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Abstract

We analyze how financing constraints affect risk-taking behaviors of non-financial
firms. We show that improved credit conditions can either promote or deter socially
productive risk-taking. Following an interest rate cut, firms are less likely to take risks in
a low interest rate environment but more inclined to do so in a high interest rate setting.
As the interest rate rises, the dispersion of firm returns and total factor productivity
may initially increase but then decrease after reaching a certain point. Since higher
interest rates often lead to less investment, the relationship between economic output
and interest rates (the IS curve) forms a “crawl-dive” hump, where output rises slowly
at first due to more risk-taking but then drops sharply. An optimal interest rate may

exist, determined by the extent of return associations and credit limits.
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1 Introduction

Socially productive risk-taking is crucial to driving opportunities and progress within soci-
ety. It fuels the exploration of new ideas and ventures, which are essential for aggregate

productivity. However, the propensity for non-financial firms to take risks varies according
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to numerous factors, such as the nature of a project’s risk, the individual’s risk tolerance,
leverage limits, and the prevailing interest rates.

How do debt and equity financing shape firms’ willingness to take socially desirable
risks? In the wake of the global financial crisis, persistently low real interest rates have
reshaped the financial landscape, raising important questions about the role of financing
constraints in corporate risk-taking. Do lower interest rates spur firms to take more risks, or
do they reinforce caution? Does a further decline in rates encourage innovation and invest-
ment, or distort incentives? And how might financial regulations affect the power of interest
rate policy, especially in environments where firms’ successes and failures are closely cor-
related? These debates gained renewed attention recently, when the current US government
administration repeatedly pushed for lower interest rates, arguing that they would boost US
competitiveness and spur innovation among American firms.

This paper answers these questions by studying the joint impact of interest rates and
leverage restrictions on firms’ risk-taking incentives. Financial conditions produce non-
linear/non-monotonic effects on risk-taking, indicating the existence of an optimal interest
rate under different degrees of financing constraints and return associations among firms. In
short, although a high interest rate hurts capital accumulation and output, an overly low rate
deters risk-taking, reducing overall productivity and negatively impacting the economy as
well.

Using multiple proxies for risk-taking, we begin with an empirical analysis of how
changes in interest rates influence risk-taking in the US. We study different periods marked
by varying interest rates and leverage conditions. Our findings indicate a strong, non-linear,
and non-monotonic relationship between the interest rates and the risk-taking measures.
For example, although interest rate levels and policy cuts were similar in 2001 and 2007,
risk-taking measures fell in 2001 but rose in 2007 when firms held higher leverage. This un-
derscores the critical role that financial conditions can play in shaping risk-taking behaviors.

To understand the impact of financial conditions on risk-taking, we explore a model sce-
nario featuring risk-averse entrepreneurs with two investment options: a risk-free project
yielding a higher return than the risk-free rate, and a riskier project that can be either suc-
cessful or unsuccessful and promises the highest expected return. For either type of project,
firms can borrow up to a limit. Undertaking a risky project incurs idiosyncratic running
costs, such as those associated with testing and prototyping in research and development,
which can vary significantly across industries and project types. The availability of a risk-
free project provides an alternative option, affecting entrepreneurs’ choice to pursue riskier
ventures based on borrowing capacity and running costs. As a result, some firms choose to
take risks, while others do not.

We obtain two key effects. First, easing financial conditions (through higher leverage



limits or lower interest rates) increases firm profitability and firm value; This “valuation
effect” reduces the incentive to pursue risky high-return projects, as the need for higher
expected growth through risk-taking decreases when the firm value increases. However,
easing liquidity also triggers a traditional “search-for-yield” effect, making riskier projects
with a higher expected return more attractive, sometimes understood as the substitution
effect. In particular, the model establishes a critical threshold of the idiosyncratic costs to
execute the risky project, below which the firms choose the risky option. We analyze how
leverage constraints and interest rates influence this threshold via the valuation and search-
for-yield effects.

Suppose that firms are financially constrained if they implement the risky project, though
we also consider cases in which they are not. Reducing interest rates primarily boosts the
value of firms, leading to fewer firms taking risks. This happens when firms’ equity is only
marginally leveraged, or low debt servicing costs in general, since the reduction of interest
rate increases the (expected) return of the safe project more in percentage terms, making the
safe project more attractive. Therefore, lowering the policy rate may not incentivize firms
to pursue socially beneficial but individually risky projects under strict leverage constraints.
In contrast, when firms can leverage extensively or when debt servicing costs are high, the
(leveraged) valuation effect is outweighed by the substitution effect, driven by an improved
leveraged return relative to leveraged risk. In this case, lowering the policy rate encourages
greater risk-taking. As a result, the “search-for-yield” behavior (e.g., Rajan (2006)) is more
pronounced in a low interest rate environment only if firms are highly leveraged.

Our theory thus suggests that further rate reductions in an environment with low interest
rates can discourage firms from pursuing socially beneficial but risky projects. This effect
could cause aggregate economic indicators to show hump-shaped patterns. For example, the
“IS” curve, which illustrates the relationship between output and the real interest rate, can
slope upward when rates fall to very low levels. Consequently, an overly accommodating
monetary (or fiscal) policy could be contractionary.

In summary, although a lower interest rate generally stimulates investment and output
constrained by financial frictions, it can discourage productive risk-taking, diminish produc-
tivity, and ultimately decrease output if it drops too much. In this sense, financial frictions
bring about the usual endogenous capital misallocation and selection in the existing exoge-
nous productivity distribution, such as in Midrigan and Xu (2014), Moll (2014), and Buera
and Moll (2014);' But more importantly, our model shows that frictions can influence the

productivity distribution itself through risk-taking, creating the possibility of an optimal in-

'Gopinath et al. (2017) found substantial capital misallocation in southern Europe, showing that the de-
cline in real interest rates, often linked to euro convergence, expanded the dispersion of capital returns and
reduced total factor productivity (TFP) by channeling capital to less productive firms in underdeveloped finan-
cial markets. See also recent work on the counterproductive general equilibrium effect of a low interest rate
by Benigno and Fornaro (2018), Reis (2021), Kiyotaki et al. (2021), and Asriyan et al. (2024).



terest rate level because many aggregate variables are hump-shaped when we vary the target
interest rate level.

Calibrating to macro- and micro-data, we indeed find a hump-shaped total factor produc-
tivity (TFP) curve and a hump-shaped IS curve by varying the interest rate. When interest
rates are high, reducing them increases both investment and risk-taking by lowering bor-
rowing costs. However, when interest rates are already low, further cuts still encourage
investment by reducing borrowing costs, but hurt risk-taking. Consequently, the humped IS
curve has a flat slope on the left branch (where interest rates are low and sensitivity is low)
and a steep slope on the right branch (where interest rates are high and sensitivity is high).
We label this hump as a “crawl-dive” hump.

In addition, the calibrated model replicates the decline in risk-taking measures observed
in 2001 and the increase in 2007, despite similar interest rate levels and cuts. This pattern is
closely tied to the higher firm leverage in 2007 than in 2001. Thus, stricter leverage require-
ments introduced after the global financial crisis, together with persistently low real interest
rates, could lead to sustained reductions in risk-taking and lower equilibrium marginal prod-
ucts of capital, further reinforcing the low interest rate environment.

Finally, our exercises identify an optimal target interest rate based on the extent of the
interdependence of firms’ risky projects and specific leverage constraints. Although this
paper leaves aside long-term influences like demographic changes or technological shifts
on the long-run interest rate, it focuses on the real rate component that can be targeted by
monetary-fiscal policies at least in the medium run. Besides savers, the interdependence of
firm production and credit limits shape this optimal target rate.

In modeling interdependence as an extension, we borrow from the Statistics literature by
using a generalized binomial distribution that considers the interdependence of the Bernoulli
trials. Specifically, risk-taking behaviors of firms can influence the success probabilities of
other firms. However, each entrepreneur takes their probability of success as given, so the
aggregate economy contains an externality. The positive association captures the spillover
of knowledge (for example, Jones and Williams (2000)) when the project is successful and
the spillover of risk (for example, the conditional value at risk along the line of Adrian and
Brunnermeier (2016)). In contrast, negative association captures crowding out and learning
from others’ mistakes.

When project outcomes are positively associated, interest rates should be lowered to
direct resources toward firms engaged in productive projects, which generally feature ben-
eficial knowledge spillover. In contrast, raising interest rates can be advantageous when
project outcomes are negatively associated. However, a lower rate, which boosts invest-
ment, may also be optimal if the negative association is particularly severe, since the lower

rate can deter risk-taking too because of the valuation effect. Credit limits also influence



the optimal interest rate. This suggests that financial regulation policies (e.g., targeting asset
collaterability) significantly impact monetary or fiscal policy effectiveness. Coordination
should balance efficiency and risk in the economy. For realistic credit limits in our model,
e.g. within 10% above or below our calibrated benchmark, and a broad range of association

scenarios, the optimal real lending rate falls between 2.2% and 3.1%.

Related literature. Our theory of risk choices in the context of financial conditions is
closely aligned with the literature on entrepreneurship with financial frictions, as seen in
works such as Cagetti and De Nardi (2006), Buera and Shin (2013), and Buera et al. (2015).
In these studies, agents face the decision to become an entrepreneur or a worker (or a serial
entrepreneur in Brandt et al. (2022)), and financial frictions influence this decision. Notably,
agents’ optimization problems often exhibit non-convexity due to discrete choices, which
can intertwine risk-taking with career decisions. For example, in Vereshchagina and Hopen-
hayn (2009), where agents make occupational and risky project choices under no-borrowing
constraints, those in the intermediate wealth range who opt to be entrepreneurs may exhibit
risk-seeking behavior, as this “lottery” mechanism can help smooth value functions and may
bring them to the top wealth. Compared to this literature, our emphasis lies in illustrating
how varying financial conditions impact firms’ risk-taking behavior, the related macroeco-
nomic effects, and the optimal interest rate.

Our framework connects naturally to financial frictions® and risks in general. Based on
Bernanke et al. (1999), Christiano et al. (2014) show that risk shocks in a quantitative busi-
ness cycle model with financing constraints generate countercyclical spreads and account
for a large fraction of macroeconomic fluctuations. Miao and Wang (2010) include long-
term risky defaultable debt in a macroeconomic model with financial shocks to the recovery
rate. Cui and Kaas (2020) develop a framework to analyze belief risks in credit contracts.
We add to this literature by examining the effect of financing constraints/interest rates on
endogenous risk-taking behaviors.

Our work also adds to the literature on active risk management: the seminal paper by
Froot et al. (1993) in the static case and Bolton et al. (2011) in the dynamic case show that
financing constraints generate the rationale for active risk management. In studying risk-
taking with banks, Dell Ariccia et al. (2014) find the trade-off between risk shifting and
search-for-yield effects in providing credit. When the borrowing cost falls, risk shifting can
occur because the marginal return on the monitoring is higher, inducing banks to monitor
more and reduce the risk of a loan. However, in subsequent empirical studies, Dell Ariccia
et al. (2017) and Jiménez et al. (2014) (and the references therein) find that the loan yield

data mostly suggest the search-for-yield effect. Unlike banks, non-financial firms may have

2The literature on financial frictions is vast, and the seminal contribution at least includes Kiyotaki and
Moore (1997), Bernanke et al. (1999), Mendoza (2010), and Brunnermeier and Sannikov (2014).



more curvature in their preferences because they are more risk-averse or face more dividend
smoothing requirements (Jermann and Quadrini, 2012); they may also face tighter financing
constraints as part of the demand side for credit. This feature makes the valuation effect more
salient, and consequently, in the data, we observe a non-monotonic relationship between
interest rate and risk-taking of non-financial firms. The model shows that the non-monotonic
effect via a project selection problem differs from the usual bank’s risk-monitoring problem.

We use a highly tractable framework that yields closed-form individual risk-taking pol-
icy functions. At the aggregate level, even project associations are accounted for without
complicating individual firm decisions, thanks to the flexible generalized binomial distri-
bution with a dependence structure of each Bernoulli trial. Although this technical feature
borrowed from the Statistics literature may be of independent interest, its primary value is
simplifying the optimal target interest rate analysis in response to return associations among
risky projects.

The remainder of the paper is organized as follows. We first present stylized facts about
the non-monotonic risk-taking measures to variations in interest rates. Section 3 presents a
simple two-period model, illustrating the key effects of interest rate and leverage on risk-
taking. Section 4 extends the two-period model to an infinite-horizon economy. Section 5
shows quantitatively how the target interest rate and the borrowing constraint shape macroe-
conomic outcomes and the optimal level of interest rate. Section 6 considers the associ-
ation/correlation between project returns, which significantly influences the policy discus-

sion. Section 7 concludes.

2 Motivating Evidence

We start with some evidence about the non-monotonic relationship between firms’ risk-
taking behavior and interest rates. As a proxy for firm risk-taking behavior, for a given year,
we first look at the cross-sectional dispersion of return on equity (ROE). ROE is calculated
by net income over total equity in book value (see Appendix A for data description). When
more firms undertake riskier ventures, the ex-post measured ROE should exhibit a higher
cross-sectional dispersion since some firms will be successful and some other firms will fail.

Figure 1 plots the cross-sectional ROE standard deviation (ROE dispersion) against the
logarithmic level of the gross Cleveland real interest rate, a widely used proxy for real rates
provided by the Federal Reserve Bank of Cleveland. The figure also includes a quadratic fit
and a 95% confidence interval. The relationship appears non-linear: at higher levels of the
real interest rate, ROE dispersion declines with the rate, while at lower levels, the relation-
ship reverses and becomes positive. This suggests a potential non-monotonic relationship

between real interest rates and firm risk-taking behaviors. This pattern holds at the industry



Figure 1: Risk-taking and Real Interest Rate
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Note: This figure plots the dispersion (cross-sectional standard deviation) of return on equity (ROE) against
the real interest rate series provided by the Federal Reserve Bank of Cleveland.

level, and we include the plot in Appendix A.

