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1. Introduction

Trust is important. Trust can also be fragile—it can be laborious to build, easy to destroy,

and difficult to rebuild. As Mr. Darcy explains to Elisabeth Bennett in Jane Austen’s Pride

and Prejudice, “My good opinion once lost is lost forever.” This paper examines conditions

under which trust is fragile and conditions under which it is robust.

We study an economy in which interactions are more productive if agents on one side of an

interaction (proposers) can trust those on the other side (receivers) to refrain from cheating,

and agents on the other side indeed do not cheat. A typical receiver is “responsive,” meaning

that the agent cheats if and only if the combination of a private and social cost of cheating is

sufficiently low. However, some receivers are “scoundrels”, who always cheat. We hereafter

refer to the two varieties of receivers simply as “responsives” and “scoundrels.”

The social cost of cheating is proportional to the probability that the cheater is either a

scoundrel or a responsive who has violated the prevailing social norm. The social norm is

an equilibrium phenomenon specifying when it is acceptable to cheat, while the social cost

represents the opprobrium heaped on a person who cheats when doing so is unacceptable.

The probability that a cheater is a scoundrel or a responsive violating the social norm is

given by Bayes’ rule. Bayes’ rule then immediately implies that the social cost of cheating is

a convex and decreasing function of the equilibrium prevalence of cheating by responsives.

Because the social cost of cheating depends on the prevalence of cheating, multiple equi-

libria can arise. If the fraction of scoundrels is sufficiently large, there is a unique equilibrium

in which no responsives cheat and trust is relatively high. If the fraction of scoundrels is

smaller than a certain threshold, a high-cheating, low-trust (or “bad”) equilibrium and a

low-cheating, high-trust (or “good”) equilibrium coexist (along with an unstable equilibrium

exhibiting intermediate levels of cheating and trust).

We assess robustness in two ways. First, we introduce a belief-based best response dy-

namic under which the good and the bad equilibria are locally asymptotically stable, sur-

rounded by basins of attraction that depend on the fraction of scoundrels. The smaller is

the fraction of scoundrels, the smaller is the increase in the common perception of cheating

required to catapult the good equilibrium out of its basin of attraction. The good equilibrium

thus exhibits less cheating when there are fewer scoundrels, but sits more precariously within

a smaller basin of attraction. In contrast, decreasing the fraction of scoundrels increases the

prevalence of cheating in the bad equilibrium and expands its basin of attraction.
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Next, we examine the implications of introducing into an economy, characterized by either

the high-trust or low-trust equilibrium, a small mass of agents characterized by the (quite

different) beliefs and behavior characteristic of the other equilibrium. If the fraction of

scoundrels is sufficiently small, then an arbitrarily small infusion of agents accustomed to the

low-trust equilibrium can disrupt the high-trust equilibrium, while a large infusion of agents

accustomed to the high-trust equilibrium is required to disrupt the low-trust equilibrium.

The asymmetry in size of the invasions required to disrupt the good and bad equilibrium

is not simply the flip side of the fact that, as the fraction of scoundrels shrinks, the basin

of attraction of the good equilibrium shrinks. The asymmetry holds even when the unstable

equilibrium —the boundary between the basins of attraction of the good and bad equilibria

—is kept halfway between the two equilibria. The fraction of agents accustomed to the low-

trust equilibrium required to disrupt the high-trust equilibrium is then considerably smaller

than the fraction of those accustomed to the high-trust equilibrium required to disrupt the

low-trust one.

There is thus a sense in which scoundrels serve a useful purpose. A society in which

scoundrels are rare is one in which a good social norm can be easily disrupted, while a bad

social norm is more resilient. The best outcome is to have few scoundrels and coordinate on

the good equilibrium, but this is fragile and risky. Tolerating some scoundrels may be a price

worth paying for rendering the good equilibrium more robust.

Section 2 presents the model, places our contribution in the literature (most effectively

done after seeing the basics of he model), and derives the equilibria of the model. Section

3 characterizes the stability of the various equilibria and explains how this depends on the

proportion of scoundrels. Section 4 examines the robustness of the the good and bad equilibria

to infusions of agents accustomed in each case to the other equilibrium. Section 5 interprets

and discusses the results. Proofs are gathered in an Appendix. Any item with a number

prefixed by “A” is to be found in the Appendix.

2. The Model

2.1. The Game

The game is adapted from Anderlini and Terlizzese (2017). We view the game as capturing

the spirit of the trust game of Berg, Dickhaut, and McCabe (1995), with the minimum

modification required to ensure the equilibria can exhibit a positive level of trust.
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In each period, the members of a continuum of agents are matched into pairs to play a

game. Each time they are drawn to play the game, each agent is equiprobably assigned to be

either a proposer or a receiver. The proposer first chooses a quantity x ∈ R+. The receiver

then chooses either to cheat or not cheat. If the receiver does not cheat, then proposer and

receiver each receive a payoff of x. If the receiver cheats, then the proposer receives 0.

Proportion q of the receivers are scoundrels, who cheat at every opportunity, and whose

payoffs we accordingly need not specify. The responsives are a proportion 1 − q of the

receivers. When a responsive cheats, she receives 2x minus the cost of cheating. The fraction

of scoundrels is known, but scoundrels are not distinguishable from responsives.

We can interpret x as a proposed scale at which to operate a joint project. As the scale

increases, so do the payoffs of both agents if they indeed share the proceedings, but so does

the payoff to the receiver from cheating and thereby appropriating the entire payoff (minus

the cost of cheating).

The cost of cheating is the sum of a private cost and a social cost that reflects a social

norm.

2.2. The Private Cost of Cheating

In each interaction, a responsive has a private cost z independently drawn from the uniform

distribution on [0, 1].1 Our interpretation is that responsives have an intrinsic aversion to

cheating, manifested in feelings of guilt and self-censure, that are attenuated when the need

to cheat or the benefits from cheating are high. A low value of z thus reflects a high need

to cheat or high benefit from cheating, and hence a low private cost—receivers are willing

to forgive themselves for cheating when the need or payoff is high. A receiver’s value of z

does not depend on the offer x they receive—the offer x affects the reward for cheating, but

z captures an intrinsic characteristic that is independent of x.

Suppose, for example, that cheating takes the form of cutting ahead of others in traffic.

We might think of a low z as identifying a person who is on the way to the hospital while

experiencing chest pain, and so has an urgent need for haste. A medium value of z might

identify a person who is late for work, and so has a moderate need for haste. A high value of

z is a person not pressed for time. If instead cheating takes the form of jumping a queue, then

1The uniform distribution simplifies the exposition and various calculations, but the qualitative results do
not depend on this assumption.
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a low value of z is someone for whom an emergency renders immediate service imperative,

while a high value of z is someone not pressed for time. Alternatively, suppose cheating takes

the form of failing to make the honor-system payment at the workplace coffee machine. A

low z may represent someone who has forgotten their wallet that day, needs a pick-me-up

before an important meeting, and plans to repay the next day.2

Scoundrels have no intrinsic aversion to cheating. Whether in the midst of an emergency

or at leisure, they feel no private cost. Scoundrels are similarly oblivious of the social norm

and impervious to the attendant social cost of cheating, and hence cheat at every opportunity.

A social norm determines when responsives find it acceptable to cheat, in the form of a

value ζ, along with the view that it is socially acceptable for responsives with values z < ζ

to cheat, and socially reprehensible for responsives with values z > ζ to cheat. The value of

ζ is an equilibrium phenomenon, reflecting a social consensus on what constitutes acceptable

behavior. Returning to our traffic example, some societies have coordinated on a low value

of ζ, and pedestrians can cross the street with impunity, confident that only in extreme cases

(i.e., very low values of z) do drivers become so aggressive as to ignore pedestrians. Others

have settled on a higher value of ζ and motorists routinely ignore pedestrian crossings. In the

queuing example, in some societies ζ is low and queues are common and commonly respected.

In others, ζ is high and queues are routinely flaunted, to the extent that “lines don’t grow

longer, they only grow thicker”.

2.3. The Social Cost of Cheating

The social cost of cheating takes the form of public disapproval, ostracism, or other forms of

sanction. This cost shows up in the disapproving looks, the clucking of tongues and muttered

comments, the outright chastisement and sometimes worse, that follows the violation of a

social norm. If receivers’ types were observable, the social punishment would be directed

only at responsives who violate the social norm, by cheating while having values z > ζ, and

at scoundrels. However, types are not observable. Instead, punishers form a belief about

the type of a cheating receiver, and the severity of the punishment is proportional to the

probability assigned to the receiver being either a responsive with z > ζ or a scoundrel.

2We can see counterparts of the offer x in these scenarios. In traffic, it takes the form of a willingness to
yield to others. In queuing, it is reflected in the willingness to form queues in the first place, rather than
mob head of the line. In the office, one sees it in the extent to which concessions are provided on the honor
system.
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This estimation process is simplified by the observation that in equilibrium, responsives

for whom z > ζ will never cheat. This is an implication of the fact that the social norm ζ is

itself an equilibrium phenomenon. If responsives with values z > ζ found it optimal to cheat,

then ζ would not persist as the social norm. Instead, the social norm would drift upward to

match the prevailing behavior. The equilibrium condition for the social norm is that induced

behavior indeed conforms to the norm. The severity of punishment is thus proportional to

the probability that a cheating receiver is a scoundrel.

The social cost of punishment depends on the social norm. The traffic menace is sanc-

tioned more severely when the equilibrium is such that the only responsives who cheat are

the few imminently expectant mothers headed for the hospital, and hence cheaters are likely

to be scoundrels who routinely flaunt traffic conventions. To make this connection precise,

let s be the proportion of responsives who cheat. The posterior probability that someone

observed cheating is a scoundrel is

q

q + (1− q)s
.

