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Abstract

Using rich U.S. data on consumer shopping behavior and good prices, we document that
customer turnover is sensitive to price variation. Motivated by this finding, we study an econ-
omy where the customer base of a firm is persistent because of search frictions preventing
customers from freely relocating across suppliers of consumption goods, and firms set prices
under customer retention concerns. The key feature of our model is that the elasticity of the
customer base to price -the extensive margin elasticity of demand- depends on the customers’
endogenous opportunity cost of search, and interacts with heterogeneity in firm productivity.
More productive firms enjoy less customer attrition and lower elasticity of demand. As firms
compete for customers, the price pass-through of productivity shocks is incomplete, with the
most productive firms passing-through more. Moreover, an increase in the utility of consump-
tion relatively to the cost of search results in higher customers search intensity and, therefore,
lower prices, amplifying the effects of demand shocks on consumption.
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1 Introduction

The customer base of a firm -the set of customers buying from it at a given point in time- is an

important determinant of firm performance. Its effects are long lasting, as customer-supplier

relationships are subject to a certain degree of stickiness (Hall (2008)). Starting with Phelps

and Winter (1970), a large literature has stressed that the price is an important instrument

to attract and retain customers. Several authors have emphasized that accounting for the

influence of customer markets on firm pricing has relevant implications for the propagation of

aggregate shocks to prices and output. These studies do not typically microfound customer

reallocation across firms (Rotemberg and Woodford (1991)), or rely on consumption habit

formation abstracting from consumer flows (Ravn et al. (2006)).

In this paper we study firm pricing with customer retention concerns in a model with

endogenous customer dynamics and heterogeneous firm productivity. We show that the

interaction of endogenous customer turnover and heterogeneous productivity delivers two

main set of results. On the micro side, the mechanism at the heart of the model allows to

match two important features of price and demand dynamics. To retain customers firms have

to absorb part of the productivity shocks in their markups causing incomplete price pass-

through; as firms with different productivity face endogenously different demand schedules

the price pass-through will be heterogeneous. Inertia in the customer base of a firm induces

a greater persistence in firm demand than in firm productivity (Foster et al. (2016)).

On the macro side, we highlight a novel channel by which aggregate shocks can propagate

to output through their effect on consumer search behavior and firm pricing. Shocks that

incentivize consumers to search motivate firms to lower their prices to retain them. This

mechanism amplifies the effect of demand shocks on prices and output and ties to a recent but

very active area of research that emphasizes the importance of consumer shopping behavior

for macroeconomic dynamics (Bai et al. (2012), Coibion et al. (2015), Kaplan and Menzio

(2016), Nevo and Wong (2015)).

Finally, our study offers a methodological contribution by building a framework to study

the link between firm pricing and demand which features both customer turnover and price

dispersion of identical products. Hence, our setup lends itself naturally to quantification

of the key margins shaping the benefit and cost of searching by matching these observable

statistics from micro data.

The link between pricing and customer base is the central tenet of our model and of the

literature on customer markets more in general. Yet the existing evidence on this mechanism

consists mostly of anecdotes and surveys (Blinder et al. (1998), and Fabiani et al. (2007)).

Therefore, we begin our analysis by presenting what we believe is the first instance of direct
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evidence linking firm prices with customer base evolution. We exploit scanner data docu-

menting pricing and customer base evolution for a major U.S. retailer. The data contain

information on all the shopping trips each household makes to the chain. This allows us

to infer when customers leave the retailer by looking at prolonged spells without purchases

at the chain. Combining this data with detailed information on the prices posted by the

retailer, we are able to study the relation between a customer’s decision to abandon the

firm and the price of the goods she consumes there. We show that an increase in the price

significantly raises the probability that the customer leaves the firm. This implies that the

customer base is elastic to prices: a 1% change in the price of the goods typically consumed

by the customers would raise the firm yearly customer turnover from 14% to 21%.

Next, we introduce a microfounded model of firm pricing with customer markets and

focus on the interaction of the pricing response to idiosyncratic productivity shocks with

customers’ search intensity. The distinctive feature of our setting is that we endogenize

customer dynamics. We do so by explicitly modeling the game between a firm and its

customers. Customers start each period in the customer base of the firm from which they

bought in the previous period. Every period, firms draw a new idiosyncratic productivity

level, and post a price. Then, each customer can decide to pay an idiosyncratic search

cost1 to observe the state of another randomly selected firm, compare it to that of her old

supplier, and decide where to buy (extensive margin of demand). After these decisions have

been made, each customer decides her purchased quantity of the good (intensive margin of

demand). In this setting, firms face the common invest\harvest trade-off (Galenianos and

Gavazza (2017)): charging a higher price and extracting more surplus from customers, versus

posting a lower price to extract a lower surplus but from a larger mass of customers.

While being tractable, the model provides a rich framework to study how the relationship

between customer and price dynamics is shaped, in equilibrium, by idiosyncratic production

and search costs. Even though the pool of customers matched with each firm is characterized

by the same distribution of search costs, the threshold to search varies across firms. In

particular, since higher productivity is associated to lower prices on average, and thus a higher

value of staying in the match, the threshold to search decreases with firm productivity. As a

result of the heterogeneity in customer retention concerns, we obtain heterogeneity in price

pass-through of cost shocks. While the most productive firms pricing decision is unaffected

by customer retention concerns, the remaining firms face competition for customers resulting

into incomplete price pass-through of cost shocks. As more productive firms charge lower

prices, they are net gainer of customers and grow faster. Less productive firms are net looser

1Modeling the market friction as a search cost suits well our application since search costs have been found
to importantly affect price dispersion in clustered retail markets (Sorensen (2000)) similar to those to which
our empirical application refers to.
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of customers, despite charging lower markups. However, given that the dynamics in the

customer base are inertial, firms demand is substantially more persistent than firm prices

and productivity. We find support both the for incomplete price pass-through of cost shocks

and the persistence of firm demand in retailer level data. Finally, we use our calibrated

model as a laboratory to study the effect of a preference shock that shifts the utility from

consumption. A positive preference shock raises customers’ search intensity since it is more

valuable for them to be matched with sellers offering a lower price. There are more consumers

looking to switch, which incentivizes firms to lower their markup to retain them. The result

is that markups drop, magnifying the effect of the demand shock on consumption.

Related Literature. Our paper relates to the seminal work by Phelps and Winter (1970)

who study the pricing problem of a firm facing customer retention concerns. In their paper,

the response of the firm’s customer base to a change in the firm’s price is modeled with an

ad hoc function. We instead endogenize customer dynamics which arise as the outcome of

customers’ optimal search decisions in response to firms’ pricing. Since we model the product

market friction as a search cost, we relate to other studies looking at the firm price-setting

problem in models where search costs prevent customers from freely moving to the lowest

price supplier (Fishman and Rob (2003), Alessandria (2004), and Menzio (2007)). Our model

has the distinctive feature of delivering both price dispersion and customer reallocation in

equilibrium. This is a particularly desirable property as it offers the chance to quantify the

model matching available statistics on price dispersion and customer turnover.

We share with the literature on deep habits (Ravn et al. (2006)) the interest for the impact

of aggregate shocks on markups through their effect on the elasticity of demand. The main

difference is that in deep habits models there is, typically, no extensive margin of demand

as each consumer buys from all firms at any point in time, albeit with different habit and

expenditure, and all the adjustment in demand takes place along the intensive margin. In

our model, instead, the extensive margin plays a key role.

Several studies look at the implications of product market frictions for business cycle fluc-

tuations. Bai et al. (2012) analyze a demand-driven business cycle model where preference

shocks affect consumers’ search incentives and consumption by directly impacting produc-

tion efficiency, so to show up as shocks to the Solow residual. Petrosky-Nadeau and Wasmer

(2015) and Kaplan and Menzio (2016) study the interaction of labor and product market fric-

tions, linking unemployment dynamics to consumer search effort. In these models, whether

consumer search amplifies or dampens the recessionary implications of higher unemployment

depends on how consumer search intensity comoves with unemployment. Coibion et al. (2015)

document the relationship between the household expenditure allocation across retailers and

3



unemployment and find that households pay on average a lower price when unemployment

is higher. While we share with these papers the interest on the transmission of aggregate

shocks to search intensity, we explore an additional channel through which aggregate shocks

affect the opportunity cost of searching.

Another set of related contributions uses customer markets to address questions different

from the ones we study here. Gourio and Rudanko (2014) explore the relationship between

the firm’s effort to capture customers and its performance. Drozd and Nosal (2012) introduce

in a standard international real business cycle model the notion that, when producers want to

increase sales, they must exert effort to find new customers. Kleshchelski and Vincent (2009)

examine the impact of customer markets on the pass-through of idiosyncratic cost shocks to

prices in an economy where firms are identical and there is no price dispersion. Dinlersoz and

Yorukoglu (2012) focus on the importance of customer markets for industry dynamics in a

model where firms use advertising to disseminate information to uninformed customers. Shi

(2016) studies a setting where firms cannot price discriminate across customers and use sales

to attract new customers. Burdett and Coles (1997) study the role of firm size for pricing

when firms use the price to attract new customers. The industrial organization literature

has also studied the implications of customer markets for a variety of subjects. For instance,

Foster et al. (2016) stress their role in affecting firm survival and Einav and Somaini (2013)

and Cabral (2016) focus on their effect on the competitive environment.

Finally, our paper relates to the literature studying equilibrium price dispersion. While

Burdett and Judd (1983), Burdett and Menzio (forthcoming), Menzio and Trachter (2015),

Menzio and Trachter (forthcoming) obtain price dispersion as an equilibrium outcome without

relying on firm heterogeneity, price dispersion in our model is driven by the combination of

linear pricing and heterogeneity in firm productivity along the lines of Reinganum (1979).

The rest of the paper is organized as follows. Section 2 presents the data and descriptive

evidence of the relationship between customer dynamics and prices. In Section 3 we lay out

the model, characterize the equilibrium and discuss its calibration. In Section 4 we present

some quantitative predictions of the model and compare them with empirical evidence from

our data. In Section 5 we introduce an application of the model with the goal of studying

the implications of customer markets for the propagation of aggregate shocks. Section 6

concludes.

2 The link between prices and customer dynamics

We use novel micro data to provide direct evidence that firm prices have an effect on the

evolution of their customer base, and to obtain statistics allowing us to calibrate the key
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parameters of our model in Section 3. In particular, we document that changes in the price of

the basket of goods typically bought by a customer at a large US retailer affect the probability

of that customer abandoning the retailer. This result provides a compelling motivation to

modeling the link between customer dynamics and pricing policy, lending support to the

central tenet of the growing literature on customer markets. Pre-existing evidence of this

relationship is based on survey data where firms report concerns about customer retention as

the main reason for their reluctance to adjust prices (see Blinder et al. (1998), and Fabiani

et al. (2007)). To the best of our knowledge, we are the first to document this fact using

micro data based on actual customers’ decisions.

2.1 Data sources and variable construction

The empirical study of the interaction of consumer shopping behavior and retail prices

presents two challenges. First, we have to define what it means to exit the customer base;

second, we need to identify the price to which customers react. Below we briefly describe our

approach; the details are left to Appendix A.

To identify customer base evolution we rely on a dataset (henceforth, “retailer consumers

panel”) consisting of cashier register records on purchases by a panel of households carrying

a loyalty card of a large U.S. supermarket chain.2 The most important feature of this dataset

is that it allows us to keep track of a set of loyal customers of the chain. In fact, for every trip

made at the chain between June 2004 and June 2006 by customers in the sample, we have

information on the date of the trip, store visited, and list of goods purchased (as identified by

their Universal Product Code, UPC), as well as quantity and price paid. We consider every

customer shopping at the retailer in a given week as belonging to the chain’s customer base

in that week and assume that a household has exited the customer base when she has not

shopped at the chain for eight or more consecutive weeks. We assume that the decision to

exit matured in response to the prices observed the last time the customer visited the chain.

The definition of exit takes into account that brief spells without purchases do not nec-

essarily imply that a shopper has left the chain: she may just be consuming her inventory or

being on vacation. However, a regular customer is unlikely to experience a long spell without

shopping for reasons other than having switched to a different chain. In fact, for the average

household in our sample, only four days elapse between consecutive grocery trips and the

99th percentile of this statistic is 28 days. This implies that the period of absence we require

2The chain is able to associate the loyalty cards belonging to different members of a same family to a
single household identifying number, which is the unit of observation in our data. Therefore, in the analysis
we use the terms “customer” and “household” interchangeably. The household identifier also allows us to
track members of a same household when they lose (and replace) their individual loyalty card.
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before determining that a customer has exited the customer base is probably a conservative

choice.

Figure 1: Hazard rate of exit from the customer base
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Notes: The figure plots the hazard rate for our sample of households, where failure is defined as exit from the customer base.
We report two hazard rates for different criteria to determine whether the customer has exited: two consecutive months without
shopping at the chain (our baseline definition, continuous black line), and three consecutive months without shopping at the
chain (dashed red line). To ensure that all individuals have similar potential length for their spells, we only consider the first
spell as customer for those having multiple ones and we only retain households whose first trip at the chain occurs within the
first 40 weeks in our sample.

