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Abstract

This paper introduces two new identi�cation- and singularity-robust conditional quasi-likelihood

ratio (SR-CQLR) tests and a new identi�cation- and singularity-robust Anderson and Rubin (1949)

(SR-AR) test for linear and nonlinear moment condition models. The paper shows that the tests

have correct asymptotic size and are asymptotically similar (in a uniform sense) under very weak

conditions. For two of the three tests, all that is required is that the moment functions and their

derivatives have 2 +  bounded moments for some  > 0 in i.i.d. scenarios. In stationary strong

mixing time series cases, the same condition su¢ ces, but the magnitude of  is related to the

magnitude of the strong mixing numbers. For the third test, slightly stronger moment conditions

and a (standard, though restrictive) multiplicative structure on the moment functions are imposed.

For all three tests, no conditions are placed on the expected Jacobian of the moment functions, on

the eigenvalues of the variance matrix of the moment functions, or on the eigenvalues of the expected

outer product of the (vectorized) orthogonalized sample Jacobian of the moment functions.

The two SR-CQLR tests are shown to be asymptotically e¢ cient in a GMM sense under strong

and semi-strong identi�cation (for all k � p; where k and p are the numbers of moment conditions
and parameters, respectively). The two SR-CQLR tests reduce asymptotically to Moreira�s CLR

test when p = 1 in the homoskedastic linear IV model. The �rst SR-CQLR test, which relies on

the multiplicative structure on the moment functions, also does so for p � 2:

Keywords: asymptotics, conditional likelihood ratio test, con�dence set, identi�cation, infer-

ence, moment conditions, robust, singular variance, test, weak identi�cation, weak instruments.

JEL Classi�cation Numbers: C10, C12.



1 Introduction

Weak identi�cation and weak instruments (IV�s) can arise in a wide variety of empirical appli-

cations in economics. Examples include: in macroeconomics and �nance, new Keynesian Phillips

curve models, dynamic stochastic general equilibrium (DSGE) models, consumption capital asset

pricing models (CCAPM), and interest rate dynamics models; in industrial organization, the Berry,

Levinsohn, and Pakes (1995) (BLP) model of demand for di¤erentiated products; and in labor eco-

nomics, returns-to-schooling equations that use IV�s, such as quarter of birth or Vietnam draft

lottery status, to avoid ability bias.1 Other examples include nonlinear regression, autoregressive-

moving average, GARCH, and smooth transition autoregressive (STAR) models; parametric selec-

tion models estimated by Heckman�s two step method or maximum likelihood; mixture models and

regime switching models; and all models where hypothesis testing problems arise where a nuisance

parameter appears under the alternative hypothesis, but not under the null.2 Given this wide range

of applications, numerous methods have been developed in the econometrics literature over the last

two decades that aim to be identi�cation-robust.

The most important feature of tests and con�dence sets (CS�s) that aim to be identi�cation-

robust is that they control size for a wide range of null distributions regardless of the strength

of identi�cation of the parameters. This holds if the tests have correct asymptotic size for a

broad class of null distributions. However, the asymptotic size of many tests in the literature that

are designed to be identi�cation-robust has not been established. This paper and its companion

paper, Andrews and Guggenberger (2014a) (hereafter AG1), help �ll this void by establishing the

asymptotic size and similarity properties of three new tests and CS�s and the in�uential nonlinear

Lagrange multiplier (LM) and conditional likelihood ratio (CLR) tests and CS�s of Kleibergen

(2005, 2007) and the GMM versions of the tests that appear in Guggenberger and Smith (2005),

Otsu (2006), Smith (2007), Newey and Windmeijer (2009), and Guggenberger, Ramalho, and Smith

(2012). None of the aforementioned tests and CS�s have been shown to have correct asymptotic size

for moment condition models (even linear ones) with multiple sources of possible weak identi�cation.

1For new Keynesian Phillips curve models, see Dufour, Khalaf, and Kichian (2006), Nason and Smith (2008),
and Kleibergen and Mavroeidis (2009). For DSGE models, see Canova and Sala (2009), Iskrev (2010), Qu and
Tkachenko (2012), Dufour, Khalaf, and Kichian (2013), Guerron-Quintana, Inoue, and Kilian (2013), I. Andrews and
Mikusheva (2014b), Qu (2014), and Schorfheide (2014). For the CCAPM, see Stock and Wright (2000), Neely, Roy,
and Whiteman (2001), Yogo (2004), Kleibergen (2005), Carroll, Slacalek, and Sommer (2011), and Gomes and Paz
(2013). For interest rate dynamics, see Jegannathan, Skoulakis, and Wang (2002) and Grant (2013). For the BLP
model, see Armstrong (2012). For the returns-to-schooling wage equations, see Angrist and Krueger (1991, 1992) and
Cruz and Moreira (2005).

2For the time series models, see Hannan (1982), Teräsvirta (1994), Nelson and Startz (2007), and Andrews and
Cheng (2012, 2013b). For the selection model, see Puhani (2000). For the mixing and regime switching models, see
Cho and White (2007), Chen, Ponomareva, and Tamer (2014), and references therein. For the nuisance parameter
only under the alternative models, see Davies (1977) and Andrews and Ploberger (1994).
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By this we mean that one or more parameters (or transformations of parameters) may be weakly

or strongly identi�ed. In addition, the approach and results of the present paper and AG1 should

be useful for assessing the asymptotic size of other tests and CS�s for moment condition models

that allow for multiple sources of weak identi�cation.

The three new tests introduced here include two singularity-robust (SR) conditional quasi-

likelihood ratio (SR-CQLR) tests and an SR nonlinear Anderson and Rubin (1949) (SR-AR) test.

These tests and CS�s are shown to have correct asymptotic size and to be asymptotically similar

(in a uniform sense) under very weak conditions. All that is required is that the expected moment

functions equal zero at the true parameter value and the moment functions and their derivatives

satisfy mild moment conditions. Thus, no identi�cation assumptions of any type are imposed. The

results hold for arbitrary �xed k; p � 1; where k is the number of moment conditions and p is the
number of parameters. The case k � p is of greatest interest in practice, but the results also hold
for k < p and treatment of the k < p case is needed for the SR results. The results allow for any

of the p parameters to be weakly or strongly identi�ed, which yields multiple possible sources of

weak identi�cation. Results are given for independent identically distributed (i.i.d.) observations

as well as stationary strong mixing time series observations.

The asymptotic results allow the variance matrix of the moments to be singular (or near sin-

gular). This is particularly important in models where lack of identi�cation is accompanied by

singularity of the variance matrix of the moments. For example, this occurs in all maximum likeli-

hood scenarios and many quasi-likelihood scenarios. Other examples where it holds are given below.

Some �nite-sample simulation results, given in the Supplemental Material (SM) to this paper, show

that the SR-AR and SR-CQLR tests perform well (in terms of null rejection probabilities) under

singular and near singular variance matrices of the moments in the model considered.

In addition, the asymptotic results allow the expected outer-product of the vectorized orthog-

onalized sample Jacobian to be singular. For example, this occurs when some moment conditions

do not depend on some parameters. Finally, the asymptotic results allow the true parameter to be

on, or near, the boundary of the parameter space.

The two SR-CQLR tests are shown to be asymptotically e¢ cient in a GMM sense under strong

and semi-strong identi�cation (when the variance matrix of the moments is nonsingular and the

null parameter value is not on the boundary of the parameter space). Furthermore, as shown in the

SM, they reduce to Moreira�s (2003) CLR test in the homoskedastic linear IV model with �xed IV�s

when p = 1: This is desirable because the latter test has been shown to have approximate optimal

power properties in this model under normality, see Andrews, Moreira, and Stock (2006, 2008) and
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Chernozhukov, Hansen, and Jansson (2009).3 The �rst SR-CQLR test applies when the moment

functions are of the form ui(�)Zi; where ui(�) is a scalar and Zi is a k vector of IV�s, as in Stock

and Wright (2000). It reduces to Moreira�s CLR test for all p � 1: The second SR-CQLR test does
not require the moment functions to have this form. A drawback of the SR-CQLR tests is that

they are not known to have optimality properties under weak identi�cation in other models, see

the discussion in Section 2 below. The SR-CQLR tests are easy to compute and their conditional

critical values can be simulated easily and very quickly. Constructing CS�s by inverting the tests

typically is more challenging computationally.

Now, we contrast the aforementioned asymptotic size results with the asymptotic size results

of AG1 for Kleibergen�s (2005) Lagrange multiplier (LM) and conditional likelihood ratio (CLR)

tests. AG1 shows that Kleibergen�s LM test has correct asymptotic size for a certain parameter

space of null distributions F0. AG1 shows that this also holds for Kleibergen�s CLR tests that

are based on (what AG1 calls) moment-variance-weighting (MVW) of the orthogonalized sample

Jacobian matrix, combined with a suitable form of a rank statistic, such as the Robin and Smith

(2000) rank statistic. Tests of this type have been considered by Newey and Windmeijer (2009) and

Guggenberger, Ramalho, and Smith (2012). AG1 also determines a formula for the asymptotic size

of Kleibergen�s CLR tests that are based on (what AG1 calls) Jacobian-variance-weighting (JVW)

of the orthogonalized sample Jacobian matrix, which is the weighting suggested by Kleibergen.

However, AG1 does not show that the latter CLR tests necessarily have correct asymptotic size

when p � 2 (i.e., in the case of multiple sources of weak identi�cation). The reason is that for

some sequences of distributions, the asymptotic versions of the sample moments and the (suitably

normalized) rank statistic are not necessarily independent and asymptotic independence is needed

to show that the asymptotic null rejection probabilities reduce to the nominal size �:4 AG1 does

show that these tests have correct asymptotic size when p = 1; for a certain subset of the parameter

space F0.
Although Kleibergen�s CLR tests with moment-variance-weighting have correct asymptotic size

for F0, they have some drawbacks. First, the variance matrix of the moment functions must be
nonsingular, which can be restrictive (as noted above).5 Second, the parameter space F0 restricts

3For related results, see Chamberlain (2007), Mikusheva (2010), Montiel Olea (2012), and Ploberger (2012).
4Lack of asymptotic independence can occur because the estimation of the variance matrix of the Jacobian of the

moments can a¤ect the asymptotic distribution of the Jacobian-variance weighted CLR test statistic under sequences
of null distributions that exhibit weak identi�cation of some parameters, or some transformation of the parameters,
and strong identi�cation of other parameters, or other transformations of the parameters. Such scenarios occur when
p � 2; but cannot occur when p = 1:

5Nonsingularity of the variance matrix of the moments is needed for Kleibergen�s CLR tests, because the inverse
of the sample moments variance matrix is employed to orthogonalize the sample Jacobian from the sample moments
when constructing a conditioning statistic.
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the eigenvalues of the expected outer product of the vectorized orthogonalized sample Jacobian,

which can be restrictive and can be di¢ cult to verify in some models.6 Third, as shown in the SM,

Kleibergen�s CLR tests with moment-variance-weighting do not reduce to Moreira�s CLR test in

the homoskedastic normal linear IV model with �xed IV�s when p = 1: In fact, with the moment-

variance-weighting that has been considered in the literature, across di¤erent model con�gurations

for which Moreira�s conditioning statistic displays the same asymptotic behavior, the magnitude

of the conditioning statistic for Kleibergen�s CLR tests can be arbitrarily close to zero or in�nity

(with probability that goes to one). Simulation results given in the SM show that this leads to

substantial power loss, in some scenarios of this model, relative to the SR-CQLR tests considered

here, Moreira�s CLR test, and Kleibergen�s CLR test with Jacobian-variance weighting. Fourth,

the form of Kleibergen�s CLR test statistic for p � 2 is based on the form of Moreira�s test statistic

when p = 1: In consequence, one needs to make a somewhat arbitrary choice of some rank statistic

to reduce the k � p weighted orthogonalized sample Jacobian to a scalar random variable.7

Kleibergen�s CLR tests with Jacobian-variance weighting also possess drawbacks one, two, and

four stated in the previous paragraph, as well as the asymptotic size issue discussed above when

p � 2: In contrast, the two SR-CQLR tests considered in this paper do not have any of these

drawbacks.

To establish the asymptotic size and similarity results of the paper, we use the approach in

Andrews, Cheng, and Guggenberger (2009) and Andrews and Guggenberger (2010). With this

approach, one needs to determine the asymptotic null rejection probabilities of the tests under

various drifting sequences of distributions fFn : n � 1g: Di¤erent sequences can yield di¤erent
strengths of identi�cation of the unknown parameter �: The strength of identi�cation of � depends

on the expected Jacobian of the moment functions evaluated at the true parameter, which is a k�p
matrix. When k < p; the parameter � is unidenti�ed. When k � p; the magnitudes of the p singular
values of this matrix determine the strength of identi�cation of �: To determine the asymptotic size

of a test (or CS), one needs to determine the test�s asymptotic null rejection probabilities under

sequences that exhibit: (i) standard weak, (ii) nonstandard weak, (iii) semi-strong, and (iv) strong

identi�cation.8

6 It is shown in Section 12 in the Appendix to AG1 that this condition is not redundant. Without it, for some
models, some sequences of distributions, and some (consistent) choices of variance and covariance estimators, Kleiber-
gen�s (2005) LM statistic has a �2k asymptotic distribution, where k is the number of moment conditions. This leads
to over-rejection of the null by this LM test when the standard �2p critical value is used, where p is the dimension
of the parameter, and the parameter is over-identi�ed (i.e., k > p): Kleibergen�s CLR tests depend on his LM test
statistic, so his CLR tests also rely on the expected outer-product condition.

7Several rank statistics in the literature have been suggested, including Cragg and Donald (1996, 1997), Robin
and Smith (2000), and Kleibergen and Paap (2006).

8As used in this paper, the term �identi�cation�means �local identi�cation.� It is possible for a value � 2 � to
be �strongly identi�ed,� but still be globally unidenti�ed if there exist multiple solutions to the moment functions.
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To be more precise, we de�ne these identi�cation categories (when k � p) here. Let the k

vector of moment functions be gi(�) and the k � p Jacobian matrix be Gi(�) := (@=@�0)gi(�):

The expected Jacobian at the true null value �0 is EFGi(�0); where F denotes the distribution

that generates the observations. The variance matrix of gi(�0) under F is denoted by 
F (�0): Let

fsjp : j � pg denote the singular values of 
�1=2F (�0)EFGi(�0) in nonincreasing order (when 
F (�0)

is nonsingular).9 For a sequence of distributions fFn : n � 1g; we say that the parameter �0 is: (i)
weakly identi�ed in the standard sense if limn1=2s1Fn <1; (ii) weakly identi�ed in the nonstandard
sense if limn1=2spFn < 1 and limn1=2s1Fn = 1; (iii) semi-strongly identi�ed if limn1=2spFn = 1
and lim spFn = 0; and (iv) strongly identi�ed if lim spFn > 0: For sequences fFn : n � 1g for which
the previous limits exist (and may equal1), these categories are mutually exclusive and exhaustive.
We say that the parameter �0 is weakly identi�ed if limn1=2spFn < 1; which is the union of the
standard and nonstandard weak identi�cation categories. Note that the asymptotics considered

in Staiger and Stock (1997) are of the standard weak identi�cation type. The nonstandard weak

identi�cation category can be divided into two subcategories: some weak/some strong identi�cation

and joint weak identi�cation, see AG1 for details. The asymptotics considered in Stock and Wright

(2000) are of the some weak/some strong identi�cation type.

The SR-CQLR statistics have �2p asymptotic null distributions under strong and semi-strong

identi�cation and noticeably more complicated asymptotic null distributions under weak identi�ca-

tion. Standard weak identi�cation sequences are relatively easy to analyze asymptotically because

all p of the singular values are O(n�1=2): Nonstandard weak identi�cation sequences are much more

di¢ cult to analyze asymptotically because the p singular values have di¤erent orders of magnitude.

This a¤ects the asymptotic properties of both the test statistics and the conditioning statistics.

Contiguous alternatives � are at most O(n�1=2) from �0 when �0 is strongly identi�ed, but more

distant when �0 is semi-strongly or weakly identi�ed. Typically the parameter � is not consistently

estimable when it is weakly identi�ed.

To obtain the robustness of the three new tests to the singularity of the variance matrix of the

moments, we use the rank of the sample variance matrix of the moments to estimate the rank of

the population variance matrix. We use a spectral decomposition of the sample variance matrix

to estimate all linear combinations of the moments that are stochastic. We construct the test

statistics using these estimated stochastic linear combinations of the moments. When the sample

variance matrix is singular, we employ an extra rejection condition that improves power by fully

exploiting the nonstochastic part of the moment conditions associated with the singular part of

The asymptotic size and similarity results given below do not rely on local or global identi�cation.
9The de�nitions of the identi�cation categories when 
F (�0) may be singular, as is allowed in this paper, is

somewhat more complicated than the de�nitions given here.
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the variance matrix. We show that the resulting tests and CS�s have correct asymptotic size. This

method of robustifying tests and CS�s to singularity of the population variance matrix also can

be applied to other tests and CS�s in the literature. Hence, it should be a useful addition to the

literature with widespread applications. The robustness of the SR-CQLR tests to any form of

the expected outer product matrix of the vectorized orthogonalized Jacobian occurs because the

SR-CQLR test statistics do not depend on Kleibergen�s LM statistic, but rather, on a minimum

eigenvalue statistic.

We carry out some asymptotic power comparisons via simulation using eleven linear IV regres-

sion models with heteroskedasticity and/or autocorrelation and one right-hand side (rhs) endoge-

nous variable (p = 1) and four IV�s (k = 4): The scenarios considered are the same as in I. Andrews

(2014). They are designed to mimic models for the elasticity of inter-temporal substitution esti-

mated by Yogo (2004) for eleven countries using quarterly data from the early 1970�s to the late

1990�s. The results show that, in an overall sense, the SR-CQLR tests introduced here perform

well in the scenarios considered. They have asymptotic power that is competitive with that of the

PI-CLC test of I. Andrews (2014) and the MM2-SU test of Moreira and Moreira (2013), have some-

what better overall power than the JVW-CLR and MVW-CLR tests of Kleibergen (2005) and the

MM1-SU test of Moreira and Moreira (2013), and have noticeably higher power than Kleibergen�s

(2005) LM test and the AR test. These results are reported in the SM.

Fast computation of tests is useful when constructing con�dence sets by inverting the tests,

especially when p � 2: The SR-CQLR2 test (employed using 5000 critical value repetitions) can

be computed 29; 411 times in one minute using a laptop with Intel i7-3667U CPU @2.0GHz in the

(k; p) = (4; 1) scenarios described above. The SR-CQLR2 test is found to be 115; 292; and 302

times faster to compute than the PI-CLC, MM1-SU, and MM2-SU tests, respectively, 1:2 times

slower to compute than the JVW-CLR and MVW-CLR tests, and 372 and 495 times slower to

compute than the LM and AR tests in the scenarios considered.10 The SR-CQLR2 test is found to

be noticeably easier to implement than the PI-CLC, MM1-SU, and MM2-SU tests and comparable

10These computation times are for the data generating process corresponding to the country Australia, although
the choice of country has very little e¤ect on the times. Note that the computation times for the PI-CLC, MM1-SU,
and MM2-SU tests depend greatly on the choice of implementation parameters. For the PI-CLC test, these include
(i) the number of linear combination coe¢ cients "a" considered in the search over [0; 1]; which we take to be 100;
(ii) the number of simulation repetitions used to determine the best choice of "a;" which we take to be 2000; and
(iii) the number of alternative parameter values considered in the search for the best "a;" which we take to be 41
for p = 1: For the MM1-SU and MM2-SU tests, the implementation parameters include (i) the number of variables
in the discretization of the maximization problem, which we take to be 1000; and (ii) the number of points used
in the numerical approximations of the integrals h1 and h2 that appear in the de�nitions of these tests, which we
take to be 1000: The run-times for the PI-CLC, MM1-SU, and MM2-SU tests exclude some items, such as a critical
value look up table for the PI-CLC test, that only need to be computed once when carrying out multiple tests. The
computations are done in GAUSS using the lmpt application to do the linear programming required by the MM1-SU
and MM2-SU tests. Note that the computation time for the SR-CQLR tests could be reduced by using a look up table
for the data-dependent critical values, which depend on p singular values. This would be most useful when p = 2:
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to the JVW-CLR and MVW-CLR tests, in terms of the choice of implementation parameters (see

footnote 10) and the robustness of the results to these choices.

The computation time of the SR-CQLR2 test increases relatively slowly with k and p: For

example, the times (in minutes) to compute the SR-CQLR test 5000 times (using 5000 critical

value repetitions) for k = 8 and p = 1; 2; 4; 8 are :26; :49; 1:02; 2:46: The times for p = 1 and k = 1;

2; 4; 8; 16 ; 32; 64; 128 are :14; :15; :18; :26; :44; :99; 2:22; 7:76: The times for (k; p) = (64; 8) and

(128; 8) are 14:5 and 57:9: Hence, computing tests for large values of (k; p) is quite feasible. These

times are for linear IV regression models, but they are the same for any model, linear or nonlinear,

when one takes as given the sample moment vector and sample Jacobian matrix.

In contrast, computation of the PI-CLC, MM1-SU, and MM2-SU tests can be expected to

increase very rapidly in p: The computation time of the PI-CLC test can be expected to increase

in p proportionally to np�; where n� is the number of points in the grid of alternative parameter

values for each component of � = (�1; :::; �p)0; which are used to assess the minimax regret criterion.

We use n� = 41 in the simulations reported above. Hence, the computation time for p = 3 should

be 1681 times longer than for p = 1: The MM1-SU and MM2-SU tests are not de�ned in Moreira

and Moreira (2013) for p > 1; but doing so should be feasible. However, even for p = 2; one would

obtain an in�nite number of constraints on the directional derivatives to impose local unbiasedness,

in contrast to the k constraints required when p = 1: In consequence, computation of the MM1-SU

and MM2-SU tests can be expected to be challenging when p � 2:
Andrews and Guggenberger (2014c) provides SM to this paper. The SM to AG1 is given in

Andrews and Guggenberger (2014b).

The paper is organized as follows. Section 2 discusses the related literature. Section 3 introduces

the linear IV model and de�nes Moreira�s (2003) CLR test for this model for the case of p � 1 rhs
endogenous variables. Section 4 de�nes the general moment condition model. Section 5 introduces

the SR-AR test. Sections 6 and 7 de�ne the SR-CQLR1 and SR-CQLR2 tests, respectively. Section

8 provides the asymptotic size and similarity results for the tests. Section 9 establishes the asymp-

totic e¢ ciency in a GMM sense of the SR-CQLR tests under strong and semi-strong identi�cation.

An Appendix provides parts of the proofs of the asymptotic size results given in Section 8.

The SM contains the following. Section 12 provides the time series results. Section 13 pro-

vides �nite-sample null rejection probability simulation results for the SR-AR and SR-CQLR2 tests

for cases where the variance matrix of the moment functions is singular and near singular. Sec-

tion 14 compares the test statistics and conditioning statistics of the SR-CQLR1; SR-CQLR2; and

Kleibergen�s (2005, 2007) CLR tests to those of Moreira�s (2003) LR statistic and conditioning sta-

tistic in the homoskedastic linear IV model with �xed (i.e., nonrandom) IV�s. Section 15 provides
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�nite-sample simulation results that illustrate that Kleibergen�s CLR test with moment-variance

weighting can have low power in certain linear IV models with a single rhs endogenous variable,

as the theoretical results in Section 14 suggest. Section 16 gives the asymptotic power compar-

isons based on the estimated models in Yogo (2004). Section 17 establishes some properties of

an eigenvalue-adjustment procedure used in the de�nitions of the two SR-CQLR tests. Section 18

de�nes a new SR-LM test. The rest of the SM, in conjunction with the Appendix, provides the

proofs of the results stated in AG2 and the SM.

All limits below are taken as n!1 and A := B denotes that A is de�ned to equal B:

2 Discussion of the Related Literature

In this section, we discuss the related literature and, in particular, existing asymptotic results in

the literature. Kleibergen (2005) considers standard weak identi�cation and strong identi�cation.11

This excludes all cases in the nonstandard weak and semi-strong identi�cation categories.

The other papers in the literature that deal with LM and CLR tests for nonlinear moment

condition models, including Guggenberger and Smith (2005), Otsu (2006), Smith (2007), Chaudhuri

and Zivot (2011), Guggenberger, Ramalho, and Smith (2012), and I. Andrews (2014), rely on Stock

and Wright�s (2000) Assumption C. (An exception is a recent paper by I. Andrews and Mikusheva

(2014a), which considers a di¤erent form of CLR test.) Stock and Wright�s (2000) Assumption C

is an innovative contribution to the literature, but it has some notable drawbacks. For a detailed

discussion of Assumption C of Stock and Wright (2000), see Section 2 of AG1. Here we just provide

a summary.

First, Assumption C is hard to verify or refute in nonlinear models. As far as we know it has

only been veri�ed in the literature for one nonlinear moment condition model, which is a polynomial

approximation to the nonlinear CCAPM of interest in Stock and Wright (2000) and Kleibergen

(2005). Second, Assumption C is restrictive.12 It rules out some fairly simple nonlinear models,

see AG1. Third, while it covers cases where some parameters are weakly identi�ed and other are

strongly identi�ed, it does not cover cases where some transformations of the parameters are weakly

identi�ed and other transformations are strongly or semi-strongly identi�ed.

The asymptotic results in this paper and AG1 do not require Assumption C or any related

conditions of this type.

11The same is true of Andrews and Soares (2007), who consider rank-type CLR tests for linear IV models with
multiple endogenous variables. Moreira (2003) considers only standard weak identi�cation asymptotics in the latter
model.
12The additive separability of the expected moment conditions, which is required by Assumption C, is the condition

that leads to the �rst two drawbacks described here.
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Mikusheva (2010) establishes the correct asymptotic size of LM and CLR tests in the linear

IV model when there is one rhs endogenous variable (p = 1) and the errors are homoskedastic.

Guggenberger (2012) establishes the correct asymptotic size of heteroskedasticity-robust LM and

CLR tests in a heteroskedastic linear IV model with p = 1:

Compared to the standard GMM tests and CS�s considered in Hansen (1982), the SR-CQLR and

SR-AR tests considered here are robust to weak identi�cation and singularity of the variance matrix

of the moments. In particular, the tests considered here have correct asymptotic size even when

any of the following conditions employed in Hansen (1982) fails: (i) the moment functions have a

unique zero at the true value, (ii) the expected Jacobian of the moment functions has full column

rank, (iii) the variance matrix of the moment functions is nonsingular, and (iv) the true parameter

lies on the interior of the parameter space.13 Under strong and semi-strong identi�cation, the SR-

CQLR procedures considered are asymptotically equivalent under contiguous local alternatives to

the procedures considered in Hansen (1982) when the latter are based on asymptotically e¢ cient

weighting matrices.

A drawback of the SR-CQLR tests is that they do not have any known optimal power properties

under weak identi�cation, except in the homoskedastic normal linear IV model with p = 1: In

contrast, Moreira and Moreira (2013) provide methods for constructing �nite-sample unbiased tests

that maximize weighted average power in parametric models. They apply these methods to the

heteroskedastic and autocorrelated normal linear IV regression model with p = 1: I. Andrews (2014)

develops tests that minimize asymptotic maximum regret among tests that are linear combinations

of Kleibergen�s LM and AR tests for linear and nonlinear minimum distance and moment condition

models.14 Although these tests are computationally tractable for minimum distance models, they

are not for moment condition models. Hence, for moment condition models, I. Andrews proposes

plug-in tests that aim to mimic the features of the infeasible optimal tests. (These feasible plug-

in tests do not have optimality properties.) He discusses the heteroskedastic normal linear IV

regression model with p = 1 in detail. Montiel Olea (2012) considers tests that have weighted

average power optimality properties in a GMM sense under weak identi�cation in moment condition

models when p = 1:15 Elliott, Müller, and Watson (2012) consider tests that maximize weighted

average power in a variety of (�nite-sample) parametric models where a nuisance parameter appears

13Conditions (i)-(iv) appear in Hansen�s (1982) assumption (iii) of his Theorem 2.1, Assumption 3.4, assumption
that Sw (the asymptotic variance matrix of the sample moments in Hansen�s notation) is nonsingular (which is
employed in his Theorem 3.2), and Assumption 3.2, respectively.
14For p � 2; the SR-CQLR tests are not in the class of tests considered in I. Andrews (2014).
15See Appendix G of Montiel Olea (2012). Whether these tests are asymptotically e¢ cient under strong and semi-

strong identi�cation seems to be an open question. Montiel Olea (2012) also considers tests that maximize weighted
average power among tests that depend on a score statistic and an identi�cation statistic in the extremum estimator
framework of Andrews and Cheng (2012). Only one source of weak identi�cation arises in this framework.
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under the null.

None of the previous papers provide asymptotic size results. Moreira and Moreira (2013)

only consider �nite-sample results. I. Andrews (2014) provides asymptotic results under Stock

and Wright�s (2000) Assumption C. Montiel Olea (2012) considers standard weak identi�cation

asymptotics. The asymptotic framework and results of this paper and AG1 should be useful for

determining the asymptotic sizes of the tests considered in these papers. In particular, AG1 shows

that the sample moments and the (suitably normalized) Jacobian-variance weighted conditioning

statistic are not necessarily asymptotically independent when p � 2: This may have implications

for the asymptotic size properties of moment condition tests that rely on estimation of the variance

matrix of the (orthogonalized) sample Jacobian, such as the tests considered in Moreira and Moreira

(2013) and I. Andrews (2014), when p � 2:16

A recent paper by I. Andrews and Mikusheva (2014a) considers an identi�cation-robust inference

method based on a conditional likelihood ratio approach that di¤ers from those discussed above.