We then take the social cost of cheating to be proportional to this probability, or

f(s) = θ
q

q + (1− q)s
, (1)

where θ > 0 is a parameter that allows us to tune the relative importance of the idiosyncratic

and social components of the cost of cheating. The total cost of cheating for a responsive of

type z, denoted by c(z, s) is then

c(z, s) = z + f(s) = z + θ
q

q + (1− q)s
. (2)

2.4. Relation to the Literature

Our point of departure is the belief that trust is important. Arrow (1974) argued that even the

simplest of economic transactions calls for a foundation of trust.3 Fukuyama (1995) provided

3Arrow’s argument was illustrated by the classic empirical study by Banfield (1958), documenting the
effects of the lack of trust on a small community in southern Italy. The “amoral familism” that stems from
the lack of trust has calamitous effects on that “backwards” society. Italy is also the object of Putnam
(1993)’s investigation of the role of different levels of social capital and their effects on democracy.
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a famously optimistic view of the effects of trust on large firms and overall growth.4 Levitsky

and Ziblatt (2019) argue that democracies require two ingredients to function effectively,

namely that competing parties accept one another as legitimate rivals and that they trust

one another to exercise restraint in exploiting their institutional advantages. Bowles (2016)

argues that a society can function well only if people can trust one another to follow social

norms. A large literature, catalyzed by Putnam (2000), with Jackson (2020) providing a

recent point of entry, explores the link between social capital, defined in various ways but

routinely including some component of trust, and economic development. For an early survey,

see Sobel (2002).

Trust can also be fragile. The folk wisdom that trust can be laborious to build, easy to

destroy, and difficult to rebuild is backed up by research in psychology. See Slovic (1993,

1999) for influential early studies and Doyle (2023) for a recent contribution.

Our incorporation of a private and social cost of cheating places our paper in a literature

that relies on a specification of social preferences—some form of a cost of cheating, altruism,

reciprocity, inequality aversion, a concern for esteem or the good opinion of others, and so

on—to generate trust.5 Our work is especially connected to the subset of this literature in

which the social preferences include some concern for how an agent is perceived by others. In

a similar vein, Benabou-Tirole (2006) examine a model in which agents are motivated by a

combination of altruism, extrinsic incentives, and a concern for esteem. Tadelis (2011) studies

a trust game in which agents are motivated partly by a concern that others perceived them

as trustworthy. Andreoni and Bernheim (2009) examine a dictator game in which proposers

have a concern for fairness and for being perceived as fair. Ellingsen-Johannesson (2008)

examine the effects of the desire for “esteem” in a principal-agent setting. Of course, the

voluminous signaling literature is concerned with settings in which an agent cares about how

she is perceived by others. Our social cost of cheating, proportional to the posterior belief

about the agent’s type, is a standard objective for senders in signaling models. We differ from

much of the signaling literature in that the updating leading to this belief is an endogenous

function of the actions of others besides the sender, and by the fact that the sender signals in

order to separate from an undesirable type, rather than pool with a desirable type. Mailath

4Fukuyama (1995)’s optimism found some notable skeptics, including Solow (1995).
5Starting with the theoretical work of Kandori (1992) and continuing with theoretical and experimental

papers such as Xie and Lee (2002), Duffy, Xie, and Lee (2013) and Dal Bó and Fréchette (2018) among others,
a literature has examined an alternative approach in which trust or social norms are sustained by repeated
interactions. Mailath and Samuelson (2006) provide an introduction to the literature.
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and Samuelson (2001) provide a discussion of signaling to separate.

The social preferences approach to trust was energized by the theoretical and experimen-

tal work of Berg, Dickhaut, and McCabe (1995), in a game whose unique subgame-perfect

equilibrium exhibits neither trust nor trustworthiness.6 We retain the spirit of their game,

but follow the lead of Anderlini and Terlizzese (2017) in modifying the game by introducing

the cost of cheating described in Sections 2.2 and 2.3. The key effect of this modification

is that positive levels of trust now emerge in equilibrium, allowing us to study the relative

fragility or robustness of equilibrium trust.

As explained in Sections 2.2 and 2.3, we interpret the equilibrium trust that arises in our

model as a social norm. For introductions to the extensive literature on social norms and

social preferences see Burke and Young (2011) and Postlewaite (2011). We have constructed

our model so that the norm behavior takes a particularly simple form. The absence of noise

in our model leads to equilibria in which no deviations from the norm on the part of the

responsives are observed. This simplifies the robustness examination and the exposition.

Once the model is enriched so that norms are broken in equilibrium the issue of how they

are (or should be) enforced becomes more delicate. Acemoglu and Jackson (2017) analyze

a model in which there is a complex interplay between norms and laws intended to enforce

them. Among other things, they show that laws that are too “tight” relative to social norms

may backfire, in the sense of being less effective than “gradual” enforcement. Bowles (2016)

expresses similar sentiments.

Throughout this discussion of the literature and throughout the paper, we maintain the

spirit of the Arrovian view of norms as a way to achieve otherwise elusive efficiency gains.

This view has attracted a critical minority view. Elster (1989) argues that “many social

norms do not benefit anyone.” Prime examples are exclusionary social rules and/or rules

that forbid certain types of behavior. By contrast, a higher level of trust is beneficial to all

in our economy.

2.5. Preliminaries

Using (2), the payoff of a responsive who cheats is given by

2x− c(z, s).

6Johnson and Mislin (2011) and Naef and Schupp (2009) examine the subsequent literature on trust games.
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If s is small, then a cheater is likely to be a scoundrel, and cheating will be punished heavily.

If s is large, then it is relatively unlikely that a cheater is a scoundrel, and cheating will be

only lightly punished.

0.0 0.2 0.4 0.6 0.8 1.0
s

0.5

1.0

1.5

2.0
f

Figure 1: Illustration of the social cost of cheating f(s) as a function of

the proportion s of responsives who cheat, for θ = 2 and the proportion of

scoundrels (top to bottom) q = 0.2, 0.1, 0.05.

We note that the function f : [0, 1] → R+ is a decreasing, convex function with f(0) = θ

and f(1) = θq. Therefore the social component of the cost of cheating is maximal when

no responsive cheats, falls quickly as soon as a few of them cheat, and keeps falling, but at

a decreasing rate, as more and more responsives cheat. The fewer the scoundrels, i.e. the

smaller is q, the greater is the convexity of f . In particular, the steeper is f near 0.7 Figure

1 illustrates.

As q approaches zero, the function f converges (but not uniformly) to

f(0) = θ

f(s) = 0 for s > 0.

7The posterior probability that a cheater is a scoundrel is 1 when s = 0. In order for it to fall from 1 to
1
2 , s must increases from 0 to q

1−q . Hence, the increase in s that generates such a decrease becomes smaller

as q decreases.
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2.6. Equilibrium

A responsive takes the proportion s of responsives who cheat as given, and when facing an

offer x, will cheat if her cost of cheating z falls short of a cutoff ζ(x, s) and will not cheat if

z ≥ ζ(x, s). The cutoff ζ(x, s) equalizes the payoffs of cheating and not cheating, and hence

when interior solves

2x− [ζ(x, s) + f(s))] = x.

In general, we have

ζ(x, s) = max{0, x− f(s)}. (3)

The maximum reflects the possibility of a corner solution in which the responsive does not

cheat even if z = 0. In principle we could also have a corner solution in which the responsives

cheat even if z = 1. In the next two paragraphs we will see that this does not arise.

A proposer takes the proportion s of responsives who cheat as given and chooses a value

x to maximize the payoff

(1− ((1− q)ζ(x, s) + q))x,

where 1 − ((1 − q)ζ(x, s) + q) is the (overall) probability that the current receiver does not

cheat. Using (3), we can write the maximization problem of a proposer as

max
x≥0

(1− ((1− q)max{0, x− f(s)}+ q))x.

The proposer will never set x ≥ f(s) + 1. Doing so would induce all responsives to

cheat and hence would yield a payoff of 0, while the proposer can ensure a positive payoff by

setting x < f(s)+1. Equivalently, we will never have a corner solution in which all responsives

cheat. The proposer will similarly never set x < f(s), since doing so would ensure that no

responsives would cheat, and that the proposer could increase the offer without inducing

additional cheating.

We can thus restrict attention to offers x ∈ [f(s), f(s) + 1). The proposer’s objective is
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then to solve

max
x∈[f(s),f(s)+1)

(1− (1− q)(x− f(s))− q)x.

The first-order condition if x > f(s) is

1 + f(s)− 2x = 0 ⇐⇒ x =
1

2
+

1

2
f(s). (4)

This is the relevant solution as long as x > f(s), i.e. as long as 1
2
+ 1

2
f(s) > f(s), or,

equivalently, as long as f(s) < 1. Let s∗ be the solution to f(s∗) = 1. Using (1), we can solve

f(s∗) = 1 to obtain

s∗ =
q(θ − 1)

1− q
. (5)

When θ ≥ 1, we can interpret s∗ ≥ 0 as a proportion of responsives who cheat. If s > s∗,

the proposer will then choose an interior solution (satisfying (4)) in which some responsive

cheat. If s < s∗, cheating is sufficiently costly that the proposer finds it optimal to deter

all responsive cheating by choosing the highest value of x consistent with no such cheating,

namely x = f(s). If θ < 1, the solution (5) exists but is negative, thus defying interpretation

as a proportion of cheaters. In this case (5) is not relevant and the proposer always chooses

an interior solution.

We thus have

x =


1

2
+

1

2
f(s) s ≥ s∗

f(s) s ≤ s∗.

The equilibrium condition is that the proportion s of cheating by responsives must induce

a proposer offer x that in turn causes the cutoff ζ(x, s) to match s. We thus have three

conditions which jointly determine the equilibrium values of s, ζ and x:

s = ζ(x, s) (6)
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ζ(x, s) = max{0, x− f(s)} (7)

x =


1

2
+

1

2
f(s) s ≥ s∗

f(s) s ≤ s∗

(8)

The final condition (8) can be rewritten as

x = max

{
f(s),

1

2
+

1

2
f(s)

}
.

2.7. Equilibrium Cheating

Our first result is that if the social cost of cheating is sufficiently low, then there is a unique

equilibrium, which exhibits some cheating. The proof, contained in Section A.1, is a straight-

forward calculation. The left panel of Figure 2 below illustrates this case.

