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Refining Public Policies with Machine
Learning: The Case of Tax Auditing∗

Marco Battaglini† Luigi Guiso‡ Chiara Lacava§

Douglas L. Miller¶ Eleonora Patacchini‖

We study how machine learning techniques can be used to improve tax au-
diting efficiency using administrative data without the need of randomized
audits. Using Italy’s population data on sole proprietorship tax returns
and audits, our new approach addresses the challenge that predictions
must be trained on human-selected data. There are substantial margins
for raising revenue from audits by improving the selection of taxpayers
to audit with machine learning. Replacing the 10% least promising au-
dits with an equal number selected by our algorithm raises detected tax
evasion by as much as 39%, and evasion that is actually paid back by 29%.
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1 Introduction

Tax authorities routinely collect deep datasets from tax returns that can be used
to identify audit targets. Consequently, the choice of auditing strategy is a prime
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candidate for applying machine learning techniques (henceforth, ML). The promise
of these techniques is that they can be deployed to exploit available information
efficiently, consistently and transparently. While both tax authorities and researchers
are aware of these opportunities, the opacity of the audit selection processes followed
by most tax authorities makes it unclear the extent to which they operate at the
“production possibility frontier” or whether there are margins for improvements by a
more efficient use of data.

In this paper, we exploit a novel dataset from the Italian Revenue Agency (hence-
forth, IRA) to explore whether ML techniques can be used to improve audit selection
policies. The dataset includes tax returns from the universe of non-incorporated small
businesses in Italy from 2007 to 2012. For these tax returns, we know whether or not
they were audited, and the results of the audit, including information on whether the
taxpayer appealed against the audit as well as all the statistical information available
to the IRA concerning the tax return and filer.

The general idea behind ML techniques is to exploit data on realized outcomes to
train a predictive algorithm. In our setting, the data is on audits that have occurred,
and the outcome is, for example, detected tax evasion. Ideally, after validation pro-
cedures, the algorithm can be used to guide future policy (in our case, the choice of
which returns to audit).

Even when detailed data is available, two challenges make the design and evalua-
tion of policies with ML a difficult task. The first is what Kleinberg et al. (2018) have
defined the selective labels problem: only outcomes of tax returns that have been en-
dogenously selected for audit are observed. In our setting, this would cause a problem
if the IRA selects audits also relying on variables unobserved by the econometrician
that are relevant for the audits’ outcomes. The second problem is the omitted payoff
bias. This refers to the fact that the policymakers’ objectives may be multidimen-
sional and unobserved, so an audit selection policy that is unsuccessful with respect
to a narrow measure of success may instead be justified when all the goals of the tax
authority are considered. In this paper, we make progress in evaluating the benefits
of improving the audit selection process despite these two problems. Although our
application is for one country and time period, the approaches we propose exploit
common auditing data features. These features are that the tax authority is severely
limited in the number of audits and that currently unaudited tax returns can oc-
casionally be audited at a later date. Both of these features can be found in other
environments, so our strategies can be applied in other contexts.

We start our analysis by documenting the extent to which an ML algorithm can
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be used to identify audits that perform particularly poorly among the set of observed
audits. Since we observe the universe of tax audits and relative outcomes, we can test
our ability to identify the audits that perform poorly under various criteria. Contrary
to other types of policymakers, tax authorities have a narrow policy mandate and
do not have significant latitude in deciding their policy goals. The mission of the
IRA is clearly set by the law that says that “The revenue agency is assigned the
task of pursuing the maximum level of fulfillment of tax obligations both through
assistance to taxpayers and through direct controls to combat non-compliance and
tax evasion”. Leaving aside the assistance to taxpayers, this directive translates into
two goals: maximizing detected tax evasion and maximizing the amount of evaded
taxes recovered.1 The two goals may differ because while some audits may appear
promising in detected evasion, the actual amounts that can be recuperated may be
significantly lower, as taxpayers have the option to appeal against the audit. Our
dataset allows us to assess both goals. We show that our ML algorithms can accurately
rank audits based on both expected detected and expected recovered tax evasion.
More importantly, we show that the audits that the ML algorithm predicts as having
low evasion amounts result in low detected evasion. Eliminating the bottom predicted
10% of the audits would induce a reduction in detected evasion of only 3.1%. This
would also induce a reduction of recovered evasion of only 2.8%. This suggests that the
omitted payoff bias problem, while important in principle, may not alter qualitative
conclusions in our setting.

Once we have identified the audits that detect zero or low evasion, the next ques-
tion is whether we can replace them with tax returns with higher evasion levels. This
is where the selective labeling problem starts to bite. To address this, we propose
two complementary strategies. The first strategy relies on the longitudinal nature
of our dataset to choose the replacement tax returns. In Italy (like in many other
countries), the IRA has five years to audit a tax return. While most tax returns are
never audited at all, some are audited in later years. This fact gives us a plausible
counterfactual for which we can actually observe the true outcome of an audit. A tax
return that is auditable but unaudited at t does not change for the following periods
since it is based on income for a tax year preceding t. We can, therefore replace an

1The IRA mandate is defined by Legislative Decree July 30, 1999, n. 300, article 63. Our
translation of the IRA mandate into actionable objectives was validated by IRA officials in direct
consultations. Auditors do not have the authority to deviate from these goals. The law assigns
to the IRA a few other tasks, listed in article 64. Namely, the management of the House Property
Registry, the House Prices Observatory, and the task of providing estimates of property values to the
public administrations when needed. These secondary tasks are irrelevant to the mandate specified
in article 63.
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audited tax return we predict to have low predicted evasion with a tax return that is
available for auditing today but audited in the following years. We find that replacing
the tax returns with the 10% lowest predicted evasion with an equal number of later
audits with the highest predicted evasion yields an improvement of 39% in detected
tax evasion.

The set of unaudited tax returns that are audited at a later date may, of course, be
different from the general population. It is however unlikely that the IRA intentionally
postpones the audit of tax returns with high predicted evasion. By not auditing a
high-evasion tax return at time t, an agent of the IRA exposes the agency to the
risk of never auditing it in the future (if overlooked by future agents) or to the risk
of losing the ability to recuperate any evaded income since some companies may
dissolve or go bankrupt before the IRA can document a claim on the firm balance
sheet. Empirically, we document that tax returns that remain unaudited for a few
years but then are audited are not fundamentally different from other audited tax
returns, in terms of both detected and recovered tax evasion.

The second strategy attempts to evaluate the replacements without using ML
to select the replacement tax returns. The strategy relies on the fact that the IRA
is severely constrained in terms of resources, so much so that only about 2% of
the sole proprietorships’ tax returns are audited (for comparison, in 2017, the audit
coverage on personal income in France was 5%, and that of Earned Income Tax
Credit recipients in the U.S. was 6%). If the authority were to eliminate from a list
of proposed audits the bottom 10% of tax returns according to the predicted evasion
and replace them with an equal (to fulfill the resource constraint) number of tax
returns with random evasion, would the replacement be worthwhile? It is reasonable
to assume that the replaced tax returns will not be different greatly from the average
among audited tax returns for such a marginal substitution. We show that replacing
the bottom 10% of predicted audited tax returns with average predicted evasion
would increase detected tax evasion and recovered tax evasion by 6.5% and 7.4%,
respectively.

The remainder of the paper is organized as follows. Section 2 revises the related
literature. Section 3 introduces the institutional context. While Section 4 presents the
statistical model and empirical strategy, Section 5 presents our policy experiments.
Section 6 discusses extensions to the baseline policy experiments using alternative
prediction models and considering both policy targets simultaneously. Section 7 con-
cludes.
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2 Related Literature
A significant and growing literature at the intersection between computer science and
economics applies ML techniques to policy problems. For example, several papers
present algorithms to detect tax evasion (Bonchi et al., 1999; Bots and Lohman 2003;
Cleary, 2011; Hsu et al., 2015; Ruan et al., 2019; Wu et al., 2020; among others),
insurance fraud (Bhowmik, 2011), and fraudulent financial statements (Kirkos et al.,
2007).2, 3 These papers focus on the design of algorithms to predict an outcome of
interest, restricting the evaluation of the algorithm performance to the quality of
the out-of-sample predictions. Hence, they do not address the selective labels and
omitted payoff bias problems. This limits the guidance that a policymaker interested
in allocating scarce auditing resources can take from these studies (Athey, 2017). The
selective labels problem is mitigated in cases of random allocation of treatments (e.g.,
random audits),4 but policy interventions are almost never at random. We propose
one solution to this question in the context of tax audit selection. This strategy can
be applied to any allocation problem of a scarce resource where longitudinal data are
available, a fraction of untreated units are treated at a later date, and their outcomes
remain unchanged during the period.5

The importance of the selective labels problem for public policy applications is
highlighted by Lakkaraju and Rudin (2017) and Jung et al. (2017), both studying how
ML predictions can improve the judicial decisions to release or detain defendants while
they await trial. To address the problem of missing labels for defendants whose judge’s
decision differs from the ML-guided decision, both papers adopt estimation methods
relying on a “selection on observables” assumption. This assumption enables them to
impute predicted values to observations with similar observable covariates that are

2These works are constrained by much smaller datasets than ours, typically limited to a few
thousand taxpayers.

3In the context of Environmental Protection Agency (EPA) inspections, Hino et al. (2018) train an
ML model to predict inspection failure probability. The model is then used to simulate reallocations
of EPA resources.

4Recently, Ash et al. (2024) use randomized audits to evaluate the benefits of using an ML
algorithm to predict corruption in Brazilian municipalities. In the context of gun violence prevention
and energy consumption prediction, Bhatt et al. (2024) and Knittel and Stolper (2021) rely on
randomized control trials.

5Using a sample of about 300,000 firms in Delhi, out of which 538 are known to be fraudulent,
Mittal et al. (2018) deal with a different type of labeling bias problem; that is the case where only
the audits that determine that a firm is fraudulent are observed. They predict the probability of
being a fraudulent firm using an ML model where audits determining a firm is legitimate are labeled
the same as unaudited firms, and exploiting the fact that the type of the firm (either fraudulent
or non-fraudulent) is assumed to remain constant over time. The revenue-saving potential of the
predictive model is then estimated on the firms at the top of the predicted ranking, which are the
firms that are most likely to be fraudulent.
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missing observed outcomes. To do so, they use either a two-step strategy combining
an inverse propensity-score weighting and a logistic regression, or a regularized logistic
regression model, respectively. In the same context of judicial decisions, Lakkaraju
et al. (2017) and Kleinberg et al. (2018) follow a different approach and rely on the
institutional features of these decisions. In particular, Kleinberg et al. (2018) leverage
the quasi-random assignment of cases to judges of differential leniency: they use the
algorithm’s predictions for cases handled by lenient judges to predict the outcomes
for defendants released by more stringent judges. The institutional features that
enable the Kleinberg et al. (2018) solution to the selective labels problem may not be
available in all policy prediction applications. A key contribution of our paper is to
identify an alternative approach to the selective labels problem. Instead of relying on
random shocks to the propensity to observe the labels, we use the feature that some
labels are only revealed later in time.