In Figure 1 we plot the monthly hazard rate of exiting the customer base for our sample

of customers, that is the probability of exiting the customer base of the firm as a function of

the time elapsed since the first time we observe the customer shopping at the firm (tenure of

the customer). We explore the sensitivity of customer base evolution to our definition of exit

by displaying two hazard rates. The solid line refers to our baseline definition; the dashed

line represents the hazard rate if we extend to three months the absence spell required to

determine that the customer has exited. The first thing to notice is that the hazard rate is

not overly sensitive to the definition of exit. The hazard rate is higher at very short tenure

lengths since there we include also households who were just unusual shoppers at the chain.

At tenures larger than a month it is much lower, oscillating between 0.2 and 0.4 percent. The

second noteworthy fact emerging from the plot is that the customer base is quite sticky: the
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implied probability of never exiting the customer base in 20 months is between 70% and 80%.

These values lend support to industry estimates on the customer attrition rate surveyed in

Gourio and Rudanko (2014).

The second object we need to construct is the price which affects each customer’s exit

decision. In our data, households shop at the retailer’s store for a number of different goods,

defined at the barcode (Universal Product Code or UPC) level. In the consumer data,

however, we only observe a price of a good when it is purchased by some household in

the sample. To construct a price for the basket of grocery goods usually purchased by

each households we need to observe the price of each item belonging to the basket of each

households whether or not the UPC is actually purchased. We do so by exploiting data,

previously used and documented by Eichenbaum et al. (2011), on store level weekly3 revenues

and quantities for the full set of UPCs purchasable at stores of the chain (henceforth, “retailer

price data”). We recover the weekly price for each UPC by dividing the revenues by the

quantity sold in the week. Then, we construct the price paid by customer i, shopping at

store j in week t for its basket as the average price of the goods included in the basket,

weighted for the share of grocery expenditure of the household they represent. Namely:

pijt =
∑
k∈Ki

ωik pkjt , ωik =

∑
tEikt∑

k∈Ki

∑
tEikt

, (1)

where pkjt is the price of UPC k in week t at the store j where customer i shops, Ki represents

the collection of UPCs beloging to household i ’s basket and Eikt is the expenditure (in dollars)

by customer i in UPC k in week t. The latter two objects are measured using the retailer

consumers panel. It is important to notice that the price of the basket is household specific

because households differ in their choice of grocery products (Ki) and in the weight such

goods have in their budget (ωik).

2.2 Evidence on customer base dynamics

We estimate a linear probability model where the dependent variable is an indicator for

whether the customer has left the customer base of the chain in a particular week. Our aim

is to capture the effect of the price posted by the chain for the basket of goods purchased

by the customer on her decision to exit. In Table 1, we report results of regressions of the

following form,

Exitit = b0 + b1 log(pit) + b2 log(p̄it) + b3tenureit +X ′ic+ εit . (2)

3The retailer changes the price of each good at most once per week, hence the frequency of the retailer
price data captures the entire time variation.
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Our main interest is on the coefficient of the retailer price of the basket, b1, which is a measure

of the elasticity of the exit decision to price.4 The coefficient b1 is then identified by UPC-

chain specific shocks as those triggered, for example, by the expiration of a contract between

the chain and the manufacturer of a UPC. We also observe the price of a same good moving

differently in different stores within the chain, for instance due to variation in the cost of

supplying the store linked to logistics (e.g. fluctuations in the price of gas affect differently

stores at different distance from the warehouse). Since these shocks can hit differently goods

with different intensity in delivery cost (e.g. refrigerated vs. non-refrigerated goods), UPC-

store specific shocks also contribute to our identification. We do not need to assume that

such shocks will make a supermarket uniformly more expensive than the competition. Shocks

that affect the convenience of a chain with respect to a subset of goods suffice to induce the

customers who particularly care about those goods to leave. Kaplan and Menzio (2015) use

the Kielts-Nielsen scanner data to provide ample evidence for this type of variation. They

report that the bulk of price dispersion arises not from the difference between high-price and

low-price stores but from dispersion in the price of a particular good (or product category)

even among stores with similar overall price level. Since the retailer price in equation (2) can

be endogenous if the chain conditions to variables unobserved to the econometrician that also

influence the customer’s decision to leave, we instrument it using information on replacement

cost for each UPC included in the retailer price data.5 We use the UPC level replacement

cost to construct the cost of the customer’s basket with a procedure analogous to the one

we followed to obtain the price of the basket: we calculate it as the weighted average of the

replacement cost of the UPCs included in the basket.

Existing theories on the link between prices and customer dynamics (Phelps and Winter

(1970)) stress that a firm’s ability to retain its customers should be influenced by its idiosyn-

cratic price variations but not from aggregate shocks that move the competitors’ prices as

well. To isolate idiosyncratic price variations, we control for the prices posted by the com-

petitors in the same market of the chain using information from the IRI Marketing data set.6

This data allows us to compute for every customer the average (cross retailers) price of her

basket in the market where she lives (p̄it). To further control for sources of aggregate varia-

tion, we include in the regression year-week fixed effects that account for time-varying drivers

4To ease notation, we have dropped the j superscript: it is implicit that pit is the price of the basket
purchased by consumer i in week t at the store j where she usually shops.

5This represents the replacement cost for the chain, i.e. the cost for the retailer of restocking the product.
It includes the wholesale price but also other costs associated with logistics (delivery to the store, etc.).
Eichenbaum et al. (2011) treat this measure as a good approximation of the retailer’s marginal cost.

6A detailed description of the data can be found in Bronnenberg et al. (2008). All estimates and analyses
in this paper based on Information Resources Inc. data are by the authors and not by Information Resources
Inc. We provide additional details on the IRI data and on the construction of the price index for the
competitors of the chain in Appendix A.
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of the decision of exiting the customer base common across households (e.g., disappearances

due to travel during holiday season).

The additional controls in our specification account for sources of customer heterogeneity

that could influence their exit decision. The limited number of exits occurring in our sample

implies that the within unit variation in the dependent variable is low. Therefore, we cannot

control nonparametrically for cross-household heterogeneity using household or store fixed

effects. Instead, we include in our specification a rich set of covariates that control for the

main characteristics affecting store choice: demographics, location, market characteristics,

and tenure. The demographic variables (age, income, and education) are matched from

Census 2000. We calculate, using data on grocery shop location by Reference US, both the

distance (in miles) between a household’s residence and the closest store of the chain and

that to the closest supermarket of a competing brand. We account for market structure by

controlling for the total number of supermarket stores in the zip code of residence of the

customer. To pick up the heterogeneity in the type of goods different customers include in

their basket, we control for the price volatility of the customer-specific basket and for its price

in the first week in the sample, as a scaling factor. Finally, we calculate customer tenure,

defined as the number of consecutive weeks the customer has spent in the customer base of

the chain, and include it in the regression to account for the fact that long-term customers

of the chain may be less willing to leave it ceteris paribus.

In column (1) we report the OLS estimates of the linear probability model. The effect of

the household’s basket price on the probability of exiting is positive and significant. However,

the basket price could be endogenous: stores with better unobserved characteristics will both

set higher prices and suffer less exits. As a result, the elasticity of exit to the price of the

basket is likely to be biased towards zero.

Consistent with this view, the baseline IV specification in column (2) shows the basket

price posted by the retailer to have a much more significant impact on the probability of

leaving. A weekly price elasticity of the customer base equal to 0.14 implies that if the

retailer’s prices were 1% higher for a full year, the customer base would decrease 7%. The

coefficient on the competitors’ price, which we would expect to enter with a negative sign, is

not significant. This may be due to the fact that the IRI data only allow us to imperfectly

capture competitors’ behavior. In fact, the IRI dataset contains price information only on a

subset of the goods purchased by households in our sample, although it arguably covers all

the major product categories. Furthermore, the IRI data do not contain detailed information

on the location of the outlets. This introduces measurement error in our construction of the

set of stores a customer considers as options for her shopping. The negative coefficient on

tenure confirms the intuition that the longer the relationship between a firm and a customer,
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Table 1: Effect of the price of the basket on the probability of exiting the customer base

Exiting: Missing at least 8 consecutive weeks
(1) (2) (3) (4) (5) (6)

log(pit) 0.013* 0.14** 0.16** 0.15** 0.034*
(0.008) (0.066) (0.080) (0.064) (0.020)

log(pit)*Walmart entry 0.018**
(0.009)

log(p̄it) 0.001 0.001 0.001 0.000 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

log(p
j(i)
t ) 0.01

(0.01)

Tenure -0.002*** -0.002*** -0.003*** -0.004*** -0.003*** -0.001***
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Observations 52,670 52,670 66,182 52,101 52,670 52,670

Notes: An observation is a household-week pair. The results reported are calculated through two-stage least squares where we

use the logarithm of the cost of the basket (constructed based on the replacement cost provided for each UPC by the retailer)

as instrument for the logarithm of the price of the basket. In column (4), the exit of the customer is assumed to have occurred

in the first week of absence in the eight (or more) weeks spell without purchase at the chain rather than the week of the last

shopping trip before the hiatus. In column (5), the price of the household basket is substituted with a price index for the store

where the customer shops (identical for all the customers shopping at the same store). In column (6), we allow the weights

used in the construction of the household basket price to vary between the first and the second year in the sample. We trim

from the sample households in the top and bottom 1% in the distribution of the number of trips over the two years.

Coefficients on a series of variables are not reported for brevity: demographic controls matched from Census 2000 (ethnicity,

family status, age, income, education, and time spent commuting) as well as distance from the closest outlet of the

supermarket chain and distance from the closest competing supermarket (provided by the retailer). The logarithm of the price

of the household basket in the first week in the sample and the standard deviation of changes in the log-price of the household

basket over the sample period are included as a controls in all specifications. Week-year fixed effects are also always included.

Standard errors are in parenthesis and account for within-household correlation through a two-steps feasible-GLS estimator.

***: Significant at 1% **: Significant at 5% *: Significant at 10%.

the less likely they are to be interrupted. Among the several individual characteristics we

control for, it is worth mentioning that distance from stores of the chain and distance from

the closest competing store enter with the expected sign. Customers living in proximity of a

store of the chain are less likely to leave it, and those living closer to competitors’ stores are

more inclined to do so.

Additional columns in Table 1 present robustness checks of our main result. In column

(3), we experiment with an alternative way to control for the effect of competition: we exploit

episodes of entry by Walmart, a major retailer with which our chain is in direct competition.

We use data from Holmes (2011) to identify the date of entry by a Walmart supercenter, i.e.
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a store selling groceries on top of general discount goods, in a zip code where the retailer we

study also operates a supermarket. The resulting event study allows us to measure the effect

of our retailer price on the probability of exit controlling for the most relevant change in the

competitive environment. The coefficient obtained falls in the same ballpark as the estimate

in the main specification, which is reassuring on the effectiveness of the IRI price in measuring

the competitors’ behavior. In column (4), we modify the assumption on the imputation of

the date of exit. Rather than assuming that the customer left on the occasion of her last

trip to the store, we posit that the exit occurred in the first week of her absence. Even in

this case, the main result is unaffected. In column (5), we replace the price of the individual

basket with a price index for the store where she buys (p
j(i)
t ). The store price is a price index

of a composite bundles of goods for each store so to accommodate the multiproduct nature

of grocery retailing (Smith (2004)) and its construction resembles that of the price index for

the customer individual baskets. It is calculated as the average of the prices of the goods sold

by the store, weighted by the amount of revenue they generate.7 Formally the price index

for store j in week t is:

pjt =
∑
u∈Aj

ωju p
j
ut , ωju =

∑
tR

j
ut∑

u∈Aj

∑
tR

j
ut

, (3)

where pjut is the price of UPC u in week t at store j, Aj is the set of goods in assortment

at store j and Rj
ut are revenues from UPC k to store j in week t. By construction, p

j(i)
t is

identical for all the customers shopping in the same store. The coefficient on p
j(i)
t is negative

and not significant, confirming the importance of being able to construct individual specific

baskets in order to make inference on customers’ behavior.

Since we employ time-invariant weights in constructing the household basket price, we

are introducing measurement error if the set of products purchased by a household changes.

To gauge the impact of changes in the composition of the basket, in column (6) we estimate

a specification where the basket price is calculated with time-varying weights. In particular,

for all the households shopping at least 20 times in each of the two years in our sample,

we construct separate weights for the first and the second year. For the remaining 15% of

the households in our data, we still compute the basket price using a single set of weights.

The qualitative result alignes with the finding in our baseline specification -the basket price

positively and significantly affect the probability of leaving the chain-, although the implied

7In principle, we would want to include the prices of all the UPCs carried by the store. In practice, this
is not possible because the information on price is missing for some UPCs in certain store-weeks. Therefore,
the price index for the store is computed using a constant set of UPCs for which we have a complete time
series of prices at the store during our sample.
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elasticity is lower.8

Finally, we performed a placebo test to investigate whether it is possible to obtain results

with the same level of significance of our main specification out of pure chance. We estimated

our main specification 1,000 times each time with a different dependent variable where exits

from the customer base, while kept constant in number, are randomly assigned to customers.

We find that only in 2.8% of the cases the simulation yields a price coefficient that is positive

and significant at 5%.

3 The model

The economy is populated by a measure one of firms producing a homogeneous good and by

a measure one of customers who consume it. The economy is in steady state and there are

no foreseen aggregate shocks.

3.1 The problem of the firm

Firms produce the same homogeneous good. We assume a linear production technology

y = z ` where ` is the production input, and z is the firm-specific productivity. Idiosyn-

cratic productivity is distributed according to a conditional cumulative distribution function

F (z′|z) with bounded support [z, z̄]. We also assume that F (z′| zh) first order stochastically

dominates F (z′| zl) for any zh > zl to induce persistence in firm productivity. The profit

per customer accrued to the firm is given by π(p, z) ≡ d(p)(p − w/z), where p denotes the

price, the constant w > 0 denotes the marginal cost of the input `, and the function d(·) is a

downward sloping demand function.9 We assume that profits per customer are single-peaked

in p.