Proposition 1: If θ < 1, there exists a unique equilibrium. In equilibrium, some responsives

cheat.

We are interested in the case of multiple equilibria. We accordingly assume throughout

the following, without subsequent mention, that the social component of the cost of cheating

is sufficiently important:

Assumption 1: θ > 1

In this case, one corner-solution equilibrium configuration is

s = ζ = 0, x = f(0) = θ.

This is a high-trust, no cheating equilibrium, featuring a relatively large offer x and no

cheating on the part of responsives. Given the assumption that θ > 1, this equilibrium always

exists. We refer to this as the good equilibrium, and denote the proportion of responsives

who cheat in this equilibrium by sg = 0.

If the social cost of cheating f(s) decreases sufficiently rapidly in s, then we have two

additional, interior solutions. Each of these must satisfy s ≥ s∗, and hence must satisfy the
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interior versions of (6)–(8), or ζ(x, s) = x− f(s) and x = 1
2
+ 1

2
f(s). We can reduce (6)–(8)

to a single equation in s, given by

1

2
+

1

2
f(s) = s+ f(s),

which in turn can be rearranged to read

f(s) = 1− 2s. (9)

Given the specification of f(s) as in (1) this is a quadratic equation, whose solutions are

sb =
1− 3q +

√
(q + 1)2 − 8θq(1− q)

4(1− q)
(10)

and

su =
1− 3q −

√
(q + 1)2 − 8θq(1− q)

4(1− q)
. (11)

We thus have a low-trust equilibrium in which proportion sb of responsives cheat, and an

intermediate equilibrium in which proportion su of responsives cheat. We refer to these

as the bad equilibrium and the unstable (for reasons made clear in Section 3) equilibrium,

respectively.

The bad and unstable equilibria exist if the expression under the square root in (10)—(11)

is positive. This is true if there are not too many scoundrels, with the upper threshold on

the fraction of scoundrels given by

q̂(θ) =
4θ − 1− 4

√
θ(θ − 1)

1 + 8θ
. (12)

If q < q̂(θ), we have 0 = sg < su < sb. If q > q̂(θ), then no cheating is the only solution.8

8The discriminant would also be positive if q were larger than the larger solution of the quadratic. In this
case, however, both sb and su would be negative. Therefore, only the smaller solution of the quadratic is
relevant. For the boundary case of q = q̂, the positive solutions sb and su exist and coincide.
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Figure 2: Illustration of equilibria. In the left figure, θ = 0.9 (the social cost

of cheating is relatively low), and there is a single, interior equilibrium. In

the right picture, θ = 1.375 and there are relatively few scoundrels (q = 0.1

in both panels), giving rise to three equilibria. The high-trust equilibrium

s = 0 corresponds to the intersection of f(s) with the vertical axis, while

the intermediate and low-trust equilibria are determined by the two interior

intersections. As the proportion of scoundrels increases, the function f shifts

upward, pushing the intermediate and low-trust equilibria closer together, until

a point is reached at which q = q̂(θ) and these equilibria first coincide and then

disappear, leaving only the high-trust equilibrium.

We summarize with the following proposition, illustrated in Figure 2:9

Proposition 2: [2.1] The good equilibrium is the unique equilibrium if q > q̂(θ), where the

function q̂(θ) : [1,∞) → [0, 1] is decreasing, and

q̂(1) =
1

3
and lim

θ→∞
q̂(θ) = 0.

[2.2] If q < q̂(θ), then in addition to the high-trust, no cheating (good)

equilibrium, there is a low trust, high cheating (bad) equilibrium in which a proportion sb

9If the social cost of cheating function f was concave instead of convex and θ was sufficiently large, then we
would have f(s) > 1−2s for all s, and a single equilibrium on the vertical axis, in which no responsives cheat.
For yet smaller values of θ, the functions f(s) and 1− 2s may exhibit two interior intersections, analogously
to the right panel in Figure 2, but now with a stable, interior low-cheating equilibrium, an unstable, interior
intermediate equilibrium, and a stable high-cheating equilibrium on the horizontal axis. In between, we
expect a configuration in which f(s) and 1 − 2s intersect once, analogously to the left panel in Figure 2,
whose nature depends on the specification of the function f . If f cuts 1 − 2s from above, then there are
three equilibria, including a stable equilibrium on the vertical axis in which no responsives cheat, an unstable
interior equilibrium, and another stable, high-cheating equilibrium on the horizontal axis. If f cuts 1 − 2x
from below, then there is a unique, interior equilibrium.
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of responsives cheat, and an intermediate (unstable) equilibrium in which a proportion su of

responsives cheat.10

[2.3] The offers made by proposers are the highest and cheating is the lowest

in the good equilibrium, while offers are the lowest and cheating the most prevalent in the

bad equilibrium.

3. Local Asymptotic Stability

We now investigate the resilience of the high trust equilibrium, in two steps. The first,

examined in this section, asks about the stability of the various equilibria under a dynamic

process in which agents play best responses to beliefs that adapt toward realized behavior.

We characterize the state of the economy by a perceived level of cheating, denoted by

sP , common to everyone in the economy. We interpret the commonality of the perception sP

as reflecting access to common sources of information concerning the prevalence of cheating.

The media regularly reports information on the prevalence of crime, violations of social norms

often cause disruptions that others can observe, incidents of cheating give rise to word-of-

mouth chains of information, and so on. The perception sP may or may not be an equilibrium

level of cheating.

Given a perception sP , proposers choose the value of x that would maximize their payoff

if sP was the prevailing proportion of responsives who cheat. Hence, from (8), proposers

choose

x = max

{
f(sP ),

1

2
+

1

2
f(sP )

}
,

Receivers similarly take sP to be the prevailing proportion of responsives who cheat and react

to the offer x by choosing to cheat (or not) in order to maximize their payoff. From (7), these

decisions give rise to a realized proportion of cheating among responsives s that solves

s = max{0, x− f(sP )}.

10There are two boundary cases. When q = q̂(θ), there exist only two equilibria, a stable equilibrium sg = 0
and another equilibrium (intuitively, su = sb) that is stable from above but not from below. When q = 0,
there exist only two equilibria, a stable equilibrium sb and an another, unstable equilibrium (intuitively,
sg = 0 = su).
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We can rearrange these two equalities to obtain the realized proportion of cheating, given by

s =


0 sP ≤ s∗

1

2
− 1

2
f(sP ) sP ≥ s∗ .

Proposers and receivers thus both choose best responses to their perceptions.

The potentially erroneous perception sP moves toward the induced realization s. When

the media reports, observations, and informal reports reflect behavior that differs from the

prevailing perception sP , perceptions adjust to move close to the evidence. Our results do

not depend on details such as whether this adjustment happens instantaneously, or quickly,

or sluggishly. We only require that if the prevailing perception sP is at odds with soci-

ety’s aggregate experience, then there will be pressure pushing the perception toward the

experience.

The movement of the perception sP in the direction of the realized incidence of cheating s

suffices to ensure that the dynamic has three rest points, sg, su and sb. A rest point s is locally

asymptotically stable if there exists a neighborhood of s, referred to as its basin of attraction,

with the property that from any initial condition in this neighborhood, the dynamics converge

to the state s. Local asymptotic stability ensures that the dynamic process will converge to

a rest point if its initial condition is nearby, as well as that a population incurring a small

shock away form a rest point will return to the rest point.

0 1
sP

sg su sb

Figure 3: Illustration of the adjustment dynamics and basins of attraction

for the candidate equilibrium proportion sP of responsives who cheat.

As long as sP ≤ s∗, the induced realization of s is always 0, so sP falls towards 0. If

sP ∈ (s∗, su), we have that s = 1
2
− 1

2
f(sP ) < sP , and therefore again sP falls towards 0. If

sP ∈ (su, sb) the realized s is larger than sP , which therefore increases towards sb. Finally,

if sP > sb, the realized s is smaller than sP , implying that sP falls back towards sb. Hence,

the good equilibrium sg and the bad equilibrium sb are locally asymptotically stable, while
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the intermediate rest point su is unstable. The unstable equilibrium divides the interval [0, 1]

of possible values of sP into the basin of attraction [0, su) of the lower rest point sg and the

basin of attraction (su, 1] of the upper rest point sb. Figure 3 illustrates.

We can expect the initial conditions to be more likely to fall into the basin of attraction

of sg (or, similarly, into the basin of attraction of sb) the larger is this basin. Similarly, an

equilibrium is more likely to withstand shocks that push society away from it the larger is the

distance from the equilibrium to the boundary separating its basin of attraction from that of

the adjacent equilibrium. We accordingly note that the good equilibrium sits distance su−sg

from the relevant boundary of its basin of attraction [0, su) and the bad equilibrium sits

sb−su away from the relevant boundary su of its basin (su, 1]. The comparative statics in the

following proposition, which is proved formally in Section A.2, are an immediate consequence

of (10)–(12).

Proposition 3: Assume that q < q̂(θ), so that all three equilibria exist. As either q or θ

increase, then su increases and sb decreases, and hence

su − sg increases; 1− su and sb − su decrease .

Conversely, as q approaches zero, su also approaches zero and hence the basin of attraction

of the good equilibrium sg becomes arbitrarily small and the basin of the bad equilibrium sb

becomes approaches the entire interval.”

Hence, when q is small, there is relatively little cheating in the good equilibrium (since

there are few scoundrels), but the good equilibrium is fragile, in the sense that it has a small

basin of attraction, while cheating is relatively prevalent in the bad equilibrium. As q in-

creases, so does the incidence of cheating in the good equilibrium, but the good equilibrium

has a larger basin of attraction, while the incidence of cheating in the bad equilibrium de-

creases. When q hits q̂(θ), the unstable and bad equilibria coincide, and for larger values

of q only the good equilibrium remains, albeit with more scoundrels. As θ increases, the

proportion of scoundrels needed to eradicate the unstable and bad equilibria decreases.

