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Abstract

In this paper we study the role of product entry and exit in propagating nominal
shocks to the real economy. Toward that goal, we show that product turnover has
an extensive role in the aggregate economy and that the frequency and size of price
adjustments are negatively related to a product’s age. We exploit information from
product-level characteristics and the timing of products’ launches to provide empirical
support that these stylized facts can be rationalized by an active learning motive: firms
with new products are faced with demand uncertainty and can optimally obtain valuable
information by varying their prices. Building on the empirical findings, we construct
a menu cost model with active learning and quantify the importance of age-dependent
pricing moments for the propagation of nominal shocks. In the calibrated version of
our model, the cumulative response of output to a nominal shock more than doubles
compared to the standard menu cost model and this response is higher during economic
booms.
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1 Introduction

A recent surge of research on product innovation has shown that product creation and de-

struction is extensive in the U.S. and has emphasized its importance for macroeconomic

performance (e.g. Broda and Weinstein, 2010). In particular, new products are prevalent.

Argente, Lee and Moreira (2017) find that one in three products are either created or de-

stroyed in a given year and that more than 20 percent of the products are less than one year

old. While turnover rates are clearly high, whether product creation and destruction are

quantitatively important for the propagation of nominal shocks to the real economy is not

clear.1

In this paper, we study the real effects of a nominal stimulus in an economy featuring high

rates of product turnover and age-dependent pricing moments. To do so, we start by using a

large panel of US products to document new facts about the distribution of both the duration

and size of price changes over the product’s life cycle; a dimension which price-setting models

ignore. We show that pricing moments at the product level strongly depend on their age:

entering products change their prices twice as often as average products and the average size

of these adjustments is 50 percent larger compared to the average price change.2

We then explore the underlying reason why new products display such different pricing

dynamics. The empirical evidence from a select number of industries shows that the intro-

duction of a new product comes with a significant amount of demand uncertainty from the

firm’s perspective. These firms vary their prices to obtain valuable information about their

demand curves.3 We provide further evidence of this and extend the set of previous empirical

findings in the literature to a broad line of product categories. Exploiting variation in the

timing of product launch within retailers, we find that retailers carry forward information

obtained during the first launch to any subsequent launch of the same product at a different

location. As a result, retailers adjust prices less frequently and less aggressively after the

first launch of their product. Furthermore, the negative relation between a product’s pricing

moments and its age should be more pronounced for more novel products. To confirm this

relation, we construct a unique newness index that measures the novelty of a product. We

indeed find that more novel, entering products adjust their prices more often and by larger

amounts.

1Nominal shocks, as discussed in Lucas (2003), can affect real variables and relative prices in the short
run but not in the long run. Shapiro and Watson (1988) refers to these shocks as “demand” shocks.

2The patterns at exit are quite different as the frequency and absolute size of the price adjustments stay
mostly constant before exit at the product level. Nonetheless, the frequency and depth of sales increase
significantly at exit which indicates that firms attempt to liquidate their inventories before phasing out their
products. These findings are described in more detail in the appendix.

3Gaur and Fisher (2005), for example, surveys 32 US retailers and finds that 90 percent conduct price
experiments to learn about their demand.
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Our set of stylized facts is the first in the price-setting literature that focuses on age-

dependent pricing moments. While previous contributions have found heterogeneity in pric-

ing moments along other dimensions (e.g. Nakamura and Steinsson, 2009), none of them

has focused on a product’s life cycle. Our empirical findings provide insights on the under-

lying reason why firms adjust prices. This is relevant because the theoretical literature on

price-setting shows that different types of price changes have substantially different macroe-

conomic implications.4 We argue that the age distribution of products at a given point in

time is important for the propagation of a nominal shock to real output.

To support our argument, we build a quantitative menu cost model in the spirit of Golosov

and Lucas (2007). The model encompasses demand uncertainty and active learning similar

to that in Bachmann and Moscarini (2012).5 Whenever a firm’s product enters the market, it

is unaware about its elasticity of demand. However, the firm does know that its elasticity is

constant, and that it is either high or low. Firm-specific demand shocks prevent a firm from

directly inferring its type: a firm that sets a relatively high price and observes a low amount of

sales cannot distinguish between the fact that its product has a high elasticity of substitution

or whether the realization of its demand shock was simply low. To deal with this uncertainty,

firms engage in a Bayesian learning process and form beliefs about their elasticity.6 Changes

in its price alter the speed at which the firm learns about its elasticity of demand. Thus, the

firm balances its incentives between maximizing static profits and deviating in order to affect

its posterior beliefs in the most efficient way so that it acquires more valuable information

about its type. This is also known as the trade-off between current control and estimation.

As a firm ages and learns more about its elasticity, incentives for active learning decline and

the dispersion of price changes decreases. This is consistent with evidence from other markets

such as the newly deregulated market of frequency response in the UK. Doraszelski, Lewis

and Pakes (2016) find that in response to uncertainty, firms experiment with their bids by

adjusting them more frequently and by larger amounts. As firms acquires more information

about demand, the adjustment of the bids became less frequent and smaller.

Then, we calibrate this framework to standard pricing moments and our newly found

4Especially if the timing of the price change is endogenous (e.g. Caplin and Spulber (1987)) or exogenous
(e.g. Calvo (1983)).

5Their focus is very different as they study how negative first moment aggregate shocks induce risky
behavior. In their model, when firms observe a string of poor sales, they become pessimistic about their own
market power and contemplate exit. At that point, the returns to price experimentation increase as firms
“gamble for resurrection.” However, we observe no evidence for differential pricing moments at a product’s
exit in the data.

6Our work is related to the literature in optimal control problems with active learning that have been
studied in many areas of economics since Prescott (1972). Its application to the theory of imperfect compe-
tition consists of relaxing the assumption that the monopolist knows the demand curve it faces. The first
application of this concept can be found in Rothschild (1974). More recent examples can be found in Wieland
(2000b), Ilut, Valchev and Vincent (2015) and Willems (2016).
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pricing moments that vary over a product’s life cycle, and quantify the cumulative real

output effect of a nominal spending shock. Our findings indicate that the output response

is 2.3 times larger than the benchmark model with no demand uncertainty. The reasoning

behind this result is twofold. First, the learning incentives dampen the selection effect; that

is, pricing with active learning motives pushes firms away from the margin of price adjustment

and lessens the mass of firms that adjust their prices due to a nominal shock.7 Since firms

have an additional motive to change prices, they are less sensitive to changes in their costs.8

Second, the concept of a product’s life cycle introduces an additional form of cross-

sectional heterogeneity in the adjustment frequency. In an environment with active learning

incentives combined with menu costs, uncertain firms are willing to adjust their prices more

often to acquire information on their demand. These firms will most likely adjust their price

several times before firms with sharper beliefs adjust their price once after a nominal shock.

However, all price changes by more uncertain firms that occur after the one in response to

the nominal shock have no effect on real output because these firms have already adjusted

to the shock. Given that the model is calibrated to match the average frequency of the price

changes, firms that are more certain about their type significantly delay the adjustment of

the aggregate price level after a nominal shock. These firms tend to be older and have lower

frequency of price adjustment on average. As a result, this delay reduces the selection in

timing of price changes.9

The remainder of this paper is organized as follows: In Section 2, we present the data and

the main empirical findings. In section 3, we set up a quantitative model of menu costs that

is able to explain our stylized facts. In addition, we develop the relevant conditions for active

learning and describe what learning regimes might occur. In Section 4, we discuss our results

on the propagation of nominal shocks and compare our results with other models used in

the literature. We also discuss the sensitivity of our results to matching other moments that

vary over the product’s life cycle such as sales profiles and exit rates. We also extend the

model to include endogenous entry to quantify the response of output in periods of high and

7The term “selection” was introduced by Golosov and Lucas (2007) to indicate that firms that change
prices after a nominal shock are those whose prices are in greatest need of adjustment. Given that the
distribution of the size of price changes fully encodes this type of selection, a wide range of papers in recent
years have taken advantage of micro data to match the size distribution of price changes, such as Nakamura
and Steinsson (2008), Midrigan (2011), Karadi and Reiff (2016) and Vavra (2014).

8Although this logic is similar to the one described in Alvarez, Bihan and Lippi (2014) in relation to
the response of real output to nominal shocks, our framework does not fit the class of models for which the
kurtosis of the distribution of price changes is a sufficient statistic. This is because firms might optimally
choose to deviate from the static profit-maximizing price in absence of a menu cost in order to learn about
their demand elasticity.

9Recent contributions highlighting the importance of the selection in timing are Kiley (2002), Nakamura
and Steinsson (2009), Sheedy (2010), Alvarez, Lippi and Paciello (2011) and Carvalho and Schwartzman
(2015).
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low product entry. Section 5 concludes. The appendix provides proofs to the propositions,

additional empirical findings, and extensions of the model.

2 Stylized Facts of Product’s Life Cycle

In this section, we use a large scanner data set to show a new set of stylized facts on a product’s

life cycle in the US economy. We begin by showing the importance of new products both in

terms of their count and revenue relative to the aggregate. Then, we develop a set of facts

that clearly show that pricing moments at the product level are considerably different across

a product’s age; in particular near entry. At entry, the frequency of regular price changes,

the absolute size of regular price adjustments, and the cross-sectional standard deviation of

regular price changes are higher. All of these moments approximately settle to their respective

averages as the product matures. Furthermore, the fraction of large price changes, defined

as those changes larger than two standard deviations, is considerably larger at the beginning

of the product’s life cycle. We hypothesize that an active learning motive can rationalize

these facts. The last part of this section provides additional evidence consistent with this

interpretation by exploiting the variation in products’ entry time across different stores and

their characteristics across different product categories.

2.1 Data

The life cycle patterns of products’ prices have typically not been studied much as the

requirements on the data are quite stringent. Doing so requires a large panel of products with

information about their entry date and prices at a high sampling frequency. The Consumer

Price Index (CPI) Research Dataset, for example, is only available at a monthly frequency

and the age of products is unknown. All Entry-Level Items (ELIs) are added to the CPI

basket long after its first appearance in the national market.

For this reason, we rely on the IRI Marketing data set instead that provides more than ten

years of data at the store-product-week level. The data is generated by point-of-sale systems:

each retailer reports the total dollar value of its weekly sales and total units sold for each

product. A product is identified by its Universal Product Code (UPC), a code consisting

of 12 numerical digits that is uniquely assigned to each specific product and represents the

finest level of disaggregation at the product level.

The data contains approximately 2.4 billion transactions from January 2001 to December

2011 that represents roughly 15 percent of household spending in the Consumer Expenditure

Survey (CEX). Our sample contains approximately 170,000 products and 3,000 distinct stores
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across 43 metropolitan areas (MSA). The data covers 31 product categories and includes

detailed information about each product such as its brand, volume, color, flavor, and size.10

Given the properties of the data, we can identify the first appearance of a UPC in a

certain store by using the retail and product identifiers. We assume that if a UPC changes,

some noticeable characteristic of the product has also changed. This is because it is rare

that a meaningful quality change occurs without a change to its UPC. Considering each

UPC as a product is, in fact, a very broad definition since it includes classically innovative

products, which are “breakthrough” products that deliver innovation to an existing or new

product category; line extension products, which are new products within an already existing

category; and temporary products, which have a short life cycle and are typically seasonal.

We find that product line extensions, such as flavor or form upgrades or novelty and /seasonal

items, are much more prevalent than the introduction of new brands.

Using UPC and retailer identifiers, we are able to determine at what week and store each

product first appears. We define entering products as those that enter the US market after

January 2002. Our data starts from January 2001, thus an entering product is one that has

no observable transactions in any store across the US for at least one year. This assumption

avoids the inclusion of products with a left-censored age. In addition, we only consider

products that entered the market before the first week of 2007. We impose this restriction

for two reason. First, the prices of products born during downturns can have substantially

different patterns than those of products born in normal times.11 More importantly, IRI

Symphony undertook a substantial reorganization of its product categories and expanded

their scope at the beginning of 2007. Thus, the data after this specific date might include

some entering products that might not correspond to actual product introductions.12 By

restricting our sample of entering products between January 2002 and January 2007, we

10The product categories include Beer, Carbonated Beverages, Coffee, Cold Cereal, Deodorant, Dia-
pers, Facial Tissue, Photography Supplies, Frankfurters, Frozen Dinners, Frozen Pizza, Household Clean-
ers, Cigarettes, Mustard & Ketchup, Mayonnaise, Laundry Detergent, Margarine & Butter, Milk, Paper
Towels, Peanut Butter, Razors, Blades, Salty Snacks, Shampoo, Soup, Spaghetti Sauce, Sugar Substitutes,
Toilet Tissue, Toothbrushes, Toothpaste, and Yogurt. The dataset is discussed in more detail in Bronnen-
berg, Kruger and Mela (2008). See also Alvarez, Bihan and Lippi (2014), Chevalier and Kashyap (2014),
Gagnon and Lopez-Salido (2014), Stroebel and Vavra (2014) and Coibion, Gorodnichenko and Hong (2015)
for applications of the data to related questions.

11Moreira (2015), for example, provides evidence that the average business size across cohorts is significantly
affected by aggregate economic conditions at inception.

12More specifically, IRI undertook the following actions: i) reorganization of private-label items (i.e. organic
private labels are broken out for some categories), ii) dropping of UPCs that have not moved in past years,
iii) collapse of UPCs into a main UPC to avoid clutter (i.e. products that came to a store as part of a special
promotional code rather than with a standard UPC code), iv) reorganization of categories (i.e. a category
might have increased in scope and as a consequence experienced an increase in items), and v) addition of UPCs
that were introduced at the beginning of each stub. All of these are consistent with changes in the number
of entering and exiting UPCs due to changes in the product stub rather than new product introductions or
products being phased out.
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avoid this reclassification bias.

Further, in order to minimize concerns of potential measurement error in the calculation

of product-level entry and exit, our baseline sample excludes private label products and only

considers products that last at least two years in the market. We exclude private label

items from the analysis because all private-label UPCs have the same brand identification

so that the identity of the retailer cannot be recovered from the labeling information. We

exclude short-lived products in order to minimize the problem that some UPCs might get

discontinued only to have the same product appear with a new UPC as noted by Chevalier,

Kashyap and Rossi (2003). We also drop promotional items or products with very little

revenue to minimize biases due to measurement error.

2.2 The Importance of New Products

Broda and Weinstein (2010) emphasize the importance of entering and exiting products for

the aggregate performance of the US economy. Argente, Lee and Moreira (2017) show that

product turnover in the US is substantial as one third of all products are either created

or destroyed in a given year and more than 20 percent of US products are aged less than

one year. In this subsection, we sketch an identical picture in our sample to highlight the

importance of entering products. We begin by using information on the number of new

products, exiting products, and the total number of products in each category c to define

aggregate entry and exit rates at the product level:

n(t, s) =

∑
iNi(t, s)∑
i Ti(t)

x(t, s) =

∑
iXi(t, s)∑
i Ti(s)

where Ni(t, s), Xi(t, s), and Ti(t) are number of entrant products, exit products, and total

products in period t relative to period s. We define the entry rate in period t relative to s as

the number of new products in period t relative to period s as a share of the total number

of products with strictly positive sales in period t. A new product is one that records at

least one transaction in any store in period t and that was not sold in any store in period s.

Creation and destruction are the revenue weighted analogues of the entry and exit rates.

Using a scanner dataset collected at the store level offers the advantage of observing, for

the categories available, the entire universe of products for which a transaction is recorded in

a given week. For this reason, we can distinguish between products entering the market and

products being launched at each store, where our unit of observation is every UPC×Store
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pair. We find a substantial degree of entry of products at both levels.

Table I reports the entry and exit rates for the case in which t and s are one and five years

apart. It shows that 15 percent of the UPCs in the market and on average 27 percent of the

products in each store entered in the last year. Approximately 45 percent of the products in

the market entered in the last five years accounting for 30 percent of total expenditures. At

the store level, 66 percent of all products sold were first introduced by the store in the last

five years and they account for more than half of the total revenue of the store. Although

the exit rate is very similar to the entry rate of products, destruction is lower than creation.

This lower rate means that consumers spend more on new products than on products that

are about to exit. The rate of product turnover indicates that at any point in time, there is

a large amount of products being launched or being phased out.

Panel A in table II shows that the median duration of a product in a given store is only

slightly above three years.13 The remarkably large rates of product creation and destruction,

both at the store and at the market level, along with a short product life cycle indicate

that the pricing of entering products are relevant for determining the dynamics of aggregate

prices.

2.3 Empirical Strategy

To study the price dynamics of products along their life cycle, we begin by computing the

average retail price in a given week:

Pmcjst =
salesmcjst

unitsmcjst

where m, c, j, s, and t index markets (at the MSA level) are product categories, UPCs,

stores and time respectively. A considerable advantage of the IRI Symphony is that it

provides information on whether and when a product was on sale in a certain store (the

so-called “sales flag”) that is absent in other scanner data sets. Since our goal is to study

the speed of price adjustment following a nominal shock, we focus on studying the life cycle

patterns of regular price changes given that retailers’ use of sales in our data do not vary

with macroeconomic conditions.14 Nonetheless, the main stylized facts discussed below are

13Since our dataset ends the last week of 2011 and we are considering products that entered the last week of
2006 at the latest, right censoring is only an issue for products that last more than 261 weeks in the market.

14Using the same data set, Coibion, Gorodnichenko and Hong (2015) find that retailers’ use of sales does
not vary with the unemployment rate. Anderson, Malin, Nakamura, Simester and Steinsson (2013) argue that
sales prices are governed by sticky plans and they are planned in advance according to a “trade promotion
calendar”. They also find that retailers do not respond to macroeconomics shocks by adjusting the size or
frequency of sales. In addition, we do not find evidence that retailers use sales to actively learn at entry
as neither the frequency or the size of sales are larger. See figure A.XV in the online appendix for a more
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robust to the inclusion of sales in the analysis.

We adopt the same conventions as Coibion, Gorodnichenko and Hong (2015) to distinguish

between regular price changes and sales. A regular price change is defined as any change in

price that is larger than one cent or 1 percent in absolute value. For prices larger than 5

dollars in value, this cut-off is 0.5 percent. To identify sales, we use the sales flag provided in

the data, but our results are robust to applying the sales filter introduced by Nakamura and

Steinsson (2008).15 The size of a price change is calculated as the log difference between the

price levels in the current and the previous week. Thus, we get:

∆Pmcjst = ln(Pmcjst)− ln(Pmcjst−1)

Let a = 1, . . . , A denote the number of weeks since entry (which we will define as the age of

the product) where a = 1 denotes entry. To assess the movements of the pricing moments

over the life cycle of a product, we adopt the following empirical specification:

Yjsct = α +
A∑
a=1

φaD
a
js + θjs + τt + γc + εjsct (1)

where j, s, t and c are the UPC, store, time period and cohort c = t− a the product belongs

to respectively. Yjstc is the variable of interest (e.g. the price change indicator or the size

of the price change). Da
js is a dummy variable that takes the value of one if the product is

in its ath week since entry. θjs captures the fixed effects at the UPC-store level whereas τt

and γc denote time and cohort fixed effects respectively. We are interested in the regression

coefficients {φa}Aa=1 which capture age heterogeneity on the pricing moment of interest.

In our empirical specification, it is not possible to identify the heterogeneous effects of

age conditional on a product’s cohort and time period due to perfect collinearity. To resolve

this, we estimate equation 1 using two different normalizations. The first assumes that trends

appear only in cohort effects. In this case, we replace the time fixed effects with the seasonally

adjusted unemployment rate at the level of Metropolitan Statistical Area (MSA) to control

for local cyclical economic variation.16 The second assumes trends only appear in the period

elaborate discussion on this issue.
15Specifically, under this approach, a good is on sale if a price is reduced but returns to its same previous

level within four weeks. Coibion, Gorodnichenko and Hong (2015) use two approaches to identify a price
spell. The first treats missing values as interrupting price spells. In the second approach, missing values do
not interrupt price spells if the price is the same before and after the periods with missing values. Since the
incidence of sales from applying these two approaches does not significantly differ from the one identified by
the sales flag provided in the IRI Marketing dataset, we use the union of sales flags obtained from applying
these two approaches and the flag provided in the IRI Marketing data to identify the incidence of sales. Our
results are not sensitive to any of these choices.