3 Institutional Setting

The taxpayers in our dataset are individuals who own a sole proprietorship, where no
legal distinction is made between the enterprise and the sole owner. In most countries,
this fiscal category is the subsample of taxpayers characterized by the highest evasion
rate and accounts for a relevant portion of the total tax gap (see Appendix A for
further details). We merge information from two different administrative records
that the IRA shared with us: tax return records and audit records. Records are at
the individual level and cover statements of incomes generated from 2007 to 2012,
reported between 2008 and 2013, and audited between 2009 and 2014. In Italy, similar
to several other nations, the IRA has a five-year window to examine a tax return. In
our primary analysis, we use the tax returns from 2007-2009, for which we can observe
the entire audit window. We use the returns from 2010-2012 as an alternative testing
sample.6 Our sample contains around 19 million tax returns filed by almost 4.7 million
taxpayers and 257,701 audits. This database (the Tax Registry) is the one used by the
IRA to select audits. It includes detailed information on all components of taxpayers’
tax returns (including reported taxable income, turnover, liabilities, and deductions)
and characteristics of their business (sector, geographical location, years of activity,
number of employees). The audit data contain information on whether and when a

6See Section 4, and Appendix B.
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tax return was audited and the amount of evaded tax assessed (if any).7, 8 An audit
typically spans approximately 2 to 5 months (interquartile range) and culminates in
an assessment of any detected evasion, if present. However, the process of recovering
unpaid taxes, once evasion is discovered, can be considerably lengthy. One advantage
of our dataset lies in the IRA providing novel information regarding the taxpayer’s
response to the audit. Specifically, the IRA shared with us the information on whether
the audited taxpayer does not pay back the assessed evasion. This case can originate
from insolvency, an appeal against the audit, or simply a failure to respond to the
audit notification. It triggers complicated processes, which last for many years, entail
complex sanctions schemes, and may involve several layers of the judiciary. In Italy,
an average of 7% of audited taxpayers appeal against an audit, and another 37% of
taxpayers neither pay nor appeal within due time after the audit notification. IRA
officials explained to us that the mandate of the IRA entails not only maximizing the
identification of evasion but also maximizing the recovered amount from the identified
evasion.9 However, because of the challenge of accurately estimating the complete
revenue, we adopt a cautious approach. In cases where taxpayers appeal, provide
no response, or make partial payments following the audit, we conservatively set the
value of the recovered evasion to zero (about 50% of the cases). Specifically, we
tailor our statistical model around the two goals of the IRA: detecting evasion and
recovering the detected amount of evaded tax. For each tax return, our two main
outcome variables of interest are i) tax evasion, defined as the difference between the
tax amount assessed during an audit and the tax paid (labeled as TaxEva); and ii)
a proxy for the actual tax evasion recovered by the IRA (labeled as TaxGot). This
is equal to tax evasion when the taxpayer pays back within due time, and zero when
the taxpayer is delinquent. Further details on our data and summary statistics are
reported in Appendix A.

7Audits typically target a single tax return. In our data, only 7% of taxpayers are audited more
than once. In the paper, we treat each audited tax returns as independent. Results are unaffected
if we add a control variable indicating that a taxpayer has been previously audited in our data. We
focus on the specification without this control because, for tax returns earlier in time, we do not
have a complete history of the audit. This means that that the indicator has a different meaning
depending on the filing year.

8We identify and exclude audits initiated by authorities cooperating with IRA (3%) that might
use other information or selection criteria. These authorities are the Guardia di Finanza, a military
police force in charge of dealing with a wide range of criminal acts, including fiscal fraud, and the
Customs Authority, in charge of monitoring tariffs and international trade taxes.

9Figure A1 shows that the probability of delinquency increases with higher levels of tax evasion,
which seriously hampers the ability of the IRA to recover evasion.
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4 The Machine Learning Algorithm

We propose an ML algorithm to create predictions for all tax returns, and then use
these predictions to guide the audit selection process. In this section, we describe the
prediction model we use. In the next section, we show how these predictions can be
used to identify audits that perform particularly poorly and eventually replace them
with audits with higher expected outcomes.

Model. We propose a random forest model ϕk(·) that uses a vector of predictors
Z and yields for each tax return i a prediction of an outcome k :

ŷki = ϕk(Zi). (1)

This model allows for rich interactions among explanatory variables and easily adapts
to non-linearities (Breiman, 2001). Our random forests contain 1,000 trees each.10

The tuning parameters that we choose include a minimum leaf size of 28 observations
to be eligible for a split and 2.5% of features eligible for consideration at each split.11

Predicted outcomes (ŷki ). We predict two outcome variables k, the detected and
recovered evasion levels. We train a different model for each of them. We winsorize
each outcome variable at the top 1 percentile to prevent our model chasing extreme
and idiosyncratic observations.12 Specifically, we consider the top 5% of the variable
and estimate the parameters of a Pareto distribution to fit the distribution of those
values. We then use the estimated distribution to compute the conditional mean of
being in the top 1 percentile and impute this conditional mean to all outcomes in the
top 1%.

Predictors (Zi). We use a rich selection of variables to predict TaxEva and Tax-
Got. We include business characteristics (years of activity, the number and logarithm
of the number of employees, dummy indicators for the presence of employees and the
taxpayer being self-employed), and the full selection of financial variables included in

10Increasing the number of trees further does not lead to a sizable increase in the model fit.
11These were chosen based on a semi-structured grid search, using the random forest Out-of-Bag

goodness of fit to guide the choice of tuning parameters.
12Two additional features of our analysis guard against mistaken conclusions driven by outliers.

First, we evaluate the models and perform our policy experiments using the testing sample. This
sample is completely different from the data used to train the model. If the predictions were tainted
by overfitting to extreme values in the training data, this would result in a very bad fit in the testing
sample. Second, regarding the risk of outliers among the predictors, the random forest prevents
assigning excessive weight to idiosyncratic values of some predictors by selecting different features
available for each branch of each tree in the forest and averaging over those trees. In addition, we
have also explored models using the inverse hyperbolic sine transformation of our predicted variables.
Working with these specifications did not produce better predictions, and we focused on predicting
expected evasion in levels.
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the Tax Registry. These include the reported taxable income (both the value and its
logarithm), a dummy indicating a positive reported taxable income, reported taxable
income net of employees deductions, gross income, revenues, taxable revenues, total
assets, total liabilities, the net value of production, VAT taxable turnover, operating
costs, amortized costs, and VAT transactions.

We include geographical fixed effects at the province level (110 provinces) and
2-digit-level sector of activity fixed effects. Importantly, we were granted access to
the highest level of disaggregation of the sector of activity (ATECO 5-digit code, i.e.,
1,215 sectors) and geographical location (municipality level, i.e., 8,054 municipali-
ties). However, capturing this information using fixed effects poses computational
challenges, given the large number of sectors and municipalities. Instead, we use this
information as follows. First, we explored a specification with the 5-digit sector of
activity fixed effects and geographic fixed effects at the province level (110 provinces)
(specification i). In an alternative specification, we instead exploit the granularity of
the geographical information contained in the data by building Mundlak-type predic-
tors (Mundlak, 1978), defined as the average at the municipality for two key financial
accounts: taxable income, and turnover. We add these variables to the 5-digit sector
of activity fixed effects (specification ii). Next, we exclude the 5-digit sector of ac-
tivity fixed effects and use Mundlak-type predictors at both municipality and 5-digit
sector levels (specification iii), while keeping fixed effects at the province level and
at the 2-digit sector level. We discuss the sensitivity of our predictions against al-
ternative sets of predictors in Appendix B. Because the performance of the different
models is roughly equivalent, we use as a baseline the more parsimonious version of
the model, featuring roughly 250 variables (specification iii).13

Sample. In our primary analysis, we use tax returns from 2007, 2008, and 2009,
for which we observe the complete fiscal cycle - the following 5 years in which they can
receive an audit. By doing so, we get a representative sample of the composition of the
tax returns audited over time.14 To get a clean partition of the data, our randomized

13In principle, random forest models can handle categorical variables, thus reducing the dimen-
sionality of the predictor set. However, in our case, the orderings of values of our categorical variables
(identifiers for geographical location and sector of activity) do not have an economic interpretation
or systematic statistical relation. While there are several possible pre-processing strategies, they
require additional assumptions on how to order the variables. Our final model specification iii) is a
compromise between complexity and parsimony. In this specification, we reduce the dimensionality
of the model by using Mundlak controls (group-level average of taxable income, and of turnover)
based on the municipality identifier variable and the 5-digit sector of activity, but we keep the
province and aggregate sector of activity as dummies.

14Our sample was not strongly affected by the Great Recession. For sole proprietors in Italy, a
notable decrease in turnover occurred during a subsequent period, aligning with the sovereign debt
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Tax Returns
2007-2012

Tax Returns
2007, 2008, 2009

9,728,061

Training
7,779,398

Early
Audits
54,634

Model

Late
Audits
107,306
Y

Unaudited
Returns
7,617,458

Not used

80%

Testing
1,948,663
Predict Ŷ

Early
Audits
13,717
(1)

Policy
A, B, C, D

Late
Audits
26,836
(2)

Policy
B

Unaudited
Returns
1,908,110
(3)

Policy
D

20%

Tax Returns
2010, 2011, 2012

9,038,115

Not used
7,226,258

80%
Additional
Testing
1,811,857
Predict Ŷ

Early
Audits
7,041
(4)

Late
Audits
4,037
(5)

Unaudited
Returns
1,800,779
Not used

20%

realized outcome
is observed

realized outcome
is not observed

Measures of fit: (1) + (2) + (4)+ (5)
Policies:
Policy A: discard from (1)
Policy B: discard from (1), replace from (2)
Policy C: discard from (1), replace with average from (2)
Policy D: discard from (1), replace from (2) + (3), use Ŷ to impute Y for (3)

Fig. 1. Partition of tax returns data into samples used for predictions and policy exercises.
Notes: This figure illustrates the samples used for predictions and for policy exercises. At
each node, the sample size is indicated. Early audits are those occurring 1-3 years after the
tax filing year, and late audits are those occurring 4-5 years after.

classification into training and testing samples occurs at the taxpayer (pseudo-)ID
level so that taxpayers in the training sample for one year are also in the training
sample for all other years. Our training sample for the prediction model consists of

crisis that impacted European countries after 2011.
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Fig. 2. Model fit.
Notes: This figure reports the detected tax evasion (dots) and the recovered tax evasion
(triangles) of realized audits in the testing sample by percentiles of predicted values. The
green and the orange lines display the predicted detected and recovered tax evasion, re-
spectively. The sample includes tax returns of income produced in years 2007-2012 that are
audited by IRA. The y-axis is represented on a logarithmic scale.

an 80% subset of the universe of audited taxpayers. To assess the goodness of fit, we
compare predictions with observed outcomes for our testing sample, which consists of
the 20% of returns from each of the fiscal years 2007-2009 that were excluded from the
training sample. Our training sample contains 161,940 tax returns, and our testing
sample has 40,553 tax returns. We illustrate our data partitioning in Figure 1.

Out-of-sample assessment of prediction model. To measure the model
performance, we compare predicted outcomes with outcomes assessed during the audit
in our testing sample. In Figure 2, the curved green line reports the average predicted
TaxEva at each percentile of predicted TaxEva and the blue dots report the average
TaxEva detected by audits that were actually implemented. The curved orange line
shows the average predicted TaxGot for each percentile of predicted TaxGot, and the
red triangles report the average actual TaxGot for that percentile. The random forest
algorithm can predict the actual levels of both outcomes quite well along the entire
distribution.15

15Figure 2 is computed using audited testing returns, pooling the years 2007-2009 and 2010-2012.
The data partitioning is illustrated in the gray box of Figure 1.
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Table 1
Comparison across prediction models.

