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Abstract

What are the implications of limited capital controls enforcement for the optimal
design of capital flow management policies? We address this question in an environment
where pecuniary externalities call for prudential capital controls, but financial regula-
tors lack the ability to enforce them on the “shadow economy.” While regulated agents
reduce their risk-taking decisions in response to capital controls, unregulated agents
respond by taking more risk, thereby undermining the effectiveness of the controls.
We characterize the choice of a planner who sets capital controls optimally, taking into
account the leakages arising from limited regulation enforcement. Our findings indicate
that leakages do not necessarily make macroprudential policy on the regulated sphere
less desirable, and that large stabilization gains remain despite leakages. Finally, there
can be significant redistributive effects across the regulated and unregulated spheres.
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1 Introduction

Central banks in emerging markets have responded to the recent surge in capital inflows by

pursuing active capital flow management policies. The hope is that current efforts to curb

capital inflows will reduce the vulnerability of the economy to sudden reversals in capital

flows. While this macroprudential view of capital controls has gained considerable grounds

in academic and policy circles, the debate about their effectiveness remains unsettled.1 In

fact, a growing empirical literature argues that there are important leakages in the imple-

mentation of capital controls, casting doubt on the effectiveness of such policies in fostering

macroeconomic and financial stability.2

Against this backdrop, the literature has not addressed what are the precise consequences

of imperfect regulation enforcement of capital controls: To what extent do leakages in regu-

lation undermine the effectiveness of capital controls? Are capital controls desirable in the

presence of imperfect regulation enforcement?

To tackle these questions, we use a dynamic model of endogenous sudden stops, that

builds on Mendoza (2002) and Bianchi (2011), where households are subject to an occa-

sionally binding credit constraint that links their credit market access to the value of their

current income, composed of tradable goods and non-tradable goods. When the economy

has accumulated a large stock of debt and an adverse shock hits, the economy falls into a

vicious circle by which a contraction in capital flows and the real exchange rate mutually

reinforce each other. Because households fail to internalize that higher borrowing leads to a

higher exposure to these systemic episodes, this creates a pecuniary externality that can be

corrected using appropriately designed capital controls (see e.g. Bianchi (2011) and Korinek

(2011)). The existing literature, however, has restricted to the case where capital controls

are perfectly enforceable.

In our model, the financial regulator can only enforce capital controls on a subset of the

population. We show that unregulated agents respond to tighter regulation in the economy,

1For the views of the IMF see Ostry et al. (2010).
2See for example Klein (2012), Forbes, Fratzscher, and Straub (2013), Magud, Reinhart, and Rogoff

(2011). There is also a related literature on leakages on macroprudential policy (see e.g. Aiyar, Calomiris,
and Wieladek (2012), Jiménez, Ongena, Peydró, and Saurina (2012), Camors and Peydró (2013).



i.e. higher capital controls, by taking more risk, due to an implicit insurance provided by

regulated agents. As the financial regulator tightens regulation on the “regulated sphere,”

this reduces overall risk-taking decisions, given borrowing decisions of unregulated agents.

Unregulated agents, however, perceive now that crises are less likely and hence respond by

taking more debt. That is, they reduce their precautionary savings as the likelihood of a

severe contraction in their borrowing capacity falls with higher capital controls. As a result,

these leakages in regulation undermine the effectiveness of capital controls.

In our normative analysis, we consider a financial regulator, subject to the same credit

market frictions as the private economy, who chooses directly borrowing decisions of regulated

agents. On the other hand, borrowing decisions remain a private choice for unregulated

agents. A key aspect of the financial regulator’s problem is that it internalizes the leakages

from tighter regulation on the unregulated sphere.

We show that the planner’s decision to impose capital controls on the regulated sphere

when the economy is exposed to the risk of a future financial crisis results from the resolution

of a tradeoff that involves a key feedback mechanism. Capital controls on the regulated

sphere are socially desirable because they contribute to correct a pecuniary externality that

causes an inefficiency due to a constraint linking credit limits to a market price. But capital

controls on the regulated sphere encourage more borrowing by the unregulated sphere, and

this borrowing patterns of the two spheres drives a wedge between the marginal utilities of

the two sets of agents: relative to regulated agents, unregulated agents borrow “too much”

ahead of potential future crises and therefore are overly exposed to the risk of crises. This

excessive exposure of the unregulated sphere calls for tighter capital controls and therefore

even less borrowing by the regulated sphere. This lower borrowing by the regulated sphere

induces even more borrowing by the unregulated sphere, fuelling a vicious circle. The opening

of this wedge is costly to the planner from an allocative efficiency perspective. Therefore,

in deciding about the optimal extent of capital controls, the planner trades off the benefits

arising from the correction of an inefficiency due to a pecuniary externality with the costs

arising from the creation of an otherwise non-existing allocative inefficiency.

Our results indicate that the spillover effects are such that the unregulated sphere re-

sponds to capital controls on the regulated sphere by borrowing unambiguously more than
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under laisser-faire. The results also indicate that the welfare gains from capital controls ac-

crue disproportionately to unregulated agents. This is explained by the non-discriminatory

character of the planner’s financial crisis prevention policy, that operates through the stabi-

lization of a market price. The planner’s intervention on the borrowing of regulated agents

entails costs and benefits. The costs arise from lower consumption by regulated agents (due

to lower borrowing) when the economy is in a state where it is exposed to the risk of a future

crisis. The benefits take the form of a lower probability of occurrence of such crises. Unlike

regulated agents who pay a cost in exchange for enjoying the benefits, unregulated agents

enjoy the benefits without incurring any cost. In other words, unregulated agents receive a

free public good from regulated agents.

This paper relates to the growing literature on capital controls and macroprudential

policies. A first strand of this literature examines pecuniary externalities due to incomplete

markets and prices that affect financial constraints.3 In particular, we build on Bianchi

(2011)’s normative analysis but consider the case where controls can be enforced only on

a fraction of the population. We show that capital controls remain largely effective even

in the presence of significant leakages and spillovers from regulated to unregulated agents.

Spillovers from regulated to unregulated agents are also analyzed in Bengui (2013), who

shows in a stylized two-country model of liquidity demand that an exogenous tightening of

liquidity regulation at home discourages liquidity provision abroad.

A second strand of the literature examines prudential capital controls for macroeconomic

stabilization in the presence of nominal rigidities. In Farhi and Werning (2012) and Schmitt-

Grohé and Uribe (2013), there is a wedge between the private and social value of income

due to Keynesian effects that arise when monetary policy is unable to achieve full economic

stabilization. These papers also assumes that capital controls are perfectly enforceable.

The paper is organized as follows. Section 3 presents a three period model that shows

analytical results for the main mechanisms in the paper. Sections 3 presents the infinite

horizon model. Section 4 presents results from calibrated versions of the model. Section 5

concludes.

3Examples include Caballero and Krishnamurthy (2001), Lorenzoni (2008), Korinek (2011), Bianchi
(2011), Bianchi and Mendoza (2013),Jeanne and Korinek (2011), Benigno, Chen, Otrok, Rebucci, and Young
(2013), Bengui (2013).
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2 A Three-Period Model

In this section, we present a three period model of sudden stops and optimal capital flow

management in the presence of leakages.

2.1 Economic Environment

The economy is populated by a continuum of agents of one of two types i = U,R, present

in respective proportions γ and 1 − γ, who live for three dates: t = 0, 1, 2. Both types of

agents have identical preferences and endowments. Preferences are given by:

Ui = cTi0 + E0

[
β ln (ci1(s)) + β2 ln (ci2(s))

]
. (1)

with

c =
(
cT
)ω (

cN
)1−ω

.

E[·] is the expectation operator and β < 1 is a discount factor. Date 0 utility linear in tradable

consumption cT , while date 1 and 2 utility is logarithmic in the consumption basket c, which

is a Cobb-Douglas aggregator with unitary elasticity of substitution between tradable goods

cT and nontradable goods cN . ω is the share of tradables in total consumption. Agents

receive endowments of tradable goods and nontradable goods of
(
yTt (s), ȳN

)
at date 1 and

2, but do not receive any endowment at date 0. The date 1 endowment of tradables yT1 (s) is

a random variable depending on the event s ∈ S, which can be interpreted as the aggregate

state of the economy. We define ȳT ≡ E0

[
yT1 (s)

]
and for simplicity, we assume that yT2 (s) is

a constant equal to ȳT , and that ȳN = 1.

Agents have access to a single one period, non-state contingent bond denominated in

units of tradable goods that pays a fixed interest rate r, determined exogenously in the world

market. Normalizing the price of tradables to 1 and denoting the price of nontradables by
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pN , the budget constraints are:

cTi0 + bi1 = 0 (2)

cTi1(s) + pN1 (s)cNi1(s) + bi2(s) = (1 + r)bi1 + yT1 (s) + pN1 (s)ȳN (3)

cTi2(s) + pN2 (s)cNi2(s) = (1 + r)bi2(s) + ȳT + pN2 (s)ȳN (4)

where bt+1 denotes bond holdings an agent chooses at the beginning of period t.

At date 1, agents are subject to a credit constraint preventing them to borrow more than

a fraction κ of their current income:

bi2(s) ≥ −κ
(
pN1 (s)ȳN + yT1 (s)

)
. (5)

This form of credit constraint captures the empirical fact that income is critical to determine

credit market access. Moreover, this has been used extensively in the literature on sudden

stops following Mendoza (2002) to capture the contractionary effects from depreciations on

balance sheets when debt is denominated in foreign currency.

We make the following assumptions on parameters.

Assumption 1. The domestic agents’ discount factor and the international interest rate

satisfy β(1 + r) = 1.

This assumption, common in small open economy models, states that domestic agents

are as patient as international investors. It implies that there is no intrinsic motivation for

consumption tilting in the domestic economy.

Assumption 2. The consumption shares and collateralizable fraction of income are such

that 0 < κ < ω
1−ω .