What might contribute to the interest rate’s non-monotone effect? Firm leverage can be
an important factor. To see this, we examine 2001 and 2007, marking the onset of respective
recessions. During both periods, the Cleveland rate was around 1.7 — 1.8%, yet the median
firm leverage ratio in 2007 surpassed that of 2001 by approximately 19%. Despite encoun-
tering similar interest rate reductions (about 150 basis points) in both years, they triggered
differing responses in the ROE dispersion. The measure declines 7% after 2001, whereas it
rises by 3.24% after 2007.

Further, we construct a firm-level metric, following John et al. (2008), which captures
the firm-level variation in return on equity (ROE) over an eight-year window following a
given year. This measure is used to test whether firm-level patterns are consistent with the

evidence discussed above. We estimate the following baseline specification:
Yijit = Bo + B1(Re) ARy + Xije1 + fi + hy + T4, (1)

where y;;. 1s the firm-level risk-taking measure for firm ¢ in sector j in a given year ¢,
R; is the level of interest rate, AR; is a measure of interest-rate shock, I'; is an aggregate
control which includes the current and lagged terms of inflation, unemployment rate, real
GDP growth rate, and the lagged interest rate.” The vector of firm-level controls X;;, ;

includes the firm leverage ratio (long-term debt over fixed assets such as property, plant, and

3The results remain robust when using only one-period lagged aggregate controls.
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Table 1: Variation in ROE with respect to Changes in Interest Rate

M @) 3 “ &) (0)
VARIABLES ROEstdinlog ROEstdinlog ROE stdinlog ROE stdinlog ROE stdinlog ROE stdin log

mpshock 1.392%** -0.099 1.786%** -1.155%** 1.490%*3* -0.987#**
0.441) (0.268) 0.417) (0.226) (0.294) (0.182)
Observations 50,163 52,324 49,629 53,085 48,415 53,244
R-squared 0.614 0.709 0.612 0.697 0.579 0.726
Firm FE YES YES YES YES YES YES
Interest use ftr ffr ffr2 ffr2 Cleveland rate  Cleveland rate
Interest level low high low high low high

Robust standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1
Note: Results from estimating equation (1). Alternative measures of the real interest rate are employed to
classify the rate regime: the real federal funds rates, using the federal funds rate deflated by the past inflation
(ffr, columns 1 and 2) and deflated by the expected inflation (ffr2, columns 3 and 4); and the Cleveland real
rate (columns 5 and 6).

equipment), size (total assets), market-to-book ratio, ROE, return on assets (ROA), return on
investment (ROI), Tobin’s Q, and cash holdings (cash and short-term investments over total
assets). These firm-level data are drawn from US COMPUSTAT covering 1984 to 2019.
Firm fixed effects (f;) and sector fixed effects (h;) are included. We cluster standard errors
two ways to account for correlations within firms and within years.

Our primary coefficient of interest, 31, captures how interest rate shocks influence firm
risk-taking behavior, as measured by v;;:. Importantly, 5, (R;) may vary with the level of
interest rates. Motivated by the non-linearity observed in Figure 1, we split the sample into
two sub-samples based on the level of interest rates: one for high rate periods and one for
low rate periods. We use the median real interest rate as the threshold, classifying years with
rates above (below) the median as high- (low-) rate periods. We consider several measures
of the real interest rate, including the federal funds rate deflated by past inflation (“ffr”)
and expected inflation (“ffr2”), the Cleveland real rate. To capture exogenous interest rate
fluctuations, we use the monetary policy shock series from Jarociriski and Karadi (2020).*

Table 1 presents the findings derived from estimating specification (1). The coefficient
B is significantly positive when the interest rate is low and, conversely, negative when the
interest rate is high. A one-unit monetary policy shock—corresponding to an unexpected
interest rate cut of approximately 3 to 6 basis points, as estimated by Jarociriski and Karadi
(2020)—reduces firm-level ROE variation in low-interest-rate environments, with a semi-
elasticity of approximately 1.4 to 1.8. In contrast, under high-interest-rate conditions, the
same shock leads to an increase in ROE variation, with semi-elasticities ranging from —0.1
to —1.1 across different real interest rate measures.

Notice that the ROE measures above are “book” measures. In a previous version of

the paper, we also looked at “market” measures.” We examined the standard deviation or in-

4 Alternative shock measures, such as those from Swanson (2021), yield similar results.
SWe also tried other measures such as research and development (R&D), which show similar patterns.



terquartile range (IQR) of individual daily stock returns over a year as an alternative measure
of firm-level risk-taking. Using this proxy, we find similar patterns. In the aggregate, we
also observe a humped relationship between the cross-sectional median of this risk measure
and the real interest rate; At the firm level, the coefficient (3, is positive in periods of low
interest rates and turns negative in periods of high interest rates. Furthermore, even though
interest rates dropped similarly, the 5-year moving average of the (cross-sectional) median
IQR fell by 7.5% after 2001 but rose by 2% after 2007, again highlighting how firm leverage
can influence risk-taking.

The above findings prompt us to theoretically investigate the influence of interest rates

and leverage, or broader financial conditions, on firm risk-taking.

3 A Simple Leveraged Risk-taking Model

In this section, we examine the effect of financing constraints on risk-taking behaviors in
a simple two-period model. The model shows that the relationship between risk-taking

incentives and financial conditions is non-monotonic.

3.1 An Entrepreneur’s Problem

There are two periods and two types of projects. An entrepreneur discounts between two
periods with a discount factor 5 and picks one of the two types of projects. The risky type
has two possible returns: with probability p, the return is I1*; with probability 1 — p, the

return is I1'. The expected return of the risky project is denoted by
IT = pIl" + (1 — p)IT".

The entrepreneur can also choose the safe type with return I1/. The entrepreneur can borrow
at a gross interest rate R with a financing constraint specified later.

For exposition reasons, we assume that
nm>T1>1>R>T. Al

The expected return of the risky project II is higher than the return II/ of a safe project.
Unlike Vereshchagina and Hopenhayn (2009), who study the choices of projects with the
same expected return,’ we impose II > II/ so that socially it may be optimal to take risks

while it may not be the case at individual levels. The return of the risky project is higher than

However, we prefer the return measures since firms can take “ordinary” risks without R&D.
They study why entrepreneurs take risks even when expected returns are the same as the safe return.
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I1/ when the project is successful (that is, with the return IT"), while the return is lower than
I17 if the project is unsuccessful (that is, with the return Hl). Also, ITY > R so that the safe
project has a higher return than the risk-free rate. This might be natural, as running a firm
generally should have a higher return than the risk-free rate. Finally, our analysis abstracts
from the saving in risk-free assets, since they are dominated by running the safe project.
In the macroeconomic model, we will consider a case in which an entrepreneur could be
indifferent between a safe project and risk-free deposits.

That is, the entrepreneur decides between two leveraged projects, with the safe one hit-
ting the borrowing constraint specified later, while the risky one may or may not have a

binding borrowing constraint. In addition to A1, we assume that
II/TI < TIMITY, where I = pIT' + (1 — p)II" A2

so that the risk-free project return is not too high, which captures reasonable features in
practice and turns out to be useful in simplifying the analysis.

Let w denote the wealth level of the entrepreneur at the beginning of each period, and let
s be the amount invested in a project which can be used as collateral. We specify the utility
function of the entrepreneur as

u(c) = loge,

where consumption/dividends ¢ = w — s. It may initially seem that the entrepreneur owns
the firm, but the entrepreneur can also be its manager, so ¢ could also be interpreted as a
dividend payout. Besides closed-form solutions, there are several advantages of assuming
u(c) = log c. The curvature in u(.) captures the manager’s preference for dividend smooth-
ing. Lintner (1956) first showed that managers consider dividend smoothing over time, a
fact further confirmed by subsequent studies. In addition, increasing c can be interpreted as
equity share repurchases while reducing c can be thought of as sales of new shares.

Putting curvature in u(.) is thus a simple way of modeling the speed with which firms
can vary the funding source when financial conditions change.” The model can thus quickly
show how financial structures influence risk-taking. Notice that what is crucial is the con-
cavity that generates the valuation effect below, but log utility simplifies the algebra and
delivers reasonable quantitative results in the macro model later.®

Importantly, there is a running effort cost to implement the risky project. This cost re-
quires e units of time efforts of the entrepreneur, generating v(e) disutility where v'(e) > 0.
The level of e is project-specific, so it is a state variable, and e follows a certain distribution.

For instance, developing a novel hardware prototype might demand 500 hours of engineer

7Jermann and Quadrini (2012) also assume dividend adjustment costs, supported by evidence cited therein.
81n the infinite horizon model, it implies (1 — /) fraction of net worth is used for paying dividends and
rewarding managers. The calibrated (5 and log utility deliver reasonable quantitative results (see Section 5).

10



and founder time, as well as external testing effort and expense that are wholly idiosyn-
cratic to the specifications and complexity of that particular design. Likewise, launching a
bespoke cloud-based software service could incur 600 developer-hours before any customer
feedback arrives, highlighting how each project’s e (and thus v(e)) varies uniquely with its
scope and requirements. We will solve for the threshold in the distribution, below which the
entrepreneur decides to take risks.

Notice that the cost resembles the entrepreneurial choice in the Lucas (1978) span-of-
control model. In a classic span-of-control setup, the heterogeneity lies in the entrepreneur’s
ability to manage workers; here, the capability is reflected by the disutility. The smaller e,
the more efficient the entrepreneur is in running the risky project.” It is more straightforward
to replace the state e by n = v(e) since v(e) will enter linearly into the utility function. Note
that the effort e is drawn exogenously from an i.i.d. distribution, we say 1 € [n, +00) is
drawn from an i.i.d. distribution (note: the lower bound does not have to be positive or even
finite).

Let b denote the level of borrowing. The value of implementing the risky project,

V" (w,n), can be written as

V"(w,n) = max { log(w —s) — \77//—1—6]) log(IT"(s 4 b) — Rb)

s,b
v(e)
+ B(1 — p)log(TT(s + b) — Rb)}

s.t. 0 < b < 0s,

where 0 is a parameter that governs the tightness of the borrowing constraint. The en-
trepreneur can put in internal savings s, together with the borrowing b; next period, the
entrepreneur earns either I1"(s + b) if the project turns out to be productive, or II!(s + b) if
the project turns out to be unproductive. The interest payment is naturally Rb. The amount
of borrowing, b, is limited due to financial frictions. The entrepreneur can pledge some of
the capital s as collateral, i.e., borrow up to 0 fraction of its capital at the time of borrowing.

The value function of implementing the safe project, V/(w), can be written as
Viw) = max { log(w — s) + Blog(Il¥ (s + b) — Rb)}
s.t. 0 < b < Os.

Compared to the value function V" (w, e), the cost of implementing the risk-free project is

normalized to 0, and the return in the next period is certain. The value of an entrepreneur

9Cui and Kaas (2020) prove that 7 is equivalent to goods costs proportional to the wealth of entrepreneurs
(given the utility and technology in this environment).
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with effort cost unit 77 and wealth w is thus
V(w,n) = max{V"(w, 1), V/(w)}.

So, the realization of 7 controls whether the firm chooses a risky or a risk-free project
in period t. We abstract from the default issue to focus on the project choices, and firms are
required and able to repay all their debt regardless of the realization of the project return.
Appendix D introduces the potential of default. Optimization shows that s is linear in the
wealth level w, independent of the choice of projects. That is, s = pw, with ¢ = % When
the entrepreneur chooses the safe project, their firms will borrow to the limit # = 6 since
II/ > R. When the entrepreneur chooses the risky project, depending on the interest rate R,
6 can be one of the three: 0, 6, and 6* as the level of leverage when the firm is unconstrained:

M1 — RII I K

_— -yt -
V= R - R) r— g PP g

2)

Assumptions Al and A2 imply that 8 > 0. The following proposition determines the
threshold cost of taking on the risky project. In simple words, the threshold is the difference

in logarithmic leveraged returns.

Proposition 1. Suppose Al and A2 hold. The leverage of a firm that implements the risky

project satisfies

0 = min{6*, 0},

where 0% is defined in (2) and 0* decreases in interest R. An entrepreneur with n <

max {7, 7} chooses the risky project and the threshold level 7) satisfies

3)

- 1" + (11" — R)g IC + (II' — R)#
il = Bplog (Hf+(nf—R)9‘> +B(1 —p)log (Hf+(nf_R)9_>.

Proof. See Appendix B. ]

Next we investigate how the interest rate R and leverage limit 6 affect the risk-taking

behavior characterized by 7).

3.2 Non-monotonic Risk- taking

First, we show that risk-taking may not be monotonous to the interest rate (borrowing cost).
A falling borrowing cost does not necessarily induce more risk-taking.

To simplify the discussion, let us first focus on the case where the financing constraint is

12



binding if a risky project is implemented, and we will relax this assumption later.'” Define

the log—leverage returns of the “safe” and “risky” projects by

r/(R) = log(Il/ + 6 (IlY — R)),
r"(R) = p log(Il" + 6 (II" — R)) + (1 — p) log(II' + 6 (II' — R)),
which are the key components of the value of taking the safe project and risky project,

respectively. Under Assumption Al, both 7/ and r" are strictly decreasing and concave in
the borrowing rate R, since

dr! 0 d?rf
—_— = — <0, <0,
dR I/ + 6 (11 — R) dR?
dr” d?rr
= <0, — < 0.

. 0
Y :
AR~ 4 VIV 4 0(IU — R) dR

Low-rate case. When R ~ 0, the gap in log—leverage returns coincides with the gap in

unconditional log-returns:
r"(0) — r7(0) = plogIT" 4 (1 — p) log IT" — log T1/.

