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Abstract

This paper studies capital misallocation in a tractable model with random fixed costs of ad-
justment. We identify the distribution of fixed costs and productivity shocks using the entire
size distribution and frequency of investments and provide an efficient estimation method.
We derive the measure of capital misallocation in the presence of fixed costs and show that
it differs from the traditional metric based on the variance of marginal product of capital.
The key feature of models with lumpy investments responsible for this is their non-linearity:
the distribution of marginal product of capital is not log-normal even with normal shocks
and non-degenerate even when shocks are small. We apply our method to 40 years of panel
data on Italian firms and find misallocation costs about 0.5-2% of output. Fixed costs con-
tribute about one half to traditional measures of TFPR dispersion, putting an upper bound
on potential inefficiencies.
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1 Introduction

Over the past decades, a voluminous literature has investigated the effect of frictions on the

allocation of production factors, see e.g. Hopenhayn and Rogerson (1993). Inputs should ideally

be allocated across firms to equalize their marginal revenue product. Misallocation arises when

frictions, either primitive or related to market failures, prevents such equalization. Restuccia and

Rogerson (2008) and Hsieh and Klenow (2009) pioneered the modern strand of this literature by

using theory to map firm-level data on production and factor use into a measure of misallocation.

Restuccia and Rogerson (2017) classify studies of misallocation in two categories, “direct” and

“indirect”. The indirect approach measures dispersion of firm-level marginal product of capital,

attributing such deviations to wedges that capture unmodeled frictions. The direct approach, in-

stead, models a source of misallocation explicitly and identifies it by means of a structural model.

Among the sources of distortions discussed in the literature are financial frictions, like in Edmond,

Midrigan, and Xu (2015), Ottonello and Winberry (2020), and Ottonello and Winberry (2024),

capital adjustment costs, like in Cooper and Haltiwanger (2006), Bond and Van Reenen (2007),

Asker, Collard-Wexler, and Loecker (2014), and information frictions, like in David, Hopenhayn,

and Venkateswaran (2016) and David and Venkateswaran (2019). Importantly, capital misallo-

cation in this terminology is not equivalent to inefficiency, since frictions are a primitive of the

environment, and equilibria are mostly efficient given these primitives.

Our paper follows the direct approach and explores capital misallocation using a structural

investment model with non-convex adjustment costs, as developed by Caballero and Engel (1999).

The model describes firms’ behavior by means of a “generalized hazard function” that encodes a

smooth version of an sS policy and reproduces the empirical distribution of capital investments.

Unlike simple fixed-cost environments, this setup generates a probabilistic decision rule: firms

draw random adjustment costs and invest if the draw is sufficiently small.

Our analysis is motivated by firm-level data on investment: investments are infrequent and

sizable.1 The literature on capital misallocation has often focused on models with convex adjust-

1See Doms and Dunne (1998); Abel and Eberly (1994); Caballero et al. (1995) for an early documentation of
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ment costs. These models conveniently summarize aggregate misallocation with the cross-sectional

variance of the marginal product of capital, but they also predict that investments occur every

period and are “small”, which is at odds with firm-level data. Lumpy investment models challenge

the logic behind this mapping from firm-level dispersion of productivity into misallocation. The

mapping relies on one of two features: either firms’ productivity shocks and “wedges” are jointly

log-normal, or the size of the shocks and distortions are “small”, and the mapping works as a

second-order approximation.2 In models with lumpy investment, however, the distribution of the

firms’ marginal product of capital is not log-normal, even if the underlying shocks are normally

distributed. Moreover, this non-normality survives even in the limit of vanishing shocks.

We provide two analytic results and several empirical applications. The first result gives an

efficient procedure to identify the primitives of a Caballero and Engel (1999) model, where the

firm’s behavior is described by a generalized hazard function. The model maps primitives, such

as the distribution of the fixed costs and other structural parameters, into the distribution of

investment sizes. We solve the inverse problem: starting from the observed distribution of the size

of investments, we recover the primitives that generate the data, among which the distribution of

the adjustment costs. Our result generalizes the one by Baley and Blanco (2021), by allowing a

general distribution of adjustment costs as opposed to their two-point distribution.

Second, we derive an aggregate misallocation measure in the presence of lumpy investment. The

formula combines moments of the distribution of the marginal product of capital that amount to a

generalized Jensen correction. This measure of dispersion generalizes the variance-based measure

widely used in this literature, see e.g. Hsieh and Klenow (2009), and is related to “entropy”,

a well-known functional in the asset pricing literature. If the marginal product of capital were

log-normally distributed, the measure would collapse into the standard variance metric. We show

that the distribution is non-degenerate and not log-normal even in the limit of small shocks, so the

the lumpy nature of investment and the ability of models with non-convex adjustment cost to account for it.
2For instance, David, Hopenhayn, and Venkateswaran (2016) consider a model where firms face imperfect

information and assume that firm-level fundamentals and idiosyncratic distortions are jointly log-normal. David
and Venkateswaran (2019) consider a model with convex adjustment costs, in addition to imperfect information,
and firm-specific “wedges” and characterize misallocation using an approximation with small shocks.
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variance-based metric is not accurate. We characterize analytically the size of the approximation

error implied by the variance-based metric in the special case of a constant hazard function. We

also follow Baley and Blanco (2021) and characterize the aggregate capital-to-productivity ratio.

In the presence of fixed costs this ratio is not approximated by the average marginal product of

capital, a convenient feature of models with convex adjustment costs or no frictions at all.

We elaborate on this result in two ways. First, we show that the variance-based measure of

misallocation can be salvaged in the double limit where adjustment frictions vanish together with

shocks. The relative rate of decay of adjustment frictions and shocks determines the approximation

error for the variance-based metric of misallocation and the average-based metric of the aggregate

capital-productivity ratio. Second, we adapt the model of David and Venkateswaran (2019) to the

Baley and Blanco (2021) setup as a convex-cost benchmark and show that the variance metric works

well in that environment. We explain how non-linearities generated by non-convex adjustment costs

cause the breakdown of log-normality and, consequently, the variance result.

We estimate the model using a large panel of capital investment data by Italian manufacturing

firms, from nine industries, over a 40-year period. To do that, we develop an efficient approximate

method to reduce the dimensionality of the problem. The theory maps one infinitely-dimensional

object (the distribution of investments) to another one (the distribution of fixed costs), using

differential equations. Our method turns this problem into a system of linear equations instead.

We then present four quantitative applications. First, we quantify capital misallocation over

the whole sample period. Output losses from adjustment frictions add up to around 1% of output.

This lands on the lower end of the spectrum of estimates in the literature, closer to structural

models like David and Venkateswaran (2019), who find misallocation costs of 4 − 5% of output,

than to reduced-form results in the literature, which can go up to 50%. Comparing our measure

of capital misallocation with the variance-based measure, we find that the bias of the latter is

significant but not too large, about 10%. Second, we split the sample into subperiods, 1983-2003

and 2003-2023, and track the time evolution of misallocation. We find a decline of at least 30%,

across all sectors, largely as a result of a fall in productivity growth. Intuitively, if the dynamics
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of the ideal capital stock are attenuated, firms are closer to their desired capital on average.3

Third, we revisit a question posed by Asker et al. (2014) and explore how much of measured

misallocation is attributed to fixed costs as opposed to reduced-form wedges, a stand-in for dynamic

inefficiency. We use traditional methods à la Hsieh and Klenow (2009) to estimate the dispersion

of total factor productivity of revenues (TFPR), and compare this metric with our model-based

measure of misallocation. Our misallocation metric captures a substantial share of the TFPR

dispersion, about one half, suggesting that a large part of traditionally measured misallocation is

due to fixed costs as opposed to dynamic inefficiencies, consistent with Asker et al. (2014).

Finally, we quantify the importance of using a fully fledged generalized hazard model against

the alternative of using a simple two-sided Calvo model with different arrival rates of positive and

negative adjustment opportunities, a simplified version of Baley and Blanco (2021). We show that

the two-sided model tends to substantially overestimate misallocation and develop an econometric

test that rejects the simple two-side hazard function for most industries.

The paper is organized is follows. Section 2 sets up the model, Section 3 lays out our results

on misallocation, Section 4 discusses identification, Section 5 describes the estimation results,

and Section 6 presents our quantitative applications. We continuously engage with the literature

throughout the paper and place a detailed review in Appendix A.

2 Setup

There is only one good in this economy, used for both investment and consumption, with its price

normalized to one. Firms use capital and labor to produce: kt units of capital and lt units of

labor combine into ft = ẑ
(1−α)ζ
t kαζt l1−ζ

t units of final good. Here ẑt is productivity. Firms face no

frictions in choosing labor and solve the following value-added maximization problem at every t:

F̂ (ẑt, kt) = max
lt

ẑ
(1−α)ζ
t kαζt l1−ζ

t − wtlt

3This effect is akin to the price wedges caused by inflation in New Keynesian models, see e.g., Nakamura et al.
(2018); Adam et al. (2024); Miyahara et al. (2026).
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After maximization, their value added is given by F (zt, kt) = z1−α
t kαt , where

zt ≡ ẑt ·
(
ζζ(1− ζ)1−ζ

w1−ζ
t

) 1
ζ(1−α)

From now on, we will work with value added after the optimal choice of labor. Our notion of

productivity subsumes wages. Its law of motion is d log(zt) = µdt + σdWt. When uncontrolled,

capital evolves according to d log(kt) = −δdt. As in Caballero and Engel (1999) firms face random

opportunities to adjust capital stock. When an ivestment opportunity arrives, it can be taken at

a fixed cost ψzt. With a Poisson intensity γd, firms get an opportunity to adjust down and draw

an adjustment cost ψ. This cost is distributed with a cumulative distribution function Gd(·) on

interval [0, ψd]. Analogously, an opportunity for adjusting up arrives with a Poisson intensity γu.

Upward adjustment costs are distributed according to Gu(·) on interval [0, ψu].
4

Policy. We conjecture the following policy. Let i ∈ {u, d} be a binary indicator that determines

where the firm is relative to the optimal point. If i = u, the firm is below the optimal capital

and would like to adjust upwards. If i = d, it wishes to disinvest. Conditional on adjusting, firms

always choose y∗zt as their new level of capital. If kt > y∗zt and an opportunity arrives to adjust

down, the firms do it if the cost draw ψ is low enough, satisfying ψ ≤ ψd(kt/zt). If kt < y∗zt and

an opportunity arrives to adjust up, the firms do it if ψ ≤ ψu(kt/zt). Here ψd(·) and ψu(·) are

the downward and upward adjustment cutoff functions.

We guess and verify that the the capital-to-productivity ratio y ≡ k/z fully determines the

firm’s value and its adjustment decisions (see Appendix C for details). Specifically, the downward

adjustment cutoff function ψd(·) maps [y∗,∞) to [0, ψd]. The upward adjustment cutoff function

ψu(·) maps [0, y∗] to [0, ψu]. Denoting ρ ≡ r−µ−σ2/2 and ν ≡ r+δ, the Hamilton-Jacobi-Bellman

equation in a stationary environment is

ρv(y) = yα − νy︸ ︷︷ ︸
net revenue

+(ρ− ν)yv′(y) +
σ2

2
y2v′′(y) +

∑
i=u,d

1iγi

∫
max{v(y∗)− v(y)− ψ, 0}dGi(ψ)︸ ︷︷ ︸

adjustment option value

(1)

Net revenue yα−νy is net of depreciation δ and opportunity cost of holding capital r. In the option

4In Appendix C, we show that this setup is equivalent to one where firms rent capital instead of owning.
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value term, 1i with i ∈ {u, d} indicates that the firm is in the region where it wants to adjust up

or down. The optimality condition for the choice of y∗ is v′(y∗) = 0. The cutoff functions ψi(·)

are given by ψi(y) = v(y∗)− v(y).

Define the generalized hazard function as the intensity of adjustment given the state y:

λ(y) =
∑
i=u,d

1iγiGi(ψi(y)) (2)

This object encodes the fundamental decisions of the firm and determines the steady-state dis-

tribution of capital-to-productivity ratio y, which is key for computing total output and other

aggregates. We also use is it as a bridge between the model primitives and observable objects such

as the capital adjustments recorded in the balance sheet. In Section 4, we show how to recover

λ(·) from the data. The remainder of the present section focuses on using a given λ(·) together

with the structure of the firm’s problem, to recover (µ, σ) and (γi, Gi(·))i=u,d.

Recovering the primitives. Equation (1) and equation (2) establish how the primitives of the

model (r, α, δ, µ, σ) and (κi, Gi(·))i=u,d determine the generalized hazard function λ(·). Obtaining

the inverse mapping is challenging: equation (1) is non-linear, and λ(·) does not enter it directly.

To deal with this, we differentiate equation (1) with respect to y and work with the marginal value

v′(y) instead of v(y). We also change the variables to y 7→ x(y) ≡ log(y) for convenience. To place

our results closer to the literature, in particular David et al. (2016) and David and Venkateswaran

(2019), we refer to the variable x as log-ARPK since it is proportional to the average revenue

product of capital in logs: ARPKt ≡ F (zt, kt)/kt = (zt/kt)
1−α, and logARPKt = (α − 1)xt.

We will work with the marginal value function U(x(y)) ≡ v′(y) and with the generalized hazard

function Λ(x(y)) ≡ λ(y) defined over log ratios. For these functions, we establish the following:

Proposition 1. The functions U(·) and Λ(·) solve the following system:

(ν + Λ(x))U(x) = αe(α−1)x − ν − (µ+ δ)U ′(x) +
σ2

2
U ′′(x) (3)

Λ(x) =
∑
i=u,d

1iγiGi

(∫ x∗

x

U(s)es ds

)
(4)

where x∗ is defined as the unique root of U(·): U(x∗) = 0.
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Given Λ(·), equation (3) is a linear differential equation for U(·). With Λ(·) on hand and

suitable boundary conditions that we describe in the proof, solving for U(·) numerically is feasible.

In some cases, the solution is essentially analytical. Appendix D shows a closed-form solution

for equation (3) under the assumption that the distributions {Gu(·), Gd(·)} are collections of mass

points, making Λ(·) piece-wise constant. We use this case in our empirical application in Section 5.

3 Aggregation and the steady state

Aggregation of firm decisions hinges on the generalized hazard function Λ(·). We will consider

quasi-stationary environments in which this function and the distribution of log-ARPK is fixed

over time. This does not mean that the economy as a whole is stationary: productivity z diverges

over time because it follows a geometric Brownian motion, and capital stock k keeps up with

productivity on average. Despite this, our assumed production function and the fact that fixed

costs are proportional to z guarantee that the log-ARPK has a stationary distribution. The

generalized hazard function Λ(·) is a key object that determines it.

Let ϕ(·) denote the ergodic density of x, where the uncontrolled x follows a diffusion with drift

−(µ + δ) and volatility σ. If Λ(·) is the generalized hazard function for investment, in a steady

state ϕ(·) and Λ(·) satisfy a Kolmogorov forward equation

0 = (µ+ δ)ϕ′(x) +
σ2

2
ϕ′′(x)− ϕ(x)Λ(x) (5)

The first two terms reflect the diffusion of individual firms across the distribution between ad-

justments. Log-ARPK change because the underlying productivity changes with a drift µ and a

volatility σ, and capital depreciates at a rate δ. The last term reflects investment happening with

a state-dependent intensity Λ(x): upon investing, a firm disappears from the set of firms with

log-ARPK equal to (α − 1)x and joins those with a log-ARPK equal to (α − 1)x∗. At x∗ itself,

equation (5) does not hold: firms arrive at this point continually, so ϕ(·) has a kink there.

We show how to identify ϕ(·) and Λ(·) from the data in Section 4. In the remainder of this

section we study capital misallocation treating ϕ(·) and Λ(·) as known objects.
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3.1 Measuring misallocation

We focus on a static notion of misallocation. Given the joint distribution of capital and productiv-

ity, we define the maximum level of output potentially achievable through reallocation of capital

between firms. We call misallocation the (log) difference between this maximum level and actual

output. This notion of misallocation holds aggregate capital fixed and only describes the costs of

physical frictions as opposed to potential market failures.

Formally, let g(k, z) be the density of firms with capital k and productivity z. This joint density

does not converge to a stationary distribution, so we make g(·) an argument of aggregate statistics

shown below. Aggregate output Y of an economy with a joint distribution g is

Y (g) =

∫ ∫
z1−αkαg(k, z)dkdz

The maximum output is

Ŷ (g) = max
k̂(·)

∫ ∫
z1−αk̂(z)αg(k, z)dkdz

s.t.

∫ ∫
k̂(z)g(k, z)dkdz =

∫ ∫
kg(k, z)dkdz

By definition, Ŷ (g) is the maximal level of output given the capital stock in this economy. It is

determined by the marginal density of z: the thought experiment that generates this quantity

freely allocates capital between firms with different productivity, only respecting the constraint on

the total capital stock. Using Y (g) and Ŷ (g), we define misallocation as

M(g) ≡ log Ŷ (g)− log Y (g)

Characterizing the maximum level of output is straightforward: the marginal product of capital

must be equalized across firms. This implies that the hypothetical optimal capital allocation k̂(z)

is linear in z, so for a firm with productivity z it equals k̂(z) = zK(g)/Z(g), where we define

Z(g) ≡
∫ ∫

zg(k, z)dkdz as the average productivity and K(g) ≡
∫ ∫

kg(k, z)dkdz as the total

capital stock. The distribution of ARPK is degenerate and the maximum output is

Ŷ (g) = Z(g)1−αK(g)α
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Misallocation is then equal to

M(g) = − log

∫ ∫ (
z

Z(g)

)1−α(
k

K(g)

)α

g(k, z) dkdz (6)

Computing this object is challenging because it depends on g(k, z). The literature has developed

approximations that do not rely on tracking the entire distribution g(k, z) and only require knowing

the density ϕ(x). This density is stationary, which simplifies computation.