This assumption guarantees that an increase in aggregate consumption does not increase

sufficiently the price of non-tradables, thereby relaxing the credit constraint.

Agents choose consumption and savings to maximize their utility (1) subject to budget

constraints (2), (3), (4), and to their credit constraint (31), taking pN1 (s) and pN2 (s) as given.
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An agent’s optimality conditions are given by

pNt (s) =
1− ω
ω

cTit(s)

cNit (s)
(6)

1 = β(1 + r)E0

[
ω

cTi1(s)

]
(7)

ω

cTi1(s)
= β(1 + r)

ω

cTi2(s)
+ µi1(s) (8)

bi2(s) + κ
[
pN1 (s)ȳN + yT1 (s)

]
≥ 0, with equality if µi1(s) > 0. (9)

where µi1(s) is the agent’s non-negative multiplier associated with his date 1 credit constraint.

Equation (6) is a static optimality condition equating the marginal rate of substitution

between tradable and nontradable goods to their relative price. Equation (7) is the Euler

equation for bonds at date 0, and equation (8) is the Euler equation for bonds at date 1.

When the credit constraint is binding, there is a wedge between the current shadow value of

wealth and the expected value of reallocating wealth to the next period, given by the shadow

price of relaxing the credit constraint µi1(s). Equation (9) is the complementary slackness

condition.

If an agent is unconstrained at date 1, he chooses a consumption plan given by

cTi1(s) = cTi2(s) =
ω

1 + β
wei1(s), cNi1(s) =

1− ω
1 + β

wei1(s)

pN1 (s)
, and cNi2(s) =

1− ω
1 + β

wei1(s)

pN2 (s)
(10)

where wei1(s) is the agent’s date 1 lifetime wealth

wei1(s) ≡ (1 + r)bi1 + yT1 (s) + pN1 (s)ȳN +
ȳT + pN2 (s)ȳN

1 + r
.

To finance this consumption plan, the agent borrows the shortfall between his expenditures

1
1+β

wei1(s) and cash on hand (1 + r)bi1 + yT1 (s) + pN1 (s) at date 1:

bi2(s) = bunci2 (s) ≡ β

1 + β

[
(1 + r)bi1 + yT1 (s) + pN1 (s)ȳN − ȳT + pN2 (s)ȳN

1 + r

]
. (11)

An agent is constrained at date 1 if the bond position in (11) violates the credit constraint
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(31). In this case, he borrows the maximum amount:

bi2(s) = bconi2 (s) ≡ −κ
[
yT1 (s) + pN1 (s)ȳN

]
(12)

and chooses a consumption plan given by

cTi1(s) = ωw̃ei1(s)

cNi1(s) = (1− ω) w̃ei1(s)

pN1 (s)

cTi2(s) = ω(1 + r) [wei1(s)− w̃ei1(s)]

cNi2(s) = (1− ω)(1 + r)wei1(s)−w̃ei1(s)

pN2 (s)
,

(13)

where w̃ei1(s) is the agent’s date 1 constrained wealth

w̃ei1(s) ≡ (1 + r)bi1 + (1 + κ)
[
yT1 (s) + pN1 (s)ȳN

]
,

which corresponds to the sum of actual date 1 wealth and the maximum amount that can

be borrowed.

A decentralized equilibrium of the model is a set of decisions {cTi0, bi1}i∈{U,R}, decision

rules {cTi1(s), cTi2(s), cNi1(s), cNi2(s), bi2(s)}i∈{U,R} and prices pN1 (s), pN2 (s) such that (1) given

prices, the agents’ decisions are optimal, and (2) markets for the nontradable goods clear

at all date. In what follows we proceed by backward induction. We first analyze the date

1 continuation equilibrium for given date 0 bond choices, and we then turn to the date 0

borrowing decisions.

2.2 Date 1 continuation equilibrium

The nontradable goods market clearing condition for t = 1, 2 is

γcNUt(s) + (1− γ)cNRt(s) = ȳN = 1. (14)

and the aggregation of the two sets of agents’ intertemporal budget constraints yield econ-

omy’s intertemporal resource constraint

CT
1 (s) +

CT
t (s)

1 + r
= (1 + r) [γBU1 + (1− γ)BR1] + yT1 (s) +

ȳT

1 + r
(15)
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where CT
t (s) ≡ γCT

Ut(s) + (1 − γ)CT
Rt(s) is aggregate tradable consumption and upper case

letters with U or R subscripts denote aggregates over an agent type.

Combining the nontradable market clearing condition (14) with the agents’ static opti-

mality condition (6) delivers a simple expression for the equilibrium price of nontradables:

pNt (s) =
1− ω
ω

CT
t (s). (16)

Hence, the equilibrium price of nontradables is proportional to the economy’s absorption of

tradables. Intuitively, when aggregate consumption of tradables is high, nontradables are

relatively scarce and their relative price is high. All else equal, an increase in cTR1 generates

in equilibrium an increase in pN1 , which by equation (31) increases the collateral value for

all agents. Similarly, a reduction in cTU1 reduces the collateral value for all agents. This

mechanism will be a key source of interaction between the behavior of the regulated and

unregulated spheres in the regulated equilibrium considered below.

At date 1, the economy’s aggregate state variables are given by the tradable goods en-

dowment yT1 (s) and by the respective aggregate bond positions of type U and type R agents,

BU1 and BR1. Depending on which set(s) of agents is (are) credit constrained, the economy

can be in four regions at date 1: cc where both types of agents are constrained, cu where U

agents are constrained and R agents are unconstrained, uc where U agents are unconstrained

and R agents are constrained, and uu where both types of agents are unconstrained. Conve-

niently, in each of these cases the continuation equilibrium takes a particularly simple form,

as stated in the following lemma.

Lemma 1. For x ∈ {cc, uc, cu, uu}, aggregate date 1 consumption in region x is given by

CT
1 (s) = αxyy

T
1 (s) + αxUBU1 + αxRBR1 + αxȳ ȳ

T .

Lemma 1 says that, within each region, date 1 aggregate consumption is linear in each

of the aggregate state variables (yT1 (s), BU1, BR1). Date 2 aggregate consumption follows

from the economy’s intertemporal resource constraint (15) and is therefore also linear in

(yT1 (s), BU1, BR1). Finally, according to (16) the equilibrium prices pN1 (s) and pN2 (s) are

linear in CT
1 (s) and CT

2 (s) (respectively) and therefore also linear in (yT1 (s), BU1, BR1).
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Lemma 2. The coefficients of the decision rule for CT
1 (s) are such that:

1. αxy > 0 and αxU , α
x
R, α

x
ȳ ≥ 0 with αxU = 0 (resp. αxR = 0) if and only if γ = 0 (resp.

γ = 1), and αxȳ = 0 if and only if x = cc.

2. if 0 ≤ γ ≤ 0.5 (resp. 0.5 ≤ γ ≤ 1), then αuuy ≤ αcuy ≤ αucy ≤ αccy , (resp. αuuy ≤ αucy ≤

αcuy ≤ αccy ), with strict inequalities if 0 < γ < 0.5 (resp. 0.5 < γ < 1).

3. αuuU ≤ αcuU ≤ αccU and αuuU ≤ αucU ≤ αccU , with strict inequalities if and only if γ > 0.

4. αuuR ≤ αcuR ≤ αccR and αuuR ≤ αucR ≤ αccR , with strict inequalities if and only if γ < 1.

Part 1. of Lemma 2 establishes that aggregate consumption increasing in each of the

three aggregate state variables (yT1 (s), BU1, BR1), always strictly for yT1 (s), and strictly for

BU1 unless γ = 0 and for BR1 unless γ = 1. Higher tradable income or higher wealth

leads to higher aggregate tradable consumption. Part 2. of the lemma says that aggregate

tradable consumption is more sensitive to tradable income in the regions where the credit

constraints are binding. When the credit constraint does not bind consumption is increasing

in income due to a traditional permanent income effect. When it binds the sensitivity of

consumption to income is higher because of a financial amplification effect working through

the price of nontradables. The larger the mass of constrained agents, the stronger this

financial amplification effect relative to the permanent income effect. Similarly, parts 3.

and 4. establishes that aggregate tradable consumption is more sensitive to the two sets of

agents’ wealth positions in the regions where the credit constraints are binding.

An individual’s credit constraint set is defined as the set of tradable endowment realisa-

tions such that her credit constraint is binding

Q(bi1;BU1, BR1, x) ≡
{
yT1 (s) ∈ R+|bunci2

(
bi1; yT1 (s), BU1, BR1, x

)
< bconi2

(
bi1; yT1 (s), BU1, BR1, x

)}
.

where x ∈ {cc, uc, cu, uu} denotes the region in which the economy is and determines the

mapping between (yT1 (s), BU1, BR1) and (pN1 (s), pN2 (s)) relevant to compute bunci2 and bconi2 .
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The four regions can hence be represented by the following sets:

X cc(BU1, BR1) ≡ Q(BU1;BU1, BR1, cc) ∩Q(BR1;BU1, BR1, cc), (17)

X uc(BU1, BR1) ≡ Qc(BU1;BU1, BR1, uc) ∩Q(BR1;BU1, BR1, uc), (18)

X cu(BU1, BR1) ≡ Q(BU1;BU1, BR1, cu) ∩Qc(BR1;BU1, BR1, cu), (19)

X uu(BU1, BR1) ≡ Qc(BU1;BU1, BR1, uu) ∩Qc(BR1;BU1, BR1, uu). (20)

Further, we define unions of some of these sets as X c? ≡ X cc ∪X cu, X ?c = X cc ∪X uc, X u? =

X uu ∪X uc and X ?u = X uu ∪X cu. These sets have some intuitive properties, summarized in

the following lemmas.

