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Measuring Productivity Dispersion

Eric J. Bartelsman and Zoltan Wolf∗

Abstract

Measuring the dispersion of productivity or efficiency across firms in a market or industry

is rife with methodological issues. Nevertheless, the existence of considerable dispersion now

is well documented and widely accepted. Less well understood are the economic features

and mechanisms underlying the magnitude of dispersion and how dispersion varies over time

or across markets. On the one hand, selection mechanisms in both output and input mar-

kets should favor the most productive units through resource reallocation, thereby reducing

dispersion. On the other hand, innovation and technological uncertainty tend to increase dis-

persion. This chapter presents a guide to measurement of dispersion and provides empirical

evidence from a selection of countries and industries using a variety of methodologies.
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1 Introduction

Heterogeneity in productivity or efficiency of producers has long been recognized in the academic

literature, but traditionally was considered more of a hindrance that needed to be massaged away

in analysis rather than an important feature of economic life requiring theoretical and empirical

analysis. Marshall introduced the notion of a ’representative firm’ in his ’Principles’ in order

to analyse equilibrium in production. Robbins (1928) notes that Marshall mainly introduced

the concept in order to simplify analysis. Robbins then goes on to argue that the construct

of the representative firm is not needed for analysis of economic equilibrium and actually may

be misleading: “The whole conception, it may be suggested, is open to the general criticism

that it cloaks the essential heterogeneity of productive factors-in particular the heterogeneity of

managerial ability- just at that point at which it is most desirable to exhibit it most vividly.”

Notwithstanding the contribution of Robbins, much of the theoretical work in general equi-

librium theory and also in macro theory of business cycles and growth continued to use the

representative firm until recently. By contrast, ensuing empirical research eschewed the repre-

sentative firm (e.g. Farrell (1957), Salter (1960)), but did not have theoretical explanations for

how productivity differences could co-exist. Leibenstein (1966) contrasted deviations from effi-

ciency as described by micro-theory (allocative inefficiency), with differences in efficiency across

otherwise similar production units. By giving a name to the gap from the most productive firm,

’X-inefficiency’, Liebenstein may have provided an appealing narrative, but did not satisfy the

theoretician’s desire for placing the phenomenon in the framework of cost minimization (e.g.

Stigler (1976)). However, following Stigler’s critique and reply (Leibenstein (1978)), the path

had opened up for future researchers to work on building a framework to understand why pro-

ductivity dispersion across firms exists and even may be compatible with optimizing behavior

in output and input markets.

The explanations generally require some curvature in the profit function of a producer that

prevents the most productive firm from selling to all customers in the market. Mechanisms

include frictions in adjustment of factors and the entry and exit of plants, and distortions that

drive wedges in the forces pushing towards the equalization of marginal products across plants.

Early models of heterogeneous producers that support productivity dispersion in equilibrium are

given by Lucas (1978) and Hopenhayn (1992). Other relevant theoretical contributions point the

way towards understanding how dispersion may shed light on measurement of output and inputs
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(e.g. De Loecker (2011)), on frictions in optimization (e.g. Cooper and Haltiwanger (2006)),

and on distortions to the functioning of markets (e.g. Hsieh and Klenow (2009), or Brown et al.

(2016)). This chapter will provide some guidelines on how to measure productivity dispersion

and place it into context of the models.

The recipes given in this chapter for measuring and analysing dispersion of productivity use

longitudinal firm- or plant-level data as collected by statistical agencies in annual production

surveys. These data underly much of the empirical literature reviewed by Bartelsman and Doms

(2000) and Syverson (2011). Further, similar datasets are now being explored in empirical

studies of productivity, innovation, employment and trade, for example by the Eurostat ESSNet

projects Bartelsman et al. (2017), the OECD DynEmp project (Criscuolo et al. (2014)) and the

ECB CompNet project (Lopez-Garcia and di Mauro (2015)). Using these data, the research

finds that productivity differences across establishments indeed are large and persistent in all

countries, industries, and time periods reviewed.

Dispersion is important as a measure of heterogeneity and also because it is relevant for

business dynamism and growth. The role of dispersion for business dynamism and growth

has been explored extensively in the context of the relationship between productivity, growth

and reallocation dynamics. A number of papers found that more productive plants are more

likely to grow and less likely to exit (recent examples include Foster et al. (2016a), and Foster

et al. (2015)). Another area of application is the frontier literature, which postulates that the

technology and practices of the most productive plants, or frontier plants, are adapted by other

establishments (e.g. Acemoglu et al. (2006), Bartelsman et al. (2015)). In this view, growth is

sourced either from innovative activity at the frontier or from the adjustment of non-frontier

establishments, in which they adopt frontier behavior. Yet another area of inquiry is related

to the interpretation of dispersion in revenue productivity. Based on the insights in Hsieh and

Klenow (2009)—that under certain assumptions about technology and demand, dispersion in

productivity reflects market distortions—dispersion in a particular revenue productivity measure

has been used to create indicators of misallocation (a recent example is Foster et al. (2016b)).

The remainder of the chapter is organized as follows. Before defining productivity and its

measures, we start with a theoretical discussion on productivity dispersion. The next section

will discuss measurement of productivity at the plant level and will place the simple measures of

productivity used in the literature on dispersion in the context of more sophisticated measures

discussed in this handbook. Next, some recipes will be provided for computing dispersion
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measures, taking into account sensitivity to measurement errors. The chapter then will conclude

with a review of some evidence on productivity dispersion in a wide variety of industries and

countries. The chapter concludes with thoughts about a model that endogenizes productivity

dispersion.

2 What is Productivity Dispersion?

Assume we have an indicator of productivity, ωit, of a production unit i in time period t, that

measures how much more, or less, output (in log-points) is produced per unit of input than

at some ‘reference’ production unit. This measure of productivity, for a single firm, plant, or

decision making unit, is the basic building block for cross-sectional measures of dispersion (at

time t). Dispersion is related to the ’width’ of the productivity distribution and thus has the

same dimensionality as the underlying measure. The empirical distribution of productivity built

up from the ωits that are derived from observed data, is the result of our statistical methodology

in collecting the data and the computational methods of computing productivity as well as the

result of economic processes driven by decisions made at production units and the interactions

between economic agents in input and output markets. Finally, dispersion in productivity can

reflect idiosyncracies in the processes driving creation of knowledge and production technology.

In this section we will provide some theoretical background into the drivers of the empirical

measure of productivity dispersion. We start with a discussion of statistical issues. Next, we

look at two sides of the economic process driving dispersion. First, we look at factors that

drive dispersion across firms in their ability to produce output given inputs, i.e., at a certain

level of productivity. Second, we look at processes in input and output markets that reallocate

inputs and select production units and thus jointly shape the observed productivity distribution.

Because of its importance as the building block for measuring dispersion, a separate section is

devoted to compution of the relative productivity of a production unit, ωit.

2.1 Statistical Issues

Dispersion in productivity is some measure of the distribution of productivity, for example the

second moment. The use of the terms measure, distribution, and moment bring on thoughts

about probability and statistics, and possibly about sampling and measurement error. In this

section we disentangle statistical issues from the economic phenomenon that we are trying to
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measure.

From probability theory, we can understand a probability space to consist of a sample space,

a set of events, and a function mapping events to a probability. Interpretation of the (empirical)

productivity distribution depends on what we think the underlying process is through which

outcomes are drawn from the sample space, and how we think about the relationship between

events and the available data. For example, we could think of the outcome of NT observations

from a longitudinal panel of N firms and T years as being independent draws from a particular

sample space and probability mapping.2 Given the sample size, we could then place error bounds

on estimates of the standard error of the probability distribution. Under these assumptions, the

interpretation of dispersion of productivity is clear. However, the underlying assumptions may

not hold, and deviations require differing interpretations.

To start, the observations may not be independently drawn from the same distribution.

This can easily be tested, for example by testing for the equality of the ’within’ (over time-series

dimension) estimate of the standard error with the ’between’ (over cross-sectional dimension)

estimate (see below for details). To our knowledge, the empirical evidence shows that the

standard error of the productivity measures across firms in an industry is much larger than

the standard deviation of productivity at the firm-level (on average across firms) over time.