The most popular approach to this reduction of dimensionality assumes that g is either exactly

log-normal, as in the frictionless model of Hsieh and Klenow (2009) with log-normal wedges, or

approximately log-normal due to small shocks, as in the model of David and Venkateswaran (2019)

with convex adjustment costs. Under this assumption, misallocation is related to the variance of

log-ARPK. Take equation (6) and replace the double integral with the expectation operator:

M(g) = (1− α) log(E[z]) + α log(E[k])− log(E[z1−αkα])

Now imagine that (z, k) are jointly log-normal, perhaps exactly, like due to wedges in Hsieh and

Klenow (2009), or approximately, like in the limit of small shocks in David and Venkateswaran

(2019) and Baley and Blanco (2021). Then the log aggregate productivity and the capital stock

only depend on the first and second moments of log(z) and log(k):

log(E[z]) = E[log(z)] +
1

2
V[log(z)]

log(E[k]) = E[log(k)] +
1

2
V[log(k)]

The log of aggregate output additionally depends on their covariance:

log(E[z1−αkα]) = (1− α)E[log(z)] + αE[log(k)] +
(1− α)2

2
V[log(z)] +

α2

2
V[log(k)]

+ (1− α)α · C[log(z), log(k)] (7)

These equations imply (after simple algebra) that

M(g) =
(1− α)α

2
V[log(k)− log(z)] =

(1− α)α

2
V[x] (8)

The first moments of log(k) and log(z) drop out, while the second moments of log(k) and log(z)
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and their covariance combine into V[log(k)− log(z)]. This coincidence is due to log-normality: the

second moments of log(k) and log(z) enter the expressions with coefficients that make all other

terms in equation (8) exactly offset each other. Equation (8) is convenient if log-ARPK have a

stationary density, and their variance can easily be computed.

In addition to equation (8), which holds conditional on aggregate capital stock, this capital

stock itself has a simple representation with log-normality. Simple log-normal algebra implies

logK(g) = logZ(g) + E[x] +
1

2
V[x] + C[log(z), x] (9)

The justification for the log-normality assumption often relies on the small shock approximation,

σ −→ 0. Equation (8) and equation (9) also hold as a second-order approximation if higher-order

moments of log-ARPK vanish faster than the variance. In equation (9), the last two terms are also

assumed to vanish faster than the first two, so in practice the literature uses an approximation

logK(g) ≈ logZ(g) +E[x], relying on the average log-ARPK as a good summary of the aggregate

capital-to-productivity ratio.

In contrast, in our model with fixed costs, log-normality does not obtain even in the limit of

small idiosyncratic shocks, nor do higher-order moments of log-ARPK vanish in the limit. The

reason is that firms cannot adjust at will and allow their log-ARPK to drift away from the optimal

level for a while. Even when they do get an opportunity to adjust, small enough deviations from

the optimum do not always warrant paying the fixed cost. At the same time, without idiosyncratic

shocks, the capital-productivity ratio simply drifts in the same direction for all firms until they reset

it to x = x∗. As a result, the distribution of log-ARPK in the limit σ −→ 0 is both non-degenerate

and substantially different from log-normal. We demonstrate this in the following proposition.

Proposition 2. Suppose that the generalized hazard function Λ(·;σ) converges uniformly to

Λ0(·) as σ −→ 0, where Λ0(·) is bounded and infx Λ0(x) > 0. Suppose that E[e2αx|σ] exists for all

σ ∈ (0, σ) for some σ > 0 and let µ+δ > 0. The stationary distribution of x then weakly converges

to the distribution with a density ϕ0(·), where ϕ0(x) = 0 for x > x∗, and for x ≤ x∗,

ϕ0(x) ∝ exp

(
− 1

µ+ δ

∫ x∗

x

Λ0(s)ds

)
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For all fixed t <∞, misallocation and capital stock converge to the following limits as σ −→ 0:

M(g) −→ αJ0[ex]− J0[eαx]

logK(g) −→ logZ(g) + E0[x] + J0[ex]

where J[x] ≡ log(E[x])− E[log(x)], and E0[·] and J0[·] are taken at the limiting density ϕ0(·).

The limiting density has two salient properties. First, it is only positive to the left of x∗.

Without shocks, firms never find themselves with x > x∗: they land exactly at x∗ when they

invest, and then the drift takes them to the left of this point until the next adjustment. Second,

the density is monotone wherever it is positive: as firms drift away from x∗ at a constant rate, their

population decreases, since some of them adjust their log-ARPK and go back to x∗ in process.

Misallocation converges to a combination of two Jensen’s correction terms αJ0[ex] and J0[eαx].

If x were normally distributed, these terms would be equal to αV[x]/2 and α2V[x]/2, restoring

the familiar formula M = α(1 − α)V[x]/2. If higher-order moments of x vanished, and did it

faster than the variance, then αE[x] + αV[x]/2 and αE[x] + α2V[x]/2 would be the second-order

approximations to αJ0[ex] and J0[eαx], respectively. In that case, α(1 − α)V[x]/2 would be the

leading term in the Taylor expansion for M. It is deviations from normality and the fact that

higher-order moments of the distribution of log ARPK are finite even in the limit of small shoocks

that prevent this from happening.

Another observation is that E[x] is not a good statistic for the aggregate capital-to-productivity

ratio logK(g)− logZ(g). As long as the Jensen correction terms do not vanish as σ −→ 0, using

the E[x] instead of log(E[ex]) introduces a non-trivial mistake in capital stock aggregation. If x

were normally distributed, this error would be proportional to its variance, and if the variance

vanished in the limit of small shocks, then logK(g)− logZ(g) ≈ E[x] would work approximately.

Proposition 2 shows that neither is the case.

Importantly, it is still sufficient to use the marginal distributions of x and z to compute all

three statistics in Proposition 2. The reason is that the covariance between x and z does not show

up in the zeroth order because small shocks make z deterministic.
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Special case. In the special case with a constant generalized hazard function Λ, there are closed-

form solution for moments of log-ARPK, and the connection between the failure of approximate

log-normality and the non-degenerate limiting distribution as σ −→ 0 is more clear:

Corollary 1. Fix x∗ and µ + δ > 0. Let Λ0(·) ≡ λ > 0 and maintain the assumptions from

Proposition 2. For all fixed t <∞, the moments of x converge to the following limits as σ −→ 0:

E[x] −→ E ≡ x∗ − µ+ δ

λ

V[x] −→ V ≡ (µ+ δ)2

λ2
(10)

Misallocation and capital stock converge to

M(g) −→ log
(
1 + α

√
V
)
− α log

(
1 +

√
V
)

logK(g) −→ logZ(g) + E +
√
V − log

(
1 +

√
V
)

The limiting expression for misallocation M is an increasing function of V . An implication is

that misallocation decreases in λ and increases in µ+ δ. The former is not surprising. The latter

might seem surprising, but has a simple explanation: with constant adjustment opportunities,

faster drift increases the dispersion of capital-to-productivity ratios and exacerbates output losses.

This result echoes results from the literature on sticky prices, where, all else equal, higher levels

of inflation lead to higher markup dispersion and increase output losses (see Cavallo, Lippi, and

Miyahara (2023) and Adam, Alexandrov, and Weber (2024) for examples of this mapping).

We illustrate the magnitude of the approximation error from using the variance-based metric of

misallocation and average-based metric of aggregate capital stock in this special case on Figure 1.

If capital-productivity ratios have a variance of 0.05 in logs, which is close to what we estimate in

our empirical application, using the traditional variance-based metric would overstate misallocation

by more than 10%. The magnitude of the error increases non-linearly with variance. The log of

aggregate capital stock would be understated by about 2% by the traditional average-based metric.

Restoring the approximation. Corollary 1 suggests is a way to restore the variance approxi-

mation equation (8). It is especially clear from the corollary that if the variance of log-ARPK
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(a) Measures of misallocation. (b) Error in aggregate capital stock.

Figure 1: Approximation errors from using the variance-based metric of misallocation and average-
based metric of aggregate capital stock in the constant hazard case in Corollary 1. The variance
of log capital-productivity ratios is plotted on the x−axis.

converged to zero in the limit of small shocks, misallocation would be well approximated by

α(1 − α)V/2, in the sense that α(1 − α)V/2 would become the leading term in the Taylor ex-

pansion of M. Equation (10) suggests a way to achieve this: if adjustment frictions vanished

together with idiosyncratic shocks, meaning λ −→ ∞ as σ −→ 0, then V would converge to zero.

This would restore α(1−α)V/2 to the position of the leading term in the Taylor expansion for M.

At the same time, x∗, which is also the expected log ratio x without frictions, would become the

leading term in the Taylor expansion for logK(g) − logZ(g). We now develop a general version

of this result.

Proposition 3. Fix Λ(x;σ) = Λ0(x)/κ and let minx Λ0(x) > 0. Assume that E[ex] exists. Let

σ −→ 0 and κ −→ 0 so that κ = O(σb) for some b ∈ [0, 2]. For all fixed t <∞,

V[x] = O(σ2b)

Misallocation and aggregate capital stock are

M(g) =
α(1− α)

2
V[x] +O

(
σmin{1+2b,3b})

logK(g) = logZ(g) + E[x] +O
(
σmin{1+b,2b})
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This result shows that the properties usually obtained by assuming exact log-normality or

quickly decaying moments of log-ARPK are restored in the double limit of small shocks and

small frictions. If adjustment frictions vanish together with shocks, the variance of log-ARPK

vanishes too, and α(1 − α)V[x]/2 becomes the leading term in the expression for misallocation.

The average log-ARPK becomes a good summary of aggregate capital: E[x] becomes the leading

term in logK(g) − logZ(g). This is particularly useful in light of the results obtained by Baley

and Blanco (2021), who develop analytical characterization of the cumulative impulse responses

of aggregate capital stock using E[x] as an approximation.

In principle, the rate of decay in V[x] can be different depending on the speed of divergence of

the generalized hazard function. For instance, if b = 1, then Λ(x) diverges as 1/σ, and we obtain

the classical case V[x] ∼ σ2. Misallocation is then well approximated by α(1− α)V[x]/2, and the

next term in the expression for M(g) is of order σ3. In a less typical case of b = 1/2, the orders

are Λ(x) ∼ 1/
√
σ and V[x] ∼ σ. The variance of log-ARPK is still a good approximation for

misallocation, and the next term in the expression for misallocation is then of order σ3/2. If b = 0,

adjustment frictions do not vanish, and misallocation loses its connection to V[x], while E[x] stops

being a good approximation for aggregate capital.

A final remark here is that varying σ and Λ( · ;σ) together in a particular way does not hold

constant the primitives of the model {γi, Gi(·)}i=u,d. Preserving the shape of Λ( · ;σ) as σ −→ 0

requires changing the distributions of random adjustment costs in the background, although we

do not explicitly compute them as we take the limit.

3.2 Relationship to convex adjustment costs.

We now briefly point out that the reason why misallocation in our model is not well approximated

by the variance of log-ARPK is the lumpiness of investment and not the adjustment friction itself.

To that end, we explain the relationship between our model with random fixed costs and models

with convex adjustment costs, such as that of David and Venkateswaran (2019). We use a simplified

version of David and Venkateswaran (2019) without wedges and information frictions.
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The main takeaway is that, unlike fixed costs, convex adjustment costs do not lead to a non-

degenerate distribution of log-ARPK in the limit of small idiosyncratic shocks. With the dis-

tribution of log-ARPK converging to a degenerate measure, higher-order moments vanish faster

than lower-order ones, so E[x] is the leading term in the expression for the aggregate capital-to-

productivity ratio, while α(1− α)V[x]/2 is the leading term in the expression for misallocation.

The intuition for why convex costs do not create a non-degenerate distribution of log-ARPK

without idiosyncratic shocks is simple. Convexity makes firms dislike time variation in adjustment,

so they decide to smooth investment over time as much as possible. When σ −→ 0, firms simply

choose to offset the drift in log-ARPK all the time, maintaining x = x∗.

To make this concrete, take firms that produce y = z1−αkα and invest subject to a quadratic

investment cost. Denote the investment rate by ı. The evolution of capital and productivity is

d log(k) = (ı− δ)dt and d log(z) = µdt+ σdW . The recursive problem of the firm is

rV (k, z) = max
ı

z1−αkα + (ı− δ)kVk(k, z)− ık − φk

2
ı2 +

[
µ+

σ2

2

]
zVz(k, z) +

σ2z2

2
Vzz(k, z)

The optimal investment rate is ı = φ−1(Vk(k, z) − 1). Make a change of variables to the capital-

productivity ratio: y ≡ k/z. Consider a different value function v(·) given by V (k, z) = zv(k/z)+k.

Implementing this change of variables and denoting ρ = r − µ− σ2/2 and ν = r + δ, as before,

ρv(y) = yα − νy + (ρ− ν)yv′(y) +
σ2y2

2
v′′(y) +

[v′(y)]2y

2φ
(convex costs)

Compare this to the value with fixed costs:

ρv(y) = yα − νy + (ρ− ν)yv′(y) +
σ2y2

2
v′′(y) +H(v(y∗)− v(y)) (fixed costs)

Here H(·) is the option value of capital stock adjustment:

H(v(y∗)− v(y)) =
∑

i=u,d
1iγi

∫
max{v(y∗)− v(y)− ψ, 0}dGi(ψ)

The two HJB equations only differ in the last, adjustment-related, terms that introduce non-

linearities. With convex costs, only the local shape of v determines the speed of adjustment and

the value of the adjustment option, while with fixed costs, the option value of adjusting depends
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on the global properties of the value.

The key difference between the models is in the Kolmogorov forward equations that determine

their stationary distributions. To compare the stationary distributions, change the variables to

x ≡ log(y). Abusing notation, the optimal investments rate is ı(x) = φ−1v′(ex). The distribution

ϕ solves the following:

[ı(x)ϕ(x)]′ = (µ+ δ)ϕ′(x) +
σ2

2
ϕ′′(x) (convex costs)

Compare this to

Λ(x)ϕ(x) = (µ+ δ)ϕ′(x) +
σ2

2
ϕ′′(x) (fixed costs)

Heuristically, setting σ = 0 in the equation for the fixed cost case leads to a first-order differential

equation. This is because the term Λ(x)ϕ(x) on the left reflects discrete transitions of firms when

they reset their ARPK. Investment takes the form of occasional jumps. In the convex cost case,

setting σ = 0 leads to [ı(x)ϕ(x)]′ = (µ + δ)ϕ′(x), which implies ı(x)ϕ(x) = (µ + δ)ϕ(x), so ϕ(x)

must be zero everywhere except the point where ı(x) = µ + δ. In contrast to the lumpy case, in

the convex case investment is a form of drift, and it has to offset other sources of drift to induce

stationarity. Intuitively, if firms do not exactly offset the drift in their log-ARPK with investment,

they move around the distribution. Since without shocks all firms are moving in the same direction,

this contradicts stationarity. We formalize the result in the following proposition.

Proposition 4. Suppose the investment function ı(·;σ) converges uniformly to ı0(·) as σ −→ 0,

where infx ı
′
0(x) > 0. The stationary measure of firms weakly converges to the measure fully

concentrated at x = x∗0 given by ı0(x
∗
0) = µ+ δ. Misallocation and aggregate capital stock are

M(g) =
α(1− α)

2
V[x] +O(σ3)

logK(g) = logZ(g) + E[x] +O(σ2)

Here V[x] = O(σ2) and E[x− x∗0] = O(σ).

A final remark to make about the relationship between the convex-cost and the fixed-cost

models is that the former preserve approximate log-normality because they are amenable to lin-
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earization. Indeed, David and Venkateswaran (2019) log-linearize the model first, taking advantage

of the smoothness of adjustment costs, and then use log-normality of the underlying shocks.5 Fun-

damental non-linearities of the fixed cost models introduce a disconnect between the distribution of

exogenous shocks and endogeneous states. Computing misallocation and other aggregate statistics

around the limit with no idiosyncratic shocks requires additional care.

4 Mapping the model to the data

We now explain the connection between Λ(·) and observable objects. This is the second part of

our mapping between the data and model primitives, where Λ(·) is the bridge between observable

objects and parameters of the fixed costs. The connection works through aggregation of adjustment

by all firms in the economy, which is summarized by the Kolmogorov forward equation (5).

Productivity is not observable, so {ϕ(·),Λ(·)} cannot be simply read from the data. We use the

observed distribution and frequency of investments to recover them. Upon observing an adjust-

ment, we record its size in logs, ∆ log(K) = ln(K+)− ln(K−), where K− and K+ is capital stock

right before and right after the change. Since z has continuous sample paths, ∆ log(K) = ∆x.

Let the distribution of recorded changes in log capital stock be Q(·) : R 7→ [0, 1]. Denote the

corresponding density by q(·). Then, letting N be the frequency of adjustments,

ϕ(x)Λ(x) = Nq(x∗ − x)

The number of adjustments of the size x∗ − x per unit of time is equal to the number of firms

who have a log ARPK of (α− 1)x times the probability per unit of time for such firms to adjust.

Crucial here is that all firms choose exactly x∗ when they invest or disinvest.

While ϕ(·) and Λ(·) are not separately observable, their product counts adjustments among

the firms with log ARPK x, and so can be mapped to the density of adjustments of size x∗ − x.

5The literature using convex adjustment costs in DSGE models goes back to at least Lucas and Prescott (1971).
Recent contributions, like Ottonello and Winberry (2020), move production of investment goods to a separate sector
of the economy and equip firms in that sector with a concave production function, which makes aggregate dynamics
the same as in the case with convex adjustment costs.
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Importantly, ϕ(·) and Λ(·) are not independent objects that could be assumed to be arbitrary for

estimation or calibration: Λ(·) determines the steady-state density ϕ(·) through equation (5), and

the observed distribution of investments jointly determines them both. In Section 4, we use this

fact to identify ϕ(·) and Λ(·) from the observed distribution of investment sizes and its frequency.

