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The Substitution Elasticity, Factor Shares, Long-Run Growth, And 
The Low-Frequency Panel Model  

 
Abstract 

 
The value of the elasticity of substitution between labor and capital (σ) is a “crucial” assumption 
in the study of factor incomes (e.g., Piketty (2014a), Piketty and Zucman (forthcoming), 
Karabarbounis and Neiman (2014)) and long-run growth (Solow, 1956).  This paper begins by 
examining the role of   in the analyses of these two issues.  It then develops and implements a 
new strategy for estimating this crucial parameter by combining a low-pass filter with panel data 
techniques to identify the low-frequency/long-run relations appropriate to production function 
estimation.   

 
Our low-frequency/long-run approach is in the spirit of Friedman's permanent income theory of 
consumption and Eisner's related permanent income theory of investment.  While their 
estimation strategies and ours are similar in relying on permanent (long-run) components, we 
identify these unobservable components with a low-pass filter.  Using spectral analysis, we 
assess the extent to which our choices of the critical periodicity and window defining the low-
pass filter are successful in emphasizing long-run variation.   
 
The empirical results are based on the comprehensive panel industry dataset constructed by Dale 
Jorgenson and his research associates. Our preferred estimate of   is 0.40.  This result is robust 
to variations in the two spectral parameters that define the low-pass filter, instrumental and split-
sample estimates, and disaggregation by industry.  Moreover, we document that standard 
estimation methods, which do not filter-out transitory variation, generate downwardly biased 
estimates.  As medium and high frequency variation is introduced into the model variables,   
declines by over 40% relative to the benchmark value.  Despite correcting for this bias, our 
preferred estimate of   is less than one, and we find no support for the Cobb-Douglas 
assumption.   

 
 
JEL Nos.:  E22, E25, O40, C23 
 
 
Keywords:  Substitution elasticity, labor income share, long-run growth, low-pass filter, 
production function parameters. 
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The Substitution Elasticity, Factor Shares, Long-Run Growth, And 
The Low-Frequency Panel Model  

 

A "crucial" assumption is one on which the conclusions do 
depend sensitively, and it is important that crucial assumptions be 
reasonably realistic.   

        Solow (1956, p. 65) 
 
The crucial question goes to what is technically referred to as the elasticity of 
substitution.  With 1 percent more capital and the same amount of everything 
else, does the return to a unit of capital relative to a unit of labor decline by more 

 or less than 1 percent? 
      Summers (2014) 

 
  The relevant question [regarding secular movements in income shares] is whether  
  the elasticity of substitution between labor and capital is greater or less than one.    
 
        Piketty (2014a, p. 217) 

 

I.  Introduction 

 The elasticity of substitution between capital and labor,  , is a “crucial” parameter.  It 

affects the qualitative and quantitative answers to a host of economic questions.  This paper 

examines the role of  in analyzing factor income shares and long-run economic growth.  It then 

develops and implements a new strategy for estimating this crucial parameter by combining a 

low-pass filter with panel data techniques to identify the long-run relations appropriate to 

production function estimation.   

Section II discusses several economic issues that depend crucially on the value of  .  

The labor share of income has declined markedly over the past two decades.  Whether decreases 

in capital taxation or relative prices or increases in capital/income ratios have contributed to this 

secular movement depends crucially on   being greater than one.  A variety of issues in growth 

theory -- the possibility of perpetual growth or decline, the level of steady-state income per 

capita, the speed of convergence, the plausibility of the Solow growth model, and the role of 

technical change -- depend on this elasticity.  Our discussion highlights the relations among these 

important economic issues and the precise value of  . 
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Section III develops a strategy for estimating   that applies a low-pass filter to panel 

data.  Production function parameters are recovered by focusing on the long-run relations among 

arguments appearing in the first-order condition for capital.  Our approach is in the spirit of 

Friedman's (1957) permanent income theory of consumption and Eisner's (1967) related 

permanent income theory of investment.  Friedman observed that the fundamental relation 

between consumption and income is not stated in terms of the raw observed values of income, 

but rather in terms of its permanent component.  Eisner also emphasized the distinction between 

the transitory and permanent components of variables affecting investment demand.  He isolated 

the permanent component by grouping firms by industry and then estimating with the group 

means.  Our approach also relies on permanent components, but they are extracted with a low-

pass filter (based on the band-pass filter of Baxter and King, 1999) that affords a more general 

way for identifying these unobservable variables and a more transparent connection to the 

economic concept of the long-run.       

 Section IV examines the theoretical properties of the spectral representation of the low-

pass filter used in this study.  This filter is defined in terms of two parameters  --  the critical 

frequency ( # ) defining the long-run and a window (q) for the number of lags and leads used to 

approximate the ideal low-pass filter.  We vary these two parameters to assess the sensitivity of 

the allocation of variance across low, middle, and high frequencies and verify that the 

transformed data reflect long-run variation that will be useful in estimating production function 

parameters.     

 Sections V and VI contain empirical results based on the comprehensive panel of U.S. 

industry dataset constructed by Dale Jorgenson and his research associates.  Our econometric 

model relates the growth rate in the long-run capital/output ratio to the growth rate in the long-

run relative price of capital (conditioned on a set of fixed time effects).  The benchmark estimate 

of  is 0.406 for a definition of the long-run in terms of a periodicity (inversely related to 

frequency and defined as the length of time required for a series to repeat a complete cycle) of 

eight years or greater and a window of three years.  This result is robust to variations in the 

window.  Moreover, there is great value in using the low-pass filter to extract permanent 

components.  As the periodicity declines from eight to the minimum value of two years, the 

estimated   declines by over 40% owing to the distorting effects of transitory variation.  At this 

minimum value, the low-pass filter is neutral, the raw data are not transformed, low-frequency 
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variation is not emphasized, and estimates of   are biased downward by standard estimation 

methods.   

 Section VI documents that the benchmark result is robust to an endogenous regressor, 

split-samples, alternative first-order conditions, and heterogeneous  ’s across industries.    

 Section VII summarizes and concludes.   

  

II.  A Crucial Assumption: The Value of 

  Several economic issues depend crucially on the value of  .  This section discusses the 

role played by   in understanding the decline in the labor share of income and the nature of 

long-run economic growth.   

 

II.A.  Factor Incomes 

 The elasticity of substitution between capital and labor () was introduced by Hicks 

(1932) to analyze changes in the income shares of capital and labor.1  His key insight was that 

the impact of the capital/labor ratio on the distribution of income (given output) could be 

completely characterized by the curvature of the isoquant (Blackorby and Russell, 1989, p. 882).  

Recent important work by Karabarbounis, and Neiman (2014) and by Piketty (2014a) and 

Piketty and Zucman (forthcoming) have linked the decline in the labor share of income over the 

past 20 years to a secular decrease in the relative price of investment and a secular increase in the 

capital/income ratio, respectively.  For either explanation, it is crucial (as the authors note) that 

the elasticity of substitution is greater than one.  If this elasticity is unity, relative prices and 

capital/income ratios have no effect on the labor share.  If the elasticity is less than one, then 

variables highlighted in their analyses should have contributed to a counterfactual increase in the 

labor share.  The value of is of first-order importance for analyzing the secular movement of 

the income distribution.   

The returns to factors of production in an international context also depend on   Jones 

and Ruffin (2008) consider a model of international trade where some factors of production are 

                                           
1 This elasticity was independently introduced by Robinson (1933, p. 256).  Their formulations differed and, in the 
second edition of his “Theory of Wages” published in 1963, Hicks (Section III, “Notes on the Elasticity of 
Substitution”, sub-section 1) showed that the two formulations are equivalent.  Robinson’s definition has proven the 
more convenient and durable.  
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sector-specific.  They show that   as well as the factor-intensity ranking between sectors 

emphasized in the Stolper-Samuelson model, determines whether changes in the terms of trade, 

perhaps due to trade liberalization, raises or lowers the real wage rate.2  Liberalization is also 

studied by Chari, Henry, and Sasson (2012), though, in their case, financial aspects are 

examined.  They find that that, three years after a stock market in an emerging economy is 

opened to foreign capital, the average annual growth rate in manufacturing real wages increases 

by a factor of three.  As shown in their equation (9), the value of  along with the growth rate 

in and income share of capital, is key to understanding the empirical regularity.   

 

II.B.  Long-Run Growth 

B.1. From The Harrod-Domar Knife-Edge to the Solow Interval 

 The neoclassical revolution in growth theory places the burden of equilibrium on the 

properties of the production function.  When   equals unity, the capital/labor ratio ( k K / L ) 

converges to a positive, finite value because, as k moves towards its limiting values of 0 (or ∞), 

the marginal product of capital and the average product of capital both tend to ∞ (or 0).  With the 

Inada conditions satisfied, capital accumulation, as determined by Solow’s fundamental equation 

of motion for k, converges to zero.  

However, when  departs from unity, the Inada conditions may fail, and perpetual 

decline or perpetual growth may occur.  Values of   less than one and less than a critical value  

( PD ) that depends on other parameters of the Solow growth model results in perpetual decline 

in k and output.  This unbalanced growth path reflects a failure of an Inada condition and the 

convergence of the marginal and average products of capital to a positive finite limit such that no 

root exists to satisfy the equation of motion for k.   Details are presented in Appendix A.  

Intuitively, when  is low, capital and labor are “dissimilar” productive factors (Brown, 1968, p. 

50).  With limited substitution possibilities, reductions in capital have little positive impact on 

the marginal productivity of capital.  For a value of PD 1    , k declines perpetually.  

Conversely, values of σ greater than one and greater than a critical value ( PG ) lead to perpetual 

growth, as capital and labor are very “similar” and the marginal product of capital declines very 

                                           
2 The value of   also serves to reconcile their theoretical results with the simulations by Melvin and Waschik 
(2001) showing that trade uniformly lowers real wages.  
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slowly.3  Balanced growth occurs for values of   between PG  and PD ; in this no growth 

case, capital accumulation converges to zero and k to a positive, finite value.   The Solow growth 

model replaces the Harrod-Domar knife-edge with the “Solow Interval,” the latter defined by 

these two critical  ’s.    

 In their textbook on economic growth, Burmeister and Dobell (1970, p. 34) refer to 

situations where 1   as "troublesome cases" because they do not yield balanced growth paths.  

It is far from clear why the requirements for balanced growth paths in a particular theoretical 

model should dictate the shape of the production function, especially when 1   is a sufficient 

but not necessary condition for a balanced growth path.  To treat   as a free parameter 

determined by the theory runs dangerously close to the fallacy of affirming the consequent.  An 

alternative approach -- represented in the models developed by Acemoglu (2003, 2009), Antrás 

(2004), Eicher and Turnovsky (1999), and Turnovsky and Smith (2006) -- interprets cases where 

1  as quite interesting, suggesting needed modifications to the standard growth model and 

highlighting the key role played by  .   