Firms differ not only in their idiosyncratic productivity but also in the mass of customers

buying from them. In particular, we denote by m the firm’s customer base which is defined

as the mass of customers who bought from that firm in the previous period, adjusted for an

exogenous attrition rate δ. Starting from a given customer base m, the mass of customers

actually buying from the firm in the current period is determined in equilibrium and we

conjecture, and later verify, that it is given by the function M(m, p, z) depending on the

price and productivity of the firm in the current period, as well as on the customer base.

8We note that time-varying weights open the door to another set of concerns. Namely, unobserved shocks
affecting households’ decisions on the composition of their basket could also influence their decision to stay
in the customer base of the firm. We have no clear way of establishing if the quantitative differences between
this specification and baseline one is due to this potential endogeneity channel.

9In Appendix E, we extend this framework adding a model of the labor market to endogenize the wage
w.
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We assume a constant probability κ of a firm exiting the market. Once a firm exits the

market it loses all customers and its value is zero. An exiting firm is replaced by a new

firm which starts with a customer base m0, and draws a productivity z0 from the invariant

productivity distribution F̄ (z) associated to the conditional distribution F (z′|z).10

We study a stationary Markov Perfect equilibrium where pricing strategies are a func-

tion of the current state. Firms set prices every period without commitment and without

discriminating across customers.11 As there are no aggregate shocks, the aggregate state is

constant and the relevant state for the firm problem in period t is the pair {z,m}. The firm

pricing problem in its recursive form solves

W̃ (z,m) = max
p
M(m, p, z) π(p, z) + β (1− κ)

∫ z̄

z

W̃ (z′,m′) dF (z′| z) (4)

s.t. m′ = (1− δ)M(m, p, z),

where W̃ (z,m) denotes the firm value at the optimal price. The price impacts firm value

through two channels. First, it affects the level of profits per customer as in standard models

of firm pricing. Given our assumption of single-peakedness of the profit function π(p, z), there

is a unique level of p that maximizes the profits per customer. Second, the price p affects

the dynamics of the customer base. In fact, it influences the mass of customers buying from

the firm in the current period, and, if there is persistence in the evolution of the customer

base, the mass of customers buying from the firm in future periods. As a result, the pricing

problem of the firm is dynamic in nature.

We study an environment where there is persistence in the customer base, as in Phelps

and Winter (1970) and Rotemberg and Woodford (1999). These models assume a functional

form for the evolution of the customer base where the mass of customers served by a firm

is given by the product of its original customer base and a growth rate, which depends on

its (relative) price. Our conjectured law of motion for customers preserves this standard

structure and is given by:

M(m, p, z) ≡ m∆(p, z) . (5)

This similarity notwithstanding, there are two important innovations that we introduce.

First, while the customer evolution is typically characterized with ad-hoc functional form

assumptions, our ∆(·) function is endogenous and results from the solution to a game between

the firm and its customers. It depends on the equilibrium distribution of prices as well as on

the distributions of productivity and search costs. Accounting for this dependence matters

10The invariant distribution is obtained by solving F̄ (z) =
∫ z̄

z
F (z|x)dF̄ (x) for all z ∈ [z, z̄].

11See Nakamura and Steinsson (2011) for a model of pricing with customer markets where a commitment
to a price path can be sustained in equilibrium.
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for the estimation where we will match micro moments obtained from customers’ decisions.

Moreover, it has important implications when using the model for policy experiments, as we

will illustrate with the application in Section 5.

Second, we generalize the law of motion so that it can depend not only on the price the

firm sets but also on its productivity. This extension allows us to to study the mapping from

the distribution of productivities to the distribution of prices. It also proves useful when we

bring the model to the data, since having heterogeneity in productivity helps us to match

the cross-sectional variation in prices. Our formulation does, however, share an important

feature with classic customer market models: the growth rate of the customer base does not

depend on the initial mass of customers. This property allows for a substantial simplification

of the firm’s problem. In particular, it can be obtained that the value function of a firm

is homogeneous of degree one in m, i.e. W̃ (z,m) = m W̃ (z, 1) ≡ m W (z), where using

equation (4) and M(m, p, z) = m∆(p, z), it is immediate to show that W (z) solves12

W (z) = max
p

∆(p, z) π(p, z) + ∆(p, z) β (1− η)

∫ z̄

z

W (z′)dF (z′| z) , (6)

where η ≡ κ+δ (1−κ) is the probability of exogenous dissolution of the firm-customer match

due to either firm or customer random exit. The relevant state to the firm pricing problem is

its productivity, as the level of the customer base affects the firm value multaplicatively. The

solution to the firm problem in equation (6) gives an optimal pricing strategy that depends

on productivity and we denote by p̂(z).

We emphasize that, while the initial level of the customer base does not affect the optimal

price, its evolution does. A change in the price affects the growth rate of the customer base,

i.e., the value of ∆(p, z), and given the persistence of the customer base, it affects the firm

value in the current period as well as in future periods. Our framework is well suited to

capture the relationship between firm prices and customer dynamics when this is driven by

variation in idiosyncratic productivity; extending it to encompass how firm size affects this

relationship is an interesting direction for future research.

The objective of the firm maximization problem can be expressed as the product of two

terms, W (z) ≡ ∆(p̂(z), z) Π(p̂(z), z), where Π(p, z) denotes the expected present discounted

value of each customer to the firm. Under the assumption that the functions ∆(p, z) and

12Under the assumption that the discount rate beta is low enough so that the maximization operator in
equation (6) is a contraction, by the contraction mapping theorem we can conclude that our conjecture about
homogeneity of W̃ (z,m) is verified.
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π(p, z) are differentiable in p, the first order condition to the firm problem is given by

∂Π(p, z)

∂p

p

Π(p, z)
= − p

∆(p, z)

∂∆(p, z)

∂p
, (7)

where we define εm(p, z) ≡ ∂ log(∆(p, z))/∂ log(p) as the extensive margin elasticity of de-

mand. The function Π(p, z) is maximized at the static profit maximizing price,

p∗(z) ≡ εd(p)

εd(p)− 1

w

z
, (8)

where we define εd(p) ≡ ∂ log(d(p))/∂ log(p) as the intensive margin elasticity of demand.

The first order condition in equation (7) illustrates the trade-off the firm faces when setting

the price in a region where customer retention is a concern. Due to concerns about customer

dynamics, the optimal price is in general different from the one that maximizes static profits.

The optimal price balances the marginal benefit of an increase in price (more profit per

customer) with the cost (decrease in the customer base). If the growth in the customer

base is non-increasing in the price, equation (7) implies that setting a price above the static

profit maximizing price is never optimal. Hence, p̂(z) ≤ p∗(z) for all z. Moreover, if the

growth in the customer base is strictly decreasing in the price in a neighborhood of the static

profit-maximizing price p∗(z), the optimal price is pushed downwards with respect to it, i.e.

p̂(z) < p∗(z). The requirement that the solution to the firm problem must satisfy the first

order condition implies that we study equilibria where the firm objective, and in particular

∆(p, z), is differentiable in p.13

3.2 The problem of the customer

Customers value the good sold by the firms described in the previous section according to

the function v(p), denoting the customer surplus associated to the demand function d(p).

We assume that v(p) is continuously differentiable with v′(p) < 0, and bounded above with

limp→0+ v(p) <∞. These properties are satisfied in standard models of consumer demand.

Each customer starts the period in the customer base of the firm she bought from in

previous period. At the beginning of every period, a customer can be randomly reallocated

to a new entrant because either the firm she was matched with exited (with probability κ) or

with probability δ the customer herself leaves for random reasons (for instance she moved to

a different city). We allow for random exit to acknowledge that price dynamics, the object

we study in detail in this paper, are unlikely to account for all the exits observed in the data.

13In Section 3.3, we will derive the necessary equilibrium properties that guarantee that these properties
are satisfied.
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Conditioning on a firm surviving, random exit is i.i.d. across customers of that firm.

After random relocation has taken place, the customer observes perfectly the state of the

firm she is matched to; in particular she observes its productivity. Given the equilibrium

pricing function of the firm, this allows her to assess the probability distribution of the

path of prices of that firm. After observing the state of her current match, the customer

decides whether she wants to pay a search cost to draw another firm. The search cost

ψ ≥ 0 is measured in units of customer surplus, it is idiosyncratic to each customer and

it is drawn each period from a cumulative distribution G(ψ), with an associated density

g(ψ). For tractability, we restrict our attention to density functions that are continuous on

all the support. Heterogeneity, albeit transitory, in search costs makes the customer base a

continuous function of the price and allows us to study firms’ pricing decisions that are not

necessarily knife-edge in the trade-off between maximizing demand and markups.

The customer can search at most once per period. Search is random, with the probability

of drawing a particular firm being proportional to its customer base m. As in Burdett

and Vishwanath (1988) and Fishman and Rob (2005), this assumption captures the idea

that consumers search for new suppliers not by randomly sampling firms but by randomly

sampling other consumers. On the technical side, this is the key assumption that will allow

us to solve for an equilibrium where the value of a firm scales up multiplicatively with its

customer base. Conditional on searching, the customer observes the state of the new match

and then makes another decision concerning whether to exit the customer base of her initial

firm and match to the new firm. In particular, the customer compares the distribution of

the path of current and future prices at the two firms and buys from the firm offering higher

expected value. Finally, we assume that a customer cannot recall a particular firm once

she exits its customer base. Figure 2 summarizes timing and payoffs of the problem of the

customer.

We next characterize the customer problem. Let V (p, z, ψ) denote the value function of

a customer i who has drawn a search cost ψ and is matched to firm j, which has current

productivity z and posted price p. This value function solves the following problem,

V (p, z, ψ) = max
{
V̄ (p, z) , V̂ (p, z)− ψ

}
, (9)

where V̄ (p, z) is the customer’s value if she does not search, and V̂ (p, z) − ψ is the value if

she does search. The value in the case of not searching is
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Figure 2: The problem of a customer matched to a firm with productivity z

Observes productivity
and price (z and p̂(z))

Draws search
cost (ψ)

No Search
v(p̂(z))

Search

Draws new
supplier znew

No Exit v(p̂(z))− ψ

Exit
v(p̂(znew))− ψ

V̄ (p, z) = v(p) + β EG

[
(1− η)

∫ z̄

z

V (p̂(x), x, ψ′) dF (x|z) + η

∫ z̄

z

V (p̂(x), x, ψ′) dF̄ (x)

]
,

(10)

We notice that the state of the firm problem depends on the productivity z because the

pricing function p̂(·) mapping future productivity into prices in the Markov equilibrium makes

productivity z a sufficient statistic for the distribution of future prices at the firm. We also

notice that the state of the firm problem includes the current price p, despite the fact that in

equilibrium productivity is enough to determine the current price, as this notation is needed

to study the game between the firm and its customers where the firm could, in principle,

deviate from the equilibrium price. Finally, the expectation operator EG[·] refers to the

realization of future search costs which are drawn from the i.i.d. distribution G. The value

function V̄ (p, z) is strictly decreasing in p and increasing in z. Given the specifics of the

search technology, the value to the searching customer is given by

V̂ (p, z) =

∫ +∞

−∞
max

{
V̄ (p, z) , x

}
dH(x) , (11)

where the customer takes expectations over all possible draws of potential new firms, and

where H(·) is the equilibrium cumulative distribution of continuation values from which the

firm draws a new potential match when searching.

We are now ready to describe the customer’s optimal search and exit policy rules. Such

policies are characterized by simple cut-off rules. A customer matched to a firm with pro-
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ductivity z charging price p searches if she draws a search cost ψ ≤ ψ̂(p, z), where

ψ̂(p, z) ≡
∫ ∞
V̄ (p,z)

(
x− V̄ (p, z)

)
dH(x) ≥ 0

is the threshold to search. Conditional on searching, the customer exits if she draws a new

firm promising a continuation value V̄ new larger than the current match, i.e. V̄ new ≥ V̄ (p, z).

Notice that the threshold ψ̂(p, z) is strictly increasing in p. The dependence on the price is

straightforward, following from its effect on the surplus v(p) that the customer can attain

in the current period. The intuition behind the dependence on the firm’s productivity is

that, as searching is a costly activity, the decision of which firm to patronize is a dynamic

one, and involves comparing the value of remaining in the customer base of the current firm

with the value of searching. Because of the Markovian structure of prices, the customer’s

expectation about future prices is completely determined by the firm’s current productivity.

We notice that if the continuation value is increasing in z (a sufficient condition is that p̂(z)

is decreasing) then the threshold ψ̂(p, z) is decreasing in z.

3.3 Equilibrium

In this section we define an equilibrium, discuss its existence, and characterize its general

properties. First we derive the equilibrium dynamics of the customer base as a function

of price and productivity, given the optimal search and exit strategy of customers. Given

customers’ optimal decision rule, the mass of customers buying from a firm with productivity

z and charging price p is given by M(m, p, z) = m∆(p, z), with

∆(p, z) ≡ 1−G
(
ψ̂(p, z)

)(
1− H(V̄ (p, z))

)
︸ ︷︷ ︸

customer outflow

+Q
(
V̄ (p, z)

)
︸ ︷︷ ︸
customer inflow

, (12)

where G(ψ̂(p, z)) is the fraction of customers searching from the firm customer base, a frac-

tion 1−H(V̄ (p, z)) of which actually finds a better match and exits the customer base of the

firm. The mass m is the probability that searching customers in the whole economy draw the

firm as a potential match. The function Q(V̄ (p, z)) denotes the equilibrium mass of searching

customers currently matched to a firm with continuation value smaller than V̄ (p, z). There-

fore, the product mQ(V̄ (p, z)) amounts to the mass of new customers entering the customer

base. Equation (12) verifies the conjecture about the equilibrium customer dynamics made

in Section 3.1.