It is convenient to re-center ϕ(·) and Λ(·) around x∗. Define re-centered functions f(·) and L(·)

by f(x) = ϕ(x+ x∗) and L(x) = Λ(x+ x∗), and call x− x∗ capital gaps. We have

f(x)L(x) = (µ+ δ)f ′(x) +
σ2

2
f ′′(x)

f(x)L(x) = Nq(−x)

Replacing f(x)L(x) in the first equation with a known function Nq(−x) turns it into a linear

ordinary differential equation for f(·), which can be solved by repeated integration. With f(·) on

hand, one can recover L(·) from f(x)L(x) = Nq(−x).

While theoretically feasible, this direct approach is likely to run into practical issues. Specif-

ically, the full density q(·) is usually not accessible to the econometrician, who is forced to use

histograms instead. In addition to noise in the estimate of the density, which is particularly unsta-

ble in the tails and around the kink at x∗, numerical integration of the ODE can take very long,

reducing the number of parameters that could be estimated in a reasonable time span. We next

propose an indirect approach that leverages the histogram structure of the data and circumvents

issues related to numerical integration by using closed-form solutions.

4.1 Recovering (L, f) in practice

In practice, estimation procedures use histograms, which pool observation within bins and provide

limited information on the tails. We propose a method to recover (L, f) under a functional form

assumption that maximizes computational convenience taking into account these data limitations.

Specifically, we assume that L(·) is constant within each bin of the observed adjustment histogram.

Since the information on the functional form of Q(·) within bins is lost anyway, we choose a data

generating process that makes computations fast and easily scales with the number of bins.
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Formally, let positive investments be binned into u bins with the mass of Hj in each bin. Since

any investment observation x corresponds to a gap −x before adjustment, these negative gaps

fall into u bins Xj with boundaries {xj}−u≤j≤0, where x0 = 0 and x−u = −∞. Accordingly, let

the positive gaps corresponding to negative investment be pooled into d bins Xj with boundaries

{xj}0≤j≤d, where x0 = 0 and xd = ∞.

Assumption 1. The re-centered generalized hazard function L(·) is given by L(x) = λj for

x ∈ Xj, where Xj = (xj, xj+1] for −u ≤ j ≤ −1 and Xj = [xj−1, xj) for 1 ≤ j ≤ d.

Under this assumption, the model has the following parameters: the drift of capital gaps µ,

the volatility of productivity shocks σ, and u + d hazard levels λ = {λj}−u≤j≤d,j ̸=0. We denote

the set of parameters by P = (µ, σ2,λ).6

The data provide a frequency of investments N and a histogram Q = {Qj}−d≤j≤u,j ̸=0 of

investment sizes. The recorded histogram Q contains measurement error and might differ from the

true histogram generated by the model. To formalize this, we denote the true data by D = (N,H),

where the histogram H = {Hj}−d≤j≤u,j ̸=0 is potentially different from the observed Q. We next

characterize the mapping P 7→ D.

4.2 Mapping parameters to the data

Under Assumption 1, the solution to the homogeneous equation (5) is a linear combination of two

exponential functions on each segment Xj:

fj(x) = η1,je
ξ1,jx + η2,je

ξ2,jx (11)

The distribution of gaps over any Xj is given by f(x) = fj(x). The powers are easily computed:

{ξ1,j, ξ2,j} =
−(µ+ δ)±

√
(µ+ δ)2 + 2σ2λj
σ2

(12)

Denote the vectors of exponents by ξ1 = {ξ1,j}−u≤j≤d,j ̸=0 and ξ2 = {ξ2,j}−u≤j≤d,j ̸=0. The coeffi-

cients η1 = {η1,j}−u≤j≤d,j ̸=0 and η2 = {η2,j}−u≤j≤d,j ̸=0 satisfy the following continuity conditions:

6We estimate the deprecation rate directly using depreciation reported by firms.
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the probability density must be continuous, including at zero, and differentiable at the boundaries

between all segments except for the junction at x = 0. The jump in the first derivative of f(·)

at zero is due to the “reinjection” of firms: they adjust capital discretely, continually arriving at

zero. The size of the jump in f ′(·) is

lim
x→−0

f ′
−1(x)− lim

x→+0
f ′
1(x) =

2N

σ2
(13)

This can be shown by integrating equation (5) over the real line and using the statistical fact that

q(−x)N = L(x)f(x). In addition, f(·) must not explode at infinity, and it must integrate to one.

These conditions provide 2(u+d) linear equations to solve for 2(u+d) unknowns η1 and η2. The

next proposition uses this fact to establish the mapping from parameters to the data:

Proposition 5. Fix P, a (u + d)-dimensional non-negative vector λ and a pair (µ, σ2). The

density of log ARPK is given by equation (11), where the coefficients ξ1(P) and ξ2(P) are given

by equation (12), and η1(P) and η2(P) solve a 2(u+d)-dimensional linear system. The true data

D = (N,H) are given by the functions N = n(P) and H−j = hj(P) for −u ≤ j ≤ d with j ̸= 0:

n(P) :=
σ2

2
(η1,−1ξ1,−1 + η2,−1ξ2,−1 − η1,1ξ1,1 − η2,1ξ2,1) (14)

hj(P) :=
1

N

[
λjη1,j
ξ1,j

(eξ1,jxj+1 − eξ1,jxj) +
λjη2,j
ξ2,j

(eξ2,jxj+1 − eξ2,jxj)

]
(15)

We show how to construct the linear system for η1 and η2 in the proof. As a corollary, we note

a homogeneity property:

Corollary 2. The coefficients η1, η2, ξ1, and ξ2 and the histogram H are homogeneous of

degree zero in P = (µ, σ2,λ). The frequency N is homogeneous of degree one.

This property means that the drift and variance of the underlying process and the adjustment

hazard are only pinned down in levels by the observed frequency. Scaling them all together scales

the frequency without changing the histogram. In practice, it means that we can set N = 1 in all

equations to estimate the full set of parameters up to a common constant without using the time

dimension of the data and then scale the estimates using the observed frequency. Another option

is to fix σ2 or µ, optimize over all other parameters, and then scale the estimates by the ratio of
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the observed frequency to that in equation (14).

4.3 Estimation

The vector λ can be estimated by minimizing the error in equation (15) under one restriction: the

menu cost model implies that L(x) is non-decreasing for x > 0 and non-increasing for x < 0.

In practice, this implies that the estimates λ̂ should satisfy λ̂j+1 ≥ λ̂j for j > 0 and λ̂j−1 ≥ λ̂j

for j < 0. Together with (µ̂, σ̂2), the total set of resulting estimates P̂ = (µ̂, σ̂2, λ̂) solves

P̂ = arg min
P

dist(H(P),Q) (16)

s.t. λj+1 ≥ λj for j > 0, λj−1 ≥ λj for j < 0, n(P) = N

Here the true data H(P) and n(P) are given by equation (15), and (Q, N) are the recorded data.

In practice, we first solve the relaxed version of the problem in equation (16) without the condition

n(P) = N by fixing σ2 and maximizing over (µ,λ). By the homogeneity property in Corollary 2,

we can then divide P = (µ, σ2,λ) by n(P)/N to obtain the solution to the full problem.

We make a brief note on what the constraints on the monotonicity of λ̂ imply for the shape of

the adjustment histogram H(P̂). Proposition 7 in Appendix C.2 shows that, when λ is close to

constant, making it slightly increasing in distance from x∗ leads to a thicker adjustment histogram.

An intuitive implication is that in practice, the monotonicity constraint is likely to bind when the

tails of the empirical histogram Q are too thin or decrease too fast. In this case, the shape of the

histogram Q indicates forces unaccounted for by our model. A pervasive issue that might lead to

estimating potentially non-monotone generalized hazard functions is unobserved heterogeneity.7

Alternatively, Blanco and Baley (2024) estimate a model with partial investment irreversibility

generated by a spread between buying and selling prices of investment goods. In their model,

firms have different reset points x∗ depending on the sign of adjustment. Blanco and Baley (2024)

show that a restricted version of their model, where the spread is eliminated, leads to non-monotone

estimates of the generalized hazard function, and incorporating the spread solves this issue.

7See equation (22) in Alvarez, Borovičková, and Shimer (2023), and the related references therein.
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4.4 Recovering adjustment costs

To recover the primitive distributions of adjustment costs Gi(·) and arrival intensities γi, we need

the true hazard Λ instead of the re-centered version L(x) = Λ(x− x∗). The challenge is that x∗ is

not observable and we need to solve for it. Our procedure relies on the optimality condition for x∗:

the marginal value function U(·) satisfies U(x∗) = 0. We can guess x∗ to obtain marginal value u

from equation (3) and then update the guess based on this optimality condition until convergence.

Specifically, having L(·) and a guess of x∗, we solve

(ν + L(x+ x∗))U(x) = αe(α−1)x − ν − (µ+ δ)U ′(x) +
σ2

2
U ′′(x)

using the procedure described in Appendix D. This procedure takes advantage of the fact that

L(·) is piece-wise constant and turns solving a differential equation into solving a linear system.

We then update the guess of x∗ by finding the point at which U(x∗) = 0.

Piece-wise constant generalized hazard functions correspond to piece-wise constant distribu-

tions Gi(·) and hence discrete sets of adjustment cost ψ. Take upward adjustments first. They

happen when log ARPK is less than the reset point, x < 0. It is straightforward to compute the

arrival intensity γu = limx→−∞ Λ(x). To find the values of ψ with positive mass, use

Λ(x) = γuGu

(∫ x∗

x

U(t)etdt

)
The values of x at which Λ(·) jumps map into values of ψ at which Gu(·) jumps: for any such x,

ψ(x) =

∫ x∗

x

U(t)etdt

The size of jumps in Gu(·) corresponds to the size of jumps in Λ(·) scaled by γu. The case of

downward adjustments is treated in the same way.

5 A calibration on Italian manufacturing investment data

We fit our model to panel data on Italian manufacturing firms drawn from the Company Ac-

counts Data Service (CADS, Centrale dei Bilanci in Italian), which collects annual balance-sheet
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information and other items on a sample of over 45,000 Italian limited-liability firms and listed

corporations, over a 40 year period, from 1983 to 2023. The data contain balance sheet informa-

tion on the firm’s assets, investment in tangible and non-tangible assets, as well as disinvestments.

The data also contain information about employment (total number of employees) and provides

a detailed description of the firms’ demographic characteristics such as the year of foundation,

location, type of organization and ownership status, and the industry and region in which each

firm operates. A subset of these data, covering the 1983 to 2004 period, was used by Guiso and

Schivardi (2007) and Guiso et al. (2017). The firms included in the CADS database are borrowers

of leading banks in Italy. The focus on this sample of firms skews the sample towards larger firms

that are considered credit-worthy (as firms in default are not included in the database).8

We calculate gross investment and disinvestment rates separately. This is in contrast to Ba-

ley and Blanco (2021), who use net investment. Having records of both positive and negative

adjustments allows us to identify {γu, Gu(·)} separately from {γd, Gd(·)} and estimate inactivity

more precisely. With substantial degree of time aggregation, as is the case with our annual data,

firms often both invest and disinvest within period, so lumping positive and negative investments

together could inflate the observed share of inactivity and distort the estimates of costs.

We normalize investment I and disinvestment D by the stock of the illiquid assets, given by

the total assets less financial and other liquid assets. This is our measure of the firm’s capital. In

the main text, we will refer to the illiquid assets simply as “assets”, A. Importantly, A is recorded

at the end of the period, when capital stock adjustments have been made. Capital stock before

investment or disinvestment is then A−N , where N = I −D is net investment.

Our variable of interest is the log change in assets resulting from investment or disinvestment:

∆xI ≡ ln

(
A−N + I

A−N

)
and ∆xD ≡ ln

(
A−N −D

A−N

)
Table 2 reports summary information sector-by-sector for the sample, using a 9-sector classification.

The data are characterized by a significant presence of inaction. In a typical year, about 14%

8Since most leading banks are in the Northern part of the country, the sample has more firms headquartered in
the North than in the South. Despite this, a comparison between sample and population moments, done by Guiso
and Schivardi (2007), suggests that the CADS is not too far from being representative of the whole population.
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Table 1: Summary statistics by industry

Industry # Firms Observations Years # Workers

Mining and Quarrying 2700 23961 8.9 128

Chemicals 12579 131216 10.4 74

Metals and Machinery 36992 367749 9.9 67

Food and Beverages 40295 406595 10.1 38

Construction 18882 146490 7.8 28

Retail 58074 536840 9.2 34

Transportation 8941 86716 9.7 134

Insurance 11329 91008 8.0 69

Health and Beauty 6850 75863 11.1 118

Total 196,642 186,6438 9.5 54

Table 2: summary statistics of investment by industry

Industry Inactive mean(∆x) std(∆x) P{∆x < 0}
Mining and Quarrying 0.24 0.32 0.61 0.07

Chemicals 0.1 0.25 0.46 0.15

Metals and Machinery 0.09 0.3 0.52 0.14

Food and Beverages 0.12 0.26 0.48 0.15

Construction 0.18 0.33 0.63 0.17

Retail 0.16 0.34 0.6 0.13

Transportation 0.18 0.39 0.6 0.07

Insurance 0.17 0.47 0.68 0.09

Health and Beauty 0.13 0.32 0.55 0.12

Total 0.14 0.32 0.56 0.14

Note: Investment is considered zero if the investment to capital ratio is less than
1% in absolute value. Disinvestments are treated in the same way. Inactive is the
share of firm-year pairs with both zero investment and disinvestment. The mean
and standard deviation are computed for non-zero investments.

of the firms are inactive. We follow Cooper and Haltiwanger (2006) and Baley and Blanco (2021)

and consider all investments with an absolute size smaller than 1% of the firm’s capital “zero

investment”. Inactive firms are those with both ∆xI and ∆xD below the threshold in a given year.

The average size of net investment (relative to assets) is about 30%. Most of adjustments has a

positive sign: the fraction of disinvestments is small in all sectors, pointing to the presence of drift

and the possibility of asymmetries in the adjustment costs. There is significant variation across
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industries, both in the typical size of investments and in the prevalence of inaction.

The prevalence of inaction in either upward or downward adjustments on the firm level does

not appear to be related to other observables. Define, for every firm i, the following quantities: upi

as the share of years in which this firm was observed with a non-zero upward investment (relative

to its total tenure in the sample), downi as the share of years it was observed disinvesting, and

inactivei as the share of years it was inactive. Define also revi, empi, and timei to be firm i’s

average revenue, average employment, and the total number of years in the sample. Table 3 shows

pairwise correlations of these firm-level time averages for a particular sector “Metals & Machinery”.

Table 3: Correlations between firm-level observables and activity measures (Metals & Machinery).

upi downi inactivei revi empi timei
upi 0.10 -0.94 0.04 0.05 0.15
downi 0.10 -0.21 0.13 0.18 0.07
inactivei -0.94 -0.21 -0.04 -0.05 -0.14
revi 0.04 0.13 -0.04 0.80 0.04
empi 0.05 0.18 -0.05 0.80 0.04
timei 0.15 0.07 -0.14 0.04 0.04
mean 0.87 0.14 0.11 18,584 67 9.94
std 0.22 0.22 0.20 160,070 445 7.91

Importantly, the correlation between inactivity and firm size, as measured by revenue or em-

ployment, is close to zero. Firms do appear to be less inactive on average if they stay in the sample

for longer, which might be indicative of right-censoring of inactivity spells. This correlation is not

strong either, as firms on average spend around 10 years in the sample, and inactivity spells are

rarely longer than one year. Results are similar for other sectors. We present tables for those

sectors in Appendix I.

The histograms in Figure ?? describe the distribution of the size of the (non-zero) investments

in each of the 9 industries considered. This distribution corresponds to the theoretical measure

Q(·) described by the equation q(−x)N = L(x)f(x). The leftmost and rightmost bins in each

graph contain the entire tails of the observed distribution.
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Figure 2: Distribution of non-zero investments.

5.1 Estimating the model

The model is parametrized by P = (µ, σ2,λ) and (r, α, δ). We estimate the first set of parameters,

P , using the distribution and frequency of investments. In the second set, we estimate δ for every

sector directly from firm reports and set r = 5%. We estimate sector-specific elasticities α in the

following way. Recall the production function: for every firm j, output is yjt = ẑ
(1−α)ζ
jt kαζjt l

1−ζ
jt . We

project output on labor and capital to estimate input elasticities and deduce α:

log yjt = β0 + βcap log kjt + βlab log ljt + ϵjt

The elasticities correspond to the primitive coefficients as follows: 1− ζ = βlab and αζ = βcap, so

α = βcap/(1 − βlab). We later use the residuals of this projection as log TFPR to compare our

results to the approach in Hsieh and Klenow (2009) and Calligaris, Del Gatto, Hassan, Ottaviano,

and Schivardi (2018), who use the same data, in Section 6.

Steady-state objects. Having estimated model parameters, we reconstruct the steady-state
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(a) Data and the full model. (b) Recovered generalized hazard.

Figure 3: The distribution of investments and log ARPK and the generalized hazard function
implied by the model for “Metals aand Machinery”.

distributions of investments and log ARPK, as well as the generalized hazard function. Figure 3

shows the empirical histogram against the one generated by the model for one sector from our

data, “Metals & Machinery”. Appendix E shows the corresponding figures for all other sectors.