A. Alternative Methods
Model N. predictors N. obs. Out-of-sample R-squared Out-of-sample RMSE

TaxEva TaxGot TaxEva TaxGot
Random Forest† 255 40,553 0.131 0.083 90,032 13,213
OLS 255 40,553 0.060 0.068 93,629 13,324
LASSO postselection 255 40,553 0.052 0.057 94,004 13,403

B. Augmented OLS and LASSO Specifications
Model N. predictors N. obs. Out-of-sample R-squared Out-of-sample RMSE

TaxEva TaxGot TaxEva TaxGot
OLS interactions 310 40,553 0.054 0.068 93,908 13,321
OLS polynomials 275 40,553 0.070 0.062 93,105 13,364
LASSO interactions 310 40,553 0.057 0.060 93,769 13,381
LASSO polynomials 275 40,553 0.042 0.054 94,538 13,423
Notes: This table reports measures of fit computed on the testing sample. † indicates the baseline
specification. The training sample includes 161,940 tax returns audited between 2009 and 2014. The
LASSO estimator selects 89 non-zero predictors for detected tax evasion and 19 non-zero predictors
for recovered tax evasion. The LASSO estimator with interactions selects 130 non-zero predictors
for detected tax evasion and 21 for recovered evasion; the LASSO estimator with polynomials selects
74 non-zero predictors for detected and 16 for recovered evasion.

In Table 1 (Panel A, first row), we present the out-of-sample R-squared and RMSE
for both variables as summary metrics of predictive accuracy of the random forest.16

The R-squared values are 0.131 for TaxEva and 0.083 for TaxGot, while the RMSE
values are high (90,032 for TaxEva and 13,213 for TaxGot) compared to the means
of the outcome variables. The modest R-squared values are unsurprising given the
characteristics of the outcome variables, which exhibit high dispersion, significant
right-skewness, and a considerable number of zero values. Figure 2 shows that the
random forest model predicts the conditional averages very well. Nevertheless, Table
1 reveals that there exists a notable amount of inherent noise around these averages,
contributing to the observed R-squared and RMSE values. Despite the relatively low
out-of-sample R-squared, in the next section we find that the model predictions can
be used to improve the audit selection policy outcomes substantially.

Appendix B provides additional tests of the validity of the prediction model. We
show that its performance persists well for different testing samples, and on returns
filed in later years, and that the fit is similarly good for both early and late audits.

Fit of random forest versus linear models. In Table 1, Panel A, we also
report the predicting performance of an OLS prediction model and a LASSO postse-

16These measures of fit are computed using the same samples as Figure 2 (see the grey box in
Figure 1).
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lection model estimated using the baseline set of predictors.17

The R-squared of detected tax evasion predicted using the random forest model
(RF hereafter) is twice the one predicted using the OLS and LASSO models, with
values of the RMSE pointing towards a qualitatively similar improvement in perfor-
mance. The R-squared of recovered tax evasion using the RF model is approximately
1.2 and 1.5 times that of the R-squared for OLS and LASSO, respectively; with
similar values for the RMSE across models.

The most natural explanation for the better predictive fit of the RF model is
that the RF model allows for nonlinear functions of the predictors. To explore this
possibility, we identify the ten most important predictors in our OLS models as those
variables with the highest t-statistic. We then consider alternate models that include
additional features such as quadratic and cubic terms in these important predictors,
or alternatively, include interaction terms between these important predictors. We
then re-estimate OLS and LASSO with these enhanced feature sets. Table 1, Panel
B, shows the results of this investigation. Overall, the performance of these alternate
models is still far from the accuracy achieved by the RF. In the best case (OLS
polynomial for TaxEva), the R-squared is 0.070, which is still almost half of the one
for the RF model (0.131). In Section 6, we explore how these differences in predictive
fit and other pertinent features translate into gains concerning the audit selection
policy.

Relevance of predictors. For completeness, to understand how the RF predic-
tions depend on the different predictors, we compute the Shapley values for each obser-
vation, following Štrumbelj and Kononenko (2010) and Lundberg and Lee (2017). We
then summarize these values using Shapley shares (as in Joseph, 2020), and present
mean Shapley shares as a measure of feature importance. The main predictors for
both outcome variables are different types of reported income (total, gross, taxable)
and income source (real estate, professional, compensations), turnover, operating
costs, and taxes (on purchases and imported intermediate goods, credit, withhold-
ings). We provide more details in Appendix C.

17We estimate LASSO linear models using a five-fold cross-validation selection method. This
estimator selects 89 and 19 predictors with non-zero coefficients for detected and recovered tax
evasion, respectively. We then use postselection coefficient estimates for predictions, to compare
with our other prediction models. Penalized coefficient estimates show similar predictive performance
(R-squared equal to 0.055 for TaxEva and 0.052 for TaxGot).
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5 Policy Experiments

We consider four policy experiments to quantify the benefit of using ML to refine
the audit selection process . Let Ωc be the set of tax returns reporting the income
produced in year c ∈{2007, 2008, 2009}. We describe them below. They are also
illustrated in Figure 1. Let us denote the year in which income is produced (c) as
a cohort. Each tax return in Ωc is assigned to a local tax authority office o ∈ O,
which decides whether to audit it. Let Ωo,c denote the subset of Ωc containing the
tax returns of cohort c that can be audited by office o, with element i ∈ Ωo,c. The set
Πo,c ⊂ Ωo,c is the set of audited tax returns and contains the subsets Πo,c and Πo,c,
which are the sets of tax returns of cohort c audited by office o by the third year after
filing (early audits) or after (late audits), respectively. Each office selects the audits
according to a mapping rule that is unknown to the researcher but constant over
time.18 The total amount of outcome k ∈ {TaxEva, TaxGot} obtained by an office
from early audits is Y k = ∑

o∈O
∑2009
c=2007

∑
i∈Πo,c

yki , where yki indicates the outcome
value for tax return i.

We begin our analysis by ranking the tax returns in a set S ∈
{

Ωo,c,Πo,c,Πo,c,Πo,c

}
by their predicted outcome. Let us denote with qk,xS the x percentile of ŷki∈S for i ∈ S,
and Nk,x

S the number of tax returns in set S whose predicted outcome is lower than
qk,xS . In particular, consider the number of early audits whose predicted outcome is
lower than qk,xΠo,c

, denoted Nk,x
Πo,c

, and indicate with T k,xS the highest threshold t such
that there are at least Nk,x

Πo,c
returns with prediction ŷki higher than t in S:

T k,xS = max(t such that |S ŷk
i ≥ t| ≥ Nk,x

Πo,c
)

where the modulus function indicates the number of elements in a set, and we denote
S ŷ

k
i ≥ t := {i ∈ S s.t. ŷki≥ t}.

Policy A: Discarding audits with low ex-ante promise, no replacement.
In the first experiment (Policy A), we use the ranking based on the predictions to
calculate the loss from a “discarding” exercise, where the x percent of early audits
with the lowest predicted outcome are discarded. The total outcome of Policy A is:

Y k,x
A =

∑
o∈O

2009∑
c=2007

∑
i∈ΦA

o,c

yki . (2)

18Battaglini et al. (2019) provide a description of the determinants of the audit selection by the
IRA.
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where for future reference we denote ΦA
o,c = Π

ŷk
i ≥q

k,x
Πo,c

o,c . We compute the loss from
Policy A as one minus the ratio Y k,x

A /Y k for each percentile x, and we illustrate this
ratio as it changes with x in a Lorenz-type curve. Given that audits have adminis-
trative, human, and economic costs on the target taxpayer (e.g., due to psychological
distress and/or interference with the business) as well as for the IRA, cutting audits
with zero or minimal outcome might lead to a net gain for the x percent of discarded
audits because the loss from not auditing is lower than the cost of the audit (even
without replacing them with audits with higher predicted evasion). More specifically,
we consider how much TaxEva and TaxGot would be lost if the x% of audited tax
returns with the lowest predicted outcome were not audited. Because we observe the
actual outcomes for these tax returns, this is a straightforward calculation and results
in the Lorenz-type curves in Figure 3.19 We present Lorenz-type curves for both Tax-
Eva (green line) and TaxGot (orange line). For each percentage x of discarded tax
returns, the curves show the percentage reduction (100 · (1− Y k,x

A /Y k)) in each out-
come, respectively. For example, the green line shows that if we were to discard the
lower 40% audits based on their machine-learning predicted tax evasion, the actual
amount of tax evasion that would be lost is around 20%. The forty-five-degree line
depicts the percentage reduction in each outcome (the loss) resulting from a random
discarding of audits - discarding 40% of audits at random yields a 40% reduction in
total evasion detected and total evasion recovered. It is linear with a slope of one
because discarding at random involves no selection. The average value of randomly
discarded audits regarding evaded income (recovered evasion) is independent of x.
The Lorenz-type curves show that the loss in terms of each outcome of discarding
audits with the lowest-predicted outcomes is very small. Indeed, discarding the worst
10% of audits is associated with less than a 3.1% loss of detected tax evaded and
2.8% of recovered tax evasion.

The IRA conducts routine audits at standard costs. Conversations with IRA
officials informed us that an internal assessment of the cost per audit is around €1,700.
This amount is similar to that reported as the cost to the United States IRS at
$2,278 per audit (Government Accountability Office, 2012). Sorting by predicted
TaxGot, the lowest-ranked 9% of audits recover less than this amount. We plot a dot
on the figure to indicate this break-even point. Of this 9%, 80% generates exactly
zero TaxGot. Eliminating audits below the break-even would reduce recovered tax

19A Lorenz curve shows the share lost by discarding the lowest x% of actual outcomes. The
Lorenz-type curves we present instead show the share lost by discarding the lowest x% of predicted
outcomes.
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Fig. 3. Loss from discarding the lowest predicted evasion audits.
Notes: This figure reports in the y-axis the percentage of the total amount of tax evaded
(green line), and recovered tax evaded (orange line) lost by not auditing in each office a
given percentage of audits with the lowest predicted tax evaded and the lowest predicted
recovered tax evaded, respectively.The x-axis reports the discarded percentage. All values
are reported relatively to the status quo total tax evaded or recovered tax evaded by actual
audits conducted by the third year, set at 100 and represented by a dot.

evasion in the testing sample by €1,289,386 and costs by €2,097,800 (number of audits
times €1,700). Even ignoring the human and economic costs of audits on the target
taxpayers, this policy would increase the net recovery by €808,414. Given that our
testing sample is a random 20% extraction of audits over three years, this implies an
annual net recovery for the full population of approximately €1,347,357 (our estimate
multiplied by 5 and divided by three years).20 In our following experiments, we focus
on strategies to replace the discarded audits with others. In those experiments, the
total number of audits and thus total costs are held constant.