We now see two respects in which it can be “good” to have more scoundrels. First,

the more scoundrels there are, the “more likely” is the good equilibrium to be the unique

equilibrium (more precisely, the smaller is the value of the social-cost-of-cheating parameter

θ required to ensure the good equilibrium is unique). Second, when multiple equilibria exist,
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the good equilibrium is “more likely” the more scoundrels there are (more precisely, the larger

is the basin of attraction of the good equilibrium).

Of course, scoundrels come at a cost—society has to put up with their cheating. The

most fortunate society is one that contains few scoundrels, but manages to coordinate on and

preserve the good equilibrium, despite its fragility. A less fortunate society is that which still

has few scoundrels, but is trapped at the bad equilibrium.

Figure 4: The total instance of cheating (vertical axis), by both scoundrels

and responsives, in the bad equilibrium, as a function of the proportion of

scoundrels q (horizontal axis); for the case θ = 1.5. As the proportion

of scoundrels increases, total cheating diminishes, until the proportion of

scoundrels nears 0.12, at which point the bad and unstable equilibria van-

ish and only the good equilibrium remains. At this point, the incidence of

cheating drops from about 0.28 to about 0.12.

The total incidence of cheating in the bad equilibrium is q + (1 − q)sb. Using (10) to

substitute for sb and taking a derivative, a calculation shows that a society trapped at the

bad equilibrium would welcome more scoundrels. The cheating of the additional scoundrels

is overwhelmed by inducing responsives to cheat less and total cheating falls. Eventually,

the number of scoundrels increases to the point that only the good equilibrium remains.

Figure 4 shows the total incidence of cheating as a function of the proportion of scoundrels,

for a society with θ = 1.5 that is trapped at the bad equilibrium (when the latter exists).

With no scoundrels, half of the agents cheat. As the proportion of scoundrels increases, total
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cheating diminishes, until the proportion of scoundrels nears 12 percent. Here, the unstable

equilibrium and the bad equilibrium coincide, a fraction of about 18 percent of responsives

cheat, and the total incidence of cheating, including the scoundrels, is about 28 percent. A

further increase in the number of scoundrels then gives a discontinuous drop in the incidence

of cheating, as society switches to the sole remaining equilibrium, the good one.

4. Robustness to Invasion

We now turn to the second of our resilience questions. Beginning with a society that has

settled on one of the stable equilibria, suppose the beliefs of a small fraction of the society’s

members are radically perturbed, in the form of an infusion of agents accustomed to the

other stable equilibrium. Will the original equilibrium survive, or will the infusion disrupt

the standing equilibrium and prompt the society to converge to the other stable equilibrium?

4.1. Assimilation or Disruption?

We continue to suppose that the social cost of cheating is sufficiently high (θ > 1) and

there are sufficiently few scoundrels (i.e., q < q̂(θ)) so that we have three equilibria. What

happens when some outsiders, characterized by the behavior and perceptions of a society in

the bad equilibrium, merge into a society characterized by the good equilibrium? One can

interpret this as a case in which a high-trust country (or organization, profession, culture,

social group, and so on) is opened to entry (or membership, or participation, and so on) from

agents accustomed to the bad equilibrium. Will the newcomers be assimilated, and will their

behavior converge to that of the good equilibrium? Or will the newcomers upset the social

norm and cause everyone’s behavior to settle on the bad equilibrium?

To address these questions, we suppose that a population initially in the good equilibrium

is shocked by the injection of a fraction λ ≤ 1/2 of outsiders whose perception and behavior

is taken from the bad equilibrium. Refer to the members of the original population, who are

now in proportion 1−λ, as insiders and give them subscript 1, and the invaders as outsiders,

with subscript 0. The basic equations for our system are then:11

11Implicit in this formulation is an assumption that insiders and outsiders mix randomly. We could alter-
natively imagine that outsiders are more likely to meet outsiders.



Anderlini, Samuelson and Terlizzese 19

s = (1− λ)2ζ11 + (1− λ)λζ10 + λ(1− λ)ζ01 + λ2ζ00

ζ11 = min{max {0, x1 − f(s1)} , 1}
ζ10 = min{max {0, x1 − f(s0)} , 1}
ζ01 = min{max {0, x0 − f(s1)} , 1}
ζ00 = min{max {0, x0 − f(s0)} , 1}

x1 = max

{
f(s1),

1

2
+

1

2
f(s1)

}

x0 = max

{
f(s0),

1

2
+

1

2
f(s0)

}
.

(13)

The variables s1 and s0 identify the proportion of cheating on the part of responsives perceived

by insiders (s1) and outsiders (s0), and hence are the counterparts of sP from Section 3. As

in Section 3, we assume that these perceptions are commonly held by insiders and outsiders,

reflecting their experience with their respective equilibria. Insider and outsider proposers

make offers that are optimal given their perceptions, and hence x1 is the offer made by

insiders and x0 the offer made by outsiders. Receivers make their decisions of whether to

cheat based on the offer they face and their perception of the prevalence of cheating.

The proportion of responsives cheating in an interaction depends on both the identity of

the proposer and the identity of the responsive, and so we have four cheating probabilities

to keep track of. For example, ζ10 is the proportion of cheating when an inside proposer

interacts with an outside responsive. The value of any ζij can never go above 1 in equilibrium,

so that the outer minimum in the specification of the four realizations of ζij is redundant in

equilibrium, but ζij can hit the upper bound of 1 in an out-of-equilibrium combination of

a proposer who expects little cheating and hence makes a large offer with a responsive who

expects a great deal of cheating and hence a low (social) cost of cheating.

The variable s identifies the realized incidence of cheating among responsives. Each of

the four terms corresponds to one of the four possible matches, involving either an inside or

outside proposer and an inside or outside receiver, and gives the probability of such a match

multiplied by the proportion of cheating in the match.
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Again as in Section 3, we assume that media reports, observations and informal commu-

nications prompt the perceptions s1 of insiders and s0 of outsiders to both move toward the

realization s, according to the dynamic system:12

ṡ1(t) = δ{s(t)− s1(t)}

ṡ0(t) = δ{s(t)− s0(t)},
(14)

where δ > 0 allows us to tune the speed of adjustment.

4.2. Convergence

We first establish that perceptions converge. The intuition is the following. First, the dy-

namical system (13)—(14) implies that

s0(t) = s1(t) + e−δt(s0(0)− s1(0)). (15)

Therefore, the difference between s0(t) and s1(t) goes to zero as t grows, i.e., the perceptions

s1 and s0 of insiders and outsiders approach each other. This is expected—both groups are

adjusting their perceptions toward a common (though moving) level of realized cheating.

Second, once these perceptions are sufficiently close, we essentially have the dynamic system

described in Section 3 and pictured in Figure 3, which converges to one of the two stable

equilibria. In Section A.3 we prove:

Lemma 1: The dynamical system (13)-(14) converges, with limt→∞ s1(t) = limt→∞ s0(t) and

with both equal to either sg, su, or sb.

4.3. The Fragility of the Good Equilibrium

When scoundrels are scarce, the good equilibrium is especially vulnerable to invasion. If

there are sufficiently few scoundrels, an arbitrarily small fraction λ of invaders from the bad

equilibrium is capable of disrupting the good equilibrium: eventually all the agents converge

to the beliefs and behavior of the bad equilibrium. Section A.4 in the Appendix proves:

12We specify the system directly in terms of the perceptions and realized cheating of responsives. An
alternative but equivalent specification of the dynamic system would envisage the perception of total cheating

adjusting towards the realized total cheating: d[(1−q)sk(t)+q]
dt = δ{((1− q)s(t) + q)− ((1− q)sk(t) + q)}, with

k = 0, 1. Clearly, for any given q, this is equivalent to (14).
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Proposition 4: Consider the dynamic system (13)-(14) with the initial conditions s1(0) = sg

= 0 and s0(0) = sb (i.e. a system in which the insiders initially believe themselves to be in

the good equilibrium and outsiders in the bad equilibrium). For any λ > 0 there exists a

q∗ > 0 such that, for any q ≤ q∗ it will be the case that limt→∞ s1(t) = limt→∞ s0(t) = sb, i.e.

the system converges to the bad equilibrium.

When scoundrels are scarce, even a small influx of agents whose behavior initially matches

the one prevailing in the bad equilibrium thus suffices to catapult the system into the basin

of attraction of the bad equilibrium. The basic intuition behind this result begins with the

observation that as the proportion q of scoundrels decreases, the basin of attraction of the

good equilibrium becomes smaller, as seen in Proposition 3. This alone does not explain the

result, as the basins of attraction examined in Proposition 3 pertain to small shocks to the

perception sP shared by all agents, whereas we are dealing here with a large shock to the

perceptions of a small group of agents The proof of Proposition 4 shows that nonetheless,

when the proportion of scoundrels is small, such a small invasion has a large and quick

enough effect on the perceptions of all agents as to pull the population away from the good

equilibrium.

Proposition 4 directs our attention to the fate of the good equilibrium in the face of small

invasions. Section A.5 proves an expected monotonicity result for such invasions:

Proposition 5: [5.1] If the good equilibrium survives an invasion of size λ ≤ 1/2, it survives

any invasion of size λ′ < λ. Similarly, if the good equilibrium is disrupted by an invasion of

size λ < 1/2, it is disrupted by any invasion of size λ′ ∈ [λ, 1/2].

[5.2] There is at most one value λ ∈ [0, 1/2] such that an invasion of size λ

gives convergence to the unstable equilibrium.

There are thus two possibilities. It may be that any invasion of size λ ≤ 1/2 is unable to

disrupt the good equilibrium. This will be the case for relatively large values of q, i.e., when

there are many scoundrels. Alternatively, when q is sufficiently small, the interval [0, 1/2] is

partitioned by a value λ∗, with smaller invasions being assimilated to the good equilibrium,

invasions of size λ∗ leading to the unstable equilibrium, and larger invasions disrupting the

good equilibrium and leading to the bad equilibrium.