By Assumption A2 (ensuring that I1/ is not excessively large), the initial sensitivity of the
safe project exceeds that of the risky one:
dr! 0 0 o1 dr’”
e = TR < “Te -
dR |r=0 (1+6)11f 146 - IV dR

: R=0
Hence, as R increases from zero, r/ declines more rapidly than v, making the risky project
relatively more attractive. This occurs because the risky project’s expected return is higher,
so the curvature in utility implies that log-return is less sensitive to the rise in R. In other
words, when R is low, the equity holders take the majority of the return, and, as R increases,
the excess return of the risky project becomes relatively more attractive compared to the safe
project, since the percentage of decline in the return (after the interest rate rise) is lower.
High-rate case For sufficiently large R (with IT' < R < II/), it may instead hold that
drl  dr"

9

4R ~ dR

19Proposition 1 implies that as the interest rate increases, #* decreases so that the financing constraints for
entrepreneurs who choose the risky project could change from binding to non-binding.
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which is algebraically equivalent to
[/ +6(I/ —R)] M+ 61— R)] > [I"+ 6 (1" — R)] [I' + 4 (IT' — R)].

The right-hand product can be close to zero (or even become negative) when R is high, while
the left-hand product remains positive for R < II/. This implies that at high borrowing costs,
the poor outcome of the risky project appears exceptionally severe to the entrepreneur (as
marginal utility spikes). When R is high, most of the return is captured by the debt holder,
causing the entrepreneur’s value to fall sharply and their marginal utility to become highly
sensitive to R, especially in the poor state. As a result, an increase in R significantly reduces
the attractiveness of the risky project, leading entrepreneurs to prefer the safe project instead.
The above two scenarios illustrate that the risk-taking incentives can be non-monotonic
in R. Of course, within the range of interest rate implied by Al and A2, we may not see
the non-monotonic relationship. Thus, it is important to identify the conditions under which
non-monotonicity emerges. Formally, we examine the derivative
on 0 0 0
or - Plwrw—me Pmraromg P mem e

4)

and, as will become clear, the sign of 97)/0R depends on the upper bound of the leverage .
A higher interest rate will reduce the leveraged return of both projects; however, whether the
safe project or the risky project is more attractive depends on 6. If @ is low (high) enough,
the threshold 7 increases (decreases) in the interest rate R, and the risky (safe) project is

thus preferred. In intermediate cases, 7 has a hump-shaped relationship with R.

Proposition 2. Suppose Al and A2 hold. Assume the financing constraint is binding if the
risky project is implemented (that is, 0 < 0*). There exist cut-off levels 05 < 0% such that
the threshold level 1) increases in R when () < 0 < 0%, decreases in R when 5?1 < 0 < 6%
and is hump-shaped in R when 05 < 0 < 05,

Proof. See Appendix B. ]

The proposition can be illustrated by Figure 2. For a given leverage 6, the downward-
sloping curve is denoted by R*(6), corresponding to the interest rate such that 97/0R = 0
and separates the two regions with different signs of the derivative 97/0R.!"" The shaded
region above the curve has the feature of 977/0R < 0, and the blank area under the curve has
the feature of 977/OR > 0. When < 63, as R increases from the low return realization I1!

to the safe return I17, 97j/OR is always positive. When 6 > 03, as R increases from the low

! Alternatively, the downward-sloping curve also represents 6°(R), which corresponds to the leverage
upper bound such that §77/90 = 0 for a given interest rate R.
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Figure 2: Hyperplane of % = 0in (6, R) Space

a1}
2
e
7 or >V .
6°, 25 =0
g 11/ R

return realization I1! to the safe return I1/, 07/OR is always negative. In these two cases,
the change in interest rate has a monotonic effect on the threshold 7.

However, if 6 is in the middle range, that is, 0 € (éf:, 9_‘}{), the effect of the interest
rate on risk-taking is non-monotone, and has a hump-shaped relationship with R. To see
this key result, for the points (R, ) on the red dashed line below the separating curve,
On/OR is positive since II' < R < R*(#); for the points (R, ) on the red dashed line
above the separating curve, 97)/OR turns negative since R*(f) < R < II7. In this middle
range case, an increase in the interest rate R first encourages more risk-taking behavior and
then discourages risk-taking once the interest rate R exceeds R*(f). The illustration at the
beginning of this subsection is the basis of the proposition. When R is low, an increase in R
reduces the equity value of the safe project by a higher percentage, making the risky option
comparatively more attractive. But when R is already high, pushing it up further makes the
downside of failure much more severe, which in turn weakens the incentive to take on risk.

Notice that the non-monotonic effect is not unique to the interest rate; we also find the
non-monotonic effect of leverage as in Appendix B.2. As illustrated below, the key behind

the non-monotonicity is how debt servicing costs influence risk-taking incentives.

3.3 Understanding Further the Non-monotonicity

The intuitive reasoning in Section 3.2 provides a heuristic illustration using very low and
very high values of R to show how the relative attractiveness of the risky project might de-
pend on the interest rate. The possibility of a humped relationship in Proposition 2 is crucial
for an optimal level of interest rate in the interior, as discussed in the macroeconomic model
below. To gain further insight, we approximate the threshold 7 to the second order around
the point 75 (see below) and decompose it into two components. These two components

represent what we label the valuation effect and the search-for-yield effect.
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First, if we replace the risky project with a (hypothetical) safe project with a return II
(the same as the expected return of the risky project), the entrepreneur borrows to the credit
limit with this hypothetical safe project (that is, § = 6) due to the return II > II/ > R.
Then, the threshold below which this hypothetical project is chosen can be defined as

fis = Blog(II(1 + 0) — RO) — Blog(I (1 + ) — RO)
=plog | —+ |

7)s 1s associated with the ratio between the leveraged returns on risky and risk-free projects;
this term represents the “valuation effect” of the leverage or the interest rate since
ons  BO(1+0)(I1 —117)

OR ~ U (1+0)—Rop

given 0 > 0. When R increases, financing costs rise, and the entrepreneur’s firm will be less
valued regardless of the chosen project. However, the ratio of the expected net return on the
risky project, whose expected return is higher, to that of the safe project increases with the
interest rate R. In other words, the value of the safe project declines more rapidly with R
than the value of the risky project, making the risky project relatively more attractive. This
is again due to the decreasing marginal utility of wealth; as the interest rate rises, the drop
in expected return in percentage terms is greater under the safe option. Consequently, the
higher expected return for the risky project becomes marginally more attractive.

Therefore, the valuation effect makes the risky project with a higher expected return
more preferred, raising 7)s and explaining %’% > (0. This term, which only looks at the
logarithmic expected return, precisely reflects the intuition for the low-rate case described
in Section 3.2.

Second, we expand 7} to the second order around 7), by using the cutoff (3):

o 1+6 N 1 (1+6) h e
& s PP [H(1+9)—R9<H - Smate - mpE™ H)]
1+40 1 (1+0) 2
th(1=p) {H(1+0)—R0<H1_H)_§[H(1+0)—R0]2(HZ_H)}
. 1 Bo?
=N —sT———= 5
1 Q[H—Rfé]? )

where 02 = p(IT" — 1) + (1 — p)(II' — I1)? is the variance of the risky project itself. After
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we adjust for discounting, 7), 1s a negative half of the inverse of the squared (leveraged)
Sharpe ratio; this term reflects the disutility related to the volatility of the leveraged return.'?

It represents the “search-for-yield” effect or the substitution effect since

e —PO(1+0)* R
OR — [M(1+6) — RO)3 ’

given @ > 0. A higher Sharpe ratio, possibly driven by a higher leverage or a lower interest
rate, increases the term 7),, reducing the disutility of risk-taking and thus increasing the
probability of taking risks (searching for a higher yield).

When R increases, the poor outcome of the risky project significantly reduces the value
of the leveraged risky project and the leveraged Sharpe ratio. For a given project volatility
o, the effect of a higher borrowing cost is amplified due to the leverage, which appears in
the denominator of 7). This search-for-yield effect makes the risky project less attractive as
R increases, which explains why %i}g < 0, and leverage amplifies this effect. Therefore, the
search-for-yield effect will be particularly strong when R or f is already high, so that this
term captures the intuition for the high-rate case discussed in Section 3.2.

Depending on the parameter values, a rise in the interest rate R can have a humped
effect on 7) because the valuation and search-for-yield effects operate in opposite directions
(Proposition 2). As R increases, the absolute values of both 7), and 7), increase, driven by
the valuation effect and the search-for-yield effect, respectively. However, the search-for-
yield effect dominates at high levels of R as illustrated above, while the valuation effect is
likely stronger when R is low. The non-monotonic relationship can thus be a hump-shaped,
instead of a U-shaped, relationship between risk-taking and the interest rate.

In addition to the possibility of a hump-shaped relationship, the valuation effect tends to
dominate for all R € (IT', II*) when the equity is large relative to the debt, that is, when @
is low. Intuitively, when the entrepreneur finances a larger share of the firm internally, the
safer project can always become less attractive when R increases at any level in (I, II").
So, in this case, the risk-taking increases with R. This possibility comes from the fact
that the drop in return in percentage terms is greater under the safe option when the firm’s
leverage is low. However, when the entrepreneur relies heavily on external finance, that is,
when 6 is large, the search-for-yield effect tends to dominate, as the volatility of the return
is substantially magnified under high leverage; thus, the entrepreneur becomes particularly
wary of the amplified downside risk (when II' occurs) as R increases from a high level. So,
in this case, risk-taking decreases with the interest rate R.

More generally, a higher debt servicing cost per unit of equity, captured by 0R/(1 + 0),

12As 7, is negative, 7, is above 7. This is intuitive because entrepreneurs will be more cautious (reflected
in the lower threshold 7} relative to 7)) for a riskier project with the same expected return, due to risk aversion
or risk management needs.
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discourages risk-taking through the search-for-yield effect, while encouraging it through the
valuation effect. Importantly, we adopt log utility for its analytical tractability. However,
both the valuation and the search-for-yield effects persist under alternative CRRA utility
specifications, although the degree of curvature may influence their relative strength.

Remark: Finally, we further generalize that the non-monotonicity can persist even when

*
main?

the liquidity constraint is not binding. Notice that we previously focused on § < 6 where

P I — 1711
(I - T (I — 11

is the minimal leverage when the entrepreneur is not financing constrained when implement-
ing the risky project. This level is obtained by assuming R = II/ in (2). For § > 0% .  we
have:

nh—R
there exists an interest rate

Proposition 3. Suppose Al and A2 hold. Let R(0) be such that — p%—z +(1-— p)H—h] =

*
min’

0 when entrepreneurs just become unconstrained. If 0 > 6

level R"(0) such that the risk-taking threshold 1) for unconstrained entrepreneurs decreases
in Rwhen R(0) < R < R“(0) and increases in R when R*(9) < R < TI7.

Proof. See Appendix B. O]

3.4 Examples

The entrepreneur may or may not be financing constrained when implementing the risky
project because of the project’s risk profile and the entrepreneur’s risk preference. Figure 3
is a numerical illustration in which the parameterization is as follows: II/ = 1.1, IT1" = 1.3,
II' = 0.95, p = 0.65, and 3 = 0.96. Note that this specification satisfies A2. We do not
have to specify F'(-) for individual decision problems. However, it will be used later in the
general equilibrium analysis. The figure delivers the key message of the model: a cut in the
interest rate reduces the incentive to take risks (a fall in the threshold 7)) when the leverage
limit  is low, while it encourages risk-taking when 6 is high.

Under a low-leverage limit, a reduction in the interest rate R operates mainly through
the “valuation effect” (the first two columns of Figure 3). Debt servicing costs are already
small, so when R falls (e.g., from 5 percent to 4 percent), the proportional increase in the
safe project’s return outpaces the expected return of the risky project: the entrepreneur is
more likely to move to the safe option because the marginal gain from safety exceeds any
incremental benefit from risk.

In contrast, under a high-leverage limit (the last two columns of Figure 3), the same
cut in R triggers a pronounced search-for-yield effect, which outweighs the pure valuation

gains. Leverage magnifies improvements in the Sharpe ratio of the risky project (leveraged):
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Figure 3: Effect of R on 7j for Alternative 6
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Note: The top panel of each column shows the leverage associated with the risky project; the bottom panel of
each column shows the threshold cost for risk-taking. Each column corresponds to a different leverage upper
bound (from the left to the right: § = 1.00, 1.67,2.33, and 3.00).

Each drop in basis points in R reduces the penalty of failure on the leveraged equity claim
by more than it increases the leveraged return of the safe project. In other words, a lower
interest rate under high leverage makes downside risk less costly, so the entrepreneur chases
extra yield in the leveraged risky project (even if the leveraged safe project also becomes
slightly more valuable).

Note that the financing constraint becomes slack for high leverage limits and interest
rates, as shown in the third and fourth columns of Figure 3. Consistent with Proposition
3, when the borrowing constraint ceases to be binding, risk-taking first decreases and then
increases with R. Furthermore, we show that the non-monotonic relationship is also robust
if we endogenize the credit limit 6 (see Appendix D).

Finally, Figure 4 further shows that the effect of the borrowing cost R on the risk-taking
behavior also depends on the profile of the risky project return IT' and IT". In this experiment,
we fix § = 1.5. The first column uses the previously specified values of II" and II'. Now,
we increase I1" and decrease II' simultaneously to keep the mean return of the risky project
IT unchanged. If the project becomes more risky, as the interest rate I? increases, the Sharpe
ratio decreases more, and the risky project becomes less attractive. In other words, the
search-for-yield effect dominates when the risky project becomes riskier. This result is
intuitive because, when risk goes up, the leveraged volatility and the Sharpe ratio are more

sensitive to interest rate changes.
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Figure 4: Effect of R on 7 under Different Risk Profiles
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Note: The top panel of each column shows the leverage associated with the risky project; the bottom panel
of each column shows the threshold cost for risk-taking. Each column corresponds to a different risk profile
(from the left to the right: TI" = 1.3,1.32,1.33, and 1.35), while the expected return IT = pII"* + (1 — p)IT*
is kept the same across all panels.

We also note that as the project becomes riskier, the interest-rate range in which the lever-
age constraint ceases to binding expands. As risks increase, the financially unconstrained

interest rate region with a dominating valuation effect also expands.

4 A General Equilibrium Model

Now, we extend the previous two-period model into an infinite-horizon general equilibrium
model. The next section will use the equilibrium model for policy discussion. Our analysis
includes questions such as whether policy should encourage risk-taking and how the optimal

policy is shaped by factors such as credit limits often regarded as financial policy.