Lemma 3. There exists thresholds ax and bx satisfying 0 ≤ ax ≤ bx (with ax = bx iff

BU1 = BR1) such that yT1 (s) ∈ X cc iff yT1 (s) < ax, yT1 (s) ∈ X uu iff yT1 (s) ≥ by, y
T
1 (s) ∈ X cu

iff and BU1 < BR1; and yT1 (s) ∈ X uc iff ax ≤ yT1 (s) < bx and BU1 > BR1.

Lemma 3 says that for a given pair (BU1, BR1), the regions are ordered along the real line,

that the poorest type of agents is never unconstrained when the other type is constrained,

and that when both types of agents have the same wealth only the symmetric regions cc

and uu can arise. It notably implies that X cc, X uc, X cu and X uu are disjoint, and that their

union is R+, meaning that for any triplet (yT1 (s), BU1, BR1) the economy is always in one

and only one region.

Lemma 4. For a given BU1 (resp. BR1) and any two BR1, B̃R1 (resp. BU1, B̃U1) such that

BR1 < B̃R (resp. BU1 < B̃U):

1. for X = {X cc,X c?,X ?c}, if yT1 (s) ∈ X (BU1, B̃R1) (resp. yT1 (s) ∈ X (B̃U1, BR1)), then

yT1 (s) ∈ X (BU1, BR1).

2. for X = {X uu,X u?,X ?u}, if yT1 (s) ∈ X (BU1, BR1), then yT1 (s) ∈ X (BU1, B̃R1) (resp.

yT1 (s) ∈ X (B̃U1, BR1)).

Part 1. of Lemma 4 says that the region X cc where both types of agents are credit

constrained, and the regions X c? and X ?c where at least one type of agents is constrained

are all shrinking in BR1 and BU1. Part 2. says that the region X uu where both types of
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agents are unconstrained, and the regions X u? and X ?u where at least one type of agents is

unconstrained are all expanding in BR1 and BU1.

2.3 Date 0 decentralized equilibrium

In an unregulated decentralized equilibrium, date 0 bond choices are symmetric4: BU1 =

BR1 ≡ bDE1 . The date 0 bond choice in the decentralized equilibrium is characterized by the

private Euler equation:

1 = E0

[
ω

CT
1 (yT1 (s), bDE1 , bDE1 )

]
, (21)

where we have used the fact that given symmetric bond choices, agents’ date 1 consumption

of tradable goods coincides with aggregate tradable consumption.

Lemma 5. The date 0 symmetric decentralized equilibrium exists and is unique.

2.4 Regulated Equilibria

We now consider equilibria where R (regulated) agents face a tax on date 0 borrowing, but U

(unregulated) agents don’t, and interpret this tax as a capital control. We start by assuming

exogenous taxes to streamline the private sector’s response to the tax. We then solve for the

optimal tax chosen by a constrained social planner.

2.4.1 Exogenous Capital Controls

U agents are not subject to the tax and their problem is the same as in the unregulated

decentralized equilibrium of section 2.3. For R agents, however, the date 1 budget constraint

(3) is replaced by

cTR1(s) + pN1 (s)cNR1(s) + bR2(s) = (1 + r)(1 + τ)bR1 + yT1 (s) + pN1 (s)ȳN + T, (22)

where τ is the tax rate on date 0 borrowing and T is a lump-sum transfer.5 We assume that

the planner rebates the tax proceeds to the agents who pay the tax, so that the government

4More precisely, given symmetric primitives, we choose to focus on symmetric equilibria.
5τ is a tax on capital inflows or a subsidy on capital outflows at date 0.
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budget constraint is

T = −τbR1. (23)

In the presence of capital controls, the unregulated agent’s date 0 Euler equation remains

given by (7), but the regulated agent’s date 0 Euler equation is replaced by

1 = β(1 + r)(1 + τ)E0

[
ω

cTR1(s)

]
. (24)

A regulated equilibrium with an exogenous capital control τ is a set of decisions {cTi0, bi1}i∈{U,R},

decision rules {cTi1(s), cTi2(s), cNi1(s), cNi2(s), bi2(s)}i∈{U,R} and prices pN1 (s), pN2 (s) such that (1)

given prices and given the tax, the agents’ decisions are optimal, and (2) markets for the

tradable and nontradable goods clear at all date. Such an equilibrium is characterized by

the pair of Euler equations hU(b∗U1, b
∗
R1) = 0 and hR(b∗U1, b

∗
R1; τ) = 0, and

hU(bU1, bR1) ≡ 1−E0

[
ω

cTU1(yT1 (s), bU1, bR1)

]
, hR(bU1, bR1; τ) ≡ 1

1 + τ
−E0

[
ω

cTR1(yT1 (s), bU1, bR1)

]
(25)

The functions cTU1(yT1 (s), BU1, BR1) and cTR1(yT1 (s), BU1, BR1) are obtained by combining the

relevant expressions in (10) and (13) with the equilibrium price expressions obtained from

(16) and the solution for aggregate tradable consumption from Lemma 1.

Each of the two Euler equations can be thought of as representing the best response of

one type of agents to the other type’s savings behavior.

Proposition 1. For a given tax rate, the best response of type U (resp. R) agents to the

borrowing choice of type R (resp. U) agents is unique and decreasing (strictly if and only if

γ < 1, resp. γ > 0).

Proposition 1 establishes that borrowing decisions by the two sets of agents are strategic

substitutes. The less U (resp. R) agents borrow, the more R (resp. U) agents find it optimal

to borrow. The mechanism generating this result does not hinge of the presence of credit

constraints at date 1, but binding constraints act to strengthen it. The intuition is that less

borrowing by R (resp. U) agents at date 0, by increasing the wealth of R (resp. U) agents

at date 1, pushes up demand for both goods at 1. This leads to an increase in the price of

nontradables, which generates a positive wealth spillover on U (resp. R) agents at date 1.
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This wealth spillover induces U (resp. R) to borrow more at date 0. Note that the wealth

spillover is stronger in states of the nature where credit constraints bind, because aggregate

consumption (and therefore the price of nontradables) is more sensitive to the two sets of

agents’ wealth in these cases.

We write the best response functions as bU1 = φU(bR1) and bR1 = φR(bU1; τ), and note

that φ′U(·) ≤ 0 and φ′R(·; τ) ≤ 0. The following proposition describes how borrowing by the

two sets of agents responds (locally) to chances in the tax rate.

Proposition 2. For small taxes, b∗R1 is increasing in τ and b∗U1 is decreasing in τ (strictly

if γ < 1).

b
DE

1

b
DE

1

b
∗

R1

b
∗

U1

b
DE

1

bR1

bU 1

φU (bR1)

φR(bU1; 0) φR(bU1; τ > 0)

Figure 1: Best response functions of regulated and unregulated agents in equilibrium with
exogenous tax (0 < γ < 1).

Proposition 2 indicates that an increase in the tax on borrowing imposed on R agents

generates a decrease in their date 0 borrowing, but an increase in the date 0 borrowing of

U agents. This effect can be traced back to the shift in the regulated agents’ best response

function caused by an increase in the tax rate. Figure 1 represents the best response functions
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of the two sets of agents in the (bR1, bU1) pace. The red line is the best response of U agents,

and the blue lines are the best responses of R agents associated with a zero tax (dashed

line) and to a positive tax (full line). The intersection between the U agents’ best response

and the R agents’ best response associated with a zero tax coincides by definition with the

unregulated symmetric competitive equilibrium. A positive tax causes a shift of the R agents’

best response to the right: for a given bU1 choice, R agents respond to the tax by borrowing

less (it makes borrowing more costly). But U agents respond to this lower borrowing by R

agents by borrowing more themselves. This extra borrowing by U agents in turn induces R

agents to borrow less. This process continues until equilibrium is reached at point (b∗R1, b
∗
U1).

2.4.2 Optimal Capital Controls

So far we have considered regulated equilibria and characterized the private sector’s response

to an exogenous tax, but we have not provided welfare theoretic foundations for this tax.

In this section, we endogeneize the level of the tax by considering a planner who has the

ability to tax the date 0 borrowing choice of R (regulated) agents but not of U (unregulated)

agents. To abstract from pure wealth transfer considerations, we assume throughout that

the planner rebates the proceeds of the tax to the agents that pay it, i.e. the tax is purely

distortionary.

As we show in Appendix B, the optimal tax problem is equivalent to a problem where

the planner chooses directly allocations and prices subject to implementability constraints,

so we focus on that latter problem in what follows.

Problem 2.1 (Planner’s problem).

max
{cTi0,bi1,cTi1(s),cTi2(s),cNi1(s),cNi2(s),bi2(s)}i∈{U,R},pN1 ,pN2

γUU + (1− γ)UR (26)

subject to (1), (2), (3), (4), (6), (8), (9) for i = U,R, (7) for i = U and (14).

The planner, assumed to behave like a utilitarian planner, maximizes a weighted sum

of the agents’ utility, subject to number of constraints. (1) is the definition of the utility

function. (2), (3) and (4) are the agents’ date 0, date 1 and date 2 respective budget
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constraints. (6) is the agents’ static optimality condition between tradable and nontradable

goods (which must hold both at date 1 and 2). (8) is the agents’ date 1 Euler equation for

bonds. (9) is the agents’ credit constraint and associated complementary slackness condition.

(7) for i = U is the U agents’ date 0 Euler equation for bonds and (14) is the nontradable

goods market clearing condition (which must hold both at date 1 and 2).

The planner’s optimal choice of bR1 can be shown to be characterized by the following

Generalized Euler equation (GEE)

1 = β (1 + r)E0
ω

cTR1

+ κE0

[(
µR1 +

γ

1− γ
µU1

)(
∂pN1
∂bR1

+
∂pN1
∂bU1

∂bU1

∂bR1

)]
(27)

+E0

[(
ω

cTR1

− ω

cTU1

)(
ȳN − cNR1

)( ∂pN1
∂bR1

+
∂pN1
∂bU1

∂bU1

∂bR1

)]
+E0

[(
ω

cTR2

− ω

cTU2

)(
ȳN − cNR2

)( ∂pN2
∂bR1

+
∂pN2
∂bU1

∂bU1

∂bR1

)]
,

where µi1 ≡ ω
cTi1
− ω

cTi2
≥ 0 are the shadow costs associated with the credit constraints at

date 1. This GEE resembles the private Euler equation (7), but it contains additional terms

reflecting the planner’s internalization of pecuniary externalities. The first term on the first

line of the right-hand side corresponds to the private valuation of wealth, also present in (7).