To distinguish between the two dimensions, we will call the second moment over the cross-

section ’dispersion’ and call the second moment over the time-series of productivity (growth)

’volatility’.3

Volatility of productivity likely has different ‘causes’ than dispersion of productivity and

also plays a distinct role in different types of analysis. In the current macro-economic literature

there is a large interest in the volatility of productivity. Standard business cycle models are

often driven by exogenous productivity shocks (e.g. Smets and Wouters (2007)). Further, a

new literature on uncertainty shocks is pointing to the ex-ante uncertainty that firms face about

future operating conditions when making investment decisions (e.g. Bloom (2009)). In some

empirical applications, sometimes the volatility is calibrated using evidence from cross-section

dispersion, which to our view is not appropriate. Of course, optimal forecasts of future volatility

may contain information derived from a cross-sectional of historical volatilities (see e.g. Senga

2Alternatively, in the empirical literature one often speaks of a ’data generating process’, that is events that
occur through which the outcome data are generated.

3In general, one needs to take care of heteroskedasticity in measuring volatility: in practice firm-level produc-
tivity is highly persistent, and an error variance should be estimated using, e.g., an auto-regressive process.

5



(2015)). For the remainder of this chapter, we will focus on measures of dispersion rather than

on volatility. However, we will address the possibility of cyclicality of productivity dispersion

and its causes and implications.

Another issue in understanding the distribution of productivity relates to how the obser-

vations derive from a data generating process. If the dataset is a census of all existing firms,

then the underlying interpretation of a statistical sampling from a probability distribution does

not make sense.4 In this case and absent pure measurement error, the estimate of dispersion

of productivity across firms in an industry should not be considered a random variable but an

actual measure without confidence bounds.

Even with census data, the dispersion measure becomes a random variable if one makes

another interpretation of the probability space (or data generating function). For example, firms

may get a (persistent) draw from a probability distribution at entry. In this case, the observations

on productivity of firms by entry-cohort could provide information on the underlying (time

varying) distribution from which a firm’s productivity is drawn. Other possibilities include

measurement error in outputs and inputs that are the underlying cause of dispersion in observed

productivity. In the section on empirical dispersion measures, we will provide an overview of the

types of data generating processes that may be underlying observed productivity dispersion.

2.2 Economic Issues

In this section we adapt the framework of Syverson (2011) to discuss factors that affect ωit,

or the (relative) efficiency. Syverson distinguishes factors that operate ’within’ firms, or things

that firms can do to change their (relative) productivity over time, and ’between’ factors, or

things outside of a firm’s control that alter a firm’s relative productivity. Below, we provide a

brief overview from the recent literature to most of Syverson’s factors. We exclude the factor of

market competition from this list, as we see that as one of the factors that shapes the observed

dispersion through allocation and selection mechanisms.

An easy way to think about, or model, heterogeneity in productivity across firms in an

industry is to assume that firms receive a random draw from some underlying distribution of

productivity. An interpretation of this could be that a firm has a manager or owner whose

4One could consider that all existing firms represent a draw from a distribution of firm distributions that
could have existed in alternative ’worlds’. When analyzing within-industry distributions of firms, one thus could
thus ’selectivity’, even with full census data. For example, the draw of all observed firms in one country, or time
period, could differ from that in another location or era because the economic environment prevents certain types
of firms from entering or results in rapid death (before observation) of other types.
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quality is random, as in Lucas (1978). The success of management may reflect differences in

individual skill or the quality of practices (coordination, allocation of the labor force, etc.).

Less is known about how managers actually allocate their own time, incentivize their workers

or manage relationships outside the firm. Existing papers in this context typically focused on

single-industry or single-firm data, which is not surprising because these inquiries require very

detailed information.5 A nice example of this work can be found in Bloom et al. (2016) or

Bushnell and Wolfram (2009). Also, the quality of management could affect productivity of

a firm over time, leading to persistence in the effect of an initial good draw. Lazear (2000),

Ichniowski and Shaw (2003), investigate management practices such as pay-for-performance

schemes, work teams, cross-training, routinized labor-management communication in forming

productivity.

Rather than assuming a random draw to (a persistent component) of productivity, firms can

undertake explicit actions that result in heterogeneous productivity across firms. In a simple

version, firms pay a fixed (entry) fee to receive a draw from a productivity distribution (as in

Hopenhayn (1992)). Alternatively, firms could undertake investment in R&D, or other intangible

capital. A large literature exist on the effects of IT investment on productivity (dispersion). For

example, Bartelsman et al. (2016a) show how use of broadband internet is correlated with the

dispersion of productivity across firms in an industry.

The literature also provides mechanisms that alter the relative position of firms in the pro-

ductivity distribution, either through explicit firm decisions or through external effects such as

knowledge spillovers. Bartelsman et al. (2008) analyze push and pull effects, where productivity

spillovers from frontier knowledge can contribute to changes in relative productivity. Some key

papers are Moretti (2004), who look at the role of skilled workers to benefit from spillovers,

and Bloom et al. (2013), who look at positive knowledge spillovers as well as business stealing

effects. This last idea ties in with our next section, where we look at how interactions between

agents in markets may affect the observed distribution of productivity.

The market environment for inputs and outputs conditions decisions made by producers

that can influence their productivity, as described above. The market environment also shapes

the allocation of inputs across firms and the share of production and sales of each firm in

the market. Competition will drive market shares toward more efficient producers, shrinking

5A recent effort to collect more detailed data from US manufacturers is through the Managerial and Organi-
zational Practices Survey of the US Census Bureau, https://www.census.gov/mcd/mops.
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relatively high-cost firms/plants and opening up room for more efficient producers. Intra-market

competition has been studied in many papers. Syverson (2004) looks at the ready-mix concrete

industry (homogenous product, substitutability, etc.). International trade is another area where

competition can be productivity enhancing, partly through changes in dispersion. See e.g. Melitz

(2003), Eaton and Kortum (2002), or Wagner (2007). In many firm-level trade models, opening

up to trade increase the ‘threshold’ productivity below which firms exit the market, thereby

reducing dispersion.

3 Productivity Measurement

Productivity is simply a measure of output per unit of input. With a single homogeneous output

and a single homogeneous input, productivity is a cardinal number with dimensionality units

of output per unit of input. With multiple inputs or output, or when inputs or outputs are

not strictly homogeneous across firms or over time, typical index number issues arise. The

approach then is to either define an index that meets certain desirable properties (axiomatic

approach) or that can be derived from a theoretical model (see Diewert and Nakamura (2003)).

A productivity index then is defined as productivity relative to some reference level, for example

relative to a base period of the same production unit, or relative to some other production unit.

In the frontier approach, productivity of a firm is measured relative to the frontier of production

possibilities (see e.g. chapters 2 and 4 in this handbook). Essentially, productivity is a distance

measure. The distribution of productivity across firms or over time should be interpreted as

showing the distribution across all production units of the distance in terms of productivity

between that observation and some fixed reference observation. More generally, in the empirical

literature on plant-level productivity, it is customary to sweep out industry and time effects,

so the productivity observations show the distance relative to the industry- and time-specific

average.

Using a rather generic notation (see e.g. Fried et al. (2008), which we will detail later as

needed, production takes place by transforming a vector of inputs x ∈ R+
k into a vector of

outputs y ∈ R+
m. This transformation takes place through a production function that defines

transformation as T (x,y) = 0. Using this style of notation, one can define the inputs require-

ment set S(y) with all feasible input vectors x that can achieve a certain output y (with free
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disposal). One can also define an isoquant

I(y) = {x : x ∈ S(y) and θx /∈ S(y) if 0 ≤ θ < 1}

(or more stringently an efficient subset in case the isoquant is not strictly convex) showing the

boundary of the input requirements for the given output. If one can scale down the inputs

usage along a ray to the origin (in the positive orthant in input space), than the input is not

technically efficient. The scalar (θ < 1) needed to scale the input to the technically efficient

frontier is called the measure of technical inefficiency. The measure of technical efficiency is then

given by, Ω(y,x) = Min{θ : θx ∈ S(y)}. A geometrically similar discussion can be made to

give the distance between the output actually produced at input x and the technically efficient

output given by the isoquant on which x lies.

Figure 1 illustrates the productivity and efficiency concepts. Starting with the narrative of

frontier firms and inefficient firms, an inefficient firm using aggregate inputs F (x) = F (x1, x2)

could produce higher output given its input quantities. The arrow on the left panel represents

the input efficiency measure, which says given output y, what fraction of the inputs would be

needed if the firm were operating efficiently. The Farrell input efficiency measure is the ratio of

the norm of the ray input vectors θ = |x′|/|x|.6 The horizontal arrow on the right panel shows

the reduction in the aggregate input index in order to achieve efficient production.7 Assuming

scalar output, the vertical arrow on the right panel shows that the output inefficiency measure

of this firm is y′/y = Ω′/Ω = θy, namely, given the input vector x, how much less is produced

than the frontier firm could have produced with these inputs.