 

B.2  Per Capita Income  

 The value of  is linked to per capita income and growth.  Klump and de La Grandville 

(2000) show that, for two countries with identical initial conditions, the country with a higher 

value of   experiences higher per capita income at any stage of development, including the 

steady-state (if it exists).4   De La Grandville (1989, 2009) argues theoretically that a relative 

price change (e.g., a decrease in the price of capital) leads to relatively more output the higher 

the value of  .  (He also identifies a second channel depending on   -- a higher substitution 

elasticity permits a greater flow of resources between sectors with different factor intensities.)  

Yuhn (1991) and Mallick (2012) find empirical support of this hypothesis for South Korea and 

across 90 countries, respectively.  

 

                                           
3 Solow (1956, pp. 77-78), Pitchford (1960), and Akerlof and Nordhaus (1967) were the first to note the possibility 
of perpetual growth.  See the papers cited in fn.1 of Appendix A for more recent statements.  
 
4 Miyagiwa and Papageorgiou (2003) demonstrate, however, that a monotonic relationship between   and growth 
does not exist in the Diamond overlapping-generations model.  
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B.3.  Speed of Convergence 

 The speed of convergence to the steady-state depends on   through capital 

accumulation.  In a calibrated neoclassical growth model, Turnovsky (2002, pp. 1776-1777) 

finds that the rate of convergence is sensitive to and decreasing in .  For a given productivity 

shock, the speed of convergence is 45.3% (per year) when   equals 0.1, but drops markedly to 

12.2% when   equals 0.8.  The speed of convergence falls further to 8.9%, 6.4%, and 3.5% as 

  increases to 1.0, 1.2, and 1.5, respectively.5  Klump and Preissler (2000, equation 14) show 

that the speed of convergence is sensitive to the relation between the initial and steady-state 

capital intensities.   

 

B.4.  Other Issues in Growth and Development 

 The value of   can play an important role in assessing the plausibility of the neoclassical 

growth model.  King and Rebelo (1993, Section IV) show that, in a Cass-Koopmans model with 

endogenous saving, the rate of return on capital (R) is sensitive to  and can be implausibly high 

when some part of growth is due to transitional dynamics.  When transitional dynamics are 

important, R increases dramatically with .  Mankiw (1995, p. 287, equation (13)) also 

investigates the relation between   and R in terms of the following formula, 

         K KR y Q 1/ *((1 ) / )      ,     (1) 

where K  is capital's factor share, y  is per capita income, and Q represents other factors 

affecting the return to capital.  Equation (1) links rates of return to income and can be used to 

evaluate rate of return differentials between poor and rich countries.  For example, if   = 4.0, 

the differential is only about 3 percent.6  But if σ falls to 1.0 or 0.5, the differential becomes 

implausibly large, increasing to 100 and 10,000 respectively, clearly raising concerns about the 

standard growth model.  

                                           
5 These figures are based on an intratemporal elasticity of substitution between consumption and leisure of 1.0 and 
an intertemporal elasticity of substitution for the composite consumption good of 0.4.  The pattern of results is 
robust to variations in the latter parameter.   
 
6 These computations are based on K = 0.33  and an income level in rich countries that is 10 times larger than in 

poor countries.  
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 Purported differences in measured rates of return to capital across countries – the Lucas 

Paradox (Lucas, 1990) -- have posed a persistent puzzle.  Caselli and Feyrer (2007) introduce a 

new method for calculating rates of return and show that the cross-country dispersion in rates of 

return is eliminated.  While these estimates are independent of  , their counterfactual exercises 

depend on production function characteristics.  A value of 1   reinforces the paper's general 

conclusions about the modest welfare benefits of reallocating the world's capital stock and the 

likely ineffectiveness of foreign aid to poorer countries.    

 The role played by technical change in growth models is sensitive to  .  If 1  , factor-

augmenting technical change becomes indistinguishable from neutral technical change.  If 1   

( 1 ) factor-augmenting technical change lowers (raises) the intensity of the usage of that factor 

(see equation (3) below).  Acemoglu (2003) examines the relations among technical change, the 

value of  , and balanced growth.  He develops a model in which technical change is both labor-

augmenting and capital-augmenting and shows that, along the balanced growth path, all technical 

change will be labor-augmenting.  If 1  , technical change stabilizes income shares, and the 

balanced growth path is stable and unique.  In his review of developmental accounting (which 

assesses what percentage of cross-country differences in per capita income are attributable to 

productive factors and technical efficiency), Caselli (2005, Section 7) shows that the relative 

roles are very sensitive to  .  When   is near 0.5, variation in productive factors accounts for 

almost 100% of the variation in per capita income across countries, and technical efficiency 

plays no role.  The percentage decreases in   and drops to 40% for 1.0   (the Cobb-Douglas 

case) and 25% for 1.5  .  Caselli (2005, p. 737) concludes “that the Cobb-Douglas assumption 

is a very sensitive one for development accounting.”   

 

III.  Estimation Strategy  

III.A.  The First-Order Condition  

 Our approach focuses on long-run production relations and low-frequency variation in 

model variables.  The long-run is defined by the vector of output and inputs consistent with 

profit maximization when all inputs can be adjusted without incurring costly frictions.  This 

focus allows us to ignore short-run adjustment issues that are difficult to model and may bias 

estimates if misspecified.  Production for industry i at time t is characterized by the following 
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Constant Elasticity of Substitution (CES) technology that depends on long-run values denoted by 

an *, 

     * * * K L
i,t i,t i,t i,t i,t i,tY Y[K ,L ,A ,A ,A ]         (2) 

       [ /( 1)]K * [( 1)/ ] L * [( 1)/ ]
i,t i,t i,t i,t i,tA (A K ) (1 )(A L )

        , 

where *
i,tY  is long-run real output, *

i,tK  is the long-run real capital stock, *
i,tL  is the long-run 

level of labor input,   is the capital distribution parameter, and   is the elasticity of substitution 

between labor and capital.  Technical progress is both neutral ( i,tA ), and factor-augmenting for 

capital and labor ( K L
i,t i,tA and A ,  respectively).  Equation (2) is homogeneous of degree one in 

*
i,tK  and *

i,tL and has three desirable features for the purposes of this study.  First, this 

production function depends on only two parameters --   the distribution of factor returns and, 

most importantly,   representing substitution possibilities between the factors of production.  

Second, the CES function is strongly separable and thus can include many additional factors of 

production (e.g., intangible capital) without affecting the estimating equation derived below.  

This feature gives the CES specification an important advantage relative to other production 

functions that allow for a more general pattern of substitution possibilities (e.g., the translog, 

minflex-Laurent).  Third, the Cobb-Douglas production function is a special case of the CES; as 

1 and factor-augmenting technical change disappears ( K L
i,t i,tA 1 A ,  ), equation (2) 

becomes  * * [ ] * [1 ]
i,t i,t i,t i,tY A K L  . 

 Constrained by the CES production function (2), a profit-maximizing firm chooses 

capital so that its marginal product equals the relative price of capital (or the Jorgensonian user 

cost of capital), defined as the price of capital, K*
i,tP  (which combines interest, depreciation, and 

tax rates and the nominal price of capital goods), divided by the tax-adjusted price of output, 

Y*
i,tP .  (The firm also sets the marginal product of labor equal to the tax-adjusted nominal wage 

rate, L*
i,tP , divided by Y*

i,tP ; this condition will be utilized in Section VI.C.)  Differentiating 
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equation (2) with respect to capital and rearranging terms (the tedious details are in Appendix B), 

we obtain the following factor demand equation for the long-run capital/output ratio, 

     * K Y * KY
i,t i,t i,t i,t i,t(K / Y ) ((P / P ) ) U   ,       (3a) 

     [ 1] K[ 1]KY
i,t i,t i,tU A A  .        (3b) 

The impact of both neutral and capital-augmenting technical change are captured in a two-way 

error component model of the error term, 

     KY KY KY KY
i,t i t i,tU exp[u u u ]   ,        (4)  

where KY
i,tu  may have a non-zero mean.  Taking logs of equation (4) and defining

* *
i,t i,t i,tky ln(K / Y )  and KY* K Y *

i,t i,t i,tp ln(P / P ) , we obtain, 

     * KY* KY KY KY
i,t i,t i t i,tky ln( ) p u u u       .      (5) 

Removing fixed industry effects by first-differencing and defining KY KY
t tu   and 

KY KY
i,t i,te u  , we obtain the following estimating equation,    

     * KY KY* KY KY
i,t i,t t i,tky p e       ,       (6) 

where KY
t  is an aggregate fixed time effect and KY  is a constant term (included in place of 

one of the KY
t 's).  Conditional on time fixed effects, identification of   is achieved by the 

correlation between the growth rates of the capital/output ratio and its relative price.    

 Given observations on *
i,tky , and KY*

i,tp , equation (6) provides a rather straightforward 

framework for estimating  .  Consistent estimates are obtained because the factor prices, largely 

driven by aggregate factors, are assumed exogenous.  (This assumption is relaxed in Section 

VI.A., which contains instrumental variables estimates.)  Importantly, in light of the critique and 

evidence by Antrás (2004), our estimates of   control for factor-augmenting technical change.7  

                                           
7 See his equation (1'), which is comparable to our equation (5) and, with first-differencing, equation (6).  The 
effects of factor-augmenting technical change are removed by a linear time trend in Antrás’ framework based on 
aggregate data and by time effects in our framework based on panel data.  If we adopt Antrás’ specification of facto-

augmenting technical change, K
i,tA exp[ t]  , the   is absorbed in the constant in equation (6).  Panel data permit a 

more general specification for controlling for the effects of factor-augmented technical change.   
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The key unresolved issue is the unobservability of long-run values denoted by *'s, an issue to 

which we now turn.   

III.B.  Low-Pass Filters and Long-Run Values  

 Previous research on capital formation has addressed this unobservability problem in 

several ways.8  The cointegration approach introduced by Caballero (1994, 1999) provides an 

elegant solution for extracting long-run values from data subject to short-run deviations.  While 

innovative, this estimation strategy faces some econometric difficulties in recovering production 

function parameters (Chirinko and Mallick, 2011).  Karabarbounis, and Neiman (2014) introduce 

a novel method that relies on the cross-country variation in the exponential trends of income 

shares and the price of capital.9  These deterministic trends are “capturing movements from an 

initial to a final steady state” (p. 86).  Their approach, as well as that of Caballero, defines the 

long-run at only the 0th frequency,10 as opposed to a broader band of frequencies used in the 

macroeconomics literature (cf., fn. 12), and thus discards information.  Chirinko, Fazzari, and 

Meyer (2011) also emphasize cross-section variation.  For a panel of firms, they divide the 

sample period in half, average the data in each of the two intervals, difference the interval-

averaged data to remove nuisance parameters, and then estimate  in a cross-section regression.  