The test considered in this paper is asymptotically similar conditional on the entire sample mean

process that is orthogonalized to be asymptotically independent of the sample moments evaluated

at the null parameter value.

The SR-CQLR and SR-AR tests considered in this paper are for full vector inference. To

obtain subvector inference, one needs to employ the Bonferroni method or the Sche¤é projection

method, see Cavanagh, Elliott, and Stock (1995), Chaudhuri, Richardson, Robins, and Zivot (2010),

Chaudhuri and Zivot (2011), and McCloskey (2011) for Bonferroni�s method, and Dufour (1989)

and Dufour and Jasiak (2001) for the projection method. Both methods are conservative, but

Bonferroni�s method is found to work quite well by Chaudhuri, Richardson, Robins, and Zivot

(2010) and Chaudhuri and Zivot (2011).17

Other results in the literature on subvector inference include the following. Subvector inference

in which nuisance parameters are pro�led out is possible in the linear IV regression model with

homoskedastic errors using the AR test, but not the LM or CLR tests, see Guggenberger, Kleiber-

gen, Mavroeidis, and Chen (2012). Andrews and Cheng (2012, 2013a,b) provide subvector tests

with correct asymptotic size based on extremum estimator objective functions. These subvector

methods depend on the following: (i) one has knowledge of the source of the potential lack of iden-

ti�cation (i.e., which subvectors play the roles of �; �; and � in their notation), (ii) there is only

16Moreira and Moreira (2013) do not explicitly consider tests in linear IV models when p � 2: However, their
approach could be applied in such cases and would require estimation of (what amounts to) the variance matrix of
the orthogonalized sample Jacobian when this matrix is unknown (which includes all practical cases of interest), see
the appearance of ��1 in their conditioning statistic T:
17Cavanagh, Elliott, and Stock (1995) provide a re�nement of Bonferroni�s method that is not conservative, but it

is much more intensive computationally. McCloskey (2011) also considers a re�nement of Bonferroni�s method.
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one source of lack of identi�cation, and (iii) the estimator objective function does not depend on

the weakly identi�ed parameters � (in their notation) when � = 0; which rules out some weak IV�s

models.18 Cheng (2014) provides subvector inference in a nonlinear regression model with multiple

nonlinear regressors and, hence, multiple potential sources of lack of identi�cation. I. Andrews

and Mikusheva (2012) develop subvector inference methods in a minimum distance context based

on Anderson-Rubin-type statistics. I. Andrews and Mikusheva (2014b) provide conditions under

which subvector inference is possible in exponential family models (but the requisite conditions

seem to be quite restrictive).

Phillips (1989) and Choi and Phillips (1992) provide asymptotic and �nite-sample results for

estimators and classical tests in simultaneous equations models that may be unidenti�ed or partially

identi�ed when p � 1: However, their results do not cover weak identi�cation (of standard or

nonstandard form) or identi�cation-robust inference. Hillier (2009) provides exact �nite-sample

results for CLR tests in the linear model under the assumption of homoskedastic normal errors

and known covariance matrix. Antoine and Renault (2009, 2010) consider GMM estimation under

semi-strong and strong identi�cation, but do not consider tests or CS�s that are robust to weak

identi�cation. Armstrong, Hong, and Nekipelov (2012) show that standard Wald tests for multiple

restrictions in some nonlinear IV models can exhibit size distortions when some IV�s are strongly

identi�ed and others are semi-strongly identi�ed� not weakly identi�ed. These results indicate that

identi�cation issues can be more severe in nonlinear models than in linear models, which provides

further motivation for the development of identi�cation-robust tests for nonlinear models.

3 Linear IV Model with p � 1 Endogenous Variables

In this section, we de�ne the CLR test of Moreira (2003) in the homoskedastic Gaussian linear

(HGL) IV model with p � 1 endogenous regressor variables and k � p �xed (i.e., nonrandom) IV�s.
The SR-CQLR1 test introduced below is designed to reduce to Moreira�s CLR test in this model

asymptotically. The SR-CQLR2 test introduced below reduces to Moreira�s CLR test in this model

asymptotically when p = 1 and in some, but not all, cases when p � 2 (depending on the behavior
of the reduced-form parameters).

18Montiel Olea (2012) also provides some subvector analysis in the extremum estimator context of Andrews and
Cheng (2012). His e¢ cient conditionally similar tests apply to the subvector (�; �) of (�; �; �) (in Andrews and
Cheng�s (2012) notation), where � is a parameter that determines the strength of identi�cation and is known to
be strongly identi�ed. The scope of this subvector analysis is analogous to that of Stock and Wright (2000) and
Kleibergen (2004).
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The linear IV regression model is

y1i = Y 02i� + ui and

Y2i = �0Zi + V2i; (3.1)

where y1i 2 R and Y2i 2 Rp are endogenous variables, Zi 2 Rk for k � p is a vector of �xed

IV�s, and � 2 Rk�p is an unknown unrestricted parameter matrix. In terms of its reduced-form
equations, the model is

y1i = Z 0i�� + V1i; Y2i = �
0Zi + V2i; Vi := (V1i; V

0
2i)
0; V1i = ui + V

0
2i�; and �V := EViV

0
i :

(3.2)

For simplicity, no exogenous variables are included in the structural equation. The reduced-form

errors are Vi 2 Rp+1: In the HGL model, Vi � N(0p+1;�V ) for some positive de�nite (p+1)�(p+1)
matrix �V :

The IV moment functions and their derivatives with respect to � are

g(Wi; �) = Zi(y1i � Y 02i�) and G(Wi; �) = �ZiY 02i; where Wi := (y1i; Y
0
2i; Z

0
i)
0: (3.3)

Moreira (2003, p. 1033) shows that the LR statistic for testing H0 : � = �0 against H1 : � 6= �0
in the HGL model in (3.1)-(3.2) when �V is known is

LRHGL;n := S
0
nSn � �min((Sn; Tn)0(Sn; Tn)); where

Sn := (Z 0n�kZn�k)
�1=2Z 0n�kY b0(b

0
0�V b0)

�1=2 = (n�1Z 0n�kZn�k)
�1=2n1=2bgn(b00�V b0)�1=2 2 Rk;

Tn := (Z 0n�kZn�k)
�1=2Z 0n�kY �

�1
V A0(A

0
0�

�1
V A0)

�1=2

= �(n�1Z 0n�kZn�k)�1=2n1=2( bGn�0 � bgn; bGn)��1V A0(A00��1V A0)�1=2 2 Rk�p;
Zn�k := (Z1; :::; Zn)

0 2 Rn�k; Y := (Y1; :::; Yn)0 2 Rn�(p+1); Yi := (y1i; Y 02i)0 2 Rp+1;

b0 := (1;��00)0 2 Rp+1; bgn := n�1 nX
i=1

g(Wi; �0); A0 := (�0; Ip)
0 2 R(p+1)�p;

bGn := n�1
nX
i=1

G(Wi; �0); (3.4)

�min(�) denotes the smallest eigenvalue of a matrix, and the second equality for Tn holds by (24.12)
in the SM.19 Note that (Sn; Tn) is a (conveniently transformed) su¢ cient statistic for (�; �) under

19We let Zn�k (rather than Z) denote (Z1; :::; Zn)0; because we use Z to denote a k vector of standard normals
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normality of Vi; known variance matrix �V ; and �xed IV�s.

Moreira�s (2003) CLR test uses the LRHGL;n statistic and a conditional critical value that

depends on the k� p matrix Tn through a conditional critical value function ck;p(D; 1� �); which
is de�ned as follows. For nonrandom D 2 Rk�p; let

CLRk;p(D) := Z
0Z � �min((Z;D)0(Z;D)); where Z � N(0k; Ik): (3.5)

De�ne ck;p(D; 1 � �) to be the 1 � � quantile of the distribution of CLRk;p(D): For � 2 (0; 1);
Moreira�s CLR test with nominal level � rejects H0 if

LRHGL;n > ck;p(Tn; 1� �): (3.6)

When �V is unknown, Moreira (2003) replaces �V by a consistent estimator.

Moreira�s (2003) CLR test is similar with �nite-sample size � in the HGL model with known �V :

Intuitively, the strength of the IV�s a¤ects the null distribution of the test statistic LRHGL;n and

the critical value ck;p(Tn; 1��) adjusts accordingly to yield a test with size � using the dependence
of the null distribution of Tn on the strength of the IV�s. When p = 1; this test has been shown

to have some (approximate) asymptotic optimality properties, see Andrews, Moreira, and Stock

(2006, 2008) and Chernozhukov, Hansen, and Jansson (2009).

For p � 2; the asymptotic properties of Moreira�s CLR test, such as its asymptotic size and

similarity, are not available in the literature. The results for the SR-CQLR1 test, specialized to

the linear IV model (with or without Gaussianity, homoskedasticity, and/or independence of the

errors), �ll this gap.

4 Moment Condition Model

4.1 Moment Functions

The general moment condition model that we consider is

EF g(Wi; �) = 0
k; (4.1)

where the equality holds when � 2 � � Rp is the true value, 0k = (0; :::; 0)0 2 Rk; fWi 2 Rm : i =
1; :::; ng are i.i.d. observations with distribution F; g is a known (possibly nonlinear) function from
Rm+p to Rk; EF (�) denotes expectation under F; and p; k;m � 1: As noted in the Introduction,

below.
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we allow for k � p and k < p: In Section 12 in the SM, we consider models with stationary strong
mixing observations. The parameter space for � is � � Rp:

The Jacobian of the moment functions is

G(Wi; �) :=
@

@�0
g(Wi; �) 2 Rk�p:20 (4.2)

For notational simplicity, we let gi(�) and Gi(�) abbreviate g(Wi; �) and G(Wi; �); respectively.

We denote the jth column of Gi(�) by Gij(�) and Gij = Gij(�0); where �0 is the (true) null value of

�; for j = 1; :::; p: Likewise, we often leave out the argument �0 for other functions as well. Thus, we

write gi and Gi; rather than gi(�0) and Gi(�0):We let Ir denote the r dimensional identity matrix.

We are concerned with tests of the null hypothesis

H0 : � = �0 versus H1 : � 6= �0: (4.3)

The SR-CQLR1 test that we introduce in Section 6 below applies when gi(�) has the form

gi(�) = ui(�)Zi; (4.4)

where Zi is a k vector of IV�s, ui(�) is a scalar residual, and the (random) function ui(�) is known.
This is the case considered in Stock and Wright (2000). It covers many GMM situations, but can

be restrictive. For example, it rules out Hansen and Scheinkman�s (1995) moment conditions for

continuous-time Markov processes, the moment conditions often used with dynamic panel models,

e.g., see Ahn and Schmidt (1995), Arellano and Bover (1995), and Blundell and Bond (1995), and

moment conditions of the form gi(�) = ui(�)
Zi; where ui(�) is a vector. For the cases ruled out,
we introduce a second SR-CQLR test in Section 7 that does not rely on (4.4). The SR-AR test

de�ned in Section 5 also does not require that gi(�) satis�es (4.4).

When (4.4) holds, we de�ne

u�i(�) :=
@

@�
ui(�) 2 Rp and u�i (�) :=

0@ ui(�)

u�i(�)

1A 2 Rp+1; and we have Gi(�) = Ziu�i(�)0:21

(4.5)

20The asymptotic size results given below do not actually require G(Wi; �) to be the derivative matrix of g(Wi; �):
The matrix G(Wi; �) can be any k�p matrix that satis�es the conditions in FSR

2 ; de�ned in (4.9) below. For example,
G(Wi; �) can be the derivative of g(Wi; �) almost surely, rather than for all Wi; which allows g(Wi; �) to have kinks.
The function G(Wi; �) also can be a numerical derivative, such as ((g(Wi; � + "e1) � g(Wi; �))="; :::; (g(Wi; � + "ep)
� g(Wi; �))=") 2 Rk�p for some " > 0; where ej is the jth unit vector, e.g., e1 = (1; 0; :::; 0)0 2 Rp:
21As with G(Wi; �) de�ned in (4.2), u�i(�) need not be a vector of partial derivatives of ui(�) for all sample

realizations of the observations. It could be the vector of partial derivatives of ui(�) almost surely, rather than for all
Wi; which allows ui(�) to have kinks, or a vector of �nite di¤erences of ui(�): For the asymptotic size results for the
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4.2 Parameter Spaces of Distributions F

The variance matrix of the moments, 
F (�); is de�ned by


F (�) := EF (gi(�)� EF gi(�))(gi(�)� EF gi(�))0: (4.6)

(Under H0; 
F (�0) = EF gi(�0)gi(�0)
0:) We allow for the case where 
F (�) is singular. The rank

and spectral decomposition of 
F (�) are denoted by

rF (�) := rk(
F (�)) and 
F (�) := A
y
F (�)�F (�)A

y
F (�)

0; (4.7)

where rk(�) denotes the rank of a matrix, �F (�) is the k � k diagonal matrix with the eigenvalues
of 
F (�) on the diagonal in nonincreasing order, and A

y
F (�) is a k � k orthogonal matrix of eigen-

vectors corresponding to the eigenvalues in �F (�): We partition A
y
F (�) according to whether the

corresponding eigenvalues are positive or zero:

AyF (�) = [AF (�); A
?
F (�)]; where AF (�) 2 Rk�rF (�) and A?F (�) 2 Rk�(k�rF (�)): (4.8)

By de�nition, the columns of AF (�) are eigenvectors of 
F (�) that correspond to positive eigenval-

ues of 
F (�):

Let �1F (�) denote the upper left rF (�) � rF (�) submatrix of �F (�): The matrix �1F (�) is
diagonal with the positive eigenvalues of 
F (�) on its diagonal in nonincreasing order.

The rF vector �
�1=2
1F A0F gi is a vector of non-redundant linear combinations of the moment func-

tions evaluated at �0 rescaled to have variances equal to one: V arF (�
�1=2
1F A0F gi) =

�
�1=2
1F A0F
FAF�

�1=2
1F = IrF : The rF � p matrix �

�1=2
1F A0FGi is the analogously transformed Ja-

cobian matrix.

We consider the following parameter spaces for the distribution F that generates the data under

H0 : � = �0:

FSRAR := fF : EF gi = 0k and EF jj��1=21F A0F gijj2+ �Mg;

FSR2 := fF 2 FSRAR : EF jjvec(�
�1=2
1F A0FGi)jj2+ �Mg; and

FSR1 := fF 2 FSR2 : EF jj��1=21F A0FZijj4+ �M; EF jju�i jj2+ �M; and

EF jj��1=21F A0FZijj2u2i 1(u2i > c) � 1=2g (4.9)

SR-CQLR1 test given below to hold, u�i(�) can be any random p vector that satis�es the conditions in FSR
1 (de�ned

in (4.9)).
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for some  > 0 and some M; c < 1; where jj � jj denotes the Euclidean norm, and vec(�) denotes
the vector obtained from stacking the columns of a matrix. By de�nition, FSR1 � FSR2 � FSRAR:22 ;23

The null parameter spaces FSRAR; FSR2 ; and FSR1 are used for the SR-AR, SR-CQLR2; and

SR-CQLR1 tests, respectively. The �rst condition in FSRAR is the de�ning condition of the model.
The second condition in FSRAR is a mild moment condition on the rescaled non-redundant mo-

ment functions ��1=21F A0F gi: The condition in FSR2 is a mild moment condition on the analogously

transformed derivatives of the moment conditions ��1=21F A0FGi: The conditions in FSR1 are only

marginally stronger than those in FSR2 : A su¢ cient condition for the last condition in FSR1 to hold

for some c <1 is EFu4i �M� for some su¢ ciently large M� <1 (using the �rst condition in FSR1
and the Cauchy-Bunyakovsky-Schwarz inequality).

Identi�cation issues arise when EFGi has, or is close to having, less than full column rank,

which occurs when k < p or k � p and one or more of its singular values is zero or close to zero.
The conditions in FSRAR; FSR2 ; and FSR1 place no restrictions on the column rank or singular values

of EFGi:

The conditions in FSRAR; FSR2 ; and FSR1 also place no restrictions on the variance matrix 
F :=

EF gig
0
i of gi; such as �min(
F ) � � for some � > 0 or �min(
F ) > 0: Hence, 
F can be singular.

This is particularly desirable in cases where identi�cation failure yields singularity of 
F (and weak

identi�cation is accompanied by near singularity of 
F :) For example, this occurs in all likelihood

scenarios, in which case gi(�) is the score function. In such scenarios, the information matrix

equality implies that minus the expected Jacobian matrix EFGi equals the information matrix,

which also equals the expected outer product of the score function 
F ; i.e., �EFGi = 
F : In this
case, weak identi�cation occurs when 
F is close to being singular. Furthermore, identi�cation

failure yields singularity of 
F in all quasi-likelihood scenarios when the quasi-likelihood does not

depend on some element(s) of � (or some transformation(s) of �) for � in a neighborhood of �0:24

A second example where 
F may be singular is the following homoskedastic linear IV model:

y1i = Y2i� + Ui and Y2i = Z 0i� + V1i; where all quantities are scalars except Zi; � 2 RdZ ; � =
(�; �0)0 2 R�+dZ ; EUi = EV2i = 0; EUiZi = EV1iZi = 0dZ ; and E(ViV 0i jZi) = �V a.s. for

22 In the results below, we assume that whichever parameter space is being considered is non-empty.
23The moment bounds in FSR

AR; FSR
2 ; and FSR

1 can be weakened very slightly by, e.g., replacing
EF jj��1=21F A0F gijj2+ � M in FSR

AR by EF jj��1=21F A0F gijj21(jj�
�1=2
1F A0F gijj > j) � "j for all integers j � 1 for some

"j > 0 (that does not depend on F ) for which "j ! 0 as j ! 1: The latter conditions are weaker because, for
any random variable X and constants ; j > 0; EX21(jX_j > j) � EjXj2+=j : The latter conditions allow for the
application of Lindeberg�s triangular array central limit theorem for independent random variables, e.g., see Billings-
ley (1979, Thm. 27.2, p. 310), in scenarios where the distribution F depends on n: For simplicity, we de�ne the
parameter spaces as is.
24 In this case, the moment functions equal the quasi-score and some element(s) or linear combination(s) of elements

of moment functions, equal zero a.s. at �0 (because the quasi-score is of the form gi(�) = (@=@�) log f(Wi; �) for some
density or conditional density f(Wi; �)). This yields singularity of the variance matrix of the moment functions and
of the expected Jacobian of the moment functions.
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Vi := (V1i; V2i)
0 and some 2 � 2 constant matrix �V : The corresponding reduced-form equations

are y1i = Z 0i�� + V1i and Y2i = Z
0
i� + V1i; where V1i = Ui + V2i�: The moment conditions for � are

gi(�) = ((y1i �Z 0i��)Z 0i; (Y2i �Z 0i�)Z 0i)0 2 Rk; where k = 2dZ : The variance matrix �V 
EZiZ 0i of
gi(�0) = (V1iZ

0
i; V2iZ

0
i)
0 is singular whenever the covariance between the reduced-form errors V1i and

V2i is one (or minus one) or EZiZ 0i is singular. In this model, we are interested in joint inference

concerning � and �: This is of interest when one wants to see how the magnitude of � a¤ects the

range of plausible � values.

A third case where 
F can be singular is in the model for interest rate dynamics discussed in

Jegannathan, Skoulakis, and Wang (2002, Sec. 6.2) (JSW). JSW consider �ve moment conditions

for a four dimensional parameter �: Grant (2013) points out that the variance matrix of the moment

functions for this model is singular when one or more of three restrictions on the parameters holds.

When any two of these restrictions hold, the parameter also is unidenti�ed.25

In examples one and three above and others like them, EFGi is close to having less than

full column rank (i.e., its smallest singular value is small) and 
F is close to being singular (i.e.,

�min(
F ) is small) when the null value �0 is close to a value which yields reduced column rank of

EFGi and singularity of 
F : Null hypotheses of this type are important for the properties of CS�s

because uniformity over null hypothesis values is necessary for CS�s to have correct asymptotic size.

Hence, it is important to have procedures available that place no restrictions on either EFGi or


F :

In contrast, to obtain the correct asymptotic size of Kleibergen�s (2005) LM and moment-

variance-weighted CLR tests (and his Jacobian-weighted CLR test when p = 1), AG1 imposes

the condition �min(
F ) > 0 on all null distributions F; because these tests rely on the inverse of

the sample variance matrix b
n being well-de�ned and well-behaved. AG1 also imposes a second
condition that does not appear in the parameter spaces FSRAR; FSR2 ; and FSR1 :26 This second con-

dition can be restrictive and, in some models, di¢ cult to verify. This condition arises because

Kleibergen�s LM statistic projects onto a p dimensional column space of a weighted version of the

k � p orthogonalized sample Jacobian. To obtain the desired �2p asymptotic null distribution of
this statistic via the continuous mapping theorem, one needs the orthogonalized sample Jacobian

to be full column rank p a.s. asymptotically (after suitable renormalization). To obtain this under

weak identi�cation, AG1 imposes the condition referred to above.27 It is shown in Section 12 in

25The �rst four moment functions in JSW are (a(b� ri)r�2i ��2r�1i ; a(b� ri)r�2+1i � (�1=2)�2; (b� ri)r�ai �
(1=2)�2r2�a�1i ; a(b� ri)r��i � (1=2)�3r2���1i )0; where � = (a; b; �; )0 and ri is the interest rate. The second and
third functions are equivalent if  = (a+ 1)=2; the second and fourth functions are equivalent if  = (� + 1)=2; and
the third and fourth functions are equivalent if � = a:
26See the de�nition of F0 in Section 3 of AG1.
27This condition is used in the proof of Lemma 8.3(d) in the Appendix of AG1, which is given in Section 15 in the

SM to AG1.
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the Appendix to AG1 that this condition is not redundant.

Given the discussion of the previous paragraph, it is clear that the SR-AR, SR-CQLR1; and

SR-CQLR2 tests introduced below have advantages over Kleibergen�s LM and CLR tests in terms

of the robustness of their correct asymptotic size properties.

Next, we specify the parameter spaces for (F; �) that are used with the SR-AR, SR-CQLR2;

and SR-CQLR1 CS�s. They are denoted by FSR�;AR; FSR�;2; and FSR�;1; respectively. For notational
simplicity, the dependence of the parameter spaces FSRAR; FSR2 ; and FSR1 in (4.9) on �0 is suppressed.

When dealing with CS�s, rather than tests, we make the dependence explicit and write them as

FSRAR(�0); FSR2 (�0); and FSR1 (�0); respectively. We de�ne

FSR�;AR := f(F; �0) : F 2 FSRAR(�0); �0 2 �g;

FSR�;2 := f(F; �0) : F 2 FSR2 (�0); �0 2 �g; and

FSR�;1 := f(F; �0) : F 2 FSR1 (�0); �0 2 �g: (4.10)

4.3 De�nitions of Asymptotic Size and Similarity

Here, we de�ne the asymptotic size and asymptotic similarity of a test of H0 : � = �0 for some

given parameter space F(�0) of null distributions F: Let RPn(�0; F; �) denote the null rejection
probability of a nominal size � test with sample size n when the null distribution of the data is F:

The asymptotic size of the test for the null parameter space F(�0) is de�ned by

AsySz := lim sup
n!1

sup
F2F(�0)

RPn(�0; F; �): (4.11)

The test is asymptotically similar (in a uniform sense) for the null parameter space F(�0) if

lim inf
n!1

inf
F2F(�0)

RPn(�0; F; �) = lim sup
n!1

sup
F2F(�0)

RPn(�0; F; �): (4.12)

Below we establish the correct asymptotic size (i.e., asymptotic size equals nominal size) and the

asymptotic similarity of the SR-AR, SR-CQLR1; and SR-CQLR2 tests for the parameters spaces

FSRAR; FSR1 ; and FSR2 ; respectively.

Now we consider a CS that is obtained by inverting tests of H0 : � = �0 for all �0 2 �: The
asymptotic size of the CS for the parameter space F� := f(F; �0) : F 2 F(�0); �0 2 �g is AsySz :=
lim inf
n!1

inf(F;�0)2F�(1�RPn(�0; F; �)): The CS is asymptotically similar (in a uniform sense) for the
parameter space F� if lim inf

n!1
inf(F;�0)2F�(1�RPn(�0; F; �)) = lim supn!1

sup(F;�0)2F�(1�RPn(�0; F; �)):
As de�ned, asymptotic size and similarity of a CS require uniformity over the null values �0 2 �; as
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well as uniformity over null distributions F for each null value �0:With the SR-AR, SR-CQLR1, and

SR-CQLR2 CS�s considered here, this additional level of uniformity does not cause complications.

The same proofs for tests deliver results for CS�s with very minor adjustments.

5 Singularity-Robust Nonlinear Anderson-Rubin Test

The nonlinear Anderson-Rubin (AR) test was introduced by Stock and Wright (2000). (They

refer to it as an S test.) It is robust to identi�cation failure and weak identi�cation, but it relies

on nonsingularity of the variance matrix of the moment functions. In this section, we introduce a

singularity-robust nonlinear AR (SR-AR) test that has correct asymptotic size without any condi-

tions on the variance matrix of the moment functions. The SR-AR test generalizes the S test of

Stock and Wright (2000).

When the model is just identi�ed (i.e., the dimension p of � equals the dimension k of gi(�)),

the SR-AR test has good power properties. For example, this occurs in likelihood scenarios, in

which case the vector of moment functions consists of the score function. However, when the model

is over-identi�ed (i.e., k > p); the SR-AR test generally sacri�ces power because it is a k degrees

of freedom test concerning p (< k) parameters. Hence, its power is often less than that of the

SR-CQLR1 and SR-CQLR2 tests introduced below.

The sample moments and an estimator of the variance matrix of the moments, 
F (�); are:

bgn(�) := n�1 nP
i=1
gi(�) and b
n(�) := n�1 nP

i=1
gi(�)gi(�)

0 � bgn(�)bgn(�)0: (5.1)

The usual nonlinear AR statistic is

ARn(�) := nbgn(�)0b
�1n (�)bgn(�): (5.2)

The nonlinear AR test rejects H0 : � = �0 if ARn(�0) > �2k;1��; where �
2
k;1�� is the 1� � quantile

of the chi-square distribution with k degrees of freedom.

Now, we introduce a singularity-robust nonlinear AR statistic which applies even if 
F (�) is

singular. First, we introduce sample versions of the population quantities rF (�); A
y
F (�); AF (�);

A?F (�); and �F (�); which are de�ned in (4.7) and (4.8). The rank and spectral decomposition ofb
n(�) are denoted by
brn(�) := rk(b
n(�)) and b
n(�) := bAyn(�)b�n(�) bAyn(�)0; (5.3)

where b�n(�) is the k � k diagonal matrix with the eigenvalues of b
n(�) on the diagonal in non-
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increasing order, and bAyn(�) is a k � k orthogonal matrix of eigenvectors corresponding to the
eigenvalues in b�n(�): We partition bAyn(�) according to whether the corresponding eigenvalues are
positive or zero:

bAyn(�) = [ bAn(�); bA?n (�)]; where bAn(�) 2 Rk�brn(�) and bA?n (�) 2 Rk�(k�brn(�)): (5.4)

By de�nition, the columns of bAn(�) are eigenvectors of b
n(�) that correspond to positive eigenvalues
of b
n(�): The eigenvectors in bAn(�) are not uniquely de�ned, but the eigenspace spanned by these
vectors is. The tests and CS�s de�ned here and below using bAn(�) are numerically invariant to the
particular choice of bAn(�) (by the invariance results given in Lemma 6.2 below).

De�ne bgAn(�) and b
An(�) as bgn(�) and b
n(�) are de�ned in (5.1), but with bAn(�)0gi(�) in place
of gi(�): That is,

bgAn(�) := bAn(�)0bgn(�) 2 Rbrn(�) and b
An(�) := bAn(�)0b
n(�) bAn(�) 2 Rbrn(�)�brn(�): (5.5)

The SR-AR test statistic is de�ned by

SR-ARn(�) := nbgAn(�)0b
�1An(�)bgAn(�): (5.6)

The SR-AR test rejects the null hypothesis H0 : � = �0 if

SR-ARn(�0) > �2brn(�0);1�� or bA?n (�0)0bgn(�0) 6= 0k�brn(�0); (5.7)

where by de�nition the latter condition does not hold if brn(�0) = k: For completeness of the

speci�cation of the SR-AR test, if brn(�0) = 0; then we de�ne SR-ARn(�0) := 0 and �2brn(�0);1�� := 0:
Thus, when brn(�0) = 0; we have bA?n (�0) = Ik and the SR-AR test rejects H0 if bgn(�0) 6= 0k:

The extra rejection condition, bA?n (�0)0bgn(�0) 6= 0k�brn(�0); improves power, but we show it has
no e¤ect under H0 with probability that goes to one (wp!1). It improves power because it fully
exploits, rather than ignores, the nonstochastic part of the moment conditions associated with the

singular part of the variance matrix. For example, if the moment conditions include some identities

and the moment variance matrix excluding the identities is nonsingular, then bA?n (�0)0bgn(�0) consists
of the identities and the SR-AR test rejects H0 if the identities do not hold when evaluated at �0

or if the SR-AR statistic, which ignores the identities, is su¢ ciently large.

Two other simple examples where the extra rejection condition improves power are the following.