Figure 1: Productivity concepts. Left panel: input inefficiency, right panel: input and output
efficiency.

In empirical studies using business survey data, it generally is the case that output is a

scalar, y. Assume production (with free disposal) takes place according to y ≤ F (x;β), where

F is an appropriately redefined input aggregator, derived from the transformation function T

above, with estimable parameters β. This can be rewritten as y = F (x;β)Ω, where Ω ≤ 1 is

6We are abstracting from efficiency in factor mix. Given input prices we can decompose the inefficiency of
the original point x into technical and allocative inefficiency.

7We have defined a scalar aggregate input index by splitting the production function such that F (x) =
Fs(Fa(x)) and xa = Fa(x) and Fa(.) exhibits constant returns to scale. Note that we have drawn fs() to have
decreasing returns to aggregate input. Under constant returns, the input efficiency measure is the reciprocal of
the output efficiency measure.
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a Farrell-type measure of inefficiency. Productivity is thus essentially the ratio of output to

aggregated inputs,

Ω = y/F (x;β)

Measurement of productivity depends on measurement of output and inputs. It also depends

on specification and parameterization of the production (or input aggregator) function F and

finally depends on the assumptions about the nature of the error or residual term in estimation

or computation (see the review of Hulten (2001)). We will address those issues most relevant to

generating productivity dispersion measures from firm-level or plant level longitudinal data.

3.1 Measurement of Outputs and Inputs

3.1.1 From observed data to outputs and inputs

A number of measurement issues need to be considered when one wants to construct productivity

measures from observable data. Survey data typically records annual flows of expenses or income

in currency units. The standard empirical approach is to deflate revenues or intermediate input

purchases using industry-level deflators, owing to lack of product-level or firm-level prices. One

consequence of this procedure is that in the presence of product differentiation the effect of

heterogenous product prices is ignored. As will be discussed below in an overview of ’revenue’

and ’quantity’ Total Factor Productivity (TFPR and TFPQ) measures, recent research has

started to analyze the effects of (lack of) firm-level prices on productivity and dispersion.

Nominal output measurement generally starts with nominal sales, as recorded in firm-level

survey (or register-based data). When considering production as a physical transformation

of material inputs, using capital and labor, often goods purchased for resale are subtracted

from nominal sales to get a measure of output or production.8 Sometimes data on resales are

not available, but the measures for nominal output, value added, and intermediate purchases

should be consistent, so that goods purchased for retail are either included in both output and

intermediates, or excluded from both. Nominal value added is then measured as output minus

intermediates.

Labor input is usually measured as the number of employees or full-time equivalent (FTE)

employees. If feasible, allowance should be made for work done by proprietors or unpaid family

8In our empirical section we will address the relevance of this issue as well as the more fundamental distinction
between gross output and value added measures of production.
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members. Often this can be proxied by adding one worker to every firm in the dataset. Hetero-

geneity in worker quality can affect productivity measures. Sometimes wage expenditures are

used as a proxy for quality-adjusted FTE, reflecting the view that this variable captures changes

in the skill-composition or the quality of the plant’s labor force. Recent empirical work with

linked employer-employee data, together with assumptions on matching/sorting between workers

and firms, has made progress in parsing out firm-level productivity from worker heterogeneity

(see e.g. Lentz and Mortensen (2005)).

Proper productivity measurement requires quality-adjusted capital service flows. This is

quite difficult to measure. Survey and census data usually contains information only on the

book value of the capital stock. Following procedures outlined by OECD (2009), researchers

often use book values deflated by an industry level investment deflator to proxy for capital. If

firm- or plant-level investment is observable, then researchers apply some variant of the perpetual

inventory method (PIM). PIM is a recursive procedure where a deflated value of current invest-

ment is cumulated on the depreciated capital stock. Both approaches have drawbacks. First,

deflated book values might be poor approximations of replacement values. Next, accumulated

deflated investment may deviate from quality-adjusted service flows which is the appropriate

concept for capital input in production functions. One reason for this is a lack of proper defla-

tors and/or lack of composition of investment that results in the proxy for capital input to be

heterogeneous across plants. Further, the PIM requires an estimate of the initial capital stock

as well as estimates of depreciation by asset type at the firm level, which are not observed.

3.1.2 Omitted-price bias: physical productivity (TFPQ) and revenue productivity

(TFPR)

Firm-level datasets rarely contain information on plant-level output prices and/or quantities.

To obtain a plant-level output measure from nominal sales, a typical method in the empirical

literature is to deflate sales using industry-level deflators. The resulting productivity index

is a revenue-based indicator. Only under the assumption that the output of the industry is

homogenous, does revenue total factor productivity (TFPR) calculated in this manner correctly

measures productivity in quantities or physical productivity (TFPQ), and therefore technological

differences across firms. If this assumption fails because products are differentiated or firms

exercise market power, additional biases may result because the error term includes the effect of
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product prices.9 Analogous arguments can be made about the effects of unobserved input prices

because most firm-level surveys record only the total cost of inputs and not their quantities.

These issues are well understood in the literature, the interpretation of alternative revenue

productivity measures that emerge from various estimation procedures have become important,

especially in light of the insights in Hsieh and Klenow (2009)). Keeping this in mind, we will

focus on the consequences that omitted output prices may have on measuring productivity

dispersion.

The difference between TFPR and TFPQ impacts the interpretation of results. Klette and

Griliches (1996) show that if firms operate in an imperfectly competitive environment with

heterogenous product prices, iso-elastic demand and Cobb-Douglas technology, scale estimates

from these regressions of deflated sales should be considered as a mixture of the true scale

elasticity and demand parameters. The basic insight is the following. If a firm experiences a

negative cost shock, or equivalently a positive productivity shock, it can increase its market

share by undercutting its competitor’s price. Such negative correlation between productivity

and prices is a result of downward sloping demand. Since the increase in output is larger than

the increase in sales, so that replacing output with revenue as the dependent variable in a

least-squares regression implies that the coefficients are downward biased estimates of the true

elasticities. This also implies the dispersion of revenue-productivity is smaller than that of

physical productivity or efficiency. Foster et al. (2008), and Foster et al. (2015) offer empirical

evidence supporting this finding. They also highlight that demand shocks exhibit high dispersion

relative to physical productivity dispersion. As such, dispersion in TFPR likely reflects both

dispersion in TFPQ and in demand shocks but this is tempered by the inverse relationship

between prices and productivity.10

As mentioned above, not accounting for product (and price) heterogeneity within industries

affect productivity estimates. In the absence of data on plant level prices and/or quantities,

earlier research used the following approach addressing this issue. Assuming some structure

about demand, firm-specific product prices can be substituted out from the revenue equation.

9While there are studies in which the chosen dataset allows either to calculate quantity directly or to infer the
effect of prices, these analyses are usually restricted to a small set of industries or even a single industry. Recent
examples from this literature are Collard-Wexler and De Loecker (2014), Martin (2008), Foster et al. (2008),
Syverson (2004).

10In addition differences in plants efficiency levels and variation in product prices, other factors are potentially
important contributors to TFPR dispersion. Hsieh and Klenow (2009) highlight the role of distortions in gener-
ating dispersion in TFPR. Bartelsman et al. (2013) emphasize the role of frictions such as overhead factor costs.
Asker et al (2014) explore the role of adjustment frictions in generating dispersion in TFPR.
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Studies differ along these assumptions and used different variables to control for firm-level prices

but it is common to assume that the firm’s residual demand is iso-elastic, and that it is deter-

mined by aggregate demand and the firms’ market share, which in turn is determined by the

substitution effect across products within the industry. This demand structure, together with

Cobb-Douglas technology, though admittedly restrictive, have the analytical advantage that

it implies a closed form solution for TFPR, regardless of assumptions about returns to scale

(see Foster et al. (2016b) for details). In addition, the revenue function will include a measure

of industry-level output, or aggregate demand implying that the joint estimation of demand

parameters and revenue function coefficients allows the identification of factor elasticities and

returns to scale. Obtaining factor elasticities in this framework is straightforward: one has to

rescale the revenue elasticities and TFPR using the markup, where the markup is estimated

jointly with revenue elasticities and TFPR. If our data contains information on prices and/or

quantities then combining such a demand system with a production function also allows us to

identify TFPQ shocks at the plant level.11

3.1.3 Output: gross output or value-added

Firms produce output using primary inputs capital and labor as well as purchased materials

and services. Nonetheless, in more macro based literature, productivity often is measured on

the basis of value added, starting with the work of Cobb and Douglas (1928). This approach

can be motivated by the fact that in the overall economy, aggregate final demand equals aggre-

gate value added, giving a value-added based productivity measure an intuitive interpretation.