4.1 The Environment

Time is discrete and infinite. We use recursive notation, that is, let the variable x denote
x; and let x denote z,y;. The economy is populated by a unit measure of entrepreneurs
who may run firms. The economy also has a household sector and a government that runs a

flat-rate value-added tax policy'® and credit policy.

BVAT tax policy is equivalent to taxing labor income and capital income at the same rate. We also experi-
mented with a lump-sum tax policy; the quantitative results are similar.
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Entrepreneurs. Entrepreneurs can choose among the risk-free project, the risky project,

and risk-free savings. The firm technology is represented by
y=(zk)" ()",

where a € (0, 1) is the capital share, k is capital input, ¢ is labor input, capital productivity
z € {z",2'} is risky if an entrepreneur chooses the risky project, and z = z/ is a constant
number if the entrepreneur chooses the safe project.

Consider a firm with capital k. In the labor market, the firm hires workers at the compet-
itive wage rate w, which leads to a labor demand proportional to the firm’s effective capital

input. The firm thus maximizes its capital return by solving the problem
max{(1—7) (k)" ()" — wi},

where 7Y is the VAT tax rate set by the government. The optimal labor choice is as follows:

(= ok (%) (6)

Therefore, the firm’s capital return (before debt repayment) is rzk, where  can be shown as

(1—a) =
=(1—-7Y B S . 7

Sl e 7
Denote the capital depreciation rate as 6. To make the decision problem introduced below

similar to the problems discussed in the simple model, we specify {II/, IT", II'} as
I =rzl +1-6, M=rz"4+1-90, andII' = 712! +1— 6. (8)

We retain the one-period project and debt structure from the previous two-period model
for tractability. Although incorporating long-term projects and debt would be an interest-
ing extension, it would introduce additional complexities, such as discounting effects from
long-term interest rates and shifting asset allocations driven by search-for-yield incentives.
Our current framework already captures these channels effectively. Moreover, idiosyncratic
implementation costs reflect differences in project duration and credit risk, while the i.i.d.
structure (including success probability p) captures the unpredictable nature of risky oppor-
tunities, justifying the absence of full self-financing and the simplification of excluding risk
persistence.

Let V(w) denote the expected value of an entrepreneur with wealth w before observing

the cost of implementing the risky project. As before, V" (w,n) and V/(w) represent the
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values associated with choosing risky and risk-free projects, respectively. The value of

saving in deposits with return R? is given by V¢(w). We have the following relationship:
V(w) = max{V¥(w), E [max{V"(w,n), V! (w)}]},

where the expectation is taken over the distribution of 7). Entrepreneurs decide first whether
to save or become active entrepreneurs. If they decide to become active entrepreneurs, they
can choose between safe and risky projects. The value function of an entrepreneur who takes

the risky project can be rewritten as

V7 (w,n) = mac { (1 = ) log(w — ) — 1+ ApV (I1"(s + b) — Rb)

+ B(1 = p)V(IT (s +b) — Rb) |

s.t. 0<b<0s,

where (1 — /) serves as a normalization. As before, the entrepreneur can invest with internal
savings s, together with the borrowing b; next period, the entrepreneur earns I1"(s+b) (if the
project turns out to be productive) or IT'(s+b) (if the project turns out to be less productive).
The interest payment is naturally Rb.

For flexibility in model calibration, we assume a fixed cost (utility) n/ associated with
running the risk-free project. The value function of an entrepreneur who takes a safe project
or saves in deposits can be rewritten as

Viw) = max {(1 — B)log(w — s) —nf + BV (I (s + b) — Rb)}

s.t. 0 < b < fs;

V(w) = max { (1~ B)log(w — ) + BV (R's)}.

respectively. Naturally, when entrepreneurs choose the risk-free project, they will borrow
up to the limit 6 = 0 if 17 > R. We allow a constant 7 > 0 to be the difference between the
deposit rate R? and the lending rate R:

R=R'(1+71). )

The parameter 7 represents the intermediation costs or the interest rate markup, making the
calibration below also more flexible.

It turns out that the value functions satisfy the following forms V" (w,n) = log(w) —n+
v", VI (w) = log(w) —nf + v/, and V4(w) = log(w) + v for some endogenous v", v/, and

v%. As in the two-period model, the saving function is linear in wealth s = Sw, and we have
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a similar characterization of the threshold cost:

Proposition 4. Define 1 = log R%, I" = plog (II" + (11" — R))+(1—p) log (Il + 6(1I' — R))
andl/ = log (Hf + 0 (Hf — R)) —B~'n!. Those entrepreneurs withn < max{1, 7} choose
the risky project, where 1) satisfies,

=B —1), (10)

and the leverage § = min{0*,0}. Additionally, letting ¢ be the fraction of entrepreneurs

who choose to save in deposits, we have the following condition:

b—=1 il > E [max{lr -1 zf}]
¢e(0,1) ifl'=E [max{l’"—%,lf}] . (11)
6=0  ifl' <E|max{l~ 4,1/}

Proof. See Appendix B. ]

The first branch of (11) with ¢ = 1 does not arise in equilibrium, as it implies zero pro-
duction in the economy. In an interior equilibrium with ¢ € (0, 1), those entrepreneurs must
be indifferent between saving through risk-free deposits and becoming active entrepreneurs
who choose the two types of projects. That is, [? = E [max{l’" — %, M }] , or more specifi-
cally,

7
9= 01—+ FI" - 5—1/ ndF(n),
n

which governs how the capital return rate r varies with R. Entrepreneurs who save in risk-
free deposits can be considered as unconstrained firms in practice. In the model, we can
allow them to operate a different technology, which, in equilibrium, features the same rate

of return as safe deposits.'*

Households. Households are hand-to-mouth consumers and supply labor to firms."> To
focus on the firm side, we assume a Greenwood-Hercowitz-Huffman CRRA utility function

and a representative household maximizes

= kLT
(1—6);6U(C§— H,y),

14With this modelling choice, ¢ = 1 is possible in equilibrium. However, with ¢ = 1, there is no risk-
taking, and the model becomes a standard neo-classical model.

5The assumption is less strong than it seems. In incomplete market models, the interest rate is lower than
the time-preference rate. Households would like to borrow, but (unlike entrepreneurs) households do not have
collaterals, so they will not borrow in equilibrium.
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where U(.) is an increasing and concave function, C; is the consumption level of households,
Ly is the labor supply, £ > 0 is the disutility parameter and + is the inverse of the Frisch
labor elasticity. The household chooses consumption and labor supply according to (where

again we ignore the time subscript):
C = wl; (12)

w=kL". (13)

The (consolidated) government agency. A consolidated government conducts joint mon-
etary and fiscal policies with the following budget constraint:

G+RB=T+B,. (14)

The expenditure side includes government spending G’ and debt repayment R¢B. For sim-
plicity, we assume that the government can borrow without the intermediation cost so that
the interest rate is also R¢ because of no-arbitrage. The revenue side includes tax 7 = 7YY
(where Y is the aggregate output shown below) and newly issued debt B, .

B represents a broad liquidity policy, as we consider the government agency as a con-
solidated identity that includes a monetary authority, a fiscal authority, and financial inter-
mediaries, which lend to the firm sector. Therefore, B is the net debt position of the joint
agency; when B < 0, the consolidated identity lends to the firm sector. Alternatively, if
we interpret the consolidated agency with only monetary and fiscal authorities, B can be
considered an outcome of the quantitative easing (QE) policy. That is, we simplify the in-
stitutional details of credit/liquidity policy to focus on the equilibrium effect of the interest
rate on entrepreneurs’ risk-taking and its implications for the optimal interest rate.

The government agency sets (G, R) for each period. Then R? = R/(1+ 1) and B, will
be determined in the credit market, while the tax rate 7¥ will be governed by the government

budget constraint.

4.2 Equilibrium

Denote the total wealth of private agents by (2. Wealth accumulation implies:

0, = 69{¢Rd +(1— ¢>){ [1— F(@)] [I(1+0) — RO + F(7) [LI(1 + 0) — RY] } ,
(15)

where again ¢ is the probability of saving entrepreneurs (note: they save with the rate R?).

The wealth of the next period 2, will come from three sources. All entrepreneurs put a
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B fraction of their wealth aside, which explains 2. The group of entrepreneurs have a ¢
fraction of savers (who have a return R?) and (1 — ¢)(1 — F(7})) fraction implementing the
safe project with a return I1/ (14 ) — Rf.'® The remaining entrepreneurs take risks, and the
project return after leverage is I1(1 + 0) — R6.

Capital productivity is endogenous in the aggregate because of credit-induced investment
in different technologies. That is, capital reallocation linked to credit conditions determines
the endogenous productivity of capital. Define Z as the endogenous capital efficiency unit

that takes into account the technology choices of entrepreneurs:
Z=2'(1-F)1+0)+zF(1+6), where 2 = pz" + (1 — p)z". (16)

Then, the aggregate output can be written as
Y = /(ziki)afgo‘di =((1—¢)ZpQ)~ L', (17)

Notice that each firm produces z;k;/a in which z;k; is retained. Furthermore, (1 — ¢)Z 3%
can be regarded as the effective capital stock used in production,

To define equilibrium, we look at market clearing conditions for labor and for credits.
For the labor market, hours of work L should be the labor supply of households, so that the
“rental rate” ;—— can be written in a conventional way, which is the marginal product of the

effective capital stock (using L in the product).

r
1—7v

=a((1—¢)ZpQ)* L. (18)

For the credit market, the consolidated agency conducts the credit/liquidity policy, determin-
ing the market-clearing interest rate. As mentioned, we can think of the consolidated policy
maker conducting an interest rate policy by choosing R. An interest rate R corresponds to
a particular debt/liquidity policy B according to the market clearing condition. The total
liquidity savers provide for period ¢ is ¢3€2. The total credit demanded by the entrepreneurs
who borrow is [(1 — F())8 + F(7))6] (1 — ¢)59: a fraction [1 — F(7})] (1 — ¢) of whom
use safe technology and borrow to the credit limit implied by # and a fraction F(77)(1— ¢) of
whom use the risky technology and leverage to # < 0. Therefore, clearing the credit market
implies

(1= F(7)0+ F(7)0] (1 - ¢)Q2 = ¢ — By (19)

Definition. Given states including the entrepreneurs’ wealth (2, a government spending G,

and an interest-rate policy target R, a recursive competitive equilibrium is a collection of

16Here, we focus on the case of II > R. The numerical exercises below allow II; < R, in which case
0 =0.
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variables {L, C, 7, 0, ¢, 11", I, T1/, r, w, 79, B, R?, Q. } such that

* Households supply labor according to (13) ; their budget constraint (12) holds;

77 and 6 solve the entrepreneurs’ problem with risk-taking choice and leverage choice

as shown in Proposition 4;
* project returns (8) are satisfied, with r given by (7);
* The wealth dynamics (15) holds;

* The consolidated government budget constraint is satisfied, i.e., (14) holds with tax

revenue 7' = 7YY where output is calculated in (17);

¢ The labor market clears, i.e., (18) holds; The credit market clears, i.e., (19) holds with
(11) satisfied, and the deposit rate R? is determined by (9).

In addition to showing the short-run effects of an interest rate cut, the following quantitative
exercises are mostly steady-state analyses because they are tractable and already contain
many useful results. Note that the steady-state social welfare of entrepreneurs V' (Q2) and
households W can be seen as follows. Given the value functional form and the nature of the
steady state economy, the social welfare measure, which is related to the present value of

utility of consumption from all groups, thus becomes (see Appendix C.3 for details):

KL1+’Y

14+

V(Q) 4+ W =1log(Q) +V + U (Ch — ) + constants,
where (2, ‘7 C", and L are all endogenous. V includes the base return (on the risk-free

project or the safe deposits) and the relative value gain from choosing the risky project.

5 Macroeconomic Effects of Target Interest-rate Policy

Using the macroeconomic environment introduced above, we now analyze the aggregate ef-
fects of varying the (real) interest rate target. Note that the consolidated government agency
implements the interest rate policy (with government debt management in the background),
and it can thus be considered a joint monetary-fiscal policy outcome in practice. It becomes
too complex to study the optimal interest rate fully analytically. We choose to calibrate the
model and assess the policy effects.

To clarify, we do not consider external factors (such as demographic trends) that can
affect the real interest rate, potentially through impacts on the subjective discount factor, [3.

Here, we treat the long-term interest rate target as given. Instead, our focus is on an interest
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rate component, which can be influenced by monetary and fiscal policy. For example, this
can be managed through medium-term targets for inflation and nominal interest rates. Our
analysis includes questions such as whether policy should encourage risk-taking and how
the optimal policy is shaped by factors like the credit limit.

5.1 Parameterization

Suppose that one period in the model represents one year. Table 2 reports the calibrated
parameters. Some parameters are exogenous. The capital share is set to a conventional
value @ = 0.33. The inverse of the Frisch elasticity of the labor supply + is set to 1/1.5,
also a conventional number for macroeconomic models. We assume a CRRA utility for U,
and the relative risk aversion is set to 2, so households are slightly more risk-averse than
entrepreneurs. Note this number does not affect macroeconomic variables; it only slightly
influences the aggregate welfare comparison. The discussion below illustrates the key steps

in calibrating other parameters.

Table 2: Calibration

Value Explanation/Target Value Explanation/Target
6 0.9437 Discount factor 2f 1 Normalization
v /1.5 Inverse Frisch elasticity 2"  1.5989 ROE top 80th per.
k  1.6179 Hours 0.33 2 0.0785 ROE bottom 20th per.
a 033 Capital share p  0.6803 ROE std. dev.
0 0.0938 Investment-to-output 17% p  -3.1785  Debt-to-output ratio: 65.2%
T 0.02 Interest-rate spread o 0.0031 Elasticity of ROE: 3.71
6 0.5600 Median leverage ratio G 0.0828 Gov-spending-to-output 18%
nf  0.0305 Median ROE R 1.0370 Prime rate

r, which governs the disutility of labor, is calibrated to hit the labor hours such that L =
0.33 after normalizing the total hours to unity. The model targets the ratio of government
spending to GDP /Y as 18%, which pins down G. The capital depreciation rate § is
calibrated so that the investment-to-output ratio is 17%.