First, suppose (X1i; X2i)0 � i.i.d. N(�;
F ); where � = (�1; �2)0 2 R2; 
F is a 2� 2 matrix of ones,
and the moment functions are gi(�) = (X1i � �1; X2i � �2)0: In this case, 
F is singular, bAn(�0) =
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(1; 1)0 a.s., bA?n (�0) = (1;�1)0 a.s., the SR-AR statistic is a quadratic form in bAn(�0)0bgn(�0) =
X1n +X2n � (�10 + �20); where Xmn = n

�1Pn
i=1Xmi for m = 1; 2; and A?n (�0)

0bgn(�0) = X1n �
X2n � (�10 � �20) a.s. If one does not use the extra rejection condition, then the SR-AR test has
no power against alternatives � = (�1; �2)

0 (6= �0) for which �1 + �2 = �10 + �20: However, when

the extra rejection condition is utilized, all � 2 R2 except those on the line �1 � �2 = �10 � �20
are rejected with probability one (because X1n �X2n = EFX1i � EFX2i = �1 � �2 a.s.) and this
includes all of the alternative � values for which �1 + �2 = �10 + �20:

Second, suppose Xi � i.i.d. N(�1; �2); � = (�1; �2)
0 2 R2; the moment functions are gi(�) =

(Xi � �1; X2
i � �21 � �2)0; and the null hypothesis is H0 : � = (�10; �20)

0: Consider alternative

parameters of the form � = (�1; 0)
0: Under �; Xi has variance zero, Xi = Xn = �1 a.s., X2

i =

X2
n = �21 a.s., where X2

n := n�1
Pn
i=1X

2
i ; bgn(�0) = (�1 � �10; �21 � �210 � �20)0 a.s., b
n(�0) =bgn(�0)bgn(�0)0 � bgn(�0)bgn(�0)0 = 02�2 a.s. (provided b
n(�0) is de�ned as in (5.1) with the sample

means subtracted o¤), and brn(�0) = 0 a.s. In consequence, if one does not use the extra rejection
condition, then the SR-AR test has no power against alternatives of the form � = (�1; 0)

0 (because

by de�nition the SR-AR test statistic and its critical value equal zero when brn(�0) = 0): However,
when the extra rejection condition is utilized, all alternatives of the form � = (�1; 0)

0 are rejected

with probability one.28 ;29 ;30 ;31

28This holds because the extra rejection condition in this case leads one to rejectH0 ifXn 6= �10 orX2
n��210��20 6= 0;

which is equivalent a.s. to rejecting if �1 6= �10 or �21 � �210 � �20 6= 0 (because Xn = �1 a.s. and X2
n = �

2
1 a.s. under

�), which in turn is equivalent to rejecting if � 6= �0 (because if �20 > 0 one or both of the two conditions is violated
when � 6= �0 and if �20 = 0; then � 6= �0 only if �1 6= �10 since we are considering the case where �2 = 0):
29 In this second example, suppose the null hypothesis is H0 : � = (�10; 0)

0: That is, �20 = 0: Then, the SR-
AR test rejects with probability zero under H0 and the test is not asymptotically similar. This holds becausebgn(�0) = (Xn� �10; X2

n� �210)0 = (0; 0)0 a.s., brn(�0) = 0 a.s., SR-ARn(�0) = �2brn(�0);1�� = 0 a.s. (because brn(�0) = 0
a.s.), and the extra rejection condition leads one to reject H0 if Xn 6= �10 or X2

n � �210 � �20 6= 0; which is equivalent
to �10 6= �10 or �210 � �210 � �20 6= 0 (because Xi = �1 a.s.), which holds with probability zero.
As shown in Theorem 8.1 below, the SR-AR test is asymptotically similar (in a uniform sense) if one excludes null

distributions F for which the gi(�0) = 0k a.s. under F; such as in the present example, from the parameter space of
null distributions. But, the SR-AR test still has correct asymptotic size without such exclusions.
30We thank Kirill Evdokimov for bringing these two examples to our attention.
31An alternative de�nition of the SR-AR test is obtained by altering its de�nition given here as follows. One omits

the extra rejection condition given in (5.7), one de�nes the SR-AR statistic using a weight matrix that is nonsingular
by construction when b
n(�0) is singular, and one determines the critical value by simulation of the appropriate
quadratic form in mean zero normal variates when b
n(�0) is singular. For example, such a weight matrix can be
constructed by adjusting the eigenvalues of b
n(�0) to be bounded away from zero, and using its inverse. However,
this method has two drawbacks. First, it sacri�ces power relative to the de�nition of the SR-AR test in (5.7). The
reason is that it does not reject H0 with probability one when a violation of the nonstochastic part of the moment
conditions occurs. This can be seen in the example with identities and the two examples that follow it. Second,
it cannot be used with the SR-CQLR tests introduced in Sections 6 and 7 below. The reason is that these tests
rely on a statistic bDn(�0); de�ned in (6.2) below, that employs b
�1n (�0) and if b
�1n (�0) is replaced by a matrix that
is nonsingular by construction, such as the eigenvalue-adjusted matrix suggested above, then one does not obtain
asymptotic independence of bgn(�0) and bDn(�0) after suitable normalization, which is needed to obtain the correct
asymptotic size of the SR-CQLR tests.
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The SR-AR test statistic can be written equivalently as

SR-ARn(�) = nbgn(�)0b
+n (�)bgn(�) = nbgAn(�)0b��11n (�)bgAn(�); (5.8)

where b
+n (�) denotes the Moore-Penrose generalized inverse of b
n(�); when brn(�0) 6= 0:32 The

expression for the SR-AR statistic given in (5.6) is preferable to the Moore-Penrose expression in

(5.8) for the derivation of the asymptotic results. It is not the case that SR-ARn(�) equals the rhs

expression in (5.8) with probability one when b
+n (�) is replaced by an arbitrary generalized inverse
of b
n(�):

The nominal 100(1� �)% SR-AR CS is

CSSR-AR;n := f�0 2 � : SR-ARn(�0) � �2brn(�0);1�� and bA?n (�0)0bgn(�0) = 0k�brn(�0)g: (5.9)

By de�nition, if brn(�0) = k; the condition bA?n (�0)0bgn(�0) = 0k�brn(�0) holds.
When brn(�0) = k; the SR-ARn(�0) statistic equals ARn(�0) because bAn(�0) is invertible andb
�1An(�0) = bA�1n (�0)b
�1n (�0) bA�1n (�0)0:
Section 13 in the SM provides some �nite-sample simulations of the null rejection probabilities

of the SR-AR test when the variance matrix of the moments is singular and near singular. The

results show that the SR-AR test works very well in the model that is considered in the simulations.

6 SR-CQLR1 Test

This section de�nes the SR-CQLR1 test. This test applies when the moment functions are of

the product form in (4.4). For expositional clarity and convenience (here and in the proofs), we �rst

de�ne the test in Section 6.1 for the case of nonsingular sample and population moments variance

matrices, b
n(�) and 
F (�); respectively. Then, we extend the de�nition in Section 6.2 to the case
where these variance matrices may be singular.

32This holds by the following calculations. For notational simplicity, we suppress the dependence of quantities on
�: We have SR-ARn = nbg0n bAn( bA0nb
n bAn)�1 bA0nbgn = nbg0n bAn( bA0n[ bAn; bA?n ]b�n[ bAn; bA?n ]0 bAn)�1 bA0nbgn = nbg0n bAnb��11n bA0nbgn
and

nbg0nb
+n bgn = nbg0n[ bAn; bA?n ] � b��11n 0brn�(k�brn)
0(k�brn)�brn 0(k�brn)(k�brn)

�
[ bAn; bA?n ]0bgn = nbg0n bAnb��11n bA0nbgn;

where the spectral decomposition of b
n given in (4.7) and (5.4) is used once in each equation above.
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6.1 CQLR1 Test for Nonsingular Moments Variance Matrices

The sample Jacobian is

bGn(�) := n�1 nP
i=1
Gi(�) = ( bG1n(�); :::; bGpn(�)) 2 Rk�p: (6.1)

The conditioning matrix bDn(�) is de�ned, as in Kleibergen (2005), to be the sample Jacobian
matrix bGn(�) adjusted to be asymptotically independent of the sample moments bgn(�):

bDn(�) := ( bD1n(�); :::; bDpn(�)) 2 Rk�p; wherebDjn(�) := bGjn(�)� b�jn(�)b
�1n (�)bgn(�) 2 Rk for j = 1; :::; p; andb�jn(�) := n�1
nP
i=1
(Gij(�)� bGjn(�))gi(�)0 2 Rk�k for j = 1; :::; p: (6.2)

We call bDn(�) the orthogonalized sample Jacobian matrix. This statistic requires that b
�1n (�) exists.
The statistics bgn(�); b
n(�); ARn(�); and bDn(�) are used by both the (non-SR) CQLR1 test and

the (non-SR) CQLR2 test. The CQLR1 test alone uses the following statistics:

bRn(�) := �B(�)0 
 Ik� bVn(�) (B(�)
 Ik) 2 R(p+1)k�(p+1)k; where
bVn(�) := n�1

nX
i=1

�
(u�i (�)� bu�in(�)) (u�i (�)� bu�in(�))0�
 �ZiZ 0i� 2 R(p+1)k�(p+1)k;

bu�in(�) := b�n(�)0Zi 2 Rp+1;b�n(�) := (Z 0n�kZn�k)
�1Z 0n�kU

�(�) 2 Rk�(p+1);

Zn�k := (Z1; :::; Zn)
0 2 Rn�k; U�(�) := (u�1(�); :::; u�n(�))0 2 Rn�(p+1); and

B(�) :=

0@ 1 00p

�� �Ip

1A 2 R(p+1)�(p+1); (6.3)

where u�i (�) := (ui(�); u�i(�)
0)0 is de�ned in (4.5). Note that (i) bVn(�) is an estimator of the variance

matrix of the moment function and its vectorized derivatives, (ii) bVn(�) exploits the functional form
of the moment conditions given in (4.4), (iii) bVn(�) typically is not of a Kronecker product form,
and (iv) bu�in(�) is the best linear predictor of u�i (�) based on fZi : n � 1g: The estimators bRn(�);bVn(�); and b�n(�) (de�ned immediately below) are de�ned so that the SR-CQLR1 test, which
employs them, is asymptotically equivalent to Moreira�s (2003) CLR test under all strengths of

identi�cation in the homoskedastic linear IV model with �xed IV�s and p rhs endogenous variables

for any p � 1: See Section 14 in the SM for details.
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We de�ne b�n(�) 2 R(p+1)�(p+1) to be the symmetric pd matrix that minimizes(Ip+1 
 b
�1=2n (�))[�
 b
n(�)� bRn(�)](Ip+1 
 b
�1=2n (�))
 (6.4)

over all symmetric pd matrices � 2 R(p+1)�(p+1); where jj � jj denotes the Frobenius norm (i.e.,

the Euclidean norm of the vectorized matrix). This is a weighted minimization problem with the

weights given by Ip+1
b
�1=2n (�):We employ these weights because they lead to a matrix b�n(�) that
is invariant to nonsingular transformations of the moment functions. (That is, b�n(�) is invariant
to the multiplication of gi(�) and Gi(�) by any nonsingular matrix M 2 Rk�k; wherever gi(�) and
Gi(�) appear in the de�nitions of the statistics above, see Lemma 6.2 below.) Equation (6.4) is

a least squares minimization problem and, hence, has a closed form solution, which is given as

follows. Let b�j`n(�) denote the (j; `) element of b�n(�): By Theorems 3 and 10 of Van Loan and
Pitsianis (1993), for j; ` = 1; :::; p+ 1;

b�j`n(�) = tr( bRj`n(�)0b
�1n (�))=k; (6.5)

where bRj`n(�) denotes the (j; `) submatrix of dimension k � k of bRn(�):33 ;34
The estimator b�n(�) is an estimator of a matrix that could be singular or nearly singular in some

cases. For example, in the homoskedastic linear IV model in Section 3, b�n(�) is an estimator of the
variance matrix �V of the reduced-form errors when � is the true parameter, and �V could be sin-

gular or nearly singular. In the de�nition of the QLR1n(�) statistic, we use an eigenvalue-adjusted

version of b�n(�); denoted by b�"n(�); whose condition number (i.e., �max(b�n(�))=�min(b�n(�))) is
bounded above by construction. The reason for making this adjustment is that the inverse of this

matrix enters the de�nition of QLR1n(�): The adjustment improves the asymptotic and �nite-

sample performance of the test by making it robust to singularities and near singularities of the

matrix that b�n(�) estimates. The adjustment a¤ects the test statistic (i.e., b�"n(�) 6= b�n(�)) only if
the condition number of b�n(�) exceeds 1=": Hence, for a reasonable choice of "; it often has no e¤ect
even in �nite samples. This di¤ers from many tuning parameters employed in the literature, such as

the ones that appear in nonparametric and semiparametric procedures, because their choice often

has a substantial e¤ect on the statistic being considered. Based on the �nite-sample simulations,

we recommend using " = :05:

The eigenvalue-adjustment procedure is de�ned as follows for an arbitrary non-zero positive

semi-de�nite (psd) matrix H 2 RdH�dH for some positive integer dH : Let " be a positive constant.
33That is, bRj`n(�) contains the elements of bRn(�) indexed by rows (j � 1)k + 1 to jk and columns (`� 1)k to `k:
34Moreira and Moreira (2013) utilize the best unweighted Kronecker-product approximation to a matrix, as devel-

oped in Van Loan and Pitsianis (1993), but with a di¤erent application and purpose than here.
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Let AH�HA0H be a spectral decomposition of H; where �H = Diagf�H1; :::; �HdHg 2 RdH�dH is

the diagonal matrix of eigenvalues of H with nonnegative nonincreasing diagonal elements and AH

is a corresponding orthogonal matrix of eigenvectors of H: The eigenvalue-adjusted version of H;

denoted H" 2 RdH�dH ; is de�ned by

H" := AH�
"
HA

0
H ; where �

"
H := Diagfmaxf�H1; �max(H)"g; :::;maxf�HdH ; �max(H)"gg; (6.6)

where �max(H) denotes the maximum eigenvalue ofH: Note that �max(H) = �H1; and �max(H) > 0

provided the psd matrix H is non-zero. From its de�nition, it is clear that H" = H whenever the

condition number of H is less than or equal to 1=" (provided " � 1):
In Lemma 17.1 in Section 17 in the SM, we show that the eigenvalue-adjustment procedure

possesses the following desirable properties: (i) (uniqueness) H" is uniquely de�ned (i.e., every

choice of spectral decomposition of H yields the same matrix H"); (ii) (eigenvalue lower bound)

�min(H
") � �max(H)"; (iii) (condition number upper bound) �max(H")=�min(H

") � maxf1="; 1g;
(iv) (scale equivariance) for all c > 0; (cH)" = cH"; and (v) (continuity) H"

n ! H" for any sequence

of psd matrices fHn 2 RdH�dH : n � 1g that satis�es Hn ! H:

The QLR1 statistic, which applies when (4.4) holds, is de�ned as follows:

QLR1n(�) := ARn(�)� �min(n bQn(�)); wherebQn(�) := �b
�1=2n (�)bgn(�); bD�n(�)�0 �b
�1=2n (�)bgn(�); bD�n(�)� 2 R(p+1)�(p+1);bD�n(�) := b
�1=2n (�) bDn(�)bL1=2n (�) 2 Rk�p; andbLn(�) := (�; Ip)(b�"n(�))�1(�; Ip)0 2 Rp�p; (6.7)

where b�"n(�) is de�ned in (6.6) with H = b�n(�):35 Comparing (3.4) and (6.7), one sees the com-
mon structure of the LRHGL;n and QLR1n(�0) statistics, where �0 is the null value. The k vector

n1=2b
�1=2n (�0)bgn(�0) plays the role of Sn; and the k�p matrix n1=2 bD�n(�0) plays the role of Tn: The
matrix bLn(�) is de�ned such that these quantities are asymptotically equivalent in the homoskedas-
tic linear IV regression model with �xed IV�s (in scenarios where the eigenvalue adjustment is

irrelevant wp!1).
The CQLR1 test uses the QLR1 statistic and a conditional critical value that depends on the

k � p matrix n1=2 bD�n(�0) through the conditional critical value function ck;p(D; 1 � �); which is
35The asymptotic size result given in Section 8 below for the SR-CQLR1 test still holds if no eigenvalue adjustment

is made to b�n(�) provided the parameter space of distributions FSR
1 is restricted so that the population version ofb�n(�) has a condition number that is bounded above.
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de�ned in (3.5). For � 2 (0; 1); the nominal � CQLR1 test rejects H0 : � = �0 if

QLR1n(�0) > ck;p(n
1=2 bD�n(�0); 1� �): (6.8)

The nominal 100(1��)% CQLR1 CS is CSCQLR1;n := f�0 2 � : QLR1n(�0) � ck;p(n1=2 bD�n(�0); 1�
�)g:

The following lemma shows that the critical value function ck;p(D; 1 � �) depends on D only

through its singular values.

Lemma 6.1 Let D be a k � p matrix with the singular value decomposition D = C�B0; where C

is a k� k orthogonal matrix of eigenvectors of DD0; B is a p� p orthogonal matrix of eigenvectors
of D0D; and � is the k � p matrix with the minfk; pg singular values f� j : j � minfk; pgg of D
as its �rst minfk; pg diagonal elements and zeros elsewhere, where � j is nonincreasing in j: Then,
ck;p(D; 1� �) = ck;p(�; 1� �):

Comment: A consequence of Lemma 6.1 is that the critical value ck;p(n1=2 bD�n(�0); 1 � �) of the
CQLR1 test depends on bD�n(�0) only through bD�n(�0)0 bD�n(�0) (because, when k � p; the p singular
values of n1=2 bD�n(�0) equal the square roots of the eigenvalues of n bD�n(�0)0 bD�n(�0) and, when k < p;
ck;p(D; 1� �) is the 1� � quantile of the �2k distribution which does not depend on D):

The following lemma shows that the CQLR1 test is invariant to nonsingular transformations

of the moment functions/IV�s. For notational simplicity, we suppress the dependence on � of the

statistics that appear in the lemma.

Lemma 6.2 The statistics QLR1n; ck;p(n1=2 bD�n; 1 � �); bD�0n bD�n; ARn; bu�in; b�n; and bLn are in-
variant to the transformation (Zi; u�i )  (MZi; u

�
i ) for any k � k nonsingular matrix M: This

transformation induces the following transformations: gi  Mgi; Gi  MGi; bgn  Mbgn; bGn  
M bGn; b
n  M b
nM 0; b�jn  Mb�jnM 0; bDn  M bDn; Zn�k  Zn�kM

0; b�n  M 0�1b�n; bVn  
(Ip+1 
M) bVn (Ip+1 
M 0) ; and bRn  (Ip+1 
M) bRn (Ip+1 
M 0) :

Comment: This Lemma is important because it implies that one can obtain the correct asymptotic

size of the CQLR1 test de�ned above without assuming that �min(
F ) is bounded away from zero.

It su¢ ces that 
F is nonsingular. The reason is that (in the proofs) one can transform the moments

by gi  MF gi; where MF
FM
0
F = Ik; such that the transformed moments have a variance matrix

whose eigenvalues are bounded away from zero for some � > 0 (since V arF (MF gi) = Ik) even if

the original moments gi do not.
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6.2 Singularity-Robust CQLR1 Test

Now, we extend the CQLR1 test to allow for singularity of the population and sample variance

matrices of gi(�): First, we adjust bDn(�) to obtain a conditioning statistic that is robust to the
singularity of b
n(�): For brn(�) � 1; where brn(�) is de�ned in (5.3), we de�ne bDAn(�) as bDn(�) is
de�ned in (6.2), but with bAn(�)0gi(�); bAn(�)0Gij(�); and b
An(�) in place of gi(�); Gij(�); and b
n(�);
respectively, for j = 1; :::; p; where bAn(�) and b
An are de�ned in (5.4) and (5.5), respectively. That
is,

bDAn(�) := ( bDA1n(�); :::; bDApn(�)) 2 Rbrn(�)�p; wherebDAjn(�) := bGAjn(�)� b�Ajn(�)b
�1An(�)bgAn(�) 2 Rbrn(�) for j = 1; :::; p;bGAn(�) := bAn(�)0 bGn(�) = ( bGA1n(�); :::; bGApn(�)) 2 Rbrn(�)�p; andb�Ajn(�) := bAn(�)0b�jn(�) bAn(�) for j = 1; :::; p: (6.9)

Let ZAi(�) := bAn(�)0Zi 2 Rbrn(�) and ZAn�k(�) := Zn�k bAn(�) 2 Rn�brn(�):
The SR-CQLR1 test employs statistics bRAn(�); b�An(�); bLAn(�); and bD�An(�); which are de�ned

just as bRn(�); b�n(�); bLn(�); and bD�n(�) are de�ned in Section 6.1, but with bgAn(�); bGAn(�); b
An(�);
ZAi(�); ZAn�k(�); and brn(�) in place of bgn(�); bGn(�); b
n(�); Zi; Zn�k; and k; respectively, using
the de�nitions in (5.3), (5.5) and (6.9). In particular, we have

bRAn(�) := �B(�)0 
 Ibrn(�)� bVAn(�) �B(�)
 Ibrn(�)� 2 R(p+1)brn(�)�(p+1)brn(�); where
bVAn(�) := n�1

nX
i=1

�
(u�i (�)� bu�Ain(�)) (u�i (�)� bu�Ain(�))0�
 �ZAi(�)ZAi(�)0�

2 R(p+1)brn(�)�(p+1)brn(�);
bu�Ain(�) := b�An(�)0ZAi(�) 2 Rp+1;b�An(�) := (ZAn�k(�)

0ZAn�k(�))
�1ZAn�k(�)

0U�(�) 2 Rbrn(�)�(p+1);b�Aj`n(�) := tr( bRAj`n(�)0b
�1An(�))=brn(�) for j; ` = 1; :::; p+ 1;bLAn(�) := (�; Ip)(b�"An(�))�1(�; Ip)0 2 Rp�p;bD�An(�) := b
�1=2An (�) bDAn(�)bL1=2An (�) 2 Rbrn(�)�p; (6.10)

bAn(�) is de�ned in (5.4), b�Aj`n(�) denotes the (j; `) element of b�An(�); and bRAj`n(�) denotes the
(j; `) submatrix of dimension brn(�)� brn(�) of bRAn(�):
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If brn(�) > 0; the SR-QLR1 statistic is de�ned by
SR-QLR1n(�) := SR-ARn(�)� �min(n bQAn(�)); where (6.11)bQAn(�) := �b
�1=2An (�)bgAn(�); bD�An(�)�0 �b
�1=2An (�)bgAn(�); bD�An(�)� 2 R(p+1)�(p+1):

For � 2 (0; 1); the nominal size � SR-CQLR1 test rejects H0 : � = �0 if

SR-QLR1n(�0) > cbrn(�0);p(n1=2 bD�An(�0); 1� �) or bA?n (�0)0bgn(�0) 6= 0k�brn(�0):36 (6.12)

The nominal size 100(1 � �)% SR-CQLR1 CS is CSSR-CQLR1;n := f�0 2 � : SR-QLR1n(�0) �
cbrn(�0);p(n1=2 bD�An(�0); 1� �) and bA?n (�0)0bgn(�0) = 0k�brn(�0)g:37

Note that if r � p; then cr;p(D; 1� �) is the 1� � quantile of

CLRr;p(D) := Z
0Z � �min((Z;D)0(Z;D)) = Z 0Z � �2r ; (6.13)

where Z � N(0r; Ir) and the last equality holds because (Z;D)0(Z;D) is a (p+1)� (p+1) matrix
of rank r � p; which implies that its smallest eigenvalue is zero. Hence, if brn(�0) � p; then the

critical value for the SR-CQLR1 test is the 1�� quantile of �2brn(�0); which is denoted by �2brn(�0);1��:
When brn(�0) = k; bAn(�0) is a nonsingular k � k matrix. In consequence, by Lemma 6.2, SR-

QLR1n(�0) = QLR1n(�0) and cbrn(�0);p(n1=2 bD�An(�0); 1� �) = ck;p(n1=2 bD�n(�0); 1� �): That is, the
SR-CQLR1 test is the same as the CQLR1 test de�ned in Section 6.1. Of course, when brn(�) < k;
the CQLR1 test de�ned in Section 6.1 is not de�ned, whereas the SR-CQLR1 test is. Thus, the

SR-CQLR1 test de�ned here is, indeed, an extension of the CQLR1 test de�ned in Section 6.1 to

the case where brn(�0) < k: Furthermore, if rk(
Fn(�0)) = k for all n large, then brn(�0) = k and

SR-QLR1n(�0) = QLR1n(�0) wp!1 under fFn 2 FSR2 : n � 1g (by Lemmas 6.2 and 10.6 below).

7 SR-CQLR2 Test

In this section, we de�ne the SR-CQLR2 test, which is quite similar to the SR-CQLR1 test, but

does not rely on gi(�) having the form in (4.4). First, we de�ne the CQLR2 test without the SR

36By de�nition, bA?n (�0)0bgn(�0) 6= 0k�brn(�0) does not hold if brn(�0) = k: If brn(�0) = 0; then SR-QLR1n(�0) := 0

and �2brn(�0);1�� := 0: In this case, bA?n (�0) = Ik and the SR-CQLR1 test rejects H0 if bgn(�0) 6= 0k:
37By de�nition, if brn(�0) = k; the condition bA?n (�0)0bgn(�0) = 0k�brn(�0) holds.
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extension. We de�ne an analogue eRn(�) of bRn(�) as follows:
eRn(�) := �B(�)0 
 Ik� eVn(�) (B(�)
 Ik) 2 R(p+1)k�(p+1)k; where
eVn(�) := n�1

nX
i=1

�
fi(�)� bfn(�)��fi(�)� bfn(�)�0 2 R(p+1)k�(p+1)k;

fi(�) :=

0@ gi(�)

vec(Gi(�))

1A ; and bfn(�) :=
0@ bgn(�)
vec( bGn(�))

1A : (7.1)

The SR-CQLR2 test di¤ers from the SR-CQLR1 test because eVn(�) (and the statistics that depend
on it) di¤ers from bVn(�) (and the statistics that depend on it). The estimator eVn(�) does not
depend on the product form of the moment conditions given in (4.4).

We de�ne e�n(�) 2 R(p+1)�(p+1) just as b�n(�) is de�ned in (6.4) and (6.5), but with eRn(�) in
place of bRn(�):We de�ne eD�n(�) just as bD�n(�) is de�ned in (6.7), but with e�n(�) in place of b�n(�):
That is,

eD�n(�) := b
n(�)�1=2 bDn(�)eL1=2n (�) 2 Rk�p; where eLn(�) := (�; Ip)(e�"n(�))�1(�; Ip)0: (7.2)

We use an eigenvalue-adjusted version of e�n(�) in the de�nition of eLn(�) because it yields an SR-
CQLR test that has correct asymptotic size even if V arF (fi) is singular for some F in the parameter

space of distributions.

The QLR2 statistic without the SR extension, denoted byQLR2n(�); is de�ned just asQLR1n(�)

is de�ned in (6.7), but with eD�n(�) in place of bD�n(�): For � 2 (0; 1); the nominal size � CQLR2 test
(without the SR extension) rejects H0 : � = �0 if

QLR2n(�0) > ck;p(n
1=2 eD�n(�0); 1� �): (7.3)

The nominal size 100(1��)% CQLR2 CS is CSCQLR2;n := f�0 2 � : QLR2n(�0) � ck;p(n1=2 eD�n(�0);
1� �)g:38

For the CQLR2 test with the SR extension, we de�ne bDAn(�) as in (6.9). We de�ne
eVAn(�) := (Ip+1 
 bAn(�)0)eVn(�)(Ip+1 
 bAn(�)) 2 R(p+1)brn(�)�(p+1)brn(�); (7.4)

where brn(�) and bAn(�) are de�ned in (5.3) and (5.4), respectively. In addition, we de�ne eRAn(�);
38Analogously to the results of Lemma 6.2, the statistics QLR2n; ck;p(n1=2 eD�

n; 1 � �); eD�0
n
eD�
n; e�n; and eLn are

invariant to the transformation (gi; Gi)  (Mgi;MGi) for any k � k nonsingular matrix M: This transformation
induces the following equivariant transformations: eD�

n  M eD�
n; eVn  (Ip+1 
M) eVn (Ip+1 
M 0) ; and eRn  

(Ip+1 
M) eRn (Ip+1 
M 0) :
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e�An(�); eLAn(�); eD�An(�); and eQAn(�) as bRAn(�); b�An(�); bLAn(�); bD�An(�); and bQAn(�) are de�ned,
respectively, in (6.10) and (6.11), but with eVAn(�) in place of bVAn(�) in the de�nition of eRAn(�);
with eRAn(�) in place of bRAn(�) in the de�nition of e�An(�); and so on in the de�nitions of eLAn(�);eD�An(�); and eQAn(�): We de�ne the test statistic SR-QLR2n(�) as SR-QLR1n(�) is de�ned in
(6.11), but with eQAn(�) in place of bQAn(�):

Given these de�nitions, the nominal size � SR-CQLR2 test rejects H0 : � = �0 if

SR-QLR2n(�0) > cbrn(�0);p(n1=2 eD�An(�0); 1� �) or bA?n (�0)0bgn(�0) 6= 0k�brn(�0):39 (7.5)

The nominal size 100(1 � �)% SR-CQLR2 CS is CSSR-CQLR2;n := f�0 2 � : SR-QLR2n(�0) �
cbrn(�0);p(n1=2 eD�An(�0); 1� �) and bA?n (�0)0bgn(�0) = 0k�brn(�0)g:40

Section 13 in the SM provides �nite-sample null rejection probabilities of the SR-CQLR2 test

for singular and near singular variance matrices of the moment functions.41 The results show that

singularity and near singularity of the variance matrix does not lead to distorted null rejection prob-

abilities. The method of robustifying the SR-CQLR2 test to allow for singular variance matrices,

which is introduced above, works quite well in the model that is considered.