Figure 5 shows the values of λ∗ for selected values of q and θ.13

13The value λ∗ is computed as the value of λ such that, when its 15th decimal digit is reduced by 1,



When is Trust Robust? 22

0 2 4 6 8 10 12 14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
*

* for q between 0.001 and 0.006

q=0.001
q=0.002
q=0.003

q=0.004
q=0.005
q=0.006

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

*

* for q between 0.011 and 0.016

q=0.011
q=0.012
q=0.013

q=0.014
q=0.015
q=0.016

Figure 5: Each panel shows, for the proportions q of scoundrels indicated, the

minimum invasion size λ∗ (vertical axis) needed to disrupt the good equilib-

rium, as a function of θ (horizontal axis). The good equilibrium can withstand

larger incursions when θ is larger and when there are more scoundrels. (Note

the change in scale on the vertical axis in moving from panel (a) to (b).) Note

also that when q is larger, as in panel (b), the range of θ that are consistent

with the presence of multiple equilibria shrinks, with smaller and smaller value

of θ required to ensure that only the good equilibrium exists.

4.4. The Robustness of the Bad Equilibrium

We now turn this reasoning around. Consider the system (13)-(14) describing the dynamics

of the perceptions of a mixture of agents, of which a fraction (1 − λ) start with perception

sg = 0 and a fraction λ start with perception sb. If we now define λ̂ = 1− λ, one readily sees

that this is the same system as the one in which a proportion 1− λ̂ of insiders whose initial

perception is sb and a proportion λ̂ of outsiders whose initial perception is sg = 0.

Proposition 4 then gives:

Corollary 1: Consider the dynamic system (13)-(14), assuming that for a fraction 1− λ of

insiders s1(0) = sb and for a fraction λ of outsiders s0(0) = sg = 0 (i.e. a system in which

the insiders initially believe themselves to be in the bad equilibrium and the outsiders in the

good equilibrium). For any λ < 1 there exists a q∗ > 0 such that, for any14 q ≤ q∗ it will be

the limit to which the system converges shifts from the bad equilibrium to the good equilibrium. This and
the following figure are based on MatLab simulations of discrete approximations of our continuous dynamic
system.

14Recall that we are interested in the case in which there are three equilibria. So we must also have
q∗ < q̂(θ) where q̂(θ) is as in (12).
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the case that limt→∞ s1(t) = limt→∞ s0(t) = sb, i.e. the system converges back to the high

cheating equilibrium.

The proof is almost immediate and can be found in Section A.6. The intuition mirrors

that of Proposition 4. As scoundrels become scarce, the basin of attraction of the bad

equilibrium becomes large. It accordingly takes a large invasion of agents accustomed to the

good equilibrium to disrupt the bad equilibrium. In the extreme, as q approaches zero, the

basin of attraction of the bad equilibrium consumes the entire unit interval, allowing the bad

equilibrium to withstand arbitrarily large invasions. Putting these results together, when

scoundrels are scarce, the good equilibrium is upset by perturbations to bad behavior on the

part of a tiny fraction of agents, while a large fraction of the population can shift to good

behavior without disrupting the bad equilibrium.

5. Discussion

Trust can be fragile. When scoundrels are scarce, a high-trust equilibrium can be easily

disrupted a small perturbation of the common perception of cheating (Proposition 3) or

by the injection of even a few bad apples (Proposition 4), while a low-trust equilibrium can

stubbornly resist the appearance of trusting agents. In another version of the common saying,

trust takes years to build, seconds to break, and forever to repair.

The basic forces behind these results are two-fold. The possibility of multiple equilibria

arises because the social cost of cheating is downward sloping—cheating is less costly when it

is more prevalent—and nonlinear.15 The relative stability properties of the equilibria, and in

particular the relative fragility of the good equilibrium, arise because the cost of cheating is

convex in the number of responsive cheaters, and decreases and becomes increasingly convex

as the number of scoundrels decreases. Together, these properties ensure that as scoundrels

become scarce, the unstable equilibrium is pushed close to the good equilibrium while the bad

equilibrium is pushed further away, shrinking the basin of attraction of the good equilibrium

and increasing the basin of attraction of the bad equilibrium, as in Proposition 3. Intuitively,

when scoundrels are scarce and cheating is low, it takes only a small increase in perceived

cheating to sharply reduce the social cost, validating the increase and potentially catapulting

the good equilibrium out of its (relatively small) basin of attraction.

15As Figure 2 and Footnote 9 indicate, either a convex or concave function f can give rise to multiple
equilibria.
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The convexity of the social cost of cheating also lies behind the relative susceptibility to

invasion of the good equilibrium, a seen in Proposition 4. When scoundrels are scarce, agents

in the high-trust equilibrium face a very steep portion of the cost function. When an infusion

of agents acclimated to the low-trust equilibrium raises the perceived level of cheating, the

social falls sharply, inducing the formally high-trust agents to cheat more, eventually pushing

the society to the low-trust equilibrium. Conversely, agents in the low-trust equilibrium face

a much flatter portion of the cost curve. Hence, upon observing less cheating than expected,

their perceived social cost increases very little and their cheating changes very little, allowing

the low-trust equilibrium to survive.

The key properties of the social cost of cheating arise directly from the assumption that

the social cost is directly proportional to the probability that a cheater is a scoundrel. When

very few responsives cheat, a cheater is almost certain to be a scoundrel, and hence cheating is

punished heavily. One readily notices and punishes as a likely scoundrel the only person who

litters in a setting that everyone else preserves as pristine, or the only person who attempts

to jump a queue that everyone else scrupulously maintains, or the only person who breaks a

traffic law that everyone else respects. However, it initially takes only a modicum of cheating

by responsives before a cheater is much less likely to be a scoundrel, and so the cost of cheating

initially drops very rapidly as the incidence of cheating increases. When cheating is rampant,

a transgressor is less likely to be a scoundrel and so punished less heavily. Moreover, an

increase in the incidence of cheating has little effect on the likelihood a cheater is a scoundrel,

and so the cost of cheating falls less and less rapidly as the incidence of cheating increases.

The fewer the scoundrels, the more pronounced the effect of having even a few responsives

among the ranks of cheaters, and so the more pronounced this convexity.

Section 4 showed that when there are few scoundrels, an arbitrarily small invasion of

agents accustomed to the bad equilibrium can disrupt the good equilibrium. One might

think that this is nothing more than a manifestation of Section 3’s result that the basin of

attraction of the good equilibrium is small. To see that this is not the case, Figure 6 reports

results of the following exercise. For various values of the cheating-cost parameter θ, we set

the proportion of scoundrels q so that the unstable equilibrium su is halfway between the good

and bad equilibria. Since su is the common boundary of the basins of attraction of the two

stable equilibria, by keeping it always exactly in their middle we make sure that the distance

that the system needs to travel before being drawn towards the bad equilibrium, starting

from the good one, is equal to the distance that needs to be traveled before being drawn
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towards the good equilibrium, starting from the bad one.16 We then numerically calculate

λ∗, the size of infusion of agents from the bad equilibrium just sufficient to disrupt the good

equilibrium, for each of these cases.
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Figure 6: For each value of the cheating-cost parameter θ, the proportion of

scoundrels q is set so that the unstable equilibrium is halfway between the good

and the bad equilibria. We then numerically calculate λ∗, the size of infusion

of agents from the bad equilibrium just sufficient to disrupt the good equilib-

rium. As θ increases above 1, the proportion of scoundrels required to keep the

unstable equilibrium halfway between the other two equilibria decreases, mak-

ing the cost-of-cheating function more convex, and hence reducing the infusion

of agents accustomed to the bad equilibrium that suffices to disrupt the good

equilibrium.

Over the relevant range the value of λ∗ is always clearly below 0.5 (it is in fact below

0.4). This, using Propositions 4 and Corollary 1, implies that more outsiders are needed to

disrupt the bad equilibrium than are needed to disrupt the good equilibrium, even when the

dislocation of perceptions needed to push agents accustomed to the good equilibrium into

the basin of attraction of the bad equilibrium is equal to the dislocation needed to push

16Injecting a small fraction of agents accustomed to one equilibrium into a society sitting in the other
equilibrium implies that the system will typically move between the two equilibria, making the portion of the
basin of attraction of the bad equilibrium between sb and 1 irrelevant.
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agents accustomed to the bad equilibrium into the basin of attraction of the good one. As

θ increases, the proportion of scoundrels required to maintain su at the mid-point between

sg and sb decreases, making the cost-of-cheating function more convex, and hence reducing

the infusion of agents accustomed to the bad equilibrium that suffices to disrupt the good

equilibrium.

Figure 7 portrays the path of the dynamic systems, for two cases in which an invasion

disrupts the good equilibrium and induces convergence to the bad equilibrium. In each case,

s1 initially equals sg = 0 (insider perception and behavior are initially consistent with the

good equilibrium) and s0 initially equals sb (outsider perception and behavior are initially

consistent with the bad equilibrium).

Figure 7: Depiction of the dynamics for two cases in which an invasion of

agents accustomed to the bad equilibrium leads the population to converge to

the bad equilibrium. Each panel shows the paths of the insider perception of

cheating s1 (red), outsider perception of cheating s0 (black) and the realized

perceptions of cheating s (green). The parameters underlying the left panel

are θ = 2, λ = 0.118, q = 0.05, those in the right panel are θ = 2, λ = 0.2, q =

0.0634. The kinks in the paths arise as various of the min and max operators

in (13) come into play.

Two aspects of these dynamics stand out. First, s1 initially increases as insiders adjust to

the more-than-expected cheating carried out by outsiders. However, the outsiders’ perceived

level of cheating s0 falls, as they meet less cheating than expected when matched with insiders.
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The outsiders’ perceived level of cheating falls much more dramatically, reflecting their smaller

share of the population, and hence the realized level of cheating, s, on balance falls (only

imperceptibly at the beginning). There thus initially appears to be overwhelming evidence

that the population is adjusting toward the good equilibrium. However, in both cases the

direction of s eventually reverses (after some seeming indecision in the right panel) and the

population converges to the bad equilibrium. Second, the adjustment of the aggregate level of

cheating not only need not be monotonic, but can be complicated, in the right panel reversing

direction three times.