16Some examples of studies that use this proxy approach are Deaton and Paxson (1994), Gourinchas and
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effects. In this case, the time fixed effects are included in the estimation of equation 1 and we

use the local unemployment rate to represent the cohort fixed effects. Our baseline results

use the latter approach, but our results are not sensitive to the chosen normalization.

2.4 Pricing Moments over the Life Cycle of US Products

We first use regression specification 1 with a price change indicator as the dependent variable.

Figure 1 plots the frequency of regular price changes over the life cycle of a product. The

dots represent the estimates of the age fixed effects {φa}Aa=1 computed with equation 1.17

The newer products clearly have their prices changed more often. We state our first stylized

fact:

Empirical fact 1. The average frequency of price adjustment declines with the product’s

age. The decline is most pronounced at the early stage of the product’s life cycle as entering

products change their prices twice as often as the average product.

The frequency of price adjustment is almost 4 percentage points higher at entry and takes

approximately 20 weeks to settle to its average value of 5 percent. The magnitude of this

significantly higher frequency is best reflected in the expected amount of time it takes for

a product to change its price.18 If we maintain the frequency of adjustment at entry, then

a price should change approximately every 12 weeks. This is twice as often relative to the

average of 24 weeks that we observe in the data.

Our findings are consistent with those in Alvarez, Borovicková and Shimer (2015). They

test whether hazard rates of price changes depend on the age of the product once unobserved

heterogeneity is taken into account. They find this is the case and argue that this statistical

model is a reasonable representation of the data. Figure A.I in the appendix decomposes these

price changes into increases and decreases. We find similar results for both the frequency of

price increases and decreases.

In order to study whether the magnitude of these price adjustments also changes over the

life cycle of the product we use a similar approach but instead use the absolute size of price

changes as the dependent variable. Figure 2 depicts our results. During the first few months,

the absolute value of price changes is much larger and almost 5 percentage points higher

than the average which amounts to approximately 9 percent. Further, the dispersion of price

changes as measured by the weekly cross-sectional standard deviation is almost 40 percent

Parker (2002), Aguiar and Hurst (2013), and De Nardi, French and Jones (2010).
17Specifically, we plot α̂+ φ̂a for every α ∈ {1, . . . , A = 50}. α̂ is the unconditional average of the frequency

of price changes of a product that has been in the market for 50 weeks.
18This is equal to −1/ln(1− f) where f denotes the frequency of price adjustment.
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larger during the first four months after entry with respect to its level 12 months after the

product is launched. Importantly, this fact holds for both price increases and decreases as

shown in figures A.II and A.III in the appendix.19 This leads to our second stylized fact:

Empirical fact 2. The absolute size of price adjustment declines monotonically with

product’s age. The decline is most pronounced at the early stage of the product’s life cycle as

the average absolute size of entering products is almost twice as large as the average change.

Our baseline specification uses a non-parametric specification for the age of a product. Our

stylized facts remain robust whenever we use a linear specification in the age of a product.

This is summarized in table III. Thus, we conclude that firms not only price more often but

also in a more extreme fashion during the early stages of their products’ life cycles.

Next we investigate whether very large price changes are more or less frequent as products

get older. To do so, we follow the approach by Alvarez, Bihan and Lippi (2014) to minimize

the issue of heterogeneity across products and stores. We define “cells” at the UPC-store

level, say (j, s) = i, and standardize each price change at this level through zit = (∆pit−µi)/σi
where µi and σi are the mean and standard deviation of price changes in cell i across time.

Price changes equal to zero are disregarded.

Figure 3 shows the distribution of regular price changes larger than two standard devi-

ations as a function of the age of the product. We observe a sizeable share of large price

changes close to entry particularly during the first 20 weeks. About 40 percent of the price

changes larger than two standard deviations of the product life cycle occur during these

weeks. The distribution of large price changes is roughly uniform after that.20 Figure A.V in

the appendix shows that this occurs for price changes in both directions.21 Our third stylized

fact is then summarized by:

Empirical fact 3. About 40 percent of large price changes occur during the first 20

19Bachmann and Moscarini (2012) focus on the pricing moments of products at exit. In their work, at the
end of the product life cycle, the returns to price experimentation increase as firms “gamble for resurrection”.
We found little support for this mechanism in the IRI Marketing data. Figure A.XIV in the appendix shows
that both the frequency and size of regular price changes stay mostly constant at exit. Nonetheless, figure
A.XIV shows that there is an increase in the frequency of sales during the last weeks of the life cycle of the
product. We interpret this pattern as an increase in “clearance” sales.

20This finding shows that idiosyncratic shocks from fat-tailed distributions need to be used with caution
when used to generate large price changes. In standard menu cost models it is often assumed that these
shocks arrive at a constant rate. This assumption includes the family of Poisson shocks used in Midrigan
(2011) and Karadi and Reiff (2016) where the distribution of large price changes is independent of age. This
is relevant as fat-tailed shocks have drastic implications on the degree of non-neutrality. Their presence
reduces the selection effect after a monetary shock as the mass of firms responding to it is smaller.

21Figure A.VI in the appendix shows that our results are not sensitive to our standardization since the
fraction of non-standardized price changes larger than 30 percent shows the same pattern.
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weeks of the product’s life cycle. A quarter of them are observed in the first three weeks of

a product’s entry.

2.5 The Case for Active Learning

Our empirical findings so far have not shed any light on the economic mechanism that could

rationalize them. In this section, we argue that active learning can rationalize our empirical

findings, and we provide additional empirical evidence to support this claim. There is al-

ready a substantial body of literature that shows that firms actively use their prices to obtain

information about their demand. This is widespread across the US economy according to

empirical and anecdotal evidence from Gaur and Fisher (2005, US retailers), Einav, Kuch-

ler, Levin and Sundaresan (2015, online listings on eBay), and Campbell and Eden (2005,

grocers).

Whenever firms face uncertainty over the demand of their product due to some aggregate

(e.g., industry- or location-specific shocks) or idiosyncratic (e.g., consumer taste shocks)

factors, they can gain information from large movements in a product’s price. This is because

these factors are less likely to be important whenever a firm’s sales move due to large,

deliberate variations in their price. At entry, a firm might not be aware of some of its

demand characteristics. As a result, entering products should change their prices more often

and by larger amounts.22

Further, active learning has two additional testable implications. First, if the same prod-

uct is launched at different times or different locations by the same retailer, we should observe

that the patterns of learning attenuate after the introduction. This is true when assuming

demand characteristics are persistent across time and space. Under this scenario, retailers

incorporate attained information from the introduction to later rounds in which the incen-

tives for learning are dampened. Second, if firms are actively learning about their demand,

then we should observe that active learning increases when the demand for the product be-

ing launched is more uncertain. This increase can occur if the product in question is more

22An alternative explanation could be penetration pricing. Under this scenario, firms increase long-run
profits by launching a low-priced product to secure market share or a solid customer base. This tactic then
results in higher future profits as the firm is able to benefit from the consumer’s higher willingness to pay.
In the appendix, we provide evidence that this strategy does not seem to be consistent with our empirical
findings. We do not find evidence of lower entry prices (figure A.IX) or rapid price increases at the beginning
of the product’s life cycle (figure A.VIII). In fact, figure A.VII shows that price increases and decreases are
mostly balanced after entry. Conditional on having at least two price changes during the first 6 months,
less than 15 percent of the products record only price increases and the probability of two consecutive price
increases is less than half. To provide further evidence, in appendix B.3 we extend the standard price-setting
model to include costumer base concerns and show that the implications of the model are not consistent with
several of the stylized facts we have documented.

11



novel or innovative. The nature of the IRI Marketing data allows us to test both of these

conjectures.

2.5.1 Timing of Product Launch

The first conjecture consists of studying whether retailers carry forward any information

obtained during the first launch to any subsequent launch of the same product at a different

location. For this purpose, we take advantage of the variation in products’ launch dates

across different periods in time or locations. If information is held at the retailer level and

they are uncertain about some demand characteristics, then retailers should adjust prices

less frequently and less aggressively after the first launch of their product.23

To show this, we first divide every UPC-store pair into two different “waves.” A UPC-

store pair belongs to the first wave if it was launched by a retailer before the completion of

the first year since the UPC was first introduced in the national market. Then, a UPC-store

pair belongs to the second wave if it was introduced by the same retailer at least one year

after the product was first launched at the national level.

Figure 4 shows that after following the baseline regression specification 1 for each wave,

products in the first wave have a higher frequency of adjustment at entry than those in the

second wave. The figure also shows the same patterns for the absolute size of price changes.

On average, at entry, the size of price changes is 7 percent larger than the mean for products

in the first wave and only 4 percent larger for products in the second wave. The size of

absolute price changes then converges back to the mean of its respective wave.

In the appendix, we show that these findings also hold if we condition on the fact that

waves should occur across different cities and, importantly, these patterns occur for both price

increases and decreases. These figures show that retailers obtain relevant information about

the demand their product faces in the first wave. As a result, their incentives to learn at the

time of entry in the second wave are then lower. Thus, there is less need for active learning,

and we see that the age-dependence of products’ pricing moments become attenuated.

2.5.2 Newness Index

To strengthen our findings on learning, we confirm the hypothesis that the age-dependence of

pricing moments is more pronounced for products that are more novel. Our definition of what

constitutes a “new” product in our earlier empirical exercises is relatively broad. However, it

is very well possible that product introductions vary significantly in their degree of novelty.

23We assume that markets across space are not completely independent. This assumption means that any
information obtained on the local demand of some product in Chicago is at least somewhat informative for
another city such as New York.
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A new product could be an entirely new brand, exist within an incumbent brand, or simply

be an improvement or variation on an existing product (e.g., new color or flavor). In order

to quantify the novelty of a product, we first compare the pricing behavior of retailers when

launching a new brand relative to the rest of the products. The reasoning for this comparison

is that brand extensions are more rare and constitute larger innovations relative to products

already in the market. We do so using the following regression specification:

Yjsct = α + γagejsct + φagejsct × NewBrandjsct + θjs + τt + γc + εjsct. (2)

where as before j, s, c, and t are the UPC, store, cohort and time period, respectively. The

dependent variable Yjsct either represents the price change indicator of the absolute size of

price changes. NewBrandjsct is an indicator that equals one if the product introduction is a

new brand with a new volume. γ captures the heterogeneity of pricing moments in age, and φ

measures the strength of this heterogeneity with respect to the novelty of the product’s brand.

Not surprisingly, the effect of age is negative and strongly significant as γ only summarizes

the patterns described in section 2.4 with a linear function. More importantly, table IV shows

that the coefficient for the interaction term φ is also negative and significant and shows that

newer products tend to adjust their prices more often and by larger amounts during the first

six months of their life cycle.

In order to provide a more comprehensive measure of the novelty of each product, we

construct a newness index that uses detailed information about the characteristics of each

UPC provided in the IRI Marketing data set. The index counts the number of new and

unique attributes a product has at the time of its introduction relative to all of the other

products ever sold by a store within the same category. Our measure assigns a higher value

to products with more unknown features to the store. Our aim is to capture the novelty of

a product from the store’s perspective in order to study whether its pricing patterns differ

when it sells a product whose demand parameters are more uncertain (i.e., novel).

We define a product j in category k as a vector of characteristics Vkj = [vj1, vj2, .., vjNk ]

where Nk denotes the number of attributes we observe in category k in our data.24 Then,

if Ωkst contain the set of product characteristics for each product ever sold in category k at

store s at time t, then the newness index of a product j in category k, launched at time t,

24For example, the product category beer consists of Nbeer = 9 attributes for each barcode: vendor, brand,
volume, type (e.g., ale or lager), package (e.g., can or keg), flavor, size (e.g., bottle or six pack), calorie level
(e.g., light or regular) and color.
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and in store s is defined as follows:

NIkjst =
1

Nk

Nk∑
i=1

1[vji /∈ Ωkst]. (3)

For example, if a new product within the beer category enters with a flavor and a volume

that has never been sold at the store before, its newness index is 2/9. We assume that each

attribute is equally weighted in order to remain agnostic about the relative importance of

each attribute to the degree of newness of a product.25 To understand if stores launching

more novel products are actively learning, we estimate:

Y k
jsct = α + γagejsct + φagejsct × NIkjst + θjs + τt + γc + εjstc. (4)

where φ is our coefficient of interest because it summarizes the degree of heterogeneity in a

product’s age depending on its novelty. Table V shows that our index has substantial power

to explain the price-setting patterns we observe at entry. The index confirms the second

testable conjecture on learning by showing that more novel products change prices more

actively at the beginning of their life cycle. This evidence provides additional support to the

active learning hypothesis. The remainder of the paper takes these empirical facts as given

and extends the standard price-setting models to include the concept of the product’s life

cycle through an active learning mechanism.

3 Quantitative Model

Our framework is a discrete time menu cost model in the tradition of Golosov and Lucas

(2007) in which firms face uncertainty on their demand curves. A firm’s type, that is, its

elasticity of demand, is either high or low, but the firm does not know its type. As a result,

a firm forms beliefs on its type. It can adjust its price to change the speed at which its

beliefs get updated. Thus, a firm faces a trade-off between maximizing its static profits and

gaining more information about its type when choosing its price. The active learning mech-

anism is based on Mirman, Samuelson and Urbano (1993) and its implementation in general

equilibrium is closely related to Bachmann and Moscarini (2012). However, we deviate from

their framework by removing the firm’s fixed costs of production. This removal eliminates

the “gambling for resurrection” effect for which we cannot find evidence in our micro-level

25Our index should only be considered as an approximation of the novelty of an item given that it relies
heavily on the number of attributes provided by the data that might not describe a product in its entirety.
On average, we observe ten product characteristics in each category.
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data. Furthermore, the moments in the data indicate that the frequency and absolute size

of price changes converge from above to a fixed level over time. This convergence indicates

that the incentives for price changes are not driven by active learning alone. We deal with

these empirical regularities by adding a menu cost and firm-level idiosyncratic shocks. We

choose to model active learning in the most transparent manner that is still consistent with

the data. Nonetheless, we explore several extensions to our benchmark model to show its

robustness (section 4.4) and to highlight further implications (section 4.3).

3.1 Households

Households in the economy maximize the expected, discounted utility over aggregate con-

sumption Ct and labor supply Lt that is characterized by:

E0

∞∑
t=0

βt
[
C1−θ
t − 1

1− θ
− ω

1 + χ
L1+χ
t

]

where Et denotes the expectations operator conditional on information available to the house-

hold at time t. Households have CRRA preferences over an aggregate consumption good with

risk aversion parameter θ and the level of disutility is denoted by ω. The inverse Frisch elas-

ticity is given by χ and households discount by a factor β per period.

The aggregate consumption good Ct is a Cobb-Douglas composite of two Dixit-Stiglitz

indices of differentiated goods:

Ct = Cη
1tC

1−η
2t with Cit =

[∫
k∈Ji

(
αit(k)

) 1
σi
(
cit(k)

)σi−1
σi dk

] σi
σi−1

There are two continua of differentiated goods consisting of perishable consumption units

or services. A good is indexed by a pair (i, k) where the first index i ∈ {1, 2} denotes the

good’s type. Its variety within a group type is denoted by k ∈ Ji. Goods come in two

types or baskets: J1 and J2 are the groups of specialties and generics respectively. A group

Ji is characterized by its Lebesgue measure ϕi. Varieties within the first basket are hard

to substitute with each other whereas generic varieties are mutually substitutable with a

relatively high elasticity of substitution, thus we have σ2 > σ1. Each good is assumed to

be produced by a single monopolistically competitive producer.26 Each good is identified

through the index pair (i, k). We assume that i is time-invariant whereas the consumer’s

variety-specific preference shocks αit(k) are drawn every period, independently over time,

and within and across group types. Draws are the same for all consumers. Households’

26As a result, we will use the term “firm” and “product” interchangeably.
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decisions are taken after observing these taste shocks.

Within each period, households choose how much to consume of each differentiated good

to maximize the level of the aggregate consumption good Ct. For a given level of spending St,

we obtain the following downward-sloping demand curve for each differentiated good (i, k):

cit(k) = αit(k)

(
pit(k)

Pit

)−σi ηiSt
Pit

(5)

where, with some abuse of notation, the income shares for each basket are given by η1 = η

and η2 = 1 − η. pit(k) denotes the price of a good (i, k) in period t and the price index of

group i is denoted by:

Pit =

(∫
k∈Ji

αit(k)
(
pit(k)

)1−σi dk

)1/1−σi
(6)

These price indices satisfy the following equalities:

P1tC1t + P2tC2t = St

P η
1tP

1−η
2t = Pt

PtCt = St

Thus, the aggregate price level Pt is such that PtCt is the minimum amount of expenditure

necessary to obtain Ct units of the aggregate consumption good. We assumed that the

realization of taste shocks are independent across groups. Since there is a continuum of

goods within each basket i, we can use a law of large numbers.27 This implies:

Pit =

(∫
k∈Ji

pit(k)1−σidk

)1/1−σi

where the law of large numbers gives us that
∫
αit(k)dk

p→ E(αit(k)) = 1 since we normalize

the expected value of the taste shocks to be equal to unity.

Households have access to a complete set of Arrow-Debreu securities. Therefore, the

period t budget constraint is characterized by:

PtCt + Et (qt,t+1Bt+1) ≤ Bt +WtLt +
∑
i

∫
k∈Ji

Πi
t(k)dk

where Wt denotes the nominal wage rate and Πi
t(k) is the profit that households receive from

27In particular, we use the Glivenko-Cantelli theorem. The argument is identical to the one in Bachmann
and Moscarini (2012).
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owning the firm producing good (i, k). Bt+1 denotes the state-contingent payoffs in period

t + 1 from purchasing assets in period t. These claims are priced in period t by the unique

(stochastic) discount factor qt,t+1. The first order conditions of a household’s intertemporal

maximization problem are then:

qt,T = βT−t
(
CT
Ct

)−θ
Pt
PT

(7)

Wt

Pt
= ωLχt C

θ
t (8)

These equations describe the determination of asset prices and labor supply.

3.2 Firms

In contrast to most state-dependent pricing models, firms in our framework set prices under

incomplete information. At any point in time t, a firm (i, k) can observe its total amount of

sales qit(k) after setting some price pit(k). Due to the Dixit-Stiglitz specification above, these

sales are comprised of:

qit(k) = αit(k)

(
pit(k)

Pit

)−σi ηiSt
Pit

Given that this demand specification is log-linearly separable, we obtain:

log
(
qit(k)

)
= log(αit(k))− σilog

(
pit(k)

Pit

)
+ log(ηiSt)− log(Pit)

= −σilog(pit(k)) + log(St) + (σi − 1)log(Pit) + log(ηi) + log(αit(k))

where we define log(αit(k)) = εit(k). If the time index t is temporarily dropped and a mo-

nopolistically competitive firm producing good (i, k) is considered, then with some abuse of

notation, we can rewrite the above sales equation as:

q = −σip+ s+ µi + εk (9)

A firm (i, k) does not know to which group it belongs to, that is, it does not know whether

its type satisfies σi = σ1 or σi = σ2. Furthermore, it does not observe the realization of the

(log) taste shock εk. From the firm’s point of view, there is no longer a one-to-one mapping

between quantities and prices. Whenever a firm sets a price p, demand q can be high for three

reasons: (1) the variety belongs to a basket within which substitution is hard (and therefore

the market power is high), that is, σi = σ1, (2) the realization of the taste shock εk is high, or

(3) the basket to which the firm belongs to only has a few competitors (i.e., low ϕi) so µi is
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high and the consumer spends much of his or her income on goods in basket i. For example,

if a firm knows its elasticity of substitution σi but does not know the realization of the taste

shock εk and hence takes expectations over it, then the optimal set price is characterized

by p∗ = σi
σi−1

MC where MC denotes the firm’s marginal cost. Thus, we immediately can

deduce Pi =
(

σi
σi−1

MC
)
ϕ

1/1−σi
i and log(Pi) = 1

1−σi log(ϕi) + log
(

σi
σi−1

MC
)

. Since σi > 1,

log(Pi) strictly decreases with ϕi.