8 Asymptotic Size

The correct asymptotic size and similarity results for the SR-AR, SR-CQLR1; and SR-CQLR2

tests are as follows.

Theorem 8.1 The asymptotic sizes of the SR-AR, SR-CQLR1; and SR-CQLR2 tests de�ned in

(5.7), (6.12), and (7.5), respectively, equal their nominal size � 2 (0; 1) for the null parameter

spaces FSRAR; FSR1 ; and FSR2 ; respectively. Furthermore, these tests are asymptotically similar (in a

uniform sense) for the subsets of these parameter spaces that exclude distributions F under which

gi = 0k a.s. Analogous results hold for the corresponding SR-AR; SR-CQLR1; and SR-CQLR2

CS�s for the parameter spaces FSR�;AR; FSR�;1; and FSR�;2; respectively, de�ned in (4.10).

Comments: (i) For distributions F under which gi = 0k a.s., the SR-AR and SR-CQLR tests

reject the null hypothesis with probability zero when the null is true. Hence, asymptotic similarity

only holds when these distributions are excluded from the null parameter spaces.

39By de�nition, bA?n (�0)0bgn(�0) 6= 0k�brn(�0) does not hold if brn(�0) = k: If brn(�0) = 0; then SR-QLR2n(�0) := 0

and �2brn(�0);1�� := 0: In this case, bA?n (�0) = Ik and the SR-CQLR2 test rejects H0 if bgn(�0) 6= 0k:
40By de�nition, if brn(�0) = k; the condition bA?n (�0)0bgn(�0) = 0k�brn(�0) holds.
41Analogous results are not given for the SR-CQLR1 test because the moment functions considered are not of the

form in (4.4), which is necessary to apply the SR-CQLR1 test.
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(ii) SR-LM versions of Kleibergen�s LM test and CS can be de�ned analogously to the SR-AR

and SR-CQLR tests and CS�s. However, these procedures are only partially singularity robust. See

Section 18 in the SM.

(iii) The proof of Theorem 8.1 is given partly in the Appendix and partly in the SM.

9 Asymptotic E¢ ciency of the SR-CQLR Tests under

Strong Identi�cation

Next, we show that the SR-CQLR1 and SR-CQLR2 tests are asymptotically e¢ cient in a GMM

sense under strong and semi-strong identi�cation (when the variance matrix of the moments is

nonsingular and the null parameter value is not on the boundary of the parameter space). By this

we mean that they are asymptotically equivalent (under the null and contiguous alternatives) to

a Wald test constructed using an asymptotically e¢ cient GMM estimator, see Newey and West

(1987).

Kleibergen�s LM statistic and the standard GMM LM statistic, see Newey and West (1987),

are de�ned by

LMn := nbg0nb
�1=2n Pb
�1=2n
bDn b
�1=2n bgn and LMGMM

n := nbg0nb
�1=2n Pb
�1=2n
bGn b
�1=2n bgn; (9.1)

respectively, where bGn is the sample Jacobian de�ned in (5.1) with � = �0: The test based on the
standard GMM LM statistic (combined with a �2p critical value) is asymptotically equivalent to

the Wald test based on an asymptotically e¢ cient GMM estimator under (i) strong identi�cation

(which requires k � p); (ii) nonsingular moments-variance matrices (i.e., �min(
Fn) � � > 0 for all
n � 1); and (iii) a null parameter value that is not on the boundary of the parameter space, see

Newey and West (1987). This also holds true under semi-strong identi�cation (which also requires

k � p) . For example, Theorem 5.1 of Andrews and Cheng (2013) shows that the Wald statistic

for testing H0 : � = �0 based on a GMM estimator with asymptotically e¢ cient weight matrix

has a �2p distribution under semi-strong identi�cation. This Wald statistic can be shown to be

asymptotically equivalent to the LMGMM
n statistic under semi-strong identi�cation. (For brevity,

we do not do so here.)

Suppose k � p: Let AF and �1F be de�ned as in (4.7) and (4.8) and the paragraph following
these equations with � = �0: De�ne ��F ; �

�
1; �

�
2; and f��n;h : n � 1g as �F ; �1; �2; and f�n;h : n �

1g; respectively, are de�ned in (10.16)-(10.18) in the Appendix, but with gi and Gi replaced by
g�Fi := �

�1=2
1F A0F gi and G

�
Fi := �

�1=2
1F A0FGi; with F1 replaced by FSR1 ; with F2 replaced by FSR2 in
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the de�nition of FWU ; and with WF (:=W1(W2F )) and UF (:= U1(U2F )) de�ned as in (10.8) and

(10.11) in the Appendix for the CQLR1 and CQLR2 tests, respectively, with gi and Gi replaced by

g�Fi and G
�
Fi: In addition, we restrict f��n;h : n � 1g to be a sequence for which �min(EFngig0i) > 0

for all n � 1:42 By de�nition, a sequence f��n;h : n � 1g is said to exhibit strong or semi-strong
identi�cation if n1=2s�pFn !1; where s�pF denotes the smallest singular value of EFG�Fi:43

Let �2p;1�� denote the 1�� quantile of the �2p distribution. The critical value for the LMn and

LMGMM
n tests is �2p;1��:

Theorem 9.1 Suppose k � p: For any sequence f��n;h : n � 1g that exhibits strong or semi-strong
identi�cation (i.e., for which n1=2s�pFn ! 1) and for which ��n;h 2 ��1 8n � 1 for the SR-CQLR1
test statistic and critical value and ��n;h 2 ��2 8n � 1 for the SR-CQLR2 test statistic and critical
value, we have

(a) SR-QLRjn = QLRjn + op(1) = LMn + op(1) = LM
GMM
n + op(1) for j = 1; 2;

(b) ck;p(n1=2 bD�n; 1� �)!p �
2
p;1��; and

(c) ck;p(n1=2 eD�n; 1� �)!p �
2
p;1��:

Comments: (i) Theorem 9.1 establishes the asymptotic e¢ ciency (in a GMM sense) of the SR-

CQLR1 and SR-CQLR2 tests under strong and semi-strong identi�cation. Note that Theorem

9.1 provides asymptotic equivalence results under the null hypothesis, but, by the de�nition of

contiguity, these asymptotic equivalence results also hold under contiguous local alternatives.

(ii) The proof of Theorem 9.1 is given in Section 23 in the SM.

42Thus, AF = AyF ; �1F = �F ; WF := (�
�1=2
1F A0F
FAF�

�1=2
1F )�1=2 = Ik; and by an invariance property, which

follows from calculations similar to those used to establish Lemma 6.2, UF (de�ned in the Appendix) is the same
whether it is de�ned using gi and Gi or g�Fi and G

�
Fi:

43The singular value s�pF ; de�ned here, equals spF ; de�ned in the Introduction, for all F with �min(
F ) > 0; because

in this case 
F = AF�1FA
0
F ; 


�1=2
F = AF�

�1=2
1F A0F ; 


�1=2
F EFGi = AF�

�1=2
1F A0FEFGi = AFEFG

�
Fi; and AF is an

orthogonal k � k matrix. Since we consider sequences here with �min(
Fn) = �min(EFngig
0
i) > 0 for all n � 1; the

de�nitions of strong and semi-strong identi�cation used here and in the Introduction are equivalent.
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10 Appendix

This Appendix, along with parts of the SM, is devoted to the proof of Theorem 8.1. The proof

proceeds in two steps. First, we establish the correct asymptotic size and asymptotic similarity

of the tests and CS�s without the SR extension for parameter spaces of distributions that bound

�min(
F ) away from zero. (These tests are de�ned in (5.2), (6.8), and (7.3).) We provide some

parts of the proof of this result in Section 10.1 below. The details are given in Section 22 in the

SM. Second, we extend the proof to the case of the SR tests and CS�s. We provide the proof of

this extension in Section 10.2 below.

10.1 Tests without the Singularity-Robust Extension

10.1.1 Asymptotic Results for Tests without the SR Extension

For the AR and CQLR tests without the SR extension, we consider the following parameter

spaces for the distribution F that generates the data under H0 : � = �0:

FAR := fF : EF gi = 0k; EF jjgijj2+ �M; and �min(EF gig0i) � �g;

F2 := fF 2 FAR : EF jjvec(Gi)jj2+ �Mg; and

F1 := fF 2 F2 : EF jjZijj4+ �M; EF jju�i jj2+ �M; �min(EFZiZ 0i) � �g (10.1)

for some ; � > 0 and M < 1: By de�nition, F1 � F2� FAR: The parameter spaces FAR; F2;
and F1; are used for the AR, CQLR2; and CQLR1 tests, respectively. For the corresponding CS�s,
we use the parameter spaces: F�;AR := f(F; �0) : F 2 FAR(�0); �0 2 �g; F�;2 := f(F; �0) : F 2
F2(�0); �0 2 �g; and F�;1 := f(F; �0) : F 2 F1(�0); �0 2 �g; where FAR(�0); F2(�0); and F1(�0)
equal FAR; F2; and F1; respectively, with their dependence on �0 made explicit.

Theorem 10.1 The AR, CQLR1; and CQLR2 tests (without the SR extensions), de�ned in (5.2),

(6.8), and (7.3), respectively, have asymptotic sizes equal to their nominal size � 2 (0; 1) and are
asymptotically similar (in a uniform sense) for the parameter spaces FAR; F1; and F2; respectively.
Analogous results hold for the corresponding AR; CQLR1; and CQLR2 CS�s for the parameter

spaces F�;AR; F�;1; and F�;2; respectively.

Comment: (i) The �rst step of the proof of Theorem 8.1 is to prove Theorem 10.1.

(ii) Theorem 10.1 holds for both k � p and k < p: Both cases are needed in the proof of

Theorem 8.1 (even if k � p in Theorem 8.1).
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10.1.2 Uniformity Framework

The proof of Theorem 10.1 uses Corollary 2.1(c) in Andrews, Cheng, and Guggenberger (2009)

(ACG), which provides general su¢ cient conditions for the correct asymptotic size and (uniform)

asymptotic similarity of a sequence of tests.

Now we state Corollary 2.1(c) of ACG. Let f�n : n � 1g be a sequence of tests of some null
hypothesis whose null distributions are indexed by a parameter � with parameter space �: Let

RPn(�) denote the null rejection probability of �n under �: For a �nite nonnegative integer J; let

fhn(�) = (h1n(�); :::; hJn(�))0 2 RJ : n � 1g be a sequence of functions on �: De�ne

H := fh 2 (R [ f�1g)J : hwn(�wn)! h for some subsequence fwng

of fng and some sequence f�wn 2 � : n � 1gg: (10.2)

Assumption B�: For any subsequence fwng of fng and any sequence f�wn 2 � : n � 1g for which
hwn(�wn)! h 2 H; RPwn(�wn)! � for some � 2 (0; 1):

Proposition 10.2 (ACG, Corollary 2.1(c)) Under Assumption B�; the tests f�n : n � 1g have
asymptotic size � and are asymptotically similar (in a uniform sense). That is, AsySz := lim sup

n!1
sup�2�RPn(�) = � and lim infn!1

inf�2�RPn(�) = lim sup
n!1

sup�2�RPn(�):

Comments: (i) By Comment 4 to Theorem 2.1 of ACG, Proposition 10.2 provides asymptotic

size and similarity results for nominal 1 � � CS�s, rather than tests, by de�ning � as one would
for a test, but having it depend also on the parameter that is restricted by the null hypothesis, by

enlarging the parameter space � correspondingly (so it includes all possible values of the parameter

that is restricted by the null hypothesis), and by replacing (a) �n by a CS based on a sample of

size n; (b) � by 1 � �; (c) RPn(�) by CPn(�); where CPn(�) denotes the coverage probability of
the CS under � when the sample size is n; and (d) the �rst lim supn!1 sup�2� that appears by

lim infn!1 inf�2� : In the present case, where the null hypotheses are of the form H0 : � = �0 for

some �0 2 �; to establish the asymptotic size of CS�s, the parameter �0 is taken to be a subvector
of � and � is speci�ed so that the value of this subvector ranges over �:

(ii) In the application of Proposition 10.2 to prove Theorem 10.1, one takes � to be a one-to-one

transformation of FAR; F2; or F1 for tests, and one takes � to be a one-to-one transformation of
F�;AR; F�;2; or F�;1 for CS�s. With these changes, the proofs for tests and CS�s are the same. In
consequence, we provide explicit proofs for tests only and obtain the proofs for CS�s by analogous

applications of Proposition 10.2.

(iii) We prove the test results in Theorem 10.1 using Proposition 10.2 by verifying Assumption
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B� for a suitable choice of �; hn(�); and �: The veri�cation of Assumption B� is quite easy for the

AR test. It is given in Section 22.6 in the SM. The veri�cations of Assumption B� for the CQLR1

and CQLR2 tests are much more di¢ cult. In the remainder of this Section 10.1, we provide some

key results that are used in doing so. (These results are used only for the CQLR tests, not the AR

test.) The complete veri�cations for the CQLR1 and CQLR2 tests are given in Section 22 in the

SM.

10.1.3 General Weight Matrices cWn and bUn

As above, for notational simplicity, we suppress the dependence on �0 of many quantities, such

as gi; Gi; u�i; B; and fi; as well as the quantities VF ; �F ; RF ; eVF ; and eRF ; that are introduced
below. To provide asymptotic results for the CQLR1 and CQLR2 tests simultaneously, we prove

asymptotic results for a QLR test statistic and a conditioning statistic that depend on general

random weight matrices cWn 2 Rk�k and bUn 2 Rp�p: In particular, we consider statistics of the
form cWn

bDn bUn and functions of this statistic, where bDn is de�ned in (6.2). Let44
QLRn := ARn � �min(n bQWU;n); wherebQWU;n :=

�cWn
bDn bUn; b
�1=2n bgn�0 �cWn

bDn bUn; b
�1=2n bgn� 2 R(p+1)�(p+1): (10.3)

The de�nitions of the random weight matrices cWn and bUn depend upon the statistic that is of
interest. They are taken to be of the form

cWn :=W1(cW2n) 2 Rk�k and bUn := U1(bU2n) 2 Rp�p; (10.4)

where cW2n and bU2n are random �nite-dimensional quantities, such as matrices, andW1(�) and U1(�)
are nonrandom functions that are assumed below to be continuous on certain sets. The estimatorscW2n and bU2n have corresponding population quantities W2F and U2F ; respectively. Thus, the

population quantities corresponding to cWn and bUn are
WF :=W1(W2F ) and UF := U1(U2F ); (10.5)

respectively.

44The de�nition of bQWUn in (10.3) writes the �min(�) quantity in terms of (cWn
bDn
bUn; b
�1=2n bgn); whereas (6.7)

writes the �min(�) quantity in terms of (b
�1=2n bgn; bD�
n); which has the b
�1=2n bgn vector as the �rst column rather than

the last column. The ordering of the columns does not a¤ect the value of the �min(�) quantity. We use the order
(b
�1=2n bgn; bD�

n) in (6.7) because it is consistent with the order in Moreira (2003) and Andrews, Moreira, and Stock
(2006, 2008). We use the order (cWn

bDn
bUn; b
�1=2n bgn) here because it has signi�cant notational advantages in the proof

of Theorem 10.5 below, which is given in Section 21 in the SM.
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Example 1: For the CQLR1 test, one takes

cWn := b
�1=2n and bUn := bL1=2n := ((�0; Ip)(b�"n)�1(�0; Ip)0)1=2; (10.6)

where b
n is de�ned in (5.1) and b�n is de�ned in (6.4) and (6.5).
The population analogues of bVn and bRn; de�ned in (6.3), are

VF := EF fif
0
i � EF ((gi; Gi)0�F 
 ZiZ 0i)� EF (�0F (gi; Gi)
 ZiZ 0i)

+EF (�
0
FZiZ

0
i�F 
 ZiZ 0i) 2 R(p+1)k�(p+1)k and

RF := (B0 
 Ik)VF (B 
 Ik) 2 R(p+1)k�(p+1)k; where (10.7)

�F := (EFZiZ
0
i)
�1EF (gi; Gi) 2 Rk�(p+1); fi := (g0i; vec(Gi)0)0 2 R(p+1)k;

and B = B(�0) is de�ned in (6.3).

For the CQLR1 test,

cW2n : = b
n; W2F := 
F := EF gig
0
i; ; W1(W2F ) :=W

�1=2
2F ;bU2n : = (b
n; bRn); U2F := (
F ; RF ); U1(U2F ) := ((�0; Ip)(�"(
F ; RF ))�1(�0; Ip)0)1=2; and

�j`(
F ; RF ) = tr(R0j`F

�1
F )=k (10.8)

for j; ` = 1; :::; p + 1; where �j`(
F ; RF ) 2 R(p+1)�(p+1) denotes the (j; `) element �(
F ; RF );

�(
F ; RF ) is de�ned to minimize jj(Ip+1 
 
�1=2F )[� 
 
F � RF ](Ip+1 
 
�1=2F )jj over symmetric
pd matrices � 2 R(p+1)�(p+1) (analogously to the de�nition of b�n(�) in (6.4)), the last equality in
(10.8) holds by the same argument as used to obtain (6.5), �"(
F ; RF ) is de�ned given �(
F ; RF )

by (6.6), and Rj`F denotes the (j; `) k � k submatrix of RF :45

Example 2: For the CQLR2 test, one takes cWn; cW2n; W2F ; and W1(�) as in Example 1 and

bUn := eL1=2n := ((�0; Ip)(e�"n)�1(�0; Ip)0)1=2; (10.9)

where e�n is de�ned in Section 7.
The population analogues of eVn and eRn; de�ned in (7.1), are

eVF := EF (fi � EF fi)(fi � EF fi)0 2 R(p+1)k�(p+1)k andeRF := (B0 
 Ik)eVF (B 
 Ik) 2 R(p+1)k�(p+1)k: (10.10)

45Note that W1(W2F ) and U1(U2F ) in (10.8) de�ne the functions W1(�) and U1(�) for any conformable arguments,
such as cW2n and bU2n; not just for W2F and U2F :
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In this case, bU2n := (b
n; eRn); U2F := (
F ; eRF ); (10.11)

W1(�) and U1(�) are as in (10.8), and eRn is de�ned in (7.1). We let e�F denote �(
F ; eRF ); which
appears in the de�nition of U1(U2F ) in this case. The matrix e�F is de�ned as �F is de�ned following
(10.8) but with eRF in place of RF : As de�ned, e�F minimizes jj(Ip+1

�1=2F )[�

F � eRF ](Ip+1



�1=2
F )jj over symmetric pd matrices � 2 R(p+1)�(p+1):

We provide results for distributions F in the following set of null distributions:

FWU := fF 2 F2 : �min(WF ) � �1; �min(UF ) � �1; jjWF jj �M1; and jjUF jj �M1g (10.12)

for some constants �1 > 0 and M1 <1; where F2 is de�ned in (10.1).
For the CQLR1 test, which uses the de�nitions in (10.6)-(10.8), we show that F1 � FWU for

�1 > 0 su¢ ciently small and M1 < 1 su¢ ciently large, where F1 is de�ned in (10.1), see Lemma
22.4(a) in Section 22.1 in the SM. Hence, uniform results over F1 \ FWU for arbitrary �1 > 0 and

M1 <1 for this test imply uniform results over F1:
For the CQLR2 test, which uses the de�nitions in (10.9)-(10.11), we show that F2 � FWU for

�1 > 0 su¢ ciently small and M1 <1 su¢ ciently large, see Lemma 22.4(b). Hence, uniform results

over FWU for this test imply uniform results over F2:

10.1.4 Uniformity Reparametrization

To apply Proposition 10.2, we reparametrize the null distribution F to a vector �: The vector �

is chosen such that for a subvector of � convergence of a drifting subsequence of the subvector (after

suitable renormalization) yields convergence in distribution of the test statistic and convergence in

distribution of the critical value in the case of the CQLR tests. In this section, we de�ne � for the

CQLR tests. Its (much simpler) de�nition for the AR test is given in Section 22.6 in the SM.

The vector � depends on the following quantities. Let

BF denote a p� p orthogonal matrix of eigenvectors of U 0F (EFGi)0W 0
FWF (EFGi)UF (10.13)

ordered so that the corresponding eigenvalues (�1F ; :::; �pF ) are nonincreasing. The matrix BF is

such that the columns of WF (EFGi)UFBF are orthogonal. Let

CF denote a k � k orthogonal matrix of eigenvectors of WF (EFGi)UFU
0
F (EFGi)

0W 0
F :
46 (10.14)

46The matrices BF and CF are not uniquely de�ned. We let BF denote one choice of the matrix of eigenvectors of
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The corresponding eigenvalues are (�1F ; :::; �kF ) 2 Rk: Let

(�1F ; :::; �minfk;pgF ) denote the minfk; pg singular values of WF (EFGi)UF ; (10.15)

which are nonnegative, ordered so that � jF is nonincreasing. (Some of these singular values may be

zero.) As is well-known, the squares of the minfk; pg singular values of a k� p matrix A equal the
minfk; pg largest eigenvalues of A0A and AA0: In consequence, �jF = �2jF for j = 1; :::;minfk; pg:
In addition, �jF = 0 for j = minfk; pg; :::;maxfk; pg:

De�ne the elements of � to be47 ;48

�1;F := (�1F ; :::; �minfk;pgF )
0 2 Rminfk;pg;

�2;F := BF 2 Rp�p;

�3;F := CF 2 Rk�k;

�4;F := (EFGi1; :::; EFGip) 2 Rk�p;

�5;F := EF

0@ gi

vec(Gi)

1A0@ gi

vec(Gi)

1A0 2 R(p+1)k�(p+1)k;
�6;F = (�6;1F ; :::; �6;(minfk;pg�1)F )

0 := (
�2F
�1F

; :::;
�minfk;pgF

� (minfk;pg�1)F
)0 2 [0; 1]minfk;pg�1; where 0=0 := 0;

�7;F := W2F ;

�8;F := U2F ;

�9;F := F; and

� = �F := (�1;F ; :::; �9;F ): (10.16)

The dimensions of W2F and U2F depend on the choices of cWn = W1(cW2n) and bUn = U1(bU2n): We
let �5;gF denote the upper left k � k submatrix of �5;F: Thus, �5;gF = EF gig0i = 
F : We consider
two parameter spaces for �: �1 and �2; which correspond to FWU \ F1 and FWU ; respectively,

where F1 and FWU are de�ned in (10.1) and (10.12), respectively. The space �1 is used for the

CQLR1 test. The space �2 is used for the CQLR2 test.49 The parameter spaces �1 and �2 and

U 0F (EFGi)
0W 0

FWF (EFGi)UF and analogously for CF :
47For simplicity, when writing � = (�1;F ; :::; �9;F ); we allow the elements to be scalars, vectors, matrices, and

distributions and likewise in similar expressions.
48 If p = 1; no vector �6;F appears in � because �1;F only contains a single element.
49Note that the parameter � has di¤erent meanings for the CQLR1 and CQLR2 tests because U2F and UF are

di¤erent for the two tests.
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the function hn(�) are de�ned by

�1 := f� : � = (�1;F ; :::; �9;F ) for some F 2 FWU \ F1g;

�2 := f� : � = (�1;F ; :::; �9;F ) for some F 2 FWUg; and

hn(�) := (n1=2�1;F ; �2;F ; �3;F ; �4;F ; �5;F ; �6;F ; �7;F ; �8;F ): (10.17)

By the de�nition of F2; �1 and �2 index distributions that satisfy the null hypothesis H0 : � = �0:
The dimension J of hn(�) equals the number of elements in (�1;F ; :::; �8;F ): Redundant elements in

(�1;F ; :::�8;F ); such as the redundant o¤-diagonal elements of the symmetric matrix �5;F ; are not

needed, but do not cause any problem.

We de�ne � and hn(�) as in (10.16) and (10.17) because, as shown below, the asymptotic

distributions of the test statistics under a sequence fFn : n � 1g for which hn(�Fn) ! h 2 H
depend on the behavior of limn1=2�1;Fn ; as well as lim�m;Fn for m = 2; :::; 8:

For notational convenience,

f�n;h : n � 1g denotes a sequence f�n 2 �2 : n � 1g for which hn(�n)! h 2 H (10.18)

for H de�ned in (10.2) with � equal to �2:50 By the de�nitions of �2 and FWU ; f�n;h : n � 1g is
a sequence of distributions that satis�es the null hypothesis H0 : � = �0:

We decompose h (de�ned by (10.2), (10.16), and (10.17)) analogously to the decomposition of

the �rst eight components of �: h = (h1; :::; h8); where �m;F and hm have the same dimensions for

m = 1; :::; 8: We further decompose the vector h1 as h1 = (h1;1; :::; h1;minfk;pg)0; where the elements

of h1 could equal 1: We decompose h6 as h6 = (h6;1; :::; h6;minfk;pg�1)
0: In addition, we let h5;g

denote the upper left k � k submatrix of h5: In consequence, under a sequence f�n;h : n � 1g; we
have

n1=2� jFn ! h1;j � 0 8j � minfk; pg; �m;Fn ! hm 8m = 2; :::; 8;

�5;gFn = 
Fn = EFngig
0
i ! h5;g; and �6;jFn ! h6;j 8j = 1; :::;minfk; pg � 1: (10.19)

By the conditions in F2; de�ned in (10.1), h5;g is pd.
50Analogously, for any subsequence fwn : n � 1g; f�wn;h : n � 1g denotes a sequence f�wn 2 � : n � 1g for which

hwn(�wn)! h 2 H:
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10.1.5 Assumption WU

We assume that the random weight matrices cWn = W1(cW2n) and bUn = U1(bU2n) de�ned in
(10.4) satisfy the following assumption that depends on a suitably chosen parameter space ��

(� �2); such as �1 or �2:

Assumption WU for the parameter space �� � �2: Under all subsequences fwng and all
sequences f�wn;h : n � 1g with �wn;h 2 ��;

(a) cW2wn !p h7 (:= limW2Fwn );

(b) bU2wn !p h8 (:= limU2Fwn ); and

(c) W1(�) is a continuous function at h7 on some set W2 that contains f�7;F (= W2F ) : � =

(�1;F ; :::; �9;F ) 2 ��g and contains cW2wn wp!1 and U1(�) is a continuous function at h8 on some
set U2 that contains f�8;F (= U2F ) : � = (�1;F ; :::; �9;F ) 2 ��g and contains bU2wn wp!1:

In Assumption WU and elsewhere below, �all sequences f�wn;h : n � 1g�means �all sequences
f�wn;h : n � 1g for any h 2 H;�where H is de�ned in (10.2) with � equal to �2; and likewise with

n in place of wn:

Assumption WU for the parameter spaces �1 and �2 is veri�ed in Lemma 22.4 in Section 22 in

the SM for the CQLR1 and CQLR2 tests, respectively.

10.1.6 Asymptotic Distributions

This section provides the asymptotic distributions of QLR test statistics and corresponding

conditioning statistics that are used in the proof of Theorem 10.1 to verify Assumption B� of

Proposition 10.2.

For any F 2 F2; de�ne

�
vec(Gi)
F := V arF (vec(Gi)� (EF vec(G`)g0`)
�1F gi) and �

vec(Gi)
h := lim�

vec(Gi)
Fwn

(10.20)

whenever the limit exists, where the distributions fFwn : n � 1g correspond to f�wn;h : n � 1g for
any subsequence fwn : n � 1g: The assumptions allow �vec(Gi)h to be singular.

By the CLT and some straightforward calculations, the joint asymptotic distribution of n1=2(bg0n;
vec( bDn � EFnGi)0)0 under f�n;h : n � 1g is given by0@ gh

vec(Dh)

1A � N

0@0(p+1)k;
0@ h5;g 0k�pk

0pk�k �
vec(Gi)
h

1A1A ; (10.21)
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where gh 2 Rk and Dh 2 Rk�p are independent by the de�nition of bDn; see Lemma 10.3 below.51
To determine the asymptotic distributions of the QLR1n and QLR2n statistics (de�ned in (6.7)

and just below (7.2)) and the conditional critical value of the CQLR tests (de�ned in (3.5), (6.8),

and (7.3)), we need to determine the asymptotic distribution of WFn
bDnUFn without recentering

by EFnGi: To do so, we post-multiply WFn
bDnUFn �rst by BFn and then by a nonrandom diag-

onal matrix Sn 2 Rp�p (which may depend on Fn and h). The matrix Sn rescales the columns
of WFn

bDnUFnBFn to ensure that n1=2WFn
bDnUFnBFnSn converges in distribution to a (possibly)

random matrix that is �nite a.s. and not a.s. zero.

The following is an important de�nition for the scaling matrix Sn and asymptotic distributions

given below. Consider a sequence f�n;h : n � 1g: Let q = qh (2 f0; :::;minfk; pgg) be such that

h1;j =1 for 1 � j � qh and h1;j <1 for qh + 1 � j � minfk; pg; (10.22)

where h1;j := limn1=2� jFn � 0 for j = 1; :::;minfk; pg by (10.19) and the distributions fFn :
n � 1g correspond to f�n;h : n � 1g de�ned in (10.18). This value q exists because fh1;j : j �
minfk; pgg are nonincreasing in j (since f� jF : j � minfk; pgg are nonincreasing in j; as de�ned in
(10.15)). Note that q is the number of singular values of WFn(EFnGi)UFn that diverge to in�nity

when multiplied by n1=2: Heuristically, q is the maximum number of parameters, or one-to-one

transformations of the parameters, that are strongly or semi-strongly identi�ed. (That is, one

could partition �; or a one-to-one transformation of �; into subvectors of dimension q and p � q
such that if the p� q subvector was known and, hence, was no longer part of the parameter, then
the q subvector would be strongly or semi-strongly identi�ed in the sense used in this paper.)