We are now ready to define and discuss the equilibrium. We study equilibria where the

continuation values to customers are non-decreasing in productivity, implying that customers’
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rank of firms coincides with their productivity. This is a natural outcome as more produc-

tive firms are better positioned to offer lower prices and therefore offering higher values to

customers.

Definition 1 Let V(z) ≡ V̄ (p̂(z), z) and p∗(z) be given by equation (8). We study stationary

Markovian equilibria where V(z) is non-decreasing in z and p̂(z) ≥ p∗(z̄) for all z ∈ [z, z̄]. A

stationary equilibrium is then

(i) search and exit strategies that solve the customer problem in equations (9)-(11);

(ii) a firm pricing strategy p̂(z) that solves equation (7) for each z;

(iii) a customer base for new entrant firms m0 = η/κ, with η = κ+ δ (1− κ);

(iv) a dynamic of the customer base at a surviving firm with productivity z given by

m′ = (1− δ) ∆(p̂(z), z)m, where ∆(·) is given by equation (12);

(v) an invariant distribution of customers K(·) over productivities, that for each z solves

K(z) = (1− η)

∫ z

z

∫ z̄

z

∆(p̂(x), x) dF (s|x) dK(x) + η F̄ (z) ;

(vi) two invariant distributions, H(·) and Q(·), that solve

H(x) = K(ẑ(x)) and Q(x) =

∫ ẑ(x)

z

G(ψ̂(p̂(z), z)) dK(z) ,

for each x ∈ [V(z),V(z̄)], where ẑ(x) = max{z ∈ [z, z̄] : V(z) ≤ x}.

The next proposition states conditions under which the equilibrium that we evaluate

exists and characterizes some of its properties.

Proposition 1 Let productivity be i.i.d. with F (z′|z1) = F (z′|z2) continuous and differen-

tiable for any z′ and any pair (z1, z2) ∈ [z, z̄], and let G(ψ) be differentiable for all ψ ∈ [0,∞),

with G(·) differentiable and not degenerate at ψ = 0. There exists an equilibrium as in Defi-

nition 1 where p̂(z) satisfies equation (7), and

(i) p̂(z) is strictly decreasing in z, with p̂(z̄) = p∗(z̄) and p∗(z̄) < p̂(z) < p∗(z) for z < z̄,

implying that V(z) is strictly increasing. Moreover, the optimal markups are given by

µ(p, z) ≡ p

w/z
=

εd(p)

εd(p)− 1 + εm(p, z) Π(p, z)/(d(p) p)
, (13)
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where p = p̂(z) for each z.

(ii) ψ̂(p̂(z), z) is strictly decreasing in z, with ψ̂(p̂(z̄), z̄) = 0 and ψ̂(p̂(z), z) > 0 for z < z̄,

implying that ∆(p̂(z), z) is strictly increasing, with ∆(p̂(z̄), z̄) > 1 and ∆(p̂(z), z) < 1.

The proof of the proposition can be found in Appendix B. Here we just point out that, while

the results of Proposition 1 refer to the case of i.i.d. productivity shocks, numerical results

in Section 4 show they hold even in the case of persistent productivity processes.

We now comment on the properties of the equilibrium highlighted in the proposition.

The equilibrium is characterized by price dispersion: this is important, as price dispersion

is what motivates customers to search. Price dispersion is driven by heterogeneity in firm

productivity, as in Reinganum (1979), and by the level and dispersion of search frictions.14

More productive firms charge lower prices and, therefore, offer higher continuation value to

customers. If all the firms had the same productivity, Proposition 1 would imply a unique

equilibrium where the price is that maximizing static profits, p∗(z), and as a result the

customer base of every firm would be constant.15 The equilibrium is also characterized by

dispersion in customer base growth: more productive firms grow faster, and there is a positive

mass of lower productivity firms that have a shrinking customer base and a positive mass of

higher productivity firms that are expanding their customer base.

Optimal markups in equation (13) depend on three distinct terms: εd(p), εm(p, z), and

π̄(p, z) ≡ Π(p, z)/(d(p) p). The terms εd(p) and εm(p, z) represent the price elasticities of

quantity purchased (per-customer) and of customer growth, respectively. We notice that the

elasticity of total firm demand to the price, i.e. m∆(p, z) d(p), is given by εd(p)+εm(p, z). An

increase in price reduces total current demand both because it reduces quantity per customer

(intensive margin effect) and because it reduces the number of customers (extensive margin

effect). Moreover, the optimal markup solves a dynamic problem as a loss in customers has

persistent consequences for future demand due to the inertia in the customer base. This

dynamic effect is captured by the term π̄(p, z), which measures the firm present discounted

value of a customer scaled by the current revenues. It follows that active customer markets

are associated with a strictly lower markup than the one that maximizes static profit; the

lower the markup, the larger the product εm(p, z) π̄(p, z).

14For tractability we abstract from (possible) equilibria where symmetric firms charge different prices. We
also notice that allowing firms to use two-part tariffs would still generate price dispersion as customers are
heterogeneous in their search costs. A pricing strategy that would eliminate price dispersion in our setup is
a customer-specific two-part tariff.

15This special case is useful to understand our relation to Diamond’s (1971) results. Our model delivers
equilibrium price dispersion as a result of heterogeneity in productivity. If productivity was homogeneous as
in Diamond (1971) the monopoly price would be the only equilibrium price.
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An important assumption in Proposition 1 is that the search cost distribution G(·) is not

degenerate at ψ = 0. We introduce the restriction in order to simplify the solution of the

model. First, the restriction implies that the first order condition of the problem as described

in equation (7) is necessary for an equilibrium. If the restriction was not in place the growth

rate of the customer base of a firm charging price p and with productivity z, i.e. ∆(p, z) (see

equation (12)), would not be a differentiable function of the price set by the firm (through

the exit threshold ψ̂(p, z)). This occurs as there would be a region on the price space where

a small change in price would have a discrete change in the customer base of a firm. The

implied kink in the customer base of the firm translates into a kink on firm’s profits, which

in turn makes the optimal price of a firm p̂(z) not necessarily characterized by the first order

condition of profits with respect to prices. Second, the restriction implies that no customer

samples new firms for free. This restriction guarantees that we abstract from equilibria as

the one studied in Burdett and Mortensen (1998).

Finally, it is useful to discuss two interesting limiting cases of our model reported in the

following corollary (see Appendix C for a proof).

Corollary 1 Let search costs be scaled as ψ ≡ µ ψ̃, where µ > 0. That is, let the value

function in equation (9) be max
{
V̄ (p, z) , V̂ (p, z)− µψ̃

}
. Let π(p∗(z̄), z) > 0 and the as-

sumptions of Proposition 1 be satisfied.

(1) Let µ → ∞. Then: (i) the optimal price maximizes static profits, i.e. p̂(z) →
p∗(z) for all z ∈ [z, z̄], and (ii) there is no search in equilibrium.

(2) Let µ→ 0+. Then, (i) there is no price dispersion, i.e. p̂(z)→ p∗(z̄) for all z ∈ [z, z̄],

and (ii) there is no search in equilibrium.

These two limiting cases highlight the tight relationship between size of the search cost,

competition for customers and price dispersion. The first limiting case concerns the equi-

librium when we let search costs diverge to infinity. The model then reduces to one where

customer base concerns are not present. Because the customer base is unresponsive to prices,

the firm problem reverts to a standard price-setting problem commonly studied in the macroe-

conomics literature: the firm sets the price p, taking into account only its impact on static

demand d(p). In equilibrium, optimal prices maximize static profits, i.e. p̂(z) = p∗(z) for all

z ∈ [z, z̄]. There is price dispersion, and there is no search in equilibrium.

The second limiting case concerns the equilibrium when search costs become arbitrarily

small. As long as search costs are not equal to zero, equilibrium pricing in the model is

characterized by the first order condition presented in equation (7), and the firm with highest

productivity, i.e. z̄, sets the lowest possible, price p∗(z̄). So when search costs are arbitrarily
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close to zero, all customers would search for a new supplier so long as they are matched to

a firm with p > p∗(z̄). Firms have then incentives to cut their price until they set p = p∗(z̄)

as there is a discrete gain in customers. Hence the only possible equilibrium is one where

all firms charge p = p∗(z̄). As a result, there is no price dispersion and customers do not

search. We notice that there is a discontinuity in equilibrium prices at µ = 0. When search

costs are actually equal to zero, the first order condition is no more necessary and sufficient

to determine optimal prices, and the equilibrium price is the competitive price of the most

productive firm, p = w/z̄, for the same reasons present in Diamond (1971).

3.4 Parametrization of the model

We assume that a period in the model corresponds to a month and fix the discount rate to

β = 0.995. We assume that households have logarithmic preferences over consumption c given

by log(c). Consumption is defined as a composite of two types of goods, c ≡ (d
θ−1
θ +n

θ−1
θ )

θ
θ−1 ,

with θ > 1 governing the demand elasticity. The first good (that we label d) is supplied by

firms facing product market frictions as described above; the other good (n) acts as a nu-

meraire and is sold in a frictionless centralized market. We set θ = 3.62 so that the cross-firms

average price-elasticity of demand (including both extensive and intensive margins) is equal

to 2.7, which is the elasticity of the logarithm of the dollar grocery expenditure to the basket

price estimated for households using data from our consumer retailer panel.16 The customer

budget constraint is given by p d+n = I, where I is the household’s total expenditure, which

we normalize to one.17We set δ = 0.004 corresponding to a yearly customer turnover of 5%

that is independent of price variation. This number is chosen to match the average U.S.

cross-counties migration rate estimated by the Census Bureau for the period 2004-2005. We

set κ = 0.008 corresponding to a yearly firm exit rate of 10%.18

We assume that the logarithm of idiosyncratic firm productivity evolves according to an

AR(1) process, log(z′) = ρ log(z) + ε, where ε is i.i.d. normally distributed, ε ∼ N(0, σ).

Operationally, we approximate the AR(1) through a discrete Markov chain with the method-

ology proposed by Tauchen (1986). We estimate ρ and σ by matching the autocorrelation and

cross-firms dispersion of log-prices as estimated by Kaplan and Menzio (2015). In particular,

they report a probability of about 0.4 that the average price of a store remains in the same

16The average elasticity of demand is obtained in the model by summing over the intensive and extensive
margins at the firm level, and then aggregating over firms:

∫ z̄

z
[εm(p̂(z), z) + εd(p̂(z))] dK(z).

17In Appendix E we show that I can be derived based on a model of the labor market where the numeraire
good n is produced by a competitive representative firm with linear production function and unitary labor
productivity.

18Such number is on the high end of the range of estimates reported by Dunne et al. (1988) for U.S. firms.
We use a relatively high firm exit rate to compensate for the absence in our model of customer returning to a
previously visited store which, everything else being equal, would reduce the incentives to retain a customer.
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quartile of the price distribution after one year, which allows us to estimate a monthly au-

tocorrelation of ρ = 0.95;19 we use σ to target the component of price dispersion of identical

products (UPCs) due to the store specific and store-good specific components, i.e. 0.057.20

Finally, we assume that customers draw their search cost from a Gamma distribution with

shape parameter ζ, and scale parameter λ. The parameter λ governs the scale of the search

cost distribution. A higher λ implies higher search cost on average and, for given dispersion

in prices, lower propensity to search of customers (see the discussion in Section 3.3). We

estimate it by matching an average yearly customer attrition rate of 22 percent per year,

as obtained from our analysis in Section 2.21 We calibrate ζ by matching the average effect

of log-prices on the exit probability predicted by the model to its counterpart in the data,

measured by b1 = 0.14 in column (2) of Table 1. The larger ζ, the more concentrated dis-

tribution of search costs, so that a change in prices causes a larger change in the fraction of

customers searching. More details on our estimation algorithm for ρ, σ, λ and ζ are provided

in Appendix D.

Table 2: Parameters calibration

Estimates Target

Random customer attrition, δ 0.004 Yearly migration rate, 5%

Firm death rate, κ 0.008 Yearly firm death, 10%

Elasticity of substitution, θ 3.62 Price elasticity of demand, 2.7

Productivity persistence, ρ 0.95 Price quartile yearly persistence, 0.4

Productivity shocks volatility, σ 0.13 Log-price dispersion, 0.057

Scale of search cost, λ 1.33 Yearly customer attrition, 0.22

Coeff. variation search cost, 1/
√
ζ 0.667 Price sensitivity of exit b1, 0.14

Table 2 collects the calibrated parameters and associated targets. Search costs incurred

in the entire cross-section of households in a given period are equivalent to a 0.08% reduction

19See Table 4 in Kaplan and Menzio (2015).
20 This is the type of variation that we have used to estimate the customer exit probability in equation (2).

Kaplan and Menzio (2015) estimate the cross-sectional price dispersion for identical products measured as
UPCs to be 0.19, on average across different products; 30% of such dispersion is due to the store specific and
store-good specific components.