Policy B: Discarding audits with low ex-ante promise, replacement us-
ing ML guidance. In the second experiment (Policy B), we use the ranking based

20The basic monetary cost to the IRA is a lower bound to the actual cost. Actual costs also
include the costs borne by the taxpayer in complying with the audit. Additionally, there may be
social costs. For example, our data reveals that audited taxpayers are more likely to close their
business during the three years following an audit than taxpayers who are not audited. Boning
et al. (2023) suggest that the average cost of an individual audit (which might differ from the cost
of auditing a sole proprietorship tax return) is roughly $6,000 with all costs accounted for. Higher
audit costs imply both a higher proportion of discarded returns and a greater avoided cost per
discarded return. Therefore, in our context, underestimating the audit costs would mean that our
results represent the minimum potential gains.
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Fig. 4. Gain from discard and replace policies.
Notes: This figure reports on the y-axis the gain in total outcome of discarding a given
percentage of early tax audits with the lowest predicted outcome and replacing them with
an equal number of tax returns (i) with the highest predicted outcome among those audited
later (Policy B); or (ii) with outcome equal to the average outcome of a late audit (Policy
C); (iii) with the highest predicted outcome among those audited later or never audited
(Policy D). The x-axis reports the discarded percentage. The vertical dashed line indicates
the 10% level of discarding. The outcome variable is detected tax evasion in the left panel
and recovered tax evasion in the right panel. All values are reported relatively to the
status quo total outcome of early audits set at 100 and represented by a dot. The y-
axis is represented on a logarithmic scale. The gray-shaded areas display 95% confidence
intervals of the gain estimates computed performing a bootstrap, resampling returns, and
re-calculating the policy gains for each of the percentiles discarded.

on the predictions for a “discard and replace” exercise, where we first discard the
x percent early audits with the lowest predicted outcome as in Policy A, and then
we “replace” them with an equal number of late audits with the highest predicted
outcome. The total outcome of Policy B is:
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Y k,x
B =

∑
o∈O

2009∑
c=2007

∑
i∈ΦB

o,c

yki ,

with ΦB
o,c = Π

ŷk
i ≥q

k,x
Πo,c

o,c

⋃
Π̃
ŷk

i ≥T
k,x

Π̃o,c
o,c (3)

where we define:
Π̃o,c = Πo,c

⋃
Π
ŷk

i <q
k,x
Πo,c

o,c .

Essentially, to construct the set Π̃
ŷk

i ≥T
k,x

Πo,c
o,c , we combine the potential replacements

from Πo,c with the set of returns discarded from Πo,c (i.e., Π
ŷk

i <q
k,x
Πo,c

o,c ). Then, we choose
from this union the set of replacements; which are selected based on the returns with
the property that ŷki ≥ T k,x

Π̃o,c
. In this way, we ensure that the replacement’s predicted

value is not lower than the predicted value of any discarded return.
For each percentile x, we compute the gain associated to the Policy B as a ratio

Y k,x
B /Y k, and we illustrate how the gain changes as a function of x. This exercise

relies on the longitudinal dimension of our data. Our data feature the universe of
the tax returns that were audited over a five-year cycle. In our exercise, the pool of
audits eligible for discarding (i.e., Πo,c) consists of the set of tax returns filed in the
years c ={2007,2008,2009}, whose audits occurred 1, 2, or 3 years after filing returns.
The donor pool for replacement audits (i.e., Πo,c) consists in the set of tax returns
filed in the same years and offices, whose audits occurred 4 or 5 years after filing
returns. These tax returns in the donor pool are a valid counterfactual because of
three institutional features: i) they were available to audit at the time of decision for
the tax returns in our consideration sample, ii) they had their tax return information
locked in and so there is no risk of this information changing, and iii) they were
ultimately actually audited, and so have been selected into audit and have observable
outcomes.21, 22 By revealed preference, tax returns that are available for an audit and

21Examining observable characteristics of tax returns audited at different ages, we find that tax re-
turns with higher declared turnover and taxable income are audited sooner. However, conditional on
our measure of predicted evasion, we find no systematic difference in actual observed evasion (either
detected or recovered) between early and late audits. This is shown in Figure A2 in Appendix B.
We interpret this as evidence that there is no systematic difference in the selection on unobservables
between early and late audits. This is further confirmed by conversations with IRA representatives,
which reveal that criteria for selection do not depend on the years since filing returns.

22In our context, we want to measure how the total outcome would change if we discard some
returns and replace them with some others. Here, the counterfactual is the value of the replaced
returns. For unaudited returns, this is not directly observable, but for those returns audited later,
we know the value. If these late audits had been audited earlier (replacing the discarded returns),
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overlooked in a given year are considered less promising by the IRA. The solid-line
in Figure 4 shows very substantial gains of Policy B of this “discard and replace”
exercise on TaxEva (left panel) and TaxGot (right panel). The effects are expressed
in percentage of the aggregate amount of TaxEva and TaxGot that is obtained by
the IRA in the actual audits in our sample (status quo). At a 10% discard rate,
this policy would increase the aggregate TaxEva by 39% and the aggregate TaxGot
by 29%, compared to status quo. In aggregate monetary terms, this amounts to an
increase in detected evasion of 175 million euro and an increase in recovered evasion of
28 million euro per year. We account for the uncertainty from the sample of returns
in our data by displaying the estimates with 95% bootstrapped confidence intervals.23

Since the IRA selection of audits typically occurs at the local office level, our
baseline results consider only replacements within the same local office.24 However, in
principle, there could be greater gains from being able to replace from a broader pool.
In Appendix E, we consider replacements from tax returns drawn within higher-level
IRA offices, i.e., the same province, the same region, or anywhere in the country.
While most of the gains are captured by replacing simply within the same office,
reallocation at a higher level increases the total outcome further. With reference to
the gains in TaxEva, after a 10% replacement under Policy B, reallocating within
office implies a 39% gain, while reallocating at the province, region, and country level
increases TaxEva by 43%, 48%, and 50%, respectively. This exercise suggests that
some current organizational choices may be suboptimal.

Policy C: Discarding audits with low ex-ante promise, replacement with
an average audit. The third experiment (Policy C ) does not require the use of an
ML algorithm for the selection of replacements. In this exercise, we discard the x
percent of early audits with the lowest predicted outcome and replace them with an
equal number of tax returns with outcomes equal to the average outcome among the
tax returns of cohort c audited at any time by office o. The total outcome of Policy
C is:
the outcome assessed by the audit would be the same.

23To compute these confidence intervals, we perform a bootstrap with 200 replications by re-
sampling returns (and their associated predictions). We then re-calculate our discard and replace
exercise for each of the percentiles discarded. We compute the confidence interval half-widths as
1.96 times the percentile-specific standard deviation of the bootstrapped estimates. In this exer-
cise, we sample the original predicted evasion alongside the actual evasion amounts. As such, these
confidence intervals capture uncertainty from the idiosyncratic aspects of which returns can be dis-
carded or replaced. However, they do not capture the uncertainty from the prediction stage of our
procedure. The computational requirements of the RF prevent us from nesting estimation of the
prediction model within each bootstrap replication.

24There are 288 offices.
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Y k,x
C,o,c = Y k,x

A,o,c +
∑
o∈O

2009∑
c=2007

(
Nk,x

ΦA
o,c
· E(ŷki |i ∈ Πo,c)

)
. (4)

The assumption here is that the authority has (at least locally) constant returns to
auditing: if a small fraction of the audits is removed, the revenue agency can replace
them with a similar average return. This assumption is motivated by the fact that
the authority is severely constrained in terms of resources, and so can audit only a
tiny fraction of tax returns. This problem resembles that of a top university selecting
prospective students: the tiny fraction of accepted applicants is not dissimilar to the
next 5% of rejected candidates. For each percentile x, we calculate the gain of Policy
C as a ratio Y k,x

C /Y k , and illustrate how it changes as a function of x.25 To isolate
the benefits of an ML-guided discarding from those of an ML-guided selection of
replacements, we compare the gains of Policy B with Policy C.

In Figure 4, the solid line with diamonds represents Y k,x
C /Y k,∀x, in Policy C, that

is when we consider the average among the late audits.26 Compared to Policy B, this
leads to a more modest but still meaningful improvement with respect to the status
quo. For example, replacing the lowest 10% produces an overall 6.5% improvement
relative to the status quo in TaxEva and 7.4% in TaxGot. These correspond to an
additional annual 29 million euro of TaxEva and 7 million euro of TaxGot.27

Policy D: Discarding audits with low ex-ante promise, replacement from
all returns using ML guidance, ignoring the selective label problem. Finally,
we consider an exercise where the selective labels problem is ignored (Policy D). In this
exercise, the early audits discarded as in Policy A are replaced with the tax returns
available for audit with the highest predicted outcome. Here, the set of candidate
replacements includes the large number of those that were never audited. The total
outcome obtained by Policy D uses the predicted outcome for the non-audited tax
returns selected as replacements:

25We have also explored an alternative version of Policy C, where, after discarding the early
audits with the lowest predicted evasion, we replace them with an equal number of late audits
selected randomly. Monte Carlo simulations in Appendix D show that this variation yields similar
results.

26The line is roughly unchanged if we consider the average of all tax returns because the average
quality of tax returns audited 1 to 3 years after filing is similar to that of the tax returns that are
audited 4 or 5 years after filing.

27The line for Policy C decreases for high replacement rates because the very last audits discarded
are high-value audits, which are then replaced with an “average” audit which is worse. For Policy
B, we allow the discarded audits to be available in the replacement pool; so that the line of Policy
B should never go down. The turning point (where the slope for Policy C changes from positive to
negative) indicates where the discarded audits are the same as the “average” replacement audit.
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Y k,x
D =

∑
o∈O

2009∑
c=2007

∑
i∈ΦD

o,c

ỹki ,

with ΦD
o,c = Π

ŷk
i ≥q

k,x
Πo,c

o,c

⋃[
Ω̃o,c

]ŷk
i ≥T

k,x

Ω̃o,c ,

ỹki = yki if i ∈ Πo,c

ỹki = ŷki if i /∈ Πo,c (5)

and where we define:

Ω̃o,c =
[
Ωo,c − Π

ŷk
i ≥q

k,x
Πo,c

o,c

]
.

The set Ω̃o,c consists of all possible tax returns i excepting the early returns that are
not discarded. Then, we select from this set the highest-predicted returns to replace
those discarded, ŷki ≥ T k,x

Ω̃o,c
.

Similarly to Policies B and C, we display the gain associated with Policy D as a
ratio Ỹ k,x

D /Y k for each percentile x. The dashed line in Figure 4 depicts the gains
that are obtained under Policy D. This is when the discarded tax returns are replaced
by the tax returns with the highest predicted outcomes from the full set of audited
and unaudited tax returns from the same cohort and office as those discarded. This
strategy not only considers a larger pool of donors but also relies on the accuracy of
the predictions of our model to impute the value of the never-audited tax returns.
Differently from Policy B, we cannot verify this directly, so we consider these results
as speculative. The dashed lines in Figure 4 show that in our context, this practice
would lead to estimated gains that are extremely large. These gains amount to 83%
of the status quo (or 373 million euro) for TaxEva and 65% (or 63 million euro) for
TaxGot.

Taken together, these exercises show that the range of possible gains from ML
guidance of audit selection may be wide, depending on the fraction discarded and the
thought experiment behind replacement. In all cases, the gains would be a meaningful
improvement with respect to the status quo.