A firm does observe the amount of sold quantities q of its product. It can use this

information to learn about its elasticity of demand and update its type. As a result, a firm

might want to deviate from the static profit maximizing price to learn more about the price

elasticity of its corresponding basket. Our quantitative results rely on CES preferences that

most of the price-setting models use. However, our results on firm-level learning do not rely

on these specific type of preferences. The results will hold as long as the demand function is

linearly separable after some uniform transformation.

Taste shocks are specific to each variety, but these are unobserved by the firm. Further-

more, a firm is unaware of its type i but uses observed sales as a informative signal to learn

about its type. As a result, its pricing policy is independent of (i, k) and we can drop this

index without loss of generality for determining the optimal pricing strategy. Our setup im-

poses the following timing on the firm’s pricing decisions and the consumer’s realized demand

shock for each period.

1. A firm decides on its price p before the realization of the demand shock εk.

2. The shock εk is realized and households decide to consume exp(q) = exp(−σip+s+µi+εk)

conditional on the set price p.

3. The firm is contractually obliged to supply exp(q).

Let λ denote the firm’s prior belief in a low elasticity of demand (i.e. σi = σ1) and f the

probability distribution function of εk. Whenever a firm observes log sales q and aggregate

income s, and sets some price p, it can update its prior beliefs to the posteriors λ′ according

to Bayes’ rule:

λ′ = B(λ, p, q, s)

=
λf(q + σ1p− µ1 − s)

λf(q + σ1p− µ1 − s) + (1− λ)f(q + σ2p− µ2 − s)

=

[
1 +

1− λ
λ

f(q + σ2p− µ2 − s)
f(q + σ1p− µ1 − s)

]−1

However, dynamic decision-making requires knowing the evolution of beliefs conditional on a

given state i, where the true data generating process for sold quantities is q = −σip+s+µi+εk.
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The firm rationally anticipates that the price it sets will affect the informative quantity it

will observe the period after. Prices in period t affect a firm’s future beliefs in period t + 1

conditional on the true state being i. As a result, the firm’s motives are not solely rooted in

the maximization of its static profits because a firm’s pricing strategy can increase the value

of its sales’ informativeness. The posterior belief, conditional on state i, is equal to:

bi(λ, p, ε) = B(λ, p,−σip+ s+ µi + ε, s).

In the remainder of this paper, we assume that log demand shocks are normally distributed.

Thus, we get εk ∼ N(0, σ2
ε). After some algebra, we can derive that:

bi(λ, p, ε) =

(
1 +

1− λ
λ

exp

(
1
2
(−1)1(i=2)

[(
ε

σε

)2

−
(
p · ∆σ

σε
− ∆µ

σε
+

ε

σε

)2
]))−1

(10)

where ∆σ ≡ σ2 − σ1 > 0. Expression 10 shows that the speed of learning or the rate at

which posterior beliefs change is heavily influenced by the firm’s pricing decision. In fact,

the expression indicates that posterior beliefs are more responsive to prices whenever the

signal-to-noise ratio ∆σ/σε is high. Further, if the firm sets a price equal ∆µ/∆σ, then the

posterior beliefs do not change regardless of the realization of the taste shock. As a result,

at this price, beliefs are self-reinforcing.

This model of active learning with discrete types is parsimonious and is a sufficient ingre-

dient for generating the empirical findings of section 2.4. Alternatively, we could work with a

continuum of types such that a firm’s beliefs are captured through a probability distribution.

In appendix B.1, we show that it is unlikely that our quantitative results will be affected

under this model because it shares many of the same features as the model with discrete

types.

However, there are additional advantages to using discrete types. First, it simplifies the

computational procedure significantly. The simplest case of active learning with a continuum

of types that is still tractable features uncertainty about its demand elasticity only and

Gaussian conjugates its priors. Even under this case, a firm’s beliefs will consist of at least a

pair, that is, a mean and a variance, which is more than the single state for the prior belief

in our setup. As a result, our computational procedure suffers much less from the curse of

dimensionality. Second, Kiefer and Nyarko (1989) show that under a continuum of types

there are multiple limit beliefs that are outcomes of optimal policy but that do not coincide

with the true parameter values. Under discrete types we show that only one limit belief

exists that does not converge to the truth.
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3.2.1 Two Period Model with Active Learning

To display the active learning mechanism as clearly as possible, we use a model with only

two periods. If the firm is type i, then its profits are conditional on setting a price p equal

to Πi(p). We impose that Πi(·) is strictly concave, which is standard.

By construction, the firm only cares about maximizing myopic profits in the second period.

These myopic profits are a linear combination of the concave functions Π1(p) and Π2(p) based

on the prior belief λ, that is, M(p;λ) = λΠ1(p) + (1− λ)Π2(p). Thus, we must have:

V2(λ) ≡ max
p∈P

M(p;λ)

Therefore, its maximizer pM(λ) is unique and monotonically increasing in the belief λ.28

In the first period however, the firm must balance its incentives between obtaining higher

myopic profits and sharpening its posterior beliefs to increase its continuation value.

V1(λ0) = max
p∈P

{
M(p;λ0) + βEε

[
λ0V2(b1(λ0, log(p), ε)) + (1− λ0)V2(b2(λ0, log(p), ε))

]}

where bi(λ0, log(p), ε) is defined as in (10) and we denote its maximizer as p∗(λ0). Further,

the policy pM(λ) is the optimal pricing function whenever the firm is unable to affect its

posterior beliefs. As a result, a firm actively learns with its price at the belief λ0 if it deviates

from this myopic price function. This deviation |p∗(λ0)−pM(λ0)| reflects the firm’s incentive

to gain information to increase the speed of learning at the expense of its current period

profits.

Convexity of the value of information. A relatively large literature has established that the

firm’s active learning is formally captured by a continuation value that is convex in a firm’s

beliefs.29 The following lemma establishes this feature.

Lemma 1. The value function V2(·) is convex and C2.

Proof. See appendix A1.1. �

The result is shown explicitly for the two period setup. However, it is generalizable to the

infinite period framework. The convexity of V2(·) is important because, to establish sufficient

conditions for active learning, we follow Mirman, Samuelson and Urbano (1993). In their

28A formal argument can be found in proposition 2 in the appendix.
29For example, this argument can be found in Aghion, Bolton, Harris and Jullien (1991) and Mirman,

Samuelson and Urbano (1993).
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proposition 1, the convexitity of V2(·) is one of their two sufficient conditions. Informally,

the second condition states that adjustments in prices must be capable of increasing the

informativeness of a firm’s sales.

Incentives for active learning. A firm sets its price to identify its elasticity of substitution

by “separating” these two possible demand curves as far apart as possible. This separation

indicates that the price at which the demand curves cross in expectation results in sales that

are completely uninformative. Thus, we deduce that the expected demand curves cross if

and only if p = ∆µ
∆σ

. This intersecting price can be defined as the confounding price p̂. If the

firm decides to choose its active learning policy p∗(λ) to be equal to p̂, then there should be

no benefits from active learning. This reasoning is formalized in the following proposition:

Proposition 1. Let p̂ = ∆µ
∆σ
∈ (p∗2, p

∗
1), then there exists a confounding belief λ̂ such that

either one of the following two cases hold.

I. p∗(λ̂) = pM(λ̂) = p̂.

II. p∗(λ) is discontinuous at λ = λ̂.

Furthermore, the confounding belief λ̂ is unique up to λ ∈ {0, 1} and strictly increasing

(decreasing) in ∆µ (∆σ).

Proof. See appendix A.2.2. �

Numerical example. In this example, we parameterize the profit function using CES demand

curves with elasticities σ1 and σ2 and, for simplicity, we set λ0 = λ̂. Figure 5 plots the firm’s

static profits, the continuation value, and the total payoff (which is the sum of the latter two)

as a function of the firm’s set price p. The dotted lines at the extremes of the figure depict

the optimal prices p∗2 and p∗1 under perfect information. Given that M(p;λ0) is a weighted

sum of strictly concave functions in p, it is strictly concave in p itself. By definition, it is

maximized at pM(λ0). The concavity of M(p;λ0) illustrates the costs of active learning as

prices far away from pM(λ0) represent profit losses in the first period.

Figure 5 shows that V(·;λ0) is convex. It also shows that its minimum lies at the confounding

price p̂. The reason is that a firm’s sales become completely informative at the confounding

price. In this case, small deviations from the confounding price lead to large gains. Thus, the

benefits from active learning are strongly related to the convexity of V(·;λ0). For example,

prior beliefs closer to zero and one lead to less convex continuation values. The reason

is because the marginal benefit of information decreases for firms that are more certain

about their type. The convexity of V(·;λ0) is also affected by the signal-to-noise ratio. For
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extremely large values of σε, for instance, the optimal policy converges to the myopic policy.

This is because there is no amount of variation in its price that the firm can use to induce an

informative signal. As a result, the firm behaves as if its price does not affect its posterior

beliefs, which is equivalent to behaving myopically.

A firm bases its pricing strategy by maximizing its total payoff, which is the sum of

strictly concave and convex functions. In this example, the total payoff is double-peaked and

its global maximum is at p∗(λ0).30 The figure shows that the global maximum lies in the

interior of P = [p∗2, p
∗
1] and, most importantly, the optimal pricing strategy deviates from its

myopic counterpart.31 As mentioned above, the degree of active learning is captured by the

difference between p∗(λ0) and pM(λ0).32 In appendix B.1, we show that the active learning

mechanics with a continuum of types are identical in a two-period setting. Just as in this

section, a firm faces the “current control-estimation” trade-off by maximizing a total payoff

that consists of a strictly concave myopic profit function and a convex continuation value.

Active learning regimes. The gains from active learning are strongly related to the convexity

of V(·;λ0). This, in turn, is determined by the prior belief, the signal-to-noise ratio, and the

discount factor. A firm’s prior belief determines how certain it is about its type. A firm

has less incentive to engage in active learning as its belief moves closer to zero or one. The

signal-to-noise ratio summarizes the sensitivity of a firm’s posterior beliefs to price deviations

relative to the confounding price. Thus, firms that face extremely large levels of noise will

basically never receive an informative signal through their sales. As a result, they have no

incentives to actively learn. Lastly, the discount factor indicates how much a firm values

more information in future periods. The convexity of V(·;λ0) determines the shape of the

total payoff function. In our previous numerical example, the total payoff function was

double-peaked because V(·;λ0) was sufficiently convex but this might not always be the case.

The shape of the total payoff function determines the active learning regime.33 In our

setup, there are two qualitatively different regimes determined by the shape of V(p;λ0): ex-

treme and moderate active learning. Under extreme active learning, the total payoff function

30In general, the sum of concave and convex functions can have multiple peaks, however the results of our
baseline framework always have either a single or a double-peaked continuation value.

31In proposition 3 of the appendix, we derive a set of sufficient conditions to guarantee that p∗(λ0) ∈ [p∗2, p
∗
1]

for all λ0.
32In our example, total expenditure S is constant across the two periods. Suppose that S1 6= S2, then note

that the incentives to engage in active learning increase if the firm expects demand to increase in the second
period since the instantaneous profits are proportional to aggregate demand. In particular, if S1

P1
< S2

P2
, then

the cost of active learning is lower in the first period. In the data, the demand for a new product increases
the first few periods after entry which increases the incentives to actively learn early on the life cycle. More
than 80% of the variation in the demand for a product can be explained by the extensive margin of demand.

33The terminology is borrowed from Keller and Rady (1999) who show that different active learning regimes
could arise in a problem of a seller choosing quantities subject to a randomly changing state.
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is double-peaked. As a result, the firm never chooses to price at the confounding price, and

p∗(λ) displays a discontinuity at λ = λ̂. Since the value of information is minimized at the

confounding belief λ̂, the firm has the most incentive to change its price at this specific belief

and deviates in a discontinuous fashion. But, under moderate active learning, the total payoff

function is single-peaked and the policy function p∗(·) is continuous between p∗2 and p∗1.

Figure 6 depicts the two active learning regimes. The thin gray line shows the myopic

policy function pM(λ) that is monotonically increasing in λ whereas the purple line is the

policy function p∗(λ) under active learning. The figure shows that pM(λ) and p∗(λ) are

bounded from below and above by p∗2 and p∗1, respectively, which proposition 3 in the ap-

pendix predicts. Under extreme active learning, the policy function shows a discontinuity

at the confounding belief. The firm actively learns mostly near λ̂ as it tries to keep the

informativeness of its observed sales as high as possible. It can only do this to a limited

extend as otherwise the firm would lose too many static profits. With moderate active learn-

ing, the myopic policy coincides with the active learning policy at the confounding price p̂

as predicted by proposition 1. Once the firm updates its posterior closer to the boundaries

(i.e., λ ∈ {0, 1}), the incentives for active learning decline again as the firm’s information

set converges to the complete information case. In this case, the myopic and active learning

policies coincide at λ ∈ {0, 1}. Hence, the firm would never pay the opportunity costs (i.e.,

give up static profits) through active learning whenever its beliefs reach either zero or one.34

3.2.2 Dynamic Pricing Policies under Incomplete Information

Firms are ex ante identical but can generate heterogeneous ex-post pricing paths as different

realizations of the log demand shocks induce differently updated posterior beliefs. A firm has

access to a linear production technology in labor. Its production function is given by:

yit(k) = zit(k)`it(k)

where yit(k) denotes the output of some firm (i, k) in period t. Similarly, `it(k) is the quantity

of labor the firm uses for production purposes in period t. Its idiosyncratic productivity is

given by zit(k). Labor is supplied competitively at the nominal rate Wt, then a firm’s static

34In the two-period model with menu costs, the firm must decide to either adjust its price or maintain it at
the same level. Under perfect information, the firm follows a standard (s, S) policy and the region of inaction
depends on the curvature of the profit functions and the menu cost. But, under demand uncertainty, the
width of the inaction band also depends on the firm’s prior belief and it is larger close to the confounding
belief because the variance in the belief changes is higher. This variance induces a high option value of
waiting that is reflected in the larger width of inaction (figure A.XVII). This inaction, in turn, reduces the
adjustment frequency. On the other hand, higher uncertainty pushes the firm to adjust for a given region of
inaction.
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profits, conditional on being type i, are equal to:

(
pit(k)− Wt

zit(k)

)
αit(k)

(
pit(k)

Pit

)−σi ηiSt
Pit

We assume that log productivity follows a mean-reverting process:

log(zit+1(k)) = ρ · log(zit(k)) + σζζ
i
t+1(k) where ζ it+1(k) ∼ N(0, 1)

A firm chooses a price to determine the trade-off between maximizing current profits and

obtaining more accurate information in the future about its elasticity of demand. Since a

firm cannot observe the realization of its demand shock αit(k) whenever it has to decide on

its pricing policy, it has to take expectations over it. Due to our normalization E(αit(k)) = 1,

we obtain a firm’s ex-interim expected profits conditional on type i, setting some price p,

and having idiosyncratic productivity z:

Πi
t(p; z) = E

[(
p− Wt

z

)
αit(k)

(
p

Pit

)−σi ηiSt
Pit

]

=

(
p− Wt

z

)(
p

Pit

)−σi ηiSt
Pit

A firm does not know its elasticity of demand, so it takes expectations over these ex-interim

profits using their current prior belief λt. Furthermore, firms are required to pay a fixed cost

of ψ in units of labor to adjust their nominal price. This results in a firm’s (ex-ante) expected

profits. Thus, we define:

Πt(p; z) ≡ λtΠ
1
t (p; z) + (1− λt)Π2

t (p; z)− ψWt · 1(p 6= pit−1(k))

where 1(A) is an indicator function equal to unity whenever the statement A holds true.

Given these constraints, a firm chooses a path of prices {pit(k)}t≥0 to maximize the expected,

discounted profits:

E0

∞∑
t=0

qt,t+1Πt(p
i
t(k); zit(k))

where the expectation is with respect to the path of future beliefs, demand, and productivity

shocks. Any firm makes its pricing decisions while taking aggregate prices, spending, and the

wage rate as given. These variables are determined in general equilibrium and are summarized
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by the aggregate state ξt ≡ (P1t, P2t,Wt, St) ∈ Ξ. In the following, we focus on a stationary

equilibrium in which nominal aggregate spending trends are at a constant rate π̃ ≥ 0:

log(St+1) = log(St) + π̃

Thus, there is no aggregate uncertainty and the state ξt is constant in this stationary equi-

librium. Profits are then discounted at the rate β.

Our framework is a hybrid version of standard state-dependent pricing models and frame-

works that feature active learning, which in our setup only adds a state variable. Firms start

out with a prior λ0 and an initial productivity draw. They then choose their entry price op-

timally without paying a menu cost. In our model firms have substantial incentives to learn

their type at the beginning of their life cycle by adjusting their prices to obtain information.

As the product matures the gains to obtaining additional information are extremely small

and they do not offset the menu cost. Given that the frequency and absolute size of price

changes at these stages are non-negligible, we capture the incentives for price changes at the

later stages of a product’s life cycle through standard state-contingent channels: idiosyncratic

cost shocks and allowing for positive inflation levels.

Thus, a firm’s dynamic programming problem is summarized by the following Bellman

equation:

V (λ, z, p−1) = max
{
V A(λ, z), V N(λ, z, p−1)

}
where the value of adjusting and not adjusting are respectively given by:

V A(λ, z) = max
p≥0

(p− W
z

)
[
λη p−σ1

P
1−σ1
1

+ (1− λ)(1− η) p−σ2

P
1−σ2
2

]
S
P
− ψW

P

+ βλ

∫
z′

∫
ε

V
(
b1(λ, log( p

1+π̃
), ε
)
, z′, p

1+π̃
)dF (ε)dG(z′, z)

+ β(1− λ)

∫
z′

∫
ε

V
(
b2(λ, log( p

1+π̃
), ε
)
, z′, p

1+π̃
)dF (ε)dG(z′, z)

V NA(λ, z, p−1) = (p−1 − W
z

)

[
λη

p
−σ1
−1

P
1−σ1
1

+ (1− λ)(1− η)
p
−σ2
−1

P
1−σ2
2

]
S
P

+ βλ

∫
z′

∫
ε

V
(
b1(λ, log( p−1

1+π̃
), ε
)
, z′, p−1

1+π̃
)dF (ε)dG(z′, z)

+ β(1− λ)

∫
z′

∫
ε

V
(
b2(λ, log( p−1

1+π̃
), ε
)
, z′, p−1

1+π̃
)dF (ε)dG(z′, z)
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We define the optimal pricing policy p∗(λ, z) as the maximizer associated with the value

function V A(λ, z). In a menu cost model without active learning, a price-setting firm only

considers its static profits and its effect on the continuation value through the fact that

changing prices is costly.35 However, sales are observable and informative. Thus, a firm can

also affect its posterior beliefs through its price. This is highlighted by the posterior belief

functions b1 and b2 in the firm’s continuation value. As a result, the policy function p∗(λ, z)

reflects the optimal deviation from the myopic policy function that summarizes the balance

between sacrificing static profits and increasing the rate at which it learns about its type.36

3.3 Stationary Equilibrium

3.3.1 Aggregate Price Consistency

We assume that every firm starts out with the prior λ0 ∈ (0, 1) in the beginning of its life

cycle, thus firms are ex-ante homogeneous in this dimension. However, different realizations

of the idiosyncratic taste shocks lead to ex-post heterogeneity of a firm’s prior belief λ in

the cross-section. Furthermore, firms also become heterogeneous due to different realizations

of the idiosyncratic productivity shock in the cross-section. Note there is not only cross-

sectional dispersion in beliefs across firms of different types but also within groups. This

dispersion in firms’ beliefs and their idiosyncratic productivity is captured by the cross-

sectional distribution ϕi(λ, z) for firms of type i. We previously defined the aggregate price

index as:

Pi =

(∫
k∈Ji

pi(k)1−σidk

) 1
1−σi

However, the optimal pricing policy p∗(λ, z) is independent from i and k. To obtain price

consistency in the aggregate, we thus require:

Pi =

(∫
p∗(λ, z)1−σidϕi(λ, z)

) 1
1−σi

(11)

35This class of frameworks include standard price-setting models such as Barro (1972), Dixit (1991), Golosov
and Lucas (2007) and Alvarez and Lippi (2014) for example.