A shortcoming of this estimation strategy is that it discards information in the panel dataset by 

relying on disjoint intervals, as well as defining the long-run at only the 0th frequency.  The most 

frequently used approach estimates an investment equation that begins with the first-order 

condition for capital and links changes in the observed capital stock to changes in the unobserved 

long-run capital stock by assuming that the latter is determined by changes in output and the 

relative price of capital and that these changes are distributed over time due to various short-run 

frictions (Chirinko, 1993, Section II).  Relying on investment data solves the unobservability 

problem by imposing a set of assumptions about dynamics and frictions affecting the investment 

                                           
8 Engle and Foley (1975) also use a band-pass filter to study capital formation.  They estimate a model relating 
investment spending to an equity price series (approximately a Brainard-Tobin's Q variable) and use a band-pass 
filter to emphasize middle frequencies centered at two years. 
 
9 The Karabarbounis and Neiman strategy for estimating σ also focuses on long-run movements, and hence is similar 
in spirit to the econometric approach in this paper. 
 
10 For the frequency domain properties of deterministic and stochastic trends, see Granger (1964, p. 130) and Engle 
and Granger (1987, p. 253), respectively. 
      



11 

 

 

process.  These assumptions – for example, convex vs. non-convex adjustment costs or the 

existence and nature of financial frictions -- can be controversial.  

 Our approach also focuses on the first-order condition for capital that holds in the long-

run but uses a low-pass filter (LPF) to measure the long-run values of variables denoted by *’s.11  

An LPF allows frequencies lower than some critical frequency, # , to pass through to the 

transformed series but excludes frequencies higher than # .  Baxter and King (1999) present 

two important results regarding band-pass filters for the purpose of the current study.  They 

derive the formulas that translate restrictions from the frequency domain into the time domain.  

For an input series, tx , the ideal LPF for a critical value #  produces the transformed series, 

* #
tx [ ,q] , where q represents the “window,” the length of the lags and leads used in computing 

the filter.  As q  , we obtain the ideal LPF for tx , 

     
q

* # #
t h t h

q h q

x [ ,q] lim d [ ] x 
 

   ,       (7a) 

    # # #
h hd [ ] d ' [ ] [ ,q]      ,        (7b) 

    # #
hd ' [ ] /    ,          h = 0,    (7c) 

    # #
hd ' [ ] sin[ h ] / ( h )    ,         h = +1, +2, …, q,   (7d) 

 
q

# #
h

q h q

[ ,q] lim 1 d ' [ ] (2q 1)/
 

 
      
 
 

 ,     (7e) 

 # # #2 / p h[p ]    ,          p# = [2, ∞),   (7f)  

                                           
11 Lucas (1980, esp. fn. 1 and p. 1013) also uses low-frequency filtered data to measure long-run variables.  Relative 
to Lucas’ exponentially smoothing filter, the LPF used in our paper can more easily be related to periodicities and 
readily interpretable magnitudes.  Apart from Lucas’ filter, there are two additional filters for isolating frequencies 
of interest (to the best of our knowledge, neither has been used to estimate  ).  The Hodrick-Prescott (HP) filter 
(1997) has been primarily used to study business cycle frequencies in quarterly data.  Baxter and King (1999, 
Section V.C) note two problems with applying the HP filter to annual data:  the appropriate value for the smoothing 
parameter ( ) is not well established and there is a substantial divergence between HP and band-pass filters.  The 
Christiano-Fitzgerald (2003) filter is based on the assumption that the raw data follow a random walk.  This assump-
tion is important in deriving the estimator (cf. their fn. 17) and is not appropriate for the data in the present study.   
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where the #
hd [ ]'s  are weights defined as the sum of two terms – a provisional set of weights 

denoted by a prime (the #
hd ' [ ]'s in equations (7c) and (7d)) and a frequently imposed 

normalization that the #
hd [ ]'s  sum to 1 (per the constant #[ ,q]   computed in equation (7e)).  

Equation (7g) defines the inverse relation between the critical frequency ( # ) and the critical 

periodicity ( #p ), the latter defined as the length of time required for the series to repeat a 

complete cycle.  Since periodicities are somewhat easier to interpret than frequencies, this 

relation will prove useful when discussing the empirical results.    

 A difficulty with implementing equations (7) is that the ideal LPF requires an infinite 

amount of data.  Baxter and King's second important result is that the optimal approximate LPF for 

a window of finite length q truncates the symmetric moving average at q.  Thus, for h q , the 

#
hd [ ]'s  are given in equations (7); for h q , #

hd [ ] 0  .  The optimal approximate LPF for 

the critical frequency #  and window q, #LPF[ ,q] , is given by equations (7) for any finite q. 

 

IV.  Spectral Properties of the Low-Pass Filter 

 Our estimation strategy is designed to emphasize long-run variation, and this section uses 

spectral analysis to evaluate our approach and the choices of # and q.  (Details about the 

spectral analysis used in this section are provided in Appendix C.)  The properties of a time 

series can be conveniently represented in the frequency domain by the spectrum defined as a 

Fourier transformation (a series of trigonometric functions) of autocovariances associated with a 

time series.  The spectrum is defined over frequencies from 0 to  , and the integral of the 

spectrum from 0 to an arbitrary frequency less than or equal to   measures the variance of the 

series over those frequencies.  This property will be particularly useful for assessing how well 

our econometric model emphasizes long-run frequencies.   

Transformations of the data alter the spectra and hence the weights given to long-run, 

medium-run, and short-run frequencies.  The estimating equation is derived by three 

transformations in the time domain:  a) defining long-run values with the #LPF[ ,q]  (equations 

(7)); b) inserting these long-run values into the first-order condition for optimal capital 

accumulation and taking logarithms (equation (5)); c) first-differencing this logarithmic equation 
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to remove industry fixed effects (equation (6)).  To compute the spectrum of a transformed 

series, we rely on the fundamental result from spectral analysis linking the spectrum of an output 

series (e.g., *
tx [.] )  to the product of the spectrum of an input series (e.g., tx )  and a scalar that 

will, in general, be a function of  , # , and q.  To understand the impact of each step, we need 

only compute the frequency response scalar associated with each transformation.  The scalars for 

the LPF, logarithmic, and first-difference transformations are represented by #a[ , ,q]  , b, and 

 c  , respectively, and, per the analysis in Appendix C, are defined as follows, 

     

2q
# #

h# #
h 1

# 1/2

( / ) 2 cos[h ] d ' [ ]
a[ , ,q] [ ,q]

[ ,q] {(1 cos[ (2q 1)]) / (1 cos[ ])}



 
            

 
         


,  (8a) 

     2
x*b ( )   ,          (8b) 

      c 2 (1 cos[ ])     ,         (8c) 

where x*  equals the unconditional expectation of *
tx [.] .  To ensure comparability in the 

analyses to follow that vary #  and q, the areas under the spectra from 0 to   are normalized to 

one by an appropriate choice of normalizing scalars, #[ ,q]  ,  , and   in equations (8).   

With the frequency response scalars defined in equation (8), we are now in a position to 

examine the extent to which our estimation strategy emphasizes long-run frequencies.  Since the 

spectra for the raw series and the scalars associated with the logarithmic and first-difference 

transformations (  b and c  , respectively) do not depend on #  or q, their impacts on the data 

will be absorbed in the normalizing scalars, and hence they will not affect relative comparisons.  

Alternative values of #  or q, will only affect the #LPF[ ,q]  and the associated scalar, 

#a[ , ,q]  .    

  Our first set of analyses holds the window fixed at q = 3 and examines different values of 

the critical frequency, # , that determines which frequencies are passed-through by the 

#LPF[ ,q] .  Recall that, per equation (7f), there is a one-to-one inverse relationship between 
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frequencies ( #and  ) and periodicities ( #p and p ), and it is easier to discuss the properties of 

low-pass filters in terms of the latter.  Four values of #p  are considered in Figure 1.  We begin 

with the minimum value of the critical periodicity, #p 2 , which corresponds to a standard 

investment equation that does not transform the raw data (other than the logarithmic and 

differencing operations) or an untransformed first-order condition.  The associated frequency 

response is flat, indicating that this estimator does not reweight the variances of the raw series 

across frequencies.  By contrast, our benchmark model represented by a critical periodicity of 

eight years results in a substantial reweighting.  With #p 8 , the benchmark model emphasizes 

the variances from periodicities greater than or equal to eight years (corresponding to # 0.79   

on the horizontal axis), thus allocating a substantial amount of weight to those frequencies 

appropriate for estimation of production function parameters.  The remaining entries in Figure 2 

are for the intermediate cases, #p 4  and #p 6 .   

 The benchmark model is based on the assumption that periodicities greater than or equal 

to eight years contain useful information for the parameter estimates.  How much additional 

reweighting occurs when the critical periodicity is greater than eight years?  We examine values 

of #p  equal to 10, 20 and, in the limit, ∞.  The #LPF[ ,q] ’s corresponding to these critical 

values are graphed in Figure 2.  The frequency responses for these higher periodicities indicates 

that they weight the lower frequencies in a manner very similar to the benchmark case of #p 8 .  

 This analysis suggests two conclusions concerning our choice of the critical periodicity.  

First, our estimation strategy based on #p 8  appears to be reasonably successful in 

emphasizing long-run variation.  This result is consistent with what appears to be a well-accepted 

standard for separating long-run frequencies from short-run and medium-run frequencies.12  

Second, results in Figure 2 suggest that parameter estimates are likely to be insensitive to the 

critical periodicity for values of #p 8 . 

                                           
12 A critical value of a periodicity of eight years is used by Baxter and King (1999, p. 575), Levy and Dezhbakhsh 
(2003, p. 1502), Prescott (1986, p. 14), and Stock and Watson, 1999, p. 11).  Burns and Mitchell (1946) report that 
the duration of the typical business cycle in the U.S. is less than eight years.   
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 We can also use the spectral formulas to assess the impact of variations in the window, q, 

in approximating the ideal low-pass filter.  Recall that the ideal LPF is based on the limiting 

behavior as q --> ∞.   This ideal filter, #LPF[ ,q ]  , is represented by the rectangle in Figure 

3 that only passes-through frequencies less than 0.79; frequencies greater than 0.79 are totally 

excluded.  Our empirical work relies on the optimal approximation based on a finite number of q 

leads and lags.  This approximation introduces error into the analysis because variances 

associated with frequencies other than those desired enter into the transformation of the model 

variables.  However, increasing q is costly in terms of lost degrees of freedom.   

  This tradeoff between approximation error and degrees of freedom is assessed in Figure 

3, which plots #LPF[ ,q]  for # 0.79  (corresponding to #p 8 ) and values of q equal to 1, 3 

and 5.  When q = 1, the LPF is extensively contaminated by the variances associated with 

frequencies above the critical frequency.  We measure this contamination by  q , defined as 

the area under the frequency response curve for the interval  0.79,  .  For q = 1, 

  0 3 41 1q .   .  As q increases to 3 and then 5, this contamination is greatly reduced with  

  0 0 53 5q .    and   0 0 45 5q .   , respectively.  The  q ’s for q = 3 and q=5 are nearly 

identical.  Since using a window of q = 5 is costly in terms of degrees of freedom and roughly 

the same frequencies are emphasized, we will adopt q = 3 as our preferred window, though 

robustness will be examined with q = 1 and q = 5.13    

 

V.  Benchmark Empirical Results  

 This section estimates the substitution elasticity using our low-frequency panel model 

defined with various critical periodicities and windows.  Data are obtained from the webpage of 

Dale Jorgenson and represent output, inputs, and prices for 35 industries for the period 1960-

2005.14  Summary statistics are presented in Table 1, which contains statistics for the 

capital/output, labor/output, and capital/labor models in panels A., B., and C., respectively.   