6 Extensions

Gains of random forest versus linear models. To explore how much of the
gains depend on the specific prediction model, we repeat the policy experiments us-
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Fig. 5. Loss from discarding by prediction model.
Notes: This figure reports on the y-axis the loss in total outcome of discarding in total out-
come of discarding a given percentage of early tax audits with the lowest predicted outcome
variable by prediction model. The loss reported is computed by using the predictions of a
random forest model in the solid line, of a LASSO model in the long dashed line, of an OLS
model in the short dashed line. The x-axis reports the discarded percentage. The outcome
variable is detected tax evasion in the left panel and recovered tax evasion in the right panel.
All values are reported relatively to the status quo total outcome of early audits set at 100
and represented by a dot.

ing the predictions of OLS and LASSO models. Figure 5 displays Lorenz-type curves
reporting the percentage reduction (Y k,x

A /Y k) in TaxEva (left panel) and TaxGot

(right panel) when discarding the audited tax returns with the lowest predicted out-
come, separately by prediction model. For TaxEva, we find that the RF is better at
ranking tax audits relative to the OLS and LASSO models since the curve is further
away from the 45-degree line. For TaxGot, the difference between the curves is much
smaller. Figure 6 compares the gain from discarding the x% early tax audits with
the lowest predicted evasion and replacing them with an equal number of late tax
audits with the highest predicted evasion, under different prediction models. The RF
model (solid lines) returns a higher total gain Y k,x

B /Y
k than both the LASSO and OLS

models (dashed and dotted lines, respectively) for both variables. By discarding-and-
replacing 10% of audits, total TaxEva increases by 31% using either OLS or LASSO,
compared to 39% using the RF model. The gains for TaxGot are more similar to
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Fig. 6. Gain from Policy B discard and replace by prediction model.
Notes: This figure reports on the y-axis the gain in total outcome of discarding a given
percentage of early tax audits with the lowest predicted outcome variable and replacing
them with an equal number of tax returns with the highest predicted outcome among those
audited later (Policy B) by prediction model. The gain reported is computed by using
the predictions of a random forest model in the solid line, of a LASSO model in the long
dashed line, of an OLS model in the short dashed line. The x-axis reports the discarded
percentage. The vertical dashed line indicates the 10% level of discarding. The outcome
variable is detected tax evasion in the left panel and recovered tax evasion in the right panel.
All values are reported relatively to the status quo total outcome of early audits set at 100
and represented by a dot. The gray-shaded areas display 95% confidence intervals of the
gain estimates computed performing a bootstrap, resampling returns, and re-calculating
the policy gains for each of the percentiles discarded.

those of the RF (26% using OLS and 23% using LASSO compared to 29% using RF).
We further explore the sources of these gains. As mentioned in Section 4, a first

source of difference may be that the RF model allows for nonlinear functions of the
predictors. However, when repeating our policy exercises with OLS and LASSO
models augmented by polynomials or interaction terms (see Section 4 and Table
1, Panel B), the "discard and replace" results do not change very much compared
to the baseline (see Appendix Figure A7). We take this as evidence against the
hypothesis that the main source of the gains in the RF model is its ability to include
nonlinearities. Another candidate reason for the difference is that the statistical model
for OLS and LASSO allows extrapolation beyond the support of the data, potentially
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Fig. 7. Differences in model fit of OLS and LASSO relative to RF.
Notes: This figure reports the difference between the detected tax evasion (left panel) and
the recovered tax evasion (right panel) of realized audits in the testing sample by percentiles
of values predicted by the random forest and an alternative prediction model. Diamonds
and squares denote the differences between the set of values predicted in the p-th percentile
by the random forest and the OLS and LASSO, respectively. The solid and dotted lines
depict the relationship fitted using a local linear regression with a triangle kernel and a
bandwidth of five.

leading to extreme predictions. RF, however, avoids extrapolating predicted values
beyond the training data. The handling of extrapolation by these models may interact
with our "discard and replace" exercise, which depends on identifying returns with
the most extreme predicted values. Such exercises could be particularly sensitive to
extrapolation errors.

To examine the possibility of different extrapolation biases, we consider the differ-
ence in prediction quality when tax returns are sorted by percentiles. We compute the
mean actual evasion for observations in the first percentile of OLS-based predicted
evasion, and compare this to the mean actual evasion for observations in the first
percentile of RF-based predicted evasion. We make this comparison percentile-by-
percentile. Figure 7 shows these differences for RF-OLS percentiles and RF-LASSO
percentiles. For example, the first diamond tells us that the 1% lowest RF-predicted
evasion returns have, on average, 4,471 Euro less actual evasion per return than the
lowest 1% OLS-predicted evasion returns. Therefore, when discarding returns with
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low predicted evasion, using the RF-selected returns will result in less actual evasion
discarded. On the other end of the graph, the top 1% RF-predicted evasion returns
have an average 65,667 Euro per return higher than their OLS counterparts. This
shows that replacing with RF-based predictions will lead to much more evasion being
detected. Figure 7 shows a few additional patterns of interest. First, the patterns for
RF compared to LASSO are similar to those for RF compared to OLS. Second, the
percentile-by-percentile differences are noisy. We add a local linear estimate (using a
triangle kernel and a bandwidth of five percentiles) to smooth out the noise. Third,
while RF does better both at the highest- and lowest-predicted percentiles, the mag-
nitude of improvement is greater for the highest percentiles. This evidence indicates
that the improvement in RF primarily comes from finding better replacements. We
speculate that this, in turn, results from OLS (and LASSO) being subject to greater
extrapolation errors for top-predicted evasion returns. Our conjecture is consistent
with the observation that the gains for TaxGot are much smaller. Because large
evaders on the right tails of the distribution of TaxEva often do not pay back the
money (TaxGot=0), the distribution of TaxGot features a lower number of extreme
observations.28

Tradeoffs between targeting TaxEva vs. TaxGot. A key challenge in any
policy prediction problem is that the specific goal of the policymaker is usually un-
known. This is the “omitted payoff bias” problem. In our context, as discussed in the
introduction, the ultimate goal of the IRA is explicitly articulated by law. Following
the advice of IRA officials, we have translated the legal mandate into the two objec-
tives of maximizing detected and recovered evasion, and we have designed algorithms
tailored to best predict each of the two policymaker goals, which we have labeled
TaxEva and TaxGot outcomes. The next question is whether there are tradeoffs be-
tween these two measures. First, we note that a policy of discarding audits based on
predictions for one measure can result in reduced improvements for the other mea-
sure. Appendix C shows that the dominant predictors in the RF differ somewhat
between TaxEva and TaxGot. Also, among our pooled testing sample, the correlation
coefficient between predicted TaxEva and predicted TaxGot is only 0.55. This implies
that targeting tax returns to discard (and/or replace) based on the “wrong measure”
can reduce the value of the exercise.

To gain insight into the tradeoffs across these outcomes, we model the auditors’
goal as trying to maximize predicted TaxEva, subject to a constraint on the minimum

28The coefficient of variation for the distribution of TaxEva is 5.4 versus 3.7 for TaxGot, con-
firming a higher spread (compared to the mean) of the first distribution.
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Fig. 8. Tradeoffs between detected and recovered tax evasion.
Notes: This figure reports the detected tax evasion per tax return (x-axis) against the
recovered evasion per tax return (y-axis) after discarding the tax returns with the lowest
predicted utility and replacing them with the same number of tax returns with the highest
predicted utility at the office level (Policy B). Each line reports a different percentage of
"discard and replace" values, and each point along a line represents different combinations
of utility weights on the two policy goals, namely maximizing detected tax evasion and
recovered tax evasion. The status quo levels are represented by a dot.

amount of predicted TaxGot. We do this by selecting the set I of replacement audits
from the donor set (i.e., Πo,c for policy B) in order to maximize the Lagrangian
function:

L (λ, I) =
∑
j∈I

ŷTaxEvaj + λ
∑
j∈I

ŷTaxGotj (6)

where λ is a parameter that calibrates how much importance we give to TaxGot

as a criterion for selection. The predictions for this choice problem come from our
prediction model: ŷj

TaxEva = ϕTaxEva(Zj), ŷjTaxGot = ϕTaxGot(Zj). A value λ =
0 corresponds to the case in which we ignore TaxGot; the larger is λ, the more
importance we assign to TaxGot as a criterion for selection. Maximizing L

(
λ,Πo,c

)
corresponds to selecting the replacement returns among the top returns according to
the criterion:
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κ
(
ŷTaxEvaj , ŷTaxGotj

)
= α ·

(
ŷj
TaxEva

)
+ (1− α) ·

(
ŷj
TaxGot

)
(7)

for α = 1
1+λ ∈ [0, 1] . As we change λ in [0,∞) (or equivalently α in [0, 1]), we trace the

feasible values of∑j∈I ŷ
TaxEva
j and∑j∈I ŷ

TaxGot
j and thus the trade-off between the two

objectives. Here, no constraint on the minimum for predicted TaxGot corresponds
to α = 1, and a constraint of pursuing the maximum possible predicted TaxGot
corresponds to α = 0.

For each tax return, we compute the index in (7) for a range of values α ∈ [0, 1].
For each value of α, we rank them according to their value κ

(
ŷTaxEvaj , ŷTaxGotj

)
and

implement our “discard and replace” exercise, where we replace with the best available
tax returns from the donor pool of tax returns audited at later ages (Policy B). Each
line in Figure 8 shows the average TaxEva and TaxGot per tax return by discarding
and replacing a given percentage of tax returns, as indicated on the left end of each
line. The dashed line corresponds to a 10% discard rate. When the criterion for
selection of a tax return depends only on predicted TaxEva (α = 1), our model
results in point E ; when it depends only on predicted TaxGot (α = 0) our model
results in point G. The other points on the line represent intermediate degrees of
weighting the two policy goals.

We highlight two features of these results. First, and in line with Figure 4, Figure
8 shows that there is great scope for improving the selection of tax returns. Second,
Figure 8 shows that when the policy objective is a simple function as in (7), even
targeting either measure may dramatically improve both outcomes, compared to the
status quo (represented by a dot). However, there is some tradeoff between targeting
only TaxGot versus targeting only TaxEva. Under a 10% replacement rate, targeting
TaxEva only (α = 1) produces a 39% increase over the status quo in TaxEva, and a
10% increase in TaxGot. On the other hand, targeting TaxGot only (α = 0) produces
a 8% increase over status quo in TaxEva, and a 29% increase in TaxGot. In this sense,
the tradeoffs are roughly symmetric across the two measures, in terms of percentage
increase over the status quo.

Algorithmic Fairness and Vertical Equity. The adoption of a ML-guided
selection in the policy exercises might inadvertently result in the disproportionate
reallocation of audits towards tax returns in specific income groups and sectors. This
would generate concerns around the algorithm’s fairness as highlighted by Black et al.
(2022). Additionally, the reallocation could imply lower deterrence effects in those
income groups or sectors less targeted by the algorithm. To address these concerns, in
Appendix E, we repeat the “discard and replace” exercise by choosing replacement tax
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returns only within deciles of taxable income or within business sectors. We show that
when replacing the tax returns with the lowest 10% of predicted TaxEva, the gains of
Policy B and Policy D (39% and 83%, respectively) are reduced to 18% and 10% when
replacements of discarded tax returns are limited to tax returns in the same income
decile as the discarded ones, and to 18% and 15% when replacements are limited to
tax returns in the same business sector. This shows that there are considerable gains
from replacement, even when keeping the composition of key characteristics broadly
unchanged for the audited tax returns.