The second term reflects the benefits the planner derives from a relaxation of the agents’

credit constraints at date 1 through supporting higher prices of nontradables by saving more

at date 0. This term is common in the normative analysis of models with credit constraints

linked to market prices. However, in contrast to models with perfect financial regulation

enforcement, it now embeds the unregulated agents’ response to the borrowing choice of

the planner for the regulated agents, through the negative derivative ∂bU1

∂bR1
(see Proposition

1). This pure leakage effect lowers the marginal value of saving on the behalf of regulated

agents for the planner and therefore pushes in the direction of a weaker intervention. In

addition, the third and fourth terms on the second and third lines of the GEE reflect the

benefits the planner derives from wealth transfers caused by the pecuniary externality on

the size of a wedge between the marginal rates of substitution of regulated and unregulated

agents. This wedge does not exist when date 0 borrowing levels are the same for both sets

of agents, so it’s opening is a direct consequence of regulation under imperfect enforcement.
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Supporting higher future prices of nontradables via higher date 0 savings causes a wealth

transfer from the (rich) net buyers to the (poor) net sellers of nontradables. The former

have a lower marginal utility of tradable consumption than the latter, so such a transfer is

valued positively by the planner. In other words, the leakage effects of regulation result in

the emergence of a new distortion, which contrary to the pure leakage effect discussed above,

calls for a stronger intervention.

b
DE

1

b
DE

1

b
SP

1

b
SP

1

b
∗

R1

b
∗

U1

bR1

bU 1
φU (bR1)

Figure 2: Borrowing choices in equilibrium with optimal capital controls, with planner’s
indifference curves.

The optimal borrowing choices commanded by the planner are displayed in Figure 2,

together with the planner’s indifference curves. The point (bDE1 , bDE1 ) corresponds to the

unregulated decentralized equilibrium, the point (bSP1 , bSP1 ) is the constrained efficient choice

which the planner could achieve if he could regulate everyone, and the point (b∗R1, b
∗
U1) is

the borrowing pair chosen by planner in the presence of leakages. Acting as a Stackelberg

leader in the latter case, the planner picks the point tangent to his indifference curves on the

unregulated agents’ best response map. In the case drawn, it happens that b∗R1 > bSP1 , but

the relationship between b∗R1 and bSP1 generally depends on parameters. Figure 3 represents
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the same borrowing choices, but this time together with the regulated (left) and unregulated

(right) agents’ indifference curves.
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Figure 3: Borrowing choices in equilibrium with optimal capital controls, regulated (left)
and unregulated (right) agents’ indifference curves.

Combining the GEE (27) with the regulated agents’ Euler equation (24) yields an ex-

pression for the optimal tax:

τ =
βE0

[(
µR1 + γ

1−γµU1

)
κȳN

dpN1
dbR1

]
+ βE0

[∑2
t=1

(
ω
cTRt
− ω

cTUt

) (
ȳN − cNRt

) dpNt
dbR1

]
E0

[
ω
cTR1

] (28)

This expression can be thought of as defining the planner’s desired capital control τ associ-

ated with the private sector’s bond choices (bU1, bR1), while the regulated equilibrium with

an exogenous capital control defined the private sector’s desired bond choices as a function

of the capital control. The optimal capital control is the fixed point of this mapping.

As is well known from the literature, if the planner could tax all agents in the economy,

he would do so if and only if credit constraints bind in some states of the world at date 1.

As stated in the following proposition, we find that this result continues to hold when the

regulation leaks as long as the planner can tax a subset of agents, irrespective of how large

(or small) this subset is.

Proposition 3. The optimal tax on borrowing is zero if and only if credit constraints never

bind in the unregulated decentralized equilibrium.
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The intuition for this result is straightforward from the expression for the optimal tax in

(28). At a zero tax, the distortion represented by the second term of the numerator in (28)

is nonexistent, and the only motive for taxing capital inflows is to address the inefficiency

caused by the pecuniary externality that arises due to credit constraints being linked to

a market price. Hence, for a zero tax to be optimal, it must be that credit constraints

never bind under laissez-faire. Conversely, if credit constraints bind under laissez-faire, it

is always optimal to impose some tax on regulated agents because for small taxes leakage

considerations are of second order.

2.5 Insights from Three Period Model

This section developed a heavily stylized model of imperfectly enforced capital flow manage-

ment policies, where the inherent motivation for capital controls derived from a pecuniary

externality caused by financial constraints linked to a market price. The key prediction of the

model is that in response to capital controls on the regulated sphere, capital inflows to the

unregulated sphere increase. Our main normative insight is that this leakage phenomenon

exerts two counteracting forces on the magnitude of optimal capital controls. On the one

hand, a pure leakage effect makes capital controls on the regulated sphere less desirable be-

cause the reduction in the regulated sphere’s indebtedness is partially offset by an increase in

borrowing by the unregulated sphere. On the other hand, the leakages make capital controls

introduce a new distortion that takes the form of an excessive relative indebtedness of the

unregulated sphere. Correcting this distortion requires reducing the economy’s indebtedness

further and therefore calls, paradoxically, for even tighter controls on the regulated sphere.

In the next section, we embed the leakage phenomenon into a quantitative model of

emerging market crises with the aim of assessing the quantitative relevance of the above

mentioned mechanisms.
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3 Infinite horizon model

3.1 Economic Environment

The economy is populated by a continuum of infinitely lived agents of one of two types

i = {U,R}, present in (constant) respective proportions γ and 1 − γ. Both types of agents

have identical preferences and endowments. Preferences are given by:

E0

∞∑
t=0

βtu(cit). (29)

In this expression, E(·) is the expectation operator, and β is the discount factor. The

period utility function u(·) is a standard concave, twice-continuously differentiable function

that satisfies the Inada condition. The consumption basket c is an Armington-type CES

aggregator with elasticity of substitution 1/(η+1) between tradable goods cT and nontradable

goods cN , given by:

c =
[
ω
(
cT
)−η

+
(
cN
)−η]− 1

η
, η > 1, ω ∈ (0, 1).

In each period t, agents receive an endowment of tradable goods yTt and an endowment

of nontradable goods yNt . The vector of endowments y ≡
(
yT , yN

)
∈ Y ⊂ R2

++ follows a

first-order Markov process.

Agents have access to a single one period, non-state contingent bond denominated in

units of tradable goods that pays a fixed interest rate r, determined exogenously in the world

market. Normalizing the price of tradable goods to 1 and denoting the price of nontradable

goods by pN , the budget constraint is:

bit+1 + cTit + pNt c
N
it = bit(1 + r) + yTt + pNt y

N
t , (30)

where bit+1 denotes bond holdings that a type i agent chooses at the beginning of period t.

We assume that agents are subject to a credit constraint preventing them from borrowing
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more than a fraction κ of their current income:

bit+1 ≥ −κt
(
pNt y

N
t + yTt

)
. (31)

This constraint is the same as in the three period model, but κt is financial shock that hits

exogenously the borrowing capacity of agents. This shock is introduced to capture distur-

bances in financial markets that are exogenous to domestic fundamentals, i.e., variations of

domestic income. This shock follows a two-state Markov process with values given by κH

and κL.

Agents choose stochastic processes {cTit, cNit , bit+1}t≥0 to maximize the expected present

discounted value of utility (29) subject to sequences of budget constraints (30) and credit

constraints (31), taking bi0 and
{
pNt
}
t≥0

as given. This maximization problem yields the

following first-order conditions:

λit = uiT (t) (32)

pNt =

(
1− ω
ω

)(
cTit
cNit

)η+1

(33)

λit = β(1 + r)Etλit+1 + µit (34)

bit+1 + κt
(
pNt y

N
t + yTt

)
≥ 0, with equality if µit > 0, (35)

where λ is the non-negative multiplier associated with the budget constraint and µ is the

non-negative multiplier associated with the credit constraint. Condition (32) equates the

marginal utility of tradable consumption to the shadow value of current wealth. Condition

(33) equates the marginal rate of substitution between tradable and nontradable goods to

their relative price. Equation (34) is the Euler equation for bonds. When the credit constraint

is binding, there is a wedge between the current shadow value of wealth and the expected

value of reallocating wealth to the next period, given by the shadow price of relaxing the

credit constraint µit. Equation (35) is the complementary slackness condition.

Market clearing conditions are given by:

γcNUt + (1− γ)cNRt = yNt (36)
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γcTUt + (1− γ)cTRt = yTt + [γbUt + (1− γ)bRt](1 + r)− [γbUt+1 + (1− γ)bRt+1]. (37)

Combining equation (33) for i = {U,R} with the market clearing condition (36) yields

pNt =
1− ω
ω

(
γcTUt + (1− γ)cTRt

yNt

)η+1

,

from which it is apparent that the equilibrium price of nontradable goods pN depends posi-

tively on the aggregate consumption of tradable goods CT ≡ γcTU + (1− γ)cTR.