We choose the real prime rate to be the status quo interest rate R, since there is no default
in the model and the prime rate is a benchmark interest rate used for high-quality borrowers.
We use the period 1984-2019 (see Appendix A for data description). The average annualized
real (gross) prime rate during this period is 1.037, while the average annualized gross federal
funds rate during this period is 1.017. Therefore, the interest rate markup 7 is set to 2%. In
addition, we set the discount factor as § = 0.9437 so that the gap between 1/ and R is
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2.2%, which targets the average gap between BAA corporate bonds and 10-year Treasury
bonds in the sample period. This gap reflects reasonable liquidity and risk premia that are
not modeled in the economy. In addition, the model implies that (1 — ) ~ 5.6% of net
worth is used for the consumption of entrepreneurs, which should be interpreted as paying
dividends or rewarding managers in practice. Notice that the average S&P 500 dividend
yield in the sample period is 2.4%; this implies the rest (3.2%) could be considered as being
used to incentivize managers, which seems conservative.'’

Next, we use the top 80th percentile value (IT*") and the bottom 20tk percentile value
(IT1?°) of cross-sectional ROE to represent the net leveraged return for high realization and

low realization, i.e.,
" = (1 + )" — RY; 1" = (1+0)I1' — RY.

As a normalization, we map the ROE’s median return to the net leveraged risk-free return
1™ = (1+6)I1f — RA. The top 80th percentile, the bottom 20¢h percentile, and the median
net returns for this period are 18%, —15%, and 5%, respectively, so that 18" = 1.18,
129 — (.85, and II"™ = 1.05. The benchmark exercise normalizes 2/ = 1 and assumes
that some entrepreneurs save. Then, we obtain 7/ from the indifference condition, and we
obtain r as a function of #:
II"™ + RO
I L (1—46).
1406
Furthermore, 2" and 2! are also functions of # by substituting the above expression for r into

the expression for I18" and I120¢:

1 HSOth Q_ 1 H?Oth 9_
h R )

(il T “—(”1? G
Since the leverage parameter 6 is needed for 7, z", and 2/, it is set according to the firm
leverage ratio used in Section 2. The median of the leverage ratio is 0.56. Then 7, 2P, and 2!
are identified immediately as shown above.

We assume that the cost distribution follows a log-normal distribution with the mean as
 and variance o2 after log transformation. We calibrated other distributions with positive
support and found it is not crucial for the qualitative conclusion in the following. There-
fore, the remaining key parameters are: {s, o, p}. They are chosen to match the three key

moments below.

"The estimates of CEO pay to company equity ratios are around 3% to 12% according to the literature
about CEO compensation and equity performance.
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(1). The model targets the debt-to-output ratio 0.652 as in the data'®, calculated based
on the total debt of non-financial businesses in the data.
(2). Assuming risk-taking firms are financially constrained in the status quo, we have

the standard deviation of the overall return in the model

o7 = /F(ﬁ)(l +0) /p(l ~p) (Hh _ Hl) _ \/F \/p (HSOth H20th) ’

corresponding to the average cross-sectional standard deviation (0.13) of ROE in the sample.

(3). Its sensitivity to the interest rate becomes

ot ~ h l
Qo B _ L@ 00, 1 (O O], 20)
OR o} 2F()OR ' TI"—II' \ DR OR

corresponding to 3.71 in the data. Note that when the financing constraint is binding, the

derivative 07/0R can be computed as

[ (5 + (55 1))
05— p) ke (2% + (25— 1) 0)
(1 (1)

Since this feature is unique to our model, we elaborate the procedure. First, as in the cali-
bration above, entrepreneurs are indifferent between saving in safe assets and implementing
projects when ¢ € (0, 1). That is, we have the second branch of (11), and with some algebra

we obtain

o9 =+ F (psoer + (1 — ) gaom )
OR OR  (140) (1= F)gh +F (piom + (1 P |

OI"/OR and OII'/OR follow immediately. Second, we examine when risk-taking en-
trepreneurs may not be financing-constrained, but the result points to the constrained sce-
nario. It turns out that p is about 0.68, which means that the high return is more likely to be
observed, so being financing constrained is more likely when entrepreneurs take risks.

The calibrated economy features ¢ = 0.153, implying that 84.7% of firms are financing-
constrained. The fraction of constrained firms is not crucial for at least two reasons. First, the
consolidated “government agency” in equilibrium saves, which can include savings from un-
constrained firms and households in reality. Second, we experimented with adding another

group of entrepreneurs with a different probability of success p, so their firms are uncon-

6
Z[=f A=F (@) (1+0)+2F (7)(140)]
debt of non-financial businesses over their total output. Note that 7 is solved by (10).

8T the model, debt-to-output ratio is % = In the data, we use the total
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strained if they choose the risky project. By varying the relative population of this group,
we can hit a certain target fraction of unconstrained firms in the economy. Still, we have the
non-monotonic result, as illustrated in the examples of the two-period model. The optimal

interest rate levels shown below differ, but the qualitative conclusions below are robust.

5.2 Medium Run Effects of Interest Rate Policy

Timing is critical to evaluate government policies. In the long run, persistent structural
forces, such as demographic shifts that influence savings and interest rates, dominate, so
policy has little permanent impact. In the short run, price rigidities delay adjustment, so pol-
icy can exert strong but temporary effects. Our focus is on medium-run equilibrium, where
policy interventions meaningfully affect markets with prices already adjusted. Specifically,
consider a policymaker altering the supply of government debt B in the background to in-
fluence the target interest rate (Figure 5). Using the steady-state outcomes of the model, we
examine the effects of this medium-term target rate and, later, explore whether an optimal
level exists.

This exercise confirms a humped relationship between the risk-taking threshold 7 and
the interest rate. The hump-shaped relationship also applies to the dispersion of ROE as
R increases, as in the data. It is worth noting that the total factor productivity (TFP), the
residual after considering firm capital and labor inputs in the output definition (17),

TFP =2 = [2/(1 - F()(1+0) + zF(7)(1+6)]",

also inherits the humped shape of risk-taking, thanks to the presence of F'(7). At the cal-
ibrated interest rate level (3.70%), TFP is close to its peak, but it reaches its maximum at
the interest rate level of 3.55%. Not all variables exhibit a hump. When the interest rate
increases, saving in secure deposits becomes more appealing. The proportion (¢) of savers
who provide liquidity increases weakly with the interest rate.

A lower interest rate relaxes borrowing conditions and encourages investment. However,
it may also lead to inefficiency. The fall in productivity at the aggregate level is caused by
less risk-taking and falling labor demand, which eventually reduces output. In this sense,
expansionary interest rate policy can eventually become contractionary. In other words, the
conventional “IS” curve slopes downward when the interest rate is not too low; but once the
interest rate is below 2%, the output starts to fall quickly with the falling interest rate, and
the IS curve slopes upward. For example, compared to the highest output (roughly when the
rate is around 2.5%), a -2% rate implies almost a 5% drop in output.

To be more precise, when the interest rate falls, investment typically increases because it

becomes easier to invest when financing costs drop. The issue is that productivity-enhancing
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Figure 5: The Effects of Interest Rate Policy
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Note: This figure plots equilibrium variables as functions of the (net) interest rate & — 1 at the calibrated
parameters. The variables shown are the optimal leverage 6, the share of saving firms ¢, the standard deviation
of project returns, the share of risk-taking firms among active firms F'(77), TFP, output, investment, hours of
work, tax rate, and the consumption-equivalent (in the calibrated economy) welfare gain.

risk-taking may also fall when financing costs drop, leading to falling hours and output.
The second effect can only dominate when productivity distribution is endogenous, due to
endogenous risk-taking. Of course, the model still features the usual capital misallocation
channel, but the endogenous productivity distribution is essential.

Therefore, investment typically declines as interest rates rise, while total factor produc-
tivity (TFP) follows a humped pattern, peaking at moderate interest rates. At low interest
rates, output grows slowly as higher rates encourage more productive risk-taking, boosting
TFP. However, when rates exceed approximately 3%, output declines rapidly. This occurs
because the search-for-yield effect dominates, discouraging productive risk-taking, while
higher rates simultaneously suppress investment. As a result, the IS curve exhibits a “crawl-
dive” hump, with a gradual rise followed by a sharp drop.

When assessing the policy effect on the social welfare of a target economy, we calculate
the corresponding consumption equivalence measure of the calibrated economy.'” Figure
5 shows that welfare closely tracks output. When the interest rate rises, the government
borrows more (or saves less), since firms borrow less and/or save more. As explained above,
initially, risk-taking behavior increases with 2. Productivity rises and the economy expands,

so the government can reduce the tax rate given a larger tax base. Eventually, the government

Denote this measure as ). Given that entrepreneurs’ consumption is a fraction (1 — ) of their wealth,
we calculate the gain/loss of wealth of entrepreneurs (£245.) and the consumption of households (Cglase) such
that the baseline economy with (1 + 1/)Qpase and (1 + 9)C __ (and everything else stays at their calibrated
level) has the same welfare measure as in the target economy.
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has to raise more taxes from private agents to satisfy the government budget constraint. Risk-
taking also decreases significantly when the interest rate becomes high enough. Therefore,
the social welfare eventually falls, and it also shows a crawl-dive hump shape, suggesting
that the optimal interest rate is around 2.7%.

In sum, our theory implies that excessively low interest rates can be detrimental to pro-
duction and overall welfare. Although the traditional “Keynesian” mechanism remains
present (especially for investment), a sharp decline in interest rates can quickly dampen

risk-taking incentives, ultimately harming productivity, output, and social welfare.

The role of leverage limit. Notice that financial regulation (e.g., macro-prudential policy
and systematic risk oversight) can significantly affect the level of credit limit. The borrowing
limit influences the effectiveness of interest rate policy. Therefore, we assess the effects of
interest rate policy with different 6.

When @ declines by 20% from the calibrated value (0.56) to # = 0.45 (the blue dashed
dotted lines in Figure 6), the proportion of risk-taking entrepreneurs, F'(77), monotonically
increases with the interest rate. This finding reaffirms the earlier observation that the valua-
tion effect dominates when leverage is low. As a result, the equilibrium proportion of savers,
¢, decreases for most levels of R as credit demand decreases due to the fall in the external
financing limit #. Only when the interest rate is above 4.2%, ¢ increases above the case
when 6 = 0.56. Moreover, with the falling leverage, TFP decreases for almost all levels of
interest rate, resulting in a downward shift in output. Thus, the IS curve’s crawl-dive hump
pattern is still preserved.

For comparison, the yellow dashed lines correspond to an increase of 20% in 6 to 0.67.
With this adjustment, F'(77) now shows a downward slope over a wider interest rate range,
reflecting the dominance of search-for-yield when leverage is high, consistent with Proposi-
tion 2. Furthermore, as § increases, the risk-taking incentive (captured by F(7})) decreases
when the interest rate is high and increases when the interest rate is low compared to the
baseline. This pattern is illustrated by the left shift of the F'(7;) curve. Intuitively, debt ser-
vice costs are low at a low rate R, so increased leverage significantly impacts the leveraged
Sharpe ratio, greatly increasing the opportunity cost of choosing the safe project, and thus
promoting risk-taking. This observation is in line with the corollary of Proposition 2 (see
Corollary B.2 in the Appendix).

At lower rates, increasing leverage directly encourages entrepreneurs to take on more
risk, channeling additional resources into productive ventures, and thus generally pushing
TFP upward. However, this leverage-driven boost is only part of the story: the overall tra-
jectory of TFP is governed primarily by the function F', which reacts strongly to even small

changes in the interest rate. In other words, even if we loosen credit, allowing leverage
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Figure 6: Interest Rate Effects under Alternative Financing Constraints
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Note: This figure shows the equilibrium outcomes under three possible leverage limits of 6. Variables are the
same as in Figure 5.

to rise, TFP can still fall at a given interest rate because [’ itself declines. But the impact
of higher leverage remains valuable. It continues to boost production, investment, hours
worked, and public finances. By improving these aggregates, increased leverage also re-
duces the need for entrepreneurs to accumulate savings, which in turn reduces ¢.

Remark: As in the 2-period model, we have attempted to endogenize @ by introducing,
for example, a limited commitment framework where entrepreneurs can abscond with their
firm’s value. The fundamental hump-shaped relationship between risk-taking and the inter-
est rate remains intact. This is expected since even if a decrease in the interest rate causes
to increase, Figure 6 already contains the message that the additional leverage effect shifts
the risk-taking curve F'(77) (and the TFP curve) to the left, thus preserving the overall shape
of the hump. As a result, the “dive” part of the IS curve is widened if the leverage is higher.

Cross validation. The model’s quantitative implications regarding varying leverage ex-
hibit alignment with the data. Figure 7 shows this comparison for 2001 and 2007 with
comparative static analysis. Given that we only fit the model with relevant interest rates and
leverages while keeping other parameters fixed, a perfect fit should not be expected. The
association of project returns, which will be discussed later, can improve the fit. However,
the results in the following demonstrate that the impact of an interest rate cut significantly
relies on the borrowing constraint.

We focus on the model’s steady-state outcomes by using medium-term input and com-

paring them to medium-term output. Specifically, we fit the model using 5-year moving
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Figure 7: Changes of Standard Deviations of Cross-sectional ROE

B3

o
2@1
0.1F -
2O  Data
> Model

5
0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.81 0.62 0.63 0.64
Firm leverage level

0.1

Note: The model results are calculated with leverage and interest rates from the data, keeping other parameters
fixed. The left points are for 2001 (with a lower leverage ratio), and the right points are for 2007 (with a higher
leverage ratio). The data counterparts are 5-year moving averages.

averages of leverage and compare the model’s cross-sectional standard deviation (disper-
sion) of ROE to the 5-year moving average observed in the data. Additionally, as noted in
Section 2, both the levels and changes in interest rates were similar in 2001 and 2007. Thus,
these two years are the main natural targets.