Figure 4 shows the recovered distributions of fixed costs for “Metal & Machinery”. Panel (a)

shows the cumulative distribution functions Gu(·) and Gd(·). We express adjustment costs ψ in

percent of eαx
∗ − (r + δ)ex

∗
, the instantaneous profits at the optimum x∗. This is the maximum

attainable level of profits conditional on the environment. Firms would earn this if their log

ARPK was always set to x∗. Panels (b) and (c) on Figure 4 show the arrival frequencies of

different adjustment cost values ψ. These figures are histograms corresponding to Gu(·) and Gd(·).

The corresponding figures for all sectors are in Appendix F.

The average adjustment costs for positive investments is equal to 10% of this profit, and these

opportunities arrive with an annual intensity of γu = 44. The opportunity for a negative adjustment

arrives with an annual intensity of γd = 12, and the average cost is 4% of maximal profits. In this

particular sector, the asymmetry between positive and negative investment opportunities comes

from differences in both the frequency of arrival and the size of costs.

Table 4 shows the same quantities for other sectors. In most of them, the difference between

positive and negative adjustment costs is similar to “Metals & Machinery”: opportunities for up-

ward adjustments are more costly but arrive more frequently. A notable exception is “Insurance”,
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Table 4: frequency of opportunities and costs, drawn and paid, in percent of annual profit

Industry γu E[ψu] E[ψu|paid] γd E[ψd] E[ψd|paid] µ+ δ σ

Mining and Quarrying 21.3 8.5% 0.1% 4.2 4.5% 1.1% 0.14 0.21

Chemicals 36.1 16.4% 0.2% 10.5 7.7% 0.8% 0.19 0.27

Metals and Machinery 43.5 15.3% 0.2% 11.5 7.1% 0.7% 0.24 0.3

Food and Beverages 66.4 12.1% 0.2% 11.8 6.4% 0.5% 0.19 0.26

Construction 50.6 7.8% 0.2% 10.7 5.6% 0.7% 0.19 0.34

Retail 23.7 4.0% 0.1% 9.3 4.0% 0.7% 0.17 0.32

Transportation 72.6 11.6% 0.3% 0.2 1.1% 0.3% 0.22 0.38

Insurance 1.1 0.0% 0.0% 7.8 8.7% 1.8% 0.36 0.4

Health and Beauty 26.2 7.6% 0.2% 9.8 5.7% 0.8% 0.2 0.3

Note: annual profit at the optimum is eαx
∗ − (r + δ)ex

∗

where the model recovers rare but costless opportunities for positive investment.

Besides the fundamental distributions of fixed costs drawn by firms, we can also compute the

distributions of costs actually paid. If gi(ψ) is the probability to draw ψ, the probability ĝi(ψ) to

pay it is proportional to gi(ψ)P{v(x∗)− v(x) ≥ ψ}. The cost is only paid by those firms for which

the value gain is sufficiently large. The average cost paid for a positive investment in “Metal &

Machinery” is just 0.1% of the maximum profit, which is 100 times lower than the average cost

drawn. For negative investments, the average cost paid is 0.4% of the maximum profit, a 10-fold

decrease relative to the average (unconditional) value of the cost.

Figure 4: Recovered distributions of adjustment cost ψ in “Metals & Machinery”. Left panel:
cumulative distribution functions Gu (dotted) and Gd (solid) for costs of positive and negative
adjustment. Center and right panels: frequencies of costs of positive and negative adjustments.
Costs expressed in percent of instantaneous profits at optimum eαx

∗ − (r + δ)ex
∗
.
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6 Applications

This section presents four quantitative applications of our model. We first present the approx-

imate measure of misallocation derived in Proposition 2 and compare it to the commonly used

variance-based measure (1− α)α/2 · V[x]. This exercise evaluates the difference between the two

approximations and the gains from using the correct one. We then split the sample into subperiods

1983-2003 and 2003-2023 and present evidence on dynamics of misallocation across sectors.

Third, we relate to a discussion initiated by Asker et al. (2014), exploring whether measured

misallocation, namely cross sectional dispersion in the marginal productivity of capital, is consis-

tent with dynamic efficiency. Finally, we compare our results on misallocation with results obtained

in a more restrictive model, one where the generalized hazard function is constant given the sign of

adjustment. This model, used e.g. by Baley and Blanco (2021), corresponds to a two-sided Calvo

model with different arrival rates of positive and negative adjustment opportunities. We estimate

the gains from using a fully flexible model and conduct econometric tests of the two-sided one.

6.1 Comparing measures of misallocation.

Table 5 shows the two approximations for capital misallocation: the true limit characterized in

Proposition 2 and the measure based on the variance of log ARPK. Both measures are multiplied by

100, so the units in Table 5 are percent of the total capital stock. The third column shows that, on

average across sectors, differences amount to 10%. The variance-based measure almost universally

overestimates misallocation. These differences indicate substantial deviations from log-normality

and show that using the right approximation from Proposition 2 matters.

6.2 Misallocation over time

We next assess the dynamics of misallocation over time. To this end, we split the sample into two

halves, 1983-2003 and 2003-2023, and repeat the estimation procedure for both of them. Table 6

presents the estimates for all nine sectors. We multiplyM by 100 to present the numbers in percent
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Table 5: two approximations for misallocation: M and (1− α)α/2 · V[x], both multiplied by 100
to show misallocation in percent of the total capital stock.

Industry M α(1− α)/2 · V[x] difference
Mining and Quarrying 0.48 0.51 7.0%

(0.02) (0.02)
Chemicals 0.65 0.72 11.0%

(0.01) (0.01)
Metals and Machinery 0.88 1.00 14.0%

(0.01) (0.01)
Food and Beverages 0.63 0.70 10.0%

(0.01) (0.01)
Construction 0.92 1.00 9.0%

(0.01) (0.02)
Retail 0.77 0.82 6.0%

(0.01) (0.01)
Transportation 1.54 1.49 -3.0%

(0.1) (0.06)
Insurance 1.98 2.63 32.0%

(0.08) (0.16)
Health and Beauty 0.76 0.83 9.0%

(0.02) (0.02)

of the total output. Looking across time the two halves of the sample, estimated misallocation

decreases on average by around one third between 1983-2003 and 2003-2023. The rate of this

decrease is similar across sectors, mostly lying within the [30%, 40%] range.

What can this large decrease in misallocation be attributed to? Table 8 in Appendix G presents

estimates of drift in capital-to-productivity ratios µ + δ and their volatility σ across subsamples.

Both drift and volatility decrease in all sectors. The fact that the decline in volatility leads to

lower misallocation is intuitive. The fact that the declining drift has the same effect is reminiscent

of results in the literature on pricing frictions. In sticky price models, markup dispersion also

increases in the level of inflation. In the special case with a constant generalized hazard function,

monotonicity of M in µ+ δ is especially clear, as we show in Corollary 1.

6.3 Capital misallocation and dynamic efficiency

The capital misallocation literature often uses an indirect approach, focusing on productivity

measures such as total factor productivity of revenues (TFPR). The variance of TFPR maps to

output losses from primitive wedges that the econometrician includes in the model. These wedges
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Table 6: Misallocation across periods in percent of total capital stock (100 · Mt).

Industry full sample 1983–2003 2003–2023 % difference
Mining and Quarrying 0.48 0.77 0.55 -28.6%

(0.02) (0.06) (0.05)
Chemicals 0.65 0.95 0.50 -47.4%

(0.01) (0.04) (0.01)
Metals and Machinery 0.88 1.15 0.71 -38.3%

(0.01) (0.04) (0.01)
Food and Beverages 0.63 0.83 0.51 -38.6%

(0.01) (0.04) (0.01)
Construction 0.92 1.29 0.81 -37.2%

(0.01) (0.03) (0.01)
Retail 0.77 1.03 0.72 -30.1%

(0.01) (0.01) (0.01)
Transportation 1.54 2.17 1.34 -38.2%

(0.10) (0.16) (0.12)
Insurance 1.98 2.91 1.93 -33.7%

(0.08) (0.18) (0.07)
Health and Beauty 0.76 1.11 0.70 -36.9%

(0.02) (0.06) (0.02)

receive a normative interpretation: they reflect unmodeled disturbances, often non-economic in

nature, that lead to inefficiencies. The logic behind this mapping from TFPR dispersion to losses

is traditionally static, and an “efficient” counterfactual is computed by instantly reallocating capital

across firms. Asker et al. (2014) are the first to note that dispersion of TFPR (hence inefficiency)

should not be fully attributed to static wedges in the presence of adjustment costs.

Our model with adjustments costs is a case in point of the warning raised by Asker et al. (2014).

Indeed, in the presence of fixed costs a constrained efficient equilibrium will feature dispersion in

the marginal product of capital. In this section we investigate how much of the reduced-form

misallocation, as measured by the the variance of TFPR, is accounted for by the output losses

from adjustment costs in our model. To that end, we compare our estimates of misallocation to the

estimates of the variance of TFPR obtained earlier by Calligaris, Del Gatto, Hassan, Ottaviano,

and Schivardi (2018) on the same data. Calligaris et al. (2018) use the approach pioneered by Hsieh

and Klenow (2009). They measure log TFPR on the firm level and compute its population variance.

To measure log TFPR, Calligaris et al. (2018) assume a Cobb-Douglas production function and
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Figure 5: Comparison of 100 · M between our baseline and the Hsieh and Klenow (2009) and
Calligaris et al. (2018) method using TFPR.

estimate input elasticities using data on revenues, capital, and wage bill. We repeat the simplest

version of their exercise to compare the two approaches.

Figure 5 compares our estimates of M to those obtained using the method in Calligaris et al.

(2018), denoted by MTFPR. Our approach estimates lower degree of misallocation, although the

estimates have the same order of magnitude and align in the cross-section of sectors. Excluding

“Mining”, an outlier sector, the correlation across sectors for both M is 0.63, and the regression

coefficient is 1.60 (0.81). Altogether the analysis suggests that a non-negligible part of the mea-

sured cross-section “misallocation” is consistent with the dispersion of productivity triggered by

the presence of adjustment costs, and hence that caution should be exercised when inferring the

presence of large macro inefficiencies based on reduced form measures of “misallocation”.

6.4 Misallocation in a two-sided constant hazard model

The model we estimate is rich in parameters, accommodating generalized hazard function encoded

in potentially high-dimensional vectors λ. How important is this flexibility?
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Table 7: misallocation across models in percent of total capital stock (100 · M).

Industry model with GHF two-sided % difference

Mining and Quarrying 0.53 1.22 130.2%
(0.02) (0.02)

Chemicals 0.45 0.61 35.6%
(0.01) (0.01)

Metals and Machinery 0.96 1.2 25.0%
(0.01) (0.01)

Food and Beverages 0.68 0.85 25.0%
(0.01) (0.0)

Construction 0.94 1.6 70.2%
(0.02) (0.01)

Retail 0.65 1.35 107.7%
(0.01) (0.01)

Transportation 1.74 2.12 21.8%
(0.1) (0.04)

Insurance 2.15 3.07 42.8%
(0.09) (0.02)

Health and Beauty 0.81 1.32 63.0%
(0.02) (0.01)

To investigate this, we fit a two-sided distribution model with a generalized hazard function

that is constant on positive and negative half-lines but potentially asymmetric around zero. This

is a minimally augmented variant of the Calvo model. Baley and Blanco (2021) use a version of

this model, also giving the firms an opportunity to always pay a given fixed cost à la Golosov and

Lucas (2007). Instead of equation (16), we solve

P̂two-sided = arg min
{µ,σ,λu,λd}

dist(H(P),Q) (17)

s.t. λj = λd for j > 0, λj = λu for j < 0, n(P) = N

Optimization is over four numbers (λu, λd, µ, σ), which substantively speeds up computation. In

Appendix C.3, we show that the number of parameters is further reduced to three once we estimate

the unrestricted generalized hazard function in each sector.

The two-sided model has a particularly simple closed-form solution for the density of log ARPK.

It is a single exponential function on either side of x = 0, as opposed to a sum of two exponential

functions, which automatically sets half of the coefficients ξ1(P) and ξ2(P) to zero, and the other

half are all equal to the same number, following from continuity and differentiability.
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Proposition 6. Consider a two-sided distribution model and suppose it is parameterized by

P = (µ, σ2, λu, λd), with a hazard of positive adjustments λj = λu for j < 0 and that of negative

adjustments λj = λd for j > 0. The coefficients η1(P) and η2(P) are

η1,i = η2,j =

(√
µ2 + 2σ2λu − µ

)(√
µ2 + 2σ2λd + µ

)
σ2
(√

µ2 + 2σ2λu +
√
µ2 + 2σ2λd

)
and η2,i = η1,j = 0 for all i < 0 and j > 0. The frequency n(P) is

n(P) =

(√
µ2 + 2σ2λu − µ

)(√
µ2 + 2σ2λd + µ

)
2σ2

If the model is further restricted to a single hazard λu = λd = λ, then n(P) = λ and

η1,i = η2,j =
λ√

µ2 + 2σ2λ
for i < 0, j > 0

with η2,i = η1,j = 0 for i < 0, j > 0.

Table 7 compares misallocation in the full and the two-sided models. The two-sided model

overestimates misallocation. The reason is that a flat generalized hazard can capture the overall

adjustment intensity well if λu and λd are set at the right level, but it induces fatter tails in the

distribution of x since Λ(x) does not increase as x departs from x∗. Firms with large gaps do not

adjust more frequently than firms with small ones, and the distribution of gaps is more dispersed.

Finally, in Appendix H, we describe a test we run to try and reject the two-sided model against

our fully flexible benchmark. We use semi-parametric bootstrap. Figure A.17 and Table 9 show

that our test rejects the two-sided model in 5 sectors out of 9 at the 5% level.

7 Conclusion

This paper examines capital misallocation in a framework that explicitly accounts for the lumpy

and asymmetric nature of investment. We build on the generalized hazard function framework of

Caballero and Engel (1999) and establish a novel procedure to identify the distribution of random

fixed costs and the volatility of productivity shocks from the observed distribution of investments.

We derive the measure of aggregate misallocation for environments with non-convex adjustment
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costs. This measure combines moments of the cross-sectional distribution of the marginal product

of capital and generalizes variance, only collapsing to variance in the log-normal case. We show

that this distribution remains non-degenerate and deviates from log-normality even in the limit

of small shocks, a property that distinguishes lumpy investment models from those with convex

costs. The traditional variance-based measure of misallocation is not the correct limit.

Our empirical application to a 40-year panel of Italian firms shows that, across industries, misal-

location hovers between 0.5 to 2 percent of total output. We find that the standard variance-based

measure yields overall similar magnitudes, typically overshooting by a margin of approximately

10%. This suggests that standard benchmarks seem robust to distributional non-normalities.

Finally, our quantitative results show that fixed costs account for a large portion of the pro-

ductivity dispersion observed in most industries. This finding is reminiscent of Asker et al. (2014):

much of the observed cross-sectional dispersion in marginal products is consistent with dynamic

efficiency in the presence of physical investment rigidities. It suggests that what appears as static

misallocation in reduced-form data may reflect the optimal, forward-looking, behavior of firms

responding to idiosyncratic shocks in the presence of adjustment costs.

References

A. B. Abel and J. C. Eberly. A unified model of investment under uncertainty. The American
Economic Review, 84(5):1369–1384, 1994. ISSN 00028282.

K. Adam, A. Alexandrov, and H. Weber. Inflation distorts relative prices: Theory and evidence.
Number 23/2024. Deutsche Bundesbank Discussion Paper, 2024.
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A Details on related literature

Our paper relates to a set of recent papers that attempt to uncover the frictions that underlie

observed lumpy behavior, such as Baley and Blanco (2021); Alvarez, Lippi, and Oskolkov (2022);

David and Venkateswaran (2019); Asker, Collard-Wexler, and Loecker (2014), and to the seminal

analysis on capital misallocation by Hsieh and Klenow (2009). We briefly review these contributions

below and highlight the main novel elements that are conveyed by our analysis.

The recent paper by Baley and Blanco (2021) studies a lumpy investment model where the

fixed cost is either zero, with some probability, or else equal to a constant (possibly different for

investment vs disinvestments). The main objective of that paper is to derive a mapping that con-

nects the cumulative impulse response of the economy to a set of observable steady-state moments,

in the spirit of a “sufficient statistic approach”. Their paper presents an empirical application that,

among other things, quantifies the shape of the adjustment costs from the observed size distribu-

tion of investments based on a panel of Chilean data. One difference compared to our paper is

that while their main empirical application restricts the distribution of adjustment costs to have

two values, our model allows for a general shape of this distribution. We show in the empirical

application that the investment data reject the simple two-side hazard function for most industries.

The paper by Alvarez, Lippi, and Oskolkov (2022) investigates infrequent price adjustments

through the lenses of a menu-cost model and has several elements in common with the problem

studied here, mainly in its attempt to uncover the fundamental primitives of a model with “lumpy”

price changes. A main methodological difference is that pricing behavior is quite symmetric, i.e.

the shape of the positive adjustments is similar to the shape of the negative adjustments. While

symmetry provides a reasonable approximation for price-setting behavior in low-inflation countries,

such an assumption is clearly violated by the investment data. Thus, a methodological novelty of

this paper is to solve for the inverse mapping in a problem where the distribution of adjustments

is not symmetric.

Our paper closely relates to the literature that investigates and quantifies the capital misal-

location. The seminal contribution in this area is Hsieh and Klenow (2009) who use production

microdata (revenues, labor, and capital) to infer firm-specific distortions, without taking an ex-

plicit stance on their nature. The core idea is that in the absence of these distortions, revenue

productivity (TFPR) should be equalized across firms within narrowly defined industries. The

observed dispersion in TFPR can then be used to quantify such distortions and to calculate the

potential gains in aggregate productivity that could be achieved if resources were reallocated to

equalize marginal products across firms to a benchmark level (e.g., observed in the United States).