36Note that our framework is fundamentally different from most price-setting models with learning. In
the framework by Baley and Blanco (2017), a firm is faced with uncertainty about its productivity. As a
result, the problem can be formulated as a Kalman-Bucy filtering problem. Information however evolves
exogenously: in their baseline case, these flows are driven by Brownian motions and a Poisson shock. In
contrast, our model considers firms that can explicitly affect their set of information. As a result, the flow of
information becomes an endogenous object.
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3.3.2 Labor Market Clearing

The market clearing condition for goods is explicitly incorporated in the firm’s problem,

thus the only remaining factor market to clear is the labor market. In the remainder of our

analysis, we use the log utility in consumption (i.e., θ = 1) and an inverse Frisch elasticity of

zero (i.e., χ = 0). This restriction with separable, additive utility in consumption and leisure

means that wages are proportional to aggregate spending.37 This gives us:

W = χS

Total nominal spending S equals PC, where P = P η
1 P

1−η
2 , and thus gives us an expression

for the real wage rate:

W

P
= χC

Given the linear production technology, labor demand is simply characterized by:

Ld =
∑
i

∫
k∈Ji

ci(k)

zi(k)
dk

Labor market clearing means Ld = L where L is equal to one third in our calibration exercises.

3.3.3 Equilibrium

We focus on a stationary equilibrium in which any dying firm is immediately replaced by a

new firm. The latter is a type 1 firm with probability λ0 that serves as its prior belief at

entry. We simplify the analysis by normalizing the measure of firms to one and by organizing

the industry composition as follows:

J1 = [0, γ1] and J2 = (γ1, 1].

Our restrictions on entry then mean that γ1 = λ0, which guarantees a balanced measure of in-

and out-flows at the product level. Whenever nominal total spending grows deterministically

at the rate π̃, there is no aggregate uncertainty. If W is the economy’s numéraire, then we

can define a stationary equilibrium.38

37See Golosov and Lucas (2007) who use the same specification for consumer preferences. In their setup,
this specification means that wages are proportional to the stock of money. Thus, it grows at the same rate
as inflation. We have a similar proportionality rule as wages become proportional to total spending which
grows at the rate of inflation π̃.

38In the appendix A.5, we describe the numerical algorithm to solve this framework computationally.
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Definition 1 (Stationary equilibrium) A stationary equilibrium is a tuple (W,P1, P2, S)

and a pair of invariant distributions (ϕ1(λ, z), ϕ2(λ, z)) such that the real variables are con-

stant. Thus:

I. Consumers maximize utility by consuming varieties ci(k), k ∈ Ji, i ∈ {1, 2}.

II. Firms maximize profits by adopting p∗(λ, z) when adjusting prices.

III. Factor markets clear.

IV. Prices are consistently aggregated.

V. Firms die at the rate δ and enter the economy as a type 1 firm with probability λ0.

4 Propagation of Nominal Shocks

4.1 Calibration and Results

Because the IRI Symphony data is weekly, we set the model period at one week. As a result,

the discount factor is set at β = 0.961/52 that reflects an interest rate of around 3.8% and

incorporates the exogenous exit rate of 0.4%. This rate comes directly from the IRI Symphony

data at the UPC-store level. The mean yearly growth rates of nominal and real GDP equal

gn = 0.04 and gr = 0.02 respectively. Since there is no long-run real growth in the model

economy, we set π̃ = (gn−gr)1/52 = 0.00038 as the weekly rate of inflation. Furthermore, the

standard deviation of the taste shock σε equals 0.4, which matches the standard deviation

of sold quantities conditional on no price change in the IRI Symphony, which is the value

of 42 percent that is reported in Eichenbaum, Jaimovich and Rebelo (2011). Lastly, the

disutility of labor χ is chosen so that the aggregate employment is approximately 1
3

because

we normalize the amount of time available to the consumer to unity.

The remaining parameters are calibrated to match various micro-data moments. There

are seven remaining parameters: two elasticities of substitution (σ1 and σ2), the prior belief

at entry λ0, the basket division of income η, the fixed menu cost ψ, and the persistence and

standard deviation of idiosyncratic productivity ρ and σζ . These parameters are calibrated

jointly and are selected to hit eight moments from the data: the average frequency of adjust-

ment, the average size of increases, the average size of decreases, the fraction of price changes

that are increases, the frequency of adjustment on the second and tenth week after entry,

and the absolute size of the price changes during the second and tenth week after entry.

As is standard in the class of menu cost models, the fixed cost of adjustment ψ partially

governs the average frequency and size of adjustments. The extent to which active learning

is more present at the beginning of a product’s life cycle is determined by the amount of
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information a firm has at entry summarized by the signal-to-noise ratio (σ2−σ1)/σε and the

prior belief at entry λ0 that represents the fraction of firms facing the elasticity of substitution

σ1. We assume this parameter to be equal across all entering firms. As the incentives to

actively learn decrease, price changes are mainly driven driven by idiosyncratic cost shocks.

Thus, the parameters ρ and σζ have a relatively large impact on the pricing moments at the

later stage of the product’s life cycle.

Table VI shows the model’s best parameters in terms of fitting moments, and table VII

displays the resulting moments from the framework compared to the data. The productiv-

ity parameters are in line with previous estimates in the menu cost literature. The model

matches the frequency of adjustment and fraction of increasing price changes closely. The

specification for the menu cost ψ means that the total adjustment costs in the economy

represent approximately 0.7% of steady-state weekly revenues. The cost conditional on ad-

justment is around 1.4%, which is in line with the estimates in Zbaracki, Ritson, Levy, Dutta

and Bergen (2004). The value of σ1 is in the range of values typically used in the menu

cost literature. The model requires a somewhat large σ2 to induce enough active learning.

Nonetheless, σ2 is well within the estimates of Broda and Weinstein (2010) who compute

elasticities of substitution for a variety of products using data similar to ours.

The model also performs well in replicating the life cycle patterns in the frequency of price

adjustments and the absolute size of the adjustments. Figure 7 shows that in our simulations

entering products are more likely to adjust prices and they do so by larger amounts. This

is driven by 1) the size of the signal-to-noise ratio and 2) the overall level of the elasticities

of substitution since firms with lower market power (i.e., high elasticities of substitution)

have higher incentives to get their prices “right” as the opportunity costs of active learning

(i.e., sacrificing static profits) are higher. The incentives to actively learn also affect the size

distribution of price changes by generating large price changes endogenously. Our calibration

matches the standard deviation of price changes and price changes in the 75th percentile in

absolute value without explicitly targeting them. The model, however, underpredicts the

prevalence of price changes in the 90th percentile of the size distribution. 39

39The resulting hazard of price changes in our economy is downward-sloping with a small hump at short
durations (figure 8). This is not obvious at first glance, and it is the result of several opposing forces. The
presence of a menu cost typically results in upward-sloping hazard rates as firms are less likely to adjust after
they reset their prices. On the other hand, as firms learn, the probability of consecutive price changes is
larger at entry since new information might cause a new adjustment. This force, in addition to the fact that
the variance of idiosyncratic shocks is large relative to the rate of inflation, contributes to the decrease in the
slope of the hazard at long horizons. This is in contrast to the hazard rate in Bachmann and Moscarini (2012)
that is completely flat at zero with a spike at 21 months. This is because of the presence of idiosyncratic
cost shocks and due to the fact that in order to match the life cycle moments, the signal to noise ratio in our
calibration is larger, which increases the incentives to learning.
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4.2 Implications

We perform a counterfactual experiment in which the log nominal output increases perma-

nently by a size that is comparable to a one week doubling of the nominal output growth rate.

We observe that on impact approximately 70 percent of the nominal shock goes into output.

In a baseline menu cost model with full information, this value is around 60 percent.40

Alvarez, Lippi and Passadore (2017) show that in a large class of continuous time, price-

setting models, both state- and time-dependent, the effect of a small nominal shock is identical

across these models. In discrete time, however, the response when the shock occurs conveys

information about the aggregate price flexibility. To quantify this flexibility, we follow Ca-

ballero and Engel (2007) and compute the ”Flexibility Index”: an accounting relation that

describes how inflation will respond when a small shock occurs and that is fully pinned down

by the current distribution of the firms’ desired price changes and the adjustment hazard.

This index is valid in all models including our model with active learning. We begin by

decomposing the price response when the shock occurs into intensive and extensive margins.

If xt(λ) ≡ ln
(

pt
p∗t (λ)

)
is the price gap, then it can be defined as the difference between a firm’s

current price and its desired price, that is, the price it chooses as a function of its beliefs

conditional on adjustment. If the economy-wide distribution of price gaps is given by f(x, λ),

we assume that firms have an adjustment probability Λ(x, λ) that is increasing in their price

gap.41 If there is some unexpected, positive shock 4S > 0 to firms’ desired prices, the price

response equals:

lim
4S→0

4π
4S

=

∫
Λ(x, λ)f(x, λ)dxdλ︸ ︷︷ ︸

= intensive

+

∫
x(λ)Λx(x, λ)f(x, λ)dxdλ︸ ︷︷ ︸

= extensive

(12)

that can be seen as the sum of two components: intensive and extensive margins. The

intensive margin measures the contribution to inflation of the firms’ products whose prices

would have adjusted without the aggregate shock taking place. These firms adjust to the

aggregate shock by changing the size of their adjustment. Equation 12 shows that this margin

equals the frequency of adjustment. The extensive margin captures the strength of the

selection effect and measures the additional inflation contribution of firms whose decision to

40The full information model reflects the Golosov-Lucas benchmark with two types of firms (those facing
elasticity σ1 or σ2), but both groups of firms are fully aware of their type. This model is then calibrated to
match the same moments as the model with active learning and features the same fraction of firms of each
type. Since we are interested in the effect of active learning on real output, the full information Golosov-Lucas
model with two types is the appropriate benchmark.

41To simplify the math, we assume here that a positive small shock 4S does not affect firms’ beliefs.
However, our results do take this effect into consideration as we calculate the extensive and intensive margins
numerically.
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adjust is either triggered or canceled by the aggregate shock. This margin becomes naturally

more relevant as the number of firms near the margin of adjustment increases (i.e., large

Λx(x, λ)) or when the difference between adjusting and not adjusting is large (i.e., large

|x(λ)|). Calibrated to the same frequency of price adjustment, the difference between any

two models in quantifying the effect solely reflects the difference in the extensive margin.42

The desire to actively learn from prices pushes firms away from the margin of adjustment;

both lowering the mass of firms at the original bounds of inaction and substantially reducing

the importance of the extensive margin. Even though this approach recovers only the price

response to the shock, Berger and Vavra (2015) show that it is highly predictive of the overall

price stickiness in the economy.

Furthermore, the half-life of the real response more than doubles in our framework with re-

spect to that of the Golosov-Lucas benchmark. This is because, by introducing the product’s

life cycle, we introduce cross-sectional heterogeneity in the frequency of price adjustments

across firms of different ages endogenously. As a result, the coefficient of variation of price

spells duration is 30 to 35 percent larger than in the full information benchmark.

Actively learning firms have vastly higher frequencies of price changes. These firms will

most likely adjust their price several times before firms with sharper beliefs after a nominal

shock. However, all price changes after the first one made by firms actively learning have no

consequence on the output because these firms have already adjusted to the shock. Given that

the model is calibrated to match the average frequency of price changes, the fact that firms

certain about their type have, on average, a lower frequency of price adjustment significantly

delays the adjustment of the aggregate price level after a nominal shock. In other words, a

higher level of cross-sectional heterogeneity in the duration of price spells reduces selection in

timing after an unanticipated monetary shock as pointed out by Alvarez, Lippi and Paciello

(2011) and Carvalho and Schwartzman (2015).43

Quantitatively, the cumulative effects on real output are 2.3 times larger under demand

uncertainty than in the model with full information (as shown in figure 9).44 In our baseline

setup with firms producing only one good (n = 1), no fat-tailed shocks and no random menu

costs, our model with active learning has cumulative effects on real output that are about

2/5 of that in the Calvo framework. This magnitude is very comparable to the multi-product

42In the Calvo model, the extensive margin is zero as there is no selection effect.
43Nakamura and Steinsson (2009) illustrate this concept within the context of a simple Calvo model. In

that framework, the degree of monetary-non-neutrality is convex in the frequency of price changes. If, for
example, the overall frequency of price adjustment in the economy is a convex function of the frequency of
price changes of firms actively learning and those certain about the elasticity they face, heterogeneity in the
cross-sectional distribution of firms will amplify monetary non-neutrality.

44The area under the impulse response in the full information model is 1/6 of that in the Calvo model
which is also found by Alvarez, Bihan and Lippi (2014).
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model by Alvarez and Lippi (2014) for the case of n = 10 or to the single product Golosov-

Lucas model with random menu costs (also known as the “CalvoPlus” specification) where

the fraction of free price adjustments is 80 percent (l = 0.8). Furthermore, the cumulative

real effects in our framework are only 20 percent lower than the n = ∞ case in Alvarez,

Bihan and Lippi (2014). In contrast, the cumulative effects on real output in our benchmark

model with the addition of random menu costs (which are added in order to generate small

price changes) are almost 1.3 times as large as in the Golosov-Lucas model with a fraction

of free price adjustments of l = 0.8.45

4.3 Nominal Shocks in Periods of High Product Entry

Our baseline framework reflects a stationary environment in which the number of entrants

is constant over time. To investigate whether cyclical changes in the extensive margin of

products play an important role in the amplification of nominal shocks, we construct a

dynamic version of the model. There are several reasons why focusing on the business cycle

could be important. First, Argente, Lee and Moreira (2017) show that the entry rate of new

products is highly procyclical. Second, previous contributions also show that the impact of

nominal shocks on real output vary over the business cycle. For example, Vavra (2014) shows

that monetary policy is less effective in stimulating real output during downturns. For the

sake of brevity, we provide only a summary of the model in this section. A more detailed

description can be found in appendix B.4.

Consumers and firms are identical as in the baseline framework. However, a firm’s pro-

ductivity now consists of two components: an idiosyncratic and an aggregate component

denoted by z and Z respectively. Furthermore, the entry rate of products is endogenous

which allows it to vary with the aggregate state of the economy. In the beginning of each

period, a pool of entrants observes the aggregate state and decides if they want to become

producers by paying a fixed entry cost (denoted in units of labor). Lastly, we assume that

the level of aggregate productivity follows a two-state symmetric Markov chain. A boom and

a bust are defined as a one standard deviation increase and decrease, respectively, from aver-

age aggregate productivity. The latter is normalized to unity and we calibrate the former by

estimating a standard autoregressive process on Fernald’s (2014) utilization-adjusted Total

Factor Productivity series. Transition probabilities are then calibrated such that the average

length of a cycle is about 35 months.

Despite its simplicity, this setup shows whether nominal shocks are amplified more during

booms. In our extension, periods of high aggregate productivity mean periods of high product

45We calibrate the fraction of free adjustments to match the fraction of small price changes defined as
|dpit| < 1

2mean|dp| which is the data is approximately 40%.
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entry. The calibration of this framework shows that the real output effects of a nominal

shock are 15 percent larger in booms than during busts. This is because as the entry rate

of products increases, the average firm gets younger and a higher proportion of firms then

engage in active learning. These firms are less likely to adjust their prices after a nominal

shock as their incentives to change their prices in response to idiosyncratic cost shocks are

lower.

Although the findings of this section are robust to aggregate shocks of ordinary size, our

findings might differ for very large aggregate shocks. In our calibration, the size distribution

of price changes plays a large role in determining the degree to which shocks get propagated

during booms. Further, the kurtosis of the distribution increases which in turn, weakens

the selection effect. However, the possibility exists that with a sufficiently large number of

entering firms, the average frequency of price adjustments increases, which can offset this

effect. An extreme example of this effect is whenever all firms in the economy are replaced

every period. In this case, prices are close to fully flexible and the effects on real output are

small.

4.4 Robustness and Extensions

Our benchmark model can capture many features of the data including standard pricing

moments and those related to the product’s life cycle as section 2.4 showed. However, there

might be other features of the data concerning entering products that could affect our con-

clusions.

A possible source of concern lies in the fact that entering products do not immediately

feature high quantities of sales. In fact, it might require some time to build up sales for

new products (e.g., building up a customer base). Our baseline framework does not reflect

a gradual buildup of sales for entering products. Thus, we could be overestimating the

importance of new products that in turn affects our results on the propagation of nominal

shocks. We extend our framework in two different ways to deal with this issue. First, we

allow for an exogenous, age trend in the demand shocks similar to Foster, Haltiwanger and

Syverson (2016) to incorporate the fact that entering products’ sales grow over time after

starting at a relatively low level. Appendix B.3.1 shows the details of our implementation. In

this specification, younger products contribute less to aggregate output, but their incentives

to actively learn are higher given the prospects of higher sales in the future. These two forces

contribute in different directions when measuring the response of real output to a nominal

shock, which leaves our results discussed in section 4.2 virtually unchanged.

Second, we extend the canonical price-setting model of Golosov and Lucas (2007) by

incorporating customer retention concerns. A firm’s current level of demand depends posi-
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tively on (a fraction of) the level of demand in the previous period. As a result, a firm has

incentives to set low prices in the beginning of their life cycle to attract customers and build

up their customer base. Whenever this base has reached sufficiently high levels, a firm starts

exercising its market power by raising its price. These incentives are also known as “invest-

ing” and “harvesting”. In appendix B.3, we show that such a framework is not consistent

with our stylized facts from section 2.4.

Another possible concern could be our assumption of a constant rate of exit. Younger

products are more likely to exit the product market, so our assumption of age-independent

exit rates could potentially bias our results on the propagation of nominal shocks. This is

because the composition of products is biased toward younger products that experience a

higher frequency and absolute size of price adjustment as discussed in section 2.4. In appendix

B.2, we show that the product hazard function as a function of age is downward sloping in

our data. However, the slope of the hazard function with respect to age is relatively small.

Whenever we extend our framework by exogenously incorporating age-dependent exit rates

consistent with the data, our conclusions are not affected significantly.

5 Conclusion

The increasing availability of micro-level data sets has allowed researches to delve deeper into

the mechanics of a firm’s dynamic pricing behavior. Recent studies have found new insights

into firms’ pricing behavior along several dimensions . Although there is substantial anecdotal

evidence that firms choose different pricing strategies over the life cycle of their products,

the degree of price heterogeneity along this dimension and its aggregate implications have

remained largely unexplored. In this paper, we aim to fill this gap by developing the salient

facts on the evolution of products’ pricing moments over their life cycle and by providing a

structural interpretation for them. We construct a quantitative framework in which firms

that face uncertainty about their demand curves can actively learn through their pricing

strategies and show that this model can rationalize standard price-setting moments and our

set of stylized facts.

In this context, we develop sufficient conditions for active learning to occur and describe

the different regimes that could arise in this setup. We then investigate the implications

of active learning incentives for the propagation of nominal shocks. The calibration of our

model can be interpreted as a hybrid between standard menu cost models and active learning

models. It delivers the life cycle facts that support our observations in the data. In our model,

relative to the full information benchmark, the real effects of nominal shocks are at least twice

as large and persistent when measured by their cumulative effect on real output.
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Our quantitative framework contains the minimal amount of ingredients to rationalize

the key mechanisms and our empirical findings. Nonetheless, our model could be extended

to cover more complicated mechanisms. We have briefly explored several of them, but we

leave the full economic implications of these extensions for future research.
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the financial crisis,” The American Economic Review, 2017, 107 (3), 785–823.

Golosov, Mikhail and Robert E Lucas, “Menu Costs and Phillips Curves,” Journal of Political

Economy, 2007, 115 (2).

Gourinchas, Pierre-Olivier and Jonathan A Parker, “Consumption over the life cycle,” Econo-

metrica, 2002, 70 (1), 47–89.

Ilut, Cosmin, Rosen Valchev, and Nicolas Vincent, “Paralyzed by Fear: Rigid and Discrete

Pricing under Demand Uncertainty,” 2015.

Karadi, Peter and Adam Reiff, “Menu Costs, Aggregate Fluctuations, and Large Shocks,”

2016.

Keller, Godfrey and Sven Rady, “Optimal experimentation in a changing environment,”

Review of Economic Studies, 1999, 66 (3), 475–507.