The Cleveland rate was approximately 1.7% in 2001, and between 2001 and 2002, it
dropped by 142 basis points. The average leverage during the 2001-2006 period was ap-
proximately 0.559, and the cross-sectional dispersion of ROE decreased by 7% compared
to 2000. Using the steady-state model with the same leverage, interest rate, and observed
rate cut, the model predicts a 9.55% fall in ROE dispersion. Although the model slightly
overshoots, it is directionally consistent with the data.

In 2007, the Cleveland rate was approximately 1.8%. Between 2007 and 2008, it fell
by 150 basis points, making the interest rate levels and cuts in 2001 and 2007 comparable.
However, the 5-year moving average of leverage in 2007 was around 0.623, higher than in
2001. Using these values in the steady-state model predicts a 2.43% increase in the ROE
dispersion. In the data, the moving average of the ROE dispersion increased by 3.24%
compared to 2006, showing that the prediction of the model is closely aligned with the
observed data.

5.3 Short-run Dynamics of Interest-rate Cuts

Finally, we briefly illustrate the short-run reaction of the economy to a 50 basis point cut in

the interest rate in Figure 8. Although our main focus is on the medium-run implications of
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Figure 8: Impulse Responses to An Interest Rate Cut.
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Note: This figure shows impulse response functions to the same interest-rate cut under two possible leverage
limits.

interest rate policy, the same qualitative forces emerge immediately.

When leverage is initially low, cutting rates reduces financing costs without dramati-
cally encouraging additional borrowing; as a result, the cross-sectional dispersion of ROE,
aggregate output, and TFP all contract. In other words, firms face cheaper credit but lack the
balance-sheet capacity to ramp up debt driven risk-taking. In contrast, in a high-leverage set-
ting, the drop in rates liberates already geared firms to borrow even more, fueling risk-taking
and amplifying short-run fluctuations in the cross-sectional dispersion of ROE, output, and
TFP. However, in both environments, firms seize the lower cost of capital to expand invest-

ment (the last panel), as cheaper debt makes new projects more profitable.

6 Extension with Project Outcomes’ Association

We now extend the model to introduce associations of project successes/failures without
changing the key ingredients of the model. We investigate how the optimal interest rate is
jointly shaped by the credit limit and the degree of project-return association, illustrating the
importance of financial policy.

6.1 Modeling Project Outcomes’ Association

The economy has infinitely many similar risky projects. Once a project is selected, each risk-
taker is randomly assigned to one of these projects. The number of risky projects that achieve
high returns at the aggregate level may display associations. These associations represent
externalities when individual firms treat market prices (such as the wage and lending rates)
and the success probability p as given. However, all market participants jointly determine

these factors.

A positive association suggests that when the risky project of one entrepreneur succeeds,
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itincreases the likelihood that the project of another entrepreneur succeeds. This implies that
successful projects create knowledge spillovers, where one entrepreneur’s success enhances
the chances of favorable outcomes for others. Similarly, if one entrepreneur’s project fails,
others are more likely to face failures, aligning with the concepts of adverse risk spillover
and conditional value at risk (CoVaR) as discussed in Adrian and Brunnermeier (2016).

Conversely, a negative association indicates the opposite relationship: the success of one
project may crowd out opportunities for another, while the failure of one project provides
lessons that help reduce the likelihood of failure in others.

Notice that we follow the Statistics literature to label the interdependence as an as-
sociation instead of a correlation, since the relationship between the outcomes of two en-
trepreneurs may not be linear. To characterize the association structure in the Bernoulli trials,
we follow the Conway-Maxwell Binomial / Poisson (CMB / CMP) distribution approach as
in Shmueli et al. (2005) and Kadane (2016). This specification (see below) modifies the
baseline model with minimal departure because the individual problem stays the same as a
Bernoulli trial. The specification also allows for straightforward aggregation. To the best of
our knowledge, this specification is new in a macroeconomic setup.

We characterize the structure of the overall dependence through an exogenous parameter
v € (0,+00). For CMB distribution:

n\v k 1 _ n—k n\v k 1 o n—k
Prob{m =k} = n(k> py( ' p) = () p*(1 —p)
>0 (3) (L= p)n D(v,p,n)
where m is the total number of successes in n trials, (}) = —k!(ﬁ i and we have used

n

D,pn)=> (1P (L—p"7.

J=0

The expression stands for the probability of k realization of high returns among n risky
projects where the probability of realizing high return I1" for each project is p. If v = 1,
it becomes the standard binomial distribution. When 0 < v < 1, risky projects’ returns
are positively associated, and when v > 1, risky projects’ returns are negatively associ-
ated.”’ To see this, denote X; as the random variable of result at " position. Consider

P(X, = Z|X; = 2!), the conditional probability of the second project achieving a low

20See Kadane (2016) for more detailed discussions.
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return conditional on the low return of the first project is”'

P(Xy =2 X1 =2) P(Xy =2, X, = 2
P(X,=2) C P(Xp =2 X, =)+ P(Xy =20 Xy = 21
_ D(Vp2)<]' p>2
poon L= P+ 5555 () p(1—p)
1—
__@Q-p o
(1=p)+271p

If v < 1, we have 2! < 1, then P(X, = 2!|X; = 2!) > 1 — p, implying a positive
association. If v > 1, we have 2¥~! > 1, then P(X, = 2!|X; = 2!) < 1 — p, implying a
negative association. Similarly, P(X, = 2" X, = 2") > pifv < 1 and P(X, = 2"| X, =
M <pifv > 1.

The association of risky outcomes influences the macroeconomy. Denote the overall
proportion of success to be p®(r) when the number of projects n goes to infinity. When
n — oo and p is small/large enough, we know that the CMB distribution converges to the
CMP distribution (see Shmueli et al. (2005) and Daly and Gaunt (2016)):

Prob{m =k} =

where A = n”p when p is small and A = n”(1 — p) when p is large. Additionally, the overall
success probability p*(v) satisfies the following (see Appendix C.1 for more details):
1 . *
rw)=1" e 22)
(1= =p)v) ifp=p~,

for some p* > 0 and close to zero and for some p** < 1 and close to one, respectively. When
p is small, high returns are relatively more scarce. The number of high-return realizations
converges to the CMP distribution. Taking into account the association, the social planner
realizes that the overall probability of II" is p'/¥. When p is large, 1 — p is small and
counting the low realizations I1! will converge to the CMP distribution with A = n”(1 — p).
The social planner realizes that the overall probability of IT' is (1 —p)*/*. Finding p* and p**
is a numerical question which could be unnecessary; we obtain p*(v) by simulating CMB
samples with large n.

The central implication of CMB/CMP is that when individuals choose a project, they
perceive the ex-ante probability of achieving a high return, II", as p, accurately reflecting

their own project’s success likelihood. Each entrepreneur considers their firm to be small

2I'The result uses the property of the exchangeability: P(Xo = 2", X} = 2!) = P(X, = 2!, X1 = 2").
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and, therefore, does not believe its return is correlated with those of others. This assump-
tion preserves the solution to the decision problem of each entrepreneur. However, while
project returns are correlated/associated at the aggregate level, individuals understand this
correlation/association and treat p°(v) (the average probability of success) as given when
making their choices, assuming only others’ projects are correlated/associated. In rational
expectation equilibrium, after we aggregate all individual choices, p*(v) is the consistent
average probability of success across all projects. This modeling approach effectively cap-
tures a pecuniary externality: individuals overlook the impact of their own choices on the
overall correlation/association of project returns. This externality influences aggregate credit
demand and, consequently, the interest rate that clears the credit market.

We can write the aggregate expected return of risky projects I1(v) as
M(v) = p*(v)II" + (1 — p*(v))IT".

The aggregate expected return affects the social welfare as we aggregate entrepreneurs’

choices. Therefore, (22) implies that I1() becomes

1 1
JIIP + (1 — po)IT if p < p*

() = p ( 1p) 1 Py 23)
(1= 1 =p) )"+ (1 —p)»I" ifp>p™

To illustrate, first note that IT = TI(1) represents no association effect. Now suppose there
is a positive association, i.e., v < 1. When p > p™, p*(v) takes the second branch of (22).
That is, p*(v) = 1 — (1 — p)» > p and thus II(v) > II. When p < p*, II(v) < II holds
similarly. Intuitively, when p is large, high returns are relatively more abundant, and the
knowledge spillover dominates the adverse risk spillover. Therefore, the overall probability
of success viewed by the social planner becomes higher. That is why the overall aggregate
expected return is above I1(1). Note that one can verify that when p is large, v — 0 means
p°(v) — 1 because of the strong positive association, and v — 400 means p*(v) — 0
because of the strong negative association. Our calibration above suggests a relatively large
p, leading to a social return II(r) exceeding the private return II(1). This finding aligns
with a large literature on R&D, demonstrating that the social return rate to R&D is typically
higher than the private rate of return (see Griffith (2000)).

Now, the endogenous capital efficiency unit Z that takes into account the technology

choices of entrepreneurs becomes:
7 =21 =F)1+0)+2F(1+0), where z = p*(v)2" + (1 — p*(v))2".  (24)

One can immediately see that the measure of association, v, matters. It affects the market
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demand for credit/liquidity and, therefore, the tax revenue. For example, when v < 1 and
p is small, according to (23) we know that II(v) < II(1) = II and the tax revenue is lower.

We will also show how the outcome association affects other variables and social welfare.

6.2 The Role of the Association of Project Outcomes

We now examine scenarios involving positive association (e.g., ¥ = 0.85) and negative
association (e.g., v = 1.15). We interpret changes in v as exogenous shocks to the economy.

Notice that when projects exhibit positive association and p is relatively high, as dis-
cussed in Section 4, we know that I1(») > II. The reason is that the knowledge spillover of
the higher return dominates the risk spillover effect of the low return when the high return
is relatively more abundant. The opposite is true if project outcomes are negatively associ-
ated. The “social” probability of success, p*(v) is thus a decreasing function of v, using the
benchmark p = 0.6803.

To better understand the outcome association, we obtain the correlation of two consecu-
tive draws and compute the correlation of the two draws as 2! (see Appendix C.2 for more
details). Under benchmark parameters, v = (.85 corresponds to a correlation of 0.045, and
v = 1.15 corresponds to a correlation of —0.045.>> For v = .85, the pairwise correlation
(0.045) may appear small initially, but the cumulative effect (or the association of project
returns) across millions of projects cannot be seen from that. The “social” probability of
success thus better reflects this cumulative effect and p*(0.85) = 0.71, about 4.4% more
than the independent probability p. Another way to see this is to examine the conditional
probability. When v = 0.85, (21) implies that the probability of the failing second project
conditioning on the failing first project is about 0.34, about 7.2% more than the independent
probability of failing 1 — p. Therefore, pairwise correlation does not serve the purpose of
measuring the overall association effect. Thus, we use v, and it can be shown that the social
probability p®(v) is close to unity when v approaches zero.

When project outcomes become positively associated (the blue dashed-dotted lines in
Figure 9), the social return assigns a higher probability p*(v) > p to I1". However, people
still believe in the probability p of their own project, and they understand that the aggre-
gate capital efficiency unit is higher due to (16), putting downward pressure on the marginal
product r according to (18). This channel reduces the expected return gap between the risky
project and the risk-free project. As a result, the risk-taking measure 7 decreases. With a
lower r, the gross return of the safe project II/ also diminishes, making it less appealing.
Thus, we observe a weakly higher ¢ across all interest rate levels. However, TFP increases

due to the positive association and the relatively large p, leading to higher investment, pro-

22The correlation further increases as v decreases. For example, v = 0.4 produces a correlation of (.18,
v = 0.2 produces a correlation of 0.24, and v = 0 results in a correlation of 0.29.
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duction, and hours for low interest rate values.

Positive associations increase social welfare compared to baseline (solid lines in Figure
9). However, as more firms save in deposits, greater government borrowing is required,
leading to higher taxes and reduced social welfare at high interest rates. This results in a
lower optimal interest rate than in the baseline scenario. The optimal rate must balance the
welfare of entrepreneurs with projects and those saving in deposits. Note that the optimal
welfare with a positive association exceeds the optimal welfare under baseline parameters
due to the higher social return.

As v increases, the projects are negatively associated with each other, and we see the
opposite reaction compared to the above. In particular, more risk-taking is observed for
most levels of interest rate. This excessive risk-taking comes from lower capital efficiency
units Z, putting upward pressure on the marginal product r. Since individuals believe in
the same probability of success p, the risky project becomes more attractive as v increases.
Also, notice that since the interest rate cannot exceed 371, ¢ eventually remains at zero
across all interest rate levels, reducing savings and investment, which puts another upward
pressure on r. As a result, the risk-taking measure 7 increases. This effect is similar to
reducing R while keeping r constant: for any given R, the values of I1*, IT', and II/ all
increase. Consequently, the search-for-yield effect dominates for a high interest rate R, as
Proposition 2 illustrates. This dominance widens the downward-sloping part of F'(.) (the
dashed yellow line), representing the fraction of risk-takers.

With the projects negatively associated, the above discussion suggests excessive risk-
taking in the private sector due to externality. Therefore, given the hump-shaped relationship
between risk-taking and the interest rate R, monetary policy can reduce excessive risk-taking
by adjusting the interest rate either upward or downward. Because of continuity, for a small
negative association, we should expect the optimal rate to rise (as the opposite of the case of
a positive association) to deter excess risk-taking. However, when the negative association is
more severe, the benefit of correcting externality by raising the interest rate is outweighed by
the fall in investment and output because of the high financing cost. A low rate thus turns out
to be optimal. Therefore, for v = 1.5, both the output-maximizing and welfare-maximizing
interest rates are significantly lower than the rate that maximizes the risk-taking fraction of
entrepreneurs. We find that R = 1.026 maximizes F'(77) and R = 1.032 maximizes the
standard deviation. However, even with an interest rate as low as -2%, output still does not
reach its peak.