The idea that trust can be fragile is familiar. The more surprising finding to emerge from

this exploration is that, perhaps paradoxically, trust can be more robust when there are more

agents in the economy who can never be trusted. Intuitively, this is because social disapproval

is heaped on cheaters who do so without a good reason. The more reckless cheaters there

are—the more scoundrels, as we call them—the more likely a person observed cheating is one

of them, and therefore the more his cheating is socially sanctioned. Scoundrels can thus be

valuable for two reasons. Increasing the number of scoundrels may convert an economy with

multiple equilibria into an economy with a unique (good) equilibrium. As we have seen in

Section 3, if the former economy is coordinated on the less trusting of the multiple equilibria,

the increase in scoundrels leads to an increase in trust. In addition, an increase in the number

of scoundrels can render an economy coordinated on the most trusting of multiple equilibria

better able to withstand perturbations to that equilibrium. The most fortunate economy is

one that has few scoundrels, and hence multiple equilibria, but that has coordinated on the

high-trust equilibrium. But the higher is the level of trust in the good equilibrium (i.e., the

fewer scoundrels), the more precarious is the equilibrium itself.

Our analysis points to steps that might mitigate this fragility. If we broadened the purview

of our analysis to accommodate either multiple or continuous arrivals of outsiders, then we

expect that an economy whose good equilibrium would be disrupted by a moderate influx

of outsiders accustomed to the bad equilibrium could accommodate an even larger number

of such additions if they occur sufficiently slowly. This moderated flow would allow previous

arrivals to have time to adjust and thus keep the system within the basin of attraction of

the good equilibrium, even as the flow of new arrivals continues. Taking steps to hasten

the adjustment of perceptions would allow the good equilibrium to withstand a larger influx

of outsiders, but taking steps to reduce the number of scoundrels would have the reverse

effect. We can expect an institution devoid of scoundrels (perhaps Minnesota?) to have
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more difficulty accommodating arrivals accustomed to the bad equilibrium than a somewhat

grittier one (perhaps New York?).

We have worked throughout with the simple specification of the social cost of cheating

given by (1) and simple, symmetric adjustment dynamic given by (14). We believe that,

if anything, the more realistic components we might build into these specifications would

reinforce our basic finding that trust is likely to be fragile. For example, we expect violations

of trust in a high-trust environment to be more visible and more salient than episodes of trust

in a low-trust environment. If so, the tendency of shocks to disrupt a high-trust equilibrium

will be exacerbated.
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Appendix

For Online Publication

A.1. Proof of Proposition 1

From (5), if θ < 1, then s∗ < 0. Hence the equilibrium conditions (6)–(8) reduce to

s = max{0, x− f(s)}

= max

{
0,

1

2
− 1

2
f(s)

}
= max

{
0,

1

2
− 1

2

θq

q + (1− q)s

}
=

1

2
− 1

2

θq

q + (1− q)s
.

Given θ < 1, this equation has only one positive (real) solution.

A.2. Proof of Proposition 3

Straightforward manipulations of (10) and (11), in the range consistent with q < q̂(θ), imply that su is an

increasing function of q and θ, while sb is a decreasing function of q and θ, with

lim
q→0

su(q) = 0 and lim
q→0

sb(q) =
1

2
.

A.3. Proof of Lemma 1

We first note that for su ≤ s ≤ sb, we have that

1

2
− 1

2
f(s) ≥ s (A.1)

with a strict inequality except at the two boundaries, while for both s < su and s > sb, it is true that

1

2
− 1

2
f(s) < s. (A.2)

We can write s(t) = h(s0(t), s1(t)) and then write the dynamical system (13)-(14) as

ṡ1(t) = δ{h(s0(t), s1(t))− s1(t)}

ṡ0(t) = δ{h(s0(t), s1(t))− s0(t)}, (A.3)

where the function h(s0(t), s1(t)) is derived from (13) and gives the realized proportion of cheating by respon-

sives, s(t), as a function of the current state of the perceptions by outsiders and incumbents, respectively,
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(s0(t), s1(t)). In the following argument, we repeatedly use the facts that the function h is uniformly contin-

uous on [0, 1]2, and that along the diagonal s1(t) = s0(t) = s, the function h is given by

h(s, s) =

 0 s ≤ s∗

1

2
− 1

2
f(s) s ≥ s∗,

and hence, as implied by (A.1) and (A.2), we have

h(s, s)− s < 0 s < su

h(s, s)− s = 0 s = su (A.4)

h(s, s)− s > 0 su < s < sb (A.5)

h(s, s)− s = 0 s = sb (A.6)

h(s, s)− s < 0 s > sb. (A.7)

Fix a sufficiently small η > 0. Then there exists ε(η) > 0 such that

s ∈ [η, su − η] =⇒ h(s, s)− s < −ε(η) (A.8)

s ∈ [su + η, sb − η] =⇒ h(s, s)− s > ε(η) (A.9)

s ∈ [sb + η, 1] =⇒ h(s, s)− s < −ε(η). (A.10)

Let || · || denote the sup norm. There exists γ(η) > 0 sufficiently small such that ||(s0, s1) − (s0, s0)|| < γ(η)

implies17

|h(s0, s1)− h(s0, s0)| <
ε(η)

4

|s0 − s1| <
ε(η)

4
, (A.11)

which in turn imply, using the triangle inequality,

|h(s0, s1)− s0)− (h(s0, s0)− s0)| <
ε(η)

2
(A.12)

|(h(s0, s1)− s1)− (h(s0, s0)− s0)| <
ε(η)

2
. (A.13)

Hence, whenever ||(s0, s1)−(s0, s0)|| < γ(η), we can combine (A.12) and (A.13) with (A.8)–(A.10), to establish

17The first inequality follows from the absolute continuity of h. We can ensure the second by taking γ(η)
to be sufficiently small.
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the following implications:

s0, s1 ∈ [η, su − η] =⇒
[
h(s0, s1)− s0 < −ε(η)

2
, h(s0, s1)− s1 < −ε(η)

2

]
(A.14)

s0, s1 ∈ [su + η, sb − η] =⇒
[
h(s0, s1)− s0 >

ε(η)

2
, h(s0, s1)− s1 >

ε(η)

2

]
(A.15)

s0, s1 ∈ [sb + η, 1] =⇒
[
h(s0, s1)− s0 < −ε(η)

2
, h(s0, s1)− s1 < −ε(η)

2

]
. (A.16)

From (15), we see that there exists T (η) such that for all t > T (η), we have ||(s0, s1)−(s0, s0)|| < min{η, γ(η)}.
The preceding three implications then imply two possibilities:

• For all t > T (η), s0 and s1 are both within 2η of su.

• There is a time t′ > T at which at least one of s0 or s1 differ from su by more than 2η. Then both

s0 and s1 differ from su by more than η. Hence, (A.14)–(A.16) imply that there exists a time t′′ ≥ t′

such that for all t > t′′, either both s0 and s1 differ from sg by at most 2η (from (A.14)) or both s0

and s1 differ from sb by at most 2η (from (A.15)–(A.16)).

Since this holds for any η > 0, we have convergence.

A.4. Proof of Proposition 4

We begin with a preliminary result.

Lemma A.1: Let q < q̂(θ), so that there are 3 distinct equilibria. If at some finite time t it is the case that

s1(t) = su, the dynamic system (13)-(14), with initial conditions s1(0) = 0 and s0(0) = sb, converges to sb.

Proof: Using (15) we can write the dynamics entirely in terms of s1(t) and t, for a given λ:

ṡ1(t) =

δ

{
(1− λ)2 min{1,max{0,max{f(s1(t)),

1

2
+

1

2
f(s1(t))} − f(s1(t))}}

+λ(1− λ)min{1,max{0,max{f(s1(t)),
1

2
+

1

2
f(s1(t))} − f(s1(t) + e−δtsb)}}

+λ(1− λ)min{1,max{0,max{f(s1(t) + e−δtsb),
1

2
+

1

2
f(s1(t) + e−δtsb)} − f(s1(t))}}

+λ2 min{1,max{0,max{f(s1(t) + e−δtsb),
1

2
+

1

2
f(s1(t) + e−δtsb)} − f(s1(t) + e−δtsb)}} − s1(t)

}
.

(A.17)
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Assume now that, at some finite t, s1(t) ≥ su. For any θ > 1 this implies that

s0(t) > s1(t) ≥ su > s∗ > 0.

As long as s1(t) < sb (which is strictly larger than su, given that q < q̂(θ)), we can simplify the dynamics,

since all the inner max appearing in (A.17) are solved by the second of the two expressions. More in detail,

in the expression multiplied by (1− λ)2 we have:

max

{
f(s1(t)),

1

2
+

1

2
f(s1(t))

}
− f(s1(t)) =

1

2
− 1

2
f(s1(t)).

In the first of the two expressions multiplied by λ(1− λ) we have:

max

{
f(s1(t)),

1

2
+

1

2
f(s1(t))

}
− f(s1(t) + e−δtsb) =

1

2
+

1

2
f(s1(t))− f(s1(t) + e−δtsb).

In the second of the two expressions multiplied by λ(1− λ) we have:

max

{
f(s1(t) + e−δtsb),

1

2
+

1

2
f(s1(t) + e−δtsb)

}
− f(s1(t)) =

1

2
+

1

2
f(s1(t) + e−δtsb)− f(s1(t)).

Note that

1

2
+

1

2
f(s1(t))− f(s1(t) + e−δtsb) > 0

and since s1(t) > s∗ this implies that

1 > f(s1(t)) > f(s1(t) + e−δtsb).

Therefore, the first of the two expressions multiplied by λ(1− λ) reduces to

1

2
+

1

2
f(s1(t))− f(s1(t) + e−δtsb).

Since

1

2
+

1

2
f(s1(t) + e−δtsb)− f(s1(t))

cannot be signed, the second of the two expressions in (A.17) multiplied by λ(1− λ) only reduces to

max

{
0,

1

2
+

1

2
f(s1(t) + e−δtsb)− f(s1(t))

}
.