Kiefer, Nicholas M and Yaw Nyarko, “Optimal control of an unknown linear process with

learning,” International Economic Review, 1989, 30 (3), 571–86.

Kiley, Michael T, “Partial adjustment and staggered price setting,” Journal of Money, Credit,

and Banking, 2002, 34 (2), 283–298.

38



Lee, Yoonsoo and T Mukoyama, “A Model of Entry, Exit, and Plant-level Dynamics Over

the Business Cycle,” 2015.

Lucas, Robert E., “Macroeconomic Priorities,” American Economic Review, 2003, 93, 114.

Midrigan, Virgiliu, “Menu costs, multiproduct firms, and aggregate fluctuations,” Economet-

rica, 2011, 79 (4), 1139–1180.

Mirman, Leonard J, Larry Samuelson, and Amparo Urbano, “Monopoly experimentation,”

International Economic Review, 1993, 34 (3), 549–563.

Moreira, Sara, “Firm dynamics, persistent effects of entry conditions, and business cycles,”

Technical Report, mimeo 2015.

Nakamura, Emi and Jón Steinsson, “Five facts about prices: A reevaluation of menu cost

models,” Quarterly Journal of Economics, 2008, 123 (4), 1415–1464.

and Jon Steinsson, “Monetary Non-Neutrality in a Multi-Sector Menu Cost Model,” Quar-

terly Journal of Economics, 2009, 125 (3), 961–1013.

and Jón Steinsson, “Price setting in forward-looking customer markets,” Journal of Mon-

etary Economics, 2011, 58 (3), 220–233.

Nardi, Mariacristina De, Eric French, and John B Jones, “Why Do the Elderly Save? The

Role of Medical Expenses,” Journal of Political Economy, 2010, 118 (1), 39–75.

Paciello, Luigi, Andrea Pozzi, and Nicholas Trachter, “Price dynamics with customer mar-

kets,” 2014.

Prescott, Edward C, “The multi-period control problem under uncertainty,” Econometrica,

1972, pp. 1043–1058.

Rothschild, Michael, “A two-armed bandit theory of market pricing,” Journal of Economic

Theory, 1974, 9 (2), 185–202.

Shapiro, Matthew D and Mark W Watson, “Sources of business cycle fluctuations,” NBER

Macroeconomics annual, 1988, 3, 111–148.

Sheedy, Kevin D, “Intrinsic inflation persistence,” Journal of Monetary Economics, 2010, 57

(8), 1049–1061.

Stroebel, Johannes and Joseph Vavra, “House prices, local demand, and retail prices,” NBER

Working Paper No. 20710, 2014.

39



Vavra, Joseph, “Inflation Dynamics and Time-Varying Volatility: New Evidence and an Ss

Interpretation,” Quarterly Journal of Economics, 2014, 129 (1), 215–258.

Wieland, Volker, “Learning by doing and the value of optimal experimentation,” Journal of

Economic Dynamics and Control, 2000, 24 (4), 501–534.

, “Monetary policy, parameter uncertainty and optimal learning,” Journal of Monetary

Economics, 2000, 46 (1), 199–228.

Willems, Tim, “Actively learning by pricing: a model of an experimenting seller,” Economic

Journal, 2016.

Zbaracki, Mark J, Mark Ritson, Daniel Levy, Shantanu Dutta, and Mark Bergen, “Managerial

and customer costs of price adjustment: direct evidence from industrial markets,” Review

of Economics and Statistics, 2004, 86 (2), 514–533.

Zellner, Arnold, An introduction to Bayesian inference in econometrics 1971.

40



Tables and Figures

Table I: Product Entry and Exit

UPC UPC UPC×Store UPC×Store
5-Year 1-Year 5-year 1-year

Entry 0.45 0.14 0.66 0.27
Creation 0.29 0.07 0.47 0.15

Exit 0.42 0.13 0.61 0.25
Destruction 0.08 0.01 0.39 0.10

Note: The table shows the statistics of the entry rate, exit rate, creation, and destruction for 1-year and 5-year intervals.

Columns (1) and (2) show the statistics at the UPC level and columns (3) and (4) at the UPC × Store level.

Table II: Distribution of Duration by UPC × Store

(1) (2) (3) (4)
Unweighted Revenue Weighted

Weeks since Observations Weeks since Observations
Entry since Entry Entry since Entry

1st percentile 1.0 1.0 12.4 7.7
25th percentile 37.4 16.3 108.4 73.5
50th percentile 96.3 47.1 183.7 131.8
75th percentile 209.5 122.0 280.6 208.3
99th percentile 450.7 369.7 466.3 405.1
Mean 134.0 83.1 198.9 148.9
Std. Dev. 118.9 90.6 117.9 100.0

Note: The table shows the statistics of the distribution of durations of a UPC × Store pair. In columns (1) and (2) we compute

the duration of each UPC × Store pair and aggregate them to the category level using equal weights. Categories are further

aggregated using equal weights. In columns (3) and (4) we aggregate to the category level using revenue weights and aggregate

across categories using equal weights. Weeks since entry refers to the number of weeks elapsed since the product was first

observed. Observations since entry refers to the number of times a product is observed in our data set. A product is observed

only if it records a transaction in a given week and store.
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Table III: Life cycle Properties of Selected Pricing Moments - First 6 months

(1) (2) (3) (4)
Dependent Variable Equal Weights Revenue Weights

Frequency -0.054*** -0.076*** -0.072*** -0.104***
(0.001) (0.002) (0.003) (0.004)

Frequency increases -0.051*** -0.069*** -0.066*** -0.092***
(0.001) (0.002) (0.002) (0.003)

Frequency decreases -0.002*** -0.006*** -0.006*** -0.012***
(0.000) (0.001) (0.001) (0.002)

Absolute size -0.154*** -0.171*** -0.154*** -0.174***
(0.002) (0.005) (0.004) (0.008)

Size increases -0.194*** -0.223*** -0.185*** -0.223***
(0.003) (0.006) (0.005) (0.010)

Size decreases 0.075*** 0.078*** 0.091*** 0.071***
(0.002) (0.006) (0.004) (0.011)

UPC × Store FE X X X X
Time FE X X
Cohort controls X X

Note: The table reports the coefficients (in percent) from the OLS tests. The independent variable is the age of the product and

the dependent variables are the moments defined in the table. The sample is the first 6 months (or 26 weeks) after the product

was first launched. The controls include UPC × store fixed effects, time fixed effects, and cohort controls that are approximated

by the local unemployment rate in the city and month the product was launched. Columns (1) and (2) report the coefficients

that assume equal weights for each UPC × store. Columns (3) and (4) report the results with revenue weights. The standard

errors are clustered at the store level. The ***, **, and * denote significance at 0.01, 0.05, and 0.10 levels respectively.
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Table IV: New Brand - First 6 Months
Equal Weights Revenue Weighted

Frequency Size Frequency Size
(1) (2) (3) (4)

Age -0.075*** -0.171*** -0.104*** -0.177***
(0.002) (0.005) (0.004) (0.008)

Age×New Brand -0.028*** -0.047*** -0.020** -0.085***
(0.005) (0.014) (0.008) (0.018)

UPC × Store FE X X X X
Time FE X X X X
Cohort X X X X

Note: The table reports the estimates of equation 2. The independent variable is the age of the product interacted with an

indicator that equals one if the brand and the volume of the product are new. The dependent variables are the frequency

and absolute size of the price changes. The sample is the first 6 months (or 26 weeks) after the product was first launched.

The controls include UPC × store fixed effects, time fixed effects, and cohort controls that are approximated by the local

unemployment rate in the city and month the product was launched. Columns (1) and (2) report the coefficients that assume

equal weights for each UPC × store. Columns (3) and (4) report the results with revenue weights. The standard errors are

clustered at the store level. The ***, **, and * denote significance at 0.01, 0.05, and 0.10 levels respectively.

Table V: Newness Index - First 6 months
Equal Weights Revenue Weights

Frequency Size Frequency Size
(1) (2) (3) (4)

Age -0.076*** -0.173*** -0.109*** -0.177***
(0.004) (0.006) (0.010) (0.012)

Age×Newness -0.053* -0.228*** 0.038 -0.310***
(0.031) (0.053) (0.058) (0.101)

UPC × Store FE X X X X
Time FE X X X X
Cohort X X X X

Note: The table reports the estimates of equation 4. The independent variable is the age of the product interacted with the

Newness index. The dependent variables are the frequency and absolute size of the price changes. The sample is the first 6

months (or 26 weeks) after the product was first launched. The controls include UPC × store fixed effects, time fixed effects,

and cohort controls that are approximated by the local unemployment rate in the city and month the product was launched.

Columns (1) and (2) report the coefficients that assume equal weights for each UPC × store. Columns (3) and (4) report the

results with revenue weights. The standard errors are clustered at the store level. The ***, **, and * denote significance at

0.01, 0.05, and 0.10 levels respectively.
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Table VI: Internally Calibrated Values of the Model’s Parameters

Description Parameter Value
Elasticity of Substitution 1 σ1 4.7
Elasticity of Substitution 2 σ2 13.4
Prior Belief at Entry λ0 0.75
Basket Division of Income η 0.36
Fixed Cost ψ 0.02
Productivity Persistence ρ 0.56
Productivity Standard Deviation σς 0.05

Table VII: Moments of Price Change Distribution

Moment Data Model with Learning Full Info
Frequency Week 2 0.09 0.09 0.002
Frequency Week 10 0.06 0.05 0.05
Absolute Size Week 2 0.17 0.17 0.05
Absolute Size Week 10 0.11 0.10 0.07
Frequency 0.05 0.05 0.05
Fraction Up 0.66 0.58 0.58
Size Up 0.09 0.09 0.06
Size Down 0.07 0.11 0.07

Not Targeted
Std. of Price Changes 0.11 0.11 0.07
75th Pct Size Price Changes 0.10 0.12 0.07
90th Pct Size Price Changes 0.18 0.14 0.08
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Figure 1: Frequency of Price Adjustment at Entry

Note: The graph plots the average weekly frequency of price adjustments of entering products. The y-axis denotes the probability

that the product adjusts its price in a given week and the x-axis denotes the number of weeks the product has been observed in

the data after entry. The graph plots the coefficients for the age fixed effects of equation 1 where we use the regular price change

indicator as the dependent variable. Equation 1 is computed by controlling for UPC-store and time fixed effects and the local

unemployment rate to represent the cohort fixed effects. The calculation uses approximately 130 million observations and 2.5

million UPC × store pairs. The standard errors are clustered at the store level. The underlying data source is the Symphony

IRI.
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Figure 2: Absolute Value of Price Changes at Entry

Note: The graph plots the average absolute size of price adjustments of entering products. The y-axis is the absolute value

of the log price change in that week, and the x-axis denotes the number of weeks since the product entered. The graph plots

the coefficients for the age fixed effects of equation 1 where we use the absolute value of the log price change as the dependent

variable. Equation 1 is computed controlling for UPC-store, time fixed effects, and the local unemployment rate to represent

the cohort fixed effects. The calculation uses approximately 5.8 million price changes and 2.5 million UPC × store pairs. The

standard errors are clustered at the store level. The underlying data source is the Symphony IRI.

Figure 3: Fraction of Price Changes Larger than Two Standard Deviations

Note: The figure shows the fraction of price changes larger than two standard deviations from the mean in a given category

and store as a function of the age of the product. The products considered are those that last at least two years in the market.

Source: IRI Symphony dataset
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Figure 4: Pricing Moments by Waves

(a) Frequency of Price Changes (b) Absolute Size of Price Changes

Note: Panel (a) shows the probability of adjusting prices and panel (b) shows the absolute size of the price changes by waves.

Wave 1 represents products that were launched at some location during a period in the first year since the product was introduced

nationally. Wave 2 represents the same products when launched in different stores a year after their national entries. The graphs

control for stores, product, and time fixed effects.

Figure 5: Numerical Example of the Two Period Model

Note: Static profits M(p;λ0), continuation value V(p;λ0) and total payoff M(p;λ0) + V(p;λ0) at λ0 = λ̂. The dotted purple

lines represent the optimal prices P ∗2 and P ∗1 . PM (λ0) represents the myopic policy and P ∗(λ0) the policy under active learning.
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Figure 6: Active Learning Regimes

(a) Extreme Active Learning. (b) Moderate Active Learning.

Note: Panel (a) shows the extreme active learning regime and panel (b) its moderate counterpart. The gray line depicts the

myopic policy PM (λ) and the purple lines the policy under active learning P ∗(λ). The dotted lines at the top and bottom of

the panels indicate the optimal prices P ∗1 and P ∗2 .

Figure 7: Model vs Data

(a) Frequency of Price Changes (b) Absolute Size of Adjustments

Note: The figure shows the results of the model and compares them with the data. We simulate a panel of 1,000 firms over

1,000 periods and compute both the predicted frequency of price adjustments and the absolute size of the price changes over

the life cycle of a product. The results of the frequency of price changes are shown in panel (a) and those of the absolute size

of price changes are shown in panel (b).
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Figure 8: Hazard of Price Change (Model)

Figure 9: Real Output Response to Nominal Shock

Note: The figure shows the response of the log real output to a 0.00038 increase in the nominal output growth rate. The output

response is shown in the graph as a percent of the nominal shock. The red line depicts the output response in Golosov and

Lucas (2007) with two different types of firms (i.e., σ1 and sigma2) and the blue line is the response in a price-setting model

with active learning. Both models are calibrated to match the same moments and feature the same fraction of firms of each

type.
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A Appendix

A.1 Tables and Figures

Table A.I: Life cycle Properties of Selected Pricing Moments - First Year by Category I
Regular Price Changes All Price Changes

Dependent Variable Frequency Abs. Size Frequency Abs. Size
(1) (2) (3) (4)

Beer -0.070*** -0.028*** -0.346*** -0.067***
0.021 0.010 0.038 0.007

Blades 0.063*** -0.089*** -0.209*** -0.019
0.017 0.022 0.027 0.012

Carbonated Beverages -0.275*** -0.119*** -0.115*** -0.034***
0.017 0.016 0.024 0.012

Cigarettes -0.003 0.003 -0.328*** -0.028
0.044 0.048 0.049 0.034

Coffee -0.019 -0.106* -0.200*** -0.016
0.022 0.056 0.028 0.014

Cold Cereal -0.150*** -0.446*** -0.322*** -0.117***
0.010 0.031 0.019 0.015

Deodorant -0.051*** -0.208*** -0.138*** -0.014
0.007 0.033 0.017 0.012

Diapers 0.090*** -0.049*** -0.161*** -0.062***
0.026 0.016 0.039 0.014

Facial Tissue -0.014 -0.070** 0.072 -0.010
0.028 0.029 0.049 0.002

Frozen Dinner -0.161*** -0.204*** -0.160*** -0.077***
0.011 0.016 0.015 0.010

Frozen Pizzas -0.115*** -0.168*** -0.073*** -0.106***
0.015 0.022 0.024 0.014

Household Cleaners -0.120*** -0.269*** -0.082** -0.037
0.027 0.060 0.036 0.027

Frankfurters -0.132*** -0.535*** 0.036*** 0.019
0.029 0.079 0.054 0.039

Laundry Detergent -0.063*** -0.227*** 0.054*** -0.040**
0.018 0.035 0.046 0.017

Margarine & Butter -0.004 -0.165*** -0.009 0.017***
0.021 0.037 0.032 0.026

Note: The table reports the coefficients (in percent) from OLS regressions of the 15 categories available in the Symphony IRI.

The independent variable is the age of the product, and the dependent variables are the moments defined in the table. The

sample is the first year (or 52 weeks) after the product was first launched. The controls include UPC × store fixed effects, time

fixed effects, and cohort controls that are approximated by the local unemployment rate in the city and month the product was

launched. Columns (1) and (2) report the coefficients for regular price changes. Columns (3) and (4) report the results for all

price changes (including sales). The standard errors are clustered at the store level. The ***, **, and * denote significance at

0.01, 0.05, and 0.10 levels respectively.
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Table A.II: Life cycle Properties of Selected Pricing Moments - First Year by Category II
Regular Price Changes All Price Changes

Dependent Variable Frequency Abs. Size Frequency Abs. Size
(1) (2) (3) (4)

Mayonnaise -0.144*** -0.086 0.677*** 0.208
0.041 0.080 0.091 0.064

Milk -0.052** -0.047** -0.144*** -0.027*
0.021 0.018 0.031 0.015

Mustard & Ketchup -0.017 -0.118** -0.011 -0.050
0.020 0.046 0.029 0.036

Paper Towels -0.023 -0.236*** -0.339*** -0.402***
0.028 0.053 0.051 0.043

Peanut Butter -0.073*** -0.150*** -0.242*** -0.115***
0.030 0.029 0.040 0.035

Photography Supplies 0.502*** -0.142 -1.055*** -0.233**
0.098 0.109 0.195 0.095

Razors -0.294*** -0.216*** -0.849*** 0.047
0.055 0.072 0.066 0.032

Salty Snacks -0.368*** -0.263*** -0.062*** -0.111***
0.013 0.026 0.018 0.013

Shampoo -0.061*** -0.135*** -0.275*** -0.060***
0.011 0.026 0.026 0.013

Soup -0.031*** -0.268*** -0.214*** -0.147***
0.011 0.032 0.031 0.019

Spaghetti Sauce -0.117*** -0.127** -0.050 0.017
0.017 0.056 0.035 0.022

Sugar Substitutes -0.089*** -0.044 -0.226*** -0.005
0.026 0.029 0.041 0.043

Toilet Tissue 0.046 -0.107*** -0.251*** -0.180***
0.034 0.040 0.060 0.037

Toothbrushes -0.133*** -0.233*** -0.225*** -0.014
0.012 0.051 0.027 0.021

Toothpaste -0.166*** -0.243*** -0.269*** -0.055***
0.010 0.031 0.016 0.010

Yogurt -0.047*** -0.126*** -0.033 -0.014

Note: The table reports the coefficients (in percent) from OLS regressions for the 16 categories available in the Symphony IRI.

The independent variable is the age of the product, and the dependent variables are the moments defined in the table. The

sample is the first year (or 52 weeks) after the product was first launched. The controls include UPC × store fixed effects, time

fixed effects, and cohort controls that are approximated by the local unemployment rate in the city and month the product was

launched. Columns (1) and (2) report the coefficients for regular price changes. Columns (3) and (4) report the results for all

price changes (including sales). The standard errors are clustered at the store level. The ***, **, and * denote significance at

0.01, 0.05, and 0.10 levels respectively.
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Figure A.I: Frequency of Price Increases and Decreases at Entry

Note: The graph plots the average weekly frequency of price adjustments of products entering the market. The y-axis denotes

the probability that the product adjusts prices in a given week, and the x-axis denotes the number of weeks the product has

been observed in the data after it entered the market. The graph plots the age fixed effects where we use a regular price

change indicator as the dependent variable that controls for the store, UPC, time fixed effects, and the local unemployment

rate represents the cohort fixed effects. The blue line indicates the frequency of positive price adjustments and the red line

the frequency of negative price adjustments. The calculation uses approximately 130 million observations and 2.5 million

stores×UPC pairs. The data source is the Symphony IRI data set.

Figure A.II: Absolute Value of Price Increases and Decreases at Entry

Note: The graph plots the average size of the price adjustments of products that enter the market. The y-axis is the value

of the log price change in that week, and the x-axis denotes the number of weeks the product has been observed in the data

after it entered the market. The graph plots the age fixed effects where we use the log price change as dependent variable that

controls for the store, UPC, time fixed effects, and the local unemployment rate represents the cohort fixed effects. The blue

line indicates the average size of positive price adjustments and the red line the average size of negative price adjustments. The

calculation uses approximately 5.8 million price changes and 2.5 million stores×UPC pairs. The data source is the Symphony

IRI data set.
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Figure A.III: Distributions of Price Changes

Note: The graph shows the distribution of regular price changes. The percentiles plotted are the 10th, 25th, 33rd, 50th, 66th,

75th, and 90th respectively. The y-axis is the value of the log price change in that week, and the x-axis denotes the number of

weeks the product has been observed in the data after it entered the market. The calculation uses approximately 5.8 million

price changes and 2.5 million stores×UPC pairs. The data source is the Symphony IRI data set.