To further investigate whether the new selection of tax returns is undesirable
along additional margins, we compare the average observable characteristics of the
discarded and replaced tax returns under these different replacement schemes. Table
A3 in Appendix E shows that the ML algorithms select replacement tax returns
filed by taxpayers with similar demographic characteristics to the ones who filed the
discarded tax returns and managing similar businesses.

7 Concluding Remarks

This paper explores the extent to which ML can be used to improve audit selection.
We use a prediction model to calculate gains from a “discarding” exercise, where the
audits with the lowest predicted outcomes are discarded, and a “discard and replace”
exercise, where these audits are discarded and then replaced with audits from an
alternative donor pool. The discard-only exercise shows that ML can be reliably used
to identify poorly performing audits: in an out-of-sample analysis, we find that the
audits with the lowest 9% predicted outcome recover less than the material cost of
conducting the audit.

The “discard and replace” exercise poses a significant challenge as actual outcomes
for most tax returns are typically not observed, because they did not receive an audit.
We propose a novel solution to address this challenge. Because the IRA has a 5-year-
window for auditing a tax return, we devise a methodology where we focus on the
selection by the third year of audit eligibility, and we use as counterfactuals the
tax returns unaudited by the third year but audited at a later stage. This allows
for the use of tax returns that were available at the time of the audit selection but
were neglected for predictably inferior choices. Since these tax returns were later
audited, we can use the observed outcome of the audit to assess the gains from the
replacement. Even if we restrict replacements to tax returns from the same office,
we find substantial improvements over the status quo in terms of the detected and
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recovered evasion. At a 10% discard rate, selecting the replacements using ML from
this pool yields an improvement of 39% in TaxEva, and of 29% in TaxGot. Allowing
replacements to be selected from the larger pool of unaudited tax returns and using
the predicted value to evaluate them, yields much larger improvements: at a 10%
discard rate, selecting the replacements using ML from the larger pool yields an
improvement of 83% in TaxEva, and of 65% in TaxGot.

As a lower-bound assessment, we also evaluate the potential improvements when
replacements are selected at random from the pool of audited tax returns, both lim-
iting the pool of replacements to tax returns that were later audited and to the larger
pool of audited tax returns. The idea is that if only a small fraction of audited tax
returns is discarded and replaced, the tax agency can at least select replacements
that have detected or recovered evasion equal to the average value among the audits.
Although the improvements are naturally smaller in this case, they remain significant:
at a 10% discard rate, selecting the replacements at random yields an improvement
of about 7% in TaxEva, and of 8% in TaxGot, independently of whether the pool is
restricted or not.

While in theory, it is possible that implementing ML-guided audit selection would
prompt taxpayers to adjust their behavior, our observations on enhancing current
policies remain relevant for at least two key reasons. First, the audit selection pol-
icy (and any changes to it) is unobserved by the taxpayers. Thus, even assuming
full rationality and forward-looking expectations, taxpayers would take a substan-
tial amount of time to learn and adapt to the new policy. It is important to notice
that our strategy leaves the average audit probability and its distribution across ge-
ographical locations (288 local offices of the tax authority) unchanged. We modify
the composition of the audited taxpayers, prioritizing those identified by the ML al-
gorithm as more likely to evade taxes.29 Secondly, and arguably most crucially, our
analysis does not imply that the IRA should only update its policies using existing
data once. Instead, the policy should continuously monitor behavior and interactively
adjust over time. The results presented above should be interpreted as an indication
of improvement opportunities.

Although our application of ML tools is focused on sole proprietors, it can be
extended to other taxpayer categories. This extension is possible because tax return

29If taxpayers adjust their behavior in response to the average audit probability, we expect no
reaction; if they act strategically, evaders who now understand that they are more likely to be
included in the list of audits should evade less (report more) in hopes that of avoiding an audit. If
so, our estimates of the benefits of using ML techniques to direct audit selection represent a lower
bound of the equilibrium effect once taxpayers’ responses (if any) are factored in.
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and audit procedures are uniform across all types of taxpayers. Any tax return,
regardless of the entity generating the income, can undergo audit within 5 years of
filing. Therefore, the approach developed in this study can be adapted for use with
all tax returns and in various countries with comparable audit systems.
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APPENDIX

A Data: Further Details

Our data includes the universe of tax returns and audits to Italian sole proprietorship
taxpayers. This is the category of tax filers that contributes the most to aggregate
tax evasion in Italy, as well as in other countries. According to estimates from the
Italian Treasury Ministry, in 2018 in Italy, small business (mostly registered as sole-
proprietorship business) account for 60% of the total evasion detected from firms’
reporting, an amount equal to €8.9 billion (Ministero dell’Economia e delle Finanze,
2019). The U.S. Internal Revenue Service (IRS) estimates that the lost federal tax
revenue due to underreported individual income was 197 billion dollars in 2001 (18%
of the individual income tax liability; U.S. Department of the Treasury, 2006). Johns
and Slemrod (2010) report that in the U.S. 57% of self-employed income is misre-
ported, in contrast to only 1% of wages and salaries. Similarly, Artavanis et al. (2016)
document that in Greece, evasion by the self-employed accounts for large losses in
the public budget.
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Table A1
Summary statistics - Audited tax returns.

mean median std. dev. 10th pct. 90th pct.
Audit 0.021 0 0.143 0 0
Agriculture 0.007 0 0.083 0 0
Trade 0.024 0 0.154 0 0
Construction and manufacturing 0.024 0 0.154 0 0
Private services 0.022 0 0.146 0 0
Health, education, recreational services 0.017 0 0.127 0 0

Delinquency 0.437 0 0.496 0 1
Agriculture 0.340 0 0.474 0 1
Trade 0.433 0 0.496 0 1
Construction and manufacturing 0.556 1 0.497 0 1
Private services 0.397 0 0.489 0 1
Health, education, recreational services 0.238 0 0.426 0 1

Appeal 0.067 0 0.251 0 0
Agriculture 0.073 0 0.261 0 0
Trade 0.067 0 0.250 0 0
Construction and manufacturing 0.060 0 0.237 0 0
Private services 0.071 0 0.257 0 0
Health, education, recreational services 0.070 0 0.255 0 0

Positive evasion 0.765 1 0.424 0 1
Taxable income 22,633 12,992 52,522 0 49,072
Detected tax evasion (TaxEva) 20,053 3,704 91,794 0 31,310
Recovered tax evasion (TaxGot) 4,451 0 14,273 0 10,853
Years of activity 13.279 11 10.408 0 29
N. employees 0.825 0 3.121 0 2
Turnover 84,560 33,918 2,580,718 3,017 167,648
Notes: The sample includes 18,766,176 tax returns of 4,721,593 sole-proprietors for income years
2007-2012. 257,701 returns filed by 199,259 different taxpayers are audited. Audit, delinquency,
and appeal are calculated considering tax returns with complete fiscal cycles (2007, 2008, 2009 tax
returns, number of observations: 9,728,061). Financial accounts are expressed in euro. Detected
and recovered tax evasion are reported after winsorization.

Table A1 shows summary statistics. The sample includes 18,766,176 tax returns
of income produced in the years 2007-2012 by 4,721,593 sole-proprietorship taxpay-
ers. Among these tax returns, 257,701 returns filed by 199,259 different taxpayers
receive an audit. The probability of receiving an audit over the five years after fil-
ing tax returns is 2.1% and similar across sectors, except for businesses operating in
agriculture that have a much lower audit rate (0.7%).30 Among audited tax returns,
the delinquency rate is 44%, and varies across sectors. About 56% of audited tax-
payers operating in construction and manufacturing (e.g., small construction firms,

30In comparison, the U.S. Government Accountability Office (2009) reports that the IRS in 2008
audited about 1% of estimated noncompliant sole proprietors.
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plumbers, artisans, bakers) do not pay back the detected evasion. Businesses pro-
viding services in trade and private services (e.g., lawyers, hairstylists, coffee shop
owners, architects) have a delinquency rate of 43% and 40%, respectively. Finally,
businesses in agriculture are delinquent 34% of the time, and those providing health,
education, and recreational services (e.g., physicians, dentists) are delinquent 24% of
the time. The probability that the taxpayer appeals the audit is on average 7%, with
low variation across sectors: the appeal rate ranges between 6% for construction and
manufacturing and 7.3% for agriculture.

Audits detect evasion in 77% of the cases. The average detected tax evasion is
€20,053, with a quite dispersed distribution (min: 0, max: 21,884,085 before win-
sorization). Evasion is a substantial share of the taxable income declared: on aver-
age, it amounts to 67% of the taxable income. The average recovered tax evasion is
€4,451.31

The average audited taxpayer has been in operation for 13 years, only 24% of the
businesses have employees and those with employees on average employ 3.4 work-
ers. The average reported turnover is €84,560, with relevant heterogeneity (standard
deviation: €33,918; 90th percentile €167,648) partly reflecting differences across in-
dustries.

Figure A1 shows the relationship between the detected tax evasion and the delin-
quency rate, as measured by the ratio between the number of audited tax returns
for which no payment is received in due time among those who are found to have
positive evasion. The figure shows a marked non-linearity: the delinquency rate is
much higher for tax returns with high evasion.

B Model Performance: Further Details

Alternative sets of predictors. A key decision that characterizes the prediction
model is the choice of predictors. We use the full set of variables reported in the
tax returns, combinations of those variables and dummy variables at the province
and at the 2-digit sector level (100 and 21 variables, respectively) as our baseline
set of predictors. In addition, we exploit the granularity of the geographical and

31We can only measure the evasion detected by an audit. In principle, this could miss sophisticated
evasion approaches. In the US context, Guyton et al. (2021) show that detected evasion falls at the
extreme top of the income distribution, which is evidence for this type of sophisticated evasion. In
contrast, looking at more granular percentiles within the top 1% of our data, we do not find drops
in the detected share of evasion. This suggests that the tax evaders in our context are not pursuing
these sophisticated strategies.

34



Fig. A1. Distribution of the delinquency rate by percentiles of detected tax evasion.
Notes: This figure reports the delinquency rate for the percentiles of positive detected tax
evasion.

sectoral information contained in the data using Mundlak-type predictors (Mundlak,
1978), defined as the average at the municipality and at the 5-digit sector level of
two key financial accounts, namely taxable income and turnover. In Table A2, Panel
A, we test the sensitivity of our algorithm to alternative sets of predictors. First, we
show that by substituting the Mundlak controls with the 5-digit sector fixed effects
(with or without the Mundlak municipality variables) leads to a similar prediction
accuracy. Second, we evaluate the explanatory power of different types of variables by
eliminating different sets of controls in turn. When removing the Mundlak controls,
the fit of the model changes only slightly, for both outcomes. When removing detailed
financial variables, there is instead an important reduction in the fit of the model
for tax evasion, while the improvement for recovered tax evasion proxy is minor,
suggesting that the full set of financial accounts does not help much in predicting
delinquency.32 On the other hand, both TaxEva and TaxGot show a strong sectoral
and geographical dimension: when removing sector and province fixed effects (last
row), the performance of the model for both variables is dramatically reduced.33

32A basic set of financial variables is included in all models. This set includes the reported taxable
income (both the value and its logarithm), a dummy equal to one if the reported taxable income was
positive, reported taxable income net of employees’ deductions, gross income, revenues, total assets,
total liabilities, net value of production, VAT taxable turnover, total taxable revenues, operating
costs, amortized costs, and VAT transactions.