Basu and Fernald (2002) show conditions under which changes in a slightly modified aggregate

value-added based Solow residual actually measure changes in welfare, even when measured pro-

ductivity and technology differ owing to various market distortions. Under perfect competition

and constant returns to scale the rate of change of value-added based productivity is a valid

measure of technical progress. Bruno (1978) provides conditions for the existence of a value

added production function, and conditions when value-added based marginal products correctly

11Using data on product quotas to control for product-specific demand shocks at the plant level, De Loecker
(2011) follows this thread and combines a demand system with a production function in order to recover estimates
of TFPQ, since output quantities are unobserved in his data. The approach follows the line of thought of earlier
papers and is extended to a case when plants produce a variety of products. In terms of empirical implementation,
the main difference relative to the single-output case is that a weighted average of demand-specific aggregate
deflated revenues is included instead of the total revenues in the industry.
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measure true marginal products.12

In aggregating from the firm level to the aggregate level Basu et al. (2009), using results from

Basu and Fernald (2002), show a decomposition of growth of the aggregate Solow residual into

terms related to growth in aggregate primary inputs, reallocation terms and aggregate change

in technology. In this aggregation, a switch is made from viewing aggregate value added as a

sum of growth in final demands by product, into a sum of growth in income earned on primary

factors (value added here equals gross output minus intermediate purchases) across producers.

In aggregation, and abstracting from price changes, the divisia weights differ between the two,

namely shares of final demand and shares in primary factor income, respectively. The latter

does not have an obvious theoretical foundation.

Instead, in a productivity aggregation framework developed by Domar (1961) and expanded

by Hulten (1978), an economy is viewed as a collection of firms that make products (commodities)

using primary inputs and purchased commodities, and sell the products to other producers and

to final demand. Within this framework, the definition of productivity and the manner in which

to aggregate now depends on the level from which one is aggregating and the level to which

one is aggregating. For a production unit at any level of aggregation, productivity growth is

defined as growth of ’net output’, or product sold to agents outside the production unit, minus

(cost-share weighted) growth in primary inputs and products purchased from agents outside the

production unit. In aggregation, the ’Domar-weight’ is the share of net output of the production

unit divided by the net output of the unit to which one is aggregating. The sum of these weights

is larger than one.

For example, in aggregating firm-level productivity to productivity of the (closed economy) as

a whole, one defines output of a firm as total production minus own-product used in production

as net output and non-primary inputs as inputs purchased from outside the firm. For most firms

these equal gross output and intermediate input, respectively, but at farms or energy mining

firms a significant share of firm production is ’produced and consumed’ and needs to be netted

out. For the firm-level, a net-output productivity measure thus is appropriate, but in practice

will equal the gross output productivity measure. In aggregation, the net output of the ’whole

12Bruno (1978) explores the question as to under what conditions double-deflated value added results in a
production function where the partial derivatives will correctly measure the marginal productivities of production
factors. Such a production function exists if the intermediate input satisfies one of three conditions: (1) it is
used in fixed proportion to gross output; (2) the relative price of the intermediate inputs to value added remains
constant; (3) the gross output production function is functionally separable into the intermediate and primary
inputs.
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economy’ equals the sum of all firms’ net output minus the sum of all purchased inputs, in other

words aggregate final demand or value added. In this case, the aggregation weights to sum each

firms’ productivity growth to compute aggregate productivity growth is given by firm-level gross

output divided by aggregate value added.

In an equivalent manner, one can aggregate firm productivity to the industry level, or

industry-level productivity to total private non-financial sector, by appropriately defining net

output productivity for the disaggregated units, and using Domar-weights computed by divid-

ing net output of a disaggregate unit to net output of the unit to which one is aggregating.

Corrado et al. (2007) provide a convenient notation that displays the generic properties of such

aggregation as well as expanding the concepts to include imports and exports.

Turning to productivity dispersion measures, one can in principle compute the dispersion of

value-added based productivity across firms in an industry. Nonetheless, even if the separability

conditions needed for the value added production function hold, gross output may be preferable

because there is a market with supply and demand for output, while no market for value added

exists. And, it is precisely for understanding the dynamics of such markets that productivity

dispersion is interesting: With representative firms, dispersion in either value added and gross

output productivity would not exist. Empirically, choosing value added instead of gross output as

the dependent variable has a large effect on within-industry dispersion measures: Tables 2 and 3

offer evidence that value-added based dispersion are much larger than output-based dispersion.

This is not surprising if one considers that, to a first approximation, value added productivity

is equal to gross output productivity times the reciprocal of the share of value added in gross

output.

3.2 Estimating the Input Aggregator

As described above, we can compute total factor productivity as the ratio of output to weighted

inputs, with weights as estimated in the empirical production function literature.

Yit = KβK
it L

βL
it E

βE
it M

βM
it Ωit(1)

where Y,K,L,E and M denote output, capital stock, labor, energy and material inputs, re-

spectively. i and t index plants and time periods, and the β-s denote the elasticity of Q with

respect to factor inputs. It is then straightforward to define total factor productivity (TFP)
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as a ratio of output and an index of inputs TFP ≡ Ωit = Yit/(K
β̂K
it L

β̂L
it E

β̂E
it M

β̂M
it ). The input

index is a weighted average of primary input factors where the β̂s are the estimated elasticities

of output with respect to the appropriate input factor. A few issues are relevant in estimation of

the production function or input aggregator. We start with the issue of endogeneity of a firm’s

factor input decisions in response to firm productivity, and discuss semi-parametric and para-

metric estimation methods. We also consider growth accounting methods to aggregate inputs

and generate residuals, and finally refer to non-parametric DEA-type methods for computing

productivity.

3.2.1 Endogeneity of input decisions

The following section briefly revisits estimation issues. Some of them have been analyzed in great

detail in the literature, others were investigated more recently. Since productivity estimation

requires elasticities in order to be able to calculate the weighted input index and compute

productivity, we will use the terms ’production function’ and ’productivity’ interchangeably.

Perhaps the most extensively analyzed econometric issue is the endogeneity of production

factors and unobserved TFP. As first pointed out by Marschak and Andrews (1944), least-

squares-based production function estimates are rendered biased because plants consider their

productivity in input decisions but plant-level TFP is unobserved to the econometrician and

therefore TFP is incorporated in the error term. Parametric and semi-parametric methods were

developed in order to control for the variation in unobserved TFP. Parametric approaches such as

instrumental variables techniques or stochastic frontiers do not explicitly control for the effects of

unobserved TFP. Instead they rely on assumptions about the time series properties of plant-level

productivity and apply data transformations to remove its effect from the estimating equation.13

The aforementioned methods are all projection-based in the sense that regression techniques are

used to estimate elasticities and calculate the productivity residual. Other methods, (cost-

share-based techniques or growth accounting (GA) after the seminal work of Solow (1956))

calculate productivity directly from data relying on first order conditions derived from either

profit maximization or cost minimization. Since GA is a non-stochastic method and therefore

projection-based procedures cannot be used, the aforementioned endogeneity issue is irrelevant.

However, other types of specification error do emerge if the first order conditions are violated,

for example if firms face frictions in adjusting inputs. Nevertheless, their popularity provides

13The basic papers are Griliches and Mairesse (1998), Blundell and Bond (2000).
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justification to include a short description for completeness.

3.2.2 Semi-parametric estimation

The original idea of using firm-level proxies in production function estimation was developed in

Olley and Pakes (1996) (OP hereafter) in order to analyze the dynamics of the U.S. telecom-

munications equipment industry. OP take account of the previously mentioned endogeneity

problem by including an investment proxy in the estimation process. Assuming that investment

is a monotonic and increasing function of productivity and that productivity is the only unob-

served state variable, including investment controls for unobserved TFP developments and the

variation in investment can be used back out plant-level TFP shocks. The algorithm consists of

two steps. The first step provides consistent OLS estimates of variable input elasticities because

the proxy controls for plant-level TFP shocks during the estimation procedure. The coefficient

of capital is identified in the second step by forming moment conditions using the innovation

component of TFP and lagged capital values.14

OP propose using investment to proxy for unobserved productivity. There is ample evidence

that plant-level investment is lumpy. Lumpiness means bursts of investment activity are fol-

lowed by inactive periods where observed net investment is zero. It is a consequence of the

presence of non-convexities in capital adjustment. Unfortunately, zero investment observations

are not informative for OP and are dropped, which may negatively affect precision if truncation

significantly decreases sample size. In addition, OP works only if we observe both entrants and

exiters.15 In order to eliminate the efficiency loss caused by dropping zero-investment observa-

tions, Levinsohn and Petrin (2003) (LP hereafter) advocate the use of intermediate input cost or

electricity instead of investment. LP discuss the conditions which must hold if the intermediate

input is to be used as a proxy. The basis of the argument is that if intermediate inputs are less

costly to adjust than investment, they are likely to respond more to productivity shocks. This

14A more general point about proxy methods is related to polynomial approximations. Proxy methods use
polynomials at two points of the estimation algorithm. First, a polynomial of the state variables and the proxy is
included in the first step to approximate unobserved productivity. Second, to determine the expected component
of TFP, its estimated value is projected on a polynomial expansion of its past values. This step is supported
by a Markovian assumption about plant-level TFP. The innovation obtained in this approximation is used to
construct a moment condition in order to estimate the elasticity of capital. While polynomial series provide flexible
approximations, the higher order terms are also likely to exacerbate measurement error present in microdata.