Let

Sn := Diagf(n1=2�1Fn)�1; :::; (n1=2� qFn)�1; 1; :::; 1g 2 Rp�p and Tn := BFnSn 2 Rp�p; (10.23)

where q = qh is de�ned in (10.22). Note that Sn is well de�ned for n large, because n1=2� jFn !1
for all j � q:

The asymptotic distribution of bDn after suitable rotations and rescaling, but without recentering
(by subtracting EFGi), depends on the following quantities. We partition h2 and h3 and de�ne �h

51 If one eliminates the �min(EF gig0i) � � condition in F2 and one de�nes bDn in (6.2) with b
n replaced by the
eigenvalue-adjusted matrix b
"n for some " > 0; then the asymptotic distribution in (10.21) still holds, but without
the independence of gh and Dh: However, this independence is key. Without it, the conditioning argument that is
used to establish the correct asymptotic size of the CQLR1 and CQLR2 tests does not go through. Thus, we de�nebDn in (6.2) using b
n; not b
"n:
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as follows:

h2 = (h2;q; h2;p�q); h3 = (h3;q; h3;k�q);

h�1;p�q :=

2664
0q�(p�q)

Diagfh1;q+1; :::; h1;pg
0(k�p)�(p�q)

37752 Rk�(p�q) if k � p;

h�1;p�q :=

24 0q�(k�q) 0q�(p�k)

Diagfh1;q+1; :::; h1;kg 0(k�q)�(p�k)

352 Rk�(p�q) if k < p;
�h = (�h;q;�h;p�q) 2 Rk�p; �h;q := h3;q; �h;p�q := h3h�1;p�q + h71Dhh81h2;p�q;

h71 := W1(h7); and h81 := U1(h8); (10.24)

where h2;q 2 Rp�q; h2;p�q 2 Rp�(p�q); h3;q 2 Rk�q; h3;k�q 2 Rk�(k�q); �h;q 2 Rk�q; �h;p�q 2
Rk�(p�q); h71 2 Rk�k; and h81 2 Rp�p:52 Note that when Assumption WU holds h71 = limWFn =

limW1(W2Fn) and h81 = limUFn = limU1(U2Fn) under f�n;h : n � 1g:
The following lemma allows for k � p and k < p: For the case where k � p; it appears in the

Appendix to AG1 as Lemma 8.3.

Lemma 10.3 Suppose Assumption WU holds for some non-empty parameter space �� � �2:

Under all sequences f�n;h : n � 1g with �n;h 2 ��;

n1=2(bgn; bDn � EFnGi;WFn
bDnUFnTn)!d (gh; Dh;�h);

where (a) (gh; Dh) are de�ned in (10.21), (b) �h is the nonrandom function of h and Dh de�ned

in (10.24), (c) (Dh;�h) and gh are independent, and (d) under all subsequences fwng and all
sequences f�wn;h : n � 1g with �wn;h 2 ��; the convergence result above and the results of parts
(a)-(c) hold with n replaced with wn:

Comments: (i) Lemma 10.3(c) is a key property that leads to the correct asymptotic size of the

CQLR1 and CQLR2 tests.

(ii) Lemma 8.3 in the Appendix to AG1 contains a part (part (d)), which does not appear in

Lemma 10.3. It states that �h has full column rank a.s. under some additional conditions. For

Kleibergen�s (2005) LM statistic and Kleibergen�s (2005) CLR statistics that employ it, which are

considered in AG1, one needs the (possibly) random limit matrix of n1=2WFn
bDnUFnBFnSn; viz., �h;

to have full column rank with probability one, in order to apply the continuous mapping theorem

52There is some abuse of notation here. E.g., h2;q and h2;p�q denote di¤erent matrices even if p � q happens to
equal q:
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(CMT), which is used to determine the asymptotic distribution of the test statistics. To obtain this

full column rank property, AG1 restricts the parameter space for the tests based on aforementioned

statistics to be a subset F0 of F2; where F0 is de�ned in Section 3 of AG1. In contrast, the QLR1n
and QLR2n statistics considered here do not depend on Kleibergen�s LM statistic and do not require

the asymptotic distribution of n1=2WFn
bDnUFnBFnSn to have full column rank a.s. In consequence,

it is not necessary to restrict the parameter space from F2 to F0 when considering these statistics.

Let b�jn denote the jth eigenvalue of nbU 0n bD0ncW 0
n
cWn

bDn bUn; 8j = 1; :::; p; (10.25)

ordered to be nonincreasing in j: The jth singular value of n1=2cWn
bDn bUn equals b�1=2jn for j =

1; :::;minfk; pg:
The following proposition, combined with Lemma 6.1, is used to determine the asymptotic

behavior of the data-dependent conditional critical values of the CQLR1 and CQLR2 tests. The

proposition is the same as Theorem 8.4(c)-(f) in the Appendix to AG1, except that it is extended

to cover the case k < p; not just k � p: For brevity, the proof of the proposition given in Section
20 in the SM just describes the changes needed to the proof of Theorem 8.4(c)-(f) of AG1 in order

to cover the case k < p: The proof of Theorem 8.4(c)-(f) in AG1 is similar to, but simpler than,

the proof of Theorem 10.5 below, which is given in Section 21 in the SM.

Proposition 10.4 Suppose Assumption WU holds for some non-empty parameter space �� � �2:
Under all sequences f�n;h : n � 1g with �n;h 2 ��;

(a) b�jn !p 1 for all j � q;
(b) the (ordered) vector of the smallest p�q eigenvalues of nbU 0n bD0ncW 0

n
cWn

bDn bUn; i.e., (b�(q+1)n; :::;b�pn)0; converges in distribution to the (ordered) p�q vector of the eigenvalues of �0h;p�qh3;k�qh03;k�q
��h;p�q 2 R(p�q)�(p�q);

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma 10.3, and

(d) under all subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the results
in parts (a)-(c) hold with n replaced with wn:

Comment: Proposition 10.4(a) and (b) with cWn = b
�1=2n and bUn = bL1=2n is used to determine the

asymptotic behavior of the critical value function for the CQLR1 test, which depends on n1=2 bD�n
de�ned in (6.7), see the proof of Theorem 22.1 in Section 22.2 in the SM. Proposition 10.4(a) and

(b) with cWn = b
�1=2n and bUn = eL1=2n is used to determine the asymptotic behavior of the critical

value function for the CQLR2 test, which depends on n1=2 eD�n de�ned in (7.2), see the proof of
Theorem 22.1 in Section 22.2 in the SM.
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The next theorem provides the asymptotic distribution of the general QLRn statistic de�ned

in (10.3) and, as special cases, those of the QLR1n and QLR2n statistics.

Theorem 10.5 Suppose Assumption WU holds for some non-empty parameter space �� � �2:

Under all sequences f�n;h : n � 1g with �n;h 2 ��;

QLRn !d g
0
hh
�1
5;ggh � �min((�h;p�q; h

�1=2
5;g gh)

0h3;k�qh
0
3;k�q(�h;p�q; h

�1=2
5;g gh))

and the convergence holds jointly with the convergence in Lemma 10.3 and Proposition 10.4. When

q = p (which can only hold if k � p because q � minfk; pg), �h;p�q does not appear in the limit
random variable and the limit random variable reduces to (h�1=25;g gh)

0h3;ph03;ph
�1=2
5;g gh � �2p: When

q = k (which can only hold if k � p), the �min(�) expression does not appear in the limit random
variable and the limit random variable reduces to g0hh

�1
5;ggh � �2k: When k � p and q < k; the

�min(�) expression equals zero and the limit random variable reduces to g0hh
�1
5;ggh � �2k: Under all

subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the same results hold with n
replaced with wn:

Comments: (i) Theorem 10.5 gives the asymptotic distributions of the QLR1n and QLR2n

statistics (de�ned by (6.7) and (7.2)) once it is veri�ed that the choices of (cWn; bUn) for these
statistics satisfy Assumption WU for the parameter spaces �1 and �2; respectively. The latter is

done in Lemma 22.4 in Section 22.1 in the SM.

(ii) When q = p; the parameter �0 is strongly or semi-strongly identi�ed and Theorem 10.5

shows that the QLRn statistic has a �2p asymptotic null distribution.

(iii) When k = p; Theorem 10.5 shows that the QLRn statistic has a �2k asymptotic null

distribution regardless of the strength of identi�cation.

(iv) When k < p; � is necessarily unidenti�ed and Theorem 10.5 shows that the asymptotic

null distribution of QLRn is �2k:

(v) The proof of Theorem 10.5 given in Section 21 in the SM also shows that the largest q

eigenvalues of n(cWn
bDn bUn; b
�1=2n bgn)0(cWn

bDn bUn; b
�1=2n bgn) diverge to in�nity in probability and the
(ordered) vector of the smallest p+1� q eigenvalues of this matrix converges in distribution to the
(ordered) vector of the p+ 1� q eigenvalues of (�h;p�q; h�1=25;g gh)

0h3;k�q�h03;k�q(�h;p�q; h
�1=2
5;g gh):

Propositions 10.2 and 10.4 and Theorem 10.5 are used to prove Theorem 10.1. The proof is given

in Section 22 in the SM. Note, however, that the proof is not a straightforward implication of these

results. The proof also requires (i) determining the behavior of the conditional critical value function

ck;p(D; 1��); de�ned in the paragraph containing (3.5), for sequences of nonrandom k�p matrices
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fDn : n � 1g whose singular values may converge or diverge to in�nity at any rates, (ii) showing
that the distribution function of the asymptotic distribution of the QLRn statistic, conditional

on the asymptotic version of the conditioning statistic, is continuous and strictly increasing at its

1�� quantile for all possible (k; p; q) values and all possible limits of the scaled population singular
values fn1=2� jFn : n � 1g for j = 1; :::;minfk; pg; and (iii) establishing that Assumption WU holds
for the CQLR1 and CQLR2 tests. These results are established in Lemmas 22.2, 22.3, and 22.4,

respectively, in Section 22 in the SM.

10.2 Singularity-Robust Tests

In this section, we prove the main Theorem 8.1 for the SR tests using Theorem 10.1 for the

tests without the SR extension. The SR-AR and SR-CQLR tests, de�ned in (5.7), (6.12), and

(7.5), depend on the random variable brn(�) and random matrices bAn(�) and bA?n (�); de�ned in
(5.3) and (5.4). First, in the following lemma, we show that with probability that goes to one as

n ! 1 (wp!1), the SR test statistics and data-dependent critical values are the same as when

the non-random and rescaled population quantities rF (�) and �
�1=2
1F (�)AF (�)

0 are used to de�ne

these statistics, rather than brn(�) and bAn(�)0; where rF (�); AF (�); and �1F (�) are de�ned as in
(4.7) and (4.8). The lemma also shows that the extra rejection condition in (5.7), (6.12), and (7.5)

fails to hold wp! 1 under all sequences of null distributions.

In the following lemma, �0n is the true value that may vary with n (which is needed for the CS

results) and col(�) denotes the column space of a matrix.

Lemma 10.6 For any sequence f(Fn; �0n) 2 FSR�;AR : n � 1g; (a) brn(�0n) = rFn(�0n) wp!1,
(b) col( bAn(�0n)) = col(AFn(�0n)) wp!1, (c) the statistics SR-ARn(�0n); SR-QLR1n(�0n); SR-
QLR2n(�0n); cbrn(�0n);p(n1=2 bD�An(�0n); 1��); and cbrn(�0n);p(n1=2 eD�An(�0n); 1��) are invariant wp!1
to the replacement of brn(�0n) and bAn(�0n)0 by rFn(�0n) and ��1=21Fn

(�0n)AFn(�0n)
0; respectively, and

(d) bA?n (�0n)0bgn(�0n) = 0k�brn(�0n) wp!1, where this equality is de�ned to hold when brn(�0n) = k:
Proof of Lemma 10.6. For notational simplicity, we suppress the dependence of various quantities

on �0n: By considering subsequences, it su¢ ces to consider the case where rFn = r for all n � 1 for
some r 2 f0; 1; :::; kg:

First, we establish part (a). We have brn � r a.s. for all n � 1 because for any constant vector
� 2 Rk for which �0
Fn� = 0; we have �0gi = 0 a.s.[Fn] and �0b
n� = n�1 nP

i=1
(�0gi)2 � (�0bgn)2 = 0

a.s.[Fn]; where a.s.[Fn] means �with probability one under Fn:�This completes the proof of part

(a) when r = 0: Hence, for the rest of the proof of part (a), we assume r > 0:
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We have brn := rk(b
n) � rk(�
�1=2
1Fn

A0Fn
b
nAFn��1=21Fn

) because b
n is k � k; AFn��1=21Fn
is k � r;

and 1 � r � k: In addition, we have

�
�1=2
1Fn

A0Fn
b
nAFn��1=21Fn

= n�1
nP
i=1
(�

�1=2
1Fn

A0Fngi)(�
�1=2
1Fn

A0Fngi)
0

�(n�1
nP
i=1
�
�1=2
1Fn

A0Fngi)(n
�1

nP
i=1
�
�1=2
1Fn

A0Fngi)
0;

EFn(�
�1=2
1Fn

A0Fngi)(�
�1=2
1Fn

A0Fngi)
0 = �

�1=2
1Fn

A0Fn
FnAFn�
�1=2
1Fn

= �
�1=2
1Fn

A0FnA
y
Fn
�FnA

y0
Fn
AFn�

�1=2
1Fn

= Ir; (10.26)

and EFn�
�1=2
1Fn

A0Fngi = 0
r; where the second last equality in (10.26) holds by the spectral decom-

position in (4.7) and the last equality in (10.26) holds by the de�nitions of AyF ; AF ; and �1F in

(4.7) and (4.8). By (10.26), the moment conditions in FSR2 , and the weak law of large numbers

for L1+=2-bounded i.i.d. random variables for  > 0; we obtain ��1=21Fn
A0Fn

b
nAFn��1=21Fn
!p Ir:

In consequence, rk(��1=21Fn
A0Fn

b
nAFn��1=21Fn
) � r wp!1, which concludes the proof that brn = r

wp!1.53

Next, we prove part (b). Let N(�) denotes the null space of a matrix. We have

� 2 N(
Fn) =) �0
Fn� = 0 =) V arFn(�
0gi) = 0 =) �0gi = 0 a.s.[Fn]

=) b
n� = 0 a.s.[Fn] =) � 2 N(b
n) a.s.[Fn]. (10.27)

That is, N(
Fn) � N(b
n) a.s.[Fn]. This and rk(
Fn) = rk(b
n) wp!1 imply that N(
Fn) =
N(b
n) wp!1 (because if N(b
n) is strictly larger than N(
Fn) then the dimension and rank ofb
n must exceed the dimension and rank of N(
Fn); which is a contradiction). In turn, N(
Fn) =
N(b
n) wp!1 implies that col( bAn) = col(AFn) wp!1, which proves part (b).

To prove part (c), it su¢ ces to consider the case where r � 1 because the test statistics and

their critical values are all equal to zero by de�nition when brn = 0 and brn = 0 wp!1 when r = 0
by part (a). Part (b) of the Lemma implies that there exists a random r � r nonsingular matrix
53We now provide an example that appears to be a counter-example to the claim that brn = r wp!1. We show

that it is not a counter-example because the distributions considered violate the moment bound in FSR
AR: Suppose

k = 1 and gi = 1; �1; and 0 with probabilities pn=2; pn=2; and 1 � pn; respectively, under Fn; where pn = c=n for
some 0 < c < 1: Then, EFngi = 0; as is required, and rk(
Fn) = rk(EFng

2
i ) = rk(pn) = 1: We have b
n = 0 if

gi = 0 8i � n: The latter holds with probability (1 � pn)n = (1 � c=n)n ! e�c > 0 as n ! 1: In consequence,
PFn(rk(b
n) = rk(
Fn)) = PFn(rk(b
n) = 1) � 1 � PFn(gi = 0 8i � n) ! 1 � e�c < 1; which is inconsistent
with the claim that brn = r wp!1. However, the distributions fFn : n � 1g in this example violate the moment
bound EF jj��1=21F A0F gijj2+ � M in FSR

AR; so there is no inconsistency with the claim. This holds because for these
distributions EFn jj�

�1=2
1Fn

A0Fngijj
2+ = EFn jV ar

�1=2
Fn

(gi)gij2+ = p
�(2+)=2
n EFn jgij = p

�=2
n ! 1 as n ! 1; where

the second equality uses jgij equals 0 or 1 and the third equality uses EFn jgij = pn:

46



cMn such that bAn = AFn��1=21Fn
cMn wp! 1; (10.28)

because �1Fn is nonsingular (since it is a diagonal matrix with the positive eigenvalues of 
Fn on

its diagonal by its de�nition following (4.8)). Equation (10.28) and brn = r wp!1 imply that the
statistics SR-ARn; SR-QLR1n; SR-QLR2n; cbrn;p(n1=2 bD�An; 1 � �); and cbrn;p(n1=2 eD�An; 1 � �) are
invariant wp!1 to the replacement of brn and bA0n by r and cM 0

n�
�1=2
1Fn

A0Fn ; respectively. Now we

apply the invariance result of Lemma 6.2 with (k; gi; Gi) replaced by (r;�
�1=2
1Fn

A0Fngi;�
�1=2
1Fn

A0FnGi)

and with M equal to cM 0
n: (The extension of Lemma 6.2 to cover the statistics employed by the

CQLR2 test is stated in a footnote in Section 7.) This result implies that the previous �ve statistics

when based on r and ��1=21Fn
A0Fngi are invariant to the multiplication of the moments �

�1=2
1Fn

A0Fngi

by the nonsingular matrix cM 0
n: Thus, these �ve statistics, de�ned as in Sections 6.2 and 7, are

invariant wp!1 to the replacement of brn and bA0n by r and ��1=21Fn
A0Fn ; respectively.

Lastly, we prove part (d). The equality ( bA?n )0bgn = 0k�brn holds by de�nition when brn = k (see
the statement of Lemma 10.6(d)) and brn = r wp!1. Hence, it su¢ ces to consider the case where
r 2 f0; :::; k � 1g: For all n � 1; we have EFn(A?Fn)

0bgn = 0k�r and
nV arFn((A

?
Fn)

0bgn) = (A?Fn)0
FnA?Fn = (A?Fn)0AyFn�Fn(AyFn)0A?Fn = 0(k�r)�(k�r); (10.29)

where the second equality uses the spectral decomposition in (4.7) and the last equality uses Ay
n
=

[AF ; A
?
F ]; see (4.8). In consequence, (A

?
Fn
)0bgn = 0k�r a.s. This and and the result of part (b) that

col( bA?n ) = col(A?Fn) wp!1 establish part (d). �
Given Lemma 10.6(d), the extra rejection conditions in the SR-AR and SR-CQLR tests and

CS�s (i.e., the second conditions in (5.7), (5.9), (6.12), (7.5), and in the SR-CQLR CS de�nitions

following (6.12) and (7.5)) can be ignored when computing the asymptotic size properties of these

tests and CS�s (because the condition fails to hold for each test wp!1 under any sequence of null
hypothesis values for any sequence of distributions in the null hypotheses, and the condition holds

for each CS wp!1 under any sequence of true values �0n for any sequence of distributions for which
the moment conditions hold at �0n):

Given Lemma 10.6(c), the asymptotic size properties of the SR-AR and SR-CQLR tests and CS�s

can be determined by the analogous tests and CS�s that are based on rFn(�0) and �
�1=2
1Fn

(�0)AFn(�0)
0

(for �xed �0 with tests and for any �0 2 � with CS�s). For the tests, we do so by partitioning FSRAR;
FSR2 ; and FSR1 into k sets based on the value of rk(
F (�0)) and establishing the correct asymptotic

size and asymptotic similarity of the analogous tests separately for each parameter space. That

is, we write FSRAR = [kr=0FSRAR[r]; where F
SR
AR[r] := fF 2 FSRAR : rk(
F (�0)) = rg; and establish
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the desired results for FSRAR[r] separately for each r: Analogously, we write F
SR
2 = [kr=0FSR2[r] and

FSR1 = [kr=0FSR1[r]; where F
SR
2[r] := FSRAR[r] \ F

SR
2 and FSR1[r] := FSRAR[r] \ F

SR
1 : Note that we do not

need to consider the parameter space FSRAR[r] for r = 0 for the SR-AR test when determining the

asymptotic size of the SR-AR test because the test fails to reject H0 wp!1 based on the �rst
condition in (5.7) when r = 0 (since the test statistic and critical value equal zero by de�nition

when brn = 0 and brn = r = 0 wp!1 by Lemma 10.6(a)). In addition, we do not need consider the
parameter space FSRAR[r] for r = 0 for the SR-AR test when determining the asymptotic similarity of
the test because such distributions are excluded from the parameter space FSRAR by the statement of
Theorem 8.1. Analogous arguments regarding the parameter spaces corresponding to r = 0 apply

to the other tests and CS�s. Hence, from here on, we assume r 2 f1; :::; kg:
For given r = rk(
F (�0)); the moment conditions and Jacobian are

g�Fi := �
�1=2
1F A0F gi and G

�
Fi := �

�1=2
1F A0FGi; (10.30)

where AF 2 Rk�r; �1F 2 Rr�r; and dependence on �0 is suppressed for notational simplicity.

Given the conditions in FSR2 ; we have

EF jjg�Fijj2+ = EF jj��1=21F A0F gijj2+ �M;

EF jjvec(G�Fi)jj2+ = EF jjvec(��1=21F A0FGi)jj2+ �M;

�min(EF g
�
Fig

�0
Fi) = �min(�

�1=2
1F A0F
FAF�

�1=2
1F ) = �min(Ir) = 1; (10.31)

and EF g�Fi = 0r; where the second equality in the third line of (10.31) holds by the spectral

decomposition in (4.7) and the partition AyF = [AF ; A
?
F ] in (4.8). Thus, F 2 FSR2[r] for (gi; Gi)

implies that F 2 F2 with � � 1 for (g�Fi; G�Fi); where the de�nition of F2 in (10.1) is extended to
allow gi and Gi to depend on F: Now we apply Theorem 10.1 with (g�Fi; G

�
Fi) and r in place of

(gi; Gi) and k and with � � 1; to obtain the correct asymptotic size and asymptotic similarity of
the SR-CQLR2 test for the parameter space FSR2[r] for r = 1; :::; k: This requires that Theorem 10.1

holds for k < p; which it does. The fact that g�Fi and G
�
Fi depend on F; whereas gi and Gi do

not, does not cause a problem, because the proof of Theorem 10.1 goes through as is if gi and Gi

depend on F: This establishes the results of Theorem 8.1 for the SR-CQLR2 test. The proof for

the SR-CQLR2 CS is essentially the same, but with �0 taking any value in � and with FSR�;2 and
F�;2; de�ned in (4.10) and just below (10.1), in place of FSR2 and F2; respectively.

The proof for the SR-AR test and CS is the same as that for the SR-CQLR2 test and CS, but

with vec(G�Fi) deleted in (10.31) and with the subscript 2 replaced by AR on the parameter spaces

that appear.
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Next, we consider the SR-CQLR1 test. When the moment functions satisfy (4.4), i.e., gi = uiZi;

we de�ne Z�Fi := �
�1=2
1F A0FZi; g

�
Fi = uiZ

�
Fi; and G

�
Fi = Z

�
Fiu

0
�i; where u�i is de�ned in (4.5) and the

dependence of various quantities on �0 is suppressed. In this case, by the conditions in FSR1 ; the IV�s

Z�Fi satisfy EF jjZ�Fijj4+ = EF jj�
�1=2
1F A0FZijj4+ �M and EF jju�i jj2+ �M; where u�i := (ui; u0�i)0:

Next we show that �min(EFZ�FiZ
�0
Fi) is bounded away from zero for F 2 FSR1[r]: We have

�min(EFZ
�
FiZ

�0
Fi) = �min(EF�

�1=2
1F A0FZiZ

0
iAF�

�1=2
1F )

= inf
�2Rr:jj�jj=1

[EF (�
0�
�1=2
1F A0FZi)

21(u2i � c) + EF (�0�
�1=2
1F A0FZi)

21(u2i > c)]

� inf
�2Rr:jj�jj=1

[c�1EF (�
0�
�1=2
1F A0FZi)

2u2i 1(u
2
i � c)]

= c�1 inf
�2Rr:jj�jj=1

[EF (�
0�
�1=2
1F A0FZi)

2u2i � EF (�0�
�1=2
1F A0FZi)

2u2i 1(u
2
i > c)]

� c�1[�min(�
�1=2
1F A0F
FAF�

�1=2
1F )� sup

�2Rr:jj�jj=1
EF (�

0�
�1=2
1F A0FZi)

2u2i 1(u
2
i > c)]

� c�1[1� EF jj��1=21F A0FZijj2u2i 1(u2i > c)]

� 1=(2c); (10.32)

where the second inequality uses gi = Ziui and 
F := EF gig
0
i; the third inequality holds by

�
�1=2
1F A0F
FAF�

�1=2
1F = Ir (using (4.7) and (4.8)) and by the Cauchy-Bunyakovsky-Schwarz in-

equality applied to �0��1=21F A0FZi; and the last inequality holds by the condition EF jj�
�1=2
1F A0FZijj2u2i

�1(u2i > c) � 1=2 in FSR1 :

The moment bounds above and (10.32) establish that F 2 FSR1[r] for (gi; Gi) implies that F 2 F1
for (g�Fi; G

�
Fi) for � � minf1; 1=(2c)g; where the de�nition of F1 in (10.1) is taken to allow gi and Gi

to depend on F:54 Now we apply Theorem 10.1 with (g�Fi; G
�
Fi) and r in place of (gi; Gi) and k and

� � minf1; 1=(2c)g to obtain the correct asymptotic size and asymptotic similarity of the CQLR1
test based on (g�Fi; G

�
Fi) and r for the parameter space FSR1[r] for r = 1; :::; k: As noted above, the

dependence of g�Fi and G
�
Fi on F does not cause a problem in the application of Theorem 10.1.

This establishes the results of Theorem 8.1 for the SR-CQLR1 test by the argument given above.55

The proof for the SR-CQLR1 CS is essentially the same, but with �0 taking any value in � and

with FSR�;1 and F�;1; de�ned in (4.10) and just below (10.1), in place of FSR1 and F1; respectively.
This completes the proof of Theorem 8.1 given Theorem 10.1.

54We require � � minf1; 1=(2c)g; rather than � � 1=(2c); because �min(EF g�Fig�0Fi) = 1 by (10.31) and F1 (� FAR)
requires �min(EF g�Fig

�0
Fi) � �:

55The fact that Z�Fi depends on �0 through �
�1=2
1F (�0)AF (�0)

0 and that G�Fi(�0) 6= (@=@�0)g�Fi(�0) (because
(@=@�0)Z�Fi is ignored in the speci�cation of G

�
Fi(�0)) does not a¤ect the application of Theorem 10.1. The rea-

son is that the proof of this Theorem goes through even if Zi depends on �0 and for any Gi(�0) that satis�es the
conditions in F1; not just for Gi(�0) := (@=@�0)gi(�0):
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11 Outline

We let AG2 abbreviate the main paper �Identi�cation- and Singularity-Robust Inference

for Moment Condition Models.�References to sections with section numbers less than 11 refer to

sections of AG2. All theorems, lemmas, and equations with section numbers less than 11 refer to

results and equations in AG2.

We let SM abbreviate Supplemental Material. We let AG1 abbreviate the paper Andrews and

Guggenberger (2014a). The SM to AG1 is given in Andrews and Guggenberger (2014b).

Section 12 generalizes the SR-AR, SR-CQLR1; and SR-CQLR2 tests from i.i.d. observations to

strictly stationary strong mixing observations.

Section 13 provides �nite-sample null rejection probability simulation results for the SR-AR

and SR-CQLR2 tests for cases where the variance matrix of the moment functions is singular and

near singular.

Section 14 compares the test statistics and conditioning statistics of the SR-CQLR1; SR-CQLR2;

and Kleibergen�s (2005, 2007) CLR tests to those of Moreira�s (2003) LR statistic and conditioning

statistic in the homoskedastic linear IV model with �xed (i.e., nonrandom) IV�s.

Section 15 provides �nite-sample simulation results that illustrate that Kleibergen�s CLR test

with moment-variance weighting can have low power in certain linear IV models with a single

right-hand side (rhs) endogenous variable, as the theoretical results in Section 14 suggest.

Section 16 provides asymptotic power comparisons based on the estimated linear IV models

(with one rhs endogenous variable) in Yogo (2004). The tests considered are the AR test, Kleiber-

gen�s (2005) LM, JVW-CLR, and MVW-CLR tests, the SR-CQLR2 test, I. Andrews�s (2014)

plug-in conditional linear combination (PI-CLC) test, and Moreira and Moreira�s (2013) MM1-SU

and MM2-SU tests.

Section 17 establishes some properties of the eigenvalue-adjustment procedure de�ned in Section

6.1 and used in the de�nitions of the two SR-CQLR tests.

Section 18 de�nes a new SR-LM test.