3.2 Recursive Competitive Equilibrium

We now consider the optimization problem of a representative agent in recursive form. The

aggregate state vector of the economy is X = {BU , BR, y
T , yN , κ}. The state variables for a

type i agent’s problem is the individual state bi and the aggregate states X. Agents need to

forecast the future price of nontradables. To this end, they need to forecast future aggregate

bond holdings. We denote by Γi(·) the forecast of aggregate bond holdings for the set of

type i agents for every current aggregate state X, i.e., B′i = Γi(X). Combining equilibrium

conditions (33), (36) and (37), the forecast price function for nontradable can be expressed

as

pN(X) =
1− ω
ω

(
yNt + [γBU + (1− γ)BR](1 + r)− [γΓU(X) + (1− γ)ΓR(X)]

yN

)η+1

. (38)

The problem of a type i agent can then be written as:

V (bi, X) = max
b′i,c

T
i ,c

N
i

u
(
c
(
cTi , c

N
i

))
+ βEV (b′i, X

′) (39)

subject to

b′i + pN(X)cNi + cTi = bi(1 + r) + pN(X)yN + yT

b′i ≥ −κ
(
pN(X)yN + yT

)
B′j = Γj(X) for j = {U,R}
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The solution to this problem yields decision rules for individual bond holdings b̂(bi, X),

tradable goods consumption ĉT (bi, X) and nontradable goods consumption ĉN(bi, X). The

decision rule for bond holdings induces actual laws of motion for aggregate bonds, given by

b̂(Bi, X). In a recursive rational expectations equilibrium, as defined below, these two laws

of motion must coincide.

Definition 1 (Recursive Competitive Equilibrium). A recursive competitive equilibrium is

defined by a pricing function pN(X), perceived laws of motions Γi(X) for i ∈ {U,R}, and

decision rules b̂(bi, X), ĉT (bi, X), ĉN(bi, X) with associated value function V (bi, X) such that:

1. Agents’ optimization:
{
b̂(bi, X), ĉT (bi, X), ĉN(bi, X)

}
and V (bi, X) solve the agent’s i

recursive optimization problem for i ∈ {U,R}, taking as given pN(X) and Γi(X) for

i = {U,R}.

2. Consistency: the perceived laws of motion for aggregate bonds are consistent with the

actual laws of motion: Γi(X) = b̂(Bi, X) for i = {U,R}.

3. Market clearing:

γĉN(BU , X) + (1− γ)ĉN(BR, X) = yN

and

γ
[
ΓU(X) + ĉT (BU , X)−BU(1 + r)

]
+(1−γ)

[
ΓR(X) + ĉT (BR, X)−BR(1 + r)

]
= yT .

3.3 Regulated Equilibrium

We now consider a constrained social planner who makes debt choices for a subset of agents.

We subject the planner to the same collateral constraint as private agents, deprive him of the

ability to commit to future policies, and let him control credit operations of R (regulated)

agents and rebate the proceeds of the transactions in a lump-sum fashion to these agents.

As opposed to atomistic agents, the planner internalizes the effect of borrowing decisions

on the price of nontradables. He also internalizes the effect of its borrowing decision for R

agents on U agents’ borrowing choices.

22



3.3.1 Regulated Agents Optimization Problem

Since the planner chooses R agents’ bond holdings, the optimization problem faced by pri-

vate agents reduces to choosing tradable and nontradable consumption, taking as given a

government transfer TRt, which corresponds to the resources added or subtracted by the

planner’s debt choices:

Problem 3.1 (Regulated agent’s problem in regulated equilibrium).

max
{cTRt,c

N
Rt}t≥0

E0

∞∑
t=0

βtu
(
c
(
cTRt, c

N
Rt

))
s.t. cTRt + pNt c

N
Rt = yTt + pNt y

N
t + TRt. (40)

This problem is static and its first-order condition is the intra-temporal optimality con-

dition (33) for i = R. This condition, together with the budget constraint (40), enters as an

implementability condition in the planner’s problem.

3.3.2 Unregulated Agents Optimization Problem

When the planner makes decision about R agents choices, the laws of motion used by U

agents to forecast aggregate bond positions do not coincide with the laws of motion used

in (and induced by) the recursive competitive equilibrium. We denote these laws of motion

by Bi(·). The price forecast function associated with these laws of motion is accordingly

obtained by replacing Γi(·) by Bi(·) in (38), and is denoted by PN(·).

Problem 3.2 (Unregulated agent’s problem in regulated equilibrium).

V (bU , X) = max
b′U ,c

T
U ,c

T
U

u
(
c
(
cTU , c

N
U

))
+ βEV (b′U , X

′)

subject to

b′U + PN(X)cNU + cTU = bU(1 + r) + PN(X)yN + yT (41)

b′U ≥ −κ
(
PN(X)yN + yT

)
B′i = Bi(X) for i = {U,R}
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Using sequential notation, the first-order conditions of this problem are given by the

conditions (32)-(35) for i = U . Conditions (32), (34) and (35) can be alternatively expressed

as two inequalities

uT
(
cTUt, c

N
Ut

)
≥ β(1 + r)EtuT

(
cTUt+1, c

N
Ut+1

)
(42)

bUt+1 ≥ −κt
(
pNt y

N
t + yTt

)
(43)

and an equality

[
bUt+1 + κt

(
pNt y

N
t + yTt

)] [
uT
(
cTUt, c

N
Ut

)
− β(1 + r)EtuT

(
cTUt+1, c

N
Ut+1

)]
= 0. (44)

The intra-temporal optimality condition (33) and the inter-temporal conditions (42)-(44), to-

gether with the sequential version of the budget constraint (41), will enter as implementabil-

ity constraints in the planner’s problem.

The constraints (42)-(44) are crucial constraints, because they embed the spillover effects

from the planner’s debt choices for R agents to the U agents’ choices. In particular, they

imply that the planner’s current borrowing choice for R agents influences U agents’ current

borrowing by affecting their future marginal utility. For instance, a more cautious borrowing

choice by the planner today softens the U agents’ credit constraint tomorrow, and, if the

latter binds, thereby encourages more borrowing by these agents today.

3.3.3 Social Planner’s Optimization Problem

Let BR(X) be the policy rule for bond holdings of future planners that the current planner

takes as given, and let BU(X), CTR(X), CTU (X), CNR (X), CNU (X) and PN(X) be the associated

recursive functions that return U agents’ bond holdings, consumption allocations and the

price of nontradables under this policy rule.

Problem 3.3 (Recursive representation of the planner’s problem in regulated equilibrium).

Given the policy rule of future planners BR(X) and the associated bond decision BU(X),

consumption allocations CTR(X), CTU (X), CNR (X), CNU (X) and nontradable price PN(X), the
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planner’s problem is characterized by the following Bellman equation:

V(X) = max
{cTi ,cNi ,b′i}i∈{U,R},pN

δγu
(
c
(
cTU , c

N
U

))
+ (1− γ)u

(
c
(
cTR, c

N
R

))
+ βEV(X ′) (45)

subject to

cTi + pNcNi + b′i = bi(1 + r) + yT + pNyN for i ∈ {U,R} (46)

b′i ≥ −κ
(
pNyN + yT

)
for i ∈ {U,R} (47)

cNi =
cTi

γcTU + (1− γ)cTR
yN for i ∈ {U,R} (48)

pN =
1− ω
ω

(
γcTU + (1− γ)cTR

yN

)η+1

(49)

uT
(
cTU , c

N
U

)
≥ β(1 + r)Ey′|yuT

(
CTU (X ′), CNU (X ′)

)
(50)[

b′U + κ
(
pNyN + yT

)]
×
[
uT
(
cTU , c

N
U

)
− β(1 + r)EuT

(
CTU (X ′), CNU (X ′)

)]
= 0 (51)

In the above problem, the planner chooses b′R(X) optimally to maximize a welfare crite-

rion subject to nine constraints. We allow the planner to assign different weights to the utility

of the two sets of agents. (46) represents the agents’ budget constraint, with respective mul-

tipliers γλU and (1− γ)λR, which states that the consumption plan must be consistent with

what agents choose optimally given their budget constraint and the planner’s transfer. (47)

represents the agents’ collateral constraints, with respective multipliers γµU and (1− γ)µR,

faced by the planner for the agents’ borrowing. (48) represents static implementability con-

straints, with respective multipliers γξU and (1 − γ)χR, stating that agents’ consumption

bundles must be consistent with their optimal intra-temporal choice between cT and cN , and

equilibrium on the nontradable goods market. (49) is a static implementability constraint,

with multiplier χ, stating that the nontradable price must be consistent with the optimal

intra-temporal choice of both types of agents and equilibrium on the nontradable goods

market. (50) and (51) are a set of dynamic implementability constraints, with respective

multiplier γν and γψ, stating that U agents’ bond choice must satisfy their inter-temporal

Euler equation. (51) indicates that among the collateral constraint (47) for U agents and

the Euler equation (50), at most one can hold with strict inequality.
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We now turn to a formal definition of a regulated equilibrium.

Definition 2 (Recursive Regulated Equilibrium). The recursive regulated equilibrium is

defined by the policy rule b′R(X) with associated bond decision b′U(X), consumption alloca-

tions cTR(X), cTU(X), cNR (X), cNU (X), nontradable price pN(X) and value function V(X), and

the conjectured functions characterizing the policy rule of future planners BR(X) and its

associated bond decision BU(X), consumption allocations CTR(X), CTU (X), CNR (X), CNU (X),

nontradable price PN(X) such that the following conditions hold:

1. Planner’s optimization: V(X), b′i(X), cTi (X), cNi (X) for i ∈ {U,R} and pN(X) solve

the Bellman equation defined in Problem 3.3 given Bi(X), CTi (X), CNi (X) for i ∈ {U,R}

and PN(X).

2. Time consistency: The conjectured policy rule and associated bond decision, consump-

tion allocations and pricing function that represent choices of future planners coincide

with the corresponding recursive functions that represent optimal plans of the current

regulator: Bi(X) = b′i(X), CTi (X) = cTi (X), CNi (X) = cNi (X) for i ∈ {U,R} and

PN(X) = pN(X).

Note that the requirements that 1. the consumption allocations are optimal for regulated

agents, and 2. the bond choice and consumption allocations are optimal for unregulated

agents, are redundant because they are embedded into the planner’s various implementability

constraints.