15OP focus on the period between the early 1970s and the mid-1980s in the telecommunications equipment
industry. During this period the industry saw large changes in the size of plants and significant entry and exit.
Therefore they model plants’ entry and exit decisions which depend on productivity and control for these effects
in the estimation procedure. This may be an important feature of the approach in cases where the data is subject
to non-randomness. The findings in Foster et al. (2015) suggest that controlling for the effect of selection may
have an effect on dispersion estimates.
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is especially relevant in the presence of non-convexities in capital adjustment. LP also highlight

that firms almost always report positive use of these variables in their data implying truncation

due to zero proxy values is less severe.

The identifying assumptions regarding the timing of plants’ input decisions have been criti-

cized by Ackerberg et al. (2015) (ACF). ACF highlight that the optimal labor allocation is also

a deterministic function of TFP and therefore the elasticity of labor is not identified. They pro-

pose a hybrid approach and offer structural assumptions on the timing of decisions concerning

firms’ input choices. They approach the identification problem by applying a two step procedure

that estimates all the elasticities in the second stage. Wooldridge (2009) proposed to circum-

vent the identification problem by estimating all the coefficients in a single GMM step and using

earlier outcomes of both capital and variable inputs as instrumental variables. His approach is

advantageous because it is robust to the ACF critique and because the efficiency loss due to

two-step estimation is eliminated.

3.2.3 Parametric estimation (IV, GMM)

Although instrumental variable techniques are used within semi parametric approaches, we

mention IV-based methods separately because these estimate the parameters of the production

function without the help of specific assumptions about firms’ input decisions. At the heart of IV

techniques is a general error components model developed by Blundell and Bond (2000). TFP

is decomposed into a firm-fixed effect and autoregressive term, which allows for firm-specific

dynamics in productivity. Blundell and Bond (2000) addresses the endogeneity issue by differ-

encing the estimating equation. Under the error components assumption, differencing removes

the firm-fixed effect and and also controls for the dynamic effects of the autoregressive compo-

nent. Obtaining the innovation in the output residual in this manner supports the construction

of moment conditions that can be used to consistently estimate the parameters of the production

function in a single step.16 We note that while instrumental variable methods are attractive in

principle, they are not commonly used given the lack of plausible and strong instruments on a

wide scale basis to cover all industries over all time periods, see Griliches and Mairesse (1998)

and Blundell and Bond (2000) for more details.

16Blundell and Bond (2000) provide two sets of moment conditions. The first set is based on the orthogonality
of t − 3 levels of input factors and current-period differences of output residuals. The second set is constructed
using t− 2 levels of input factors and current period levels of the output residuals.
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3.2.4 Cost-share-based methods, or growth accounting

A frequently used non-stochastic computation method is growth accounting (GA). A typical

version of GA exploits the first order condition of a decision problem where the plant minimizes

production costs given output and input prices. The first order condition of this problem is

used to rewrite elasticities as respective shares of input factors in the plant’s total cost. Some

of the advantages of this method include the possibility to allow for plant-level heterogeneity in

elasticities17, easy implementation, and that it is flexible about the exact shape of the production

technology. Further, available Monte-Carlo evidence suggests it is accurate if the data are not

subject to much measurement error, see Van Biesebroeck (2007) for details. As mentioned at

the beginning of this section, GA is free of statistical problems related to endogeneity and the

sensitivity of estimates to sample size. In another version of GA, first order conditions are derived

from profit maximization. In this case output elasticities are obtained as the revenue share of

input costs. Using the cost share of total costs rather than of total value has the advantage that

we do not require the assumption of perfect competition. This implies that another advantage

of the GA based factor elasticities using cost shares of total costs is that they are robust to

alternative demand structures. As we will discuss later, this consideration becomes important

if output prices are not observed in the data.

One might argue that the first order conditions underlying this method are unlikely to

hold at all points in time at plant-level. This means the elasticity estimates and the implied

productivity numbers may be biased if the first order conditions are violated. A case in point is

when input markets are subject to frictions that prevent plants from adjusting labor and capital

instantaneously, especially in the presence of non-convex costs. In such cases the validity of first

order condition becomes critical. These issues are relevant for measurement purposes because

the available empirical evidence suggests that the adjustment of input factors at the plant-level

is subject to frictions (see Cooper and Haltiwanger (2006), Bloom (2009)), implying that first

order conditions are unlikely to hold for every plant in every industry and time period. It is

more reasonable to expect that they hold on average across establishments and/or over time.

Therefore, it is common to impose constant elasticities across plants in the same industry and/or

over time. We also note that most of the alternative estimation methods assume common factor

elasticities over time within the same industry.

17In terms of empirical results this assumption comes at a cost. Foster et al. (2015) offer indirect evidence
suggesting plant-level shares are likely to be noisier than industry-level shares.
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3.2.5 Hybrid approaches

Other papers combine elements of growth accounting with other approaches, which usually

involves using a first order condition together with regression techniques. Martin (2008) is a

recent example where a first order condition is combined with the control function approach.

The basic insight is that under profit maximization and imperfect competition the output price

is given by a constant markup over marginal cost. As a consequence, elasticities of fully flexible

inputs are obtained as a scalar multiple of the revenue share of input costs, where the multiplier

is proportional to the revenue markup. For quasi-fixed inputs like capital, we should not expect

the first order condition to hold whenever a shock hits the firm because capital adjustment is

subject to non-convexities. Martin (2008) proposes to subtract from revenues what he calls ”an

index of variable input usage”. Then, eliminating prices from the modified revenue equation

using the assumed demand structure, the revenue-elasticity of the fixed input can be written as

a function of the scale elasticity and the elasticity of demand, similarly to the discussion above.

To obtain the true coefficient of the fixed input, a control function approach is applied but

including lagged firm-level net revenues to control for unobserved TFP. Martin (2008) provides

conditions under which variable revenues are monotone in TFPR.

3.3 Relative Productivity

In the above description, productivity (Ω̂it) is a ratio of output divided by an estimated or

computed input aggregator. If we denote our index of relative (log) productivity by ωit ≡ ω̂it−ω̂0,

where ω̂it is the log of productivity and ω̂0 is the reference measure, then the difference between

two observations ωit−ωjs is consistent with the distance view: ωit−ωjs = ω̂it−ω̂js.18 The choice

of reference productivity ω̂0, thus is not relevant per se for the dispersion measure. However,

in practice, the estimated or computed residual ω̂it, will vary across methods with different

reference productivity when the estimated or computed aggregator F (x; β̂) differs. Foster et al.

(2015) demonstrate that empirical differences across the estimated input aggregators often imply

numerical differences in both ω̂it and its dispersion. Foster et al. (2015) report average dispersion

from productivity distributions for 50 industries where dispersion varies between 0.24-0.40.19

This range reflects non-trivial differences across estimation methods. However, all methods

18This measure also is consistent with the set of index number properties proposed in Diewert and Nakamura
(2003).

19The range is given for dispersion of gross output based productivity. As discussed later, dispersion for value
added based productivity is substantially higher.
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yield results suggesting large productivity differences across establishments. Thus for individual

industries cross-method variation in dispersion methods may be larger.