The remainder of the SM, in conjunction with the Appendix to AG2, provides the proofs of

the results stated in AG2 and the SM. Section 19 proves Lemmas 6.1 and 6.2. Section 20 proves

Lemma 10.3 and Proposition 10.4. Section 21 proves Theorem 10.5. Section 22 proves Theorem

10.1 (using Theorem 10.5). Section 23 proves Theorem 9.1. Section 24 proves Lemmas 14.1, 14.2,

and 14.3. Section 25 proves Theorem 12.1.

For notational simplicity, throughout the SM, we often suppress the argument �0 for various

quantities that depend on the null value �0:
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12 Time Series Observations

In this section, we de�ne the SR-AR, SR-CQLR1; and SR-CQLR2 tests for observations that

are strictly stationary strong mixing. We also generalize the asymptotic size results of Theorem 8.1

from i.i.d. observations to strictly stationary strong mixing observations. In the time series case,

F denotes the distribution of the stationary in�nite sequence fWi : i = :::; 0; 1; :::g:56

We de�ne

VF;n(�) := V arF

0@n�1=2 nX
i=1

0@ gi(�)

vec(Gi(�))

1A1A ;

F;n(�) := V arF (n

�1=2
nX
i=1

gi(�)); and rF;n(�) := rk(
F;n(�)): (12.1)

Note that VF;n(�); 
F;n(�); and rF;n(�) depend on n in the time series case, but not in the i.i.d.

case. We de�ne AF;n(�) and �1F;n(�) as AF (�) and �1F (�) are de�ned in (4.7), (4.8), and the

paragraph following (4.8), but with 
F;n(�) in place of 
F (�):

For the SR-AR test, the parameter space of time series distributions F for the null hypothesis

H0 : � = �0 is taken to be

FSRTS;AR := fF : fWi : i = :::; 0; 1; :::g are stationary and strong mixing under F with

strong mixing numbers f�F (m) : m � 1g that satisfy �F (m) � Cm�d;

EF gi = 0
k; and sup

n�1
EF jj��1=21F;n A

0
F;ngijj2+ �Mg (12.2)

for some  > 0; d > (2 + )=; and C;M < 1; where the dependence of gi; �1F;n; and AF;n on
�0 is suppressed. For CS�s, we use the corresponding parameter space FSRTS;�;AR := f(F; �0) : F 2
FSRTS;AR(�0); �0 2 �g; where FSRTS;AR(�0) denotes FSRTS;AR with its dependence on �0 made explicit.
The moment conditions in FSRTS;AR are placed on the normalized moment functions �

�1=2
1F;n A

0
F;ngi

that satisfy V arF (n�1=2
Pn
i=1�

�1=2
1F;n A

0
F;ngi) = Ik for all n � 1:

For the SR-CQLR1 and SR-CQLR2 tests, we use the null parameter spaces FSRTS;1 and FSRTS;2;
respectively, which are de�ned as FSR1 and FSR2 are de�ned in (4.9), but with (i) FSRTS;AR in place
of FSRAR; (ii) AF and �1F replaced by AF;n and �1F;n; respectively, and (iii) supn�1 added before
the quantities FSR1 and FSR2 that depend on AF;n and �1F;n: For SR-CQLR1 and SR-CQLR2 CS�s,

we use the parameter spaces FSRTS;�;1 and FSRTS;�;2; respectively, which are de�ned as FSRTS;�;AR is
56Asymptotics under drifting sequences of true distributions fFn : n � 1g are used to establish the correct asymp-

totic size of the SR-AR and SR-CQLR tests and CS�s. Under such sequences, the observations form a triangular
array of row-wise strictly stationary observations.
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de�ned, but with FSRTS;1(�0) and FSRTS;2(�0) in place of FSRTS;AR(�0); where FSRTS;1(�0) and FSRTS;2(�0)
denote FSRTS;1 and FSRTS;2 with their dependence on �0 made explicit.

The SR-CQLR test statistics depend on some estimators bVn (= bVn(�0)) of VF;n: The SR-AR test
statistic only depends on an estimator b
n (= b
n(�0)) of the submatrix 
F;n of VF;n: For the SR-
AR, SR-CQLR1; and SR-CQLR2 tests, these estimators are heteroskedasticity and autocorrelation

consistent (HAC) variance matrix estimators based on fgi � bgn : i � ng; f(u�i � bu�in)
 Zi : i � ng
(de�ned in (6.3)), and ffi� bfn : i � ng (de�ned in (7.1)), respectively. There are a number of HAC
estimators available in the literature, e.g., see Newey and West (1987) and Andrews (1991).

We say that bVn is equivariant if the replacement of gi and Gi by A0gi and A0Gi; respectively,
in the de�nition of bVn transforms bVn into (Ip+1 
 A0)bVn(Ip+1 
 A); for any matrix A 2 Rr�k with
full row rank r � k for any r = f1; :::; kg: Equivariance of b
n means that the replacement of gi
by A0gi transforms b
n into A0b
nA: Equivariance holds quite generally for HAC estimators in the
literature.

We write the (p+ 1)k � (p+ 1)k matrix bVn in terms of its k � k submatrices:

bVn =
26666664
b
n b�01n � � � b�0pnb�1n bVG11n � � � bV 0Gp1n
...

...
. . .

...b�pn bVGp1n � � � bVGppn

37777775 : (12.3)

We de�ne brn (= brn(�0)) and bAn (= bAn(�0)) as in (5.3) and (5.4) with � = �0; but with b
n de�ned
in (12.3), rather than in (5.1).

The asymptotic size and similarity properties of the tests considered here are the same for any

consistent HAC estimator. Hence, for generality, we do not specify a particular estimator bVn (orb
n). Rather, we state results that hold for any estimator bVn (or b
n) that satis�es one the following
assumptions when the null value �0 is the true value. The following assumptions are used with the

SR-CQLR2 test and CS, respectively.

Assumption SR-V2: (a) [Ip+1 
 (�
�1=2
1Fn;n

(�0)A
0
Fn;n

(�0))][bVn(�0) � VFn;n(�0)][Ip+1 

(AFn;n(�0)�

�1=2
1Fn;n

(�0))]!p 0
(p+1)k�(p+1)k under fFn : n � 1g for any sequence fFn 2 FSRTS;2 : n � 1g

for which VFn;n(�0)! V for some matrix V and rFn;n(�0) = r for all n large, for any r 2 f1; :::; kg:
(b) bVn(�0) is equivariant.
(c) �0gi(�0) = 0 a.s.[F ] implies that �0b
n(�0)� = 0 a.s.[F ] for all � 2 Rk and F 2 FSRTS;2:
For SR-CQLR2 CS�s, we use the following assumption that allows both the null parameter �0n;

as well as the distribution Fn; to drift with n:
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Assumption SR-V2-CS: [Ip+1 
 (�
�1=2
1Fn;n

(�0n)A
0
Fn;n

(�0n))][bVn(�0n) � VFn;n(�0n)][Ip+1 

(AFn;n(�0n)�

�1=2
1Fn;n

(�0n))] !p 0
(p+1)k�(p+1)k under fFn : n � 1g for any sequence f(Fn; �0n) 2

FSRTS;�;2 : n � 1g for which VFn;n(�0n) ! V for some matrix V and rFn;n(�0n) = r for all n large,

for any r 2 f1; :::; kg:
(b) bVn(�0) is equivariant for all �0 2 �:
(c) �0gi(�0) = 0 a.s.[F ] implies that �0b
n(�0)� = 0 a.s.[F ] for all � 2 Rk and (F; �0) 2 FSRTS;�;2:

Assumptions SR-V2(a) and SR-V2-CS(a) require the HAC estimator based on the normalized mo-

ments and Jacobian (i.e., ��1=21Fn;n
(�0n)A

0
Fn;n

(�0n)gi(�0n) and �
�1=2
1Fn;n

(�0n)A
0
Fn;n

(�0n)Gi(�0n); respec-

tively) to be consistent. This can be veri�ed using standard methods. For typical HAC estimators,

equivariance and Assumptions SR-V2(c) and SR-V2-CS(c) can be shown easily.

For the SR-CQLR1 test and CS, we use Assumptions SR-V1 and SR-V1-CS, which are

de�ned as Assumptions SR-V2 and SR-V2-CS are de�ned, respectively, but with FSRTS;1 and FSRTS;�;1
in place of FSRTS;2 and FSRTS;�;2:

For the SR-AR test and CS, we use Assumptions SR-
 and SR-
-CS, which are de�ned

as Assumptions SR-V2 and SR-V2-CS are de�ned, respectively, but with (i) Assumption SR-
(a)

being: ��1=21Fn;n
(�0)A

0
Fn;n

(�0))[b
n(�0) � 
Fn;n(�0)]AFn;n(�0)��1=21Fn;n
(�0) !p 0

k�k under fFn : n � 1g
for any sequence fFn 2 FSRTS;AR : n � 1g for which 
Fn;n(�0)! 
 for some matrix 
 and rFn;n(�0) =

r for all n large, for any r 2 f1; :::; kg, (ii) Assumption SR-
-CS(a) being as in (i), but with �0n and
FSRTS;�;AR in place of �0 and FSRTS;AR; (iii) b
n(�0) in place of bVn(�0) in part (b) of each assumption,
and (iv) FSRTS;AR in place of FSRTS;2 in part (c) of each assumption.

Now we de�ne the SR-AR, SR-CQLR1; and SR-CQLR2 tests in the time series context. The

de�nitions are the same as in the i.i.d. context given in Sections 5, 6, and 7 with the following

changes. For all three tests, brn and bA?n in the condition bA?0n bgn 6= 0k�brn in (5.7) are de�ned as
in (5.3) and (5.4), but with b
n de�ned to satisfy Assumption SR-
; rather than being de�ned in
(5.1). The SR-AR statistic is de�ned as in Section 5, but with b
n de�ned to satisfy Assumption
SR-
: This a¤ects the de�nitions of brn and bAn; given in (5.3) and (5.4). With these changes, the
critical value for the SR-AR test in the time series case is de�ned in the same way as in the i.i.d.

case.

In the time series case, the SR-QLR1 statistic is de�ned as in Section 6, but with bVn and b
n
de�ned to satisfy Assumption SR-V1 and (12.3) based on f(u�i � bu�in)
 Zi : i � ng; rather than in
(6.3) and (5.1), respectively. In turn, this a¤ects the de�nitions of bRn; b�n; bLn; bD�n; bQn; brn; bAn;
and SR-ARn (which appears in (6.7)). Given the changes described above, the de�nition of the

SR-CQLR1 critical value is unchanged.

In the time series case, the SR-QLR2 statistic is de�ned as in Section 7, but with bVn and b
n
5



de�ned to satisfy Assumption SR-V2 and (12.3) based on ffi � bfn : i � ng; in place of eVn and b
n
de�ned in (7.1) and (5.1), respectively. This a¤ects the de�nitions of eRn; e�n; eLn; eD�n; brn; bAn; and
SR-ARn: Given the previous changes, the de�nition of the SR-CQLR2 critical value is unchanged.

In the time series context,

VF := limV arF

0@n�1=2 nX
i=1

0@ gi

vec(Gi)

1A1A
=

1X
m=�1

EF

0@ gi

vec(Gi � EFGi)

1A0@ gi�m

vec(Gi�m � EFGi�m)

1A0 and

F :=

1X
m=�1

EF gig
0
i�m; (12.4)

where the dependence of various quantities on the null value �0 is suppressed for notational sim-

plicity. The second equality holds for F 2 FSRTS;2:57

For the time series case, the asymptotic size and similarity results for the tests described above

are as follows.

Theorem 12.1 Suppose the SR-AR, SR-CQLR1; and SR-CQLR2 tests are de�ned as in this sec-

tion, the null parameter spaces for F are FSRTS;AR; FSRTS;1; and FSRTS;2; respectively, and the correspond-
ing Assumption SR-
, SR-V1, or SR-V2 holds for each test. Then, these tests have asymptotic sizes

equal to their nominal size � 2 (0; 1): These tests also are asymptotically similar (in a uniform
sense) for the subsets of these parameter spaces that exclude distributions F under which gi = 0k

a.s. Analogous results hold for the SR-AR; SR-CQLR1; and SR-CQLR2 CS�s for the parameter

spaces FSRTS;�;AR; FSRTS;�;1; and FSRTS;�;2; respectively, provided the corresponding Assumption SR-
-
CS, SR-V1-CS, or SR-V2-CS holds for each CS, rather than Assumption SR-
, SR-V1, or SR-V2.

13 Simulation Results for Singular and Near-Singular Variance

Matrices

Here, we provide some �nite-sample simulations of the null rejection probabilities of the nominal

5% SR-AR and SR-CQLR2 tests when the variance matrix of the moments is singular and near

singular.58 The model we consider is the second example discussed in Section 4.2 in AG2 in which

the reduced-form equations are y1i = Z 0i��+V1i and Y2i = Z
0
i�+V2i and the moment functions are

57This is shown in the proof of Lemma 19.1 in Section 19 in the SM to AG1.
58Analogous results for the SR-CQLR1 test are not provided because the moment functions considered are not of

the form in (4.4) in AG2, which is necessary to apply the SR-CQLR1 test.
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Table I. Null Rejection Probabilities (�100) of Nominal 5%
SR-AR and SR-CQLR2 Tests with Singular and Near Singular
Variance Matrices of the Moment Functions and k = 8

SR-AR SR-CQLR2
n �V : .95 .999,999 1.0 .95 .999,999 1.0

250 6.0 6.0 5.4 5.8 5.8 5.3
500 5.5 5.5 5.2 5.3 5.3 5.1

1,000 5.5 5.5 5.2 5.3 5.3 5.1
2,000 5.0 5.0 4.9 4.8 4.8 4.8
4,000 5.0 5.0 5.1 4.8 4.8 5.0
8,000 5.1 5.1 5.0 4.8 4.8 4.9
16,000 5.0 5.0 5.1 4.9 4.9 5.0

gi(�) = ((y1i�Z 0i��)Z 0i; (Y2i�Z 0i�)Z 0i)0 2 Rk; where k = 2dZ and dZ is the dimension of Zi:We take
(V1i; V2i) � N(02;�V ); where �V has unit variances and correlation �V ; Zi � N(02; IdZ ); (V1i; V2i)
and Zi are independent, and the observations are i.i.d. across i: The null hypothesis is H0 : (�; �) =

(�0; �0): We consider the values: �V = :95; :999; 999; and 1:0; n = 250; 500; 1; 000; 2; 000; 4; 000;

8; 000; and 16; 000; �0 = (�10; 0; 0; 0)
0; where �10 = �10n = C=n1=2 and C =

p
10; which yields a

concentration parameter of � = �0EZiZ 0i� = 10 for all n � 1; and �0 = 0: The variance matrix 
F
of the moment functions is singular when �V = 1 (because gi(�0) = (V1iZ

0
i; V1iZ

0
i)
0 a.s.) and near

singular when �V is close to one. Under H0; with probability one, the extra rejection condition in

(5.7) is: reject H0 if [I4;�I4]bgn(�0) 6= 04; which fails to hold a.s. and, hence, can be ignored in

probability calculations made under H0: Forty thousand simulation repetitions are employed.

Tables I-III report results for k = 8 (which corresponds to dZ = 4); k = 4; and k = 12;

respectively. Table I shows that the SR-AR and SR-CQLR2 tests have null rejection probabilities

that are close to the nominal 5% level for singular and near singular variance matrices as measured

by �V : As expected, the deviations from 5% decrease with n: For all 40; 000 simulation repetitions,

all values of n considered, and k = 8; we obtain brn(�0) = 8 when �V < 1:0 and brn(�0) = 4 when
�V = 1: The estimator brn(�0) also makes no errors when k = 4 and 12: Tables II and III show that
the deviations of the null rejection probabilities from 5% are somewhat smaller when k = 4 and

n � 1000 than when k = 8; and somewhat larger when k = 12 and n � 500: Results for k = 8 and
C = 0; 2;

p
30; and 10 produced similar results. For brevity, these results are not reported.

We conclude that the method introduced in Section 5 to make the SR-AR and SR-CQLR2 tests

robust to singularity works very well in the model that is considered in the simulations.
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Table II. Null Rejection Probabilities (�100) of Nominal 5%
SR-AR and SR-CQLR2 Tests with Singular and Near Singular
Variance Matrices of the Moment Functions and k = 4

SR-AR SR-CQLR2
n �V : .95 .999,999 1.0 .95 .999,999 1.0

250 5.5 5.5 5.2 5.4 5.4 4.9
500 5.1 5.1 5.2 5.0 5.0 5.0

1,000 4.9 4.9 5.1 4.8 4.8 4.8
2,000 5.1 5.1 5.2 5.0 5.0 5.0
4,000 5.1 5.1 5.1 5.0 5.0 4.9
8,000 5.1 5.1 5.1 5.0 5.0 4.8
16,000 5.1 5.1 5.0 4.9 4.9 4.8

Table III. Null Rejection Probabilities (�100) of Nominal 5%
SR-AR and SR-CQLR2 Tests with Singular and Near Singular
Variance Matrices of the Moment Functions and k = 12

SR-AR SR-CQLR2
n �V : .95 .999,999 1.0 .95 .999,999 1.0

250 7.0 7.0 5.6 7.0 7.0 5.5
500 6.0 6.0 5.4 6.0 6.0 5.4

1,000 5.5 5.5 5.3 5.5 5.5 5.3
2,000 5.2 5.2 5.1 5.2 5.2 5.1
4,000 5.1 5.1 5.1 5.1 5.1 5.1
8,000 5.0 5.0 4.9 5.0 5.0 4.8
16,000 4.9 4.9 5.0 4.9 4.9 5.0
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14 SR-CQLR1; SR-CQLR2; and Kleibergen�s Nonlinear CLRTests

in the Homoskedastic Linear IV Model

It is desirable for tests to reduce asymptotically to Moreira�s (2003) CLR test in the homoskedas-

tic linear IV regression model with �xed (i.e., nonrandom) IV�s when p = 1; where p is the number

of endogenous rhs variables, which equals the dimension of �: The reason is that the latter test has

been shown to have some (approximate) optimality properties under normality of the errors, see

Andrews, Moreira, and Stock (2006, 2008) and Chernozhukov, Hansen, and Jansson (2009).59

In this section, we show that the components of the SR-QLR1 statistic and its corresponding

conditioning matrix are asymptotically equivalent to those of Moreira�s (2003) LR statistic and

its conditioning statistic, respectively, in the homoskedastic linear IV model with k � p �xed

(i.e., nonrandom) IV�s and nonsingular moments variance matrix (whether or not the errors are

Gaussian). This holds for all values of p � 1:
We also show that the same is true for the SR-QLR2 statistic and its conditioning matrix in

some, but not in all cases (where the cases depend on the behavior of the reduced-form parameter

matrix � 2 Rk�p as n!1:) Nevertheless, when p = 1; the SR-CQLR2 test and Moreira�s (2003)
CLR test are asymptotically equivalent. When p � 2; for the cases where asymptotic equivalence of
these tests does not hold, the di¤erence is due only to the IV�s being �xed, whereas the SR-QLR2

statistic and its conditioning matrix are designed (essentially) for random IV�s.

We also evaluate the behavior of Kleibergen�s (2005, 2007) nonlinear CLR tests in the ho-

moskedastic linear IV model with �xed IV�s. Kleibergen�s tests depend on the choice of a weight

matrix for the conditioning statistic (which enters both the CLR test statistic and the critical value

function). We �nd that when p = 1 Kleibergen�s CLR test statistic and conditioning statistic re-

duce asymptotically to those of Moreira (2003) when one employs the Jacobian-variance weighted

conditioning statistic suggested by Kleibergen (2005, 2007) and Smith (2007). However, they do

not when one employs the moments-variance weighted conditioning statistic suggested by Newey

and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012). Notably, the scale of the

scalar conditioning statistic can di¤er from the desired value of one by a factor that can be arbi-

trarily close to zero or in�nity (depending on the value of the reduced-form error matrix �V and

null hypothesis value �0), see Lemma 14.3 and Comment (iv) following it. Kleibergen�s nonlinear

CLR tests depend on the form of a rank statistic. When p � 2; we �nd that no choice of rank

statistic makes Kleibergen�s CLR test statistic and conditioning statistic reduce asymptotically to

those of Moreira (2003) (when Jacobian- or moments-variance weighting is employed).

59Whether this also holds for p � 2 is an open question.
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Section 15 below provides �nite-sample simulation results that illustrate the results of the

previous paragraph for Kleibergen�s CLR test with moment-variance weighting.

14.1 Homoskedastic Linear IV Model

The model we consider is the homoskedastic linear IV model introduced in Section 3 but with-

out the assumption of normality of the reduced-form errors Vi: Speci�cally, we use the following

assumption.

Assumption HLIV: (a) fVi 2 Rp+1 : i � 1g are i.i.d., fZi 2 Rk : i � 1g are �xed, not random,
and k � p:

(b) EVi = 0; �V := EViV 0i is pd, and EjjVijj4 <1:60

(c) n�1
Pn
i=1 ZiZ

0
i ! KZ for some pd matrix KZ 2 Rk�k; n�1

Pn
i=1 jjZijj6 = o(n); and

supi�n(c
0Zi)2=

Pn
i=1(c

0Zi)2 ! 0 8c 6= 0k:
(d) sup�2� jj�jj <1; where � is the parameter space for �:
(e) �max(�V )=�min(�V ) � 1=" for " > 0 as in the de�nition of the SR-QLR1 or SR-QLR2

statistic.

Here HLIV abbreviates �homoskedastic linear IV model.�Assumption HLIV(b) speci�es that the

reduced-form errors are homoskedastic (because their variance matrix does not depend on i or Zi):

Assumptions HLIV(c) and (d) are used to obtain a weak law of large numbers (WLLN) and central

limit theorem (CLT) for certain quantities under drifting sequences of reduced-form parameters

f�n : n � 1g: These assumptions are not very restrictive. Note that Assumptions HLIV(a)-(c)
imply that the variance matrix of the sample moments is pd. This implies that brn (= brn(�0)) = k
wp!1 (by Lemma 14.1(b) below) and no SR adjustment of the SR-CQLR tests occurs (wp!1).
Assumption HLIV(e) guarantees that the eigenvalue adjustment used in the de�nition of the SR-

QLR statistics does not have any e¤ect asymptotically. One could analyze the properties of the

SR-CQLR tests when this condition is eliminated. One would still obtain asymptotic null rejection

probabilities equal to �; but the eigenvalue adjustment would render the SR-CQLR tests to behave

somewhat di¤erently than Moreira�s CLR test, because the latter test does not employ an eigenvalue

adjustment.

60 In this section, the underlying i.i.d. random variables fVi : i � 1g have a distribution that does not depend on
n: Hence, for notational simplicity, we denote expectations by E; rather than EFn : Nevetheless, it should be kept in
mind that the reduced-form parameters �n may depend on n:
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14.2 SR-CQLR1 Test

The components of the SR-QLR1 statistic and its conditioning matrix are n1=2b
�1=2n bgn and
n1=2 bD�n (see (5.2) and (6.7)) when brn = k; which holds wp!1 under Assumption HLIV. Those
of Moreira (2003) are Sn and Tn (see (3.4)). The asymptotic equivalence of these components in

the model speci�ed by (3.1)-(3.2) and Assumption HLIV is established in parts (e) and (f) of the

following lemma. Parts (a)-(d) of the lemma establish the asymptotic behavior of the componentsb
n and b�n of the test statistic SR-QLR1n and its conditioning statistic.
Lemma 14.1 Suppose Assumption HLIV holds. Under the null hypothesis H0 : � = �0; for any

sequence of reduced-form parameters f�n 2 � : n � 1g and any p � 1; we have
(a) bRn !p �V 
KZ ;
(b) b
n !p (b

0
0�V b0)KZ ; where b0 := (1;��00)0;

(c) b�n !p (b
0
0�V b0)

�1�V ;

(d) b�"n !p (b
0
0�V b0)

�1�V ;

(e) n1=2b
�1=2n bgn = Sn + op(1); and
(f) n1=2 bD�n = �(Ik + op(1))Tn(Ip + op(1)) + op(1):

Comments: (i) The minus sign in Lemma 14.1(f) is not important because QLR1n in (6.7) is

unchanged if bD�n is replaced by � bD�n in the de�nition of bQn (and SR-QLR1n = QLR1n wp!1
under Assumption HLIV).61

(ii) The results of Lemma 14.1 hold under the null hypothesis. Statistics that di¤er by op(1)

under sequences of null distributions also di¤er by op(1) under sequences of contiguous alternatives.

Hence, the asymptotic equivalence results of Lemma 14.1(e) and (f) also hold under contiguous

alternatives to the null.

Note that in the linear IV regression model the alternative parameter values f�n : n � 1g
that yield contiguous sequences of distributions from a sequence of null distributions depend on

the strength of identi�cation as measured by �n: The reduced-form equation (3.2) states that

y1i = Z 0i�n�n + V1i when �n and �n are the true values of � and �: Contiguous alternatives

to the null distributions with parameters �n and �0 are obtained for parameter values �n and

�n (6= �0) that satisfy �n�n � �n�0 = �n(�n � �0) = O(n�1=2): If the IV�s are strong, i.e.,

lim infn!1 �0nn
�1Pn

i=1 ZiZ
0
i�n > 0; then contiguous alternatives have true �n values of distance

O(n�1=2) from the null value �0: If the IV�s are weak in the standard sense, e.g., �n = �n�1=2 for

61This holds because for a1 2 Rk and A2 2 Rk�p we have �min((a1;�A2)0(a1;�A2)) = inf�=(�1;�02)0:jj�jj=1(a1�1 �
A2�2)

0(a1�1�A2�2) = inf�=(�1;��02)0:jj�jj=1(a1�1+A2�2)
0(a1�1+A2�2) = inf�=(�1;�02)0:jj�jj=1(a1�1+A2�2)

0(a1�1+

A2�2) = �min((a1; A2)
0(a1; A2)):
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some �xed matrix �; then all � values not equal �0 yield contiguous alternatives. For semi-strong

identi�cation in the standard sense, e.g., �n = �n�� for some � 2 (0; 1=2) and some �xed full-
column-rank matrix �; the contiguous alternatives have �n � �0 = O(n�(1=2��)): For joint weak

identi�cation, contiguity occurs when �n = (�1n; :::; �pn) 2 Rk�p; n1=2jj�jnjj ! 1 for all j � p;

lim supn!1 �min(n�
0
n�n) <1; and �n is such that �n(�n � �0) = O(n�1=2):

(iii) The proofs of Lemma 14.1 and Lemmas 14.2 and 14.3 below are given in Section 24 below.

14.3 SR-CQLR2 Test

The components of the SR-QLR2 statistic and its conditioning matrix are n1=2b
�1=2n bgn and
n1=2 eD�n (see (5.2), (6.7), and (7.2)) when brn = k; which holds wp!1 under Assumption HLIV.
Here we show that the conditioning statistic n1=2 eD�n is asymptotically equivalent to Moreira�s
(2003) conditioning statistic Tn (in the homoskedastic linear IV model with �xed IV�s) when

�n ! 0k�p: This includes the cases of standard weak identi�cation and semi-strong identi�cation. It

is not asymptotically equivalent in other circumstances. (See Comment (ii) to Lemma 14.2 below.)

Nevertheless, under strong and semi-strong IV�s, the SR-CQLR2 test and Moreira�s CLR test are

asymptotically equivalent.62 In consequence, when p = 1; the SR-CQLR2 test and Moreira�s CLR

test are asymptotically equivalent (because standard weak, strong, and semi-strong identi�cation

cover all possible cases). When p � 2; this is not true (because weak identi�cation can occur even
when �n 9 0k�p; if n1=2 times the smallest singular value of �n is O(1)): Although asymptotic

equivalence of the tests fails in some cases when p � 2; the di¤erences appear to be small because
they are due only to the di¤erences between �xed IV�s and random IV�s (which cause �V to di¤er

somewhat from �V � de�ned below).

For � 2 Rk�p; de�ne

�n(�) := n
�1

nX
i=1

(�0 
 Zi)ZiZ 0i(� 
 Z 0i)�
 
n�1

nX
i=1

(�0 
 Zi)Zi

! 
n�1

nX
i=1

(�0 
 Zi)Zi

!0
2 Rkp�kp:

(14.1)

If limn�1
Pn
i=1 vec(ZiZ

0
i)vec(ZiZ

0
i)
0 exists, then �(�) := lim �n(�) exists for all � 2 Rk�p: De�ne

R(�) := �V 
KZ +
�
B0 
 Ik

�24 0k�k 0k�kp

0kp�k �(�)

35 (B 
 Ik) 2 Rk(p+1)�k(p+1); (14.2)

62This holds because, under strong and semi-strong IV�s, the SR-QLR2 statistic and Moreira�s CLR statistic
behave asymptotically like LM statistics that project onto n1=2b
�1=2n

bDn (or equivalently, n1=2b
�1=2n
bDn
bL1=2n ) and Tn;

respectively, see Theorem 9.1 for the SR-QLR2 statistic, and n1=2b
�1=2n
bDn
bL1=2n and Tn are asymptotically equivalent

(up to multiplication by �1) by Lemma 14.1(f). Furthermore, the conditional critical values of the two tests both
converge in probability to �2p;1�� under strong and semi-strong identi�cation, see Theorem 9.1 for the SR-CQLR2
critical value.
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where B = B(�0) is de�ned in (6.3).