33We also experimented with the use of lagged variables as additional controls. Results show that
the performance remains roughly unchanged. However, the use of lagged variables however reduces
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Table A2
Comparison across random forest specifications.

A. Alternative Sets of Predictors

Predictors N. predictors N. obs. Out-of-sample R-squared Out-of-sample RMSE
TaxEva TaxGot TaxEva TaxGot

5 dgt sector FE 1,467 40,553 0.131 0.082 90,021 13,220
5 dgt sector FE + Mundlak’s municipality 1,469 40,553 0.131 0.083 90,029 13,218
Mundlak’s municipality & 5-dgt sector† 255 40,553 0.131 0.083 90,032 13,213
no Mundlak’s controls 251 40,553 0.127 0.082 90,251 13,225
no detailed financial accounts 150 40,553 0.093 0.081 91,994 13,232
no province and 2-dgt sector FE 20 40,553 0.072 0.065 93,048 13,347

B. Alternative Training and Testing Samples

Training sample Testing sample Out-of-sample R-squared Out-of-sample RMSE
Return year Audit year Return year Audit year N. obs. TaxEva TaxGot TaxEva TaxGot
2007–2009† 2009–2014† 2007–2009† 2009–2014† 40,553 0.131 0.083 90,032 13,213
2007–2009† 2009–2014† 2010–2012 2011–2014 11,078 0.128 0.078 72,020 15,247
2007–2009† 2009–2011 2007–2009† 2012-2014 23,290 0.088 0.072 89,458 13,881
2007–2009† 2009–2014† 2007–2009† 2012-2014 23,290 0.106 0.085 88,573 13,781
2007–2009† 2009–2014* 2007–2009† 2012-2014 23,290 0.095 0.081 89,115 13,813
Notes: This table reports measures of fit computed on the testing sample. "Return year" is the year
when the income declared in the tax return is generated. † indicates the baseline specification. The
training sample includes 161,940 tax returns audited between 2009 and 2014 (baseline) and 67,924
tax returns audited between audit years 2009 and 2011. * indicates that the training set is a random
extraction of tax returns audited between 2009 and 2014 of size equal to the number of audits in the
years 2009–2011. We report the average goodness of fit over 10 such random extractions.

Model stability over time. Our baseline model is trained using a random 80%
sample of tax returns of income produced in years 2007-2009, and it is tested on the
remaining 20% of that set of tax returns. In Panel B, to assess stability over longer
periods of time, we test the performance of our model trained on tax returns of years
2007-2009 to predict evasion in tax returns of income produced in later years (2010-
2013). The measures of fit of the latter model (second row) are similar to those of
the baseline model (first row of the panel).

Alternative training and testing samples. To maximize the number of ob-
served audits in our baseline model, we use the 2007-2009 tax returns audited over
the entire period (years 2009 - 2014). A potential concern could arise if later calendar
year audits’ outcomes incorporate critical information from the revealed outcomes of
early audits. In principle, this could inflate the performance of our model, because
some audits at time t could be informed by information not available at time t. To
assess the scope of this issue, we recompute the performance of our model, enforcing
a clean separation between training and testing data. We train the model from 2007-
2009 tax returns audited in years 2009-2011, and test it on 2007-2009 tax returns

the number of years of audits that can be included and substantially reduces the sample size.
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audited in years 2012-2014.34 In the third row of Panel B, we report the fit measures
for this different setting. Results show a mild decline in performance. The R-squared
for TaxEva falls to 0.088, whereas the one for TaxGot goes to 0.072. This reduction
might be due to a change in the testing sample, the use of a smaller training sample,
the relevance of future information for prediction, or sampling luck. We perform the
following exercises to understand how much of the reduction in fit could be accounted
for by a change in testing data or a reduction in the training sample size. First, we
repeat our row-3 exercise when using our baseline training sample (from row 1) as
training sample. Second, we extract a random number of observations from the base-
line training sample (from row 1) equal to the number of observations from the earlier
audits training sample (from row 3). We repeat the random extraction ten times and
then measure the average change in fit when considering the testing sample of late
audits. The last two rows of Panel B show that a large part of the decline in perfor-
mance is due to these factors rather than to relevant future information. We conclude
that there is no significant concern about using the full range of audit years in our
baseline sample. To maximize the sample size for training our model, we choose the
specification that uses a training sample with tax returns audited at any time as our
baseline specification.

Early versus late audits. Finally, we test whether the model’s performance
is similar when tax returns are audited at different times. This check is important
since in our “discard and replace” exercise the discarded audits are those audited
soon after filing tax returns (e.g., within three years, which we label “early”) and the
replacements come from those that would have been audited later (e.g., four or five
years, labeled “late”). For our exercise to give gains from replacement, the prediction
model needs to consistently rank of tax returns regardless of audit timing. Even
better, its predictions should be equally accurate in levels regardless of whether an
audit is early or late. We examine whether the model’s predictions change in accuracy
between early and late audits. In Figure A2 we reproduce Figure 2 by plotting
separately the average actual outcome (TaxEva and TaxGot) of early and late audits
for each percentile of predicted outcome. The deviations from the predicted evasion
detected and recovered are similar between early and late audits. This suggests that
there are no systematic differences in the selection on unobservables between early
and late audits. This in turn supports our “discard and replace” exercise.

34One may be concerned that audits in 2009-2011 may be systematically different from later
audits if funding to the IRA changed significantly over time. However, funds to the IRA from the
Italian Treasury were pretty stable over our whole sample period, fluctuating only slightly around a
non-trending level of €3.2 billion per year. Data is available upon request.
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Fig. A2. Model fit by audit promptness.
Notes: This figure reports the detected tax evasion (dots) and the recovered tax evasion
(triangles) of realized audits in the testing sample by percentiles of predicted values. Full
and empty geometric figures indicate audits occurred by the third year after filing the
tax return (early audits) and after the third year after filing the tax return (late audits),
respectively. The green line displays the predicted detected tax evasion, and the orange line
displays the recovered tax evasion. The sample includes tax returns of income produced in
the years 2007-2012 that are audited by the IRA. The y-axis is represented on a logarithmic
scale.

C Relevance of Predictors

In this section, we explore which variables are the main drivers of our prediction
model. We investigate the importance of each predictor by computing the Shapley
values, following Štrumbelj and Kononenko (2010). Their idea is to consider the
predictors of a model as players in a cooperative game. Inferring how much a variable
contributes to a prediction should consider the correlation of that variable with the
other predictors. This is analogous to computing how much a player contributes to the
coalition payoff of a cooperative game, where the other players might be complements
or substitutes. The Shapley value is the weighted sum of the marginal contribution of
a predictor value across all possible coalitions. Using the solution in Shapley (1953),
the Shapley value of predictor p in a set of predictors P for observation i is defined
as
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φPp (xi;ϕ) =
∑

x′⊆C(x)\{p}

|x′|!(n− |x′| − 1)!
n! [ϕ(xi|x′ ∪ {p})− ϕ(xi|x′)] (A.1)

where xi is the vector of predictors for observation i and ϕ(·|x′) is the predictive
model trained on the features x′. C(x) \ {p} is the set of possible coalitions of n
variables when excluding the pth variable, and |x′| denotes the number of included
variables. We compute the Shapley values using the SHAP package by Lundberg and
Lee (2017) to deal with computational complexity. To facilitate the interpretation,
we follow Joseph (2020) and compute the Shapley share coefficients as a summary
statistics for the contribution of each predictor xp. The Shapley share coefficients are
defined in the interval [-1,1] as

ΓPp (f̂) ≡
sign (β̂linp )〈 |φPp (xi;ϕ)|∑n

l=1 |φPl (xi;ϕ)|

〉
∆

 , (A.2)

where 〈·〉 computes the average over ∆, for computational tractability, a random
sample of audited returns. sign

(
β̂linp

)
is the sign of the coefficient for predictor p

estimated in a linear regression of the outcome k on the vector of predictors.
Figure A3 reports for each outcome the fifteen most important predictors, accord-

ing to Shapley shares, which are averaged over a random sample of 1,000 observations.
The figure additionally reports the predictors at the 25th, 50th, and 75th percentile
of estimated Shapley shares.

Figure A3 shows that many features have predictive power: the 75th percentile
of predictive power is still meaningfully away from zero. However, by the 50th per-
centile, the predictive power is very small. The main predictors for both variables
are different types of reported income (total, gross, taxable) and income source (real
estate, professional, compensations), turnover, operating costs , and taxes (on pur-
chases and imported intermediate goods, credit, withholdings). Moreover, Mundlak
controls turn out to be among the most important predictors. Interestingly, there is
meaningful variation in the predictive power of some predictors across the two out-
come variables. While some accounts have high Shapley shares for both outcomes,
their sign is the opposite. For example, real estate income is associated simultane-
ously with lower predicted detected evasion and higher recovered evasion. This may
be because it is hard to hide that income, so the evasion of taxpayers with high val-
ues along this dimension is generally low, but whenever it occurs, the tax authority
is more likely to recover the evaded amount of taxes. This underlines the tradeoff
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Fig. A3. Shapley share coefficients.
Notes: This figure reports the importance of different predictors according to the Shapley share
coefficients. The left figure illustrates the predictors of detected tax evasion, and the right figure
shows those of recovered tax evasion. Each figure shows the predictors ordered by the absolute value
of their Shapley share. The fifteen most important predictors and the predictors at the 25th, 50th,
and 75th percentile according to the Shapley shares are displayed. The reported Shapley shares are
based on Shapley values computed on a random subsample of 1,000 observations. “IG” stands for
intermediate goods.

between multiple outcomes when building a prediction model and complements our
discussion in Section 6.

D Discard and Replace Exercise: Further Details

Expanding the geography of the pool of available replacements. In this
section, we repeat our baseline "discard and replace" exercise (Policy B), allowing
discarded and replacement tax returns to come from a broader pool of audits. In other
words, we envision a scenario in which higher-level organizational units of the IRA can
impose replacement of tax returns across tax offices. We consider replacement within
the province, the region, and the whole country. For example, when the province
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is chosen as the organizational unit, we model dropping the 10% of audits with the
lowest predicted outcome (among those that were audited 1-3 years after filing tax
returns) within the province, and replacing them with an equal number of audits on
the tax returns with the highest predicted outcome among later audits (i.e., among
those that were audited 4 or 5 years after filing tax returns) within the province.
Results from these exercises are presented in Figure A4. We show two panels, one
for each outcome, and use different line patterns for different replacement pools. The
solid lines show the results from the baseline "discard and replace" Policy B within
an office and gives the same results as in Figure 4, whereas dashed, dashed-dotted or
dotted lines show the results for using province or region as the organizational units
(with region outperforming province), or the whole country. The picture shows that,
for both outcomes, expanding the organizational level for "discard and replace" can
improve the outcomes, but only modestly.