Figure A.IV: Frequency of All Price Changes
Panel A: IRI Symphony Panel B: Nielsen RMS

Note: The figure shows the average weekly frequency of all price changes as a function of the number of weeks after a product

enters. Panel A shows the frequency of regular prices changes, the frequency of sales, and the frequency of all price changes

in the IRI Symphony data. Panel B shows the same variables computed using the Nielsen RMS data for the city of Chicago.

Since the Nielsen RMS data do not provide a sales flag, we use the sales filters developed in Nakamura and Steinsson (2008).

The graph plots the fixed effects’ coefficients for equation 1 where we use the price change indicator as the dependent variable.

Equation 1 is computed by controlling for the store, UPC and time fixed effects, and the local unemployment rate represents

the cohort fixed effects.
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Figure A.V: Fraction of Price Changes Larger than Two Std. (Positive and Negative)
Panel A: Positive Price Changes Panel B: Negative Price Changes

Note: The figure shows the fraction of price changes larger than two standard deviations from the mean in a given category and

store as a function of the age of the product. Panel A shows the distribution of large price increases and Panel B the distribution

of price decreases. The products considered are those that last at least two years in the market. Source: IRI Symphony dataset.

Figure A.VI: Fraction of Price Changes Larger than 30%

Note: The figure shows the fraction of price changes larger than 30% in a given category and city as a function of the age of

the product. The products considered are those that last at least two years in the market. Source: IRI Symphony data set
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Figure A.VII: Direction of Price Changes Conditional on Adjustment

Note: The graphs plots the share of price increases and price decreases conditional on adjustment. It considers the first six

months after entry. The data source is the Symphony IRI data set.

Figure A.VIII: Price Index for New Products

Note: The graph plots a geometric price index for new products. It considers the first year after entry. The expenditure weights

are at the UPC level and based on the first year of sales of each product. The data source is the Symphony IRI data set.
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Figure A.IX: Distribution of Entry Prices

Note: The graph plots the percent difference between the entry price of all new products in our sample with respect to products

of the same size, within the same category, at the store in which they were launched. The data source is the Symphony IRI

dataset.

Figure A.X: Frequency of Price Adjustment (Positive and Negative)

Note: The figure shows the probability of a price adjustment with respect to the mean for both price increases and decreases.

Wave 1 represents products that were launched during the first year after the product was introduced. Wave 2 represents the

same products when launched in different stores a year later. The graphs control for stores, time, and products fixed effects.
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Figure A.XI: Size of Price Adjustments (Positive and Negative)

Note: The figure shows the size of price changes with respect to the mean for both price increases and decreases. Wave 1

represents products that were launched during the first year after the product was introduced. Wave 2 represents the same

products when launched in different stores a year later. The graphs control for stores, time, and products fixed effects.

Figure A.XII: Pricing Moments by Waves in Different Cities
Panel A: Positive Price Changes Panel B: Negative Price Changes

Note: The figure shows the probability of adjusting prices and the sizes of the adjustments by waves. Wave 1 represents products

that were launched during the first year after the product was introduced. Wave 2 represents the same products when launched

in different stores (located in different cities) a year later. Panel A shows the frequency of price adjustments and Panel B the

absolute size of the price changes. The graphs control for stores, time, and products fixed effects.
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Figure A.XIII: Fraction of Products Launched by Wave

Note: The figure shows the fraction of products launched in each wave by MSA. Wave 1 represents products that were launched

during the first year after the product was introduced. Wave 2 represents the same products when launched in different stores

(located in different cities) a year later. The 45 degree line represents when the same fraction of new products launched in wave

1 and wave 2 for a given city.

Figure A.XIV: Frequency and Size of Price Changes at Exit
Panel A: Frequency Panel B: Absolute Size

Note: Panel A plots the frequency of regular price changes at exit. Panel B plots the absolute size of regular price changes at

exit. The x-axis denotes the number of weeks a product has left in the market before exiting. The graph plots the coefficients for

the age fixed effects in the regression where we use the regular price change indicator and absolute value of the log price change

as dependent variables. The estimates control for store, UPC, time fixed effects, and the local unemployment rate represents

the cohort fixed effects. Panel A shows that the frequency of price changes stays mostly constant and decreases only around 1

percentage point near exit. Panel B shows that the absolute value of price changes stays close to its average value (around 10%)

during the last weeks of the product. The calculation uses approximately 5.8 million price changes and 2.5 million stores×UPC

pairs. The standard errors are clustered at the store level. The data source is the Symphony IRI data set.
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Figure A.XV: Frequency and Size of Sales at Entry
Panel A: Frequency Panel B: Size

Note: Panel A plots the frequency of sales changes at entry. Panel B plots the size of the sales at entry. The x-axis denotes the

number of weeks a product has been on the market. The graph plots the age fixed effects coefficients for the regression where we

use the sales indicator (provided by the data) and the size of the sales (in logs) as dependent variables. The estimates control

for store, UPC, time fixed effects, and the local unemployment rate represents the cohort fixed effects. Panel A shows that the

probability that a product is on sale is lower at entry. Similarly, the size of sales stays mostly constant during the first year after

the product is launched. The standard errors are clustered at the store level. The data source is the Symphony IRI data set.

Figure A.XVI: Frequency and Size of Sales at Exit
Panel A: Frequency Panel B: Size

Note: Panel A plots the frequency of sales at exit. Panel B plots the absolute size of the sales at exit. The x-axis denotes the

number of weeks a product has left in the market before exiting. The graph plots the coefficients for the age fixed effects in the

regression where we use the the sales indicator (provided by the data) and the size of the sales (in logs) as dependent variables.

The estimates control for store, UPC, time fixed effects, and the local unemployment rate represents the cohort fixed-effects.

The figure shows that at exit, products are more likely to be on sale and the size of these discounts are larger. This finding

indicates that firms might be attempting to liquidate their inventory before phasing out their product permanently, and they

do so by offering extra discounts (”clearance” sales”). The standard errors are clustered at the store level. The data source is

the Symphony IRI data set.

59



Figure A.XVII: Inaction Region: Two-Period Model with Menu Costs

Note: The figure shows the region of inaction for the two-period model with menu costs. The y-axis denotes the previous price

and the x-axis the belief. The region inside the purple lines is the region of inaction, and the dotted red line indicates the

confounding belief.
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A.2 Proof of Lemmas

A.2.1 Proof of Lemma 1

Proof. Recall that the value function V2(λ) is given by:

V2(λ) = max
p∈P

{(
p− W

z

)(
λη

p−σ1

P
1−σ1

1

+ (1− λ)(1− η)
p−σ2
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1−σ2

2

)
S

P

}

The function f(λ, p) ≡
(
p− W

z

)(
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P
1−σ2
2

)
S
P is continuous in (λ, p) ∈ [0, 1]×

P. The set P = [P ∗2 , P
∗
1 ] is furthermore compact. Then, the Theorem of the Maximum states that

V2(·) is continuous on [0, 1].

Convexity in λ follows almost directly. Fix an arbitrary α ∈ [0, 1] and λ, λ′ ∈ [0, 1]. Let the convex

combination λ̃ be defined as αλ+ (1− α)λ′ and define the myopic policy function:

PM (λ) = arg max
p∈P

{(
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Then, we get:

V2(λ̃) = α

(
PM (λ̃)− W

z

)(
λη
PM (λ̃)−σ1

P
1−σ1

1

+ (1− λ)(1− η)
PM (λ̃)−σ2

P
1−σ2
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)
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P

+ (1− α)

(
PM (λ̃)− W
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λ′η

PM (λ̃)−σ1
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+ (1− λ′)(1− η)
PM (λ̃)−σ2
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S
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≤ αV2(λ) + (1− α)V2(λ′)

Therefore, we showed V2(αλ+(1−α)λ′) ≤ αV2(λ)+(1−α)V2(λ′) which is equivalent to V2(·) being

convex. �

A.3 Proof of Propositions

A.3.1 Proof of Proposition 1

Proof. Note that this proposition holds for the infinite period model as well. Suppose it is optimal

for the firm to choose P ∗(λ̂) = P̂ ∈ int(P) for some λ̂ ∈ (0, 1). We show that a firm’s continuation

value is equal to zero whenever it chooses its price equal to P̂ . Given some price P and prior belief

λ0, a firm’s continuation value is defined as:

βV(P ;λ0) ≡ β
(
λ0Eε [V (b1(λ0, log(P ), ε))] + (1− λ0)Eε [V (b2(λ0, log(P ), ε))]

)
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Recall that a firm faces a trade-off between maximizing current period expected profits and the

value of information (through sharpening its posterior belief). The latter is captured by V(P ;λ0).

As a result, a firm’s marginal benefits are defined as:

λ0Eε
[
V ′(b1(λ0, log(P ), ε))

∂b1(λ0, log(P ), ε)

∂log(P )

1

P

]
+(1− λ0)Eε

[
V ′(b2(λ0, log(P ), ε))

∂b2(λ0, log(P ), ε)

∂log(P )

1

P

]

Therefore, a firm’s posterior belief at the confounding price P̂ equals its prior belief, that is, we

have:

b1(λ0, log(P ), ε)

∣∣∣∣
P=P̂

= b2(λ0, log(P ), ε)

∣∣∣∣
P=P̂

=

(
1 +

1− λ0

λ0

)−1

= λ0

for all ε ∈ R. Also, the expected change in a firm’s posterior belief at P = P̂ is exactly equal to

zero as:

Eε

[
∂bi(λ0, log(P ), ε)

∂log(P )

∣∣∣∣∣
P=P̂

]
= Eε

[
∆σ
σ2
ε

(1− λ0)λ0(−1)1(i=2)ε
]

= 0

for i ∈ {1, 2} as Eε[ε] = 0. Therefore, a firm’s expected marginal benefit at P = P̂ reduces to:

V ′(λ0)P̂−1Eε

[
λ0
∂b1(λ0, log(P ), ε)

∂log(P )

∣∣∣∣∣
P=P̂

+ (1− λ0)
∂b2(λ0, log(P ), ε)

∂log(P )

∣∣∣∣∣
P=P̂

]
= 0

If it is optimal for a firm to choose P ∗(λ̂) = P̂ , then it must be equal to PM (λ̂) as there are no

gains from active learning. Recall that PM (0) = P ∗2 , PM (1) = P ∗1 and PM (·) is strictly increasing

and continuous in proposition 1. Therefore, the confounding price P̂ ∈ P is guaranteed to exist.

Furthermore, proposition 1 and the Intermediate Value Theorem state that there must be some λ̂

such that PM (λ̂) = P̂ .

By construction, we have P̂ ≡ ∆µ
∆σ . Proposition 1 states that PM (·) is strictly increasing. As a

result, we derive that the confounding belief is strictly increasing (decreasing) in ∆µ (∆σ) as we

must have PM (λ̂) = ∆µ
∆σ . �
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A.3.2 Proof of Proposition 2

Proposition 2. The myopic policy function PM (·) is strictly increasing and C.
Proof. The Theorem of the Maximum states that PM (λ) is a non-empty, compact-valued, and upper

hemi-continuous correspondence. However, the objective function is a weighted average of strictly

concave functions, thus it is strictly concave itself. As a result, PM (λ) must be single-valued. This

value means that PM (λ) is not only upper hemi-continuous but continuous.

Appendix A.1 of Bachmann and Moscarini (2012) shows that dPM (λ)
dλ > 0 if and only if PM (λ) >

PM (0) = P ∗2 for λ > 0. By construction, this holds for λ = 1 as P ∗1 > P ∗2 as σ2 > σ1. Thus, the

inequality must hold as well for large enough λ through continuity of PM (·).

Suppose by way of contradiction that for some λ′ > 0, we have PM (λ′) = PM (0) instead. Then

for some small ∆ > 0, we must either have PM (λ′ − ∆) > PM (0), PM (λ′ − ∆) = PM (0) or

PM (λ′ −∆) < PM (0). The first case indicates that dPM (λ)
dλ < 0, which contradicts the equivalence

from Bachmann and Moscarini (2012). The second case states that PM (λ′ − ∆) = PM (0) over

an open interval of small strictly positive values of ∆. However, this value cannot be true as the

expected profit function is strictly concave. Whenever PM (λ′ −∆) < PM (0), then we must have
dPM (λ)
dλ

∣∣
λ=`

< 0 for all ` ∈ (0, λ′). But, this means that for all ` ∈ (0, λ′), we have PM (`) < PM (0)

but we assumed that lim
λ↓0

PM (λ) = PM (λ′). Therefore, PM (λ) must display a discontinuity at λ = 0.

This is the desired contradiction as we showed that PM (·) is continuous. Thus, PM (λ′) > PM (0)

must hold for all λ′ > 0 and dPM (λ)
dλ > 0 follows. �

A.4 Additional Theoretical Results

Lemma 2. The marginal expected change in a firm’s posterior belief is bounded by its absolute

value, that is,∣∣∣∣Eε [∂bi(λ0, log(p), ε)

∂log(p)

∣∣∣∣ ε ∈ F] ∣∣∣∣ ≤ ∆σ

σ2
ε

(∫
ε∈F
|log(p)∆σ −∆µ+ ε|dF (ε)

)
where the sign of log(p)∆σ −∆µ+ ε is constant for all ε ∈ F ⊆ R.

Proof. Let x ≡ log(P )∆σ −∆µ and ε is contained in some set F ⊆ R. By construction of the ex

post belief function bi(λ, log(P ), ε), we obtain:

∣∣∣∣Eε [∂bi(λ0, log(P ), ε)

∂log(P )

∣∣∣∣ ε ∈ F] ∣∣∣∣ =

∣∣∣∣ ∫
ε∈F

exp
(

(ε+x)2+ε2

2σ2
ε

)
∆σ(x+ ε)(1− λ0)λ0(

exp
(
ε2

2σ2
ε

)
(1− λ0)σε + exp

(
(x+ε)2

2σ2
ε

)
λ0σε

)2dF (ε)

∣∣∣∣
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=
∆σ

σ2
ε

∣∣∣∣∣
∫
ε∈F

 exp
(

(ε+x)2

2σ2
ε

)
λ0

exp
(
ε2

2σ2
ε

)
(1− λ0) + exp

(
(ε+x)2

2σ2
ε

)
λ0

×
 exp

(
ε2

2σ2
ε

)
(1− λ0)

exp
(
ε2

2σ2
ε

)
(1− λ0) + exp

(
(ε+x)2

2σ2
ε

)
λ0

 (x+ ε)dF (ε)

∣∣∣∣∣
≤ ∆σ

σ2
ε

(∫
ε∈F
|x+ ε|dF (ε)

)
where the last inequality follows as the bracketed terms in the second equality are bounded by [0, 1]

and the sign of x+ ε remains constant on the set F by assumption. This is exactly what we wanted

to show. �

Proposition 3. Whenever V ′2(1) is small enough, then the firm’s active learning policy has an

interior solution, that is, P ∗(λ0) ∈ (P ∗2 , P
∗
1 ) for all λ0 ∈ (0, 1).

Proof. We show the case for λ0 ≥ 1
2 . The case for λ0 <

1
2 follows a very similar process. We derive

sufficient conditions such that P ∗(λ0) ∈ int(P) for all λ0 ∈ (0, 1). This is equivalent to finding suffi-

cient conditions such that a firm’s expected marginal benefits strictly dominate its cost counterpart

for P = P ∗2 and vice versa for P = P ∗1 .

By construction of the ex post belief functions bi(λ0, log(P ), ε), we can derive the following equality:

∂b2(λ0, log(P ), ε)

∂log(P )
= −∂b1(λ0, log(P ), ε)

∂log(P )
β̃(ε, λ0, x)

where the function β̃(·) is characterized by:

β̃(ε, λ0, x) =

λ0exp
(

(x+ε)2

2σ2
ε

)
+ (1− λ0)exp

(
ε2

2σ2
ε

)
(1− λ0)exp

(
(x+ε)2

2σ2
ε

)
+ λ0exp

(
ε2

2σ2
ε

)
2

We show that β̃′(·, λ0, x) is strictly increasing if and only if x(2λ0 − 1) is strictly positive. Fur-

thermore, it satisfies limε→+∞ β̃(ε, λ0, x) =
(

1−λ0
λ0

)2
and limε→−∞ β̃(ε, λ0, x) =

(
λ0

1−λ0

)2
. Let

xmin = log(P ∗2 )∆σ −∆µ < 0 and xmax = log(P ∗1 )∆σ −∆µ > 0, then we need to show that:

ηλ0Π′1(P ∗2 ) +
β

P ∗2
Eε
[(
λ0V

′
2(b1(λ0, log(P ∗2 ), ε))−

(1− λ0)V ′2(b2(λ0, log(P ∗2 ), ε))β̃(ε, λ0, xmin)

)
∂b1(λ0, log(P ), ε)

∂log(P )

∣∣∣∣
P=P ∗2

]
> 0 (A1)
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(1− η)(1− λ0)Π′2(P ∗1 ) +
β

P ∗1
Eε
[(
λ0V

′
2(b1(λ0, log(P ∗1 ), ε))−

(1− λ0)V ′2(b2(λ0, log(P ∗1 ), ε))β̃(ε, λ0, xmax)

)
∂b1(λ0, log(P ), ε)

∂log(P )

∣∣∣∣
P=P ∗1

]
< 0 (A2)

that are the first order conditions with respect to P in period 1 evaluate at P = P ∗2 and P = P ∗1 .

We start by finding a sufficient condition for the first inequality A1. To do this, we define the

function g(ε, λ0) = λ0V
′

2(b1(λ0, P
∗
2 , ε)) − (1 − λ0)V ′2(b2(λ0, P

∗
2 , ε))β̃(ε, λ0, xmin). For x = xmin < 0,

and we show that g(·, λ0) is monotonically decreasing. Furthermore, it satisfies g(−x, 1
2) < 0 and

g(−x, 1) > 0.

Whenever λ0 is relatively close to 1
2 , we show that ∃ε(λ0) < −xmin such that g(ε, λ0) > 0 for all

ε < ε(λ0) as g(−xmin,
1
2) < 0.46 Furthermore, we derive that ∂b1(λ0,log(P ),ε)

∂log(P )

∣∣∣∣
P=P ∗2

> 0 if and only

if ε > −xmin. Now, denote E1 ≡ (−∞, ε(λ0)), E2 ≡ (ε(λ0),−xmin) and E3 ≡ (−xmin,+∞). By

construction, it must be that E1 ∪ E2 ∪ E3 = R.