4 Quantitative Analysis

This section contains a preliminary quantitative analysis of the model. The model is solved

numerically using global non-linear methods.

4.1 Calibration

The calibration largely follows the baseline calibration of Bianchi (2011). The main features

of the calibration are the following. The model is calibrated to annual data from Argentina.

26



The coefficient of relative risk aversion is set to 2 and the international interest rate is set

to 4 percent, both standard values in DSGE models. The discount factor is set to β = 0.91,

and the share of tradable goods in consumption is set to ω = 0.32. The non-tradable

endowment is (temporarily) taken to be constant. The tradable endowment shock is taken

to be a first-order univariate autoregressive process. This process is estimated with the

HP-filtered component of tradable GDP from the World Development Indicators for the

1965-2007 period. The vector of shocks is discretized into a first-order Markov process, with

three points, using the quadrature-based procedure of Tauchen and Hussey (1991). The

intratemporal elasticity of substitution between tradable and nontradable 1/(η + 1), is set

to a value of 1.6 The process for κ is assumed to be independent from the process for

yTt . κt follows a regime-switching Markov process with regime values given by {κL, κH} and

transition matrix

P =

 PLL 1− PLL
1− PHH PHH

 .
The value of κL is set to 0.25, and the value of κH is set to 0.5. The continuation probability

PHH is set to PHH = 0.9 so as to produce a mean duration of the κH regime of 10 years.

The value of PLL is to PLL = 0.1 so as generate, given PHH , a long-run probability of the

κL regime of 10%. This parametrization of the κt process yields Sudden Stops events with

a frequency of around 5%. Sudden Stops are defined as events where the credit constraint

binds and where this leads to an increase in net capital outflows that exceeds one standard

deviation.

The relative weight of U agents in the planner’s welfare criterion is tentatively set to

δ = 1, corresponding to a utilitarian social planner. We solve the regulated equilibrium for

different values of γ between 0 and 1 in order to investigate the role of the size of the shadow

economy for the effectiveness, desirability and welfare implications of financial regulation.

6Standard values are around 0.8, but for these values we have experienced difficulties in having our Markov
Perfect Equilibrium converge.
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4.2 Borrowing Decisions

4.2.1 Zero measure of unregulated agents

Figure 4 plots the unregulated agents’ bond decision rule for a mean realization of the

tradable endowment shock and a low realization of the financial shock in the unregulated

decentralized equilibrium (DE), in the constrained efficient allocation (SP) and in the regu-

lated equilibrium when unregulated agents exist with zero measure (i.e. when γ = 0). This

is a useful case to consider, because it allows us to concentrate on the spillover effects from

the planner’s regulation of regulated agents to the borrowing decisions of unregulated, while

abstracting from the effect of the presence of unregulated agents on the planner’s behavior7.

In order to display decision rules in two dimensions, we focus on the points in the state space

where bR = bU .

The dark (red) solid line corresponds to the bond decision rule in the decentralized

equilibrium. In the absence of the collateral constraint, the bond decision rule would be

monotonically increasing in current bond holdings. The collateral constraint, however, gen-

erates V-shape policy function, as in (?). At the kink, the collateral constraint holds with

equality but it does not bind. To the right of the kink, agents are unconstrained and the

bond policy function is increasing in current bond holdings. To the left of the kink, agents

are constrained and bond holdings are decreasing in current bond holdings. This pattern

is due to the endogeneity of the borrowing limit. When the constraint is binding, a lower

level of current bond holdings induces a lower consumption level, which itself induces a lower

price of nontradable goods. This lower price of nontradables tightens the constraint, and

therefore requires a smaller amount of borrowing (or a larger bond position).

The light (grey) solid line corresponds to the bond decision rule in the constrained-

efficient allocations (i.e. hypothetical situation where planner controls borrowing choices of

all agents). This decision rule coincides in the region of the state space where the collateral

constraint binds for the planner, but differs in the region where the constraint is not binding

7When unregulated agents exist with zero measure, neither do they enter into the planner’s welfare
criterion and nor do they affect aggregates. Therefore, they do not influence the planner’s behavior. This
means that the bond policy for regulated agents in a partially regulated equilibrium coincides with its
counterpart in the fully regulated equilibrium.
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Figure 4: Bond decision rules of unregulated agents for mean yT realization and κL, in states
where bU = bR, for γ = 0.

as the social planner chooses to set aside an extra amount of precautionary savings above and

beyond the amount set aside by private agents. This occurs because the planner internalizes

the financial amplification mechanism that takes place when the constraint is binding.

The dashed (blue) line corresponds to the bond decision rule of unregulated agents in the

regulated equilibrium. The plot shows that unregulated agents respond to the regulation by

increasing their borrowing level relative to the decentralized equilibrium in the precise region

of the state space where the planner chooses to reduce regulated agents’ borrowing relative

to the decentralized equilibrium. In addition, the magnitude of this increase in borrowing is

relatively important, as indicated by the larger distance between the dashed and dark solid

lines than between the light solid and dark solid lines.

4.2.2 Positive measure of unregulated agents

When there is a non-zero measure of U agents, a two way interaction takes place between

the regulated and unregulated spheres in the regulated equilibrium. U agents respond to the
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safer environment by borrowing more, and the planner responds to this extra borrowing by

U agents by borrowing even less on the behalf of R agents. This is illustrated in Figures 5

and 6.

Figure 5 represents the unregulated agents’ bond decision rule for a mean realization of

the tradable endowment shock and a low realization of the financial shock in the unregu-

lated decentralized equilibrium (DE), in the constrained efficient allocation (SP) and in the

regulated equilibrium for various measures of unregulated agents. As in Figure 4, the DE

and SP lines represent the bond policy rules in the unregulated competitive equilibrium and

constrained efficient allocation, respectively. The other lines are the bond policy rules in the

regulated equilibrium. It is apparent that the spillover effects operate in the same direction

for values of γ ranging from 0 to 0.4, and that size of the spillover effects, as measured

by the distance between the decision rule in the competitive equilibrium and the regulated

equilibrium, decreases with size of the shadow economy γ.
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Figure 5: Bond decision rules of unregulated agents for mean yT realization and κL, in states
where bU = bR, for γ ≥ 0.

Figure 6 represents the regulated agents’ bond decision rule for a mean realization of

30



the tradable endowment shock and a low realization of the financial shock in the unregu-

lated competitive equilibrium (DE), in the constrained efficient allocation (SP) and in the

regulated equilibrium for various measures of unregulated agents. The DE and SP lines

represent the bond policy rules in the unregulated competitive equilibrium and constrained

efficient allocation, respectively. The other lines are the bond policy rules in the regulated

equilibrium. Here, the figure indicates that a larger size of the shadow economy (a larger

γ) generates an incentive for the planner to deviate more from the decentralized equilibrium

bond decision rules in the region of the state space where unregulated agents borrow more.

In other words, the larger the shadow economy, the more the planner decreases regulated

agents’ borrowing.
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Figure 6: Bond decision rules of regulated agents for mean yT realization and κL, in states
where bU = bR, for γ ≥ 0.
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4.3 Magnitude of Capital Controls

Figure 7 shows that the average tax on borrowing decreases markedly with γ for 0 ≤ γ ≤ 0.6.
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Figure 7: Average tax on borrowing for regulated agents.
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Figure 8: Examples of states where capital controls are decreasing in γ.
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Figure 9: Examples of states where capital controls are increasing in γ.
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4.4 Frequency and Severity of Crises

In this section, we show the extent to which leakages undermine the effectiveness of capital

controls. In particular, we study how the probability and severity of sudden stops vary with

the ability to enforce capital controls, as indexed by γ.

Figure 10 shows how the severity of financial crises change with the size of the leakages.

When about half the population can avoid the controls, the probability of a sudden stop

becomes very close to 5 percent, which is the probability of a sudden stop in the decentralized

equilibrium.

We construct a comparable event analysis to show how the severity of sudden stops

depend on γ in the following way. First, we simulate the decentralized equilibrium for a

large number of periods, identify all the sudden stop episodes and construct nine-year event

window events centered in the sudden stop. Second, we average the key variables across

the window period for the decentralized equilibrium. Third, we feed the sequence of shocks

and initial states —that characterize each sudden stop in the decentralized equilibrium—

to the planner’s problem for various values of γ. Finally, we average all the key variables

across the window period. This experiment allows us to do a counterfactual analysis that

highlights how differences in γ leads to different dynamics of sudden stops, despite having

all the economies the same sequence of shocks and the same initial states.

As figures 12 and ?? show, higher leakages make the economy prone to more severe

sudden stops, although the economy remains relatively more protected, even for values of γ

close to one-half.
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Figure 11: Event analysis.

36



t−5 t−4 t−3 t−2 t−1 t  t+1 t+2 t+3 t+4 t+5
−0.85

−0.8

−0.75

−0.7

−0.65
(a)Credit of (R) agents

C
re

di
t

 

 
DE
SP(00%)
SP(20%)
SP(40%)

t−5 t−4 t−3 t−2 t−1 t  t+1 t+2 t+3 t+4 t+5
−0.9

−0.85

−0.8

−0.75

−0.7

−0.65
(b)Credit of (U) agents

C
re

di
t

 

 
DE
SP(00%)
SP(20%)
SP(40%)

t−5 t−4 t−3 t−2 t−1 t  t+1 t+2 t+3 t+4 t+5
−0.85

−0.8

−0.75

−0.7

−0.65
(c)Aggregate credit

C
re

di
t

 

 
DE
SP(00%)
SP(20%)
SP(40%)

t−4 t−3 t−2 t−1 t  t+1 t+2 t+3 t+4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
(d)The optimal tax(%)

T
ax

(%
)

 

 
SP(00%)
SP(20%)
SP(40%)

Figure 12: Event analysis (cont.).
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4.5 Welfare Effects

We compute the welfare gains of financial regulation with a shadow economy as the propor-

tional increase in consumption for all possible future histories in the decentralized equilibrium

that would make households indifferent between remaining in the decentralized equilibrium

and being in the regulated equilibrium.
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Figure 13: Welfare gains from capital controls in the presence of leakages for regulated (blue)
and unregulated (red).