3.3.1 Stochastic frontiers

In stochastic frontier production functions, the residuals are relative to a frontier firm and thus

fit into the narrative of ’X-inefficiency’ of Leibenstein (1966). This approach, in the spirit of

frontier production frontiers of Farrell (1957), was first developed by Aigner et al. (1977) or

Meeusen and van Den Broeck (1977). The main assumption underlying this approach is that

residual can be decomposed into two components with known distributional properties. The first

component, labeled ’efficiency’, is assumed to follow a truncated, or one-sided, distribution. The

second component is ’measurement error’ and hence is assumed to be symmetrically distributed

around the frontier. This component is considered to occur through random fluctuations outside

of the firm’s control. To identify the two error processes, one must make assumptions regarding

independence between the two, and that both are iid across observations. More importantly,

the two-sided error must come from a symmetric distribution with mean zero. Usually normal,

N(0, σ) and half-normal, N+(µ, σ+) distributions are chosen, with error parameters estimated

along with production function parameters. Loosely speaking, any skewness in errors is at-

tributed to inefficiency, while the symmetric part can either be measurement error or across

firm (and time) heterogeneity in productivity.

For the purpose of measuring across-firm dispersion of productivity, one starts with the

residuals from a production function function estimation. From stochastic frontier estimation,

the estimated residual consists of two components, ω̂it = ν̂it+ ε̂it. In the frontier literature, only

one component measures productivity, but we do not want to impose this interpretation, and

consider ωit as the building block for dispersion measures. In analysis, one can try to find a way

to parse out what proportion of the dispersion can be attributed to measurement error.

In this sense dispersion of the productivity distributions from production function versus

stochastic frontier estimation only will differ owing to different parameter estimates, β̂, resulting

from the different estimation procedures. While Foster et al. (2015) offer evidence that the

productivity ranking across firms and dispersion results are affected by the estimation method

in the context of regression based techniques and cost-share-based procedures, there is not much

evidence to date on how these results compare to frontier methods. The available evidence is

presented in the next section.
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4 Dispersion Measures

Let ω̂it = lnYit− lnF (xi,tβ̂) denote the log productivity level for establishment (firm or decision

making unit) i in time t.20 The basic building block for our dispersion measure is the log of

productivity relative to a reference measure, as described in section 3.3, namely ωit ≡ ω̂it − ω̂0,

where ω̂0 is the reference measure.

Dispersion is related to the ’width’ of the productivity distribution, and generally is measured

using the standard deviation (σ) or the inter-quartile range (iqr) measure, and thus has the same

dimensionality as the underlying measure and is invariant to above normalization. In practice,

quantile-based measures such as the interquartile or -decile range are usually preferable because

they are robust to outliers. The two measures are given by

(2) iqrt(ωit) = p75(ωit)− p25(ωit)

and

(3) σt(ωit) =

(
1

Nt

∑
i

(ωit − ω̄t)2
)1/2

.

A timeseries of dispersion, either standard deviation, σt or inter-quartile range, iqrt, can be

computed for any grouping of firms for which comparing productivity levels makes sense. In

practice, estimation of input aggregators and firm level productivity is done at the most detailed

level of industry disaggregation for which enough firms are available.21

As mentioned in section 2.1, other second moments of the empirical distribution on ωit can be

considered, for example, for each firm we can compute the standard deviation of the productivity

measures over time, σi(ωit) =
(

1
Ti

∑
t(ωit − ω̄i)2

)1/2
, and we can call this volatility. Industry

volatility could then be computed as a (size-weighted) average of firm level volatility of firms in

the industry.

Consider the following two-step procedure. First calculate iqrjt for each industry j and time

period t. Next, compute the average across the j = 1...J industries for each t as iqrt = 1
J

∑
j iqrjt

20The possible specifications for the input aggregator F () are described in the previous section.
21There is a tradeoff here: estimation of production functions at a higher level of aggregation may introduce

noise in the productivity estimates owing to imposition of common output elasticities across firms while they
actually differ, but given precision of the productivity estimates, addition of more firms for computation of
dispersion increases precision. In tables 1 and 2 for EU countries, we require at least 50 firms in the industry. In
calculations using data from US Manufacturing, a selection is made of the 50 4-digit industries with the highest
number of plant-year observations. The average number of plants (over time) in these industries varies between
400 and 3900.
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and over time as iqrt = 1
T

∑
t iqrt. In this approach, each industry- and time-specific iqrjt

is assigned equal weight. Since industries often differ in terms of the number of plant-year

observations, it is reasonable to apply a weighting scheme that accounts for such differences.

For example, Foster et al. (2015) report weighted average dispersion measures in manufacturing

industries where the weights are based on the number of plant-year observations in industries.

This approach amounts to pooling normalized establishment-level productivity measures ωit

from all j and t and calculating dispersion in a single step. In our notation, their approach can

be illustrated by re-indexing establishments and industries. In each t, the index of establishments

is defined as st = (1...N1t, 1...N2t, ..., 1...Njt, ..., 1...NJt), and the following vector shows indices

used in the weighted average formula: s = (s1, s2, ..., st, ...sT ). Assuming the panel of industries

is balanced, the pooled distribution has
∑T

t

∑J
j Njt observations in total, and more populous

industries will be represented according to their frequency weight
∑T

t Njt∑T
t

∑J
j Njt

. In this notation,

iqr(ωs) = p75(ωs) − p25(ωs) is equivalent to calculating the frequency-weighted average of the

industry- and time-specific dispersion measures iqrjt. This approach reflects the view that

the different realizations of plant-specific productivity processes are outcomes of the same data

generating process and does not distinguish between the concepts of timeseries volatility and

cross section dispersion. Such an procedure is appropriate in situations when timeseries volatility

is dwarfed by differences across plants, as is overwhelmingly the case in empirical micro datasets.

4.1 Empirical evidence

The majority of previous studies focused on within-country differences across industries or sec-

tors, see Syverson (2011) for a survey of the literature from the past decade. The main conclusion

from these studies is that productivity differences across establishments are large even within

narrowly defined industries. This chapter adds another important dimension to the evidence:

we compare measures also across European countries and the United States. Results on US

industries are taken from Foster et al. (2015), while European dispersion statistics are based on

our own calculations using data from Bartelsman et al. (2015) and Lopez-Garcia and di Mauro

(2015).

Although both the EU and US results are based on individual producers, a few qualifications

are in order when comparing the results. First, US data on inputs and outputs are defined at

the establishment-level, while the unit of observation is a ’firm’ in European countries, namely

the smallest production unit with independent accounting data. Second, the European data
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are available both for samples of firms where the number of employees is greater than 20 and

for samples including all firms, while the results in Foster et al. (2015) are computed excluding

the smallest, single-unit establishments. Third, Foster et al. (2015) use the 50 most populous

Manufacturing industries for estimation reasons. In contrast, the two European datasets are

comprehensive in industry composition. We want to highlight that the European data allows

us to estimate dispersion also in Services, which is an important contribution because typical

empirical datasets used in the literature contain information only on Manufacturing firms.

Fourth, it is worth mentioning that although dispersion results are reported at the country

level, the underlying dispersion measures are generated at a different industry detail. US results

were drawn from 4-digit industries, while European data, especially for small countries, allows

calculations only within 2-digit industries. This difference highlights an important trade-off

most researchers encounter in empirical productivity research. On the one hand, it is essential

to assume some degree of homogeneity in production function coefficients in order to be able

to estimate them using statistical methods. This consideration implies it may be useful to pool

industries if the narrowest industries do not have sufficient number of observations. On the other

hand, possible differences in establishment-level production technology that are uncontrolled for

in the estimation process affect coefficients and therefore dispersion results. For the purposes of

this chapter, we assume that all characteristics relevant for productivity estimation are subsumed

in production function parameters.

Fifth, we mention that differences in statistical practices across countries likely influence

comparisons of dispersion measures. In recent research, Foster et al. (2015) find that dispersion

measures are larger when controlling for the degree of imputed data in the sample used for com-

putation. White et al. (2012) use classification and regression trees, or CART-based methods, to

estimate the empirical effects of imputation and find that underlying dispersion may be higher.

No exploration has yet taken place on the differences in imputation methods across the samples

in the EU, and their effects on measured dispersion.22

Finally, a related issue is how dispersion measures can be made less sensitive to measure-

ment error. In practice, outliers affect measured dispersion via two channels. First, they may

affect elasticity estimates if the homogeneity assumptions about elasticities are not consistent

with the data, that is if the observations used to estimate elasticities are not derived from the

22While the production data used the EU exercises are based on the Structural Business Statistics surveys in
each country, some countries enrich the data with information from official registers, for example on payroll tax
or value added tax and do partial imputation for missing fields.
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same production technology. Second, extreme ω̂it-observations directly generate large disper-

sion measures. In order to reduce sensitivity to outliers, observations in the US are filtered

by output-to-capital and output-to-labor ratios using the so-called Chebyshev method. In the

EU, outliers are first filtered by trimming the 1 percent tails of residuals from Cobb-Douglas

production functions, with final productivity estimation done on the trimmed sample.