Our analysis relates to David and Venkateswaran (2019), who develop a methodology to dis-

entangle the sources of capital misallocation, defined as dispersion in the average revenue product
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of capital (arpk). The authors augment a standard general equilibrium model of firm dynamics to

include capital adjustment costs, informational frictions (imperfect knowledge about firm-level fun-

damentals), and other firm-specific factors, capturing unobserved heterogeneity in markups and/or

production technologies, financial frictions, or institutional/policy-related distortions. Their em-

pirical strategy measures the contribution of each force to the observed arpk dispersion, using

a set of moments from firm-level investment and value-added data. An application to Chinese

manufacturing firms reveals that while adjustment and informational frictions are significant, they

explain only a modest fraction of the productivity dispersion. A substantial portion stems from

other firm-specific factors, particularly a component correlated with productivity and a fixed effect.

Lastly, our work closely relates to the analysis in Asker et al. (2014) which gives center stage to

non-convex adjustment costs as a possible cause behind capital misallocation. One difference is that

we derive the theory-consistent measure of misallocation, showing that the intuitive variance-based

measure is correct only in special cases. Another difference concerns the quantitative application,

where we use a flexible GHF model that allows us to match the whole distribution of the size of

adjustments (as opposed to a single moment concerning its dispersion), as well as the frequency

of price adjustments. These differences lead us to estimate much smaller frictions for capital

adjustment, about 0.1% of profits per adjustment, compared to the very high value of near 10%

per adjustment estimated by their paper. In terms of results, our analysis is largely consistent

with the one by Asker et al. (2014) and suggests that caution should be exercised when inferring

the presence of large macro inefficiencies based on reduced form measures of “misallocation”.

B Proofs

Proof. (of Proposition 2). As a preliminary step, consider some σ ∈ (o, σ] and E[ejx] for some

j ∈ [0, 2α]. Specifically, take equation (5) and multiply both sides by ejx:

Λ(x)ejxϕ(x) = µejxϕ′(x) +
σ2

2
ejxϕ′′(x) (A.1)

Integrate both sides:

E[Λ(x)ejx] = −jµE[ejx] + σ2

2

[
lim

x→x∗−
ϕ′(x)− lim

x→x∗+
ϕ′(x)

]
ejx

∗
+
j2σ2

2
E[ejx]

= E[Λ(x)]ejx∗
+

(
j2σ2

2
− jµ

)
E[ejx] (A.2)

The first line uses integration by parts, and the second line replaces the discontinuity in ϕ′(·) at
x∗ by integrating the original equation (5) over the real line. Integration by parts relies on the
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fact that ekxϕ′(x) and ejxϕ(x) vanish at infinity, which is implied by the existence of E[ejx] for all
j ≤ 2. Rearranging, (

jµ− j2σ2

2

)
E[ejx] + E[Λ(x)ejx] = E[Λ(x)]ejx∗

(A.3)

Take σ̂ = min{σ,
√
µ/j}. Since Λ(x) ≤ λ and E[Λ(x)ejx] ≥ 0, for all σ ∈ [0, σ̂),

E[ejx] ≤ 2λ

jµ
ejx

∗
(A.4)

Hence, for all j ∈ [0, 2α], E[ejx] is uniformly bounded on [0, σ̂).

The second step is to arrive at the expressions for the maximal and actual output

log Y (g) −→ logE[z] + αÊ[x] + Ĵ[eαx] (A.5)

log Ŷ (g) −→ logE[z] + αÊ[x] + αĴ[ex] (A.6)

First, consider Yt:

log Yt = logE[zteαxt ] = logE[zt] + log

(
E[eαxt ] + E

[
zt − E[zt]
E[zt]

eαxt

])
(A.7)

Take the last term. By the Cauchy-Schwartz inequality,∣∣∣∣E [zt − E[zt]
E[zt]

eαxt

]∣∣∣∣ ≤
√

V[zt]
E[zt]

·
√

E[e2αxt ] =

√
e2µt+σ2t(eσ2t − 1)

eµt+σ2t/2
·
√

E[e2αxt ] (A.8)

Since t is fixed and E[e2αxt ] is uniformly bounded, this term approaches 0 as σ −→ 0. The other

term, E[eαxt ], approaches E0[e
αxt ], since the moment generating function evaluated at j = α is

continuous in σ on the segment that includes 0. Here E0[·] denotes the expectation at the limiting

distribution, just as any other moment with an index 0. Hence,

log Yt −→ logE[zt] + logE0[e
αxt ] = logE[zt] + αE0[xt] + J0[eαxt ] (A.9)

Analogously, take

log Ŷt = (1− α) logE[zt] + α logE[ztext ]

= logE[zt] + α log

(
E[ext ] + E

[
zt − E[zt]
E[zt]

ext

])
(A.10)
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Applying the same procedure, we get

log Ŷt −→ logE[zt] + α logE0[e
xt ] = logE[zt] + αE0[xt] + αJ0[ext ] (A.11)

For Kt, we get

logKt =
log Ŷt − (1− α) logE[zt]

α
−→ logE[zt] + E0[xt] + J0[ext ] (A.12)

Misallocation then converges to

Mt −→ αJ0[ext ]− J0[eαxt ] (A.13)

Finally, to obtain the limiting density, consider equation (5) for σ = 0:

Λ(x)ϕ0(x) = (µ+ δ)ϕ′
0(x) (A.14)

Rearranging, [log ϕ0(x)]
′ = Λ(x)/(µ+ δ). Without shocks, no firms are to the right of x∗. Hence,

ϕ0(x) = â exp

(
− 1

µ+ δ

∫ x∗

x

Λ(t)dt

)
(A.15)

Here â insures that ϕ0(·) integrates to one:

1

â
=

∫ x∗

−∞
exp

(
− 1

µ+ δ

∫ x∗

x

Λ(t)dt

)
dx (A.16)

This completes the proof. □

Proof. (of Corollary 1). In addition to the results on capital stock and misallocation, we will

also derive the limits for the actual and maximum output:

log Y (g) −→ logE[z] + αE + α
√
V − log

(
1 + α

√
V
)

(A.17)

log Ŷ (g) −→ logE[z] + αE + α
√
V − α log

(
1 +

√
V
)

(A.18)

Start with the limiting distribution. Since Λ(x) ≡ λ,

ϕ̂(x) =

exp

(
−λ(x

∗ − x)

µ+ δ

)
∫ x∗

−∞
exp

(
−λ(x

∗ − x)

µ+ δ

)
dx

=
λ

µ+ δ
exp

(
−λ(x

∗ − x)

µ+ δ

)
(A.19)
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The expectation and variance corresponding to this distribution are

V ≡ V̂[x] =
(
µ+ δ

λ

)2

(A.20)

E ≡ Ê[x] = x∗ − µ+ δ

λ
= x∗ −

√
V (A.21)

The limiting Jensen correction is

Ĵ[ex] = log Ê[ex]− Ê[x] = log

(
λ

λ+ µ+ δ

)
+
µ+ δ

λ
=

√
V − log

(
1 +

√
V
)

(A.22)

Ĵ[eαx] = log Ê[eαx]− αÊ[x] = log

(
λ

λ+ α(µ+ δ)

)
+
α(µ+ δ)

λ
= α

√
V − log

(
1 + α

√
V
)

(A.23)

Hence,

logKt −→ logE[z] + x∗ − log
(
1 +

√
V
)

(A.24)

log Yt −→ logE[z] + αx∗ − log
(
1 + α

√
V
)

(A.25)

log Ŷt −→ logE[z] + αx∗ − α log
(
1 +

√
V
)

(A.26)

Mt −→ log
(
1 + α

√
V
)
− α log

(
1 +

√
V
)

(A.27)

This completes the proof. □

Proof. (of Proposition 3). Plug Λ(x) = Λ̂(x)/κ into equation (5):

Λ̂(x)ϕ(x) = (µ+ δ)κϕ′(x) +
κσ2

2
ϕ′′(x) (A.28)

Define ℓk and ek as follows:

ℓk =

∫
(x− x∗)kΛ̂(x)ϕ(x)dx (A.29)

ek =

∫
(x− x∗)kϕ(x)dx (A.30)

Integrating equation (A.28) with (x− x∗)k for k ≥ 2,

ℓk = −κ(µ+ δ)kek−1 +
κσ2

2
k(k − 1)ek−2 (A.31)
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For even k ≥ 0, ℓk/λ ≥ ek ≥ 0. For odd k ≥ 1, use Cauchy-Schwartz inequality to obtain

|ek|2 ≤ ek+1ek−1 ≤
ℓk+1ek−1

λ
=
κσ2

2λ
k(k + 1)e2k−1 −

κ(µ+ δ)(k + 1)

λ
ekek−1 (A.32)

Using ek−1 ≥ 0, ∣∣∣∣ ek
σbek−1

∣∣∣∣2 ≤ σ2−bk(k + 1)
κσ−b

2λ
− (µ+ δ)(k + 1)

κσ−b

λ

ek
σbek−1

(A.33)

Since κσ−b has a positive limit and b ≤ 2, ek/(σ
bek−1) is bounded as a function of σ. This implies

that ek = O(σbek−1) if k is odd. For even k ≥ 2,

ek ≤ −κ(µ+ δ)

λ
kek−1 +

κσ2

2λ
k(k − 1)ek−2 (A.34)

If ek−2 ̸= 0, this implies

ek
σ2bek−2

≤ −kκσ
−b(µ+ δ)

λ

ek−1

σbek−2

+ σ2−bk(k − 1)
κσ−b

2λ
(A.35)

As already established, ek−1/(σ
bek−2) is bounded, so κσ−b and σ2−b having a finite limit implies

that ek/(σ
2bek−2) is bounded too. This means that ek = O(σ2bek−2).

Together with e0 = 1, the fact that ek = O(σbek−1) for odd k ≥ 1 and ek = O(σ2bek−2) for even

k ≥ 2 implies that ek = O(σkb) for all k. In particular, V[xt] = O(σ2b). If E[ext ] exists, then

Mt = α log

(
E[ext ] + E

[
zt − E[zt]
E[zt]

ext

])
− log

(
E[eαxt ] + E

[
zt − E[zt]
E[zt]

eαxt

])
= α log

(
E[ex̂t ] + E

[
ẑte

x̂t
])

− log
(
E[eαx̂t ] + E

[
ẑte

αx̂t
])

(A.36)

Here ẑt ≡ (zt − E[zt])/E[zt] and x̂t ≡ xt − x∗. Expanding ex̂t and eαx̂t ,

Mt = α log

(
1 +

∞∑
k=1

E[x̂kt (1 + ẑt)]

k!

)
− log

(
1 +

∞∑
k=1

αkE[x̂kt (1 + ẑt)]

k!

)
(A.37)

Applying the Cauchy-Schwartz inequality,

∣∣E[x̂kt ẑt]∣∣ ≤√V[ẑt] ·
√

E[x̂2kt ] = O
(
σ1+kb

)
(A.38)
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Hence,

Mt = α log

(
1 + E[x̂t] + E[x̂tẑt] +

1

2
E[x̂2t ] +O(σ1+2b)

)
− log

(
1 + αE[x̂t] + αE[x̂tẑt] +

α2

2
E[x̂2t ] +O(σ1+2b)

)
=
α(1− α)

2
E[x̂2t ]−

α(1− α)

2
(E[x̂t])2 +

∞∑
k=3

(−1)k(α− αk)

k!
(E[x̂t])k +O(σ1+2b)

=
α(1− α)

2
V[x̂t] +O(σ3b) +O(σ1+2b) =

α(1− α)

2
V[x̂t] +O

(
σmin{3b,1+2b}) (A.39)

We will additionally derive the limits for the actual and maximal output:

log Y (g) = logE[z] + αE[x] +O
(
σmin{1+b,2b}) (A.40)

log Ŷ (g) = logE[z] + αE[x] +O
(
σmin{1+b,2b}) (A.41)

First, consider actual output Yt:

log Yt = log(E[zteαxt ]) = logE[zt] + log

(
E[eαxt ] + E

[
zt − E[zt]
E[zt]

eαxt

])
= logE[zt] + αx∗ + log

(
E[eαx̂t ] + E

[
ẑte

αx̂t
])

(A.42)

Expanding eαx̂t ,

log Yt = logE[zt] + αx∗ + log

(
1 +

∞∑
k=1

αkE[x̂kt (1 + ẑt)]

k!

)

= logE[zt] + αx∗ + log

(
1 + αE[x̂t] + αE[x̂tẑt] +

α2

2
E[x̂2t ] +O

(
σ1+2b

))
= logE[zt] + αx∗ + αE[x̂t] +O

(
σmax 1+b,2b

)
= αE[xt] +O

(
σmax 1+b,2b

)
(A.43)
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Similarly, for Ŷt,

log Ŷt = (1− α) logE[zt] + α log(E[ztext ]) = logE[zt] + α log

(
E[ext ] + E

[
zt − E[zt]
E[zt]

ext

])
= logE[zt] + αx∗ + α log

(
E[ex̂t ] + E

[
ẑte

x̂t
])

= logE[zt] + αx∗ + α log

(
1 +

∞∑
k=1

E[x̂kt (1 + ẑt)]

k!

)

= logE[zt] + αx∗ + α log

(
1 + E[x̂t] + E[x̂tẑt] +

1

2
E[x̂2t ] +O

(
σ1+2b

))
= logE[zt] + αx∗ + αE[x̂t] +O

(
σmax 1+b,2b

)
= logE[zt] + αE[xt] +O

(
σmax 1+b,2b

)
(A.44)

Finally, for Kt,

logKt =
log Ŷt − (1− α) logE[zt]

α
= logE[zt] + E[xt] +O

(
σmax 1+b,2b

)
(A.45)

This completes the proof. □

Proof. (of Proposition 4). We will proceed in three steps. Denote by x̄(σ) the point where

ı(x̄(σ);σ) = µ+ δ. First, we will prove that the stationary measures defined for positive σ weakly

converge to the measure fully concentrated in x, where ı(x) = µ + δ, as σ −→ 0. Second, we will

prove that E[(x− x(σ))k] = O(σk) for all integer k ≥ 0. Third, we will apply this to the measure

of misallocation and aggregate capital stock.

Step 1 (stationary density). Denoting by ϕ(·;σ) the stationary density for a fixed σ, integrate

the KFE:

ϕ(x;σ) = ψ(σ) exp

{
2θ(x;σ)

σ2

}
(A.46)

Here ψ(σ) ensures that ϕ(·;σ) integrates to one and the function θ(·;σ) is

θ(x;σ) =

∫ x

x̄(σ)

(ı(t;σ)− µ− δ)dt (A.47)

Note that this function is increasing for x < x̄(σ) and decreasing for x > x̄(σ).

Fix a < x̄ < b. Since ı(·;σ) converges uniformly to ı̄(·), the root of ı(x;σ)− µ− δ converges to

that of ı̄(x)−µ−δ: x̄(σ) −→ x̄. Hence, there exists a σ1 such that for all σ < σ1, b−x̄(σ) > (b−x̄)/2
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and x̄(σ)− a > (x̄− a)/2. For σ ∈ [0, σ1], the associated measure M(·;σ) satisfies

M([x̄(σ), b];σ) ≥ ψ(σ) exp

{
2θ(b;σ)

σ2

}
· b− x̄

2
(A.48)

M([a, x̄(σ)];σ) ≥ ψ(σ) exp

{
2θ(a;σ)

σ2

}
· x̄− a

2
(A.49)

For all x > b, since ı(·;σ) is decreasing

ϕ(x;σ) < ψ(σ) exp

{
2θ(b;σ)

σ2

}
· exp

{
2(x− b)(ı(b;σ)− µ− δ)

σ2

}
(A.50)

Similarly, for all x < a,

ϕ(x;σ) < ψ(σ) exp

{
2θ(a;σ)

σ2

}
· exp

{
2(a− x)(µ+ δ − ı(a;σ))

σ2

}
(A.51)

Fix ε > 0 such that ı(b)− ε− µ− δ > 0 and µ+ δ − ı(a)− ε > 0. There exists a σ2 > 0 such that

for all σ < σ2, ı(a;σ)−µ− δ > ı(a)−ε−µ− δ and µ+ δ− ı(b;σ) > µ+ δ− ı(b)−ε. For σ ∈ [0, σ2],

M([b,∞);σ) < ψ(σ) exp

{
2θ(b;σ)

σ2

}
· σ2

2(µ+ δ − ı(b)− ε)
(A.52)

M((−∞, a];σ) < ψ(σ) exp

{
2θ(a;σ)

σ2

}
· σ2

2(ı(a)− ε− µ− δ)
(A.53)

Hence, for σ ∈ [0,min{σ1, σ2}],

M([b,∞);σ)

M([x̄(σ), b];σ)
≤ σ2

(µ+ δ − ı(b)− ε)(b− x̄)
(A.54)

M((−∞, a];σ)

M([a, x̄(σ)];σ)
≤ σ2

(ı(a)− ε− µ− δ)(x̄− a)
(A.55)

This implies

M(R/[a, b];σ)
(1−M(R/[a, b];σ))

≤ σ2max

{
1

(ı(b)− ε− µ− δ)(b− x̄)
,

1

(µ+ δ − ε− ı(a))(x̄− a)

}
(A.56)

As σ −→ 0, the measure of any open interval containing x̄ approaches one. Hence, the measure

of any open set containing x̄ converges to one. By Portmanteau’s lemma, this is equivalent to the

weak convergence of µ(·;σ) to µ(·) that is concentrated in x̄.