The observations above show that:

g(ε, λ0)
∂b1(λ0, log(P ), ε)

∂log(P )

∣∣∣∣
P=P ∗2

> 0

for ε ∈ E2. Thus, it is sufficient to show:

ηλ0Π′1(P ∗2 ) +
β

P ∗2
Eε
[
g(ε, λ0)

∂b1(λ0, log(P ), ε)

∂log(P )

∣∣∣∣
P=P ∗2

∣∣∣∣∣ε ∈ E1 ∪ E3

]
> 0

46Whenever λ0 is close to one, then the steps of the proof are similar. Instead, we have that ε(λ0) is greater
than −xmin though.
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Let ξ2 ≡ maxε∈E3 β̃(ε) = β̃(−xmin), then observe the following strain of inequalities:

ηλ0Π′1(P ∗2 ) + β
P ∗2
V ′2(1)∆σ

σ2
ε

(
xmin + Eε [ε|ε ≤ ε(λ0)]− ξ2Eε [ε|ε ≥ −xmin]

)
<

ηλ0Π′1(P ∗2 ) + β
P ∗2
V ′2(1)∆σ

σ2
ε

(
xminF (ε(λ0)) + Eε [ε|ε ≤ ε(λ0)]

−ξ2xmin (1− F (−xmin))− ξ2Eε [ε|ε ≥ −xmin]
)

=

ηλ0Π′1(P ∗2 ) + β
P ∗2
V ′2(1)∆σ

σ2
ε

(Eε [x+ ε|ε ∈ E1]− ξ2Eε [x+ ε|ε ∈ E3]) ≤

ηλ0Π′1(P ∗2 ) + β
P ∗2
V ′2(1)

(
Eε

[
∂b1(λ0,log(P ),ε)

∂log(p)

∣∣∣∣
P=P ∗2

∣∣∣∣ ε ∈ E1

]

−ξ2Eε

[
∂b1(λ0,log(P ),ε)

∂log(p)

∣∣∣∣
P=P ∗2

∣∣∣∣ ε ∈ E3

])
<

ηλ0Π′1(P ∗2 ) +
β

P ∗2
Eε
[
g(ε, λ0)

∂b1(λ0, log(P ), ε)

∂log(P )

∣∣∣∣
P=P ∗2

∣∣∣∣∣ε ∈ E1 ∪ E3

]

where the weak inequality follows from lemma 2 and the last strict inequality from the fact that

V ′2(1) > V ′2(λ′) for any λ′ < 1. This means that we are done whenever we can show:

ηλ0Π′1(P ∗2 ) + β
P ∗2
V ′2(1)∆σ

σ2
ε

(
xmin + Eε [ε|ε ≤ ε(λ0)]− Eε [ε|ε ≥ −xmin]

)
> 0

Recall that ε ∼ N (0, σ2
ε). Therefore, we can use standard truncation formulas for our conditional

expectations. These formulas give:

Eε [ε|ε ≤ ε(λ0)]− ξ2Eε [ε|ε ≥ −xmin] = −
ϕ
(
ε(λ0)
σε

)
Φ
(
ε(λ0)
σε

) − ξ2

ϕ
(
−xmin
σε

)
1− Φ

(
−xmin
σε

)
> −ϕ(0)

 1

Φ
(
ε(λ0)
σε

) +
ξ2

1− Φ
(
−xmin
σε

)


> −ϕ(0)

 1 + ξ2

1− Φ
(
−xmin
σε

)


Then, we can frame our first sufficient condition as:

ηλ0Π′1(P ∗2 ) + β
P ∗2
V ′2(1)∆σ

σ2
ε

[
xmin − ϕ(0) 1+ξ2

1−Φ
(−x
σε

)
]

(B1)

In a similar fashion, we derive a sufficient condition for A2. Define h(ε, λ0) = λ0V
′

2(b1(λ0, P
∗
1 , ε))−

(1−λ0)V ′2(b2(λ0, P
∗
1 , ε))β̃(ε, λ0, xmax), then we have h(·, λ0) that is monotonically increasing. Once

again, we can show that ∃ε(λ0) > 0 such that h(ε, λ0) if and only if ε > ε(λ0). By straightfor-

ward algebra, we can deduce that ∂b1(λ0,log(P ),ε)
∂log(P )

∣∣∣∣
P=P ∗1

> 0 if and only if ε > −xmax. Then, denote
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E1 ≡ (−∞,−xmax), E2 ≡ (−xmax, ε(λ0)) and E3 ≡ (ε(λ0),+∞) which satisfies E1 ∪ E2 ∪ E3 = R.

With similar reasoning as before, the following condition is sufficient for A2 to hold:

(1− η)(1− λ0)Π′2(P ∗1 ) +
β

P ∗1
Eε
[(
λ0V

′
2(b1(λ0, log(P ∗1 ), ε))−

(1− λ0)V ′2(b2(λ0, log(P ∗1 ), ε))β̃(ε, λ0, xmax)

)
∂b1(λ0, log(P ), ε)

∂log(P )

∣∣∣∣
P=P ∗1

∣∣∣∣∣ε ∈ E1 ∪ E3

]
> 0

Let ξ1 ≡ maxε∈E1 β̃(ε) =
(

λ0
1−λ0

)2
, then we derive a similar chain of inequalities as before:

(1− η)(1− λ0)Π′2(P ∗1 ) + β
P ∗1
V ′2(1)∆σ

σ2
ε

(
ξ1xmax + ξ1Eε [ε|ε ≥ ε(λ0)]− Eε [ε|ε ≤ −xmax]

)
>

(1− η)(1− λ0)Π′2(P ∗1 ) + β
P ∗1
V ′2(1)∆σ

σ2
ε

(
ξ1xmax [1− F (ε(λ0))] + ξ1Eε [ε|ε ≥ ε(λ0)]

−xmaxF (−xmax)− Eε [ε|ε ≤ −xmax]
)

(1− η)(1− λ0)Π′2(P ∗1 ) + β
P ∗1
V ′2(1)∆σ

σ2
ε

(ξ1Eε [xmax + ε|ε ∈ E3]− Eε [xmax + ε|ε ∈ E1]) ≥

(1− η)(1− λ0)Π′2(P ∗1 ) + β
P ∗1
V ′2(1)

(
ξ1Eε

[
∂b1(λ0,log(P ),ε)

∂log(p)

∣∣∣∣
P=P ∗1

∣∣∣∣ ε ∈ E3

]

−Eε

[
∂b1(λ0,log(P ),ε)

∂log(p)

∣∣∣∣
P=P ∗1

∣∣∣∣ ε ∈ E1

])
>

(1− η)(1− λ0)Π′2(P ∗1 ) +
β

P ∗1
Eε
[
h(ε, λ0)

∂b1(λ0, log(P ), ε)

∂log(P )

∣∣∣∣
P=P ∗1

∣∣∣∣∣ε ∈ E1 ∪ E3

]

where the weak inequality follows from lemma 2 and the last strict inequality from the fact that

V ′2(1) > V ′2(λ′) for any λ′ < 1. This means that we are done whenever we can show:

(1− η)(1− λ0)Π′2(P ∗1 ) + β
P ∗1
V ′2(1)∆σ

σ2
ε

(
ξ1xmax + ξ1Eε [ε|ε ≥ ε(λ0)]− Eε [ε|ε ≤ −xmax]

)
< 0

Using the previous finding on expectations of truncated standard normal random variables, the

latter inequality is satisfied whenever the following condition holds:

(1− η)(1− λ0)Π′2(P ∗1 ) + β
P ∗1
V ′2(1)∆σ

σ2
ε

(
ξ1xmax + ϕ(0) 1+ξ1

Φ
(−xmax

σε

)
)
< 0 (B2)
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Whenever we define x̃min and x̃max as:

x̃min ≡ log(P ∗2 )∆σ −∆µ− ϕ(0) 1+ξ2

1−Φ

(
−

log(P∗2 )∆σ−∆µ

σε

) < 0,

x̃max ≡ ξ1

(
log(P ∗1 )∆σ −∆µ

)
+ ϕ(0) 1+ξ1

Φ

(
−

log(P∗1 )∆σ−∆µ

σε

) > 0.

then, it is clear that B1 and B2 are satisfied whenever V ′2(1) is bounded from above. More precisely,

we get:

V ′2(1) < V ≡ σ2
ε

β∆σ
min

{
ηλ0Π′1(P ∗2 )

−x̃min
,
(1− η)(1− λ0) (−Π′2(P ∗1 ))

x̃max

}
. (B)

Thus, we have shown B =⇒ (B1 and B2) =⇒ (A1 and A2). However, we concluded in the

beginning of the proposition that P ∗(λ0) ∈ int(P) whenever A1 and A2 hold. This is exactly what

we wanted to show. �

A.5 Numerical Algorithm

Parameters. β, δ, σ1, σ2, λ0, m, s, σε, ρ and σζ .

Numéraire. W = 1.

Algorithm: pseudo-code.

We assume consumer taste shocks to satisfy εk ∼ N(m, s2). As a result, integrals over consumer

taste shocks are approximated using Gaussian quadrature methods. With some abuse of notation,

let the weights and nodes be denoted by {ωGHj }Mj=1 and {ζGHj }Mj=1 respectively.47 The quadrature

weights and nodes are chosen “optimally”. The nodes {ζGHj }Mj=1 are the roots of the Hermite

polynomial HM (ζ) that is defined as HM (ζ) =
∮
M !
2πiexp

(
−t2 + 2tζ

)
t−(M+1)dt and the weights are

equal to:

ωGHi = 2M−1M !
√
π

M2HM−1(ζGHj )2

We approximate the continuous AR(1) process for idiosyncratic productivity with a finite state

Markov process by following the Tauchen (1986) procedure. The number of Markov states is

denoted by NT . Let the Markov transition density be denoted byM(zi, zj) for i, j ∈ {1, 2, . . . , NT }×
{1, 2, . . . , NT }.

I (initialization). Set P
0
1, P

0
2, χ0 and convergence criteria ∆ε,∆ϕ > 0. Let the counter k equal

zero.

47The superscript stands for “Gaussian-Hermite” quadrature. This is useful to approximate functions of
the form f(x) = exp(−x2) which includes the family of normal distributions.
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II (out). Given k, set P
k
1, P

k
2 and χk.

III (in). Set H = 1
3 and calculate Πk using:

Hη =
1

χk
1

H + Πk

Then, set Sk = H + Πk. Define the aggregate state as ωk = (P
k
1, P

k
2, S

k).

IV. Solve the firm’s problem by obtaining V (λ, z, p−1):

V (λ, z, p−1) = max
{
V A(λ, z), V N (λ, z, p−1)

}
where

V A(λ, z) = max
p≥0

(p− 1
z )

[
λη p−σ1

P
1−σ1
1

+ (1− λ)(1− η) p−σ2

P
1−σ2
2

]
1

P
η
1P

1−η
2 χ

− ψ

P
η
1P

1−η
2

+ βλ

NT∑
i=1

M∑
j=1

M(zi, z)
1√
π
ωGHj V

(
b1(λ, log( p

1+π̃ ),
√

2σαζ
GH
j + µα

)
, zi,

p
1+π̃ )

+ β(1− λ)

NT∑
i=1

M∑
j=1

M(zi, z)
1√
π
ωGHj V

(
b2(λ, log( p

1+π̃ ),
√

2σαζ
GH
j + µα

)
, zi,

p
1+π̃ )

V N (λ, z, p−1) = (p−1 − 1
z )

[
λη

p
−σ1
−1

P
1−σ1
1

+ (1− λ)(1− η)
p
−σ2
−1

P
1−σ2
2

]
1

P
η
1P

1−η
2 χ

+ βλ

NT∑
i=1

M∑
j=1

M(zi, z)
1√
π
ωGHj V

(
b1(λ, log( p−1

1+π̃ ),
√

2σαζ
GH
j + µα

)
, zi,

p−1

1+π̃ )

+ β(1− λ)

NT∑
i=1

M∑
j=1

M(zi, z)
1√
π
ωGHj V

(
b2(λ, log( p−1

1+π̃ ),
√

2σαζ
GH
j + µα

)
, zi,

p−1

1+π̃ )

with bi(λ, log(p), ε) =

[
1 +

1− λ
λ

F ′(µi − µ2 + (σ2 − σi)log(p) + ε)

F ′(µi − µ1 + (σ1 − σi)log(p) + ε)

]−1

and µi = (σi − 1)log(P i) + log(ηi)

IV. Store the optimal pricing policy function P ∗(λ, z) for every (λ, z) ∈ [0, 1]× Z.

V. Simulation. Simulate a panel of N = 50000 firms who use the policy function P ∗(λ, z).

Simulation initialization. The initial distribution ϕi,0(λ, z) for i = 1, 2 is degenerate

at (λ0, z0). For each firm n ∈ {1, 2, . . . , N}, we assign it to be a firm of type σn = σ1

with probability λ0 and set time counter t to zero.

V.a. Given a firm’s belief λn,t, let firm n set price P ∗(λn,t, zn). We generate log sales by

drawing log demand shocks εn,t ∼ N(m, s2) through:

qn,t = −σnP ∗(λn,t, zn) + µi + sk + εn,t
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where µi = (σi − 1)log(P
k
i ) + log(ζi). Update firm n’s posterior to:

λn,t+1 = B(λn,t, P
∗(λn,t, zn), qn,t, S

k)

We apply exogenous death shocks δ to each firm. If a firm exits, then we replace it with

a new firm that we assign as type σ1 firm with probability λ0. Its prior becomes λ0.

V.b. We calculate ϕi,t+1(λ, z) for each i = 1, 2 and stop the simulation when the distribution

of beliefs settles in both measures of active firms or when the number of simulation

periods exceed some upper bound T > 1, i.e. sup
λ∈(0,1),z∈Z

||ϕi,t+1(λ, z)− ϕi,t(λ, z)|| < ∆ϕ

for i ∈ {1, 2} and/or t = T . Otherwise, we set t := t+ 1 and repeat step V.a.

VII. Calculate P
temp
i with the simulated density Φ̃i(λ):

P
temp
i =

(∑
λ

P ∗(λ, z)1−σiΦ̃i(λ, z)

) 1
1−σi

where Φ̃i(λ, z) is the empirical cross-sectional probability distribution function of beliefs and

idiosyncratic productivity. Also, calculate the total amount of labor in the economy as:

Htemp = Sk
2∑
i=1

ηi
z

[ ∑
λ,z P

∗(λ, z)−σiΦ̃i(λ, z)∑
λ,z P

∗(λ, z)1−σiΦ̃i(λ, z)

]

If supi |P
temp
i −P ki | < ∆ε and |H −Htemp| < ∆ε, then stop; otherwise, we set P

k+1
1 = P

temp
i

and P
k+1
2 = P

temp
2 . Let χk+1 > χk if and only if H −Htemp < 0. We update the counter to

k := k + 1 and repeat step II.

B Robustness exercises and extensions to framework

B.1 Bayesian learning with a continuum of types

Our baseline framework in section 3 features the simplest form of active learning with firms varying

their price as a control. Even though a firm is only uncertain about its demand elasticity and its

type can only be high or low, our menu cost model with active learning is already consistent with

the life cycle patterns that we showed in section 2. Nevertheless, we show that the key patterns

and incentives for active learning are preserved when we use a more elaborate form of learning.

Consider a monopolistically competitive producer with constant marginal costs c who is faced

with a linear demand curve of the following form:

q = α− σp+ ε
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where the demand shock satisfies ε ∼ N(0, σ2
ε). There are two key differences in this framework

compared to the baseline. First, the firm faces uncertainty about the intercept α and the slope σ

of its demand curve. Second, the pair (α, σ) is now part of a continuous parameter space. A firm’s

prior belief is thus specified by a probability density function on (α, σ) over R2. This is denoted by

f(α, σ|θ,Q) whereQ denotes its information set that consists of the history of previous realized sales.

θ parameterizes the distribution f . We specify the firm’s initial prior over (α, σ) to be a multivariate

normal distribution that is parameterized by the mean vector (a, s)′ and variance-covariance matrix

Σ. The latter is symmetric and satisfies:

Σ =

(
va vas

vas vs

)

Therefore, we have θ = (a, s, vec(Σ)′)′ = (a, s, va, vas, vs)
′.

Given a prior distribution f(α, σ|θt,Qt−1) at time t where Qt−1 = {q1, q2, . . . , qt−1) and after

observing a realized sales value of qt, a firm will update its prior to a posterior distribution according

to Bayes’ rule:

f(α, σ|θt+1,Qt) =
f(qt|α, σ, θt,Qt−1) · f(α, σ|θt,Qt−1)

f(qt|θt,Qt−1)

∝ f(qt|α, σ, θt,Qt−1) · f(α, σ|θt,Qt−1)

The family of Gaussian distributions is conjugate to itself with respect to a Gaussian likelihood

function, so this means that the posterior function must be of the multivariate normal form as well.

A standard application of the Kalman filter shows that:

(
a

s

)
t+1

=

(
a

s

)
t

+
ΣtXt

X ′tΣtXt + σ2
ε

(
qt −X ′t

(
a

s

)
t

)
(K1)

Σt+1 = Σt −
ΣtXtX

′
tΣt

X ′tΣtXt + σ2
ε

(K2)

where Xt = (1,−pt)′. A more direct derivation can be found in Zellner (1971). The function that

changes the parameters from the prior distribution into their posterior counterparts, as a function

of observed sales and a chosen price, is denoted by B : Θ×P×R+ → Θ. Thus, the above system of

equations can be compactly written as θt+1 = B(θt, p, q). The ex ante expected profits are defined

as:

Π(p; θ) =

∫
ε∈R

∫
α,σ∈R2

(p− c)(α− σp+ ε)f(α, σ|θ,Q−1)q(ε;σ2
ε)d(α, σ)dε

with q(·;σ2
ε) being a normal distribution with a mean of zero and a variance of σ2

ε . Then, a firm’s
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Bellman equation can be written as:

V (θ) = max
p∈P

{
Π(p; θ) + β

∫
ε∈R

∫
α,σ∈R2

V (B(θ, p, α− σp+ ε)) f(α, σ|θ,Q−1)q(ε;σ2
ε)d(α, σ)dε

}
Under this setup, a firm chooses its optimal price by trading off two forces. To maximize its

current profits, a firm chooses a price that maximizes myopic profits Π(p; θ). For a given prior

θ = (a, s, vec(Σ)′)′, we can derive that the optimal myopic price equals:

pmy(θ) = arg max
p∈P

Π(p; θ)

=
a+ sc

2s

However, a firm’s price will affect its sales. The observed amount of sales in the future serves as an

useful signal for the firm to update its prior beliefs. A firm internalizes this signal and thus needs

to take into account how its price will affect its posterior beliefs. This consideration is also known

as the trade-off between current control and estimation. More importantly, these incentives do not

necessarily align with each other. The reasoning is as follows: For moderate beliefs, a firm prefers

to choose a price that is not too extreme in order to maximize the myopic profits.48 However, large

deviations in a firm’s price are more likely to result in large deviations in a firm’s future sales which

in turn means that its signals become more volatile and are thus more informative. In the end,

a firm needs to strike a balance between maximizing strictly concave myopic profits and a convex

continuation value.

To show this balance, we work out a numerical two-period version of the above framework. We

denote θt = (at, st, va,t, vas,t, vs,t). There are only two periods, thus in the second and last period,

we must have:

V2(θ2) = max
p∈P

Π(p; θ2)

= max
p∈P

(p− c)(a2 − s2p)

= (pmy(θ2)− c) (a2 − s2p
my(θ2))

=
(a2 − s2c)(3a2 − s2c)

4s2

48Further, this price must exist and is unique since the profit function is strictly concave in p for every pair
(α, σ).
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By backward induction, we obtain:

V1(θ1) = max
p∈P

(p− c)(a1 − s1p) + β

∫
ε∈R

∫
α,β∈R2

(a2 − s2c)(3a2 − s2c)

4s2
f(α, σ|θ1, q1)q(ε;σ2

ε)d(α, σ)dε

s.t. a2 = a1 +
(va,1 + vas,1p)(α− σp+ ε− a− sp)

va,1 + 2vas,1p+ vs,1p2 + σ2
ε

s2 = s1 +
(vas,1 + vs,1p)(α− σp+ ε− a− sp)

va,1 + 2vas,1p+ vs,1p2 + σ2
ε

In the following example, we initialize the prior through θ1 = (5,−1.2, 0.5,−0.1, 2)′ and normalize

σ2
ε = 1. The graph below reflects the reasoning we just described.

Figure A.XVIII: Numerical Example of the Two-Period Model: Continuum of Types

1.5 2.0 2.5 3.0 3.5 4.0
p

1

2

3

4

V(p)

Note: The figure shows the static profits (blue), the continuation value (green), and the total payoff (red) of the two-period

model with a continuum of types. The y-axis represents the total payoff and the x-axis the price.

We only consider prices for which quantities are non-negative in expectation (with respect to

the demand shock ε and the prior distribution), thus we define P = [0, a1
s1

] in this example. The

blue, dashed myopic profits are concave as expected. If the firm ignores its incentives for estimation

(i.e., changing its price to affect its posterior beliefs), then it is optimal to set pmy(θ1) = 2.58.

However, setting a more extreme price delivers a more informative signal in the second period.

This is reflected in the convex shape of the continuation value (depicted in green). In the end, a

rational firm balances the trade-off between control and estimation. As a result, it maximizes the

sum of myopic profits and its continuation value, which is depicted in the red line. The maximum

of this function is obtained at p∗(θ1) = 3.5. By definition, the firm engages in active learning as

pmy(θ1) 6= p∗(θ1).

Note that the mechanics of active learning in this example with a continuum of types is identical

to the two-period example we illustrated in section 3.2.1. In the baseline setup, a firm also faces
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the trade-off between current control and estimation through concave myopic profits and a strictly

convex continuation value. As a result, our results on the propagation of nominal shocks in section

4 should be robust to a more complicated version of active learning.