With these considerations in mind, we now turn to empirical results. The main finding is that

estimated dispersion is qualitatively similar across countries, sectors and estimation methods,

namely the difference in measured productivity within-industry is always large. For example, the

first two columns in tables 1 and 2 show that the interquartile range (IQR) of value-added based

TFP varies between about 0.5 and 1.0 in European Manufacturing industries. The comparable

estimate from the United States is approximately 0.7, see the first entry in table 3. IQR measures

in Services fall in the range between 0.52 and 1.23 in European countries (column 5 in tables 1

and 2) - suggesting there is nontrivial heterogeneity across sectors. Unfortunately, we do not

have results from US Services.

Table 1: Dispersion in (log) TFP, EU (ECB), 2002-2012,
Manufacturing Services

IQR SD IQR SD
ALL 20+ ALL 20+ ALL 20+ ALL 20+

BELGIUM 0.72 0.52 0.55 0.41 0.72 0.51 0.56 0.40
ESTONIA 0.93 0.65 0.64 0.50 1.09 0.87 0.70 0.60
FINLAND 0.66 0.52 0.51 0.46 0.65 0.40 0.51 0.35
FRANCE 0.49 0.48 0.39 0.38 0.52 0.48 0.43 0.38
GERMANY 0.68 0.66 0.48 0.51 0.73 0.64 0.56 0.52
ITALY 0.64 0.55 0.48 0.45 0.70 0.56 0.52 0.44
LATVIA 0.98 0.83 0.61 0.60 1.23 0.78 0.80 0.59
POLAND 0.82 0.63 0.87 0.73
PORTUGAL 0.67 0.61 0.53 0.50 0.86 0.65 0.62 0.51
SLOVAKIA 0.75 0.62 1.02 0.74
SLOVENIA 0.80 0.58 0.56 0.46 0.87 0.79 0.65 0.58
SPAIN 0.72 0.65 0.53 0.54 0.77 0.59 0.57 0.49

Source: Calculated from CompNet Descriptives File Emp> 20. see Lopez-Garcia et al. (2015). Log
TFP (VA-based) calculated using LP (Wooldridge). Full sample of firms or firms with 20<emp.

Results vary also across estimation methods, see the differences in dispersion statistics across

tables 1 and 2 and the differences across the rows of table 3. The entries in table 1 are based on

productivity measures which are estimated using the method proposed by Wooldridge (2009).

The closest candidate for comparison with US results is LP(VA) in table 3, which denotes

the procedure proposed in Levinsohn and Petrin (2003) with value added as the dependent

variable. Although the econometric procedure used in LP(VA) and Wooldridge (2009) are not

25



Table 2: Dispersion in (log) TFP, EU (Eurostat), 2001-2010
Manufacturing Services

VA GO VA GO
ALL CO ALL CO ALL CO ALL CO

AUSTRIA 0.56 0.52 0.20 0.19 0.76 0.75 0.38 0.38
DENMARK 0.58 0.57 0.25 0.24 0.73 0.72 0.34 0.33
FINLAND 0.70 0.67 0.36 0.33 0.81 0.78 0.48 0.45
FRANCE 0.55 0.53 0.25 0.25 0.62 0.61 0.39 0.37
GERMANY 0.47 0.47 0.19 0.19 0.51 0.51 0.22 0.22
ITALY 0.86 0.83 0.40 0.35 1.04 1.00 0.52 0.46
NETHERLANDS 0.56 0.56 0.24 0.24 0.72 0.71 0.38 0.37
NORWAY 0.80 0.79 0.38 0.37 0.96 0.94 0.51 0.50
POLAND 1.01 0.99 0.55 0.52 1.18 1.15 0.96 0.93
SWEDEN 0.70 0.70 0.40 0.39 0.84 0.83 0.60 0.59
UK 0.76 0.74 0.45 0.43 0.98 0.96 0.60 0.58

Source: Calculated from ESSNet. see Bartelsman et al. (2015). Solow Residual measures of
productivity, Value Added base or Gross Output based. ALL firms, or Continuing firms (5yr windows).

identical, LP(VA)-based results in the US are comparable to column 1 in table 1 in the sense that

the estimating equation contains the same regressand and regressors. Comparing the entries in

column 1 across tables 1 and 2 for Finland, France, Germany and Italy shows that the estimation

method may generate non-trivial differences in dispersion measures. A similar conclusion holds

for US results, as well (see table 3).

Table 3: Descriptive statistics of TFP distributions in US Manufacturing industries, 1972-2010,

IQR SD

LP(VA) 0.68 0.57
LP(Q,GR) 0.29 0.31
GA(Q) 0.24 0.22
WLPM(Q) 0.40 1.88

Source: table 3 in Foster et al. (2015), see the paper. LP(VA): Levinsohn and Petrin (2003) using value
added as the dependent variable; LP(Q,GR): Levinsohn and Petrin (2003) using revenues as the
dependent variable and grid search procedure for numerical optimization.

Table 2 shows results based on productivity measures that are estimated using Solow resid-

uals or growth accounting (GA). The table presents variants where the dependent variable is

either value added (columns 1-2 and 5-6) or gross output (columns 4-5 and 7-8). Comparing

the entires in column 1 to those in column 3 suggests gross output-based productivity measures

are less dispersed than value-added-based ones in European manufacturing industries. The rela-

tionship is similar in Services. US results confirm this finding: the LP(VA)-row of table 3 shows

that value added based dispersion is significantly larger than other, output-based measures. This

empirical finding has been established by earlier studies in the US, see Foster et al. (2015) for
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more details.

An interesting cross-country comparison emerges if we contrast the entries in column 3 of

table 2 with GA(Q) in table 3. GA-based dispersion in revenue-productivity in US Manufactur-

ing industries (0.24) is closest to that in Germany (0.19), Austria (0.20), The Netherands (0.24),

Denmark (0.25) and France (0.25).23 Comparing numbers across the restricted and unrestricted

European samples in table 1 and the US implies that excluding smaller plants (EU) or industries

(US) is likely to yield smaller productivity dispersion. This finding suggests that restricting the

scope of the estimation sample generally implies smaller dispersion.

A further comparison can be made of estimates for European and US Manufacturing dis-

persion in column 3 of table 2 and table 3, respectively. The estimates imply that the plant at

the 75th percentile of the productivity distribution in the average European industry generates

between 20%-55% more revenue using the same amount of inputs than the plant at the 25th

percentile. This range varies between 24%-40% in US Manufacturing depending on the estima-

tion method. As we will show, the variation in dispersion may be significant along a variety of

dimensions such as industries, sectors, countries, time and estimation methods. We therefore

find it remarkable that these measures are comparable in magnitude and they all suggest that

cross-plant differences in productivity are sizable.

The differences we have seen so far in these tables are country specific. However, dispersion

also varies across industries and time. Explaining such variation is beyond the scope of this

chapter, but the dispersion underlying the entries in our tables warrants further analysis that

should explore the properties of the dispersion distribution in more detail. The existence of com-

parable data across countries, industries and time of within-industry dispersion in productivity

will allow for empirical explorations into correlates related to policy, institutions and technol-

ogy. Recently, several studies attempted to exploit and explain the within-country variation in

dispersion. In perhaps the most popular area of application, cross-country differences in the

dispersion of revenue productivity measures are associated with the degree of misallocation (see

Hsieh and Klenow (2009), Bartelsman et al. (2013) and Foster et al. (2016b)).

We conduct a simple analysis of variance by regressing a dispersion measure on country,

23WLP(Q) in table 3 shows sults obtained by the method described in Wooldridge (2009) but using output as
the dependent variable. Therefore, it is not directly comparable to the results in table 1. However, earlier results
in Foster et al. (2015) suggest that recalculating table 1 using output as the dependent variable would imply
larger dispersion. Moreover, Existing Monte-Carlo evidence in Foster et al. (2015) shows that the standard error
of dispersion statistics implied by proxy methods may be large, especially when using the procedure proposed by
Wooldridge (2009). This is an indication that appropriate caution is needed because these estimation methods
seem to be more sensitive to sample size.
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industry and time effects for both the CompNet (ECB) and the ESSNet (Eurostat) panels.

Table 4 shows the analysis of variance results for the standard deviation of TFP and the in-

terquartile range. The main findings are the following. Country and industry fixed effects are

invariably significant, they explain close to two-thirds of the variance of the standard deviation

of productivity or interquartile range of productivity (see columns 1 and 3). The explanatory

power of these factors is similar in the upper and lower part of the support of the productivity

distribution (columns 2-3 and 5-6). The contribution of time effects is relatively small and dome

preliminary analysis of the time effects does not show a clear cyclical pattern.