Step 2 (magnitude of moments). To prove the second part, fix an even k ≥ 2 and consider a

10



different measure gk(·;σ) given by

gk(x;σ) = ξ(σ)(x− x̄(σ))k exp

{
2θ(x;σ)

σ2

}
(A.57)

Here again ξ(σ) ensures that this function integrates to one. This density function is equal to

zero at x̄(σ) and has two peaks at x+(σ) > x̄(σ) and x−(σ) < x̄(σ) given by the solutions to the

following equation over t:

(µ+ δ − ı(t;σ))(t− x̄(σ)) =
σ2k

2
(A.58)

Fix a < x̄ < b again. Since ı(·;σ) is strictly decreasing for all σ and converges uniformly to ı̄(·),
which is also strictly decreasing, both x+(σ) and x−(σ) converge to x̄ as σ −→ 0. Hence, there exists

σ1 > 0 such that for all σ ∈ [0, σ1] it holds that (b−x+(σ)) > (b− x̄)/2 and (x−(σ)−a) > (x̄−a)/2.
Hence, for the measure Mk(·;σ) associated with gk(·;σ)

Mk((a, x̄(σ)];σ) > gk(a;σ) ·
x̄− a

2
(A.59)

Mk([x̄(σ), b);σ) > gk(b;σ) ·
b− x̄

2
(A.60)

Now consider a function w(·;σ) given by

w(x;σ) = ξ(σ) exp

{
θ(x;σ)

σ2

}
(A.61)

Take the derivative of the ratio ϕ(x;σ)/w(x;σ):[
gk(x;σ)

w(x;σ)

]′
=

(
(x− x̄(σ))(ı(x;σ)− µ− δ)

σ2
+ k

)
(x− x̄(σ))k−1 exp

{
θ(x;σ)

σ2

}
(A.62)

This derivative is negative for all x > x̂+(σ), where x̂+(σ) > x̄(σ) is the higher root of the following

equation over t:

(t− x̄(σ))(µ+ δ − ı(t;σ)) = σ2k (A.63)

Similarly, the derivative of the ratio gk(x;σ)/w(x;σ) is positive for x < x̂−(σ), where x̂−(σ) < x̄(σ)

is the lower root of this equation. From the uniform convergence of ı(·;σ) to ı̄(·) and the strict

monotonicity of ı(·;σ) and ı̄(·) it follows that there is a σ2 > 0 such that x̂+(σ) < b and x̂−(σ) > a
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for all σ ∈ [0, σ2]. For these σ ∈ [0, σ2],

gk(x;σ) ≤ w(x;σ)
gk(b;σ)

w(b;σ)
for x ≥ b (A.64)

gk(x;σ) ≤ w(x;σ)
gk(a;σ)

w(a;σ)
for x ≤ a (A.65)

For the associated measure Mk(·;σ), this implies that

Mk((−∞, a];σ) ≤ gk(a;σ)
σ2

(ı(a;σ)− µ− δ)
(A.66)

Mk([b,∞);σ) ≤ gk(b;σ)
σ2

(µ+ δ − ı(b;σ))
(A.67)

By the same argument as before, fix ε > 0 such that ı(a)− ε− µ− δ > 0 and µ+ δ− ı(b)− ε > 0.

There exists a σ3 > 0 such that for all σ < σ3, ı(a;σ)−µ−δ > ı(a)−ε−µ−δ and µ+δ− ı(b;σ) >
µ+ δ − ı(b)− ε. For σ ∈ [0,min{σ2, σ3}],

Mk((−∞, a];σ) ≤ gk(a;σ)
σ2

(ı(a)− ε− µ− δ)
(A.68)

Mk([b,∞);σ) ≤ gk(b;σ)
σ2

(µ+ δ − ı(b)− ε)
(A.69)

Hence, for all σ ∈ [0,min{σ1, σ2, σ3}],

Mk((−∞; a];σ)

Mk((a, x̄(σ)];σ)
≤ 2σ2

(x̄− a)(ı(a)− ε− µ− δ)
(A.70)

Mk([b,∞);σ)

Mk([x̄(σ), b);σ)
≤ 2σ2

(b− x̄)(µ+ δ − ı(b)− ε)
(A.71)

By the same argument as before, this means that the measure of all open intervals containing x̄

converges to one. Hence, the measure associated with gk(·;σ) weakly converges to the measure

concentrated at x = x̄.

Now consider the following notation:

mk(σ) = E[(x− x̄(σ))k|σ] (A.72)

ek(σ) = E[(µ+ δ − ı(x;σ))(x− x̄(σ))k|σ] (A.73)
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Integrating the KFE, we have, for all k ≥ 1,

ek =
σ2k

2
mk−1 (A.74)

Take odd k. Fix an interval (x̄(σ) − c, x̄(σ) + c). Since the derivative of ı(·;σ) is bounded away

from zero, there exists a number ς > 0 such that |ı(x;σ) − µ − δ| ≥ ς(x − x̄(σ)) for all x ∈
(x̄(σ)− c, x̄(σ) + c). Hence,

ek ≥ ς

∫ x̄(σ)+c

x̄(σ)−c

(x− x̄(σ))k+1ϕ(x;σ)dx = ςMk+1((x̄(σ)− c, x̄(σ) + c);σ) ·mk+1 (A.75)

Here Mk+1(·;σ) is the measure associated with the density gk+1(·;σ) from above. Since the set

(x̄(σ) − c, x̄(σ) + c) contains x̄ for σ small enough, its measure converges to one. Hence, for σ

small enough, ek ≥ ςmk+1/2, and hence mk+1 ≤ σ2ς−1mk−1 for all odd k. Since m0 = 1, we have

mk = O(σk) for all even k ≥ 0. For odd k ≥ 1, using Cauchy-Schwartz inequality leads to

|mk| ≤
√
m2 ·

√
m2k−2 = O(σk) (A.76)

Step 3 (misallocation and aggregate capital). Finally, consider misallocation: Mt = log Ŷt =

log Yt. First, consider actual output Yt:

log Yt = log(E[zteαxt ]) = logE[zt] + log

(
E[eαxt ] + E

[
zt − E[zt]
E[zt]

eαxt

])
= logE[zt] + αx∗ + log

(
E[eαx̂t ] + E

[
ẑte

αx̂t
])

(A.77)

Expanding eαx̂t ,

log Yt = logE[zt] + αx∗ + log

(
1 +

∞∑
k=1

αkE[x̂kt (1 + ẑt)]

k!

)

= logE[zt] + αx∗ + log

(
1 + αE[x̂t] + αE[x̂tẑt] +

α2

2
E[x̂2t ] +O

(
σ3
))

= logE[zt] + αx∗ + αE[x̂t] + αE[x̂tẑt] +
α2

2
E[x̂2t ] +O

(
σ3
)

(A.78)
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Similarly, for Ŷt,

log Ŷt = (1− α) logE[zt] + α log(E[ztext ]) = logE[zt] + α log

(
E[ext ] + E

[
zt − E[zt]
E[zt]

ext

])
= logE[zt] + αx∗ + α log

(
E[ex̂t ] + E

[
ẑte

x̂t
])

= logE[zt] + αx∗ + α log

(
1 +

∞∑
k=1

E[x̂kt (1 + ẑt)]

k!

)

= logE[zt] + αx∗ + α log

(
1 + E[x̂t] + E[x̂tẑt] +

1

2
E[x̂2t ] +O

(
σ3
))

= logE[zt] + αx∗ + αE[x̂t] + αE[x̂tẑt] +
α

2
E[x̂2t ] +O

(
σ3
)

(A.79)

For misallocation, we have

Mt =
α(1− α)

2
V[xt] +O(σ3) (A.80)

Finally, for Kt,

logKt =
log Ŷt − (1− α) logE[zt]

α
= logE[zt] + E[xt] +O

(
σ2
)

(A.81)

This completes the proof. □

Proof. (of Proposition 5). The coefficients η1 = {η1,j}−u≤j≤d,j ̸=0 and η2 = {η2,j}−u≤j≤d,j ̸=0

satisfy the following continuity conditions:

fj−1(xj) = fj(xj) for j ∈ {−u+ 1, ...− 1} (A.82)

fj+1(xj) = fj(xj) for j ∈ {1, ...d− 1} (A.83)

f−1(0) = f1(0) (A.84)

f ′
j−1(xj) = f ′

j(xj) for j ∈ {−u+ 1, ...− 1} (A.85)

f ′
j−1(xj) = f ′

j(xj) for j ∈ {1, ...d− 1} (A.86)

lim
x→∞

fd(x) = lim
x→−∞

f−u(x) = 0 (A.87)∫ ∞

−∞
f(x)dx = 1 (A.88)

The jump in the first derivative of f(·) at zero is due to the “reinjection” of firms: they adjust

capital gaps discretely, continually arriving at zero. The size of the jump in f ′(·) is

lim
x→−0

f ′
−1(x)− lim

x→+0
f ′
1(x) =

2N

σ2
(A.89)
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This can be shown by integrating equation (5) over the real line and using the statistical fact that

q(−x)N = L(x)f(x).

The conditions in equation (A.82), equation (A.83), equation (A.84), equation (A.85), equa-

tion (A.86), equation (A.87), and equation (A.88) provide 2(u + d) linear equations to solve for

2(u+d) unknowns η1 and η2. Conditions (A.82)-(A.88) contain exactly 2(U +D) equations that

are linear in {η1,j, η2,j}. Equation (A.88) can be rewritten as

1 =
−1∑

j=−U

(
η1,j
ξ1,j

(eξ1,jxj+1 − eξ1,jxj) +
η2,j
ξ2,j

(eξ2,jxj+1 − eξ2,jxj)

)

+
D∑
j=1

(
η1,j
ξ1,j

(eξ1,jxj − eξ1,jxj−1) +
η2,j
ξ2,j

(eξ2,jxj − eξ2,jxj−1)

)
(A.90)

Using this and equations (A.82)-(A.87), we can construct a 2(U +D)× 2(U +D) matrix A and a

2(U +D)× 1 vector b as follows. First, for −U + 1 ≤ j ≤ −1, set k = j + U + 1 and

A2k−1,2k−3 = −eξ1,j−1xj (A.91)

A2k−1,2k−2 = −eξ2,j−1xj (A.92)

A2k−1,2k−1 = eξ1,jxj (A.93)

A2k−1,2k = eξ2,jxj (A.94)

A2k,2k−3 = −ξ1,j−1e
ξ1,j−1xj (A.95)

A2k,2k−2 = −ξ2,j−1e
ξ2,j−1xj (A.96)

A2k,2k−1 = ξ1,je
ξ1,jxj (A.97)

A2k,2k = ξ2,je
ξ2,jxj (A.98)

Next, for 1 ≤ j ≤ D − 1, set k = j + U and

A2k−1,2k−1 = eξ1,jxj (A.99)

A2k−1,2k = eξ2,jxj (A.100)

A2k−1,2k+1 = −eξ1,j+1xj (A.101)

A2k−1,2k+2 = −eξ2,j+1xj (A.102)

A2k,2k−1 = ξ1,je
ξ1,jxj (A.103)

A2k,2k = ξ2,je
ξ2,jxj (A.104)

A2k,2k+1 = −ξ1,j+1e
ξ1,j+1xj (A.105)

A2k,2k+2 = −ξ2,j+1e
ξ2,j+1xj (A.106)
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The remaining rows are {1, 2, 2(D + U)− 1, 2(D + U)}. They encode (A.87), (A.84), and (A.88).

For this, set A1,2 = 1, A2(U+D),2(U+D)−1 = 1, (A2,2U−1,A2,2U ,A2,2U+1,A2,2U+2) = (1, 1,−1,−1), and

A2(U+D)−1,2k−1 =
1

ξ1,j
(eξ1,jxj+1 − eξ1,jxj1{j > −U}), k = j + U + 1, −U ≤ j ≤ −1 (A.107)

A2(U+D)−1,2k =
1

ξ2,j
(eξ2,jxj+1 − eξ2,jxj), k = j + U + 1, −U ≤ j ≤ −1 (A.108)

A2(U+D)−1,2k−1 =
1

ξ1,j
(eξ1,jxj − eξ1,jxj−1), k = j + U, 1 ≤ j ≤ D (A.109)

A2(U+D)−1,2k =
1

ξ2,j
(eξ2,jxj1{j < D} − eξ2,jxj−1), k = j + U, 1 ≤ j ≤ D (A.110)

All entries of the vector b are equal to zero, except for b2(U+D)−1, because this entry corresponds to

the “integrating” row of A. The coefficients η are recovered by solving for the vector η satisfying

Aη = b and setting (η1,j, η2,j) = (η2(j+U)+1,η2(j+U)+2) for −U ≤ j ≤ −1 and (η1,j, η2,j) =

(η2(j+U)−1,η2(j+U)) for 1 ≤ j ≤ D. □

Proof. (of Corollary 2). It follows from inspecting equation (14) and equation (15).

Proof. (of Proposition 6). Recall that the density of gaps on a segment j is

f̃j(x) = η1,je
ξ1,jx + η2,je

ξ2,jx (A.111)

Consider a two-sided model. There are two segments in this case, (−∞, 0) with Λ(x) = λu and

(−∞, 0) with Λ(x) = λd. In the negative gap territory, the powers ξ1,−1 and ξ2,−1 are

{ξ1,−1, ξ2,−1} =
−(µ+ δ)±

√
(µ+ δ)2 + 2σ2λu
σ2

(A.112)

This implies η2,−1 = 0 so that f(·) does not diverge at −∞.

For positive gaps, the powers ξ1,1 and ξ2,1 are

{ξ1,1, ξ2,1} =
−(µ+ δ)±

√
(µ+ δ)2 + 2σ2λd
σ2

(A.113)

This implies η1,1 = 0 so that f(·) does not diverge at ∞.

The remaining two coefficients are η2,1 and η1,−1. They are equal to each other, η2,1 = η2,1 = η,

which is implied by the continuity at x = 0. To get the remaining condition on η, recall that f̃(·)
should integrate to one over the real line:

η

(
1

ξ1,−1

− 1

ξ2,1

)
= 1 (A.114)
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Plugging,

η =

(√
(µ+ δ)2 + 2σ2λd + (µ+ δ)

)(√
(µ+ δ)2 + 2σ2λu − (µ+ δ)

)
σ2
(√

(µ+ δ)2 + 2σ2λu +
√

(µ+ δ)2 + 2σ2λd

) (A.115)

To get the aggregate frequency N , integrate the accounting identity Nq(−x) = f̃(x)Λ̃(x):

N = η

(
λu
ξ1,−1

− λd
ξ2,1

)
(A.116)

Plugging η,

N =
λuξ2,1 − λdξ1,−1

ξ2,1 − ξ1,−1

(A.117)

Now use the fact that ξ2,1 and ξ1,−1 satisfy the following quadratic equations:

σ2

2
ξ22,1 + (µ+ δ)ξ2,1 = λd (A.118)

σ2

2
ξ21,−1 + (µ+ δ)ξ1,−1 = λu (A.119)

Plugging λd and λu from these expressions,

N = −σ
2

2
ξ2,1ξ1,−1 =

(√
(µ+ δ)2 + 2σ2λd + (µ+ δ)

)(√
(µ+ δ)2 + 2σ2λu − (µ+ δ)

)
2σ2

This is the statement of the proposition. □

C Details of the model

In this section, we provide the details for the Hamilton-Jacobi-Bellman equation of the firms. We

do it for a slightly more general version of the model that allows for costly investment even when

the occasional Poisson opportunity has not arrived.

As in the main text, let i ∈ {u, d} denote where the firm is relative to the optimal point. If

i = u, the firm is below the optimal capital and would like to adjust upwards. If i = d, it will not

adjust upwards but will disinvest should the opportunity arrive. The Bellman equation of the firm

17



in the steady state is

rV (k, z) = z1−αkα − δk∂kV (k, z) +

(
µ+

σ2

2

)
z∂zV (k, z) +

σ2

2
z2∂zzV (k, z)

+
∑

i=u,d
1iγi

∫
max{V (y∗z, z)− y∗z − (V (k, z)− k)− ψz, 0}dGi(ψ) (A.120)

The optimality condition is ∂kV (y∗z, z) = 1. The value-matching conditions at all cutoffs are

V (y∗z, z)− y∗z − V (k, z) + k = ψi(k/z), for i ∈ {u, d} (A.121)

Suppose, for generality, that the firm always has a costly option to invest. It can pay ψu to

adjust up and ψd to adjust down. This introduces ultimate cutoffs yd and yu, at which the firm

adjusts even if the occasional Poisson opportunity has not arrived. Of course, these cutoffs are

infinite when ψu and ψd are, in which case we are back to the benchmark model. Instead of

these cutoffs, the boundary conditions on V (k, z) at k = 0 and k = ∞ are the following: the

homogeneous part of the solution V (k, z) goes to zero as k −→ 0 and k −→ ∞ for all fixed z.

If ψu and ψd are finite, the smooth-pasting conditions at these ultimate cutoffs are

∂zV (y∗z, z)− ∂zV (yiz, z) = ψi, for i ∈ {u, d} (A.122)

These smooth-pasting conditions hold if the ultimate cutoffs are not zero and infinite, respectively.

They are normally internal if the fixed cost the firm can always pay is finite. Otherwise, there is

no decision to be taken, so the smooth-pasting conditions need not hold.