The probability limit of e�n is shown below to be the symmetric matrix (b00�V b0)
�1�V � 2

R(p+1)�(p+1); where �V � is de�ned as follows. The (j; `) element of �V � is

�V �j` := tr(Rj`(��)
0K�1

Z )=k; (14.3)

where Rj`(��) denotes the (j; `) k � k submatrix of R(��) for j; ` = 1; :::; p + 1 and �� = lim�n:

Equivalently, �V � is the unique minimizer of jj[Ip+1 
 ((b00�V b0)�1=2K
�1=2
Z )][� 
 KZ � R(��)]

[Ip+1 
 ((b00�V b0)�1=2K
�1=2
Z )]jj over all symmetric pd matrices � 2 R(p+1)�(p+1): Note that when

�(��) = 0 (as occurs when �� = 0k�p), �V � = �V (because R(��) = �V 
KZ in this case).
We use the following assumption.

Assumption HLIV2: (a) limn�1
Pn
i=1 vec(ZiZ

0
i)vec(ZiZ

0
i)
0 exists and is �nite,

(b) �n ! �� for some �� 2 Rk�p; and
(c) �max(�V �)=�min(�V �) � 1=" for " > 0 as in the de�nition of the SR-QLR2 statistic.

Assumption HLIV2(c) implies that the eigenvalue adjustment to e�n employed in the SR-QLR2
statistic has no e¤ect asymptotically. One could analyze the behavior of the SR-CQLR2 test when

this condition is eliminated. This would not a¤ect the asymptotic null rejection probabilities, but

it would a¤ect the form of the asymptotic distribution when the condition is violated. For brevity,

we do not do so here.

The asymptotic behavior of n1=2 eD�n is given in the following lemma. Under Assumption HLIV,
n1=2 eD�n equals the SR-CQLR2 conditioning statistic n1=2 eD�An wp!1 (because brn = k wp!1).
Lemma 14.2 Suppose Assumptions HLIV and HLIV2 hold. Under the null hypothesis H0 : � = �0

and any p � 1; we have
(a) eRn !p R(��);

(b) e�n !p (b
0
0�V b0)

�1�V �;

(c) e�"n !p (b
0
0�V b0)

�1�V �; and

(d) n1=2 eD�n = �(Ik + op(1))Tn(L�1=2V 0 L
1=2
V � + op(1)) + op(1); where LV 0 := (�0; Ip)�

�1
V (�0; Ip)

0 2
Rp�p and LV � := (�0; Ip)�

�1
V �(�0; Ip)

0 2 Rp�p:

Comments: (i) If �� = 0k�p; which occurs when all � parameters are either weakly identi�ed

in the standard sense or semi-strongly identi�ed, then �(��) = 0kp�kp; R(��) = �V 
 KZ ; and
�V � = �V : In this case, Lemma 14.2(d) yields

n1=2 eD�n = �(Ik + op(1))Tn(Ip + op(1)) + op(1) (14.4)
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and n1=2 eD�n is asymptotically equivalent to Tn (up to multiplication by �1).
(ii) On the other hand, if �� 6= 0k�p; then n1=2 eD�n is not asymptotically equivalent to Tn in

general due to the �(��) factor that appears in the second summand of R(��) in (14.2). This factor

arises because the IV�s are �xed in the linear IV model (by assumption), but the variance estimatoreVn; which appears in eRn; see (7.1), and which determines e�n and �V �; treats the IV�s as though
they are random.

14.4 Kleibergen�s Nonlinear CLR Tests

This section analyzes the behavior of Kleibergen�s (2005, 2007) nonlinear CLR tests in the

homoskedastic linear IV regression model with k � p �xed IV�s. The behavior of Kleibergen�s

nonlinear CLR tests is found to depend on the choice of weighting matrix for the conditioning

statistic. We �nd that when p = 1 (where p is the dimension of �) and one employs the Jacobian-

variance weighted conditioning statistic, Kleibergen�s CLR test and conditioning statistics reduce

asymptotically to those of Moreira�s (2003) CLR test, as desired. This type of weighting has been

suggested by Kleibergen�s (2005, 2007) and Smith (2007). On the other hand, Kleibergen�s CLR test

and conditioning statistics do not reduce asymptotically to those of Moreira (2003) when p = 1 and

one employs the moments-variance weighted conditioning statistic. The latter has been suggested

by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012). Furthermore,

the scale of the scalar conditioning statistic can di¤er from the desired value of one by a factor that

can be arbitrarily close to zero or in�nity (depending on the value of the reduced-form error matrix

�V and null hypothesis value �0). This has adverse e¤ects on the power of the moment-variance

weighted CLR test.

When p � 2; Kleibergen�s nonlinear CLR tests depend on the form of a rank statistic. In this

case, we �nd that no choice of rank statistic makes Kleibergen�s CLR test statistic and conditioning

statistic reduce asymptotically to those of Moreira (2003).

Kleibergen�s test statistic takes the form:

CLRn(�) :=
1

2

�
ARn(�)� rkn(�) +

p
(ARn(�)� rkn(�))2 + 4LMn(�) � rkn(�)

�
; where

LMn(�) := nbgn(�)0b
�1=2n (�)Pb
�1=2n (�) bDn(�)b
�1=2n (�)bgn(�) (14.5)

and rkn(�) is a real-valued rank statistic, which is a conditioning statistic (i.e., the critical value

may depend on rkn(�)):

The critical value of Kleibergen�s CLR test is c(1 � �; rkn(�)); where c(1 � �; r) is the 1 � �
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quantile of the distribution of

clr(r) :=
1

2

�
�2p + �

2
k�p � r +

q
(�2p + �

2
k�p � r)2 + 4�2pr

�
(14.6)

for 0 � r < 1 and the chi-square random variables �2p and �
2
k�p in (14.6) are independent. The

CLR test rejects the null hypothesis H0 : � = �0 if CLRn > c(1� �; rkn) (where, as elsewhere, the
dependence of these statistics on �0 is suppressed for simplicity).

Kleibergen�s CLR test depends on the choice of the rank statistic rkn(�): Kleibergen (2005,

p. 1114, 2007, eqn. (37)) and Smith (2007, p. 7, footnote 4) propose to take rkn(�) to be a

function of eV �1=2Dn (�)vec( bDn(�)); where eVDn(�) 2 Rkp�kp is a consistent estimator of the covariance
matrix of the asymptotic distribution of vec( bDn(�)) (after suitable normalization). We refer toeV �1=2Dn (�)vec( bDn(�)) as the orthogonalized sample Jacobian with Jacobian-variance weighting. In
the i.i.d. case considered here, we have

eVDn(�) := n�1
nX
i=1

vec(Gi(�)� bGn(�))vec(Gi(�)� bGn(�))0 � b�n(�)b
�1n (�)b�n(�)0; where
b�n(�) := (b�1n(�)0; :::; b�pn(�)0)0 2 Rpk�k (14.7)

and b�1n(�); :::; b�pn(�) are de�ned in (6.2).
Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012) propose to take

rkn(�) to be a function of b
�1=2n (�) bDn(�):We refer to b
�1=2n (�) bDn(�) as the orthogonalized sample
Jacobian with moment-variance weighting. Below we consider both choices. For reasons that will

become apparent, we treat the cases p = 1 and p � 2 separately.

14.5 p = 1 Case

Whether Kleibergen�s nonlinear CLR test reduces asymptotically to Moreira�s CLR test in the

homoskedastic linear IV regression model depends on the rank statistic chosen. Here we consider the

two choices of rank statistic that have been considered in the literature. We �nd that Kleibergen�s

nonlinear CLR test reduces asymptotically to Moreira�s CLR test with a rank statistic based oneVDn(�); but not with a rank statistic based on b
n(�): This illustrates that the �exibility in the
choice of the rank statistic for Kleibergen�s CLR test can have drawbacks. It may lead to a test

that has reduced power.

When p = 1; some calculations (based on the closed-form expression for the minimum eigenvalue
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of a 2� 2 matrix) show that

CLRn(�) = ARn(�)� �min((n1=2b
�1=2n (�)bgn(�); rn(�))0(n1=2b
�1=2n (�)bgn(�); rn(�))) provided
rkn(�) = rn(�)

0rn(�) for some random vector rn(�) 2 Rk: (14.8)

This equivalence is the origin of the p = 1 formula for the LR statistic in Moreira (2003). Hence,

when p = 1; for testing H0 : � = �0; Kleibergen�s test statistic with rkn(�) = rn(�)0rn(�) is of the

same form as Moreira�s (2003) LR statistic with rn(�0) in place of Tn and with n1=2b
�1=2n (�0)bgn(�0)
in place of Sn; where �0 is the null value of �:63 The two choices for rkn(�) that we consider when

p = 1 are

rk1n(�) := n bDn(�)0 eV �1Dn (�)
bDn(�) and rk2n(�) := n bDn(�)0b
�1n (�) bDn(�): (14.9)

The statistic rk1n(�) has been proposed by Kleibergen (2005, 2007) and Smith (2007) and rk2n(�)

has been proposed by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith

(2012).

Let

�n(�) := n
�1

nX
i=1

ZiZ
0
i(Z

0
i�)

2 �
 
n�1

nX
i=1

ZiZ
0
i�

! 
n�1

nX
`=1

Z`Z
0
`�

!0
: (14.10)

This de�nition of �n(�) is the same as in (14.1) when p = 1:

Lemma 14.3 Suppose Assumption HLIV holds and p = 1: Under the null hypothesis H0 : � = �0;

for any sequence of reduced-form parameters f�n 2 � : n � 1g; we have
(a) rk1n(�0) = T

0
n[Ik + LV 0K

�1=2
Z �n(�n)K

�1=2
Z + op(1)]

�1Tn � (1 + op(1)) + op(1);
(b) rk2n(�0) = T

0
nTn(LV 0b

0
0�V b0)

�1 � (1 + op(1)) + op(1); where LV 0 := (�0; 1)��1V (�0; 1)0 2 R;
and

(c) LV 0b00�V b0 =
(1�2�0�c+�20c2)2

c2(1��2) ; where c2 := V ar(V2i)=V ar(V1i) > 0 and � = Corr(V1i; V2i) 2
(�1; 1):

Comments: (i) If �n ! 0; then �n(�n) ! 0 and Lemma 14.3(a) shows that rk1n(�0) equals

T
0
nTn(1 + op(1)) + op(1): That is, under weak IV�s and semi-strong IV�s, rk1n(�0) reduces as-

ymptotically to Moreira�s (2003) conditioning statistic. Under strong IV�s, this does not occur.

However, under strong IV�s, we have rk1n(�0)!p 1; just as T
0
nTn !p 1: In consequence, the test

constructed using rk1n(�0) has the same asymptotic properties as Moreira�s (2003) CLR test under

the null and contiguous alternative distributions.

63The functional form of the rank statistics that have been considered in the literature, such as the statistics of
Cragg and Donald (1996, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006) all reduce to the same
function when p = 1: Speci�cally, rkn(�) equals the squared length of some k vector rn(�):
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(ii) Simple calculations show that �n(�n) is positive semi-de�nite (psd). Hence, rk1n(�0) is

smaller than it would be if the second summand in the square brackets in Lemma 14.3(a) was zero.

(iii) Lemma 14.3(b) shows that the rank statistic rk2n(�0) di¤ers asymptotically from Moreira�s

conditioning statistic T
0
nTn by the scale factor (LV 0b

0
0�V b0)

�1: Thus, the nonlinear CLR test

considered by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012) does

not reduce asymptotically to Moreira�s (2003) CLR test in the homoskedastic linear IV regression

model with �xed IV�s under weak IV�s. This has negative consequences for its power. Under strong

or semi-strong IV�s, this test does reduce asymptotically to Moreira�s (2003) CLR test because

rk1n(�0)!p 1; just as T
0
nTn !p 1; which is su¢ cient for asymptotic equivalence in these case.

(iv) For example, if � = 0 and c = 1 in Lemma 14.3(c), then (LV 0b00�V b0)
�1 = (1+�20)

�2 � 1: In
this case, if j�0j = 1; then (LV 0b00�V b0)�1 = 1=4 and rk2n(�0) is 1=4 as large as T

0
nTn asymptotically.

On the other hand, if � = 0 and �0 = 0; then (LV 0b00�V b0)
�1 = c2; which can be arbitrarily close

to zero or in�nity depending on c:

(v) When (LV 0b00�V b0)
�1 is large (small), the rk2n(�0) statistic is larger (smaller) than desired

and it behaves as though the IV�s are stronger (weaker) than they really are, which sacri�ces power

unless the IV�s are quite strong (weak). Note that the inappropriate scale of rk2n(�0) does not

cause asymptotic size problems, only power reductions.

14.6 p � 2 Case

When p � 2;Kleibergen�s (2005) nonlinear CLR test does not reduce asymptotically to Moreira�s
(2003) CLR test for any choice of rank statistic rkn(�0) for several reasons.

First, Moreira�s (2003) LR statistic is given in (3.4), whereas Kleibergen�s (2005) nonlinear LR

statistic is de�ned in (14.5). By Lemma 14.1(e), n1=2b
�1=2n bgn = Sn+ op(1); where, here and below,
we suppress the dependence of various quantities on �0: Hence, ARn = S

0
nSn + op(1): Even if rkn

takes the form r0nrn for some random k vector rn; it is not the case that

CLRn = ARn � �min((n1=2b
�1=2n bgn; rn)0(n1=2b
�1=2n bgn; rn)) (14.11)

when p � 2: Hence, the functional form of Kleibergen�s test statistic di¤ers from that of Moreira�s

LR statistic when p � 2:
Second, for the rank statistics that have been suggested in the literature, viz., those of Cragg

and Donald (1996, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006), rkn is not of

the form r0nrn; when p � 2:
Third, Moreira�s conditioning statistic is the k�p matrix Tn: Conditioning on this random ma-
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trix is equivalent asymptotically to conditioning on the k�pmatrix n1=2 bD�n by Lemma 14.1(f). But,
it is not equivalent asymptotically to conditioning on any of the scalar rank statistics considered

in the literature when p � 2:
Fourth, if one weights the conditioning statistic in the way suggested by Kleibergen (2005) and

Smith (2007), then the resulting CLR test is not guaranteed to have correct asymptotic size, see

Section 5 of AG1. If one weights the conditioning statistic by b
�1n ; as suggested by Newey and
Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012), then the CLR test is guaranteed

to have correct asymptotic size under the conditions given in AG1, but the conditioning statistic is

not asymptotically equivalent to Moreira�s (2003) conditioning statistic and the di¤erence can be

substantial, see Lemma 14.3(b) and (c) for the p = 1 case.

15 Simulation Results for Kleibergen�s MVW-CLR Test

This section presents �nite-sample simulation results that show that Kleibergen�s (2005) CLR

test with moment-variance weighting (MVW-CLR) has low power in some scenarios in the ho-

moskedastic linear IV model with normal errors, relative to the power of the SR-CQLR1 and

SR-CQLR2 tests, Kleibergen�s CLR test with Jacobian-variance weighting (JVW-CLR), and the

CLR test of Moreira (2003) (Mor-CLR).64 As noted at the beginning of Section 14.4, Lemma 14.3

and Comment (iv) following it show that the scale (denoted by scale below) of the moment-variance

weighting conditioning statistic can be far from the optimal value of one.65 We provide results for

one scenario where scale is too large and one scenario where it is too small. These scenarios are

chosen based on the formula given in Lemma 14.3.

The model is the homoskedastic normal linear IV model introduced in Section 3 with unknown

error variance matrix �V and p = 1: The IV�s are �xed� they are generated once from a N(0k; Ik)

distribution. The sample size n equals 1; 000: The hypotheses are H0 : � = 0 and H1 : � 6= 0:

The tests have nominal size :05: The power results are based on 40; 000 simulation repetitions and

1; 000 critical value repetitions and are size-corrected (by adding non-negative constants to the

critical values of those tests that over-reject under the null). The reduced-form error variances

and correlation are denoted by �V 11; �V 22; and �; respectively, and � := �0Z 0Z�: The number of

IV�s is k: The MVW-CLR and JVW-CLR tests employ the Robin and Smith (2000) rank statistic.

64The MVW-CLR and JVW-CLR tests denote Kleibergen�s (2005) CLR test with the rank statistic given by the
Robin and Smith (2000) statistics rkn = �min(n bD0

n
b
�1=2n

bDn) and rkn = �min(n bD0
n
eV �1
Dn

bDn); respectively, where b
n
and bDn are de�ned in (5.1) and (6.2) with � = �0 and eVDn is an estimator of the asymptotic variance of bDn (after
suitable normalization) and is de�ned in (14.7). Note that the second formula for rkn is appropriate only for the case
p = 1; which is the case considered here. The estimators b
n and eVDn are estimators of the asymptotic variances of
the sample moments and Jacobian, respectively, which leads to the MVW and JVW terminology.
65The constant scale is the constant (LV 0b00�V b0)

�1 in Lemma 14.3(b) and (c).
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Results are reported for the tests discussed above, as well as Kleibergen�s LM test and the AR test.

Design 1 takes �V 11 = 1:0; �V 22 = 4:0; � = 0:5; � = 0:044; � = 2:009; and k = 5: These

parameter values yield scale = 30:0; which results in the MVW-CLR test behaving like Kleibergen�s

LM test even though the LM test has low power in this scenario. Design 2 takes �V 11 = 3:0; �V 22 =

0:1; � = 0:95; � = 0:073; � = 4:995; and k = 10: These parameter values yield scale = 0:0033;

which results in the MVW-CLR test behaving like the AR test even though the AR test has low

power in this scenario.

The power functions of the tests are reported in Figure 1 (with ��1=2 on the horizontal axes

with �1=2 �xed). Figure 1(a) shows that, for Design 1, the MVW-CLR and LM tests have very

similar power functions and both are substantially below the power functions of the SR-CQLR1;

SR-CQLR2; JVW-CLR, and Mor-CLR tests, which have essentially equal and optimal power. The

AR test has high power, like that of the SR-CQLR1; SR-CQLR2; JVW-CLR, and Mor-CLR tests,

for positive �; and low power, like that of the MVW-CLR and LM tests, for negative �:

Figure 1(b) shows that, for Design 2, the MVW-CLR and AR tests have similar power functions

and both are substantially below the power functions of the SR-CQLR1; SR-CQLR2; JVW-CLR,

Mor-CLR, and LM tests, which have essentially equal and optimal power.

16 Power Comparisons in Heteroskedastic/Autocorrelated Linear

IV Models with p = 1

In this section, we present some power comparisons for the AR test, Kleibergen�s (2005) LM,

JVW-CLR, and MVW-CLR tests, and the SR-CQLR2 test introduced in AG2.66 We also consider

the plug-in conditional linear combination (PI-CLC) test introduced in I. Andrews (2014), as well as

the MM1-SU and MM2-SU tests introduced in Moreira and Moreira (2013). The PI-CLC test aims

to approximate the test that has minimum regret among conditional tests constructed using linear

combinations of the LM and AR test statistics (with coe¢ cients that depend on the conditioning

statistic), see I. Andrews (2014) for details.67 The MM1-SU and MM2-SU tests have optimal

weighted average power for two di¤erent weight functions (over the alternative parameter values

� and the strength of identi�cation parameter vector �; given in (16.1) below) among tests that

satisfy a su¢ cient condition for local unbiasedness.68

66See (5.2), (9.1), and a footnote in Section 15 for the de�nitions of AR test and Kleibergen�s LM, MVW-CLR,
and JVW-CLR tests. The AR test is called the S test in Stock and Wright (2000). The LM and JVW-CLR tests are
denoted by K and QCLR, respectively, in I. Andrews (2014).
67The PI-CLC test does not possess an optimality property because it does not actually equal the minimum regret

test.
68The weight functions considered depend on the variance parameters �gG and �GG in (16.1) below.
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We consider the same designs as in I. Andrews (2014, Sec. 6.2). These designs are for het-

eroskedastic and/or autocorrelated linear IV models with p = 1 and k = 4: The designs are cali-

brated to mimic the linear IV models for the elasticity of inter-temporal substitution estimated by

Yogo (2004) for eleven countries using quarterly data from the early 1970�s to the late 1990�s. The

power comparisons are for the limiting experiment under standard weak identi�cation asymptotics.

In consequence, for the simulations, the observations are drawn from the following model:0@ b
�1=2n n1=2bgn(�0)b
�1=2n n1=2 bGn(�0)
1A � N

0@0@ ��

�

1A ;
0@ Ik �gG

�0gG �GG

1A1A (16.1)

for � 2 R; � 2 Rk; and �gG;�GG 2 Rk�k; where �gG and �GG are assumed to be known.69 ;70

The values of �; �gG; and �GG are taken to be equal to the estimated values using the data from

Yogo (2004).71 A sample is a single observation from the distribution in (16.1) and the tests are

constructed using the known values �gG and �GG:72 The hypotheses are H0 : � = 0 and H1 : � 6= 0:
Power is computed using 10; 000 simulation repetitions for the rejection probabilities, 10; 000

simulation repetitions for the data-dependent critical values of the MVW-CLR, JVW-CLR, and

SR-CQLR2 tests, and two million simulation repetitions for the critical values for the PI-CLC tests

(which are taken from a look-up table that is simulated just one time).

Some details concerning the computation and de�nitions of the SR-CQLR2; PI-CLC, MM1-

SU, and MM2-SU tests are as follows. The SR-CQLR2 test uses " = :05; where " appears in the

de�nition of eLn(�) in (7.2) of AG2. For the PI-CLC test, the number of values "a" considered in
the search over [0; 1] is 100; the number of simulation repetitions used to determine the best choice

of "a" is 2000; and the number of alternative parameter values considered in the search for the best

"a" is 41: For the MM1-SU and MM2-SU tests, the number of variables in the discretization of

maximization problem is 1000; the number of points used in the numerical approximations of the

integrals h1 and h2 that appear in the de�nitions of these tests is 1000; and when approximating

integrals h1 and h2 by sums of 1000 rectangles these rectangles cover [�4; 4]:
69 In linear IV models with i.i.d. observations, the matrix �gG is necessarily symmetric. However, with autocorre-

lation, it need not be. In the eleven countries considered here, it is not.
70The variance matrix in the limit experiment varies slightly depending on whether one treats the IV�s as �xed or

random. For example, the asymptotic variance of n1=2 bGn(�0) under standard weak IV asymptotics varies slightly
in these two cases. Power results for the SR-CQLR1 test when the limiting variance is computed using �xed IV�s
are equivalent to those computed for the SR-CQLR2 test for the case where the limiting variance is computed using
random IV�s. In consequence, we do not separately report power results for the SR-CQLR1 test.
71See I. Andrews (2014, Appendices D.3 and D.4) for details on the calculations of the simulation designs based on

Yogo�s (2004) data, as well as for details on the computation of I. Andrews�PI test, referred to here as PI-CLC, and
the two tests of Moreira and Moreira (2013), referred to here and in I. Andrews (2014) as MM1-SU and MM2-SU.
The JVW-CLR and LM tests here are the same as the QCLR and K tests, respectively, in I. Andrews (2014).
72For example, b�jn(�0) in (6.2) is taken to be known and equal to �0gG; and eVn(�0) in (7.1) is taken to be known

and equal to the variance matrix in (16.1).
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Table IV. Shortfalls in Average-Power (�100)
Country �0� non-Kron SR-CQLR JVW MVW PI-CLC MM1 MM2 LM AR

Australia 138 17 .0 .1 .1 .2 2.4 .1 .1 6.9
Canada 48 5 .0 .0 .2 .0 1.4 .5 .3 6.8
France 79 6 .1 .2 .0 .3 .7 .3 .0 8.0

Germany 10 3 .0 .1 .4 .0 .2 .1 2.3 6.5
Italy 84 15 .5 1.1 2.0 .2 1.1 .0 2.6 5.5
Japan 17 14 3.3 3.2 8.9 .4 .0 2.4 17.4 .6

Netherlands 25 3 .0 .2 .1 .2 .9 .5 1.6 6.6
Sweden 174 9 .3 .2 .3 .2 1.5 .0 .3 7.5

Switzerland 31 4 .1 .0 .0 .4 1.3 1.1 .5 7.2
U. K. 53 38 .7 6.0 5.4 .8 2.5 .0 7.8 3.8
U.S. 81 10 .8 2.0 2.9 .0 7.3 .8 3.5 3.2

Average over Countries .5 1.2 1.8 .2 1.8 .5 3.3 5.7

The asymptotic power functions are given in Figure 2. Each graph is based on 41 equi-spaced

values on the x axis covering [�6; 6]: The x axis variable is the parameter � scaled by a �xed
value of jj�jj for a given country, thus �jj�jj 2 [�6; 6]; where � is the alternative parameter value
(when � 6= 0) de�ned in (16.1) of AG2 and � is the mean vector that determines the strength of

identi�cation. The y axis variable is power �100:
Table IV provides the shortfall in average-power (�100) of each test for each country relative

to the other seven tests considered, where average power is an unweighted average over the 40

alternative parameter values. Table V provides the maximum power shortfall (�100) of each test
for each country relative to the other seven tests considered, where the maximum is taken over the

40 alternative parameter values.73 The shortfall in average-power is an unweighted average power

criterion, whereas the maximum power shortfall is a minimax regret criterion.

The last row of Table IV shows the average (across countries) of the shortfall in average-power

(�100) of each test. This provides a summary measure. Similarly, the last row of Table V shows
the average (across countries) of the maximum power shortfall (�100) of each test.

The second and third columns of Table IV provide the concentration parameter, �0�; which

measures of the strength of identi�cation, and a non-Kronecker index, abbreviated by non-Kron,

which measures the deviation of the variance matrix in (16.1), call it 	; from a Kronecker matrix.

73More precisely, let APtc denote the average power of test t for country c; where the average is taken over the 40
parameter values in the alternative hypothesis. By de�nition, the shortfall in average-power of test t for country c is
maxs�8APsc �APtc; where the maximum is taken over the eight tests considered.
Let Ptc(�) denote the power of test t in country c against the alternative �: By de�nition, the power shortfall of

test t in country c for alternative � is maxs�8 Psc(�)�Ptc(�) and the maximum power shortfall of test t in country c
is max�2�40(maxs�8 Psc(�)� Ptc(�)); where �40 contains the 40 alternative parameter values considered.
Note that, as de�ned, the shortfall in average-power is not equal to the average of the power shortfalls over � 2 �40:
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Table V. Maximum Power Shortfalls (�100)
Country �0� non-Kron SR-CQLR JVW MVW PI MM1 MM2 LM AR

Australia 138 17 .5 .6 .8 1.0 8.2 1.3 .9 17.2
Canada 48 5 .6 .5 .9 .7 5.4 3.0 1.7 17.7
France 79 6 .7 .8 .5 1.0 3.0 1.6 .4 19.9

Germany 10 3 .8 .8 2.2 .6 1.0 .8 10.6 18.4
Italy 84 15 4.4 5.7 6.5 3.9 9.7 2.3 7.1 17.7
Japan 17 14 21.3 41.4 44.9 8.6 10.1 13.6 85.8 11.9

Netherlands 25 3 .9 1.1 .9 1.4 3.9 3.3 8.2 18.6
Sweden 174 9 1.0 .6 1.0 .7 4.9 .4 1.1 19.6

Switzerland 31 4 .5 .3 .5 1.6 4.8 5.5 1.4 18.8
U. K. 53 38 8.4 27.3 23.2 9.0 20.6 7.1 37.0 14.7
U.S. 81 10 5.2 9.0 10.2 2.6 27.7 5.1 11.7 12.4

Average over Countries 4.0 8.0 8.3 2.8 9.0 4.0 14.9 17.0

This deviation is given by the formula 1; 000�minB;C jjB 
C �	jj; where the minimum is taken

over symmetric pd matrices B and C of dimensions 2 � 2 and 4 � 4; respectively, jj � jj denotes
the Frobenius norm, and the rescaling by 1; 000 is for convenience.74 Germany, Japan, and the

Netherlands exhibit the weakest identi�cation, while Sweden and Australia exhibit the strongest.

The U.K., Australia, Italy, and Japan have variance matrices that are farthest from Kronecker-

product form, while Germany, the Netherlands, and Switzerland have variance matrices that are

closest to Kronecker-product form.

The test that performs best in Tables IV and V is the PI-CLC test, followed by the SR-CQLR2

and MM2-SU tests. The di¤erence between these tests is not large. For example, the di¤erence

in the average (across countries) shortfall in average-power (not rescaled by multiplication by 100

in contrast to the results in Table IV) of the PI-CLC test and the SR-CQLR2 and MM2-SU tests

is :003: This small power advantage is almost entirely due to the relative performances for Japan,

which exhibits very weak identi�cation and moderately large non-Kronecker index.

The remaining tests in decreasing order of power (in an overall sense) are the JVW-CLR, MVW-

CLR, MM1-SU, LM, and AR tests. Not surprisingly, the LM and AR tests have noticeably lower

power than the other tests in an overall sense, and the AR test has noticeably lower power than

the LM test.

We conclude that the SR-CQLR2 test has asymptotic power that is competitive with, or better

than, that of other tests in the literature for the particular parameters considered here in the

particular model considered here. The SR-CQLR2 test has advantages compared to the PI-CLC,

74The non-Kronecker index is computed using the Framework 2 method given in Section 4 of Van Loan and Pitsianis
(1993) with symmetry of C imposed by replacing bAij by ( bAij + bAji)=2 in equation (9) of that paper.

22



MM1-SU, and MM2-SU tests of (i) being applicable in almost any moment condition model, whereas

the latter tests are not, (ii) being easy to implement (i.e., program), and (iii) being fast to compute.