                                           
13 Baxter and King (1999, pp. 581-582) reach a similar conclusion based on their analysis of band-pass filters at 
medium frequencies.   
 
14 The data are obtained at http://post.economics.harvard.edu/faculty/jorgenson/data/35klem.html and are described 
in Jorgenson and Stiroh (2000, especially the appendices).  The effective time dimension equals the 46 datapoints 
contained in the dataset for a given industry less 2q for the construction of the LPF less one for first differencing.    
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In a given panel, the first and third rows are the model variables; the second and fourth rows are 

comparable variables that have not been transformed by the LPF.  Comparisons of the first two 

rows and then of the third and fourth rows document that the LPF substantially reduces variation 

in the model variables.  As shown in columns 3 and 4 for the interquartile range and column 5 

for the within industry standard deviation, the LPF substantial lowers the variation in the 

variables.  By either measure, the variation is approximately halved due to the reweighing of the 

lower frequencies.  Column 6 reports the variance due to industry-specific time variation as a 

percentage of the overall variance in the series and confirms that, even with industry and 

common time variation removed, there remains a great deal of variation within industries with 

which to estimate the parameter of interest.  

 The benchmark OLS results from our low-frequency panel model based on #p 8  and   

q = 3 are as follows,    

     * K* K K* 2
i,t i,t t i,tky 0.006 0.406 p e , R 0.503

(0.003) (0.034)
        .   (9) 

The point estimate for   is 0.406, and it is precisely estimated.  Since the low-pass filter creates 

overlapping observations, the standard errors are computed with the procedure of Newey and 

West (1994); we use (T-1) lags, which is equivalent to using Bartlett kernel with a bandwidth of 

T.  This correction is important, and doubles the size of the standard error relative to a White 

(1980) procedure.  These results are robust in several dimensions.  When important differences 

occur, they are due to the presence of high frequency variation in the model variables.   

 Table 2 examines the sensitivity of estimates of   to variations in the window (q) and the 

critical periodicity ( #p ).  For a given #p , estimates of   are robust to variations in q.  For 

example, when #p 8 , estimates of   are 0.331, 0.406, and 0.379 for q of 1, 3, and 5, 

respectively.  As the window is increased, more data are used in computing the filters, less data 

are available for estimation, and the standard errors generally increase.  Nonetheless, the 

standard errors for the 's remain less than 0.05 for all entries.  (The R2's are not strictly 

comparable across cells because the dependent variable depends on #p  and q.)  These results 
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suggest that little is gained by increasing the size of the window and compromising degrees of 

freedom above q = 3.   

 Table 2 also allows us to assess the robustness to variations in #p  for a given q by 

reading down the columns.  For q = 3 in column 2, as #p  increase from 8 to ∞, the estimates of 

  hardly change.  This robustness is consistent with the theoretical analysis in Figure 2 and 

suggests that the relevant information about the long-run has been largely captured at #p 8 .  

However, when #p  is set to its minimum value of 2, the low-pass filter is neutral, and the raw 

data are transformed only by logarithmic and first-difference operations that do not depend on 

#p  (cf. equations (7) and (8)).  In this case,   drops by over 40% relative to the benchmark 

value (0.229 vs. 0.406).  Medium and high-frequency transitory variation affects the estimates of 

  and, as has been frequently noted with permanent income models (e.g., Hayashi, 2000, pp. 

194-195), transitory variation attenuates point estimates.  Standard estimation methods, which do 

not filter-out transitory variation, generate downwardly biased estimates of  . 

 

VI.  Alternative Estimates 

 This section examines the robustness of our benchmark result in equation (9) to an 

endogenous regressor, split-samples, alternative first-order conditions, and heterogeneous  ‘s 

across industries.    

 

VI.A.  Instrumental Variables 

 The OLS estimates reported in Section V are valid under the assumption that the growth 

rate in the long-run relative price of capital is uncorrelated with the error term.  This assumption 

may be compromised because our procedure for measuring the true long-run value is subject to 

error or a common factor exists that affects the regressor and enters the error term.  Since this 

assumption necessary for consistent estimation may not hold strictly, instrumental variable (IV) 

estimates provide a useful robustness check.  A lagged regressor is a familiar candidate 

instrumental variable.  However, in our model, the low-pass filter depends on leads that may be 

correlated with the contemporaneous error term.   Hence, a lagged regressor is not a suitable 

instrument unless it is lagged many periods, potentially compromising its relevance.  While the 
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model developed in Section III places restrictions on the construction of model variables, it does 

not place restrictions on the instrument, and thus we create an alternative instrument, KY&
i,t 2p  , as a 

one-sided lag of the relative price of capital and lag it two periods (see the note to Table 3 for 

details).  This variable will be uncorrelated with the contemporaneous error term and will deliver 

consistent estimates.   

  Table 3 contains IV results for equation (6) and the same combinations of #p  and q 

reported for the OLS results.  However, the R2 statistic is removed and replaced by an F-statistic 

for the first-stage auxiliary regression of the regressor on the instrument and time dummies.  

Instrumental relevance is assessed with the latter statistic proposed by Stock, Wright, and Yogo 

(2002), which involves the above auxiliary regression and a comparison of the F-statistic for the 

goodness of fit to a critical value of 8.96 (reported in their Table 1).  Based on this critical value, 

the instrument is not weak for all models except those in row 1, which do not transform the raw 

data to emphasize lower frequencies.  For the other estimates with relevant instruments, the 

estimated  ’s tend to be about 10% larger than the comparable OLS estimates.  For example, for 

our preferred estimate based on #p 8  and q = 3, IV 0.438  , somewhat larger than  

OLS 0.406  .  The IV standard errors are two to three times larger than their OLS counterparts.  

Nonetheless, the results continue to decidedly reject the Cobb-Douglas hypothesis that 1  .  

These IV results document the robustness of the OLS estimates of  .    

 

VI.B.  Split-Samples and Time Fixed Effects 

 To further assess the robustness of our results, Table 4 contains OLS estimates from the 

first and second halves of the sample, 1960-1982 and 1983-2005, respectively.  The results 

closely follow those reported previously.  For example, for our preferred specification with 

#p 8  and q = 3, the estimates of   from the first and second halves of the sample are 0.336 

and 0.460, respectively.  These estimates are not economically different from our preferred 

estimate from the full sample of 0.406.  Owing to the precision of our estimates, these deviations 

from the benchmark are statistically significant; for our preferred estimate based on #p 8  and q 

= 3, the null hypotheses for the equality between point estimates is rejected at the 1% level.   
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 The benchmark results are also robust with respect to the inclusion of time fixed effects.  

When they are removed,   [standard error] {R2} increases slightly to 0.415 [0.029] {0.482}.  

This stability of results suggests that our low-pass filter is performing reasonably well at 

removing short-run and medium-run variation that would be captured by time fixed effects.   

VI.C.  Other Estimating Equations 

 The first-order conditions for profit maximization yield two additional estimating 

equations that contain the labor/output ratio or the labor/capital ratio as the dependent 

variable15However, the Solow growth model implies that neither series is stationary, an 

implication consistent with the first two of the stylized facts of growth advanced independently 

by Kaldor (1961) and by Klein and Kosobud (1961).16  Hence, the low-pass filter used in this 

study is not strictly applicable because spectral methods require stationary data.  Murray (2003) 

documents the problems that can arise when band-pass filters are applied to nonstationary data.  

With this important caveat noted, we nonetheless examine estimates of   derived from the 

equations with labor/output, *
i,ty , or the capital/labor ratio, *

i,tk , as the dependent variable, and 

estimate the following equations,    

     * LY LY* LY* LY*
i,t i,t t i,ty p e        ,       (10) 

     * KL KL* KL* KL*
i,t i,t t i,tk p e       ,       (11) 

where LY* L Y *
i,t i,t i,tp ln(P / P ) , KL* K L *

i,t i,t i,tp ln(P / P ) , and the other elements in equations (10) and 

(11) parallel those defined in equation (6).   

 Table 5 contains  's and R2's for q = 3 and the usual range of #p  's.  Column 1 contains 

the previously reported estimates (Table 2) for *
i,tky  and columns 2 and 3 the results for *

i,ty  

                                           
15 Several recent studies have normalized the CES production function and estimated it along with the first-order 
conditions for labor and capital (Klump, McAdam, and Willman, 2007, 2012).  While normalization has been shown 
to be important in estimating these systems (León-Ledesma, McAdam, and Willman, 2010), normalization does not 
affect the estimation of first-order conditions.  We do not pursue systems estimation because the production function 
must include all relevant factors of production (a concern avoided with first-order conditions derived from strongly 
separable production functions), and this and other specification issues may lead to specification errors that are 
transmitted through the equation system and distort our estimate of  .    
 
16 These facts remain well-accepted today.  Jones and Romer (2010, p. 225) write that “Kaldor’s first five facts have 
moved from research papers to textbooks.”  Acemoglu and Guerrieri (2008, p. 467) claim that “[m]ost models of 
economic growth strive to be consistent with the ‘Kaldor facts,’…”  As an aside, we would take some exception to 
whether the capital and labor income shares have remained constant in recent decades.   



20 

 

 

and *
i,tk  , respectively.  Relative to the results with *

i,tky , the  's estimated with the *
i,ty  

equation are higher for all critical periodicities and the standard errors higher by at least a factor 

of three.  For *
i,tk  , the  's are uniformly lower and the standard errors about 50% higher.  In 

all cases, the point estimates remain very far from one.   

 

IV.D.  Heterogeneous Industry i ' s     

 Given our interest in the impact of aggregate   on growth theory, the homogeneity 

assumption imposed across industries in the prior two sections is a natural way of obtaining an 

aggregate substitution elasticity.  From an estimation perspective, however, it might be desirable 

to exploit the panel feature of our dataset and allow the 's  to differ across industries.   