21Such number is in the range of estimates reviewed by Gourio and Rudanko (2014) for different sectors -
the range is 10-25 percent.
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in aggregate expenditure I. The average search cost incurred conditional on searching is

equivalent to a 4% reduction in monthly grocery expenditure.22 The estimated process for

productivity implies a cross-sectional dispersion in log-production costs of 0.25. We notice

that such cross-sectional dispersion in costs is about 5 times the cross-sectional dispersion in

prices, which is the mirror image of the incomplete pass-through of cost shocks to prices in

our model: on average, the pass-through is 26%. Such prediction is consistent with estimates

of low price pass-through from our data, discussed later in Section 4.23

4 Price pass-through and demand persistence

In this section we illustrate the properties of our model using the parametrization introduced

in Section 3.4. We illustrate the implications for the two main aspects of interest of our

analysis -the distribution of prices and the evolution of the customer base across firms- and

explain how they derive from the presence of the extensive margin of demand associated to

consumers searching, and how it affects the price pass-through of idiosyncratic shocks. We

compare the qualitative model prediction with the available empirical evidence to validate

our mechanism.

Price dynamics. In panel (a) of Figure 3, we plot the optimal price as a function of

productivity. The relationship is flat at intermediate levels of productivity and steep at low

and high levels of productivity. It follows that our model delivers two implications related to

the pass-through of idiosyncratic productivity shocks. First, the pass-through is incomplete,

with firms passing-through an average of 26% of cost shocks to prices. Second, the pass-

through is heterogeneous in productivity: high for firms in the right and the left tail of the

productivity distribution and low for firms of average productivity.

The incomplete price pass-through is due to the endogeneity of optimal markups, which

positively comove with firm productivity (pandel (b)). As more productive firms charge per-

sistently lower prices, they are more attractive to customers and face lower demand elasticity.

The heterogeneity in pass-through is explained by the heterogeneity in demand elasticity

22Given that in our data average monthly expenditure is $424, a back of the envelope calculation provides
that the average search cost is $17. This number is consistent with the empirical industrial organization
literature that aims to estimate switching costs. For example, Hong and Shum (2006) finds that average
search costs for books can be as high as $51 (for the sequential search model that maps closer to our
approach), Honka (2014) finds that average search cost range from $35 to $170 for auto insurance, and
Giulietti et al. (2014) finds that the average search cost for the electricity market in Britain ranges from
textsterling 20 to £50.

23We notice that the intercedile of the log-productivity distribution implied by our calibration is 0.9, below
the value estimated across U.S. retailers by Decker et al. (2016).

24



Figure 3: Equilibrium price dynamics

(a) Pricing function (b) Markups
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Notes: The histogram in panel (a) plots the optimal log-prices as a function of productivity. In panel (b) we plot the optimal
markups as a function of productivity. In panel (c) we plot the extensive . In panel (d), we plot the threshold below which
consumers search.

(panel (c)).24 The most productive firms face low risk that customers will leave since they

offer high expected value to their customers relative to the average firm, so that the thresh-

24Equation (13) implies that optimal prices also depend on the intensive margin elasticity (εd) and the
value of a customer (π̄). Their role is however quantitatively small. Therefore, here we concentrate only on
the role of the extensive margin of demand.
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old to search is lower (panel (d)). As a result, a low fraction of their customers is searching

-and an even lower fraction ends up exiting the customer base: only customers drawing tiny

search costs will search and among those the ones that exit need to find a better matchThis

means that variations in the threshold to search are associated to small variations in the

mass of customers searching. Therefore, these firms face low extensive margin elasticity and

can afford nearly complete pass-through and enjoy high markups.

As productivity decreases, the threshold to search, as well as the probability of drawing

a better match, increase. Price variations (which affect the search threshold) are associated

with significant changes in the mass of customers searching. Therefore, firms with produc-

tivity around the average face high extensive margin elasticity and, as equation (13) dictates,

will offset increases in production cost with reduction in markups. This explains the flatness

of the pricing function in that region. Finally, as productivity approaches the left tail of the

distribution, the extensive margin elasticity flattens again. This happens because customers

paying higher prices at lower productivity firms substitute towards the numeraire good (good

n). Therefore, everything else being equal, variations in the price of the good with product

market friction (good d) have less of an impact on the utility of these customers.25

We next provide microeconomic evidence on the incomplete and heterogeneous price

pass-through predicted by our model. Our estimates are based on the retailer price data

of Section 2 which includes both the price and the replacement cost for every item. To

measure pass-through of idiosyncratic shocks, we regress the log-price index of each store in

a given week on its log-cost index. The price index of store j, pjt , is constructed as described

in Section 2 and the cost index χjt is analogously computed using the data on replacement

cost provided by the retailer. To avoid inflating the short-term pass-through due to the

persistence of both price and cost variables, we include in the specification lagged values

of the independent variable. Finally, we include time and market fixed effects to control for

aggregate trend (e.g. demand shocks) that can move prices independently from cost shifts. In

column (1) of Table 3 we report the estimates of our baseline specification, indicating a point

estimate of 0.24, which is not statistically different from the average pass-through predicted

by our model, i.e. 0.26. As a robustness, in column (2) we report estimates without time

and market fixed effects. In column (3) we experiment with an alternative way to deal with

the persistence of the dependent variable by measuring the short-term pass-through using

first differences. In both cases the estimates imply an incomplete pass through of cost shocks

to prices, even smaller than our baseline specification. In column (4), we test the model

prediction that firms with higher productivity (i.e. lower cost) should display higher pass

25Notice that the threshold to search at low productivity firms is in the increasing part of the density of
search cost, so the flattening of the extensive margin elasticity at low productivity is not due to a smaller
mass of customers exiting at the margin.

26



Table 3: Price pass-through of idiosyncratic cost shocks

(1) (2) (3) (4)

Dep. variable log(pjt ) log(pjt ) ∆ log(pjt ) ∆ log(pjt )

log(χjt ) 0.24*** 0.17***
(0.09) (0.04)

log(χjt−1) 0.06 0.04

(0.04) (0.03)

log(χjt−2) 0.02 -0.01

(0.07) (0.05)

log(χjt−3) 0.05* 0.06***

(0.03) (0.02)

log(χjt−4) 0.07 0.07

(0.05) (0.05)

∆ log(χjt ) 0.13* 0.11*
(0.07) (0.06)

∆ log(rcjt ) 0.40**
×High productivity (0.15)

High productivity -0.00
(0.00)

Observations 12,915 8,295 8,295 8,295
MSA f.e. Yes No Yes Yes
Time f.e. Yes No Yes Yes

Notes: An observation is a store(j )-week(t) pair. The dependent variable is the price index of the store and the independent

variables are the cost index of the store and its lags. Standard errors are in parenthesis and are clustered at the store level. ***:

Significant at 1% **: Significant at 5% *: Significant at 10%.

through. We consider the distribution of store price index cost for each store and construct an

indicator variable “High productivity” that takes value 1 when a store’s cost is in the bottom

tercile of the distribution.26 We include the “High productivity” dummy and its interaction

with the store cost variable in the specification to estimate short run pass-through; we cannot

replicate the same exercise for the long-run pass through specification of column (1) because

the lagged realization of costs may lie in different terciles of the cost distribution making

the characterization a firm as being high productivity ambiguous. The positive large and

significant coefficient on the interaction term means that cost pass-through is much higher

when firms are more productive. In particular, the pass-through of a high productivity store

is still incomplete but it is over three times larger than the average pass-through of stores in

the top two terciles of their cost distribution.

26This is an imperfect test of our model implication, which refers to the productivity of a firm with respect
to the cross-sectional distribution in a given week and not to the cross-time distribution for a given store.
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Demand dynamics. In this section we compare the persistences of total sales and prices.

The latter can be linked to the intensive margin of demand d(p). The total demand for the

firm is the sum of the demands of all of its customers, m × d(p). Even firms with declining

productivity, which will post higher prices and, therefore, see their demand per customer

shrink, can have strong total demand if they have a large base of customers. In order to

Table 4: Estimate of an AR(1) process for revenues and prices

Revenues: p× d(p)×m Price: p

Model 0.98 0.75
(0.00001) (0.00021)

Data 0.93 0.82
(0.005) (0.007)

Notes: We report the estimates of the coefficient ρi from the process log(xit) = a+ ρi log(xit−1) + εit,

where xi refers either to the variable revenues or to the variable price. The top row reports estimates on the

data for revenues and prices obtained by simulating 1,727 firms for 36 months in our baseline economy with

parameters described in Section 3.4. The bottom row reports estimates on data on store level revenues and

prices from IRI. Standard errors in parenthesis.

evaluate the predictions of our model about the persistence of demand against available data,

we compare the persistence of an AR(1) process fitted to actual data on store level prices

and revenues to that of an AR(1) estimated on data simulated using our model. For each of

the 1,727 stores in the IRI data in the years from 2004 to 2006, we construct a monthly store

level price as the average of the weekly store prices computed following the same formula

as in equations (3). We also sum revenues from sales of all the UPCs sold at each store

during a month to obtain monthly store revenues. For both variables, we estimate an AR(1)

process that includes month*year and market fixed effects leading to an estimated coefficient

of 0.82 for prices and 0.93 for revenues (bottom row of Table 4). Hence an idiosyncratic

shock affecting demand has a half life of ten months, whereas a shock to prices has a half

life of only four months. When performing the same exercise on artificial data simulated

from the model, we find that firm level demand is very persistent, and substantially more

so than the underlying process of the price.27 The monthly autoregressive coefficients are

0.98 for demand and 0.75 for prices, so that the model correctly predicts that firm revenues

are substantially more persistent then prices. However, we notice that the gap in persistence

between the demand and the price processes in the model is larger than in the IRI data. This

can be explained by the fact that while the model allows for idiosyncratic cost shocks, it does

27To compare to the IRI data, we simulate 36 months of observations for 1,727 firms in our model.
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not include idiosyncratic demand shocks, which could water down the serial correlation of

the demand process in the IRI data.

5 The propagation of demand shocks

In this section we study the effect of a demand shock that shifts the utility of consumption

without affecting the disutility of search. The equations of the model will now be indexed

by a time subscript t, capturing the aggregate state. As we want to study the effects of

aggregate shocks in general equilibrium, we also need to endogenize household income. We

do so through a simple model of a perfectly competitive labor market. The household takes

the wage as given, and the wage is determined in a centralized market to clear labor demand.

We assume that the representative household is divided into a mass one of shoppers and a

representative worker. The worker takes care of supplying labor in the perfectly competitive

labor market, and then shares labor income equally across the shoppers who instead take care

of buying goods according to the model described in Section 3.28 The expected discounted

utility of the household is given by

∞∑
t=t0

βt−t0

{∫ 1

0

[ξt log (ct(i))− ψ(i)St(z(i), ψ(i))] di− φ `t

}
, (14)

where ct(i) is the consumption basket of shopper i matched to a firm with productivity z(i),

after search decisions are taken; St(z(i), ψ(i)) is an indicator variable equal to one if shopper

i, with search cost ψ(i) and matched to a firm with productivity z(i), decides to search, and

equal to zero otherwise; ξt is an aggregate shock to the utility of consumption; φ captures

the disutility from working and is set equal to one so that income I is normalized to one

in steady state, as in our partial equilibrium calibration. The worker chooses the path of

labor supply `t that maximizes household utility in equation (14) under perfect foresight.

In particular the worker trades off higher disutility of labor `t with higher labor income

wt `t to be distributed equally across all shoppers, so that total income available to shoppers

is given by It = wt `t + Dt, where Dt are firms profits rebated to the households. The

worker internalizes the impact that higher labor income will have on the shoppers’ decisions

both in terms of search activity and consumption allocation, but cannot discriminate across

shoppers, so that she has to divide labor proceeds equally across shoppers. The mappings

from income It to the distributions of consumption ct(i) and search activity St(z(i), ψ(i))

28We are implicitly assuming that the worker cannot discriminate across the different shoppers. This
assumption reduces the dimensionality of the problem, removing heterogeneity in income across consumers.
This is a common shortcut in the literature (see Shi (1997)).

29



are obtained from the solution of the model in Section 3. For simplicity we assume that

individual shoppers are not allowed to save, whereas representative households do not save

in equilibrium given assets are in zero net supply. The production technology of the good sold

in the perfectly competitively market (good n) is linear in labor, with unitary productivity.

Perfect competition in the market for good n and in the labor market implies that workers

are paid a wage equal to the marginal productivity of labor so that wt = qt for all t, where

qt is the price of good n. We use good n as a numeraire and set qt = 1. Additional details

on how we augment the model to study aggregate shocks are provided in Appendix E.

Steady state comparative statics We compare two economies in steady state, denoted

by A and B. These economies are identical but for the value of ξt. In particular, all parame-

ters are as in Table 2 and described in Section 3.4, but demand in economy A is lower than

in economy B because consumers in economy A value consumption less than in B. Opera-

tionally, we set ξt = 1 for all t in economy A and ξt = ξ̄ > 1 for all t in economy B. Given the

log-utility preferences for consumption and the linear disutility in labor, equilibrium steady

state income is I = 1 in economy A and I = ξ̄ in economy B, as labor supply increases one

for one with the shift in marginal utility of consumption. Thus, we choose ξ̄ = 1.28 so that

the log-difference in income between economies A and B matches the standard deviation in

the logarithm of monthly income per capita across U.S. counties in 2005, which indeed equals

0.28.29

Table 5: Comparative statics

Income Avg. markup Consumption/Income
Low demand economy, ξ = 1.00 1.00 0.29 0.91
High demand economy, ξ = 1.28 1.28 0.26 0.92

Notes: Two economies are simulated in steady state at the parameter values of Table 2. In economy A we set ξt = 1, in

economy B we set ξt = 1.28 for all t.