To further illustrate, note that in the cases of no association and positive association
(represented by the solid and dashed-dotted lines), the optimal rate places the economy at
the intersection of the flatter section and the steeper section of the F(7) curve. In addition,

the flatter section features ¢ = 0, and the steeper section features ¢ > 0. In this way, risk-
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Figure 9: Macroeconomy under Different v.
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Note: This figure plots the equilibrium outcomes for different levels of project correlation. v = 1 is the
benchmark case (no correlation) as shown in Figure 5. v < 1 means project outcomes are positively correlated;

v > 1 means project outcomes are negatively correlated.

taking is highly sensitive to interest rate changes. Of course, when project outcomes are
only slightly negatively associated, the policymaker should raise the interest rate. However,
if the negative association is severe (e.g. v = 1.5), the flatter section of F'(.) spans all
possible interest rates below 1/5. Avoiding risk-taking altogether and focusing on the level
of investment, thus, may be better for society, as the yellow dashed line shows. We should

examine the implications of a continuum of v below.

6.3 Further on Medium Run Optimal Interest Rate

Next, we study how the credit limit and the association of the project jointly influence the
optimal rate (Figure 10).

First, with risk taking (e.g., for v < 1.4 and more generally for those v levels below
the levels when there is a discrete jump), the optimal interest rate falls for any degree of
association when leverage is higher. As leverage increases, we have already learned that
the region in which the search-for-yield effect dominates expands. This means that, for
example, the F'(.) curve and the welfare curve in Figure 5 shift to the left, and thus the
optimal interest rate will have to fall.

Second, in a risk-taking economy, the optimal interest rate is non-monotonic with re-
spect to the degree of association in project returns, for any given credit limit §. This non-
monotonicity mirrors the hump-shaped welfare profile shown in Figure 9. The key trade-off
lies between promoting risk-taking (to enhance productivity) and stimulating investment (to

grow the economy following a rate cut).
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Figure 10: Optimal Rate under Different Associations and Credit Limits
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When risky project returns are highly positively associated, and this association strength-
ens further (i.e., v decreases from an already low level), the aggregate social return II(v)
exceeds the average private return 1I even more. In such cases, a lower interest rate is op-
timal to channel more funds to entrepreneurs, encouraging risk-taking. Conversely, when
returns become less positively correlated—or even negatively correlated—the optimal inter-
est rate tends to rise. However, if negative association becomes too pronounced, the planner
may prefer to reduce risk-taking also via cutting R. In that case, as v increases beyond a
certain threshold, the planner may lower the interest rate to capitalize on the valuation ef-
fect: reducing risk-taking while still promoting investment. These opposing forces result in
a peak in the optimal interest rate at an intermediate level of v.

The peak of this optimal rate depends on the credit limit (Figure 10). For instance,
when § = 0.45, the rate peaks at about 3.7%, around v = 1.15; for # = 0.67, it peaks
at approximately 2.12%, near v = 0.79. More broadly, greater leverage widens the range
of association values for which the planner favors the benefits of the investment scale. In
other words, the downward-sloping portion of the optimal interest rate curve becomes more
pronounced as 0 increases. In this portion of the curve, a rise of v leads to a fall of rate.
When we restrict the credit limit to within 10% of its calibrated value, # = 0.56 (which
aligns with the sample data), the optimal interest rate peaks between 2.2% and 3.1%. In
particular, these peaks occur close to v = 1, indicating that social returns are approximately
5% above or below the private return.

Third, an economy without risk-taking can be optimal under certain conditions. When
v is sufficiently high, that is, when the project returns are strongly negatively associated,
the optimal interest rate converges to a stable low level. As the rate falls, entrepreneurs
eventually stop pursuing risky projects, and investment becomes dominated by safe projects.
Further rate cuts then only stimulate safe investment.

To maintain such a low rate, the government must save, financed through distortionary
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taxation. In this case, a local optimum is achieved without risk-taking, and the optimal
rate becomes essentially independent of v. Since another local optimum exists with risk-
taking, the overall optimal rate may exhibit a discrete jump, reflecting a switch between two
equilibria based on the degree of return association.

As leverage increases, the range of rates that trigger the search-for-yield effect, where
lower rates encourage risk-taking, also expands. Consequently, the jump to a regime without
risk is induced at a higher level v. Meanwhile, in this no-risk-taking case, the optimal rate

in the should rise to reflect higher credit demand.

7 Conclusion

In this paper, we show that the effect of interest rates on risk-taking non-financial firms could
be non-monotonic overall, which depends on leverage conditions influenced by financial
regulations. Specifically, when firm leverage is low (high), the firm valuation effect is strong
(weak), and a rate cut discourages (encourages) risk-taking. When the leverage condition
is moderate, an interest rate cut encourages risk-taking only when the interest rate level is
high, and discourages risk-taking otherwise. Our analysis may shed light on why earlier
studies found mixed results regarding the relationship between financial conditions and firm
volatility. Therefore, with a further cut in the interest rate in a low interest rate environment,
firms may not pursue risky but socially desirable projects.

Apart from leverage conditions, we also show that whether an interest rate policy incen-
tivizes firm risk-taking depends crucially on the association of project returns among risk-
takers. The analysis highlights the need for a careful mix of interest rate policy and financial
regulations, such as macro-prudential policies. Future research can study whether mone-
tary/financial policy could have endogenous growth effect through this risk-taking channel,
although technological progress still largely determines long-term growth. Additionally,
optimal capital taxation that alters projects’ risk profiles seems crucial for risk-taking, pro-

ductivity, and welfare.
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Online Appendix

A Data Source and Further Empirical Results

For interest rate measures, we use the federal funds rate, inflation, the Federal Reserve Bank of
Cleveland’s real interest rate, expected inflation, and the prime rate from FRED, maintained by the
Federal Reserve Bank of St. Louis.

Financial data (mentioned in the main text) between 1984 and 2019 is sourced from COMPUS-
TAT. Firms in the financial sector are excluded from the sample. Return on equity (ROE) is measured
as net income over total equity (total assets minus total liabilities). In Figure 11, we plot the ROE
dispersion against the interest rate at industry level (SIC one-digit). We exclude the Agriculture,
Forestry and Mining, Finance, and Public Administration sectors.

The ROE variation of a firm is measured by its standard deviation of a window from year ¢ to
t +7.2> We exclude extreme observations by dropping the firm observation if any of its illiquid ratio,
size, Tobin’s Q, cash holdings, ROA, ROE, etc, are below the 5th or above the 95th percentile.

For “market”-based risk-taking measures, we use daily stock returns between 1984 and 2019
from CRSP to calculate the inter-quartile range (IQR) and the standard deviation of the daily returns.
CRSP database maintains the most comprehensive collection of security price, return, and volume
data for the NYSE, AMEX, and NASDAQ stock markets.

Figure 11: Risk-taking and Real Interest Rate at Industry Level
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Note: This figure plots the cross-sectional (SIC industry level) standard deviation of return on equity (ROE)
against the real interest rate provided by the Federal Reserve Bank of Cleveland.

23We also examined the variation using the difference between the maximum value and the minimum value
in this time window. The results are similar.
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B Derivations and Proofs

B.1 Proof of Proposition 1

If the entrepreneur chooses a safe project, we have the value function:

Vi(w) = max {log(w —s) + Blog(Il/ (s + b) — Rb)}
5,0<b<0s

= max {log(w — s) + Blogs + Blog(I1/ (1 + 0) — RA)}.
5,0<0<0

The optimal saving is s = yw with ¢ = % Since I/ > R, the credit constraint is binding: § = 6.
If the entrepreneur chooses a risky project, the value function becomes:

V'(w,n) = . 53?595 { log(w — s) — n + Bplog(IT"(s + b) — Rb)} + B(1 — p) log(IT" (s + b) — Rb)}

= maxf{log(w —s)+ plogs —n+ PBplog (Hh(l +0)— RH)
5,0<0<0

+ B8(1 —p)log (Hl(l +6) — R0> }

The optimal saving is s = ¢w again. Let 6* denote the level of unconstrained optimal leverage that
a firm would choose in the absence of financing constraints. Then, 8* solves the first-order condition
(ignoring 6 > 0, but we will come back to that):

nm —Rr I - R

1-p)——
P e ke T P —re

Therefore, the cutoff interest rate level IT"TI'/ IT (above which 6* < 0) is obtained by setting § = 0
above and it is straightforward to verify that IT"IT'/ e (Hl, Hh). If R > I/ I, then the interest
rate is too high to justify borrowing. However, under Assumption Al and A2, §* > 0 because
(I' — R)(I" — R) < 0 and R < II/ < II"I'/II. Then we can express 6* > 0 as

MU - R(pI' + (1 —p)I") I g

m-nar-r  ~ |Pm-r Y Pmogl (25)

0" =
" — R

The optimal leverage # = min{#*, §}. We now show that §* decreases in R. Notice that

o0* II(IT' — R)(II" — R) + (—O"II! + RIT)(+11" 4+ 1T' — 2R)
OR (II' — R)2(IT" — R)?
' (R — D) + ("I — TIR)R
(IT" — R)2(TI" — R)?

The numerator above is quadratic and concave in R. With some algebra, the maximum value of the

RTTL(TTRTTL T . . . _
w < 0. To verify this, we can use the convexity feature, % + 11_Tp >
% which implies TI"MT! < ITI1. Thus, the numerator is negative, which implies that

numerator is
1 _
P () — :
% < 0. The optimal leverage § = min{#*,6}.
Finally, we determine the threshold for taking risky project 1. By taking the difference between
V" (w,n) and V/(w) above, we obtain (3).
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B.2 Proof of Proposition 2

Assuming 6* > 0, we have § = § when an entrepreneur chooses the risky project. Define z = R%

as the debt servicing cost per unit of capital used in production, then 7j in (3) can be rewritten as

We then obtain .
of  JIMI'—TVII+ (I — D)z
or (I — z)(T1F — z) ’

where we use IT = (1 — p)II" + pIT* and II + IT = 11" + II. Under Assumptions Al and A2, one
can verify

o 0
>R =.
1+ 0% 1446
Then, the denominator of 97/0z is positive. Additionally, since (II/ — II) is negative, we can thus
reach 07/0x = 0 if © = 2°, where

n>1 >R

AT — T/ 1T
- 11/

=

And 077/0z > 0if x < 2%, and On/0x < 0 if z > a°.
Notice that

on_ 050z
OR 0z dR
Since 0z /OR > 0, the sign of 077/ R depends on the sign of 977/0x. Let R* be the interest rate such

that z = 2%, 1.e., B B
R =R*(0)=2°(1/0 +1).

Note that R® depends on the leverage upper bound # and the superscript s indicates that the debt
servicing cost is x® (a parameter determined by the project returns as shown above). Therefore, we
define two boundary values

. M1 — 711 s M — T/ 1T
(I - I)I — (TP — TTT) % (I — )T — (IIPIT — DO/

0% =

determined by setting R*(6%;) = IT' and R*(63) = I1/. Based on the two boundary values, we have

1). If 6 > 6%, then R*(9) < TI'. For the range of interest rate under assumptions, R > II' >
R*(#), the debt servicing cost x is above x*. In this case, 97/0z < 0 and thus 97/0R < 0;

2). If § < 65, then R*(A) > TI/. For the range of interest rate under assumptions, R < I/ <
R*(#), the debt servicing cost x is below z*. In this case, 97/0x > 0 and thus 97j/OR > 0;

3). Otherwise, 7j is hump-shaped in R and ITI' < R*(0) < I/ when 05 < 6 < 0.

The above completes the proof. However, we can extend the reasoning by varying the leverage

limit while holding the interest rate R fixed. To see this, notice that
on _ 0nox
20 0z 00’

Since dx/00 > 0, the sign of 97j/00 depends on the sign of 97j/0z. Let §° be the leverage upper

bound such that z = 2°, i.e.,0* = 0°(R) = Rf—;s One can show that 0 < 0° < #*. Therefore, 7 is
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hump-shaped in 0, and #* decreases in R. Finally, we have the following corollary:

Corollary. Suppose Al and A2 hold and suppose the financing constraint is binding when the risky
project is implemented (i.e., 0 < 0*). We have that 0°(R) € (0, 0*), the leverage upper bound such
that 077/0R = 0, decreases in R. When 0 < 0 < éS(R), the cutoff 1 is increasing in 0; when
0°(R) < 0 < 07, the cutoff i is decreasing in .

Unlike Proposition 2 with three scenarios based on the level of 6, there are no multiple cases
here. This is because R* can be lower than the lower bound IT!, higher than the upper bound II/, or
in between, depending on the level of §. However, 67 is always between the lower and upper bounds,
ie,0<6°<0"

B.3 Proof of Proposition 3

When the borrowing constraint is slack under the entrepreneur’s risky choice, we have

" + (" — R)6* I’ + (T — R)6*
n = PBpl — 1-p)l —
U 5p°g<r[f+(nf—3)9 +6(1 —p)log 7+ (7 —R)7 )’
where 0* = — [leLiR +(1- p)%} . Then, we can express 7) in this case as

i =B[plogp+ (1 — p)log(1 — p) + log R + log(IT" — II%)
— plog(R —11') — (1 — p)log(IT" — R) — log(Il/ + (IIf — R))).

Taking the derivative with respect to R, we obtain
o 0 0*

M:B[Hf+(ﬂf—R)5_R (26)

To prove the non-monotonic cutoff level for an unconstrained entrepreneur in Proposition 3 we
proceed in two steps, each with a Lemma: 1) we show that 77 is convex in the interest rate R when
the financing constraint is slack; 2) if @ is large enough we will see 7 decreases and then increases in
R when the credit constraint is slack.

Lemma 5. For an financially unconstrained entrepreneur, the cutoff level 1 is convex in R.