The aggregated   ( agg ) is a weighted average of the industry  ’s ( i ' s , see Appendix D for 

details),17   

     agg i i
i

*    ,   i i aggK / K        (12) 

where aggK  is the aggregate capital stock and the i 's  are industry weights defined in terms of 

industry capital ratios.18    

 Table 6 contains estimates of the heterogeneous industry i 's  and the agg 's .  Panel A 

shows that the i ' s  are precisely estimated and are all statistically far from zero (save 

Communications) and far from unity (save Finance, Insurance & Real Estate).   Panel B presents 

several agg 's  based on different weighting schemes.  Column 1 use capital weights for all 35 

                                           
17 An alternative aggregation procedure has been developed in a provocative paper by Jones (2005), who formally 
relates industry and aggregate (global) production functions to the distribution of alternative production techniques 
(APT’s) for combining capital and labor.  His striking result is that the industry and aggregate production functions 
will be Cobb-Douglas in the long-run.  This approach has the benefit of developing solid microfoundations for 
production functions but is sensitive to the assumed distribution of ideas.  When APT’s are distributed according to 
a Pareto distribution with independence between marginal APT distributions, the Cobb-Douglas result obtains.  
However, when APT’s are distributed according to a Weibull distribution (Growiec (2008a)) or a Pareto distribution 
with dependence between marginal APT distributions (Growiec (2008b)), the industry and aggregate production 
functions are CES.  These theoretical results, coupled with the empirical results presented in this paper, suggest the 
need for further study of aggregation procedures and the underlying distribution of ideas.  
 
18 It should be noted that the   from the benchmark model is also effectively a weighted-average estimate.  The 
heterogeneous model weights the i ' s  by industry capital shares, while the homogeneous model effectively weights 

the i ' s  by relative industry variances.   
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industries, and the agg 0.657   is larger than the benchmark value of 0.406.  This difference is 

due to the distribution of capital weights.  Column 2 weights the 35 industries equally, and the 

agg 0.417  is very close to the benchmark value of 0.406.  The estimates presented in Table 6 

provide additional support for the conclusion that the   characterizing substitution possibilities 

in the U.S. economy is well-below the Cobb-Douglas value of one.   

 These results reflect historical production patterns.  Is   likely to rise as production shifts 

toward industries favored in a post-industrial economy?19  Column 3 of Panel B allows for an 

informal examination of this question.20  We identify post-industrial industries as those that are 

not agriculture, manufacturing, mining, and utilities.  Thus, in our dataset, we focus on the 

following six industries:  Construction (6), Transportation (28), Communications (29), Trade 

(32), Finance, Insurance and Real Estate (33) and Services (34).  The agg  for these selective six 

industries is 0.857.  These estimates support the notion that the   for the aggregate economy is 

likely to rise in future years as production and hence capital weights rise in these post-industrial 

industries.    

  

VII.  Summary and Conclusions 

  The elasticity of substitution between labor and capital ( ) is a “crucial” parameter.  The 

qualitative and quantitative answers to a host of issues in economics depend on the precise value 

of  .  This crucial production function parameter is estimated by combining a low-pass filter 

with panel data techniques to identify the long-run relations appropriate to production function 

estimation.  Our preferred point estimate is 0.406, and it proves robust to variations in several 

directions.   

 We focused on two sets of economic issues for which   is a crucial parameter.  As noted 

in the quotation by Piketty and Summers at the beginning of this paper, whether   is greater 

than or less than one is of crucial importance in the study of factor incomes.  A secular increase 

                                           
19 Arrow, Chenery, Minhas, and Solow (1961, p. 247) speculate that “[g]iven systematic intersectoral differences in 
the elasticity of substitution and in income elasticities of demand, the possibility arises that the process of economic 
development itself might shift the over-all elasticity of substitution.” 
 
20 Piketty (2014a, p. 222) asserts that   is lower in agriculture, a claim confirmed in Table 5, Panel A.  Moreover, 
Piketty (2014b, p. 39) seems to suggest that   may increase in more recent years: “…the elasticity of substitution 
between capital and labor in the future may be different (and possibly higher) than the past one.”    
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in the capital/income ratio or a secular decreases in the relative price of investment or capital 

taxation can explain the recent decline only if 1  .  For the United States, we find little support 

for this assumption.  

 In the Solow growth model, certain values of   can lead to unbalanced positive or 

negative growth.  When 1  , it cannot be an engine of perpetual growth.  However, this value 

of the elasticity may be an agent of perpetual decline if it is less than a critical value that depends 

on the rates of saving, depreciation, population growth and the share of income accruing to labor.  

As shown in Table 1-A in Appendix A, 0.406   is much larger than the critical value for the 

United States.  Thus, our estimate of   suggests that this elasticity is not so small as to create 

unbalanced negative growth for the U.S. economy.  Several other issues concerning long-run 

growth (discussed in Section II) depend on the precise value of  .    

 Our benchmark value of sigma of 0.406 suggests that the convenient assumption of a 

Cobb-Douglas production function used in many areas of economic analysis needs to be 

abandoned.  DSGE models that maintain that 1   amplify the true effect of price movements -- 

including the traditional channel of monetary policy -- relative to a model based on a lower value 

of this elasticity.  Tax simulation models using Cobb-Douglas production functions impart a 

similar upward bias to the effects of tax cuts.  A departure from a Cobb-Douglas production 

function will force an expansion of the neoclassical growth model to include, among other 

factors, a central role for directed technical change that affects factor shares and balances growth.     
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Appendix A:  Perpetual Growth, Perpetual Decline, and   

This appendix examines the role of   in generating non-standard growth behavior.  Two 

conditions must hold:  (1) 1   and (2) certain relation between   and the rates of saving (s), 

depreciation ( ), and population growth (n) and another production function parameter, , 

which is related to factor income shares. 

We first consider the Solow’s equation of motion for the capital/labor ratio (k ≡ K/L) and 

the limiting behavior of the marginal product of capital ( MPK[k : ] ) and the average product of 

capital ( APK[k : ] ).21  The well-known equation of motion in the neoclassical growth model is 

as follows, 

     k/ k s*APK[k : ] (n )
.

     ,        (A-1) 

where s, n, and δ are the rates of saving, population growth, and depreciation, respectively.  The

MPK[k : ]  and the APK[k : ]  are derived from the following intensive form of the CES 

production function (where we have ignored in this appendix the role of technical change), 

     (( 1)/ ) ( /( 1))f[k : ] { k (1 )} 0 1            ,     (A-2) 

where f[k : ]  is a per capita neoclassical production function depending on   and  the 

capital distribution parameter).  The MPK[k : ]  and the APK[k : ]  follow from equation (A-2) 

as follows, 

 

      (1/( 1))((1 )/ )
kMPK[k : ] f [k : ] (1 ) k

        ,    (A-3) 

        
( /( 1))((1 )/ )f[k : ]

APK[k : ] (1 ) k MPK[k : ] / .
k

   
          (A-4)

                                           
21 The analysis is this sub-section draws on the presentations of the neoclassical growth model in Barro and Sala-i-
Martin (1995, Section 1.3.3), Klump and Preissler (2000), Klump and de La Grandville (2000), de La Grandville 
(1989, 2009), de La Grandville and Solow (2004, which also discusses how increases in   expand production 
possibilities in a manner similar to exogenous technical progress), and especially Mallick (2010).   
 



30 

 

 

 We are now in a position to assess the impacts of the two conditions.  Condition (1) 

implies that the MPK[k : ]  fails to satisfy one of the Inada conditions and that this positive, 

finite limit can affect the APK[k : ]  such that no root exists for equation (A-1) for any value of 

k.  The limits for MPK[k : ]  and APK[k : ]  as k   (equations (A-5)) and as k 0  

(equations (A-6)) are as follows, 

 

        k   

     ( /( 1))

k k
1: lim MPK[k : ] lim APK[k : ] 1, 

 
            (A-5a) 

     
k k

1: lim MPK[k : ] lim APK[k : ] 0,
 

            (A-5b) 

     
k k

1: lim MPK[k : ] lim APK[k : ] 0.
 

            (A-5c) 

 

      k 0  

     
k 0 k 0

1: lim MPK[k : ] lim APK[k : ] ,
 

             (A-6a) 

     
k 0 k 0

1: lim MPK[k : ] lim APK[k : ] ,
 

             (A-6b) 

     ( /( 1))

k 0 k 0
1: lim MPK[k : ] lim APK[k : ] 1. 

 
            (A-6c) 

 

The Inada conditions are met when 1   (equations (A-5b) and (A-6b)) or, in one direction, 

when 1   (equation (A-6a)) or when 1   (equation (A-5c)).  However, they fail in one 

direction when 1   (equation (A-5a)) or when 1   (equation (A-6c)).   

 The implications of these two failures are that perpetual growth or decline is possible.  

These non-standard cases depend on a second necessary condition comparing these limiting 

values to the critical values of the APK[k : ]  that set k/ k
.

 equal to zero in equation (A-1).  The 

critical value of APK[k : ]  can be stated in terms of the associated critical value of   by setting 

equation (A-1) to zero and solving for C , which will depend on four other model parameters (s. 

n,  , and  ),  
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      C
log[s / (n )]

g s,n, , 1
log[(s ) / (n )]

 
     

  
 .      (A-7) 

Whether C  is above, equal to, or below 1.0 depends on the values of the four parameters.   

To assess the possibility of perpetual growth, perpetual decline, or balanced growth, we 

will consider only variations in the saving rate, holding the other three parameters fixed.  Three 

cases need to be considered: 

 Case 1, Perpetual Growth:  If the saving rate is sufficiently large so that 

s (n ) /    , then, since 0 1   , the numerator is greater than the denominator, 

and equation (A-7) defines the critical value defining perpetual growth, PG 1  .  

When PG 1    , no increase in capital accumulation, however large, will be able 

to push the MPK[k : ]  and APK[k : ]  sufficiently low to terminate perpetual 

growth.   

 Case 2, Perpetual Decline:  Alternatively, if the saving rate is sufficiently low so 

that s (n )   , then, since 0 1   , the numerator is less than the denominator, and 

equation (A-7) defines the critical value defining perpetual decline, PD 1  .   When 

PD 1    , no decrease in capital accumulation (bounded below by zero) will be 

able to push the MPK[k : ]  and APK[k : ]  sufficiently high to escape perpetual 

decline.   

 Case 3, Balanced Growth:  If the saving rate takes on intermediate values relative to 

Cases 1 and 2 ( (n ) / s (n )       ), then the Inada conditions are satisfied, and 

balanced growth is achieved.  We refer to this range of  ’s as the Solow Interval.  

 

The critical values depend on four parameters -- s, n, , and  .  We assume the following 

values for three of the parameters, 

 n 0.01 , 

 0.10   (a standard value for business plant and equipment), 

 0.33   (this production function parameter is not identified in the first-order 

conditions estimated in this paper.  We assume that it equals the capital’s income 

share).  
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The most interesting variation is with the saving rate, and we evaluate the critical value with 

alternative values of s in Table A-1, 

 
Table A-1: Critical Values of   (C ) for Alternative Saving Rates  

Saving Rate C   Saving Rate C  

0.01 0.68  0.14 -0.28 
0.02 0.61  0.15 -0.39 
0.03 0.54  0.16 -0.51 
0.04 0.48  0.17 -0.65 
0.05 0.42  0.18 -0.80 
0.06 0.35  0.19 -0.97 
0.07 0.29  0.20 -1.17 
0.08 0.22  0.21 -1.40 
0.09 0.15  0.22 -1.67 
0.10 0.08  0.23 -1.99 
0.11 0.00  0.24 -2.37 
0.12 -0.09  0.25 -2.85 
0.13 -0.18    

 

For s = 0.01, the critical value for   is 0.68, and it declines monotonically for the 

saving rates considered in Table A-1.  (There is a singularity (not shown in the 

table) for 0.33 < s < 0.34.  For s > 0.35, C is positive, declines monotonically in s 

and, as s 1 , C 2.01  .)  Over the last twenty years, the average saving rate is 

0.18 (the ratio of gross saving (NIPA Table 5.1, Line 1) to GDP (NIPA Table 

1.1.5, Line 1) averaged for the period 1993 to 2012).  For this value of s, C 0  .  

