)
(245)

The first derivative of Kurt(∆p)/(6Na) evaluated at κ = 0 is

∂

∂κ

(
Kurt(∆p)

6Na

) ∣∣∣
κ=0

= T0
χK,0ϕK,1 − ϕK,0χK,1

χ2
K,0

= −C(6ϕK,1 − χK,1) (246)

for some positive constant C. Plugging the terms,

ϕK,1 = − 1

12(ν + 5)(ν + 6)
(247)

χK,1 = − 1

2(ν + 3)(ν + 4)
(248)
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Hence,

∂

∂κ

(
Kurt(∆p)

6Na

) ∣∣∣
κ=0

=
C

2

(
1

(ν + 5)(ν + 6)
− 1

(ν + 3)(ν + 4)

)
< 0 (249)

This proves the fact that Kurt(∆p)/(6Na) decreases for small κ.

G Kurtosis of a mixture

The next proposition shows that if we have a sample with mixed N different type of products all
with the same kurtosis but with different variance, then the kurtosis of the price changes of such
a mixture is higher than the kurtosis for each of them.

Proposition 18. Assume that ∆p is a mixture of N distributions, with weights {ωj}Nj=1.
Assume that for each distribution j, price changes have the same kurtosis K, but they may have
different variance Vj. Then

Kurt(∆p) =

∑
j ωjK V 2

j[∑
j ωjVj

]2 = K

∑
j ωjV

2
j[∑

j ωjVj

]2 = K

∑
j J(Vj)ωj

J
(∑

j Vjωj

) ≥ K (250)

with strict inequality if the distribution of {Vj}Nj=1 is not degenerate, since J(V ) = V 2 is a strictly
convex function.

H Alternative Normalization

We consider an alternative normalization to one used in Proposition 3. This normalization requires
that X < ∞. For a triplet {σ2, X,Λ} we can define a new problem represented by pair {ρ, Λ̂}
where Λ̂ : (−1, 1)→ R+ and where ρ is a scalar defined as follows:

Λ̂(z) =
Λ(zX)

κ
for all z ∈ [−1, 1] and ρ =

2κX2

σ2
(251)

Note that this is the normalization used in Proposition 3 with b = 1/X. This is a slight gen-
eralization of Proposition 3, in that it allows to have some comparative static with respect to
κ.

Given the triplet {σ2, X,Λ} we can solve for f as indicated in equation (16). And given the
pair {ρ, Λ̂} we can solve for the probability density f̂ , using a change of variables:

f̂(z) ≡ f (zX)X for all z ∈ [−1, 1] (252)

We note that f̂ satisfies the

Λ̂(z) ρ f̂(z) = f̂ ′′(z) for all z ∈ [−1, 1] and z 6∈ Z (253)
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where z ∈ Z if z = x/X and x ∈ J. Moreover, the density f̂ must satisfy

f̂(1) = f̂(−1) = 0 and

∫ 1

−1

f̂(z)dz = 1 (254)

Lemma 3. Consider two triplets {σ,X,Λ} such that both generate the function Λ̂(·) and the
parameter ρ by using equation (251). The two triplets have the same Kurtosis of price changes
Kurt(∆p) and the same share of adjustment in the interior s. Furthermore,

Na =
σ2

X2
n̂(ρ) (255)

Kurt(∆p)

6Na

=
X2

σ2

m̂(ρ)

6
(256)

s =ŝ(ρ) (257)

where n̂(ρ), m̂(ρ) and ŝ(ρ) only depend on Λ̂(·) and ρ. Moreover, n̂(·) is increasing in ρ, m̂(·) is
decreasing in ρ, ŝ(·) is increasing in ρ, and n̂(0) = m̂(0) = ŝ(0) = 1.

I Properties of Distribution of Menu Cost

In thus appendix we note that the posited behavior of Λ in a neighbourhood of x = 0 or x = |X|
determines whether the underlying density g is bounded. It is shown in equation (4) that the
hazard function inherits the shape of the value function because of the underlying optimization:
when the firm draws a fixed cost, what matters is how the value of the draw compares to the gains
from adjustment. Taking a first order derivative of equation (4) gives

Λ′(x) = κ g(v(x)− v(0)) v′(x) (258)

A bounded density g would make Λ′(x) have zero limits at x = 0 and x = X because of the
smooth-pasting conditions on v(x) at these points. Thus, if the hazard function of the inverse
problem (the one that solves for g given Λ) is not flat at 0 or Ψ, then the density g must be
diverging. We formalize this observation next:

Corollary 5. Let ε > 0 and suppose Λ′(x) is bounded away from zero for x ∈ (0, ε). Then
g(ψ) is unbounded on any (0, ψ). Likewise, if Λ′(x) is bounded away from zero for x ∈ (X − ε,X)
then g(ψ) is unbounded on any (ψ,Ψ).20

We can also characterize the behavior of the density g around ψ = 0 for different forms of Λ
arounf x = 0. Take the limiting elasticity of the hazard

ν = lim
x↓0

xΛ′(x)

Λ(x)− Λ(0)
(259)

If Λ is symmetric and smooth, it admits a quadratic approximation close to zero, and ν = 2.

20Since Λ(x) is symmetric, to be smooth at zero it has to have Λ′(0) = 0. The proof is done by standard analysis.
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Interestingly, deviations from ν = 2 imply irregular behavior of g. Proposition 1 states that

g(x) =
Λ′(x)

κu(x)
(260)

But u(x) converges to zero as x→ 0, so the limit is tricky. To resolve the indeterminacy, notice
that u(x) goes to zero linearly, since u′′(0) = 0 (immediate from the equation (6) defining u(x)
in Lemma 1). Thus whether the limit is (i) zero, (ii) positive and finite, or (iii) infinite, depends
respectively on whether Λ′(x) goes to zero (i) faster than a linear rate (nu > 2), (ii) at a linear
rate (nu = 2), (iii) slower than a linear rate (nu < 2). We can formalize this:

Corollary 6. Suppose that Λ′(x) and g(ψ) both have (possibly infinite) right limits at zero.
Then limψ↓0 g(ψ) =∞ for ν < 2, 0 < limψ↓0 g(ψ) <∞ for ν = 2, and limψ↓0 g(ψ) = 0 for ν > 2.

This corollary states that a quadratic hazard function implies a density of ψ that is positive
and finite around ψ = 0. If the leading term in Λ(x) is higher than quadratic (ν > 2) then the
density must be zero, meaning that G is flat close to ψ = 0. A hazard function with a leading
term ν < 2 implies a distribution of ψ with density that is diverging around ψ = 0.
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