Now introduce a function v(·) given by

V (k, z) = zv(k/z) + k (A.123)

The function v(·) measures the value of the firm net of the market value of its capital and adjusted

for productivity. Note the following relations for its derivatives:

∂kV (k, z) = v′
(
k

z

)
+ 1 (A.124)

∂zV (k, z) = v

(
k

z

)
− k

z
v′
(
k

z

)
(A.125)

∂zzV (k, z) =
k2

z3
v′′
(
k

z

)
(A.126)
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Plugging the relations for derivatives of V (·) into equation (A.120) and denoting y = k/z,

rzv(y) + rzy = zyα − δzyv′(y)− δzy +

(
µ+

σ2

2

)
(zv(y)− zyv′(y)) +

σ2

2
y2v′′(y)

+ z
∑

i=u,d
1iγi

∫
max{v(y∗)− v(y)− ψ, 0}dGi(ψ) (A.127)

Dividing everything by z and denoting ρ = r − µ− σ2/2 and ν = r + δ,

ρv(y) = yα − νy + (ρ− ν)yv′(y) +
σ2

2
y2v′′(y)

+
∑

i=u,d
1iγi

∫
max{v(y∗)− v(y)− ψ, 0}dGi(ψ) (A.128)

The optimality condition is v′(y∗) = 0. The value-matching and smooth-pasting are

v(y∗)− v(y) = ψi (A.129)

v(y∗)− y∗v′(y∗)− v(yi) + yiv′(yi) = ψi (A.130)

for i ∈ {u, d}. Since v′(y∗) = 0, these two equations together imply v′(yi) = 0 for both i ∈ {u, d}.
Taking the derivative of equation (A.128) with respect to y and denoting u(y) = v′(y),

ρu(y) = αyα−1 − ν + (ρ− ν)u(y) + (ρ− ν + σ2)yu′(y) +
σ2

2
y2u′′(y)

−
∑
i=u,d

1iγi

∫
1{v(y∗)− v(y) ≥ ψ}u(y)dGi(ψ) (A.131)

Rearranging,(
ν +

∑
i=u,d

1iγiGi (v(y
∗)− v(y))

)
u(y) = αyα−1 − ν + (ρ− ν + σ2)yu′(y) +

σ2

2
y2u′′(y)

The generalized hazard function here is

λ(y) =
∑
i=u,d

1iγiGi (v(y
∗)− v(y)) (A.132)

Plugging,

(ν + λ(y))u(y) = αyα−1 − ν + (ρ− ν + σ2)yu′(y) +
σ2

2
y2u′′(y) (A.133)

Boundary conditions for this equation are u(yu) = −ψu, u(yd) = −ψd, and u(y∗) = 0. Again,
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there are no smooth-pasting conditions u(yu) = −ψu and u(yd) = −ψd if the normal fixed cost is

infinite. In this case, the firm does not take a decision that would call for smooth pasting. Instead,

the homogeneous part of u(·) converges to zero as y −→ 0 or y −→ ∞.

Proof. (of Proposition 1). Take equation (A.133) and make a change of variable y 7→ x ≡ log(y).

Define U(x) ≡ u(y(x)) and Λ(x) ≡ λ(y(x)). With u′(y) = U ′(x)/y and u′′(x) = (U ′′(x)−U ′(x))/y2,

equation (A.133) transforms into

(ν + Λ(x))U(x) = αe(α−1)x − ν +

(
ρ− ν +

σ2

2

)
U ′(x) +

σ2

2
U ′′(x) (A.134)

Recalling that ρ = r − µ− σ2/2 and ν = r + δ,

(ν + Λ(x))U(x) = αe(α−1)x − ν − (µ+ δ)U ′(x) +
σ2

2
U ′′(x) (A.135)

To arrive at the equation for Λ(x), use equation (A.132):

Λ(x) =
∑
i=u,d

1iγiGi

(
v(ex

∗
)− v(ex)

)
=
∑
i=u,d

1iγiGi

(∫ ex
∗

ex
u(y)dy

)

=
∑
i=u,d

1iγiGi

(∫ x∗

x

U(t)etdt

)
(A.136)

This completes the proof. □

C.1 Renting capital instead of owning

In this subsection, we establish equivalence between the problems of a firm that owns capital

and one that rents it at an interest rate r + δ. Suppose a firm rents capital and faces the same

adjustment costs. When there is no adjustment, capital simply depreciates at a rate δ, and the

firm makes rental payments (r+ δ)kt per unit of time. When it decides to change the capital stock

instead of simply letting it depreciate, it has to pay an adjustment cost ψzt. The multiplier ψ is

random.

Specifically, firms always have the option to pay fixed costs ψdzt or ψuzt and adjust downwards

and upwards, respectively. With a Poisson intensity γd, they get an opportunity to draw a lower

adjustment cost ψ that they can pay for adjusting down. This cost is distributed with a cumulative

distribution function Gd(·) on [0, ψd]. For adjusting up, they get an opportunity to draw a lower

cost with a Poisson intensity γu, and these costs are distributed according to Gu(·) on [0, ψu].

The firms again follow a policy described by cutoffs. Conditional on adjusting, they always

choose K = k∗zt. When k > y∗zt, firms only adjust down, and do this if and only if the corre-
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sponding cost reduction arrives and the new value drawn ψ satisfies ψ ≤ ψd(k/z). Here ψd(·) is a
cutoff function. When k > y∗zt, firms only adjust up, and do this if and only if the corresponding

cost reduction arrives and the new value drawn ψ satisfies ψ ≤ ψu(k/z). The function ψd(·) maps

[y∗, yd] to [0, ψd], and ψu(·) maps [yu, y∗] to [0, ψu]. The thresholds yd and yu correspond to values

of capital at which the firms adjust even without a cost reduction.

The Bellman equation describing the value V (k, z) of such a firm is

rV (k, z) = z1−αkα − (r + δ)k − δk∂kV (k, z) +

(
µ+

σ2

2

)
z∂zV (k, z) +

σ2

2
z2∂zzV (k, z)

+
∑

i=u,d
1iγi

∫
max{V (y∗z, z)− V (k, z)− ψz, 0}dGi(ψ) (A.137)

The optimality condition is ∂kV (y∗z, z) = 0. The value-matching conditions are

V (y∗z, z)− V (k, z) = ψi(k/z)z, for i ∈ {u, d} (A.138)

The smooth-pasting conditions are

∂zV (y∗z, z)− ∂zV (yiz, z) = ψi, for i ∈ {u, d} (A.139)

Define a productivity-adjusted value function v(·) by

V (k, z) = zv(k/z) (A.140)

Note the following relations for derivatives:

∂kV (k, z) = v′
(
k

z

)
(A.141)

∂zV (k, z) = v

(
k

z

)
− k

z
v′
(
k

z

)
(A.142)

∂zzV (k, z) =
k2

z3
v′′
(
k

z

)
(A.143)

Plugging this into equation (A.137) and denoting y = k/z,

rzv(y) = zyα − (r + δ)zy − δzyv′(y) +

(
µ+

σ2

2

)
(v(y)− yv′(y)) +

σ2

2
zy2v′′(y)

+ z
∑

i=u,d
1iγi

∫
max{v(y∗)− v(y)− ψ, 0}dGi(ψ) (A.144)
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Dividing everything by z and denoting ρ = r − µ− σ2/2 and ν = r + δ,

ρv(y) = yα − νy + (ρ− ν)yv′(y) +
σ2

2
y2v′′(y) +

∑
i=u,d

1iγi

∫
max{v(y∗)− v(y)− ψ, 0}dGi(ψ)

This equation coincides with equation (1). Notice that v′(y∗) = v′(yu) = v′(yd) = 0, so all decisions

are exactly the same as in the baseline.

C.2 Shape of the adjustment histogram

In general, it is not possible to characterize the shape of the histogram H(P̂) locally: for any

j, the size of H−j depends on the entire vector λ̂, not just on λj and its neighbors. However,

in some case it is possible to characterize the behavior of the ratio H−j/H−(j−1) depending on

(λj, λj−1). Specifically, consider j = −u: the largest negative capital gaps (and the largest positive

adjustments). Suppose that the constraint λ−u ≥ λ−(u−1) is binding. How does the shape of the

tail of the investment histogram, as described by the ratio Hu/Hu−1, change when the constraint

is relaxed on the margin, and λ−u = λ−(u−1) turns into λ−u > λ−(u−1)? The following proposition

shows that the tail becomes thicker.

Proposition 7. Assume δ = 0 without loss an fix P = (µ, σ2,λ), where the vector λ is such

that λ−u = λ−(u−1). Consider the histogram of adjustments H(P) generated by P. It holds that

∂(Hu/Hu−1)

∂λ−u

∣∣∣
λ−u=λ−(u−1)

> 0

As the monotonicity constraint on λ relaxes, there are two offsetting effects. First, adjustment

in the tail intensifies, raisingHu/Hu−1. Second, because of more intensive adjustment, the quantity

of firms still surviving with a capital gap in the tail decreases, lowering Hu/Hu−1. Proposition 7

shows that the former dominates on the margin. Importantly, this statement only applies to the

relative intensity of adjustment: everything else, including the frequency of investment and the

levels of all {Hj} change in this thought experiment too.

Proof. (of Proposition 7). Consider a generalized hazard function Λ(·) with Λ(x) = λl on

(−∞, x−u+1] and Λ(x) = λr on (x−u+1, x−u+2]. The density of capital gaps f(·) around x−u+1 is

f(x) =

ηleξlx, x ≤ x−u+1

ηr,1e
ξr,1x + ηr,2e

ξr,2x, x ∈ [x−u+1, x−u+2]
(A.145)
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Here

ξl =

√
µ2 + 2σ2λl − µ

σ2
(A.146)

ξr,1 =

√
µ2 + 2σ2λr − µ

σ2
(A.147)

ξr,2 =
−
√
µ2 + 2σ2λr − µ

σ2
(A.148)

Denote x = x−u+1. At x = x, the density must be continuous and differentiable:

ηle
ξlx = ηr,1e

ξr,1x + ηr,2e
ξr,2x (A.149)

ξlηle
ξlx = ξr,1ηr,1e

ξr,1x + ξr,2ηr,2e
ξr,2x (A.150)

This implies

ηr,1 = ηl ·
ξr,2 − ξl
ξr,2 − ξr,1

· e(ξl−ξr,1)x (A.151)

ηr,2 = ηl ·
ξl − ξr,1
ξr,2 − ξr,1

· e(ξl−ξr,2)x (A.152)

The histogram of capital gaps is given by

Fl =
ηl
ξl
eξlx (A.153)

Fr =
ηr,1
ξr,1

(
1− eξr,1x

)
+
ηr,2
ξr,2

(
1− eξr,2x

)
(A.154)

The histogram of adjustments is

Hl =
λlηl
Nξl

eξlx (A.155)

Hr =
λrηr,1
Nξr,1

(
1− eξr,1x

)
+
λrηr,2
Nξr,2

(
1− eξr,2x

)
(A.156)

Here N is the adjustment frequency. Define the ratio R = Hr/Hl:

R(λl, λr) =
λr
λl

·
[
ξl
ξr,1

· ηr,1
ηl

· 1− eξr,1x

eξlx
+

ξl
ξr,2

· ηr,2
ηl

· 1− eξr,2x

eξlx

]
=
λr
λl

·
[
ξl
ξr,1

· ξr,2 − ξl
ξr,2 − ξr,1

·
(
e−ξr,1x − 1

)
+

ξl
ξr,2

· ξl − ξr,1
ξr,2 − ξr,1

·
(
e−ξr,2x − 1

)]
(A.157)
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The constrained benchmark is λl = λr. In this benchmark, ξr,1 = ξl and

R(λl, λr)
∣∣∣
λl=λr

= e−ξr,1x − 1 (A.158)

Take the derivative of R(·) with respect to λl around λl = λr:

∂R(λl, λr)

∂λl

∣∣∣
λl=λr

= − 1

λr
·
(
e−ξr,1x − 1

)
+
∂ξl
∂λl

∣∣∣
λl=λr

· 1

ξr,1
·
(
e−ξr,1x − 1

)
− ∂ξl
∂λl

∣∣∣
λl=λr

· 1

ξr,2 − ξr,1
·
(
e−ξr,1x − 1

)
+
∂ξl
∂λl

∣∣∣
λl=λr

· ξr,1
ξr,2

· 1

ξr,2 − ξr,1
·
(
e−ξr,2x − 1

)
(A.159)

Rewriting,

∂R(λl, λr)

∂λl

∣∣∣
λl=λr

=

[
∂ξl
∂λl

∣∣∣
λl=λr

· ξr,2 − 2ξr,1
ξr,1(ξr,2 − ξr,1)

− 1

λr

] (
e−ξr,1x − 1

)
+
∂ξl
∂λl

∣∣∣
λl=λr

· ξr,1
ξr,2(ξr,2 − ξr,1)

(
e−ξr,2x − 1

)
The second summand is negative because ξr,2 < 0, ξr,1 > 0, and x < 0. Consider the first summand.

First, e−ξr,1x − 1 > 0. Second,

∂ξl
∂λl

∣∣∣
λl=λr

=
1√

µ2 + 2σ2λl

∣∣∣
λl=λr

=
1√

µ2 + 2σ2λr
(A.160)

Denote z =
√
µ2 + 2σ2λr. Plugging this into the expression in square brackets,

∂ξl
∂λl

ξr,2 − 2ξr,1
ξr,1(ξr,2 − ξr,1)

− 1

λr
=
σ2(3z − µ)

2z2(z − µ)
− 1

λr
=
σ2(3z − µ)

2z2(z − µ)
− 2σ2

z2 − µ2

=
σ2

2z2(z2 − µ2)
· ((3z − µ)(z + µ)− 4z2) = − σ2(z − µ)

2z2(z + µ)
< 0 (A.161)

This proves that

∂R(λl, λr)

∂λl

∣∣∣
λl=λr

< 0 (A.162)

This completes the proof. □
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C.3 Degrees of freedom when switching between models.

We next make a note on the number of degrees of freedom that the econometrician has while

switching between models. Estimating the model on the same data implies, in particular, that

they will be fitted to the same frequency of adjustment. This establishes a connection between the

recovered generalized hazard functions.

Proposition 8. Consider two models that generate the same frequency of adjustments. Let

the vectors λ1 = {λj,1} and λ2 = {λk,2} encode their respective generalized hazard functions, and

let H1 = {Hj,1} and H2 = {Hk,2} be the histograms of adjustments they induce. It holds that

∑
j

Hj,1

λj,1
=
∑
k

Hk,2

λk,2

In words, the harmonic average of the generalized hazard function, weighted by the histogram

of adjustments, is the same across models. In particular, having estimated the full specification,

we know the harmonic average of the two numbers λu and λd in the two-sided model, which leaves

us with three parameters to estimate instead of four.

For a simpler example, consider estimating a pure Calvo (1983) model with generalized hazard

Λ(x) ≡ λ and a two-sided model with hazards (λu, λd). The proposition implies

1

λ
=

P{positive investment}
λu

+
1− P{positive investment}

λd

Here λu is the upward adjustment hazard in the two-sided model, and λd is the downward one.

Estimating any model also gives the econometrician the hazard in the Calvo model for free.

Proof. (of Proposition 8). Start with the accounting identity

Nq(−x) = Λ(x)f(x) (A.163)

Take the j-th segment on which Λ(x) is constant and integrate the over it:

Hj

λj
=

1

N

∫
j

f(x)dx (A.164)

Now summing over all these segments,

∑
j

Hj

λj
=

1

N
(A.165)

Since N is the same in the two models by assumption, the harmonic averages of Λ(x) weighted
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with adjustment probabilities on the left-hand side are the same too. □

D Recovering marginal value U(·)

Recall that

ν(x)U(x) = αe(α−1)x − ν − (µ+ δ)U ′(x) +
σ2

2
U ′′(x) (A.166)

Here a slight abuse of notation is ν(x) = ν + Λ(x).

Now suppose Λ(·) is piece-wise constant. Specifically, let there be u + d + 1 nodes given by

{xj} = {x̂j + x∗} such that Λ(·) is constant on any (x̂j−1 + x∗, x̂j + x∗) for 1 ≤ j ≤ d, any

(x̂j + x∗, x̂j+1 + x∗) for −u ≤ j ≤ −1:

• Λ(x) = λj on (x̂j−1 + x∗, x̂j + x∗) for 1 ≤ j ≤ d

• Λ(x) = λj on (x̂j + x∗, x̂j+1 + x∗) for −u ≤ j ≤ −1

The leftmost and rightmost nodes are infinite: x̂−u = −∞ and x̂D = ∞. Denote νj = ν + λj and

let Uj(·) be the part of U(·) defined on the segment j. The solution to equation (A.166) on any

segment j is

Uj(x) = η1,je
ξ1,jx + η2,je

ξ2,jx + θ1,je
(α−1)x + θ2,j (A.167)

The non-homogeneous part can be recovered immediately:

θ1,j =
α

νj − (1− α)(µ+ δ)− (1− α)2σ2/2
(A.168)

θ2,j = − ν

νj
(A.169)

The homogeneous part is a sum of two terms with four parameters per segment in total. Exponent

parameters are given by

{ξ1,j, ξ2,j} =
µ+ δ ±

√
(µ+ δ)2 + 2σ2νj
σ2

(A.170)

The weights η1,j and η2,j, combining into 2(u+d) unknowns, have to be recovered from continuity

and differentiability conditions on U(·). Specifically, for all j corresponding to finite nodes, meaning
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−u < j < d including j = 0,

Uj−1(x̂j + x∗) = Uj(x̂j + x∗) (A.171)

U ′
j−1(x̂j + x∗) = U ′

j(x̂j + x∗) (A.172)

This yields 2(u+d− 1) conditions. Two other equations are η1,−u = 0 and η2,d = 0 ensuring that

the homogeneous part of U(·) does not blow up at −∞ and ∞. The non-homogeneous part, which

represents the marginal instantaneous returns to capital, is infinite at −∞, while the homogeneous

part represents the marginal value of the real option coming from the future evolution of capital

stock and is finite.

Given U(·), it is straightforward to recover u(y) = U(ln(y)) and integrate v(y)− v(y∗):

v(y)− v(y∗) =

∫ y

y∗
u(t)dt =

∫ x

x∗
U(t)etdt (A.173)

This function of y will be necessary to recover Gi from λ(y) = γiGi(v(y)− v(y∗)), where i ∈ {u, d}
indexes the direction of adjustment for which there is an opportunity.

D.1 Algorithm

The algorithm to recover U(·) given L(·) is a two-level iterative procedure. The inner part is, given

L(·) and a guess for x∗, to recover U(·;x∗). The outer part is, given U(·;x∗), to update the guess

for x∗ based on the fact that U(x∗;x∗) = 0 at the true value.