Montecarlo simulations. In Section 5, we consider replacing with the average
tax return from all tax returns audited 4-5 years after filing (Policy C). Because
the “average tax return” is not a feasible direct choice, in this section we consider
replacement with a random subset of actual tax returns. We conduct 100 simulations,
and in each one, we draw a random subset of tax returns as replacements. The 95%
confidence intervals for this exercise are reported in Figure A5. This figure shows that
the results of these random draws are similar to “replacing with the average” shown
in Section 5. It also shows that there is not a lot of variability across the random
draws.

E Algorithmic Fairness and Vertical Equity: Fur-
ther Details

The adoption of an ML-guided selection in the policy exercises discussed might in-
directly result in the disproportionate reallocation of audits towards tax returns in
specific income groups and sectors, generating concerns around the fairness of the
algorithm as highlighted by Black et al. (2022) analyzing audits selected with ML
classification techniques by the IRS in the United States. At the same time, this
could imply lower deterrence effects in those income groups or sectors that are less
targeted by the algorithm. To address these concerns, in this section, we consider a
“constrained” discard and replace exercise. We focus on Policy B, replacing discarded
audits from the pool of tax returns audited 4 or 5 years after filing. The constraints
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Fig. A4. Gain from Policy B discard and replace by organizational level.
Notes: This figure reports on the y-axis the gain in total outcome of discarding a given
percentage of early tax audits with the lowest predicted outcome and replacing them with
an equal number of tax returns with the highest predicted outcome among those audited
later (Policy B) by considering replacements across different organizational levels of the tax
authority. The gain reported is computed by replacing the discarded audits with late audits
with the highest predicted value at the local office level in the solid line, provincial office
level in the dashed line, regional office level in the dash-dotted line, and centralized-country
level in the dotted line. The x-axis reports the discarded percentage. The vertical dashed
line indicates the 10% level of discarding. The outcome variable is detected tax evasion in
the left panel and recovered tax evasion in the right panel. All values are reported relatively
to the status quo total outcome of early audits set at 100 and represented by a dot.

we explore are either (1) income-decile constraints or (2) business sector constraints.
To implement these constraints, we treat each return-year-by-office-by-income-decile
as its own "discard and replace" pool. That is, if we are targeting a 10% discard rate,
we do so for each year-office-decile pool among those tax returns that were audited
1-3 years after filing. We replace within the same year-office-decile pool, using tax
returns audited 4-5 years after filing.

Figure A6 shows the result of this exercise. The top green line is the unconstrained
exercise Policy B reported in the main text. The blue dash-dot line shows results when
constraining replacements within the same income deciles, and the red dashed line
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Fig. A5. Gain from discard and replace with random late audits.
Notes: This figure reports on the y-axis the gain in total outcome of discarding a given
percentage of early tax audits with the lowest predicted outcome and replacing them with
an equal number of tax returns with the highest predicted value using 100 samples ran-
domly drawn among those audited later. The dashed line and the shaded areas report the
average gain of a draw and its 95% confidence intervals, respectively. The x-axis reports
the discarded percentage. The vertical dashed line indicates the 10% level of discarding.
The outcome variable is detected tax evasion in the left panel and recovered tax evasion in
the right panel. All values are reported relatively to the status quo total outcome of early
audits set at 100 and represented by a dot.

shows results when constraining replacements to be within the same sector. These
lines show a similar profile of the gains of reallocation under the sector and income
decile constraint to one another. They are each about one-half as effective as the
unconstrained exercise but still represent a substantial improvement over the status
quo.

Table A3 shows that the proposed policies are not associated with a selection of
tax returns that differs systematically along additional margins. The table reports
the average of a set of observable characteristics of the status quo selection of au-
dits, and of the replacement tax returns under the alternative versions of Policy B
replacement schemes mentioned above (i.e., the baseline replacements within office,
replacements within office and sector, and within office and income decile). Results
for different outcome variables are reported in different panels (TaxEva in panel A,
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Fig. A6. Gain from Policy B discard and replace within sector or income
This figure reports on the y-axis the gain in total outcome of discarding a given percentage
of early tax audits with the lowest predicted outcome and replacing them with an equal
number of tax returns with the highest predicted outcome among those audited later (Policy
B) with additional restrictions on possible replacements. The gain reported is computed
by using the late audits of the same office (as in the baseline Policy B in Figure 4) in the
solid line, of the same office and 2-digit sector in the long dashed line, of the same office
and income decile in the short dashed line. The x-axis reports the discarded percentage.
The outcome variable is detected tax evasion in the left panel and recovered tax evasion in
the right panel. All values are reported relatively to the status quo total outcome of early
audits, set at 100 and represented by a dot.

TaxGot in panel B). We find that the replacement tax returns selected following the
ML predictions are filed by taxpayers with similar demographic characteristics to
the ones who filed the discarded tax returns irrespective of the replacement scheme
(e.g., gender, age and marital status). Business characteristics are balanced too: the
discarded and replacement pools involve businesses that are comparable in terms of
family business status, presence of employees, and years of activity. Perhaps interest-
ingly, the sectoral composition of replacements and discard is not strikingly different
even if balancing across sectors is not targeted (first column in both panels), which
guarantees that deterrence effects mediated through the sectors are similar to those in
the status quo. As expected, the striking difference between the replacement sample
and the actual status quo sample emerges with respect to the financial accounts since
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Table A3
Characteristics of tax returns when discarding and replacing 10% audits.

Panel A Panel B
Target: TaxEva Target: TaxGot

Status quo Office Office/Sector Office/Income Office Office/Sector Office/Income
Woman 0.226 0.210 0.221 0.218 0.215 0.221 0.226
Age 2.695 2.876 2.839 2.843 2.876 2.842 2.844
Married 0.681 0.680 0.677 0.680 0.705 0.695 0.689
Family business 0.102 0.104 0.103 0.103 0.118 0.118 0.116
Has employees 0.425 0.464 0.449 0.447 0.472 0.460 0.452
N. employees 1.907 2.495 2.181 2.165 2.371 2.224 2.157
Years of activity 13.000 12.882 12.957 12.917 13.510 13.222 13.289
Sectors:
Agriculture 0.036 0.035 0.036 0.037 0.041 0.036 0.042
Trade 0.334 0.313 0.334 0.321 0.314 0.334 0.336
Construction and manufacturing 0.236 0.291 0.236 0.276 0.209 0.236 0.217
Private services 0.367 0.336 0.367 0.342 0.398 0.367 0.376
Other services 0.027 0.025 0.027 0.023 0.039 0.027 0.029

Taxable income 26,369.872 32,645.647 29,076.491 28,034.211 41,322.108 31,738.924 28,850.210
Turnover 211,931.373 284,864.367 250,800.450 240,193.120 288,590.007 257,956.994 241,327.015

Notes: This table reports the mean characteristics of tax returns (as indicated in the first column) after discarding and
replacing 10% audits under Policy B. Columns represent alternative sample selection, depending on the target variable
and on the replacement pool. Column 2 ("Status quo") reports the mean for the actual selection. "Office" indicates
replacement with a later tax return in the same IRA office; "Office/Sector" and "Office/Income" allow replacement only
with tax returns of the same sector of activity and income decile, respectively. Financial accounts are expressed in euro.
Other services include health, education and recreational services.

the level of evasion targeted by the algorithm is increasing in the business turnover.
However, these differences are largely attenuated when replacing within the same
income decile (third column in both panels), while maintaining balance in all other
characteristics.35

35For both outcomes, no income decile remains ever with zero coverage for any replacement level.
For tax evasion, we find only one 2-digit sector without coverage (electricity, gas, steam and air
conditioning supply) for replacement rates above 85%.
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F Additional Figures

Panel A: OLS augmented models

Panel B: LASSO augmented models

Fig. A7. Gain from Policy B discard and replace by augmented prediction model.
This figure reports on the y-axis the gain in total outcome of discarding a given percentage
of early tax audits with the lowest predicted outcome variable and replacing them with an
equal number of tax returns with the highest predicted outcome among those audited later
(Policy B) by prediction model. The gain reported is computed by using the predictions
of OLS models in panel A, and LASSO models in panel B. The gains from OLS and
LASSO models considered in Figure 6 are depicted in dotted lines. Gains from augmented
specifications including interactions or cubic polynomials of the ten OLS predictors with
the highest t-statistic are indicated with dashed and dashed-dotted lines, respectively. The
x-axis reports the discarded percentage. The vertical dashed line indicates the 10% level of
discarding. The outcome variable is detected tax evasion in left panels and recovered tax
evasion in right panels. All values are reported relatively to the status quo total outcome
of early audits set at 100 and represented by a dot.
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Additional Tables

Table A4
Summary statistics by macro-sector.

Variable Macro-sector Mean Share SD p5 p10 p25 p50 p75 p90 p95

zeros

Declared income Services 11269.68 0.14 9145.80 0 0 3725 10336 17681 24870 28113

Manufacturing 8293.61 0.16 6258.57 0 0 2918 8859 13291 16491 17841

Wholesale 10796.35 0.13 7806.61 0 0 4470 10883 16845 21632 23615

Retail 5692.62 0.22 5115.22 0 0 707 5885 9920 12473 13501

Agriculture 3751.67 0.23 4590.21 -1575 0 152 3221 6928 10176 11562

Detected evasion Services 15493.50 0.40 133297.77 0 0 0 3570 12520 30177 52737

Manufacturing 29207.31 0.37 130735.92 0 0 0 5669.5 19699.5 63187.5 123916

Wholesale 21655.07 0.45 135916.23 0 0 0 2716 12511 31710 61022

Retail 11030.50 0.42 69969.03 0 0 0 3060 10925 23534 37742

Agriculture 11879.61 0.45 107575.27 0 0 0 1760 8324 18100 27354

Predicted revenues Services 44428.90 105558.59 1000 4399 12713 26117 46260 90930 139301

Manufacturing 84646.54 179129 2650 8116 19828 41631 91291 186639 289925

Wholesale 78847.28 191862.78 2226 7448 18665 34277 64019 166274 291070

Retail 105732.84 263592.66 3569 8603 21858 48627 99088 191967 319688

Agriculture 23667.85 54751.84 0 0 2242 8920 22698 58552 99696

Notes: This table reports summary statistics on the distribution of three relevant variables in
different macro-sectors. The variables are: declared income, detected evasion, and predicted
revenues by the Sector Studies’ model. The sample includes all sole proprietorships that
are part of Sector Studies and for each macro-sector excludes the largest firms (measured
as the top quartile of declared income).
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Table A5
Summary statistics on audit risk.

Macro-sector Below Above Share Income share by
Threshold Threshold audited quintile of predicted revenues

1 2 3 4 5
Agriculture 0.021 0.013 0.018 0.891 0.629 0.414 0.263 0.050
Retail 0.023 0.010 0.018 0.156 0.163 0.133 0.097 0.043
Wholesale 0.026 0.014 0.019 0.443 0.432 0.407 0.248 0.062
Manufacturing 0.025 0.015 0.020 0.444 0.335 0.227 0.132 0.045
Services 0.023 0.015 0.018 0.628 0.581 0.522 0.375 0.123

Notes: This table reports summary statistics on the audited share of taxpayers in each
macro-sector, distinguishing between those declaring below and above their predicted rev-
enues. In addition, it shows the median declared income share of revenues in different
quintiles of the predicted revenues distributions. The sample includes all sole proprietor-
ships that are part of Sector Studies and for each macro-sector excludes the largest firms
(measured as the top quartile of declared income).
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