In fact, the incentives for active learning are stronger under a setup with a continuum of types.

To understand this argument, we rely on the insights of Kiefer and Nyarko (1989). They show that

under a setup with a linear demand curve all limiting beliefs and policy pairs (θ
′
, p) must satisfy a

set of three properties that we outline below:

θ = B(θ, p, α− σp+ ε) (B1)

Π(p, θ) = max
p∈P

Π(p; θ) (B2)

E(α|θ − E(σ|θ)p = α− σp (B3)

Equation B1 is also known as belief invariance and follows directly from the definition of a limiting

belief. In the limit (if one exist), beliefs converge to a constant vector that is defined as the fixed

point of the function B conditional on p. If beliefs do not change in the limit, then there are no

incentives to actively learn. As a result, the optimal policy must be the myopic one conditional on

the limiting beliefs θ as described in equation B2. Kiefer and Nyarko (1989) refer to this policy as

one-period optimization. Further, if prices are forever held at p, then a firm will at least infer the

true amount of sales associated at the price p. Equation B3 is also known as the mean prediction

property.

The solution (θ
′
, p) that satisfies B1, B2 and B3 contains the correct limit belief but is in

general not unique. Wieland (2000a) shows that any solution that contains incorrect limit beliefs

must satisfy the following three properties:

Perfect correlation. v2
as

vavs
= 1.

Uncertainty. va, vs > 0.

Limit actions. p = −vas
vs

= − va
vas

.

As a result, there is a set of incorrect, confounding beliefs under the continuum of types case. Recall

from section 3 that a firm does not learn anything under the confounding belief and thus avoids

setting prices that are equal to the confounding price. This is reflected by the discontinuity in

policy function under the extreme active learning regime. Under a continuum of types, there are a

multitude of such points. Thus, firms vary their prices more due to active learning in this case.

Another advantage of restricting our attention to active learning in which there are only two

types, (µ1, σ1) and (µ2, σ2) with σ2 > σ1, is that equations B1, B2, and B3 can be used to show

that there exists only one limit belief that does not converge to the truth (i.e. λ 6∈ {0, 1}). This

incorrect limit belief is equal to:

λ =
σ2∆σc− µ2(σ1 + σ2) + 2µ1σ2

∆σ(∆σc−∆µ)
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where c denotes a firm’s marginal cost of production.

B.2 Age-dependent exit rates

In our baseline framework, the exit rate is fixed at δ > 0, which applies for each product. However,

just like for firms (Caves, 1998), younger products are more likely to exit the market. Our as-

sumption of a constant exit rate that is independent of the product’s age could potentially bias our

results on the propagation of nominal shocks. This is because the composition of products is biased

towards younger products that experience a higher frequency and absolute size of price adjustments.

In this section, we show that the assumption of a constant exit rate does not significantly bias the

results generated by the baseline framework.

Therefore, we first show in the IRI Symphony data that product-level exit declines in age.

Second, we propose an extension of our baseline framework to incorporate this observation. Third,

we calibrate the extended framework and recalculate the real effects of a nominal shock.

In the first exercise, we compute the fraction of products that exit the market by age for each

year and product category. Then, for each age bin, we average across years and product categories

and plot these average exit rates by product age. The result can be found in the figure below that

shows that exit rates indeed slope downward with age.

Figure A.XIX: Exit Probability by Age

Note: The graph plots the average probability of exit of a UPC-store pair as a function of its age. We first compute the

probability of exit for each category in the Symphony IRI data set. We then aggregate across categories using equal weights.

The y-axis denotes the average probability exit in a given week, and the x-axis denotes the number of weeks the product has

been observed in the data after it entered the market.

An alternative way of showing this fact is by estimating the product hazard function. There are
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multiple ways of doing this estimation, but we adopt a parsimonious one. Under this method, we

allow for a high degree of flexibility in the hazard rate by estimating it parametrically through the

Weibull distribution. The hazard function is then given by:

h(a) = λpap−1

where the scale parameter is denoted by λ. The shape parameter p indicates whether the hazard

rate varies with age. A value p < 1 means that the exit rates decline with a product’s age whereas

p = 1 and λ = δ corresponds to the exponential hazard function that we assume in our baseline

framework. Thus, the Weibull distribution is flexible in that it allows for age-varying hazard rates.

Another advantage of the Weibull specification is that it is straightforward to calibrate. Let T be

a random variable that denotes the product’s duration, then the following equalities hold whenever

T ∼ W(λ, p):

E(T ) = λ−1/pΓ
(
1 + p−1

)
V (T ) = λ−2/p

[
Γ(1 + 2/p)− Γ(1 + p−1)

]
where Γ(·) denotes the gamma function. The IRI data shows that the average amount of weeks

that a product lasts in the market is 81.25 weeks. Furthermore, its variance is given by 8326.5.

Then, we can form a system of two equations in the pair of unknowns (λ, p). Its solution is given

by λ̂ = 48.13 and p̂ = 0.8922 < 1. Note that our calibrated value for p is not too far away from

unity. This distance means that even though hazard rates decline, the product exit rates do not

depend too strongly on age.

Note that the previous method relies on the structure of the Weibull distribution. Alterna-

tively, we perform a non-parametric exercise. It is fairly difficult to obtain hazard functions non-

parametrically, but we can still infer whether product-level exit rates depend on age in a non-

parametric fashion. Recall that survival and hazard functions are related through the following

identity:

−log (S(a)) =

∫ a

0
h(τ)dτ

A concave, increasing cumulative hazard function then indicates that hazard rates decline with

the product’s age. This is useful as it is straightforward to obtain the survival function non-

parametrically through the Kaplan-Meier estimator Ŝ(a).

To capture age-dependent exit rates in our framework, we extend the baseline model of section

3 by assuming that product-level exit rates depend on age as follows:

δ(a) = δ0exp (−δ1a)

The parameters δ0 and δ1 can then be chosen accordingly to match our observations from the above
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graph. This estimation can be done by running a linear regression of average exit rates (in natural

logs) on age. The estimated intercept and slope of this regression then correspond to δ̂0 and δ̂1. We

could also match the observed (cumulative) hazard rate function. In this case, we would add the

two parameters δ0 and δ1 to our calibration.

B.3 Age profile for product-level sales

In section 2, we showed that entering products play a substantial role in the aggregate economy.

Approximately 45 percent of products in the US market entered in the last five years and they

account for about 30 percent of total expenditures. However, entering products do not immediately

reach these high levels of sales because, for example, the need to build customer bases. Paciello,

Pozzi and Trachter (2014) argue that the pricing dynamics of firms are heavily influenced by cus-

tomer retention concerns that are relatively more important for entering products. As a result,

our quantitative results could be biased whenever we do not take into account that product sales

require some time to be built up. In the following sections, we present two extensions to alleviate

these concerns.

B.3.1 Demand shocks with age-dependent trend

The easiest, albeit mechanical, way of incorporating the fact that entering products’ sales grow over

time starting from a relatively low level is through an age trend in demand shocks. We add the

following adjustment to the baseline framework. Assuming that the realization of taste shocks are

independent across all groups and over time, we specify demand shocks to depend on a product’s

age through:

αit(k, a) = ωi(k, a)αit(k)

Then, the price index becomes:

Pit =

(∫
k∈Ji

∫
a
ωi(k, a)pit(k)1−σida dk

)1/1−σi

Recall that we are trying to capture the fact that entering products’ sales start at a relatively low

level and grow asymptotically towards some steady rate in a concave fashion. This steady rate is

achieved fairly quickly in our dataset and occurs within the first three months after the product

enters the market. As a result, we use the following functional form:

ωi(k, a) = ιaυ

where we calibrate the initial level ι and age-dependent slope υ to match the age profile of sales.
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Even though younger firms contribute less to output under this specification, their incentives to

actively learn are higher given the prospects of higher sales in the future. In other words, the

opportunity cost of poor sales at entry is low relative to future potential sales. These two forces

contribute in different directions when measuring the response of real output to a nominal shock.

As a result, under this specification, the effects on real ouput remain quantitatively similar to those

obtained in our benchmark model.

B.3.2 Customer base

In this section, we extend the canonical framework of Golosov and Lucas (2007) by adding a customer

base. We show that such a model can rationalize the fact that product-level sales are dependent on

age but this fact is not consistent with the documented life cycle patterns on product pricing.

Therefore, we model the customer base by incorporating external habits from the consumer

side as is done in Gilchrist, Schoenle, Sim and Zakraǰsek (2017). Under this setup, the aggregate

consumption good Ct consists of a continuum of monopolistic competitive goods and is constructed

as follows:

Ct =

∫ 1

0

(
cit
bηit−1

)σ−1
σ
di


σ
σ−1

where bit is the habit stock associated with good i at time t. The good-specific habit stock is

assumed to be external: consumers take this level of stock as given. In addition to being more

tractable, the assumption of external habits avoids the time-inconsistency problem of a firm setting

its price associated with good-specific internal habits (Nakamura and Steinsson, 2011). Thus, we

impose an exogenous law of motion for the external habit:

bit = (1− δC)bit−1 + δCcit

where δC denotes the depreciation rate of the customer base. Given the fact that consumers take

the stocks of external habits {bit}i as given at time t, its good-specific demand can be derived as:

cit =

(
pit
Pt

)−σ
(bit−1)η(1−σ)Ct

The CES price index, adjusted for external habits, is denoted by:

Pt =

(∫ 1

0

(
pitb

η
it−1

)1−σ
di

) 1
1−σ
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Identical to the baseline framework, we assume that each firm produces with a labor only production

function that features constant returns to scale. Given a consumer’s demand for good cit, we can

derive that a monopolistically competitive firm i’s profits are equal to:

πit =

(
pit −

Wt

zit

)(
pit
Pt

)−σ
(bit−1)η(1−σ)Ct

Furthermore, we assume that firms are faced with a nominal rigidity in the form of a menu cost

(denoted in units of labor). A firm’s dynamic programming problem is summarized by the following

Bellman equation:

V (b−1, z, p−1) = max
{
V A(b−1, z), V

N (b−1, z, p−1)
}

where the value of adjusting is given by:

V A(b−1, z) = max
p

(
p

P
− W

zP

)( p
P

)−σ
b
η(1−σ)
−1 C − ψWP

+ β

∫
z′
V

(
b, z′,

p

1 + π̃

)
dG(z′, z)

s.t. b = B(b−1, p) = (1− δC)b−1 + δC
[( p
P

)−σ
b
η(1−σ)
−1 C)

]
which can be rewritten as:

V A(b−1, z) = max
p

( p
S
− ω

z

)( p
S

)−σ
b
η(1−σ)
−1

(
P

S

)σ−2

− ψωS

P

+ β

∫
z′
V

(
B

(
b−1,

p

1 + π̃

)
, z′,

p

1 + π̃

)
dG(z′, z)

The two crucial parameters that govern the customer base are η and δC . To verify whether a

standard price-setting model with customer base incentives are consistent with our stylized facts,

we simulate the model by choosing the parameters η and δC externally. Foster, Haltiwanger and

Syverson (2016) structurally estimate these parameters and find values of 0.92 and 0.188 for η(1−σ)

and δC respectively. However, this depreciation rate is based on an annual basis. Our framework’s

unit of time is at the weekly level. Therefore, we set δC to satisfy:

(1− δC)52 = 1− 0.188

which gives δC ' 0.003997. The following figure calculates the fraction of positive and negative

price changes by product age in the simulated data.
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Figure A.XX: Fraction of Positive and Negative Price Changes

Note: The graph plots the share of regular price increases and regular price decreases conditional on adjustment. The data

is generated by simulating the Golosov-Lucas model with a costumer base under the calibration described in section B.3.2. It

considers the first six months after the entry of a product in the model.

The figure shows that the majority of the price changes for young products is positive, which

the data contradicts. In the IRI data, we observe that roughly 60 percent of all price changes are

positive, and this fraction is largely stable over the product’s life cycle.

In a model with customer retention, firms have “invest” and “harvest” motives. By construction

in a customer base model, current sales are dependent on the level of previous sales. This dependence

means that recently entered products have relatively low prices that induce a high volume of sales

and, hence, a large customer base. Once this customer base is built up to a sufficiently high level,

a firm exercises its market power by increasing its price and generates profits. The simulated data

indicates that customer bases are built up extremely fast. Firms set low prices to attract customers

and then immediately exercise their market power afterward in a gradual fashion. This is also

reflected in the frequency of price adjustments by product age. In the early stage of a product’s life

cycle, firms’ incentives for harvesting are extremely large. Thus, they are willing to pay the menu

cost to increase their prices. This incentive then slows down over time, which is consistent with the

IRI data. However, we also observe in the data that the frequency of negative price adjustments

weakly decreases with product age. This is contradicted by the customer base model because the

frequency of negative price changes actually weakly increases.
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Figure A.XXI: Frequency of Price Increases and Decreases at Entry

Note: The graph plots the average weekly frequency of price adjustments of products entering the market. The data is generated

by simulating the Golosov-Lucas model with a costumer base under the calibration described in section B.3.2. The y-axis denotes

the probability that the product adjusts prices in a given week and the x-axis denotes the number of weeks the product has

been observed in the data after it entered the market. The blue line indicates the frequency of positive price adjustments and

the red line the frequency of negative price adjustments.

We also show in the data that the absolute size of price changes declines with the product’s age.

However, we see from the figure above that a customer base does not generate such a pattern. In

fact, it seems to show that the absolute size of price changes is independent of a product’s age.
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Figure A.XXII: Absolute Value of Price Changes at Entry

Note: The graph plots the average absolute size of price adjustments of entering products. The data is generated by simulating

the Golosov-Lucas model with a costumer base under the calibration described in section B.3.2. The y-axis is the absolute value

of the log price changes in that week, and the x-axis denotes the number of weeks after the product entered.

B.4 Endogenous entry over the cycle

Our baseline framework reflects a stationary environment in which the number of entrants is constant

over time. Even though our baseline framework is successful in replicating the stylized facts that

we show in section 2, it does not capture whether the magnitude of the previously mentioned

amplification varies over the business cycle. In this section, we construct a fully dynamic version

of our model to investigate whether cyclical changes in the extensive margin of products play an

important role in the amplification of nominal shocks. Following work by Lee and Mukoyama (2015),

aggregate productivity shocks are the source of aggregate fluctuations. In addition, the entry rate

of products is endogenous, which allows it to vary with the aggregate state of the economy. In this

section, we present the necessary ingredients to allow for a procyclical entry rate in our model.

Consumers and firms are identical as in the baseline framework. However, a firm’s productivity

now consists of two components: an idiosyncratic one as described in section 3 and an aggregate

component Zt. Aggregate productivity Zt follows a symmetric, two state Markov chain. Thus, we

have Zt ∈ {ZL, ZH}. The transition matrix between high and low aggregate productivity is then

characterized by: [
ϑ 1− ϑ

1− ϑ ϑ

]

82



The average duration of a state is characterized by:

∞∑
τ=1

τ(1− ϑ)ϑτ−1 =
1

1− ϑ

As before, we assume that aggregate spending grows deterministically at the rate π̃, i.e. St =

exp(π̃ · t). Recall that a price-adjusting incumbent firm has a two-dimensional idiosyncratic state.

We denote this state by vit(k) = (λit(k), zit(k)). Then, a firm’s ex-ante expected profits can be

written as a function of the idiosyncratic state vit(k) and the aggregate state ξt ≡ (St, Zt):

Πt(p;v
i
t(k), ξt)

A firm chooses a path of prices
{
pit(k)

}
t≥0

to maximize the expected, discounted profits. The firm’s

problem in Bellman form is equal to:

V (v, p−1; ξ) = max
{
V A(v; ξ), V NA(v, p−1; ξ)

}
where the value of adjusting and not adjusting are respectively given by:

V A(v; ξ) = max
p≥0

Π(p;v, ξ)−W · ψ

+ Eξ′
[
q(ξ, ξ′)λ

∫
z′

∫
ε
V
(
b1(λ, log( p

1+π̃ ), ε
)
, z′, p

1+π̃ , ξ
′)dF (ε)dG(z′, z)

+ q(ξ, ξ′)(1− λ)

∫
z′

∫
ε
V
(
b2(λ, log( p

1+π̃ ), ε
)
, z′, p

1+π̃ , ξ
′)dF (ε)dG(z′, z)

∣∣∣∣ξ]
V NA(v, p−1; ξ) = Π(p−1;v, ξ)

+ Eξ′
[
q(ξ, ξ′)λ

∫
z′

∫
ε
V
(
b1(λ, log( p−1

1+π̃ ), ε
)
, z′, p−1

1+π̃ , ξ
′)dF (ε)dG(z′, z)

+ q(ξ, ξ′)(1− λ)

∫
z′

∫
ε
V
(
b2(λ, log( p−1

1+π̃ ), ε
)
, z′, p−1

1+π̃ , ξ
′)dF (ε)dG(z′, z)

∣∣∣∣ξ]

where the stochastic discount factor is given by q(ξ, ξ′) = β u
′(C′)
u′(C) .

There is a pool of potential entrants. In the beginning of a period, everyone observes the

aggregate state ξt = (St, Zt). Furthermore, every potential entrant is endowed with an idiosyncratic

productivity z drawn from the exogenous distribution H. If a potential entrant wants to become a

producer, she needs to pay a fixed entry cost cE , which is denoted in units of labor. At entry only,

we assume that the entrant is allowed to choose its price without incurring the menu cost. The

value of becoming a producer then becomes:

V E
t (zt; ξt) = V A

t (λ0, zt; ξt) +Wt · ψ

This structure indicates that only those potential entrants with sufficiently high values for zt can
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actually enter the product market. In fact, there is a threshold value z∗t that is defined by the free

entry condition:

V E
t (z∗t ; ξt) = Wt · cE

= ωSt · cE

such that potential entrants become producers if and only if their drawn level of productivity satisfies

zt ≥ z∗t .

To analyze the model in general equilibrium, we need to consider an environment in which

consumers and firms engage in optimal behavior while the markets for goods and labor clear. The

optimization behavior is apparent from the representative consumer’s first order conditions and

firms’ value functions. The market for goods clears by construction because we plug the optimal

consumer demand into the firm’s optimization problem. As a result, we only need to clear the labor

market.

Let ϕt(λ, z, p−1) denote the labor demand of a firm with idiosyncratic state (v, p−1) = (λ, z, p−1).

Assuming the mass of potential entry in each period is one, its distribution at period t is denoted

by µt(v, p−1). Then, the quantity of labor demanded by incumbent producers is:

Ld,pt = Nt ·
∫
v,p

ϕt(v, p−1)dµt(v, p−1)

where Nt denotes the actual mass of potential entrants in period t. Furthermore, labor is used for

the costs of entry. Thus, total labor demand Ldt can be characterized as:

Ldt = Ld,pt +Nt · (1−H(z∗t )) · cE

The above equation characterizes the optimal labor supply. Then, the market for labor clears when

the labor supply equals labor demand.

Lastly, we describe how to calibrate the exogenous, aggregate productivity process. Following

the RBC literature, we assume that the level of aggregate productivity can be well approximated

by an autoregressive process. We use Fernald’s (2014) quarterly utilization-adjusted time series

for TFP and detrend it with the HP filter (using a smoothing parameter of 1,600). Then, we run

a linear regression of this detrended series on its lagged counterpart and calculate the standard

deviation of the residuals. These residuals are then interpreted as shocks to aggregate productivity.

We find a value of 0.009 at the quarterly level. Converting this to the weekly level, we obtain

σZ = 0.009√
12
' 0.0026. We normalize the trend for aggregate productivity to unity and define a boom

or bust as a one standard deviation increase or decrease from the trend respectively. As a result,

we obtain ZH = 1.0026 and ZL = 0.9974.49 Furthermore, we assume that the average duration

49Vavra (2014) performs a similar exercise with real output per hours worked and finds a standard deviation
for aggregate productivity shocks of 0.006 at the monthly level. This means a value of σZ = 0.006√

4
' 0.003

which is similar to what we find above.
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of a boom or bust is 35 months, which is approximately 140 weeks. This indicates a value of the

transition probability ϑ = 1− 1
140 ' 0.99286.
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