The welfare gains for the two types of agents are shown in Figure 13 for various sizes of

the shadow economy (i.e. values of γ). The dotted line represents the welfare gain for any

of the two types of agents in the constrained efficient allocation. The blue and red circles

represent the respective welfare gains of being in a regulated equilibrium for R agents and

U agents. Two main insights can be gained from this figure. First, and unsurprisingly, the

welfare gains of being in the regulated equilibrium for both types of agents decrease with

the size of the shadow economy for γ < 1. As the size of the shadow economy increases,

the planner controls a smaller share of the economy and becomes less effective at correcting
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the inefficiency caused by pecuniary externalities and the endogenous collateral constraint.

Further, as the size of the shadow economy increases, the planner’s intervention generates

increasing distortions, as the extra risk-taking behavior of the unregulated sector requires

an increasingly precautionary behavior of the regulated sector. Second, unregulated agents

benefit much more than regulated agents from the macroprudential intervention, and benefit

the most when the size of the shadow economy is small. The intuition for this result is

straightforward. The planner’s intervention on the borrowing of regulated agents entails

costs and benefits. The costs come in the form of lower consumption by R agents (due to

lower borrowing) when the economy is in a state where it is exposed to the risk of a future

crisis. The benefits comes in the form of a lower probability of occurrence of such crises.

Unlike regulated agents who pay the cost in exchange for enjoying the benefits, unregulated

agents enjoy the same benefits but without incurring any cost. The non-discriminatory

character of the planner’s financial crisis prevention policy makes it vulnerable to free-riding

by unregulated agents.

5 Conclusion

We conducted an analysis of optimal capital flow management when capital controls leak.

We characterize the optimal policy for different degrees of enforcement and show the extent

to which leakages undermine the effectiveness of capital flow management. Our analysis

indicates that while leakages create distortions that make capital controls undesirable, the

planner may find optimal to tighten regulation on the regulated sphere to achieve higher

stabilization effects. Overall, our findings indicate that there are important gains from

capital controls despite the presence of leakages.
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A Proofs

Lemma 1

We consider each region in turn.

cc In this case equilibrium is given by the system (12), (13), (14), (15) and (16). This

system is block recursive in a linear system in CT
1 (s) and pN1 (s). Solving this linear

system yields the following coefficients for CT
1 (s): αccy = (1 + κ)/

(
1− κ1−ω

ω

)
, αccU =

γ(1 + r)/
(
1− κ1−ω

ω

)
, αccR = (1− γ)(1 + r)/

(
1− κ1−ω

ω

)
and αccy = 0.

cu In this case equilibrium is given by the system (12) and (13) for i = U , (10) and (11) for

i = R, (14), (15) and (16). This system is block recursive in a linear system in CT
1 (s),

CT
2 (s), pN1 (s) and pN1 (s). Solving this linear system yields the following coefficients

for CT
1 (s): αcuy =

γ(1+κ)+ 1−γ
ω

1
1+β

1−γ
ω

+γ(1−κ 1−ω
ω )

, αcuU =
γ(1+r) 1

1+β (β+ 1−γ
ω

+γ)
1−γ
ω

+γ(1−κ 1−ω
ω )

, αcuR =
(1−γ)(1+r) 1

1+β ( 1−γ
ω

+γ)
1−γ
ω

+γ(1−κ 1−ω
ω )

,

αcuȳ =
1−γ
ω

β
1+β

1−γ
ω

+γ(1−κ 1−ω
ω )

.
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uc In this case R agents are constrained, and equilibrium is given by the system (12)

and (13) for i = R, (11) and (10) for i = U , (14), (15) and (16). This system is

block recursive in a linear system in CT
1 (s), CT

2 (s), pN1 (s) and pN1 (s). Solving this

linear system yields the following coefficients for CT
1 (s): αucy =

(1−γ)(1+κ)+γ 1
ω

1
1+β

γ
ω

+(1−γ)(1−κ 1−ω
ω )

, αucU =

γ(1+r) 1
1+β ( γω+1−γ)

γ
ω

+(1−γ)(1−κ 1−ω
ω )

, αucR =
(1−γ)(1+r) 1

1+β (β+ γ
ω

+1−γ)
γ
ω

+(1−γ)(1−κ 1−ω
ω )

and αucȳ =
γ 1
ω

β
1+β

γ
ω

+(1−γ)(1−κ 1−ω
ω )

.

uu In this case equilibrium is given by the system (10), (11), (14), (15) and (16). This

system is block recursive in a linear system in CT
1 (s) and CT

2 (s). Solving this linear

system yields the following coefficients for CT
1 (s): αuuy = 1/(1+β), αuuU = γ(1+r)/(1+

β), αuuR = (1− γ)(1 + r)/(1 + β) and αuuy = β/(1 + β).

Lemma 2

The proof of part 1. simply follows from an inspection of the expressions for the coefficients

(see proof of Lemma 1 above), noting that Assumption 2 implies 0 < 1− κ1−ω
ω

< 1.

The proof of part 2. follows directly from the observations that (1) αuuy < 1 < αccy ; (2)

for γ = 0, αccy = αucy and αcuy = αuuy ; (3) for γ = 1, αccy = αcuy and αucy = αuuy ; (4) ∂αcuy /∂γ > 0

and ∂αucy /∂γ < 0; and (5) for γ = 0.5, αcuy = αucy .

For part 3. we observe that if γ = 0, then αuuU = αcuU = αucU = αccU = 0, and that if

γ > 0 assuming that αuuU ≥ αcuU , αuuU ≥ αucU , αcuU ≥ αccU and αucU ≥ αccU individually lead to

contradictions.

Similarly, for part 4. we observe that if γ = 1, then αuuR = αcuR = αucR = αccR = 0, and that

if γ < 1 assuming that αuuR ≥ αcuR , αuuR ≥ αucR , αcuR ≥ αccR and αucR ≥ αccR individually leads to

contradictions.

Lemma 3

Let us define the thresholds ax ≡ min(0, ãx),

ãx ≡ −ω
1− κ1−ω

ω

θ
max (BR1, BU1)− (1− ω) (1 + r) [γBU1 + (1− γ)BR1] + β

1− κ1−ω
ω

θ
ȳT ,
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and

bx ≡ −
1

θ
min (BR1, BU1)−

1−ω
ω
κ (1 + r)

θ
[γBU1 + (1− γ)BR1] +

β
(
1− 1−ω

ω
κ
)

θ
ȳT ,

where

θ ≡ (1 + κ) β + κ
1

ω
.

It can be easily verified that

1. bunci2 (Bi1; yT1 (s), BU1, BR1, cc) < bconi2 (Bi1; yT1 (s), BU1, BR1, cc) for i = U,R is equivalent

yT1 (s) < ax,

2. bunci2 (Bi1; yT1 (s), BU1, BR1, uu) ≥ bconi2 (Bi1; yT1 (s), BU1, BR1, uu) for i = U,R is equivalent

to yT1 (s) ≥ bx,

3. buncU2 (BU1; yT1 (s), BU1, BR1, cu) < bconU2 (BU1; yT1 (s), BU1, BR1, cu) and buncR2 (BR1; yT1 (s), BU1, BR1, cu) ≥

bconR2 (BR1; yT1 (s), BU1, BR1, cu) is equivalent to ax ≤ yT1 (s) < bx iif BU1 < BR1, and

4. buncU2 (BU1; yT1 (s), BU1, BR1, uc) ≥ bconU2 (BU1; yT1 (s), BU1, BR1, uc) and buncR2 (BR1; yT1 (s), BU1, BR1, uc) <

bconR2 (BR1; yT1 (s), BU1, BR1, uc) is equivalent to ax ≤ yT1 (s) < bx iif BU1 > BR1.

Lemma 4

The proof simply follows from the fact that ax and bx are non-increasing in BU1 and BR1

(see expressions in proof of Lemma 3).

Lemma 5

Existence follows from standard arguments. For uniqueness, note that the private Euler

equation (21) is given by g(bDE1 ) = 0 where

g(b) ≡ 1−
∫ ax

y

ω

αccy y
T
1 (s) + (αccU + αccU )b

dF (yT1 (s))−
∫ ∞
ax

ω

αuuy y
T
1 (s) + (αuuU + αuuU )b+ αuuȳ ȳT

dF (yT1 (s))

= 1−
∫ ax

y

ω
(
1− κ1−ω

ω

)
(1 + κ)yT1 (s) + (1 + r)b

dF (yT1 (s))−
∫ ∞
ax

ω(1 + β)

yT1 (s) + (1 + r)b+ βȳT
dF (yT1 (s))
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g(b) is continuous and satisfies g′(b) > 0 for the b range over which consumption is positive

(where the existing equilibrium lies). It follows that there exists a single bDE1 for which

g(bDE1 ) = 0.