Table 4: Variance Decomposition of Dispersion Measures
ESSNet Data CompNet Data

SD P90-mean mean-P10 SD P90-mean mean-P10

Country 43.4 44.9 162.7 29.6 28.8 249.3
Industry 41.2 17.1 80.4 32.8 26.4 148.4
Time .7 .8 2.6 1.1 .9 12.6

Num. Obs. 1964 1949 1948 6288 6288 6288
Total SSQ 122.1 82.0 364.6 102.7 92.2 570.0

Source: Calculated from ESSNet and CompNet Data. Data from Bartelsman et al. (2015) and
Lopez-Garcia et al. (2015).

Our data allows us to shed more light on the potential determinants of differences in disper-

sion. Instead of regressing dispersion measures only on country, industry and time dummies, we

add an indicator of interest to the regression. This approach is not meant to identify an exoge-

nous effect of an explanatory indicator. Instead, the the partial correlation estimated through

the regression is a useful starting point in dissecting the high explanatory power of country-

and industry-fixed effects. One indicator of interest is the possible differences in the phase of

the business cycle, which can be measured using the output-gap. This may be relevant because

earlier evidence suggests that dispersion in US manufacturing appears counter-cyclical, nsee the

findings in Kehrig (2015), for example. While we did not find clear cyclical patterns in the time

component of the variance decomposition, further analysis may reveal how exogenous shifts in

demand may affect industry dispersion. Another, largely unexplored, area that may be rele-

vant for dispersion is related to the differences in country- or industry-specific regulations. For

example, employment protection, trade regulations, or financial conditions all have been seen

to affect firm and input factor dynamics. In order to to understand the link to productivity

dispersion further theoretical and empirical work seems justified in this context.

Below we show results from a simple excercise to estimate the correlation between an indi-
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cator of technology use and dispersion. As suggested in Bartelsman et al. (2016c), the intensity

with which broadband internet is used by firms in an industry is seen to be correlated with

dispersion. This implies that indicators of innovation and technology-intensity could control for

differences in the industry-specific technology-mix. We show some evidence on this from the

Eurostat data that includes information on technology use by firms. The results of this analysis

are shown in table 5. Each row displays the coefficient and t-statistic of each indicator in a

regression of dispersion on the indicator and on country, industry, and time fixed effects. Our

results suggest that faster growth in European industries is associated with smaller dispersion,

a finding consistent with earlier results on US data in Kehrig (2015). Various indicators of tech-

nology use are positively correlated with dispersion, suggesting that more innovative/tech-using

industries are also more likely to be dispersed. This results is consistent with the mechanism in

which entrepreneurial innovation entails more experimentation thereby increasing productivity

dispersion compared to sectors with less innovation. Alternatively, sectors facing large shocks

in business conditions that affect measured productivity, may use ICT-related technology to

reduce adjustment frictions (see recent work by Gal (2016).)

Table 5: Correlates of Productivity Dispersion
ESSNet Data
Coef t-stat

Industry Growth -.04 6.4
Human Capital Intensity .75 10.6
IT Human Capital .65 6.1
Process Innovation .08 2.4
Product Innovation .13 4.2
Organization Innovation .12 3.0
New Product Turnover .20 2.9
Broadband Intensity .11 2.8
Pct ICT Intensive Firms .14 2.8
Supply Chain Integration -.10 2.0

Notes: Each row presents the coefficent for the indicator from a regression of the standard deviation of
MFP on country, industry and time fixed effects and the indicator. Data from ESSNet (where number
of firms underlying observation>40). The explanatory variables are indicators from the Community
Innovation Survey and the ICT Use Survey that have been linked to firm-level data. More information
on the data and indicators can be found in Bartelsman et al. (2017).

5 Conclusion and Research Agenda

This chapter provides an overview of the methods currently used to construct measures of

productivity dispersion using data from large, comprehensive, samples of plants or firms. In
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particular, the chapter draws from work done in the EU, funded by Eurostat through the

ESSNet programs24 and by the European Central Bank’s Competitiveness Network, and from

work done with the Annual Survey of Manufactures and the Census of Manufactures at the

US Census Bureau. The chapter further provides a comparison of estimates of productivity

dispersion for different methods and for a selection of countries. Evidence also is provided on

some of the correlates of productivity dispersion. Disentangling causes of productivity dispersion

remains difficult and requires modeling of causes and effects as well as empirical strategies to

identify the underlying mechanisms.

The empirically observed dispersion of productivity has been an awkward fact for models

of production with representative firms or for models where resources always are allocated op-

timally. In section 2, a discussion is presented of different ways in which to understand the

existence of productivity dispersion. To start, many forms of measurement error could con-

tribute to observed dispersion. Next, decisions made by firms that alter their productivity are

a source of dispersion, as long as some form of friction is preventing instantaneous allocation of

resources to the firm with the highest productivity. Finally, forces of selection and allocation

tend to reduce dispersion, but may be held back by policy distortions, or by frictions in ’taste

and technology’, ie consumer learning, informational frictions, or search and matching processes.

Much work remains to be done to understand productivity dispersion. For example, the early

attempt of Hsieh and Klenow (2009) to use observed dispersion as an indicator of misallocation of

resources has run into criticism (e.g. Foster et al. (2016b), Bartelsman et al. (2013), Bartelsman

et al. (2016b), and Brown et al. (2016)). The link between dispersion and misallocation hinges

on the assumption of constant returns to scale, but also breaks down with alternative measures

of revenue productivity or with alternate interpretations of estimated distortions. Further,

careful measurement of dispersion in different sets of countries, industries or time periods, clearly

places question marks on a simple monotonic relationship between productivity dispersion and

misallocation.

The research agenda can be broken down into different themes. More work needs to be done

to improve basic measurement of the underlying inputs and output. Linking the business surveys

on production with information on the skills and education of each employee per firm, or with

surveys on capital investment by type and quality, or with information on technology use or

management quality, could all improve measurement of productivity. Similarly, information on

24ESSLimit, ESSLait
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the product markets and customers could help disentangle price, quality, and mark-ups, further

improving the measure of productivity. The effect of better measurement of productivity on the

magnitude of dispersion across producers in an industry remains an empirical matter.

The econometric aspects of productivity measurement attract much research, as witnessed

many contributions to this handbook. Some improvements in estimation, for example in dis-

entangling productivity and mark-ups, are generally expected to reduce measured dispersion

(e.g. entrants may seem to have low productivity, thereby increasing dispersion, but this effect

disappears once their lower-than-average markups are properly accounted for.). On the other

hand, accounting for statistical issues such as the presence of item non-response and imputation

may increase dispersion.

Theoretical and empirical explorations into the sources of firm-level productivity evolution is

an equally interesting area. Much work has already taken place here, for example following two

disparate strands of work as described in Comin and Mulani (2009) and Acemoglu et al. (2013).

Research should be partial equilibrium in nature, in the sense that it should try to isolate the

sources driving (heterogeneous) productivity at the plant or firm level, from market forces that

select firms and allocate resources and market shares.

Beyond identifying isolated factors that drive dispersion, more work needs to be done on

the implications of using heterogenous firm models in dynamic general equilibrium frameworks.

These models should simultaneously take into account firm decisions that affect (future) pro-

ductivity and market outcomes relating to allocation of input and output. The parameters of

such models can be informed through calibration with moments from firm-level datasets, or can

be estimated through methods of indirect inference (see e.g. Dridi et al. (2007) or Gouriroux

et al. (2010)).

As measures of productivity dispersion are becoming available for researchers, systematic

empirical explorations into correlates of dispersion can be made to understand how dispersion

can vary across sectors, countries, or time. A recent example in this area is Kehrig (2015), who

explores the differential effect market selection mechanisms may have on dispersion over the

business cycle. Another direction is taken by Brown et al. (2016) who take a theoretical and

empirical look at the role of adjustment frictions on measured dispersion. The simple example

given in this chapter, relating productivity dispersion in a country-industry-time panel to fixed

effects and factors that vary across country or industry, could be the basis of a line of empirical

literature.
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This chapter serves as a guide to aid researchers in building up comparable measures of

dispersion of productivity for a large set of countries, industries, and time periods. Our hope

is that the availability of such data together with research along the lines sketched above will

increase our understanding of the effect of statistical quality and methodological choices on

measures of dispersion. The areas of economics where such measures can be important are

wide, ranging from dynamic macro models of business cycles and growth to structural micro

models of firm behavior and market outcomes. The next iteration of the handbook likely will be

able to host a more mature chapter on productivity dispersion, with more questions answered

than asked.
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