In table 5 we report statistics from simulating economies A and B in steady state. Econ-

omy A is characterized by higher average markups and, as a result, lower average consumption

to income ratio (defined as
∫ 1

0
c(i)di/I) than economy B. In particular, markups are lower

by 3 percentage points on average in economy B, allowing for consumption to be higher by 1

percent for each unit of income spent on consumption. Lower average markups in economy

B are the outcome of the higher propensity to search as households value demand more

relatively to the disutility of search, resulting into higher elasticity of demand.

29We focus on 2005 because we have markup data a for a full year only in 2005.
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We can test the prediction of our model about the relationship between markups and

aggregate expenditure against available data on the cross-county. We do this by combining

two different sources of data. First, we compute median county level markups using the

price and replacement cost reported in the “retailer price data” across by all available stores.

The data report the markup for each UPC-week at each of the 270 stores of the chain

representative of the price areas. We construct weekly markup for each store by averaging

the markups on all the UPCs on sale at a store in a given week and then obtain yearly store

markup as the median of the weekly markups for each store. Finally, our county-level measure

of markup in a given year is the average of the markups of all the retailer’s store located in

the county in that year. Then, we regress the computed cross-section of markups on the log of

income per capita in the county obtained from the Bureau of Economic Analysis. Since shifts

in the opportunity cost of search may affect firm pricing (Kaplan and Menzio (2016)), and are

correlated with our measure of demand, we control for the county unemployment rate. The

estimated regression coefficient is equal to 0.084 and is statistically significant, whereas the

standard deviation of log of income per capita across counties is 0.28. While we don’t give a

causal interpretation to such estimate, we notice that the implied correlation between income

and markups is not only qualitatively but also quantitatively similar to the one produced by

our model: when we consider two counties that differ in the log of income per capita by one

standard deviation (28 percentage points) the difference in associated markups amounts to

2.35 percentage points in the data against 2.8 in the model.

Impulse responses to a transitory shock We consider our baseline economy in steady

state at t = t0, calibrated as described in Section 3.4. We consider the dynamics following an

unforeseen aggregate shock that takes the economy temporarily away from the steady state

and assume that after the shock has hit, there is perfect foresight on the path of the aggregate

state. In particular, we assume that ξt = 1 at all t < t0, when agents expect ξt = 1 to hold

also in the future. At t = t0, ξt0 increases unexpectedly and then reverts back to steady state

following an AR(1) process , i.e. log(ξt) = ρξ log(ξt−1) for t > t0.30 We calibrate ρξ and ξt0

by fitting an AR(1) process on the log of yearly per-capita income at the U.S. county level,

obtained from the Bureau of Economic Analysis for the period 1990-2015, controlling for

cross-county heterogeneity including county fixed effect and for aggregate shocks including

a full set of year dummies.31 The AR(1) process in our model is at the monthly frequency

30Operationally, we guess the path of the distribution of customers over productivity Kt(z), and then solve
backward for the optimal pricing and customer decisions at each time t ≥ t0 as described in Appendix E
starting from the final steady state (which is identical to the initial one) at t = t0 +T for some large T . Then
we update our guess about Kt(z) and iterate until convergence.

31We don’t have a time series for markups as we only observe markups for a full year in 2005. However, for
consistency to the cross-counties analysis, we restrict attention only to counties for which we are able obtain
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Figure 4: Impulse responses to a transitory preference shock
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Notes: The values are measured in % deviations from steady state. All plots report the impulse response to a ξ0 = 1.007 shift

in the utility of consumption with an half-life of 18 months.

whereas the data comes at the yearly frequency. Thus, we obtain ξt0 = 1.007 and ρξ = 0.96

so that our monthly AR(1) implies the same volatility and persistence of the yearly AR(1)

process estimated in the data, corresponding respectively to 2% standard deviation of year-on

year income, and half life of 18 months.

Figure 4 plots the impulse responses of several variables of interest to the transitory

demand shock (panel (a)). As in standard macro models, a higher utility of consumption

relatively to the utility of leisure causes higher labor supply and higher income (panel (b)). In

particular, we have It = ξt for all t in our model. Aggregate consumption goes up more than

income (panel (d)) because of the fall in average markups (panel (c)). The lower markups

are the result of the increased benefits of searching. The fact that more customers may be

looking for a new supplier increases customer retention concerns for firms, manifesting into

a higher average extensive margin elasticity of demand (panel (e)), inducing firms to lower

information on markups.
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their markups. We notice that the fall in markups associated to the increase in expenditure

is smaller than in the case of the permanent shift in preferences of Table 5. In particular, the

implied partial elasticity of average markups to ξ is about 5% for this transitory shock, against

10% in the case of a permanent change. The smaller sensitivity of markups is explained by

the response of the average customer value, π̄(p, z), in panel (f) which falls in response to a

transitory demand shock, reducing the overall effect of the shock on markups. In particular,

the mean reverting path of income implies that demand from a customer today is higher than

tomorrow, so that the firm has an incentive to set higher prices today to take advantage of

the higher demand.

6 Concluding remarks

This paper provides novel empirical evidence on the elasticity of a firm customer base to

its price. Using data from a large US supermarket chain, we showed that an increase in

the prices is associated to a higher customer attrition. Motivated by this finding we have

developed a rich model to study the implications of the extensive margin of demand for price

setting. It emerged from our analysis that customer retention concerns substantially reduce

the price pass-through of idiosyncratic cost shocks. Hence firm demand is substantially

more persistent than the underlying price and productivity processes. These predictions find

empirical support in data from the US grocery sector. We used our calibrated model as a

laboratory to study the effects of both transitory and permanent shifts in aggregate demand.

Higher demand is associated to higher customers’ propensity to search, resulting in higher

demand elasticity. Increases in the extensive margin elasticity of demand lead firms to lower

markups, amplifying the effect of demand shocks on consumption.

Our study relies on a number of simplifying assumptions, whose relaxation seems of inter-

est for future research. First, for tractability we refrain from explicitly modeling persistent

heterogeneity in customers search/opportunity costs (although we control for these factors

in the empirical analysis) and we do not allow for price discrimination. The presence of cus-

tomers heterogeneity in shopping behavior is well documented (Aguiar and Hurst (2007)),

which makes studying its implications for optimal pricing and customer dynamics an impor-

tant topic. Due to the limitations in our data, we do not consider the role of advertising

in generating demand dynamics (Hall (2014)), or of firm pricing in attracting customers

(Dinlersoz and Yorukoglu (2012)). While our conjecture is that the analysis of the pricing

incentives presented in this paper would still apply, we think that extending the empirical

analysis on this dimension is a promising avenue for future research.
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Appendix

A Data sources and variables construction

This appendix provides additional information on the data sources presented in Section 2.
We also document more in depth the procedure used to construct the main variable used to
empirically assess the relevance of the extensive margin of demand.

A.1 Data and selection of the sample

The retailer that provided both the price data and the consumer panel is a large supermarket
chain that operates over 1,000 stores across the United States. It is a high/low supermarket
chain selling grocery goods as well as household supplies; it could be compared to Kroeger
or Tesco.

Sampling and representativeness
The Consumer Panel data include complete purchase data for over 11,000 customers of the
chain sampled for the major markets for the retailer, excluding those where it operates under
acquired brands. Households are tracked through usage of the supermarket loyalty card;
purchases made without using the card are not recorded. However, the chain ensures that
the loyalty card has a high penetration, for instance by keeping to a minimum the effort
needed to register. Furthermore, nearly all promotional discounts are tied to ownership
of a loyalty card, which provides a strong incentive to sign up and use it. Therefore, we
can consider the customers in our sample as representative of the population of non casual
shoppers at the chain.

The Price Data cover 270 stores. This is about a fifth of the stores operated by the
retailer; however, the chain sets different prices for the same UPC in different geographic
areas, called “price areas”. The set of stores for which the retailer provided information was
designed so that at least one store for each price area would be included.

A.2 Variables construction

Exit from the customer base
The dependent variable in the regression presented in equation (2) is an indicator for whether
a customer is exiting the customer base of the chain. With data on grocery purchases at
a single retail chain it is hard to definitively assess whether a customer has abandoned the
retailer to shop elsewhere or she is simply not purchasing groceries in a particular week,
for instance because she is just consuming her inventory. In fact, we observe households
when they buy groceries at the chain but do not have any information on their shopping at
competing groceries. Our choice is to assume that a customer is shopping at some other store
when she has not visited any supermarket store of the chain for at least eight consecutive
weeks. The Exit dummy is then constructed so that it takes value of one in correspondence to
the last visit at the chain before a spell of eight or more weeks without shopping there. Table
6 summarizes shopping behavior for households in our sample. It is immediate to notice that
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an eight-week spell without purchase is unusual, as customers tend to show up frequently at
the stores. This strengthens our confidence that customers missing for an eight-week period
have indeed switched to a different retailer.

Table 6: Descriptive statistics on customer shopping behavior

Mean Std.dev. 25th pctile 75th pctile

Number of trips 150 127 66 200

Days elapsed between consecutive trips 4.2 7.5 1 5

Expenditure per trip ($) 69 40 40 87

Frequency of exits 0.003 0.065

In Figure 5 we document the seasonality in exit rates. We find that the probability of
exit is roughly stable across months.

Finally, in Table 7 we show that the qualitative result of our reduced form analysis on
the elasticity of the exit decision to price is not sensitive to the definition of exit. The table
replicates the specification in the first column of Table 1 for different definitions of “exit”.
We experiment with the number of consecutive weeks without visit to a store of the chain
required to declare that the customer has exited the customer base of the retailer both short-
ening our baseline of 8 weeks to 4 weeks and tightening the requirement for exit asking for 12,
16 or even 20 consecutive weeks without trips. To estimate each of this model on the same
sample, we can only use data up to January 2006 so that we leave five months at the end
of the sample to asses occurrence of an exit in the specification where 20 weeks of absence
are required. As a consequence, the number of observations and the point estimate for the
baseline specification are not exactly identical to those in Table 1.

For more stringent definitions (i.e. 12, 16 or 20 weeks), the estimated parameters are
significant at the conventional levels, with the exception of the specification where exit occurs
after a three-months absence from the chain. Moreover, even though the point estimates go
down slightly, none of them is significantly different from our baseline estimate when testing
at 1%.
Moving to a shorter horizon to identify exit introduces a different set of considerations.
When we consider as exits also absence of 4 weeks from the chain, we obtain a positive and
significant elasticity of the probability of exit to the price of the basket but its size is larger
than our baseline estimate. The fact that this estimates departs significantly from the rage
of values we find for all the other definitions implies that there is a number of customers who
disappear from the chain for at least four weeks but returns before eight weeks. These could
be bargain hunting households willing to move repeatedly across firms to take advantage of
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Figure 5: Survival in the customer base
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Notes: The figure plots the unconditional probability of exit, computed as the ratio of the number of exits and the number
of shopping trips by customers of the chain, by month. The definition of exit adopted for the plot is our baseline one: lack of
shopping trips at the chain for 8 consecutive weeks or more.

temporary price changes. Evidence in favors of this interpretation comes from the fact that
the probability of returning to the retailer (i.e. purchasing there again after having exited
the customer base) is significantly related to posted prices when the definition of exit requires
a hiatus of four weeks, whereas there is no correlation for the other definitions. However,
customers who have truly left the customer base of their firm could not be that responsive
to the price of the firm they used to shop from as they would have to pay the search cost
to rejoin it. This indicates that a 4-week window tends to pick up households who did not
truly abandoned the customer base of the firm.

Weekly UPC prices
The Consumer Panel reports information on the price paid conditional on a certain item
having been bought by the customer. Therefore, if we do not observe at least one household
in our sample buying a given item in a store in a week, we cannot infer the price of the item
in that store-week. However, our definition of basket requires us to be able to attach a price
to each of the items composing it in every week, even when the customer does not shop. The
issue can be solved using the Price data which report information on weekly store revenues
and quantities, regardless of the shopping decisions of the households in our Consumer Panel.
We use data on store level revenues and quantities sold in the Price data to compute Unit
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Table 7: Robustness to exit definition

Consecutive weeks without trips needed to observe “exit”
4 weeks 8 weeks 12 weeks 16 weeks 20 weeks

log(pit) 0.79∗∗∗ 0.15∗∗ 0.08 0.09∗ 0.10∗∗

(0.001) (0.023) (0.062) (0.051) (0.015)

log(pit) 0.003 0.001 0.001 0.000 0.000
(0.321) (0.618) (0.568) (0.999) (0.404)

Tenure -0.001∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 44,647 44,647 44,647 44,647 44,647

Notes: The table reports replications of the specification in column (1) of Table 1 with different definition of the dependent
variable. We trim from the sample households in the top and bottom 1% in the distribution of the number of trips over the
two years. Coefficients on a series of variables are not reported for brevity: demographic controls matched from Census 2000
(ethnicity, family status, age, income, education, and time spent commuting) as well as distance from the closest outlet of the
supermarket chain and distance from the closest competing supermarket (provided by the retailer). The logarithm of the price
of the household basket in the first week in the sample and the standard deviation of changes in the log-price of the household
basket over the sample period are included as a controls in all specifications. Week-year fixed effects are also always included.
Standard errors are in parenthesis and account for within-household correlation through a two-steps feasible-GLS estimator.
***: Significant at 1% **: Significant at 5% *: Significant at 10%.

value prices as

UV P j
tu =

TRj
tu

Qj
tu

,

where TR represent total revenues and Q the total number of units sold of good u in week t
in store j.