Thus, it is impossible for the economy to enter a state of perpetual decline (since   

cannot be less than zero), and the economy exhibits balanced growth.    

  



33 

 

 

Appendix B:  Specifying the Marginal Product of Capital with Neutral 

                        and Factor-Augmenting Technical Change 

This appendix presents the details of the derivation of the marginal product of capital 

when there is both neutral and biased technical change.  We assume that production possibilities 

are described by the following CES technology that relates output ( *
i,tY ) to capital ( *

i,tK ), labor  

( *
i,tL ), neutral technical progress ( i,tA ), and factor-augmenting technical progress on capital and 

labor ( K L
t tA and A ,  respectively) for industry i at time t,  

     * * * K L
i,t i,t i,t i,t t tY Y[K ,L ,A ,A ,A ] ,        (B-1) 

       [ /( 1)]K * [( 1)/ ] L * [( 1)/ ]
i,t t i,t t i,tA (A K ) (1 )(A L )

         

where   is the capital distribution parameter and   is the elasticity of substitution between labor 

and capital.   

 The derivative of *
i,tY  with respect to *

i,tK , *
i,tY ' , is computed from equation (B-1) as 

follows, 

     
 [[ /( 1)] 1]* K * [( 1)/ ] L * [( 1)/ ]

i,t t i,t t i,ti,t

K * [[( 1)/ ] 1] K
t i,t t

Y ' [ / ( 1)]A (A K ) (1 )(A L )

*[( 1) / ] (A K ) A .

     

  

     

  
  (B-2)  

Since (( 1) / ) 1 1/      , we can rewrite equation (B-2) as follows,   

     
 

 

* * [ 1/ ]
i,t i,t

[ /( 1)]K * [( 1)/ ] L * [( 1)/ ]
i,t t i,t t i,t

1K * [( 1)/ ] L * [( 1)/ ]
t i,t t i,t

K[( 1)/ ]
t

Y ' K

A (A K ) (1 )(A L )

(A K ) (1 )(A L )

A .

 

    

   

 

 

  

  

     (B-3)   

In equation (B-3), the second line equals *
i,tY  per equation (B-1), and the third line equals the 

product of *
i,t i,tY andA  raised to the appropriate powers, 
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* * [ 1/ ]
i,t i,t

*
i,t

*[(1 )/ ] [( 1)/ ]
i,t i,t

K[( 1)/ ]
t

Y ' K

Y

Y A

A

 

   

 

 

  ,        (B-4) 

which can be rewritten as follows, 

     *[1/ ] [( 1)/ ]* * [ 1/ ] K [( 1)/ ]
i,t i,t ti,t i,tY ' K Y A A        .    (B-5a) 

     * [1/ ] KY [1/ ]
i,t i,t i,t((Y / K ) ) U   ,       (B-5b) 

        [ 1]KY [1/ ] K[ 1]
i,t ti,tU A A  .      (B-5c) 

A profit-maximizing firm will equate the marginal product of capital in equation (B-5a) to the 

user cost of capital, the price of capital divided by the price of output,  

   K Y * * [1/ ] KY [1/ ]
i,t i,t i,t i,t i,t(P / P ) ((Y / K ) ) U   .      (B-6) 

Equation (B-6) can be rearranged to isolate the capital/output ratio on the left-side, 

   * K Y * KY
i,t i,t i,t i,t i,t(K / Y ) ((P / P ) ) U   ,       (B-7) 

which is equation (3a) in the text.  
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Appendix C:  Data Transformations and the Frequency Response Scalars 

Our estimation strategy is designed to emphasize long-run variation, and Section IV uses 

spectral analysis to evaluate our approach and the choices of # and q.  This appendix provides 

some analytic details underlying the results stated and used in Section IV.   

In analyzing the spectral properties of our estimator, it is convenient to recast the LPF 

transformation (for a finite q), the logarithmic transformation, and the first-difference 

transformation as follows,  

     
q

* # #
t h t h

h q

x [ ,q] d [ ] x 


   ,        (C-1a) 

     * # * #
t ty [ ,q] ln[x [ ,q]]   ,         (C-1b) 

     * # * #
t tz [ ,q] y [ ,q]    ,         (C-1c) 

where tx  represents the raw data series, either K
i,t i,t i,t(K / Y ) or p .  The spectra corresponding to 

the * * *
t t tx [.], y [.], and z [.]  output series in equations (C-1) are defined over the interval  0,   

as the product of the spectrum for an input series and a scalar that is nonnegative, real, and may 

be depend on  , # , or q,  

     i # i
x* xg [e ] a[ , ,q] g [e ]      ,        (C-2a) 

     i i
y* x*g [e ] b g [e ]    ,         (C-2b) 

     i i
z* y*g [e ] c[ ] g [e ]     ,        (C-2c) 

where i
xg [e ]   is the spectrum for the raw series and the scalars are defined as follows, 

     

2q
# #

h# #
h 1

# 1/2

( / ) 2 cos[h ] d ' [ ]
a[ , ,q] [ ,q]

[ ,q] {(1 cos[ (2q 1)]) / (1 cos[ ])}



 
            

 
         


  (C-3a) 

     2
x*b ( )   ,          (C-3b) 

      c 2 (1 cos[ ])     ,         (C-3c) 
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where x*  equals the unconditional expectation of *
tx [.] .  To ensure comparability in the 

analyses to follow that vary #  and q, the areas under the spectra from 0 to   are normalized to 

one by an appropriate choice of normalizing scalars, #[ ,q]  ,  , and   in equations (C-3).  

 The three scalars -- #a[ , ,q]  , b, and c[ ]  -- correspond to the LPF, logarithmic, and 

first-difference transformations, respectively, and are derived as follows.  The #a[ , ,q]   scalar 

is based on Sargent (1987, Chapter XI, equation (33)), 

   
q q

# # ih # ih #
h h

h q h q

a[ , ,q] [ ,q] e d [ ] e d [ ] .  

 

               
      
      (C-4) 

The two-sided summations are symmetric about zero and only differ by the minus sign in the 

exponential terms.  Hence, the two sums in braces are nearly identical.  The hd [.] 's  appearing in 

the summations are separated into [.]  and the hd ' [.] 's  (cf. equations (7)).  For the latter terms, a 

further distinction is made between the term at h=0 and the remaining terms (h=1,q) that are 

symmetric about h=0.  Equation (C-4) can be written as follows, 

  

2
q q

# # # ih ih ih #
h

h q h 1

a[ , ,q] [ ,q] [ ,q] e ( ) (e e ) d ' [ ]   

 

              
  

  .  (C-5) 

The first sum of exponential terms is evaluated based on Sargent (1987, p. 275), 

     

  

1/22
q q

ih ih

h q h q

1/2

e e

(1 cos[(2q 1) ] / (1 cos[ ] .

 

 

          

     

 
     (C-6) 

The second sum of exponential terms is evaluated with the Euler relations, 

ihe cos[h ] sin[h ]      ,  

     
q q

ih ih # #
h h

h 1 h 1

(e e )d ' [ ] 2 cos[h ] d ' [ ]  

 
      .     (C-7) 
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 The b scalar is based on the approximation in Granger (1964, p. 48, equation 3.7.6), 

which states that the approximation will be accurate if the mean is much larger than the standard 

deviation of the input series ( *
tx [.] ).   

The c[ ]  scalar is based on the well-known formula for the first-difference 

transformation (Hamilton, 1994, equation 6.4.8).  

The importance of the above analytical results is that the combined effects of the three 

transformations are captured by three scalars that multiply the spectrum of the raw series,  

      i # i
z* xg [e ] a[ , ,q]* b * c[ ] * g [e ]       .      (C-8)  

Equation (C-8) allows us to examine the extent to which our estimation strategy emphasizes 

long-run frequencies. Since the spectra for the raw series ( i
xg [e ]  ) and the scalars associated 

with the logarithmic and first-difference transformations (  b and c  , respectively) do not 

depend on #  or q, their impacts on the data will be absorbed in the normalizing scalars, and 

hence they will not affect relative comparisons.  Alternative values of #  or q, will only affect 

the #LPF[ ,q]  and the associated scalar, #a[ , ,q]  .   
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Appendix D:  Relating Heterogeneous Industry and Aggregated 's    

 This appendix develops the formula for relating the aggregated   ( agg ) to 

heterogeneous industry 's  ( i ).  We begin with the definitions of agg  and i  that follow 

from equation (5) and are stated in terms of percentage changes in the capital/output ratios  

(( agg aggK / Y ) and ( i iK / Y ), respectively) and the aggregate relative price of capital ( KY
aggP ),    

     
   agg agg agg agg

agg KY KY
agg agg

d K / Y / K / Y

d P / P
  ,        aggY = constant,   (D-1) 

     
   i i i i

i KY KY
i i

d K / Y / K / Y

d P / P
  ,       iY = constant.    (D-2) 

Note that   can be defined in terms of the capital/labor ratio (see Section VI.C).  In this case, the 

derivation presented below is unaffected (merely replace aggY  with aggL  and iY  with iL  in 

equations (D-5) to (D-8) and KY
aggP  with KL

aggP  and KY
iP  with KL

iP  in equation (D-3)), and 

equation (D-9) continues to link aggregated and industry 's .  While the relative price of capital 

varies by industry, we consider a percentage change that is equal across all industries (e.g., a 

change in the nominal or relative price of investment), 

     
KY KY KY KY
agg agg i id P / P d P / P d P / P, i   .      (D-3) 

 We begin with identities relating changes in the aggregated to industry capital, and 

changes in the aggregated and industry capital/output ratios, respectively,   

     
agg i

i

dK dK

d P / P d P / P
  ,          (D-4) 

     
 agg aggagg

agg
d K / YdK

* Y
d P / P d P / P

 ,               aggY = constant,    (D-5) 

     
 i ii

i
d K / YdK

* Y
d P / P d P / P

 ,     iY = constant.    (D-6) 

Substituting equations (D-5) and (D-6) into equation (D-4), dividing both sides by aggK , and 

rearranging, we obtain the following equation, 
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       agg agg agg agg i i

i agg
i

d K / Y / K / Y d K / Y
* Y / K

d P / P d P / P
  .    (D-7) 