Proposition 1

Let us consider first the best response of U agents. Existence again follows from standard

arguments. For uniqueness and decreasingness, we note that we can write hU as

hU(bU1, bR1) = 1−
∫ ax

y

ω

cTU1

dF (yT1 (s))−
∫ bx

ax

ω

cTU1

dF (yT1 (s))−
∫ ∞
bx

ω

cTU1

dF (yT1 (s))

where the arguments of cTU1, ax and bx are omitted for space reasons. According to the

implicit function theorem we have dbU1

dbR1
= −∂hU/∂bR1

∂hU/∂bU1
, with

∂hU
∂bR1

=

∫ ax

y

ω

(cTU1)
2

∂cTU1

∂bR1

dF (yT1 (s)) +

∫ bx

ax

ω

(cTU1)
2

∂cTU1

∂bR1

dF (yT1 (s)) +

∫ ∞
bx

ω

(cTU1)
2

∂cTU1

∂bR1

dF (yT1 (s))

∂hU
∂bU1

=

∫ ax

y

ω

(cTU1)
2

∂cTU1

∂bU1

dF (yT1 (s)) +

∫ bx

ax

ω

(cTU1)
2

∂cTU1

∂bU1

dF (yT1 (s)) +

∫ ∞
bx

ω

(cTU1)
2

∂cTU1

∂bU1

dF (yT1 (s))

where we used the fact that terms containing derivatives of ax and bx drop out due to the

continuity of cTU1 across regions.8 The derivatives in the various regions are given by

cc :
∂cTU1

∂bR1

=
ω(1 + r)(1 + κ)1−ω

ω
(1− γ)

1− κ1−ω
ω

;
∂cTU1

∂bR1

= ω(1 + r)

[
1 +

(1 + κ)1−ω
ω
γ

1− κ1−ω
ω

]
.

cu :
∂cTU1

∂bR1

=
ω(1 + r)(1 + κ)1−ω

ω
(1− γ)

(
1−γ
ω

+ γ
)

(1 + β)
[

1−γ
ω

+ γ
(
1− κ1−ω

ω

)] ;

∂cTU1

∂bU1

= ω(1 + r)

[
1 +

(1 + κ)1−ω
ω
γ
(
β + 1−γ

ω
+ γ
)

(1 + β)
[

1−γ
ω

+ γ
(
1− κ1−ω

ω

)]]

uc :
∂cTU1

∂bR1

=
ω(1 + r)1−ω

ω
(1− γ)

1 + β
;

∂cTU1

∂bU1

=
ω(1 + r)

[
1 + 1−ω

ω
γ
]

1 + β

uu :
∂cTU1

∂bR1

=
ω(1 + r)1−ω

ω
(1− γ)

(1 + β)
;

∂cTU1

∂bU1

=
ω(1 + r)

[
1 + 1−ω

ω
γ
]

(1 + β)

8Note that if bU1 < bR1 the relevant intermediate region between ax and bx is x = cu, while if bU1 > bR1

the relevant region is x = uc. If bU1 = bR1 then ax = bx so this intermediate region drops out.
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Therefore, in every region the term
∂cTU1

∂bR1
is non-negative (strictly positive if and only if γ < 1)

and the term
∂cTU1

∂bU1
is strictly positive. It follows that for a given bR, ∂hU/∂bU1 > 0 in the

range of bU for which cTU1 is always positive. The best response of U agents to bR is therefore

unique, and can be written as bU = φU(bR). Further, in the range of bU and bR for which

cTU1 is always positive, we have ∂hU/∂bR1 ≥ 0, with > if and only if γ < 1. It follows that

φ′U(bR) ≤ 0, with < if and only if γ < 1.

For the best response of R agents, the proof is analogous and involves the derivatives

of cTR1 in the four regions. The best response of R agents to bU is unique and decreasing,

strictly if and only if γ > 0.

Proposition 2

The proof relies on the relationship between the slopes φ′U(·) and 1/φ′R(·; τ) at τ = 0 and on

the sign of the partial derivative ∂φ′R(bU ; ·)/∂τ .

The slopes are given by φ′U(·) = −∂hU/∂bR1

∂hU/∂bU1
and φ′R(·; τ) = −∂hR/∂bU1

∂hR/∂bR1
. At τ = 0, b∗U1 =

b∗R1 = bDE1 , and therefore ax = bx and cTU1 = cTR1 = CT
1 in any date 1 state. Defining

ηcc =
∫ ax
y

1

(CT1 )
2dF

(
yT1 (s)

)
and ηuu =

∫∞
ax

1

(CT1 )
2dF

(
yT1 (s)

)
, the slopes are given by

φ′U(bDE1 ) = −
ηcc(1− γ)

(1+κ) 1−ω
ω

1−κ 1−ω
ω

+ ηuu(1− γ) 1
1+β

1−ω
ω

ηcc

[
1 + γ

(1+κ) 1−ω
ω

1−κ 1−ω
ω

]
+ ηuu

1
1+β

[
1 + γ 1−ω

ω

] (52)

and

1/φ′U(bDE1 ; 0) = −
ηcc

[
1 + (1− γ)

(1+κ) 1−ω
ω

1−κ 1−ω
ω

]
+ ηuu

1
1+β

[
1 + (1− γ)1−ω

ω

]
ηccγ

(1+κ) 1−ω
ω

1−κ 1−ω
ω

+ ηuuγ
1

1+β
1−ω
ω

(53)

For any value of γ, the numerator in (52) is smaller than the one in (53), and the denominator

in (52) is larger than the one in (53). It follows that |φ′U(bDE1 )| < |1/φ′U(bDE1 ; 0)| and therefore

φ′U(bDE1 ) > 1/φ′U(bDE1 ; 0).

The partial derivative ∂φ′R(bU ; )/∂τ is given by

∂φ′R(bU ; ·)
∂τ

= − ∂hR/∂τ

∂hR/∂bR
= −−1/(1 + τ)2

∂hR/∂bR
> 0
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since ∂hR/∂bR > 0.

In the (bU1, bR1) space, the curve φR(bU ; τ) crosses the curve φU(bR) from above at

(bU1, bR1) = (bDE1 , bDE1 ), and it shifts to the right when τ rises. Hence, near (bDE1 , bDE1 ),

a rise in τ results in a downward movement of (b∗U1, b
∗
R1) along the downward sloping φU(bR)

curve. It follows that when τ is small, b∗U1 is decreasing and b∗R1 is increasing in τ .

Proposition 3

The proof of the “if” part is by construction. Assume that the tax is zero. τ = 0 implies

that (bU1, bR1) = (bDE1 , bDE1 ), which implies symmetric allocations in all states of the world

at date 1 and 2: cTUt = cTRt and cNUt = cNRt for t = 1, 2. The optimal tax expression (28) then

implies

τ =
βE0

[(
µR1 + γ

1−γµU1

)
κȳN

dpN1
dbR1

]
E0

[
ω
cTR1

] = 0

since µR1 = µU1 = 0 in all states of the world. τ = 0 is therefore indeed optimal.

The proof of the “only if” part is by contradiction. Assume that the tax is zero and

that credit constraint binds, i.e. µR1 > 0 and/or µU1 > 0, in some states of the world in

the decentralized equilibrium. τ = 0 implies that (bU1, bR1) = (bDE1 , bDE1 ), which induces

symmetric allocations in all states of the world at date 1 and 2: cTUt = cTRt and cNUt = cNRt for

t = 1, 2. The optimal tax expression (28) then implies

τ =
βE0

[(
µR1 + γ

1−γµU1

)
κȳN

dpN1
dbR1

]
E0

[
ω
cTR1

] (54)

Evaluated at (bU1, bR1) = (bDE1 , bDE1 ), the derivative
dpN1
dbR1
≡ ∂pN1

∂bR1
+

∂pN1
∂bU1

∂bU1

∂bR1
is given by

dpN1
dbR1

=
1− ω
ω

[
(1− γ)(1 + r)

1− κ1−ω
ω

+
γ(1 + r)

1− κ1−ω
ω

φ′U(bDE1 )

]

=
1− ω
ω

(1− γ)(1 + r)

1− κ1−ω
ω

 ηcc + ηuu
1

1+β

ηcc

[
1 + γ

(1+κ) 1−ω
ω

1−κ 1−ω
ω

]
+ ηuu

1
1+β

[
1 + γ 1−ω

ω

]
 > 0
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in region cc and by

dpN1
dbR1

=
1− ω
ω

[
(1− γ)(1 + r)

1 + β
+
γ(1 + r)

1 + β
φ′U(bDE1 )

]

=
1− ω
ω

(1− γ)(1 + r)

1 + β

 ηcc + ηuu
1

1+β

ηcc

[
1 + γ

(1+κ) 1−ω
ω

1−κ 1−ω
ω

]
+ ηuu

1
1+β

[
1 + γ 1−ω

ω

]
 > 0

in region uu. Since for (bU1, bR1) = (bDE1 , bDE1 ), the only two relevant regions are cc and uu

(because ax = bx), (54) implies τ > 0, a contradiction.

B Equivalence between planning problems

Consider the following problem:

Problem B.1 (Planner’s problem with tax instrument).

max
{cTi0,bi1,cTi1(s),cTi2(s),cNi1(s),cNi2(s),bi2(s)}i∈{U,R},τ,T,pN1 ,pN2

γUU + (1− γ)UR (55)

subject to

1 = β(1 + r)(1 + τ)E0

[
ω

cTR1(s)

]
(56)

cTR1(s) + pN1 (s)cNR1(s) + bR2(s) = (1 + r)(1 + τ)bR1 + yT1 (s) + pN1 (s)ȳN + T (57)

T = −τbR1 (58)

and (1), (2), (4), (6), (8) and (9) for i = U,R, (7) for i = U , and (14).

We observe that after combining (58) with (57), the tax only appears in the private Euler

equation (56). The allocations and prices that solve Problem B.1 are therefore identical to

the ones that solve Problem 2.1 where the planner chooses allocations and prices directly

subject to implementability constraints.

47


	Introduction
	A Three-Period Model
	Economic Environment
	Date 1 continuation equilibrium
	Date 0 decentralized equilibrium
	Regulated Equilibria
	Exogenous Capital Controls
	Optimal Capital Controls

	Insights from Three Period Model

	Infinite horizon model
	Economic Environment
	Recursive Competitive Equilibrium
	Regulated Equilibrium
	Regulated Agents Optimization Problem
	Unregulated Agents Optimization Problem
	Social Planner's Optimization Problem


	Quantitative Analysis
	Calibration
	Borrowing Decisions
	Zero measure of unregulated agents
	Positive measure of unregulated agents

	Magnitude of Capital Controls
	Frequency and Severity of Crises
	Welfare Effects

	Conclusion
	Proofs
	Equivalence between planning problems