As explained in Eichenbaum et al. (2011), this only allows us to recover an average price
for goods that were on promotion. In fact the same good will be sold to loyalty card carrying
customers at the promotional price and at full price to customers who do not have or use
a loyalty card. Without information on the fraction of these two types of customers it is
not possible to recover the two prices separately. Furthermore, since prices are constructed
based on information on revenues, missing values can originate even in this case if no unit
of a specific item is sold in a given store in a week. This is, however, a rare occurrence and
involves only infrequently purchased UPCs, which are unlikely to represent important shares
of the basket for any of the households in the sample. For the analysis, we only retain UPCs
with at most two nonconsecutive missing price observations and impute price for the missing
observation interpolating the prices of the contiguous weeks.

In order to use unit value prices calculated from store-level data to compute the price
of the basket of a specific household, we need to determine to which price area the store(s)
at which she regularly shops belong. This information is not supplied by the retailer that
kept the exact definition of the price areas confidential. A possible solution is to infer in
which price areas the store(s) visited by a household are located by comparing the prices
contained in the household panel with those in the store data. In principle the household
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data should give information on enough UPC prices in a given week to identify the price
area representative store whose pricing they are matching. However, even though two stores
belonging in the same price area should have the same prices, they may not have the same
unit value prices if the share of shoppers using the loyalty card differs in the two stores.
Therefore, we choose to restrict our analysis to the set of customers shopping predominantly
(over 80% of their grocery expenditure at the chain) in one of the 270 stores for which the
chain provided complete store-level data. This choice is costly in terms of sample size: only
1,336 households (or 12% of the original sample) shop at one of the 270 stores for which we
have store-level price data. Since the 270 representative stores were randomly chosen, the
selection of the stores should not induce selection in the subsample of households we analyze.

The need of considering only households that predominantly shop at the same store of the
chain could instead generate selection if the probability of switching store within the same
retailer is correlated to the propensity of the household to change the retailer at which it
shops. To address this concern, in Table 8 we compare the behavior of the sample of house-
holds selected for our analysis with that of households we discarded because they shopped
at multiple outlets of the chain. We look at three main dimensions: shopping behaviour
(frequency and size of grocery shopping trips); demographic characteristics and probability
of exit. The demographic characteristics are not reported by the households themseleves but
come from Census data matched at the block group level, which corresponds roughly to a
city block. This is the finest level of geographical detail available in the Census and ensures
that, while aggregate, the figures reported originate from a group of higly homogenous re-
spondents. The probability of exiting the customer base of the retailer is computed using
our baseline definition (i.e. eight consecutive weeks without shopping trips at the retailer).

As far as shopping behavior is concerned, the differences for the total expenditure in
grocery and the number of trips are statistically different between the two group but not
economically large. Multistore shoppers spend 8 extra dollars per month in grocery and
take an extra trip to a store of the chain every three months. Very few of the demographic
variables are significantly different between the two samples and the gaps are small. Finally,
households in the two samples have basically the same weekly probability of exit.

Composition of the household basket and basket price
The household scanner data deliver information on all the UPCs a household has bought
through the sample span. We assume that all of them are part of the household basket
and, therefore, the household should care about all of those prices. Some of the items in
the household’s basket are bought regularly, whereas others are purchased less frequently.
We take this into account when constructing the price of the basket by weighting the price
of each item by its expenditure share in the household budget. The price of household i ’s
basket purchased at store j in week t is computed as:

pjit =
∑
u∈Ki

ωiu p
j
ut , ωiu =

∑
tEiut∑

u

∑
tEiut

,

where Ki is the set of all the UPCs (u) purchased by household i during the sample period,
pjut is the price of a given UPC u in week t at the store costj where the customer shops. Eiut
represents expenditure by customer i in UPC u in week t and the ωiu’s are a set of household-
UPC specific weights. There is the practical problem that the composition of the consumer
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Table 8: Comparison of multistore and single store shopping households

Mean for multistore Mean for single store Difference
households households

Shopping behavior
Net expenditure 433.10 424.23 (8.87)∗∗∗

Num of unique UPCs bought 105.76 105.56 (0.20)
Num of unique categories bought 83.17 82.94 (0.23)
Num of shopping trips 7.99 7.66 (0.34)∗∗∗

Demographic characteristics
% male 49.26 48.97 (0.30)
% black 4.66 4.80 (-0.14)
% hispanic 11.80 9.78 (2.03)∗∗∗

% age 18-24 7.35 6.96 (0.39)
% age 25-34 15.22 14.56 (0.66)∗

% age 35-44 18.37 18.70 (-0.33)
% age 45-54 15.19 14.94 (0.25)
% age 55-64 9.01 8.93 (0.09)
% age 65 or more 11.25 11.14 (0.11)
% HS degree 40.71 40.05 (0.67)
% college degree 48.94 50.37 (-1.42)∗

% employed 65.47 66.07 (-0.60)
Per capita income 34880.80 34600.98 (279.82)
Distance from retailer 1.36 1.41 (-0.05)

Probability of exit
Prob. of exit 0.0018 0.0017 (0.0001)

Notes: The table reports the means of different characteristics of households who shop at multiple stores of the retail chain

that shared the microdata with us and compares them with those for households who predominantly shop at a same store of

the chain. The latter group is the one we use in our analysis. The shopping behavior variables are computed at monthly

frequency; the probability of exit is instead weekly. The third column of the table displays the difference between the mean

and reports the level of significance at which no difference between the means of the two groups can be rejected. ***:

Significant at 1% **: Significant at 5% *: Significant at 10%.
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basket cannot vary through time; otherwise basket prices for the same customer in different
weeks would not be comparable. This requires that we drop from the basket all UPCs for
which we do not have price information for every week in the sample. However, the price
information is missing only in instances where the UPC registered no sales in a particular
week. It follows that only low market-share UPCs will have missing values and, therefore,
the UPCs entering the basket computation will represent the bulk of each customer’s grocery
expenditure. The construction of the cost of the basket follows the same procedure where we
substitute the unit value price with the measure of replacement cost provided by the retailer.

We choose to calculate the weights using the total expenditure in the UPC by the house-
hold over the two years in the sample. This can lead to some inaccuracy in identifying the
goods the customer cares for at a given point in time. For example, if a customer bought only
Coke during the first year and only Pepsi during the second year of data, our procedure would
have us give equal weight to the price of Coke and Pepsi throughout the sample period. If we
used a shorter time interval, for example using the expenditure share in the month, we would
correctly recognize that she only cares about Coke in the first twelve months and only about
Pepsi in the final 12 months. However, weights computed on short time intervals are more
prone to bias induced by pricing. For example, a two-weeks promotion of a particular UPC
may induce the customer to buy it just because of the temporary convenience; this would
give the UPC a high weight in the month. The effect of promotion is instead smoothed when
we compute weights using expenditure over the entire sample period.

The construction of the price of the competitors occurs in two steps. First, we use the
IRI data and the same procedure described above to obtain a price for the basket of each
consumer at every store located in her same Metropolitan Statistical Area. Next, we average
those prices across stores to obtain the average market price of the consumer basket. In
particular, the price is computed as:

p̄it =
∑
j∈m(i)

sj
∑
u∈Ki

ωiup
j
ut, ωiu =

∑
tEiut∑

u

∑
tEiut

, sj =

∑
tR

j
t∑

j′∈M
∑

tR
j′

t

where m(i) is the market of residence for customer i and Rj
t represents revenues of store j in

week t. In other words, in the construction of the competitors’ price index stores with higher
(revenue-based) market shares weight more.

To make the price index of the basket at the Retail comparable with th same figure
calculated for the competitors, we have to use the same set of UPCs. This implies that the
price indices are computed based only on UPCs which appear both in the Retailer data and
in the IRI ones. The main limitation here is that IRI covers only a subset of the product
categories on which we have shopping information from the Retailer data: for instance nail
products are not covered in IRI. However, IRI covers all the major product categories reducing
concerns on the effect of this limitation on the calculation of the price of the basket. In theory,
it is also possible that this criterion would make us discard UPCs referring to identical
products which have different codes at different retailers for administrative reasons. This
issue seems quantitatively negligible. Conditional on the set of product categories covered
by IRI, 87% of the UPCs in the Retailer data have a match in the IRI data and the matched
UPCs account for 97
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B Proof of Proposition 1

The following lemma discusses some key properties of the optimal price useful to prove
Proposition 1.

Lemma 1 Let ∆(p, z) be continuous in p, and let εm(p, z) ≡ ∂ log(∆(p, z))/∂ log(p). If a
price p̄(z) exists such that εm(p, z) > 0 for all p > p̄(z), and εm(p, z) = 0 for all p ≤ p̄(z),
then we have p̂(z) ∈ [p̄(z), p∗(z)) if p̄(z) < p∗(z), and p̂(z) = p∗(z) otherwise.

The proof of the lemma is an immediate implication of equation (7). We next prove the
results of Proposition 1.

Monotonicity of prices. Monotonicity of optimal prices follows from an application of
Topkis’ theorem. In order to apply the theorem to the firm problem in equation (6) we need
to establish increasing differences of the firm objective ∆(p, z) Π(p, z) in (p,−z). Under the
standard assumptions we stated on π(p, z), it is easy to show that Π(p, z) satisfies this prop-
erty. The customer base growth function does not in general verify the increasing difference
property. However, let p̄(z) denote the price p that solves V̄ (p, z) = V(z̄). We have that
∆(p, z) is continuous, strictly decreasing in p for all p > p̄(z), and constant for all p ≤ p̄(z).
Under the assumption of i.i.d. productivity, ∆(p, z) is independent of z, which is sufficient
to obtain the result. We first show that optimal prices p̂(z) are non-increasing in z. Given,
that productivity is i.i.d. and that we look for equilibria where p̂(z) ≥ p∗(z̄), we have that
p̄(z) = p∗(z̄) for each z. From Lemma 1 we know that, for a given z, the optimal price p̂(z)
belongs to the set [p∗(z̄), p∗(z)]. Over this set, the objective function of the firm,

W (p, z) = ∆(p, z) (π(p, z) + β constant) , (15)

is supermodular in (p,−z). Notice the i.i.d. assumption implies that future profits of the
firm do not depend on current productivity as future productivity, and therefore profits, are
independent from it. Similarly, ∆(p, z) does not depend on z, as the expected future value to
the customer does not depend on the productivity of the current match as future productivity
is independent from it. Abusing notation, we replace ∆(p, z) by ∆(p). To show thatW (p, z) is
supermodular in (p,−z) consider two generic prices p1, p2 with p2 > p1 > 0 and productivities
z1, z2 ∈ [z, z̄] with −z2 > −z1. We have that W (p2, z2)−W (p1, z2) ≤ W (p2, z1)−W (p1, z1)
if and only if

∆(p2)d(p2)(p2−w/z2)−∆(p1)d(p1)(p1−w/z2) ≤ ∆(p2)d(p2)(p2−w/z1)−∆(p1)d(p1)(p1−w/z1),

which, since ∆(p2)d(p2) < ∆(p1)d(p1) as d(p) is strictly decreasing and ∆(p) is non-increasing,
is indeed satisfied if and only if z2 < z1. Thus, W (p, z) is supermodular in (p,−z). By
application of the Topkis Theorem we readily obtain that p̂(z) is non-increasing in z.

Existence of equilibrium. Next we prove existence of an equilibrium. The fixed point
problem is a mapping from candidate functions of equilibrium prices, p̂(z), to the firm’s
optimal pricing strategy, p̂(z). Notice that W (p, z) in equation (15) is continuous in (p, z).
By the theorem of maximum, p̂(z) is upper hemi-continuous and W (p̂(z), z) is continuous in z.
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Given that p̂(z) is non-increasing in z it follows that p̂(z) has a countably many discontinuity
points. We thus proceed as follows. Let P̂(z) be the set of prices that maximize the firm
problem. Whenever a discontinuity arises at some z̃ (so that P̂(z̃) is not a singleton), we
modify the optimal pricing rule of the firm and consider the convex hull of the P̂(z̃) as the
set of possible prices chosen by the firm with productivity z̃. The constructed mapping
from P(z) to P̂(z) is then upper-hemicontinous, compact and convex valued. We then apply
Kakutani’s fixed point theorem to this operator and obtain a fixed point. Finally, notice
that since the convexification procedure described above has to be applied only a countable
number of times, the set of convexified prices has measure zero with respect to the density
of z. Hence, they do not affect the fixed point.

It is important to point out that differentiability of the distribution of productivity F
is not needed for the existence of an equilibrium. We assume it to ensure that H(·) and
Q(·) are almost everywhere differentiable so that equation (7) is a necessary condition for
optimal prices (see below). However, even when F is not differentiable and the first order
condition cannot be used to characterize the equilibrium, an equilibrium with the properties
of Proposition 1 exists where p̂(z) and ψ̂(p̂(z), z) are monotonic in z but not necessarily
strictly monotonic for all z.