The left-side equals agg  by equation (D-1).  Multiplying the right-side by  i iK / K  and 

rearranging, we obtain the following equation, 

     
     i i i i

agg i agg
i

d K / Y * K / Y
* K / K

d P / P
   .      (D-8) 

Using the definition of i  from equation (D-2) and defining the latter object in equation (D-8) as 

an industry weight, we obtain the following equation, 

     agg i i
i

*    ,   i i aggK / K  .      (D-9) 

In equation (D-9), the aggregated   ( agg ) is a weighted average of the industry  ’s ( i ' s ), 

where the i 's  are industry weights defined in terms of industry capital ratios.     
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Table 1:   Summary Statistics For Model And Untransformed Variables 
 

Variable Mean Median 25th 
Quantile 

75th 
Quantile 

Within 
Industry 
Standard 
Deviation 

Industry-
Specific 

Time 
Variation 

 (1) 
 

(2) (3) (4) (5) (6) 

A.  Capital/Output 
*
i,tky  0.0108 0.0092 -0.0069 0.0282 0.0301 0.8724 

i,tky  0.0089 0.0056 -0.0246 0.0400 0.0697 0.7763 

KY*
i,tp  -0.0058 -0.0050 -0.0350 0.0234 0.0504 0.8119 

KY
i,tp  -0.0011 0.0049 -0.0669 0.0694 0.1403 0.8643 

 
B.  Labor/Output 

*
i,ty  -0.0189 -0.0192 -0.0326 -0.0029 0.0320 0.9051 

i,ty  -0.0200 -0.0209 -0.0535 0.0146 0.0795 0.9420 

LY*
i,tp  0.0158 0.0157 0.0017 0.0306 0.0294 0.8093 

LY
i,tp  0.0153 0.0183 -0.0070 0.0431 0.0653 0.8460 

 
C.  Capital/Labor 

*
i,tk   0.0298 0.0290 0.0084 0.0500 0.0386 0.8596 

i,tk   0.0289 0.0280 -0.0142 0.0691 0.0969 0.8824 

KL*
i,tp  -0.0213 -0.0201 -0.0536 0.0097 0.0569 0.8249 

KL
i,tp  -0.0164 -0.0120 -0.0917 0.0609 0.1606 0.8721 

 
Table notes are placed after the final table.  
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Table 2: Ordinary Least Squares Estimates Of Equation (6)  
  Dependent Variable: Capital/Output Ratio 
  Various Critical Periodicities (p#) And Windows (q)  
 
  q = 1 q = 3 q = 5 
  (1) (2) (3) 

p# = 2 σ 

(s.e.) 
[NW s.e.] 
{R2} 

0.229   
(0.022) 
[0.020] 
{0.409} 

0.229    
(0.023) 
[0.022] 
{0.405} 

0.224    
(0.025) 
[0.023] 
{0.398} 

     
p# = 4 σ 

(s.e.) 
[NW s.e.] 
{R2} 

0.329    
(0.016) 
[0.022] 
{0.502} 

0.319    
(0.017) 
[0.024] 
{0.504} 

0.312    
(0.017) 
[0.026] 
{0.492} 

     
p# = 6 σ  

(s.e.) 
[NW s.e.] 
{R2} 

0.333    
(0.016) 
[0.022] 
{0.500} 

0.367    
(0.016) 
[0.027] 
{0.502} 

0.346   
(0.017) 
[0.026] 
{0.502} 

     
p# = 8 σ  

(s.e.) 
[NW s.e.] 
{R2} 

0.331    
(0.016) 
[0.022] 
{0.497} 

0.406    
(0.017) 
[0.034] 
{0.503} 

0.379    
(0.017) 
[0.032] 
{0.491} 

     
p# = 10 σ 

(s.e.) 
[NW s.e.] 
{R2} 

0.331    
(0.016) 
[0.022] 
{0.496} 

0.417    
(0.018) 
[0.037] 
{0.495} 

0.429    
(0.019) 
[0.040] 
{0.499} 

     
p# = 20 σ  

(s.e.) 
[NW s.e.] 
{R2} 

0.330    
(0.016) 
[0.022] 
{0.495} 

0.409    
(0.018) 
[0.037] 
{0.472} 

0.510    
(0.020) 
[0.049] 
{0.511} 

     
p#   σ 

(s.e.) 
[NW s.e.] 
{R2} 

0.330    
(0.016) 
[0.022] 
{0.494} 

0.405    
(0.018) 
[0.037] 

{ 0.467} 

0.499    
(0.020) 
[0.047] 
{0.499} 

 
Table notes are placed after the final table.  
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Table 3:   Instrumental Variable Estimates Of Equation (6) 
  Dependent Variable: Capital/Output Ratio  
  Various Critical Periodicities (p#) And Windows (q) 
 
  q = 1 q = 3 q = 5 
  (1) (2) (3) 

p# = 2 σ  
(s.e.)  
[NW s.e.] 
{F} 

0.374    
(0.069)   
[0.060]   
{6.75} 

0.359    
(0.064)   
[0.055]   
{7.14} 

0.370    
(0.066)   
[0.058]   
{7.32} 

     
p# = 4 σ  

(s.e.)  
[NW s.e.] 
{F} 

0.393    
(0.038)   
[0.053]   
{11.22} 

0.367    
(0.038)   
[0.049]   
{10.57} 

0.396    
(0.042)   
[0.051]   
{10.65} 

     
p# = 6 σ  

(s.e.)  
[NW s.e.] 
{F} 

0.395    
(0.037)   
[0.053]   
{11.55} 

0.412    
(0.035)   
[0.058]   
{12.99} 

0.383    
(0.035)   
[0.056]   
{13.65} 

     
p# = 8 σ  

(s.e.)  
[NW s.e.] 
{F} 

0.395    
(0.037)   
[0.053]   
{11.56} 

0.438    
(0.033)   
[0.062]   
{14.16}

0.425    
(0.035)   
[0.063]   
{14.26} 

     
p# = 10 σ  

(s.e.)  
[NW s.e.] 
{F} 

0.395    
(0.037)   
[0.053]   
{11.56} 

0.450    
(0.033)   
[0.063]   
{14.30} 

0.468    
(0.033)   
[0.067]   
{15.38} 

     
p# = 20 σ  

(s.e.)  
[NW s.e.] 
{F} 

0.395    
(0.037)   
[0.053]   
{11.55} 

0.462    
(0.034)   
[0.065]   
{13.90} 

0.536    
(0.032)   
[0.072]   
{17.74} 

     
p#   σ  

(s.e.)  
[NW s.e.] 
{F} 

0.395    
(0.037)   
[0.053]   
{11.55} 

0.464    
(0.035)   
[0.065]   
{13.77} 

0.548     
(0.033)   
[0.072]   
{18.51} 

 
Table notes are placed after the final table. 
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Table 4:   Ordinary Least Squares Estimates Of Equation (6) 
  Dependent Variable: Capital/Output Ratio 
  Various Critical Periodicities (p#) And q = 3 
  Split-Samples:  1960-1982 and 1983-2005 
 
 Period  q = 1 q = 3 q = 5 
   (1) (2) (3) 

p# = 2 
 

1960-82 σ  
(s.e.) 
[NWs.e.]  
{R2} 

 0.221    
(0.034)  
[0.034] 
{0.427} 

0.219    
(0.035) 
[0.035] 
{0.419} 

0.217    
(0.036)  
[0.036] 
{0.410} 

1983-05 σ  
(s.e.) 
[NWs.e.]  
{R2} 

0.238    
(0.027)  
[0.033] 
{0.371} 

0.242    
(0.030)  
[0.036] 
{0.369} 

0.233    
(0.033)  
[0.040] 
{0.339} 

      
p# = 4 
 

1960-82 σ  
(s.e.) 
[NWs.e.]  
{R2} 

0.292    
(0.021)  
[0.027] 
{0.531} 

0.291    
(0.022)  
[0.030] 
{0.539} 

0.292    
(0.023)  
[0.032] 
{0.522} 

1983-05 σ  
(s.e.) 
[NWs.e.]  
{R2} 

0.366    
(0.022)  
[0.031] 
{0.459} 

0.350      
(0.025)  
[0.033] 
{0.446} 

0.338    
(0.026)  
[0.035] 
{0.407} 

      
p# = 6 1960-82 σ  

(s.e.) 
[NWs.e.]  
{R2} 

0.298   
(0.023)  
[0.029] 
{0.532} 

0.316    
(0.021)  
[0.029] 
{0.510} 

0.296    
(0.0215)  
[0.032] 
{0.483} 

1983-05 σ  
(s.e.) 
[NWs.e.]  
{R2} 

0.366    
(0.022)  
[0.031] 
{0.455} 

0.413    
(0.024)  
[0.040] 
{0.472} 

0.394     
(0.024)  
[0.036] 
{0.472} 

      
p# = 8 
 

1960-82 σ  
(s.e.) 
[NWs.e.]  
{R2} 

0.298    
(0.023)  
[0.029] 
{0.529} 

0.336    
(0.020)  
[0.034] 
{0.472} 

0.306    
(0.020)  
[0.033] 
{0.424} 

1983-05 σ  
(s.e.) 
[NWs.e.]  
{R2} 

0.364  
(0.022)   
[0.031] 
{0.451} 

0.460    
(0.024)  
[0.047] 
{0.496} 

0.441    
(0.025)  
[0.043] 
{0.488} 
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Table 4:   Ordinary Least Squares Estimates Of Equation (6) 
(cont.)  Dependent Variable: Capital/Output Ratio 
  Various Critical Periodicities (p#) And q = 3 
  Split-Samples:  1960-1982 and 1983-2005 
 
 
p# = 10 
 

1960-82 σ  
(s.e.) 
[NWs.e.]  
{R2} 

0.298    
(0.023)  
[0.029] 
{0.528} 

0.341    
(0.020)  
[0.037] 
{0.442} 

0.344    
(0.020)  
[0.039] 
{0.406} 

1983-05 σ  
(s.e.) 
[NWs.e.]  
{R2} 

0.362    
(0.022)  
[0.031] 
{0.449} 

0.472    
(0.025)  
[0.051] 
{0.499} 

0.497    
(0.027)  
[0.053] 
{0.045} 

      
p# = 20 
 

1960-82 σ  
(s.e.) 
[NWs.e.]  
{R2} 

0.298    
(0.023)  
[0.030] 
{0.527} 

0.335    
(0.022)  
[0.036] 
{0.407} 

0.415    
(0.025)  
[0.053] 
{0.400} 

1983-05 σ  
(s.e.) 
[NWs.e.]  
{R2} 

0.361    
(0.023)  
[0.031] 
{0.447} 

0.464    
(0.026)  
[0.052] 
{0.484} 

0.575    
(0.028)  
[0.063] 
{0.535} 

      
p#   1960-82 σ  

(s.e.) 
[NWs.e.]  
{R2} 

0.298    
(0.023)  
[0.030] 
{0.527} 

0.332    
(0.022)  
[0.036] 
{0.403} 

0.404    
(0.028)  
[0.052] 
{0.391} 

1983-05 σ  
(s.e.) 
[NWs.e.]  
{R2} 

0.361    
(0.023)  
[0.031] 
{0.447} 

0.460   
(0.026)  
[0.052] 
{0.480} 

0.564    
(0.027)  
[0.060] 
{0.531} 

 
Table notes are placed after the final table. 
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Table 5:   Ordinary Least Squares Estimates of Equations (6), (10), and (11) 
  Three Different Estimating Equations 
  Various Critical Periodicities (p#) And q = 3 
 