Finally, for the expression in (A.17) multiplied by λ2 we have:

max{f(s1(t) + e−δtsb),
1

2
+

1

2
f(s1(t) + e−δtsb)} − f(s1(t) + e−δtsb) =

1

2
− 1

2
f(s1(t) + e−δtsb).
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Putting together all these observations about the four components of the right side of (A.17) we get

ṡ1(t) =

δ

{
(1− λ)2

(
1

2
− 1

2
f(s1(t)

)

+λ(1− λ)

(
1

2
+

1

2
f(s1(t))− f(s1(t) + e−δtsb) + max

{
0,

1

2
+

1

2
f(s1(t) + e−δtsb)− f(s1(t))

})

+λ2

(
1

2
− 1

2
f(s1(t) + e−δtsb)

)
− s1(t)

}
≥

δ

{
(1− λ)2

(
1

2
− 1

2
f(s1(t))

)
+ λ(1− λ)

(
1− 1

2
f(s1(t))−

1

2
f(s1(t) + e−δtsb)

)
+

λ2

(
1

2
− 1

2
f(s1(t) + e−δtsb)

)
− s1(t)

}

= δ

{
1

2
− 1

2
f(s1(t)) +

λ

2
(f(s1(t))− f(s1(t) + e−δtsb))− s1(t)

}
,

(A.18)

where the middle inequality results from neglecting the max operator.

Given that su ≤ s1(t) < sb, we know that

s1(t) ≤
1

2
− 1

2
f(s1(t)) ⇔ 1

2
− 1

2
f(s1(t))− s1(t) ≥ 0.

Moreover, since f is decreasing, for any finite t we have

f(s1(t))− f(s1(t) + e−δtsb) > 0

Hence ṡ1(t) > 0 for all su ≤ s1(t) < sb. Since we know that the system converges, it must then be that

s1(t) converges to sb.

The proof of Proposition 4 now proceeds in four steps.

Step 1: Bounding s0 from below for an initial interval of time

First, fix λ ≤ 1/2, θ and a value of 0 < q < q̂(θ), to guarantee that there are three equilibria (to simplify

the notation, we will denote this as q̂). Recall the dynamics

ṡ1 = δ(s− s1)

ṡ0 = δ(s− s0). (A.19)
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Recall that s00 is the amount of cheating that occurs when an outsider proposer meets an outside receiver.

At time 0, we have s00 = sb, where we recall that the latter is the level of cheating characterizing the bad

equilibrium. Then in general we have, using (13),

s ≥ λ2s00,

and hence

ṡ1 ≥ δ(λ2s00 − s1)

ṡ0 ≥ δ(λ2s00 − s0). (A.20)

Now we note that, as long as s0 > s∗(which initially must be the case given that s0(0) = sb > s∗), we have

s00 =
1

2
− 1

2

θq

q + (1− q)s0
,

and so we can write

ṡ1 ≥ δ

(
λ2

(
1

2
− 1

2

θq

q + (1− q)s0

)
− s1

)
ṡ0 ≥ δ

(
λ2

(
1

2
− 1

2

θq

q + (1− q)s0

)
− s0

)
. (A.21)

The right hand side in (A.21) is larger than the expression we obtain by setting to 0 the s0 that appears in

the denominator. Hence we have

ṡ0 ≥ δ

(
λ2

(
1

2
− 1

2
θ

)
− s0

)
for all q ∈ (0, q̂).

Hence, for any η > 0, there exists a time tη > 0 such that s0(t) ≥ sb − η for all t ∈ [0, tη].

Step 2: Bounding s1 from below at a given point in time

Consider now (A.21). The expression within the inner brackets is increasing in s0 and decreasing in q.

Therefore, over the interval [0, tη], replacing s0 by its lower bound of sb−η, and again sb by its lower bound18

of (1 − 3q̂)/(4(1 − q̂)), we reduce that expression. We also reduce it replacing q by its upper bound of q̂.

Combining these changes we obtain a lower bound on the right side of (A.21) that implies

ṡ1(t) ≥ δ

(
λ2

(
1

2
− 1

2

θq̂

q̂( 14 + η) + ( 14 − η)

)
− s1(t)

)
.

18See (10) and (12).
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It is a bit tedious but straightforward to verify that, for any θ > 1 it must be that

1

2

1− θq̂
1

4
(q̂ + 1)

 > 0.

We can then choose η sufficiently small so that

1

2

1− θq̂

q̂(
1

4
+ η) + (

1

4
− η)

 > 0.

Then we have that

ṡ1(t) ≥ δ(A− s1(t))

for some A > 0 and for any fixed q ∈ (0, q̂) and all t ∈ [0, tη].

Hence, there exists a time τ ∈ [0, tη] and value ξ > 0 such that, for any fixed q ∈ (0, q̂), we have,

s1(τ) ≥ ξ > 0.

Step 3: Pushing su below s1.

Now let q approach 0. As we do so, su(q) → 0. Hence, for all sufficiently small q, at time τ we have

s1(τ) > su.

Step 4: Showing convergence to sb.

We can now invoke Lemma A.1 and conclude that s1(t) converges to sb.

A.5. Proof of Proposition 5

The outline of the argument is as follows.

First, we think of s(t), the realized proportion of cheaters at time t, as a function s(s1(t), t, λ) of s1(t)

(the insiders’ perceived level of cheating at time t), t and λ.19

Second, we show that for fixed s1 and t, the smaller is λ the smaller is s(s1, t, λ)).

This in turn ensures that, for a fixed s1 and t, the smaller is λ, the smaller is ds1/dt.

Third, suppose that the path of s1(t) induced by λ converges to sg, the good equilibrium. Then, for a

smaller value λ′, we get a path in which, at every time t, either the induced value of s1 is smaller, or (if equal)

19In principle, we should write s1(t, λ), but omit the latter argument to conserve on clutter. We need not
include s0(t) as an argument of s, since (from (15)) this can be inferred from s1 and t.
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the derivative ds1/dt is smaller. Hence, the path induced by the smaller value λ′ is always either below or

being pushed below that induced by λ, and so the λ′ path also converges to 0. Hence, if the path of s1(t)

induced by λ converges to sg, then so does the path induced by any λ′ < λ. A similar argument shows that

if the path of s1(t) induced by λ converges to sb, then so does the path induced by any λ′ > λ. This gives

[5.1].

Finally, we show [5.2], that at most one value λ ∈ [0, 1/2] induces convergence to su.

We begin with a preliminary result.

Lemma A.2: Consider two paths of insider perceptions, s1(t, λ1) and s1(t, λ2), with λ1 > λ2. Suppose both

paths converge to su. Then, for all t large enough, it must be the case that s1(t, λ1) < s1(t, λ2),

Proof: To simplify the notation, denote by sj1 the path of the insider perceptions corresponding to λj . For a

t large enough, we know that the dynamics of s11(t) and s21(t) follow

ṡ11(t) = δ

{
1

2
− 1

2
f(s11(t))− s11(t) +

λ1

2
(f(s11(t))− f(s11(t) + c))

}
,

and

ṡ21(t) = δ

{
1

2
− 1

2
f(s21(t))− s21(t) +

λ2

2
(f(s21(t))− f(s21(t) + c))

}
,

where c = e−δtsb is, for a given t, a constant which is common to both paths.

We want to show that, if t is large enough, it cannot be that s11(t) ≥ s21(t). Suppose, by way of contra-

diction, that this is the case. We will show that this implies that

ṡ11(t) > ṡ21(t).

This in turn implies that s11(t) and s21(t) would diverge from each other, and therefore they could not both

converge to su.

If at some (large) t it were the case that s11(t) = s21(t), it would follow (since λ1 > λ2 and f is decreasing)

that ṡ11(t) > ṡ21(t). Starting from t, the path for s11 would then immediately be above the path for s21. We

would then need to consider the case s11(t) > s21(t), to which we turn.

We have

ṡ11(t)− ṡ21(t) = δ

{
1

2
(f(s21(t))− f(s11(t))) + s21(t)− s11(t)+ (A.22)

λ1

2
(f(s11(t))− f(s11(t) + c))− λ2

2
(f(s21(t))− f(s21(t) + c))

}
.

The second line tends to 0 as t → ∞ but can be negative for a given t. As a preliminary step, we show that

1

2
(f(s21(t))− f(s11(t))) > s11(t)− s21(t).
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Indeed,
1

2
(f(s21(t))− f(s11(t))) =

θq

2

(1− q)(s11(t)− s21(t))

(q + (1− q)s11(t))(q + (1− q)s21(t))
, (A.22)

hence
1

2
(f(s21(t))− f(s11(t))) > s11(t)− s21(t)

if
θq

2

(1− q)

(q + (1− q)s11(t))(q + (1− q)s21(t))
> 1.

In turn, given that both s11(t) and s21(t) are smaller than su, we have that

θq

2

(1− q)

(q + (1− q)s11(t))(q + (1− q)s21(t))
>

θq

2

(1− q)

(q + (1− q)su)2

=
θq(1− q)

2

(1− 2su)
2

(θq)2

=
(1− q)

2θq
(1− 2su)

2,

where we used equations (9) and (1) to replace q + (1− q)su.

Using now the definition of su (equation (11)) we have that

1− 2su =
1 + q +

√
(q + 1)2 − 8θq(1− q)

2(1− q)
.

Therefore,

(1− q)

2θq
(1− 2su)

2 =
2(1 + q)2 − 8θq(1− q) + 2(1 + q)

√
(1 + q)2 − 8θq(1− q)

8θq(1− q)

=
(1 + q)2

4θq(1− q)
− 1 +

(1 + q)

4θq(1− q)

√
(1 + q)2 − 8θq(1− q).

We need to establish whether the right side is larger than 1. This is equivalent to establish whether

√
(1 + q)2 − 8θq(1− q) >

8θq(1− q)

1 + q
− (1 + q).

Squaring both sides we obtain

(1 + q)2 − 8θq(1− q) >
(8θq(1− q))2

(1 + q)2
+ (1 + q)2 − 16θq(1− q).