Inner part. Given a guess x∗(n) for x
∗, let x̂j = x∗(n) + xj. The conditions on η1,j and η2,j combine

into a linear system of dimensionality 2u + 2d. Let the vector η combine the unknowns in the

following way: η2u+2j+1 = η1,j and η2u+2j+2 = η2,j for all j such that −u ≤ j ≤ −1. For 1 ≤ j ≤ d,

set η2u+2j−1 = η1,j and η2u+2j = η2,j.

Let A be a square matrix of size (2u + 2d) × (2u + 2d) and b be a column vector of length

2u+ 2d. The (2j + 2u+ 1)-th rows of A and b represent equation (A.171) for −u ≤ j < −1:

η1,je
ξ1,j x̂j+1 + η2,je

ξ2,j x̂j+1 − η1,j+1e
ξ1,j+1x̂j+1 − η2,j+1e

ξ2,j+1x̂j+1 (A.174)

= (θ1,j+1 − θ1,j)e
(α−1)x̂j+1 + θ2,j+1 − θ2,j

The (2j + 2u+ 2)-th rows represent equation (A.172) for −u ≤ j < −1:

η1,jξ1,je
ξ1,j x̂j+1 + η2,jξ2,je

ξ2,j x̂j+1 − η1,j+1ξ1,j+1e
ξ1,j+1x̂j+1 − η2,j+1ξ2,j+1e

ξ2,j+1x̂j+1 (A.175)

= (θ1,j+1 − θ1,j)(1− α)e(α−1)x̂j+1

27



Then, the rows 2u− 1 takes care of continuity at x̂0 = x∗(n):

η1,−1e
ξ1,−1x̂0 + η2,−1e

ξ2,−1x̂0 − η1,1e
ξ1,1x̂0 − η2,1e

ξ2,1x̂0 (A.176)

= (θ1,1 − θ1,−1)e
(α−1)x̂0 + θ2,1 − θ2,−1

The row 2u takes care of differentiability at x̂0 = x∗:

η1,−1ξ1,−1e
ξ1,−1x̂0 + η2,−1ξ2,−1e

ξ2,−1x̂0 − η1,1ξ1,1e
ξ1,1x̂0 − η2,1ξ2,1e

ξ2,1x̂0 (A.177)

= (θ1,1 − θ1,−1)(1− α)e(α−1)x̂0

Then, the (2j + 2u− 3)-th rows of A and b represent equation (A.171) for 1 < j ≤ d:

η1,je
ξ1,j x̂j−1 + η2,je

ξ2,j x̂j−1 − η1,j−1e
ξ1,j−1x̂j−1 − η2,j−1e

ξ2,j−1x̂j−1 (A.178)

= (θ1,j−1 − θ1,j)e
(α−1)x̂j−1 + θ2,j−1 − θ2,j

The (2j + 2u− 2)-th rows represent equation (A.172) for 1 < j ≤ d:

η1,jξ1,je
ξ1,j x̂j−1 + η2,jξ2,je

ξ2,j x̂j−1 − η1,j−1ξ1,j−1e
ξ1,j−1x̂j−1 − η2,j−1ξ2,j−1e

ξ2,j−1x̂j−1 (A.179)

= (θ1,j−1 − θ1,j)(1− α)e(α−1)x̂j−1

For the matrix A this means that, for −u ≤ j ≤ −1,

A2j+2u+1,2j+2u+1 = eξ1,j x̂j+1 (A.180)

A2j+2u+1,2j+2u+2 = eξ2,j x̂j+1 (A.181)

A2j+2u+1,2j+2u+3 = −eξ1,j+1x̂j+1 (A.182)

A2j+2u+1,2j+2u+4 = −eξ2,j+1x̂j+1 (A.183)

A2j+2u+2,2j+2u+1 = ξ1,je
ξ1,j x̂j+1 (A.184)

A2j+2u+2,2j+2u+2 = ξ2,je
ξ2,j x̂j+1 (A.185)

A2j+2u+2,2j+2u+3 = −ξ1,j+1e
ξ1,j+1x̂j+1 (A.186)

A2j+2u+2,2j+2u+4 = −ξ2,j+1e
ξ2,j+1x̂j+1 (A.187)

The vector b for −u ≤ j ≤ −1 is filled as follows:

b2j+2u+1 = (θ1,j+1 − θ1,j)e
(α−1)x̂j+1 + θ2,j+1 − θ2,j (A.188)

b2j+2u+2 = (θ1,j+1 − θ1,j)(1− α)e(α−1)x̂j+1 (A.189)
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The rows 2(d+ u)− 1 and 2(d+ u) of the matrix A are

A2u−1,2u−1 = eξ1,−1x̂0 (A.190)

A2u−1,2u = eξ2,−1x̂0 (A.191)

A2u−1,2u+1 = −eξ1,1x̂0 (A.192)

A2u−1,2u+2 = −eξ2,1x̂0 (A.193)

A2u,2u−1 = ξ1,−1e
ξ1,−1x̂0 (A.194)

A2u,2u = ξ2,−1e
ξ2,−1x̂0 (A.195)

A2u,2u+1 = −ξ1,1eξ1,1x̂0 (A.196)

A2u,2u+2 = −ξ2,1eξ2,1x̂0 (A.197)

The vector b at these positions is filled as follows:

b2u−1 = (θ1,1 − θ1,−1)e
(α−1)x̂0 + θ2,1 − θ2,−1 (A.198)

b2u = (θ1,1 − θ1,−1)(1− α)e(α−1)x̂0 (A.199)

For 1 < j ≤ d, rows of the matrix A are

A2j+2u−3,2j+2u−3 = eξ1,j−1x̂j−1 (A.200)

A2j+2u−3,2j+2u−2 = eξ2,j−1x̂j−1 (A.201)

A2j+2u−3,2j+2u−1 = −eξ1,j x̂j−1 (A.202)

A2j+2u−3,2j+2u = −eξ2,j x̂j−1 (A.203)

A2j+2u−2,2j+2u−3 = ξ1,j−1e
ξ1,j−1x̂j−1 (A.204)

A2j+2u−2,2j+2u−2 = ξ2,j−1e
ξ2,j−1x̂j−1 (A.205)

A2j+2u−2,2j+2u−1 = −ξ1,jeξ1,j x̂j−1 (A.206)

A2j+2u−2,2j+2u = −ξ2,jeξ2,j x̂j−1 (A.207)

The vector b for 1 < j ≤ d is

b2j+2u−3 = (θ1,j−1 − θ1,j)e
(1−α)x̂j−1 + θ2,j−1 − θ2,j (A.208)

b2j+2u−2 = (θ1,j−1 − θ1,j)(1− α)e(α−1)x̂j−1 (A.209)

This fills the first 2u + 2d − 2 rows of A and b. The remaining two take care of η1,−u = 0 and

η2,d = 0: A2u+2d−1,1 = A2u+2d,2d+2u = 1 and b2u+2d = b2u+2d = 0.

Outer part. Given the coefficients η and θ, construct the function U(·;x∗(n)) and find x∗(n+1) such
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that U(x∗(n+1);x
∗
(n)) = 0.

E Histograms and recovered hazards

This section presents fitted histograms and recovered generalized hazard functions along with the

underlying steady-state distributions of capital gaps for all sectors other than “Metal & Machin-

ery”. The graphs are organized in the same way as those for “Metal & Machinery” on Figure 3.

The left panel shows data on investments and the histograms implied by the full model. The

center and right panels show the same for two restricted benchmarks: the two-sided and symmet-

ric models. The right panel shows the generalized hazard function and the implied steady-state

distribution of capital gaps.

(a) Data and the full model. (b) The two-sided benchmark.

Figure A.1: Mining & Quarrying

(a) Data and the full model. (b) The two-sided benchmark.

Figure A.2: Chemicals
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(a) Data and the full model. (b) The two-sided benchmark.

Figure A.3: Food & Beverages

(a) Data and the full model. (b) The two-sided benchmark.

Figure A.4: Construction

(a) Data and the full model. (b) The two-sided benchmark.

Figure A.5: Retail
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(a) Data and the full model. (b) The two-sided benchmark.

Figure A.6: Transportation

(a) Data and the full model. (b) The two-sided benchmark.

Figure A.7: Insurance

(a) Data and the full model. (b) The two-sided benchmark.

Figure A.8: Health & Beauty
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F Recovered distributions of adjustment costs

This section presents our estimates for the underlying random menu costs. We plot the recovered

distributions of adjustment costs for all sectors other than “Metal & Machinery”. The graphs are

organized in the same way as those for “Metal & Machinery” on Figure 4. The left panel shows

cumulative distribution functions Gu and Gd for costs of positive and negative adjustment. The

center panel shows the arrival intensity of costs of positive adjustments. The right panel shows the

arrival intensity of costs of negative adjustments. Costs are expressed in percent of instantaneous

profits at optimal capital eαx
∗ − (r + δ)ex

∗
.

Figure A.9: Mining & Quarrying

Figure A.10: Chemicals
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Figure A.11: Food & Beverages

Figure A.12: Construction

Figure A.13: Retail
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Figure A.14: Transportation

Figure A.15: Insurance

Figure A.16: Health & Beauty
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G Estimated drift and volatility over time

This section presents our estimates of the drift of log capital stock between adjustments µ+ δ and

the volatility of log productivity σ. We estimate these parameters in two subsamples: 1983-2003

and 2003-2023.

Table 8: Estimated parameters by subsample, 95% confidence intervals in brackets

1983-2003 2003-2023

Industry µ+ δ σ µ+ δ σ

Mining and Quarrying 0.257 0.365 0.112 0.216

[0.225, 0.289] [0.321, 0.409] [0.096, 0.128] [0.174, 0.259]

Chemicals 0.261 0.316 0.155 0.235

[0.251, 0.271] [0.306, 0.325] [0.148, 0.162] [0.229, 0.240]

Metals and Machinery 0.307 0.326 0.197 0.284

[0.296, 0.318] [0.302, 0.350] [0.190, 0.205] [0.280, 0.288]

Food and Beverages 0.256 0.260 0.147 0.240

[0.248, 0.265] [0.250, 0.270] [0.143, 0.152] [0.238, 0.243]

Construction 0.244 0.389 0.176 0.308

[0.226, 0.261] [0.366, 0.412] [0.167, 0.185] [0.303, 0.313]

Retail 0.208 0.370 0.155 0.306

[0.199, 0.216] [0.356, 0.384] [0.150, 0.160] [0.303, 0.309]

Transportation 0.296 0.475 0.207 0.356

[0.265, 0.327] [0.392, 0.559] [0.191, 0.222] [0.299, 0.413]

Insurance 0.459 0.544 0.348 0.389

[0.409, 0.508] [0.502, 0.585] [0.329, 0.367] [0.356, 0.423]

Health and Beauty 0.283 0.355 0.181 0.289

[0.249, 0.317] [0.311, 0.400] [0.168, 0.194] [0.282, 0.296]
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H Two-sided model

Testing the two-sided model. The two-sided model is quantitatively far from the full one

in terms of the estimated misallocation. This, however, is not in itself an indication that the

two-sided model is prohibitively restrictive. We now conduct an econometric test to see if we can

formally reject it against the full specification. Our approach is semi-parametric bootstrap. We

adopt the estimated two-sided model as the null hypothesis and compare the goodness of fit under

this null to the goodness of fit delivered by the full specification. To make this comparison, we need

a measure of dispersion for goodness of fit under the null, which we obtain by drawing random

subsamples of firms and recording the distance between the “true” data under the null and that

produced by the subsample.

Formally, we do the following steps:

• estimate the flexible model P̂1 on the full sample Qfull, record D1,full = dist(H(P̂1),Qfull)

• estimate the two-sided model P̂2 on the full sample Qfull

• draw B random subsamples, collect {Db}b=B
b=1 measures of fit Db = dist(H(P̂2),Qb)

• compare D1,full to the distribution of {Db}b=B
b=1

• define the p-value as p = P̂{Db < D1,full}

This procedure provides a measure of how extreme is the goodness of fit under the flexible speci-

fication compared to the norm under the null. We choose the rejection criterion for the p-value to

be 0.05, although it could in principle be any other number.
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Figure A.17: distribution of Db = dist(H(P̂2),Qb) in the background, D1,full = dist(H(P̂1),Qfull)

as the vertical line. All values normalized by D2,full = dist(H(P̂2),Qfull).

With the criterion p > 0.05, in five out of nine sectors we can reject the two-sided model. One

of the sectors, “Healt & Beauty”, is on the border with p = 0.06, while “Mining & Quarrying”,

“Insurance”, and “Transportation” are rejected strongly. Table 9 collects p-values for all sectors.

Table 9: p−values for all sectors.

Industry p

Mining and Quarrying 0.24
Chemicals 0.00
Metals and Machinery 0.00
Food and Beverages 0.00
Construction 0.02
Retail 0.01
Transportation 0.23
Insurance 0.22
Health and Beauty 0.06
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I Data Appendix

In this appendix, we present additional correlation tables for firm-level activity measures and

observable characteristics: revenue, employment, and time in the sample.

Table 10: correlations between firm-level observables and activity (Mining & Quarrying).

upi downi inactivei revi empi timei

upi 0.14 -0.99 0.05 0.04 0.17

downi 0.14 -0.18 0.12 0.09 0.1

inactivei -0.99 -0.18 -0.05 -0.04 -0.17

revi 0.05 0.12 -0.05 0.38 0.1

empi 0.04 0.09 -0.04 0.38 0.05

timei 0.17 0.1 -0.17 0.1 0.05

mean 0.71 0.04 0.28 150903 128.24 8.87

std 0.34 0.13 0.34 1074070 2116.04 6.72

Table 11: correlations between firm-level observables and activity (Chemicals).

upi downi inactivei revi empi timei

upi 0.1 -0.94 0.08 0.06 0.17

downi 0.1 -0.22 0.18 0.15 0.09

inactivei -0.94 -0.22 -0.08 -0.05 -0.16

revi 0.08 0.18 -0.08 0.67 0.09

empi 0.06 0.15 -0.05 0.67 0.03

timei 0.17 0.09 -0.16 0.09 0.03

mean 0.86 0.14 0.13 26006 73.66 10.43

std 0.23 0.21 0.22 115416 471.57 8.5
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Table 12: correlations between firm-level observables and activity (Food & Beverages).

upi downi inactivei revi empi timei

upi 0.13 -0.95 0.11 0.1 0.2

downi 0.13 -0.25 0.26 0.26 0.16

inactivei -0.95 -0.25 -0.11 -0.1 -0.2

revi 0.11 0.26 -0.11 0.67 0.13

empi 0.1 0.26 -0.1 0.67 0.11

timei 0.2 0.16 -0.2 0.13 0.11

mean 0.82 0.13 0.16 13110 37.51 10.09

std 0.25 0.21 0.24 48912 163.05 8.39

Table 13: correlations between firm-level observables and activity (Construction).

upi downi inactivei revi empi timei

upi 0.11 -0.93 0.08 0.1 0.21

downi 0.11 -0.3 0.2 0.23 0.09

inactivei -0.93 -0.3 -0.07 -0.1 -0.21

revi 0.08 0.2 -0.07 0.66 0.06

empi 0.1 0.23 -0.1 0.66 0.08

timei 0.21 0.09 -0.21 0.06 0.08

mean 0.72 0.15 0.24 10250 27.73 7.76

std 0.32 0.24 0.31 39798 146.33 6.45

Table 14: correlations between firm-level observables and activity (Retail).

upi downi inactivei revi empi timei

upi 0.11 -0.95 0.02 0.04 0.14

downi 0.11 -0.24 0.09 0.09 0.09

inactivei -0.95 -0.24 -0.02 -0.04 -0.14

revi 0.02 0.09 -0.02 0.12 0.03

empi 0.04 0.09 -0.04 0.12 0.03

timei 0.14 0.09 -0.14 0.03 0.03

mean 0.79 0.1 0.19 22154 33.69 9.24

std 0.27 0.19 0.26 234877 458.7 7.38
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Table 15: correlations between firm-level observables and activity (Transportation).

upi downi inactivei revi empi timei

upi 0.07 -0.98 0.04 0.03 0.19

downi 0.07 -0.15 0.12 0.1 0.11

inactivei -0.98 -0.15 -0.04 -0.03 -0.19

revi 0.04 0.12 -0.04 0.71 0.04

empi 0.03 0.1 -0.03 0.71 0.05

timei 0.19 0.11 -0.19 0.04 0.05

mean 0.77 0.05 0.22 32637 133.87 9.7

std 0.28 0.14 0.27 342662 2146.53 7.53

Table 16: correlations between firm-level observables and activity (Insurance).

upi downi inactivei revi empi timei

upi 0.05 -0.96 0.06 0.11 0.26

downi 0.05 -0.2 0.13 0.19 0.03

inactivei -0.96 -0.2 -0.06 -0.11 -0.25

revi 0.06 0.13 -0.06 0.31 0.06

empi 0.11 0.19 -0.11 0.31 0.13

timei 0.26 0.03 -0.25 0.06 0.13

mean 0.75 0.08 0.23 17987 69.14 8.03

std 0.32 0.19 0.31 114391 300.63 6.61

Table 17: correlations between firm-level observables and activity (Health & Beauty).

upi downi inactivei revi empi timei

upi 0.09 -0.95 0.07 0.11 0.19

downi 0.09 -0.22 0.17 0.18 0.05

inactivei -0.95 -0.22 -0.07 -0.1 -0.18

revi 0.07 0.17 -0.07 0.59 0.06

empi 0.11 0.18 -0.1 0.59 0.11

timei 0.19 0.05 -0.18 0.06 0.11

mean 0.82 0.11 0.16 15214 118.26 11.07

std 0.25 0.18 0.24 61418 397.89 7.84
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