Necessity of the first order condition. We show that Q and H are almost everywhere
differentiable, so that Lemma 1 implies that equation (7) is necessary for an optimum. We
guess that p̂(z) is strictly decreasing and almost everywhere differentiable. It immediately
follows that V(z) is strictly increasing in z and almost everywhere differentiable. Then, given
the assumption that F is differentiable, we have that K is differentiable. From H(x) =
K(V−1(x)) it follows that H is also almost everywhere differentiable. Given that G and H
are differentiable, so is Q. Then the first order condition in equation (7) is necessary for
an optimum, which indeed implies that p̂(z) is strictly decreasing and differentiable in z in
any neighborhood of the first order condition. Finally, given that p̂(z) has a countably many
discontinuity points, it has countably many points where it is not differentiable, and the first
order condition does not apply at those points, but applies everywhere else. These points
have measure zero with respect to the density of z and therefore p̂(z) is almost everywhere
differentiable.

Proof of Point (i). We already proved that p̂(z) is non-increasing in z. The proof that
p̂(z) is strictly decreasing follows by contradiction. Consider that p̂(z1) = p̂(z2) = p̃ for some
z1, z2 ∈ [z, z̄]. Also, without loss of generality, assume that z1 < z2. Given that we already
established the necessity of the first order condition presented in equation (7) when prices
are monotonic, suppose that it is satisfied at the pair {z2, p̃}. Notice that, because of the
assumed i.i.d. structure of productivity shocks together with πz(p, z) < 0, it is not possible
that the first order condition is also satisfied at the pair {z1, p̃}. Moreover, because the first
order condition is necessary and we already established that p̂(z) cannot be increasing at any
z, we conclude that the optimal price at z1 is strictly larger than at z2. That is, p̂(z1) > p̂(z2).
Notice that this verifies the conjecture used to prove the necessity of the first order condition,
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which in turn validates the use of equation (7) here.32

Notice that, because p̂(z) is strictly decreasing in z, the fact that v′(p) < 0 together with
i.i.d. productivity, implies, through an application of the contraction mapping theorem, that
V(z) = V̄ (p̂(z), z) is increasing in z.

Proof of Point (ii). ψ̂(p, z) ≥ 0 immediately follows its definition. The fact that V(z)
is strictly increasing in z implies that ψ̂(p̂(z̄), z̄) = 0 and that ψ̂(p̂(z), z) and ∆(p̂(z), z) are
strictly increasing in z. Because of price dispersion, some customers are searching, which
guarantees that ∆(p̂(z̄), z̄) > 1. Likewise, ∆(p̂(z), z) < 1.

C Proof of Corollary 1

Part (1): Start by noticing that, because the mean of G(ψ) is positive, the expected value of
searching diverges to −∞ as µ diverges to infinity. Because prices are finite for all z ∈ [z, z̄],
the value of not searching is bounded. As a result, customers do not search so that firms
do not face customer base concerns. Formally, p̄(z) → ∞ for all z ∈ [z, z̄]. Because p∗(z) is
finite for all z ∈ [z, z̄], it follows immediately that p∗(z) < p̄(z) for all z ∈ [z, z̄]. Then, using
Lemma 1 we obtain that p̂(z) = p∗(z) for all z ∈ [z, z̄].

Part (2): From Proposition 1 we have that, in equilibrium, the highest price is p̂(z).
Moreover, under the assumptions of Proposition 1, the first order condition is a necessary
condition for optimality of prices. We use this to show that, as µ approaches zero, p̂(z) has
to approach p̂(z̄) = p∗(z̄). In equilibrium, it is possible to rewrite equation (7), evaluated at
{p̂(z), z}, as LHS(p̂(z), µ) = RHS(p̂(z), µ), where

LHS(p̂(z), µ) ≡ G′(ψ̂(p̂(z), z)/µ)ψ̂p(p̂(z), z)/µ+

+
(
G(ψ̂(p̂(z), z)/µ)H ′(V̄ (p̂(z), z)) +Q′(V̄ (p̂(z), z))

)
V̄p(p̂(z), z) ,

RHS(p̂(z), µ) ≡ −πp(p̂(z), z)

Π(p̂(z), z)

(
1−G(ψ̂(p̂(z), z)/µ)

)
,

given that H(V̄ (p̂(z), z)) = Q(V̄ (p̂(z), z)) = 0. Suppose that as µ ↓ 0, ψ̂(p̂(z), z) does not

converge to zero. Then, G
(
ψ̂(p̂(z),z)

µ

)
↑ 1 as µ ↓ 0. This implies that limµ↓0RHS(p̂(z), µ) > 0.

Consider now the function LHS(p̂(z), µ). Again, suppose that as µ ↓ 0, ψ̂(p̂(z), z) does not
converge to zero. Notice that the second term of the function approaches a finite number as
V̄p(p̂(z), z) is bounded by assumptions on v(p) and H ′(V̄ (p̂(z), z)) and Q′(V̄ (p̂(z), z)) being

32If prices are not strictly decreasing, this argument cannot be used as the first order condition is not
necessary. However, it is possible to prove that p̂(z) is strictly decreasing in z for some region of z. The
argument follows by contradiction. Suppose that p̂(z) is everywhere constant in z at some p̃. Then p̄(z) = p̃
for all z. If p̃ > p∗(z̄), then p̃ would not be optimal for firm with productivity z̄, which would choose a lower
price. If p̃ = p∗(z̄), then continuous differentiability of G together with H = G = Q = 0 at the conjectured
constant equilibrium price imply that the first order condition is locally necessary for an optimum, and a
firm with productivity z < z̄ would have an incentive to deviate according to equation (7), and set a strictly
higher price than p̃. Finally, the result that p̂(z) < p∗(z) for all z < z̄ and that p̂(z̄) = p∗(z̄) follows from
applying Lemma 1, and using that p̂(z) ≥ p̂(z̄) and p̄(z) = p̂(z̄) for all z.
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bounded as a result of Proposition 1. Moreover, as long as p̂(z) > p̄(z) = p∗(z̄), we have
that ψ̂p(p̂(z), z) > 0 so that ψ̂p(p̂(z), z)/µ diverges as µ approaches zero. This means that

G′
(
ψ̂(p̂(z),z)

µ

)
ψ̂p(p̂(z),z)

µ
is divergent, and therefore the first order condition cannot be satisfied.

This analysis concluded that, if ψ̂(p̂(z), z) does not converge to zero as µ becomes ar-
bitrarily small, the first order condition, i.e. equation (7), cannot be satisfied. This occurs
because LHS(p̂(z), µ) would diverge to infinity, while RHS(p̂(z), µ) would remain finite. It
then follows that, as µ approaches zero, a necessary condition is that ψ̂(p̂(z), z) also ap-
proaches zero. This condition can be restated as requiring that p̂(z) approaches p̄(z) as µ
approaches zero. Moreover, given the assumptions of Proposition 1, p̄(z) = p̂(z̄) = p∗(z̄).

In the end, if p̂(z) approaches p∗(z̄) as µ becomes arbitrarily small (so that ψ̂(p̂(z), z)→ 0
and ψ̂p(p̂(z), z) → 0), we have that limµ↓0 LHS(p̂(z), µ) < ∞ and limµ↓0RHS(p̂(z), µ) < ∞
as πp(p

∗(z̄), z) is bounded as π(p∗(z̄), z) > 0. However, if p̂(z) does not approach p∗(z̄) as µ
becomes arbitrarily small, we have that LHS(p̂(z), µ) diverges as µ approaches zero, while
LHS(p̂(z), µ) remains finite. As the first order condition has to be satisfied in equilibrium, a
necessary condition is that, as µ approaches zero, the highest price in the economy, i.e. p̂(z),
has to approach the lowest price in the economy, i.e. p∗(z̄).

D Numerical solution of the model (NOT FOR PUB-

LICATION)

In order to solve the model, we start by setting the parameters. The parameters β, κ, δ and I
are constant throughout the numerical exercises. For the set of estimated parameters Ωn =
[λn, ζn, ρn, σn]′, we set a search grid. The grid is different for each parameter, as they differ
both in their levels and in the sensitivity of the statistics of interest to their variation. We
consider a grid with an interval of 0.01 for σ, 0.025 for ρ, 0.25 for ζ, and 0.01 for λ. Each Ωn

corresponds to a particular combination of parameters among these grids. For each Ωn we
set θ to obtain E[εd(z) + [εm(z)] = 2.7.

We next describe how we solve for the equilibrium of the model for a given combination
of parameters. We start by discretizing the AR(1) process for productivity to a Markov
chain featuring N = 25 different productivity values. We then conjecture an equilibrium
function p̂(z). Given our definition of equilibrium and the results of Proposition 1, we look
for equilibria where p̂(z) ∈ [p∗(z̄), p∗(z)] for each z, and p̂(z) is decreasing in z. Our initial
guess for p̂(z) is given by p∗(z) for all z. We experiment with different initial guesses and
found that the algorithm always converges to the same equilibrium.

Given the guess for p̂(z), we can compute the continuation value of each customer as a
function of the current price and productivity, i.e. V̄ (p, z), and solve for the optimal search
and exit thresholds. Given p̂(z) and the customers’ search and exit thresholds we can solve
for the distributions of customers Q(·) and H(·) as defined in Definition 1. Notice that
the latter also amounts to solve for a fixed point in the space of functions. Here, standard
arguments for the existence of a solution to invariant distribution for Markov chains apply.
Therefore, the assumption that F (z′|z) > 0 and ∆(p̂(z), z) > 0 ensure the existence of a
unique K(z). Finally, given Q(·), H(·), p̂(z) and V̄ (p, z), we solve the firm problem and the
obtain optimal firm prices given by the function p̂(z). We use p̂(z) to update our conjecture
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about equilibrium prices p̂(z), and iterate this procedure until convergence to a fixed point
where p̂(z) = p̂(z) for all z ∈ [z, z̄].

Once we have solved for the equilibrium of the model at given parameter values. We then
evaluate the objective function (vd− v(Ωn))′Σ (vd− v(Ωn)) at each iteration. We assume the
weighting matrix Σ to be the identity matrix. We select as estimates the parameter values
from the proposed grid that minimize the objective function and check that the optimum in
the interior of the assumed grid.

E Extension: unforeseen aggregate shocks (NOT FOR

PUBLICATION)

The production technology of the perfectly competitively sold good (good n) is linear in
labor, so that its supply is given by ynt = `nt , where and `nt is labor demand by this firm.
The production technology of the other good (good d) is also linear in labor, so that its
supply is given by yjt = zjt `

j
t , where and `nt is labor demand by this firm, where j indexes

one particular producer. Perfect competition in the market for variety n and in the labor
market implies that workers are paid a wage equal to the marginal productivity of labor so
that wt = 1. Equilibrium in the labor markets requires `t = `nt +

∫ 1

0
`jt dj. The value function

of each shopper is given by

Vt(p, z, ψ) = max
{
V̄t(p, z) , V̂t(p, z)− ψ

}
, (16)

where

V̂t(p, z) =

∫ +∞

−∞
max

{
V̄t(p, z) , x

}
dHt(x) , (17)

and

V̄t(p, z) = vt(p) + β (1− η)EG

[∫ z̄

z

Vt+1(p̂t+1(x), x, ψ′) dF (x|z)

]
+ (18)

+ β η EG

[∫ z̄

z

Vt+1(p̂t+1(x), x, ψ′) dF̄ (x)

]
.

with

vt(p) = max
d, n

(
d
θ−1
θ + n

θ−1
θ

) θ
θ−1

(1−γ)

1− γ
(19)

s.t. p d+ n ≤ It , (20)
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The first order condition to the problem in equations (19)-(20) delivers the following standard
downward sloping demand function for variety d

dt(p) =
It
P

( p
P

)−θ
. (21)

where P = ((p)1−θ+1)
1

1−θ is the price of the consumption basket. The solution to the shopper
search problem gives a threshold

ψ̂t(p, z) ≡
∫ ∞
V̄t(p,z)

(
x− V̄t(p, z)

)
dHt(x) ≥ 0 .

The equilibrium pricing function p̂t(z) is given by the solution to the firm pricing problem

Wt(z) = max
p

∆t(p, z) π(p, z) + ∆t(p, z) βt (1− η)

∫ z̄

z

Wt+1(z′)dF (z′| z) , (22)

where

∆t(p, z) ≡ 1−G
(
ψ̂t(p, z)

)(
1− Ht(V̄t(p, z))

)
︸ ︷︷ ︸

customers outflow

+Qt

(
V̄t(p, z)

)
︸ ︷︷ ︸
customers inflow

, (23)

and

βt ≡ β

∫ 1

0
(ct+1(i))−γ /Pt+1(i) di∫ 1

0
(ct(i))

−γ /Pt(i) di
,

where
∫ 1

0
(ct(i))

−γ /Pt(i) di is the household marginal increase in utility with respect to nom-
inal income; ct(i) denotes customer i’s consumption basket in period t, and Pt(i) is the
associated price index.

The equilibrium distributions Ht(·) and Qt(·) are given

Ht(x) = Kt(ẑ(x)) and Qt(x) =

∫ ẑ(x)

z

G(ψ̂t(p̂t(z), z)) dKt(z) ,

for each x ∈ [Vt(z),Vt(z̄)], where ẑ(x) = max{z ∈ [z, z̄] : Vt(z) ≤ x}, Vt(z) = V̄t(p̂t(z), z),
and

Kt(z) = (1− η)

∫ z

z

∫ z̄

z

∆t−1(p̂t−1(x), x) dF (s|x) dKt−1(x) + η

∫ z

z

dF̄ (x) .
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