Simplifying this boils down to

(1 + q)2 > 8θq(1− q),

which is a condition satisfied as long as we have 3 equilibria of the dynamic system. This establishes the
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preliminary step

1

2
(f(s21(t))− f(s11(t))) > s11(t)− s21(t). (A.23)

Rewrite now equation (A.22) as follows:

ṡ11(t)− ṡ21(t) =

δ

{
1

2
{[f(s21(t))(1− λ2) + f(s21(t) + c)λ2]− [f(s11(t))(1− λ1) + f(s11(t) + c)λ1]}+ s21(t)− s11(t)

} . (A.24)

The expression within the first pair of square brackets can be written as

f(s21(t))− λ2k2, (A.25)

where

k2 =
θq(1− q)c

(q + (1− q)s21(t))(q + (1− q)(s21(t) + c))
.

Similarly, the expression within the second pair of square brackets can be written as

f(s11(t))− λ1k1, (A.26)

where

k1 =
θq(1− q)c

(q + (1− q)s11(t))(q + (1− q)(s11(t) + c))
,

and k2 > k1.

Therefore, the right side of (A.24) can be written as

δ

{
1

2
{f(s21(t))− f(s11(t)) + λ1k1 − λ2k2}+ s21(t)− s11(t)

}
.

We now show that, when t is sufficiently large, and therefore c is sufficiently small, λ1k1 − λ2k2 ≥ 0. This

inequality is equivalent to

λ1 − λ2

λ1
≥ k2 − k1

k2
= 1− (q + (1− q)s21(t))(q + (1− q)(s21(t) + c))

(q + (1− q)s11(t))(q + (1− q)(s11(t) + c))
.

The left side is a positive, constant scalar. As t becomes large the right side approaches 0. For a sufficiently

large t this then proves that λ1k1 − λ2k2 ≥ 0, which in turn implies, using (A.23), that ṡ11(t)− ṡ21(t) > 0.

As we anticipated the actual proof of Proposition 5 is divided into four steps.

Step 1: Recalling (13) and using (15) (specialized to the case we are considering) we define

s(t) := s(s1(t), t, λ) = (1− λ)2ζ11 + λ(1− λ)(ζ01 + ζ10) + λ2ζ00 (A.27)



When is Trust Robust? 42

where

ζ11 = min

{
1,max{0,max{f(s1(t)),

1

2
+

1

2
f(s1(t))} − f(s1(t))}

}
(A.28)

ζ10 = min

{
1,max{0,max{f(s1(t)),

1

2
+

1

2
f(s1(t))} − f(s1(t) + e−δtsb)}

}
(A.29)

ζ01 = min

{
1,max{0,max{f(s1(t) + e−δtsb),

1

2
+

1

2
f(s1(t) + e−δtsb)} f(s1(t))}

}
(A.30)

ζ00 = min

{
1,max{0,max{f(s1(t) + e−δtsb),

1

2
+

1

2
f(s1(t) + e−δtsb)} f(s1(t) + e−δtsb)}

}
. (A.31)

For any given s1(t) and t, we have

∂s

∂λ
= −2(1− λ)ζ11 + (1− 2λ)(ζ01 + ζ10) + 2λζ00

= −2ζ11 + (ζ01 + ζ10) + 2λ[ζ11 + ζ00 − (ζ01 + ζ10)]

∂2(s)

∂2λ
= 2(ζ11 + ζ00 − (ζ01 + ζ10)).

Step 2: We show that ∂s/∂λ ≥ 0 in the interval λ ∈ [0, 1/2]. Because the second derivative has a constant

sign over this interval, it suffices to show that ∂s/∂λ ≥ 0 for λ = 0 and λ = 1
2 . The corresponding requirements

are

2 ζ11 ≤ ζ01 + ζ10

ζ11 ≤ ζ00.
(A.32)

The second of these is almost immediate.20 For any fixed λ, for all t it is the case that s1(t) + e−δtsb ≥ s1(t)

(in fact the inequality is always strict and tends to an equality as t tends to ∞). If s1(t) > s∗, then also

s1(t) + e−δtsb > s∗. Therefore,

ζ11 =
1

2
− 1

2
f(s1(t)) < ζ00 =

1

2
− 1

2
f(s1(t) + e−δtsb),

since f is decreasing and f(s1(t)) < 1. If s1(t) ≤ s∗, there are two possibilities: either s1(t) + e−δtsb > s∗ or

s1(t) + e−δtsb ≤ s∗. In the first case,

ζ11 = 0 <
1

2
− 1

2
f(s1(t) + e−δtsb) = ζ00.

20Intuitively, ζ11 is the level of cheating when two good agents meet, and ζ00 is the level of cheating when
two bad agents meet. The second requirement is then the statement that bad agents cheat more than good
agents.
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In the second case,

ζ11 = 0 = ζ00.

Moving to the first, we need 2 ζ11 ≤ ζ01 + ζ10. We can simplify the expressions for ζ11, ζ01 and ζ10

as follows (for notational convenience, we neglect the dependence of s1 on t and we denote by s0 the term

s1(t) + e−δtsb):

ζ11 = max

{
0,

1

2
− 1

2
f(s1)

}

ζ10 = min

{
1,max{f(s1)− f(s0),

1

2
+

1

2
f(s1)− f(s0)}

}

ζ01 = max

{
0,

1

2
+

1

2
f(s0)− f(s1)

}
,

(A.33)

These hold because,

• In equation (A.28) for ζ11, if s1 ≤ s∗, the inner maximum is solved by f(s1), so the whole expression is 0,

while if s1 > s∗ the inner maximum is solved by 1
2 + 1

2f(s1) < 1, so the whole expression is 1
2 − 1

2f(s1);

• In equation (A.29) for ζ10, again, if s1 ≤ s∗, the inner maximum is solved by f(s1), hence we have f(s1)−f(s0);

this could be bigger than 1, so we cannot neglect the outer minimum. If s1 > s∗ the inner maximum is solved

by 1
2 + 1

2f(s1), so the whole expression is 1
2 + 1

2f(s1)− f(s0); since 1 > f(s1) > f(s0), this is positive;

• In equation (A.30) for ζ01, if s0 ≤ s∗, the inner maximum is solved by f(s0), hence we have f(s0) − f(s1);

this is negative, so we need to bound the whole expression below by zero. If s0 > s∗ the inner maximum is

solved by 1
2 + 1

2f(s0). We then have 1
2 + 1

2f(s0)− f(s1), which also could be negative, since f(s1) could be

bigger than 1 (if s1 < s∗) and anyway is bigger than f(s0).

The expression 2 ζ11 ≤ ζ01 + ζ10 can now be written as

max{0, 1− f(s1)} ≤ min

{
1,max{f(s1)− f(s0),

1

2
+

1

2
f(s1)− f(s0)}

}

+ max

{
0,

1

2
+

1

2
f(s0)− f(s1)

} . (A.34)

If the maximum on the left side of (A.34) is zero, the inequality is satisfied and we have that both conditions

in (A.32) are true. Let us then assume that the second maximum on the left side is positive. This is equivalent

to f(s1) < 1, and so we now maintain this assumption. This in turn ensures that the minimum in the first

term on the right side of (A.34) is not 1 and the first maximum is realized by its second term, and so we have

1− f(s1) ≤
[
1

2
+

1

2
f(s1)− f(s0)

]
+max

{
0,

1

2
+

1

2
f(s0)− f(s1)

}
.
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To prove the second condition in (A.32) it then suffices to show that this inequality holds no matter which

term in the final maximum is larger, which is equivalent to

1− f(s1) ≤


1

2
+

1

2
f(s1)− f(s0)

1− 1

2
f(s1)−

1

2
f(s0).

(A.35)

The second of these simplifies to 0 ≤ (f(s1)− f(s0)), which is always true. We thus need to check the first,

which is

1

2
≤ 3

2
f(s1)− f(s0),

or, equivalently,

1

2
(1− f(s1)) ≤ f(s1)− f(s0).

Remember, however, that we are considering the case when 0 is larger than 1
2 + 1

2f(s0) − f(s1), and hence

f(s0) < 2f(s1) − 1, which is equivalent to f(s1) − f(s0) > 1 − f(s1). Since we are considering the case

f(s1) < 1, we then have

1

2
(1− f(s1)) < 1− f(s1) < f(s1)− f(s0),

which is the first in (A.35). Therefore both conditions in (A.32) are satisfied.

Hence, in the interval λ ∈ [0, 1
2 ], for a fixed s1 and t, we have ∂s/∂λ ≥ 0. This in turn ensures, given

that ṡ1(t) is increasing in s, that for a fixed s1 and t, the smaller is λ, the smaller is ṡ1(t).

Step 3: Now consider a λ ≤ 1
2 such that the path of s1(t) converges to 0, the good equilibrium and take a

smaller value λ′.

At time 0 and initial condition s1(0) = 0, common for both λs, we now know that s(0, λ) > s(0, λ′).

Hence the path of s1 induced by λ′ is initially below the path induced by λ.

If the former path always remained weakly below the latter, it would also converge to 0.

By contradiction, suppose it does not converge to 0. Then there must be a (finite) t such that the path

induced by λ′ crosses, from below, the path induced by λ. At that t, s1(t, λ
′) = s1(t, λ). Hence, given t and

this value for s1, we have that
ds1(t, λ

′)

dt
≤ ds1(t, λ)

dt
.

Hence, the path induced by the smaller value λ′ is always either below or being pushed below that induced

by λ, and so the path induced by λ′ also converges to 0. A similar argument shows that if the path of s1(t)

induced by λ converges to sb, then so does the path induced by any λ > λ′.

Step 4: Now consider [5.2]. Suppose we have two paths, s1(t, λ1) and s1(t, λ2), with
1
2 ≥ λ1 > λ2, both

converging to su. Our previous steps show that the first path (associated to the larger λ) must always lie

at least weakly above the second path (associated to the smaller λ). Using Lemma A.2 we then have a

contradiction and hence the proof is now complete.
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A.6. Proof of Corollary 1

Proposition 4 established that for any λ > 0 there exists a q∗ > 0 such that, for any q ≤ q∗, the system

converges to sb. Defining λ̂ = 1 − λ, this also means that for any λ̂ < 1 there exists a q∗ such that, for any

q ≤ q∗, the system converges to sb. This is the claim we wanted to establish.