  Dependent Variable 
  ky*i,t ℓy*i,t kℓ*i,t 
    
    
p# = 2 σ  

(s.e.) 
[NW s.e.]  
{R2} 

0.229    
(0.023) 
[0.022] 
{0.405} 

0.614    
(0.086) 
[0.135] 
{0.259} 

0.120   
(0.035) 
[0.050] 
{0.154} 

     
p# = 4 σ  

(s.e.) 
[NW s.e.]  
{R2} 

0.319    
(0.017) 
[0.024] 
{0.504} 

0.541   
(0.052)  
[0.124] 
{0.274} 

0.262  
(0.028)  
[0.051] 
{0.274} 

     
p# = 6 σ  

(s.e.) 
[NW s.e.]  
{R2} 

0.367    
(0.016) 
[0.027] 
{0.502} 

0.594    
(0.049)  
[0.124] 
{0.320} 

0.304    
(0.025)  
[0.052] 
{0.315} 

        
p# = 8 σ  

(s.e.) 
[NW s.e.]  
{R2} 

0.406    
(0.017) 
[0.034] 
{0.503} 

0.629    
(0.045) 
[0.118] 

{ 0.364} 

0.333    
(0.024) 
[0.053] 

{ 0.339} 
         
p# = 10 σ  

(s.e.) 
[NW s.e.]  
{R2} 

0.417    
(0.018) 
[0.037] 
{0.495} 

0.644    
(0.042)  
[0.113] 
{0.382} 

0.333   
(0.023)  
[0.051] 
{0.333} 

        
p# = 20 σ  

(s.e.) 
[NW s.e.]  
{R2} 

0.409    
(0.018) 
[0.037] 
{0.472} 

0.654    
(0.040)  
[0.106] 
{0.390} 

0.310    
(0.022)  
[0.046] 
{0.301} 

        
p#   σ  

(s.e.) 
[NW s.e.]  
{R2} 

0.405    
(0.018) 
[0.037] 

{ 0.467} 

0.655    
(0.040)  
[0.105] 
{0.389} 

0.303    
(0.022)  
[0.046] 
{0.294} 

 
Table notes are placed after the final table.   
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Table 6:  Ordinary Least Squares Estimates Of Equation (6) 
  Dependent Variable: Capital/Output Ratio 
  p#=8 and q=3 
  Heterogeneous Industry i 's  And Aggregated agg   

 
Panel A:  Heterogeneous Industry i 's   

 Industry         σ         (s.e.)     [NW s.e.] 
 

1 Agriculture 0.289   (0.062)   [0.089]  
2 Metal mining 0.667   (0.130)   [0.167] 
3 Coal mining 0.305   (0.073)   [0.076] 
4 Oil and gas extraction 0.649   (0.040)   [0.032] 
5 Non-metallic mining 0.586   (0.033)   [0.029] 
6 Construction 0.410   (0.076)   [0.098] 
7 Food and kindred products 0.078   (0.021)   [0.034] 
8 Tobacco 0.312   (0.086)   [0.140] 
9 Textile mill products 0.204   (0.054)   [0.063] 
10 Apparel 0.547   (0.081)   [0.098] 
11 Lumber and wood 0.484   (0.051)   [0.067] 
12 Furniture and fixtures 0.203   (0.065)   [0.081] 
13 Paper and allied 0.148   (0.048)   [0.054] 
14 Printing, publishing and allied 0.484   (0.053)   [0.043]  
15 Chemicals 0.210   (0.037)   [0.051] 
16 Petroleum and coal products 0.294   (0.016)   [0.019] 
17 Rubber and misc plastics 0.300   (0.064)   [0.059] 
18 Leather 0.425   (0.093)   [0.059] 
19 Stone, clay, glass 0.371   (0.031)   [0.037] 
20 Primary metal 0.562   (0.045)   [0.045] 
21 Fabricated metal 0.401   (0.026)   [0.034] 
22 Machinery, non-electrical 0.483   (0.071)   [0.067] 
23 Electrical machinery 0.486   (0.074)   [0.100] 
24 Motor vehicles 0.365   (0.051)   [0.033] 
25 Transportation equipment & ordnance 0.419   (0.091)   [0.052] 
26 Instruments 0.570   (0.074)   [0.108] 
27 Misc. manufacturing 0.246   (0.065)   [0.061] 
28 Transportation 0.358   (0.098)   [0.078] 
29 Communications 0.240   (0.122)   [0.112] 
30 Electric utilities 0.231   (0.108)   [0.146] 
31 Gas utilities 0.473   (0.088)   [0.080] 
32 Trade 0.744   (0.048)   [0.054] 
33 Finance, Insurance & Real Estate 1.160   (0.178)   [0.140] 
34 Services 0.633   (0.048)   [0.094] 
35 Government enterprises 0.272   (0.027)   [0.018] 
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Table 6:  Ordinary Least Squares Estimates Of Equation (6) 
(cont.)  Dependent Variable: Capital/Output Ratio 
  p#=8 and q=3 
  Heterogeneous i 's  

 
Panel B:  Aggregated agg   

 Heterogeneous 
 

Homogeneous 

 Capital 
Weights 

Equal 
Weights 

 

Capital 
Weights, 
Selective  
Industries 

  

 (1) (2) (3) (4) 
       

agg   0.657 0.417 0.857  0.406 
 

(s.e.) (0.055) (0.067) (0.070) 
 

 (0.017) 
 

[NW s.e.] [0.043] [0.072] [0.089]  [0.034] 
 

 
 
 
Table Notes:   
 
Table 1:  The table contains statistics for the capital/output, labor/output, and capital/labor 
models in panels A., B., and C., respectively.  In a given panel, the first and third rows are the 
model variables; the second and fourth rows are comparable variables that have not been 
transformed by the LPF.  The sample period is 1960-2005 before applying the LPF and 
differencing.  For a given industry, the effective time dimension equals these 46 data points less 
2q for the construction of the LPF less one for first differencing.  The statistics reported in this 

table are based on an LPF of #p 8  and q = 3.  The data underlying the moments in column 1 to 
5 have had industry means removed by first-differencing.  Column 6 reports the variance due to 
industry-specific time variation (i.e., where the variance due to industry and common time 
effects have been removed) as a percentage of the overall variance in the series; this statistic is  
(1 – R2) from the following auxiliary regression for each variable, i,tx :  i,t t i,tx a b r    , 

where a  and tb  are estimated parameters and i,tr  is a residual.  

  
Table 2:  OLS estimates of   are based on panel data for 35 industries.  The sample period is 
1960-2005 before applying the LPF and differencing.  For a given industry, the effective time 
dimension equals these 46 data points less 2q for the construction of the LPF less one for first 
differencing.  We use the maximum amount of available data, and hence the sample size changes 
with q.  Figures in parentheses (s.e.) are White (1980) heteroskedasticity corrected standard 
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errors.  Figures in brackets [NW s.e.] are Newey-West (1994) heteroskedasticity-autocorrelation 
corrected (HAC) standard errors with (T-1) lags, which is equivalent to using Bartlett kernel with 
a bandwidth of T.  A constant term and fixed time effects (the number of fixed time effects 
equals the effective time dimension less one due to the inclusion of the constant) are included in 
the regression equation but are not reported.  The R2's are not comparable across cells because 

the dependent variable depends on #p  and q.  Our preferred estimate is for the equation for 

which the LPF parameters are #p 8  and q = 3.   
 
Table 3:  IV estimates of  .  See the notes to Table 2 for further information.  The instrument is  

KY&
i,t 2P  , which is constructed from equation (7) as a one-sided filter (h = {0, −q}) and lagged two 

periods.  Figures in braces are F-statistics computed from the first-stage auxiliary regression of 
KY*
i,tP  on KY&

i,t 2P   (and time dummies) that assess instrument relevance.  The null hypothesis of a 

weak instrument is evaluated at the 5% level and rejected for F’s greater than or equal to 8.96 
(Stock, Wright, and Yogo, 2002, Table 1).  Our preferred estimate is for the equation for which 

the LPF parameters are #p 8  and q = 3.   
 
Table 4:  OLS estimates of   for split samples.  See the notes to Table 2 for further information.  
Our preferred estimate is for the equation for which the LPF parameters are p# = 8 and q = 3.    
 
Table 5:  OLS estimates of   for three different estimating equations.  See the notes to Table 2 
for further information.  The window is fixed at q = 3; our preferred estimate is for the equation 
in column (1) for which the Low-Pass Filter parameter is p# = 8.    
 
Table 6:  OLS estimates of industry i 's .  See the notes to Table 2 for further information.  

Panel A contains estimates that allow the i 's  to vary by industry.  Panel B contains aggregated 

agg 's  that are weighted averages of the i 's  in Panel A as defined in equation (12).  See 

Appendix D for a derivation of equation (12).  Column 1 uses capital weights for all 35 
industries; the weight for a given industry ( iω ) is defined as follows, i i,t i,tt t i

ω = K / K   .  

Column 2 uses equal weights for all 35 industries.  Column 3 uses capital weights for six 
selective “post-industrial” industries:  Construction (6), Transportation (28), Communications 
(29), Trade (32), Finance, Insurance and Real Estate (33) and Services (34).  Column 4 contains 
the estimates for a homogeneous model with the restriction that i i    ; that is, the 

benchmark estimates presented in Table 2 and equation (9).  Standard errors are in parentheses or 

brackets and are computed with the following formula, ω Vω , where ω  is a vector of weights 
and V is the variance-covariance matrix of the estimated coefficients.  Standard errors in 
parentheses or brackets are based on a V computed with White (1980) heteroskedasticity 
corrected standard errors or Newey-West (1994) heteroskedasticity-autocorrelation corrected 
(HAC) standard errors with (T-1) lags, respectively.   
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Figure 1
Frequency Response Of a[ω : ω#, q]

Equation (8a)    
Various Critical Periodicities (p#); q=3
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p# = 4
p# = 6
p# = 8
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Figure 2
Frequency Response Of a[ω : ω#, q]

Equation (8a)
For Various Critical Periodicities (p#); q=3
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Figure 3
Frequency Response Of a[ω : ω#, q]

Equation (8a)
For The Ideal LPF And Various Windows (q); p# = 8

χ[q] Measures Contamination; See Section IV  For Details

q = 1

q = 3

q = 5

χ[q=3] = 0.054

χ[q=5] = 0.055

χ[q=1] = 0.314