Proof. With the expression for 0* equation (25), we can rewrite % as
00 o il + (TP — Rr?)
OR — RII — 1M1 R

From Proposition 1, we know % < 0 and 6* > 0. With these inequalities and Assumption A2

(IT"IT¢ > TI71I), we have IT"TI! — RII > IIMII' — I/ TI > 0, which implies ITMT! 4-6* (II"II' — R2) >
0. Then, it follows that
* e é *
0% o[ o — B ot R 0% dwaiem 0%
OR R2(TIMT! — RIT) OR? OR OR ~

Thus, the cutoff level 7 is convex in the interest rate 12 for an unconstrained entrepreneur. O

Lemma 6. At the interest rate R(0), where the borrowing constraint shifts from binding to non-
binding, 1 decreases in the interest rate R, i.e., % | R=R(8) < 0.
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Proof. We use the non-monotonic result from the binding case in Proposition 2. Since when the
interest rate is higher than R*(0), the rate at which 7 reaches its maximum under a binding borrowing
constraint, we have 877 < 0. Therefore, if R(f) > R*(f), it follows that g—y r=R(5) < 0. We need to

show R(6) > R*(#). It turns out more convenient to compare the debt servicing cost, R1 " in both
cases. From the proof of Proposition 2 in Appendix B.2
a T — /11

_ s _ o f

where g(s) = thi;m Meanwhile

0 —pll(I1" — R(9)) — (1 — p)II"(II' — R(P)) TI"II' — R(H)II
1+6  —p"—R@) - (1-p'-R@O) - R(@)

The rest of the proof shows g(.) is decreasing and R(#) < TI/, implying R(6) > R*(6).
By convexity, £ or T+ 1 = > m = % which implies TT"IT* < TITI. Then, g(s) decreases

1
pITh+(1-p)
_ .. . . —I(M—s) 4T —sIT _ b1t —1Im
in s, since the first order condition of g(s) with respect to s is T—s)? = Tll=s)2 < 0.

Notice that if the entrepreneur is unconstrained, then it must be that RQ@)_< 7. To see this
claim, first observe that 8* is a decreasing function of R. By the definition of R(#), we have 0*(R) =
6 when R = R(f). By the definition of 0,rin» We have 0*(R) = 0y, when R = I1/. Second, if

R(#) > TI7 that is opposite of the claim, then § = 0*(R(A)) < 6*(I1/) = 6* . as #*(R) decreases

min
in R, which contradicts with our assumption that § > 6§ . . and thus we prove the claim. O

min’

Finally, using Lemma 5 and Lemma 6, we can finish the proof of Proposition 3. To show 7
changes from decreasing to increasing in R, we need to find further an interest rate level such that

In the proof of (B 2), the derivative of 77 with respect to the debt servicing cost x is zero when
x = x°; we see thaty R| rmf = 0 when 0 takes the value of %, since the debt serv1cmg cost is

indeed z = x* when 0 = 95 and R = II7. It is straightforward to verify that - > ( according

aRae
to (26), which means that 2 5 increases in 6. Thus 3 R\ gt/ > 0 when § > 0% . since we already
know that 6%, = 0%. Then by Lemma 5, Lemma 6, and the mean value theorem, when > 0 .

there exists an interest rate R*() where R(f) < R“() < II/ such that ﬁ| Rr=pu(g) = 0, since we
8
already know that R\ r=p(3) < 0 (from Lemma 6), 3 R[ r=ti/ > 0, and > 0 (from Lemma 5).

Thus, the implied risk-taking threshold for unconstrained entrepren_eurs first decreases with R
and then increases with R later. That is, 61’% < 0if R(#) < R < R“(f) and g% > 0if R*(0) <
R() <TI.
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B.4 Proof of Proposition 4

Guess that V" (w, n) = log(w)+v" —n, VI (w) = log(w) +v/ —n/, V4(w) = log(w)+v?. Plugging
these guessed forms into the entrepreneur’s Bellman equation, we have the following

v" =B+ Aplog (I (14 6) — RY) + B(1 ~ p)log (T'(1 +6) — o)
+ Bmax{v®,E [max{w oo —pf }} . 27)
ol =B+ 8 [1og(nf (1+8) - Ré)} + Bmax{v?, E [max{v* —ofof —gf }} Y (@8)
v! =B + Blog(R%) + Bmax{v?, E [maxw — oo —f }} 1 (29)
where B =(1 — ) log(1 — 8) + Blog j.

One can solve for the three unknowns v", v/, and v? from the above three equations, and verify
the guess. Their exact solutions are, however, not essential for our purposes. The choice (be-
tween saving in deposits or being an active entrepreneur) depends on the maximal value of the two,
E [max{vr —n,vf —nf }] As for the share of firms saving in deposits, we have

0 ifvd <E[max{v" —n,0f —nf}]
¢=1(0,1) ifv? =E [max{v" —n,of —n7}] .
1 ifo? > E [max{v” —n,0f —nf}]

Using the expressions for v, v/, and v? , we have ¢ as follows:

0 if 14 < B [max{I" — =1, 1/}]
¢=1(0,1) ifld=F [max{l" — B~1n,1}] .
1 if 14 > E [max{I" — ', 17}]

Notice that when ¢ = 0, the active projects strictly dominate; when ¢ = 1, the risk-free deposits
strictly dominate; when 0 < ¢ < 1, an entrepreneur is indifferent between saving via the risk-free
deposits and becoming an active entrepreneur implementing projects.

The choice of # follows the same reasoning as in the two-period model, for which the proof has
already been provided. For the cutoff, there exists a level below which entrepreneurs choose the risky
project. Similar to the proof before, we have 77 = v" — (v/ — nf) as:

i = Bplog (11" + (11" = R)8) +6(1—p) log (11" + (IT' = R)9) —B(log(I/ (1+6)— RO)—1/ /),

where we have used the value functions and § = min{6*,8} (with 0* being the unconstrained
solution as given in (25)). If the right-hand side is below 7, we set 7 = 7. Therefore, entrepreneurs
with < max{n, 7} choose the risky project.

C Omitted Details in the Macroeconomic Model

C.1 The average return in the society

Let m denote the number of realizations of II" in the economy, and let the proportion of success be

p’(v) =E [%] as m goes to infinity, which is the share of realized return II*.

It has been shown in Shmueli et al. (2005) that for the Conway-Maxwell Poisson distribution,
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E[m] converges to A/ — ”2—;1 when n goes to infinity and p is small i.e. p < p*. This suggests
that p*(v) converges to p'/¥ when n goes to infinity after substituting A = n”p as illustrated in
Daly and Gaunt (2016). Here, p'/” represents the probability of high realizations assessed by the
social planner, which differs from the individual’s assessment p whenever there is an association
in the projects (i.e., v#1). As a result, the average return from the society’s perspective becomes
p%Hh + (1 - p%)Hh. The case where p is large, i.e. p > p**, follows a similar reasoning but one
should replace p by 1 — p in the argument above.

C.2 Pairwise correlation for association

Let I, —; be the indicator function for z; = [ (the first trial fails) and I,,—; for xo = [ (the second
trial fails), respectively. The covariance of the indicator functions is

COU(HCE1=Z7H$2=1) - E[]Im:l]IIQ:l] - E[Hﬂh:l]E[Hm:h]

= Pr(xy=1lxea=1)— Pr(z; =1)P(xa=1)
= Pr(zy = h)Pr(zy =1)[Pr(ze =l|lzy = 1) — Pr(ze = llz1 = h)],

With 0(I;,—;) = /Pr(z1 = h)Pr(z1 =1) and 0(I,—;) = /Pr(z2 = h)Pr(x = [) being the
standard deviation of these two indicator functions, then the correlation coefficient p,, is

COU(]IIl:l, H:):g:l)

v = O—(]Ifh:l)a(]lxg:l)
— U(Hﬂclzl) _ L . .
= o) (Pr(zy =1z =1) — Pr(zo = l|z1 = h))
_ Prz=lx=1l) Prle=lLz=h)
N Pr(z; =1) Pr(xz; =h)
_ sz (1 =P - 3005z (1) P(L—D)
5w (L =P T 255sm 1) PA=P)  5asmP” + 255sm (1) PO —p)
1-p 271 (1 - p)

1—p—|—2“‘1p_p+2”—1(1—p)’

where the second line uses the property of exchangeability (which implies o (I,,—;) = o(I,,—;)) and
the fifth line uses the definition of the CMB distribution and the property of exchangeability.

C.3 Social Welfare

We first derive entrepreneurs’ welfare, which consists of the contribution of three types: those who
take risks, those who implement the risk-free project, and those who save in safe deposits:

Vow) = (1 - 9) / "V @ m)dF () + (1 9) / VI (@, 0/ )dF(n) + ¢ / Vi(w)dF(n). (30)
n n

We have two scenarios below, each of which determines the value max{v?, E [max{v" — n/,v/ — n/}]}
in (27) - (29) differently. For exposition simplicity, 7} is assumed to be above 7, which is always ver-
ified in our numerical exercises. In addition, the lower bound 7 is set to zero since it simplifies the
derivation and does not affect welfare comparison. -
Scenario 1: When ¢ = 0, no one chooses the safe deposit option. Thatis, v¢ < [max{v’“ — vl —nf }] .
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Then, we can explicitly express E max{v" — 7/, v/ — nf, v?} as follows
max{v?, E [max{vr — vl =Y} = Emax{v" — 1,0 — '}

= (1-F) (vf—nf> —i—FU’"—/ﬁndF(n)

7
= vf—nf+/ F(n)dn,

sincen =v" — of + nf . This means that we can explicitly solve the values in (27) - (29). It turns out
that we only need to express

of = B+ﬂhgmql+m—Rﬁ]+5Pﬁﬂf+/ﬁFMMﬂ
B

= g [ee 0 - me)| + T [ F Gy - ),

where B is defined above in the proof of Proposition 4, the second equality results from rearranging

vf on the right-hand side of the first equation and dividing both sides by 1-3. Therefore, we can
rewrite (30) as

Vi) = [0 @amnar+ [ Vi)
n
= ogw) + 0" F(@) — [ ndF )+ - F@) 0 o)

= log(w) + () + (v — 1) n+/ F(y

i—Fi[log(ﬂf(l—l—ﬁ) [/F )dn — 77]
g s
where the third equality uses v" = v/ — 1/ 4 7j and the last equality substitutes the expression for v/
derived above.

Scenario 2: When 0 < ¢ < 1, entrepreneurs are indifferent between investing in risk-free de-
posits and taking on projects. Then, we can explicitly express max{v?, E [max{v" — 7/, of —nf H3
as

= log(w) +

max{v?, E [max{vr —n v = nf}]} =l

d

Using the result above and following a similar procedure as in Scenario 1, we can express v® as

B Blog(R%)
1-p 1-8

where the second equality results from rearranging v®. Therefore, we can rewrite (30) as

v? =B+ Blog R + pv? =

B Blog(R%)
-5 1-8°

Vo(w) = VHw) = log(w) + v = log(w) +

where we used the expression for v in the last equality.
Remark: In a steady-state economy, project choice is independent of the wealth level. The
distribution of the wealth level w is always preserved. Denote V' as the value function of the en-
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trepreneurs. Thus, w = 2 anfl V = V.(Q2). We, therefore, conclude that entrepreneurs’ welfare can
be represented by log(£2) + V' + constants as shown in the main text, since the results in Scenarios
1 and 2 above imply the constant term is /(1 — /) and

V== (smaxli <5 ' Pl )

Note that both 2 and V" are endogenous to policy variations.

D Endogenous leverage

This section introduces the concept of endogenous leverage, where the maximum leverage an en-
trepreneur can sustain depends on the risk of default. Here, we allow entrepreneurs engaged in risky
projects to have the option to default upon realizing a return of II'. Entrepreneurs with safe projects
may also choose to default under certain conditions.

Let 6" and 67 represent the maximum allowable leverage for entrepreneurs undertaking risky and
safe projects, respectively. We demonstrate how these leverage bounds, 8" and 6/, can be determined
endogenously by incorporating the potential of default. In the event of default, we assume that
entrepreneurs retain a fraction ¢” < 1 of total revenue from risky projects and ¢/ < 1 from safe
projects, pocketing these amounts without repaying any debt. However, after default, entrepreneurs
face a probability £ of permanent exclusion from entrepreneurial activities, losing access to both safe
and risky project opportunities.

The value of risk-taking entrepreneurs in the low state II’, conditional on not defaulting, is de-

noted as Vgposb which is given by:
VeT:L%post = log(Hl(s + b) - Rb) + EmaX{’Ur - 77,a Uf}

or

= log(1+6")+log <Hl _ o ) +log(s) + Emax{v" — 1/, v/}

14067

If they choose to default, the value becomes:

1fﬁ(log5+logR)>]

+(1-¢) [log (cpTHl(s + b)) + Emax{v" — 7/, Uf}]
= log(1+0") + log(IT') + log(¢") + log(s)

e <10g<1 B+ L ogst 1ogR>> (1 - OEmax{e — 1,07,

V(s + ) - RY) = §[log(sorﬂl(s+b>)+ <log<1—5>+

B
1-5
Therefore, the non-default condition becomes:

Vit = VP (s + ) — RD))
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or

B
1-p

log(IT'(1 4 6") — RA") + ! /77 F(n)dn — b log R

¢ 1-3 1-3

0"R

> log(I1}) +1 ") — log(IT" —
> log(IT") + log(¢") — log( T

).

~~

immediate gain

In this inequality, the left-hand side represents the expected future benefits from not defaulting,
weighted by the probability of losing entrepreneurial status &, while the right-hand side captures
the immediate gain from defaulting under low returns IT'. This condition ensures that entrepreneurs
prefer not to default as long as the expected benefits of maintaining their status exceed the immediate
gain from default.

Similarly, the non-default condition for entrepreneurs with safe projects becomes:

‘/;J;post > VD<Hf(S+b) _Rb))
or
Il 45— pal L[ _ b
£ 1_/Blog(l'[ (1+67) R9)+1_6/77F(77)d77 1_ﬂlogR

'R

> log(I') + log(o”) — log(Il — =

).

Vv
immediate gain

The endogenous leverage upper bounds 6" and A/ can be determined by setting the non-default
conditions derived above to hold as equalities. For numerical illustration, Figure 12 shows how 7
varies with the interest rate Iz, and a similar non-monotonic relationship remains.
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Figure 12: Effect of R on 7 for endogenous ¢
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Note: A numerical illustration with 8 = 0.96, IT* = 1.3, TI' = 0.95,11f = 1.07,p = 0.6, £ = 0.12, " = 0.2,
©f = 0.5, and F(.) being log-normal distribution with 1 = 0,0 = 1.2.
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