17 Eigenvalue-Adjustment Procedure

Eigenvalue adjustments are made to two sample matrices that appear in the two SR-CQLR

test statistics. These adjustments guarantee that the adjusted sample matrices have minimum

eigenvalues that are not too close to zero even if the corresponding population matrices are singular

or near singular. These adjustments improve the asymptotic and �nite-sample performance of the

tests by improving their robustness to singularities or near singularities.

The eigenvalue-adjustment procedure can be applied to any non-zero positive semi-de�nite (psd)

matrix H 2 RdH�dH for some positive integer dH : Let " be a positive constant. Let AH�HA0H be

a spectral decomposition of H; where �H = Diagf�H1; :::; �HdHg 2 RdH�dH is the diagonal matrix
of eigenvalues of H with nonnegative nonincreasing diagonal elements and AH is a corresponding

orthogonal matrix of eigenvectors of H: The eigenvalue-adjusted matrix H" 2 RdH�dH is

H" := AH�
"
HA

0
H ; where �

"
H := Diagfmaxf�H1; �max(H)"g; :::;maxf�HdH ; �max(H)"gg: (17.1)

We have �max(H) = �H1; and �max(H) > 0 provided the psd matrix H is non-zero.

The following lemma provides some useful properties of this eigenvalue adjustment procedure.

Lemma 17.1 Let dH be a positive integer, let " be a positive constant, and let H 2 RdH�dH be a

non-zero positive semi-de�nite non-random matrix. Then,

(a) (uniqueness) H"; de�ned in (17.1), is uniquely de�ned. (That is, every choice of spectral

decomposition of H yields the same matrix H");

(b) (eigenvalue lower bound) �min(H") � �max(H)";
(c) (condition number upper bound) �max(H")=�min(H

") � maxf1="; 1g;
(d) (scale equivariance) For all c > 0; (cH)" = cH"; and

(e) (continuity) H"
n ! H" for any sequence of psd matrices fHn 2 RdH�dH : n � 1g that

satis�es Hn ! H:

Comments: (i) The lower bound �max(H)" for �min(H") given in Lemma 17.1(b) is positive

provided H 6= 0dH�dH :
(ii) Lemma 17.1(c) shows that one can choose " to control the condition number of H": The

latter is a common measure of how ill-conditioned a matrix is. If " � 1; which is a typical choice,
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then the upper bound is 1=": Note that H" = H i¤ �min(H) � �max(H)" i¤ the condition number
of H is less than or equal to 1=":

(iii) Scale equivariance of (�)" established in Lemma 17.1(d) is an important property. For
example, one does not want the choice of measurements in $ or $1,000 to a¤ect inference.

(iv) Continuity of (�)" established in Lemma 17.1(e) is an important property because it implies
that for random matrices f bHn : n � 1g for which bHn !p H; one has bH"

n !p H
":

Proof of Lemma 17.1. For notational simplicity, we drop the H subscript on AH ; �H ; and

�"H : We prove part (a) �rst. The eigenvectors of H
" (= A�"A0) de�ned in (6.6) are unique up

to the choice of vectors that span the eigenspace that corresponds to any eigenvalue. Suppose the

j; :::; j+d eigenvalues of H are equal for some d � 0 and 1 � j < dH :We can write A = (A1; A2; A3);
where A1 2 RdH�(j�1); A2 2 RdH�(d+1); and A3 2 RdH�(dH�j�d): In addition, H can be written

as H = A��A0�; where A� = (A1; A2�; A3); the column space of A2� equals that of A2; and A�

is an orthogonal matrix. As above, H" = A�"A0: To establish part (a), if su¢ ces to show that

H" = A��"A0�; or equivalently, A�
"A0� = A��"A0�� for any � 2 RdH :

For any � 2 RdH ; we can write � = �1 + �2; where �1 belongs to the column space of A2 (and
A2�) and �2 is orthogonal to this column space. We have

A�"A0� = A�"(A1; A2; A3)
0(�1 + �2)

= A�"(0j�10; (A02�1)
0; 0dH�j�d0)0 +A�"((A01�2)

0; 0d+1
0
; (A03�2)

0)0

= A�"j(0
j�10; (A02�1)

0; 0dH�j�d0)0 + (A1; A2; A3)�
"((A01�2)

0; 0d+1
0
; (A03�2)

0)0

= A2A
0
2�1�

"
j + (A1; A3)�

"
�((A

0
1�2)

0; (A03�2)
0)0

= A2�A
0
2��1�

"
j + (A1; A3)�

"
�((A

0
1�2)

0; (A03�2)
0)0

= A��
"A0��; (17.2)

where �"� 2 R(dH�d�1)�(dH�d�1) is the diagonal matrix equal to �" with its j; :::; j + d rows and
columns deleted, �"j = maxf�j ; �max(H)"g; �j is the jth eigenvalue of �; the second equality uses
A01�1 = 0

j�1; A03�1 = 0
dH�j�d; and A02�2 = 0

d+1; the third equality holds because �j = ::: = �j+d

implies that �"j = ::: = �
"
j+d; the fourth equality holds using the de�nition of �

"
�; the �fth equality

holds because A2A02 = A2�A02� (since both equal the projection matrix onto the column space of

A2 (and A2�)); and the last equality holds by reversing the steps in the previous equalities with

A� = (A1; A2�; A3) in place of A = (A1; A2; A3): Because (17.2) holds for any matrix A2� de�ned

as above and any feasible j and d; part (a) holds.

To prove parts (b) and (c), we note that the eigenvalues of H" are fmaxf�Hj ; �max(H)"g :
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j = 1; :::; dHg because H" = A�"A0 and A is an orthogonal matrix. In consequence, �min(H") �
�max(H)"; which establishes part (b). If �min(H) > �max(H)"; thenH" = H; �max(H

")=�min(H
") =

�max(H)=�min(H) < 1="; and the result of part (c) holds. Alternatively, if �min(H) � �max(H)";
then �min(H") = �max(H)": In addition, we have �max(H") = maxf�H1; �max(H)"g = �max(H)

� maxf1; "g using �H1 = �max(H): Combining these two results gives �max(H")=�min(H
") =

�max(H)maxf1; "g=(�max(H)") = maxf1="; 1g; where the second equality uses the assumption
that H is non-zero, which implies that �max(H) > 0: This gives the result of part (c).

We now prove part (d) and for clarity make the H subscripts on AH and �H explicit in this

paragraph. We have �cH = c�H and we can take AcH = AH by the de�nition of eigenvalues and

eigenvectors. This implies that �"cH = c�"H (using the de�nition of �"H in (6.6)) and (cH)" =

AcH�
"
cHA

0
cH = cAH�

"
HA

0
H = cH

"; which establishes part (d).

Now we prove part (e). Let An�nA0n be a spectral decomposition of Hn for n � 1: Let H"
n =

An�
"
nA

0
n for n � 1; where �"n is the diagonal matrix with jth diagonal element given by �

"
nj =

maxf�nj ; �max(Hn)"g and �nj is the jth largest eigenvalue of Hn: (By part (a) of the Lemma, H"
n

is invariant to the choice of eigenvector matrix An used in its de�nition.)

Given any subsequence fn`g of fng; let fnmg be a subsubsequence such that Anm ! A for

some orthogonal matrix A that may depend on the subsubsequence fnmg: (Such a subsubsequence
exists because the set of orthogonal dH � dH matrices is compact.) By assumption, Hn ! H: This

implies that �n ! �; where � is the diagonal matrix of eigenvalues of H in nonincreasing order

(by Elsner�s Theorem, see Stewart (2001, Thm. 3.1, pp. 37�38)). In turn, this gives �"n ! �";

where �" is the diagonal matrix with jth diagonal element given by �"j = maxf�j ; �max(H)"g
and �j is the jth largest eigenvalue of H; because �max(�) is a continuous function (by Elsner�s
Theorem again). The previous results imply that Hnm = Anm�nmA

0
nm ! A�A0; H = A�A0;

H"
nm = Anm�

"
nmA

0
nm ! A�"A0; and A�"A0 = H": Because every subsequence fn`g of fng has a

subsubsequence fnmg for which H"
nm ! H"; we obtain H"

n ! H"; which completes the proof of

part (e). �

18 Singularity-Robust LM Test

SR-LM versions of Kleibergen�s LM test and CS can be de�ned analogously to the SR-AR and

SR-CQLR tests and CS�s. However, these procedures are only partially singularity robust, see

the discussion below. In addition, LM tests have low power in some circumstances under weak

identi�cation.
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The SR-LM test statistic is

SR-LMn(�) := nbgAn(�)0Pb
�1=2An (�) bDAn(�)bgAn(�); (18.1)

where PM denotes the projection matrix onto the column space of the matrix M: For testing

H0 : � = �0; the SR-LM test rejects the null hypothesis if

SR-LMn(�0) > �
2
minfbrn(�0);pg;1��; (18.2)

where �2minfbrn(�0);pg;1�� denotes the 1�� quantile of a chi-squared distribution with minfbrn(�0); pg
degrees of freedom. This test can be shown to have correct asymptotic size and to be asymptotically

similar for the parameter space FSRLM ; which is a generalization of the parameter space F0 in AG1
and has a similar (rather complicated) form to F0: It is de�ned as follows: for some �1 > 0;

FSRLM := [minfrF ;pgj=0 FSRLMj ; where

FSRLMj := fF 2 FSR2 : ��jF � �1 and �p�j
�
	
C�

0
F;k�jG

�
iB

�
F;p�j�

F

�
� �1 8� 2 Rp�j with jj�jj = 1g;

G�i := �
�1=2
1F A0FGi 2 RrF�p; rF := rk(
F ); g�i := �

�1=2
1F A0F gi 2 RrF ;

	aiF := EFaia
0
i � EFaig�0i (EF g�i g�i )�1EF g�i a0i for any random vector ai; (18.3)

��jF is the jth largest singular value of EFG�i for j = 1; :::;minfrF ; pg; ��0F := �1; B
�
F is a

p � p orthogonal matrix of eigenvalues of (EFG�i )
0(EFG

�
i ) ordered so that the corresponding

eigenvalues (��1F ; :::; �
�
pF ) are nonincreasing, C

�
F is an rF � rF orthogonal matrix of eigenvalues

of (EFG�i )(EFG
�
i )
0 ordered so that the corresponding eigenvalues (��1F ; :::; �

�
rFF

) are nonincreas-

ing, B�F := (B�F;j ; B
�
F;p�j) for B

�
F;j 2 Rp�j and B�F;k�j 2 Rp�(p�j); and C�F := (C�F;j ; C

�
F;k�j) for

C�F;j 2 RrF�j and C�F;k�j 2 RrF�(rF�j):75 ;76 See Section 3 of AG1 for a discussion of the form of this
parameter space and the quantities upon which it depends. Note that 	aiF is the expected outer-

product matrix of the vector of residuals, ai � EFaig�0i (EF g�i g�i )�1g�i ; from the L2(F ) projections

of ai onto the space spanned by the components of g�i ; see AG1 for further discussion.

The conditions in FSRLM (beyond those in FSR2 ) are used to guarantee that the conditioning

matrix bDAn 2 Rbrn�p has full rank minfbrn; pg asymptotically with probability one (after pre- and
post-multiplication by suitable matrices). AG1 shows that these conditions are not redundant.

75The �rst minfrF ; pg eigenvalues of (EFG�i )0(EFG�i ) and (EFG�i )(EFG�i )0 are the same. If rF > p; the remaining
rF � p eigenvalues of (EFG�i )(EFG�i )0 are all zeros. If rF < p; the remaining p� rF eigenvalues of (EFG�i )0(EFG�i )
are all zeros.
76The matrices B�

F and C
�
F are not necessarily uniquely de�ned. But, this is not of consequence because the �p�j(�)

condition is invariant to the choice of B�
F and C

�
F :
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Given the need for these conditions, the SR-LM test is not fully singularity robust. The asymptotic

size and similarity result for the SR-LM test stated above can be proved using Theorem 4.1 of

AG1 combined with the argument given in Section 10.2 below. For brevity, we do not provide the

details. Extensions of the asymptotic size and similarity results to SR-LM CS�s are analogous to

those for the SR-AR and SR-CQLR CS�s.

A theoretical advantage of the SR-AR and SR-CQLR tests and CS�s considered in this paper,

relative to tests and CS�s that make use of the LM statistic, is that they avoid the complicated

conditions that appear in FSRLM :

19 Proofs of Lemmas 6.1 and 6.2

Lemma 6.1 of AG2. Let D be a k � p matrix with the singular value decomposition D =

C�B0; where C is a k � k orthogonal matrix of eigenvectors of DD0; B is a p � p orthogonal
matrix of eigenvectors of D0D; and � is the k � p matrix with the minfk; pg singular values
f� j : j � minfk; pgg of D as its �rst minfk; pg diagonal elements and zeros elsewhere, where � j
is nonincreasing in j: Then, ck;p(D; 1� �) = ck;p(�; 1� �):

Proof of Lemma 6.1. De�ne

B+ :=

24 B 0p

0p
0
1

35 2 R(p+1)�(p+1): (19.1)

The matrix B+ is orthogonal because B is, where B is as in the statement of the lemma. The

eigenvalues of (D;Z)0(D;Z) are solutions f�j : j � p+ 1g to

j(D;Z)0(D;Z)� �Ip+1j = 0 or

jB+0(D;Z)0(D;Z)B+ � �Ip+1j = 0 or

j(DB;Z)0(DB;Z)� �Ip+1j = 0; or

j(C�; Z)0CC 0(C�; Z)� �Ip+1j = 0; or,

j(�; Z�)0(�; Z�)� �Ip+1j = 0; where Z� := C 0Z � N(0k; Ik); (19.2)

the equivalence of the �rst and second lines holds because jA1A2j = jA1j � jA2j; jB+j = 1; and

B+0B+ = Ip+1; the equivalence of the second and third lines holds by matrix algebra, the equiv-

alence of the third and fourth lines holds because DB = C�B0B = C� and CC 0 = Ik; and the

equivalence of the last two lines holds by CC 0 = Ik and the de�nition of Z�: Equation (19.2) implies
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that �min((D;Z)0(D;Z)) equals �min((�; Z�)0(�; Z�)): In addition, Z 0Z = Z�0Z�: Hence,77

CLRk;p(D) = Z
0Z � �min((D;Z)0(D;Z)) = Z�0Z� � �min((�; Z�)0(�; Z�)): (19.3)

Since Z and Z� have the same distribution, CLRk;p(D) (= Z�0Z� � �min((�; Z�)0(�; Z�))) and
CLRk;p(�) := Z

0Z � �min((�; Z)0(�; Z)) have the same distribution and the same 1� � quantile.
That is, ck;p(D; 1� a) = ck;p(�; 1� �): �

Lemma 6.2 of AG2. The statistics QLR1n; ck;p(n1=2 bD�n; 1 � �); bD�0n bD�n; ARn; bu�in; b�n; and bLn
are invariant to the transformation (Zi; u�i )  (MZi; u

�
i ) for any k � k nonsingular matrix M:

This transformation induces the following transformations: gi  Mgi; Gi  MGi; bgn  Mbgn;bGn  M bGn; b
n  M b
nM 0; b�jn  Mb�jnM 0; bDn  M bDn; Zn�k  Zn�kM
0; b�n  M 0�1b�n;bVn  (Ip+1 
M) bVn (Ip+1 
M 0) ; and bRn  (Ip+1 
M) bRn (Ip+1 
M 0) :

Proof of Lemma 6.2. We will refer to the results of the Lemma for gi; Gi; :::; bRn as equivariance
results. The equivariance results are immediate for gi; Gi; bgn; bGn; b
n; b�jn; and Zn�k: For bDn =
( bD1n; :::; bDpn); we have

bDjn := bGjn � b�jnb
�1n bgn  M bGjn �Mb�jnM 0(M b
nM 0)�1Mbgn =M bDjn (19.4)

for j = 1; :::; p:We have b�n := (Z 0n�kZn�k)�1Z 0n�kU�  (MZ 0n�kZn�kM
0)�1MZ 0n�kU

� =M 0�1b�n:
We have bu�in := b�0nZi  (M 0�1b�n)0MZi = bu�in: We have bVn := n�1

Pn
i=1[(u

�
i � bu�in)

� (u�i � bu�in)0 
ZiZ 0i] n�1
Pn
i=1[(u

�
i � bu�in) (u�i � bu�in)0 
MZiZ 0iM 0] = (Ip+1 
M) bVn (Ip+1 
M 0)

using the invariance of bu�in: We have bRn := (B0 
 Ik) bVn (B 
 Ik)  (B0 
M) bVn (B 
M 0) =

(Ip+1 
M) bRn (Ip+1 
M 0) using the equivariance result for bVn:
We have b�j`n := tr( bR0j`nb
�1n )=k  tr((M bRj`nM 0)0(M b
nM 0)�1)=k = tr(M bR0j`nM 0M

0�1b
�1n
�M�1)=k = b�j`n for j; ` = 1; :::; p + 1 using the equivariance result for bRn: We have bLn :=
(�; Ip)(b�"n)�1(�; Ip)0  bLn using the invariance result for b�n:We have bD�0n bD�n := bL1=2n bD0nb
�1n bDnbL1=2n
 bL1=2n bD0nM 0(M b
nM 0)�1M bDnbL1=2n = bD�0n bD�n: This implies that ck;p(n1=2 bD�n; 1��) ck;p(n

1=2 bD�n;
1��) because ck;p(n1=2 bD�n; 1��) only depends on bD�n through bD�0n bD�n by the Comment to Lemma
6.1.
77The quantity CLRk;p(D) is written in terms of (D;Z) in (19.3), whereas it is written in terms of (Z;D) in (3.5).

Both expressions give the same value.
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We have ARn := nbg0nb
�1n bgn  nbg0nM 0(M b
nM 0)�1Mbgn = ARn: We have
QLR1n := ARn � �min

�
n
�bgn; bDnbL1=2n �0 b
�1n �bgn; bDnbL1=2n ��

 ARn � �min
�
n
�
Mbgn;M bDnbL1=2n �0

(M b
nM 0)�1
�
Mbgn;M bDnbL1=2n ��

= QLR1n; (19.5)

using the invariance of ARn and bLn and the equivariance of the other statistics that appear. �
20 Proofs of Lemma 10.3 and Proposition 10.4

Lemma 10.3 of AG2. Suppose Assumption WU holds for some non-empty parameter space

�� � �2: Under all sequences f�n;h : n � 1g with �n;h 2 ��;

n1=2(bgn; bDn � EFnGi;WFn
bDnUFnTn)!d (gh; Dh;�h);

where (a) (gh; Dh) are de�ned in (10.21), (b) �h is the nonrandom function of h and Dh de�ned

in (10.24), (c) (Dh;�h) and gh are independent, and (d) under all subsequences fwng and all
sequences f�wn;h : n � 1g with �wn;h 2 ��; the convergence result above and results of parts (a)-(c)
hold with n replaced with wn:

Here and below, we use the following simpli�ed notation:

Dn := EFnGi; Bn := BFn ; Cn := CFn ; Bn = (Bn;q; Bn;p�q); Cn = (Cn;q; Cn;k�q);

Wn :=WFn ; W2n :=W2Fn ; Un := UFn ; and U2n := U2Fn ; (20.1)

where q = qh is de�ned in (10.22), Bn;q 2 Rp�q; Bn;p�q 2 Rp�(p�q); Cn;q 2 Rk�q; and Cn;k�q 2
Rk�(k�q): Let

�n;q := Diagf�1Fn ; :::; � qFng 2 Rq�q;

�n;p�q := Diagf� (q+1)Fn ; :::; �pFng 2 R
(p�q)�(p�q) if k � p;

�n;k�q := Diagf� (q+1)Fn ; :::; �kFng 2 R
(k�q)�(k�q) if k < p;

�n :=

2664
�n;q 0q�(p�q)

0(p�q)�q �n;p�q

0(k�p)�q 0(k�p)�(p�q)

3775 2 Rk�p if k � p; and

�n :=

24 �n;q 0q�(k�q) 0q�(p�k)

0(k�q)�q �n;k�q 0(k�q)�(p�k)

35 2 Rk�p if k < p: (20.2)
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As de�ned, �n is the diagonal matrix of singular values of WnDnUn; see (10.15).

Proof of Lemma 10.3. The asymptotic distribution of n1=2(bgn; vec( bDn�EFnGi)) given in Lemma
10.3 follows from the Lyapunov triangular-array multivariate CLT (using the moment restrictions

in F2) and the following:

n1=2vec( bDn � EFnGi) = n�1=2
nX
i=1

vec(Gi � EFnGi)�

0BBB@
b�1n
...b�pn

1CCCA b
�1n n1=2bgn (20.3)

= n�1=2
nX
i=1

26664vec(Gi � EFnGi)�
0BBB@
EFnG`1g

0
`

...

EFnG`pg
0
`

1CCCA
�1Fngi
37775+ op(1);

where the second equality holds by (i) the weak law of large numbers (WLLN) applied to n�1
Pn
`=1

G`jg
0
` for j = 1; :::; p; n

�1Pn
`=1 vec(G`); and n

�1Pn
`=1 g`g

0
`; (ii) EFngi = 0

k; (iii) h5;g = lim
Fn is

pd, and (iv) the CLT, which implies that n1=2bgn = Op(1):
The limiting covariance matrix between n1=2vec( bDn � EFnGi) and n1=2bgn is a zero matrix

because EFn [Gij � EFnGij � (EFnG`jg0`)

�1
Fn
gi]g

0
i = 0k�k; where Gij denotes the jth column of

Gi: By the CLT, the limiting variance matrix of n1=2vec( bDn � Dn) equals limV arFn(vec(Gi) �
(EFnvec(G`)g

0
`)


�1
Fn
gi) = lim�

vec(Gi)
Fn

= �
vec(Gi)
h ; see (10.20), and the limit exists because (i) the

components of �vec(Gi)Fn
are comprised of �4;Fn and submatrices of �5;Fn and (ii) �s;Fn ! hs for

s = 4; 5: By the CLT, the limiting variance matrix of n1=2bgn equals limEFngig0i = h5;g:
The asymptotic distribution of n1=2WFn

bDnUFnTn is obtained as follows. Using (10.13)-(10.15),
the singular value decomposition of WnDnUn is WnDnUn = Cn�nB

0
n: Using this, we get

WnDnUnBn;q�
�1
n;q = Cn�nB

0
nBn;q�

�1
n;q = Cn�n

0@ Iq

0(p�q)�q

1A��1n;q = Cn
0@ Iq

0(k�q)�q

1A= Cn;q;
(20.4)

where the second equality uses B0nBn = Ip: Hence, we obtain

Wn
bDnUnBn;q��1n;q = WnDnUnBn;q�

�1
n;q +Wnn

1=2( bDn �Dn)UnBn;q(n1=2�n;q)�1
= Cn;q + op(1)!p h3;q = �h;q; (20.5)

where the second equality uses (among other things) n1=2� jFn !1 for all j � q (by the de�nition
of q in (10.22)). The convergence in (20.5) holds by (10.19), (10.24), and (20.1), and the last

equality in (20.5) holds by the de�nition of �h;q in (10.24).
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Using the singular value decomposition of WnDnUn again, we obtain: if k � p;

n1=2WnDnUnBn;p�q = n
1=2Cn�nB

0
nBn;p�q = n

1=2Cn�n

0@ 0q�(p�q)

Ip�q

1A

= Cn

0BB@
0q�(p�q)

n1=2�n;p�q

0(k�p)�(p�q)

1CCA! h3

0BB@
0q�(p�q)

Diagfh1;q+1; :::; h1;pg
0(k�p)�(p�q)

1CCA = h3h
�
1;p�q; (20.6)

where the second equality uses B0nBn = Ip; the third equality and the convergence hold by (10.19)

using the de�nitions in (10.24) and (20.2) with k � p; and the last equality holds by the de�nition
of h�1;p�q in (10.24) with k � p: Analogously, if k < p; we have

n1=2WnDnUnBn;p�q = n
1=2Cn�n

0@ 0q�(p�q)

Ip�q

1A = Cn

0@ 0q�(k�q) 0q�(p�k)

n1=2�n;k�q 0(k�q)�(p�k)

1A
! h3

0@ 0q�(k�q) 0q�(p�k)

Diagfh1;q+1; :::; h1;kg 0(k�q)�(p�k)

1A = h3h
�
1;p�q; (20.7)

where the third equality holds by (20.2) with k < p and the last equality holds by the de�nition of

h�1;p�q in (10.24) with k < p:

Using (20.6), (20.7), and n1=2(bgn; bDn � EFnGi)!d (gh; Dh); we get

n1=2Wn
bDnUnBn;p�q = n1=2WnDnUnBn;p�q +Wnn

1=2( bDn �Dn)UnBn;p�q
! d h3h

�
1;p�q + h71Dhh81h2;p�q = �h;p�q; (20.8)

where Bn;p�q ! h2;p�q; Wn ! h71; and Un ! h81; and the last equality holds by the de�nition of

�h;p�q in (10.24).

Equations (20.5) and (20.8) combine to establish

n1=2Wn
bDnUnTn = n1=2Wn

bDnUnBnSn = (Wn
bDnUnBn;q��1n;q; n1=2Wn

bDnUnBn;p�q)
! d (�h;q;�h;p�q) = �h (20.9)

using the de�nition of Sn in (10.23). This completes the proof of the convergence result of Lemma

10.3.

Parts (a) and (b) of the lemma hold by the de�nitions of (gh; Dh) and �h: The independence of

(Dh;�h) and gh; stated in part (c) of the lemma, holds by the independence of gh and Dh (which
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follows from (10.21)), and part (b) of the lemma. Part (d) is proved by replacing n by wn in the

proofs above. �

Proposition 10.4 of AG2. Suppose Assumption WU holds for some non-empty parameter space

�� � �2: Under all sequences f�n;h : n � 1g with �n;h 2 ��;
(a) b�jn !p 1 for all j � q;
(b) the (ordered) vector of the smallest p�q eigenvalues of nbU 0n bD0ncW 0

n
cWn

bDn bUn; i.e., (b�(q+1)n; :::;b�pn)0; converges in distribution to the (ordered) p�q vector of the eigenvalues of �0h;p�qh3;k�qh03;k�q
��h;p�q 2 R(p�q)�(p�q);

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma 10.3, and

(d) under all subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the results
in parts (a)-(c) hold with n replaced with wn:

Proof of Proposition 10.4. For the case where k � p; Proposition 10.4 is the same as Theorem
8.4(c)-(f) given in the Appendix to AG1, which is proved in Section 16 in the SM to AG1. For

brevity, we only describe the changes that need to be made to that proof to cover the case where

k < p: Note that the proof of Theorem 8.4(c)-(f) in AG1 is similar to, but simpler than, the proof

of Theorem 10.5, which is given in Section 21 below.

In the second line of the proof of Lemma 16.1 in the SM to AG1, p needs to be replaced by

minfk; pg three times.
In the fourth line of (16.3) in the SM to AG1, the k � p matrix that contains six submatrices

needs to be replaced by the following matrix when k < p:24 h�6;r�1 + o(1) 0r
�
1�(k�r�1) 0r

�
1�(p�k)

0(k�r
�
1)�r�1 O(� r2Fn=� r1Fn)

(k�r�1)�(k�r�1) 0(k�r
�
1)�(p�k)

35 2 Rk�p: (20.10)

In the �rst line of (16.22) in the SM to AG1, the k � (p � r�g�1) matrix that contains three
submatrices needs to be replaced by the following matrix when k < p:24 0r

�
g�1�(k�r�g�1) 0r

�
g�1�(p�k)

Diagf� rgFn ; :::; �kFng=� rgFn 0(k�r
�
g�1)�(p�k)

35 2 Rk�(p�r�g�1): (20.11)

The limit of this matrix as n ! 1 equals the matrix given in the second line of (16.22) that

contains three submatrices. Thus, the limit of the matrix on the �rst line of (16.22) is the same for

the cases where k � p and k < p:
In the third line of (16.25) in the SM to AG1, the second matrix that contains three submatrices

(which is a k � (p� r�g) matrix) is the same as the matrix in the �rst line of (16.22) in the SM to
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AG1, but with r�g in place of r
�
g�1 (using rg+1 = r

�
g +1 and rg = r

�
g�1+1):When k < p; this matrix

needs to be changed just as the matrix in the �rst line of (16.22) is changed in (20.11), but with r�g

in place of r�g�1:

No other changes are needed. �

21 Proof of Theorem 10.5

Theorem 10.5 of AG2. Suppose Assumption WU holds for some non-empty parameter space

�� � �2: Under all sequences f�n;h : n � 1g with �n;h 2 ��;

QLRn !d g
0
hh
�1
5;ggh � �min((�h;p�q; h

�1=2
5;g gh)

0h3;k�qh
0
3;k�q(�h;p�q; h

�1=2
5;g gh))

and the convergence holds jointly with the convergence in Lemma 10.3 and Proposition 10.4. When

q = p (which can only hold if k � p because q � minfk; pg), �h;p�q does not appear in the limit
random variable and the limit random variable reduces to (h�1=25;g gh)

0h3;ph03;ph
�1=2
5;g gh � �2p: When

q = k (which can only hold if k � p), the �min(�) expression does not appear in the limit random
variable and the limit random variable reduces to g0hh

�1
5;ggh � �2k: When k � p and q < k; the

�min(�) expression equals zero and the limit random variable reduces to g0hh
�1
5;ggh � �2k: Under all

subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the same results hold with
n replaced with wn:

The proof of Theorem 10.5 uses the approach in Johansen (1991, pp. 1569-1571) and Robin

and Smith (2000, pp. 172-173). In these papers, asymptotic results are established under a �xed

true distribution under which certain population eigenvalues are either positive or zero. Here we

need to deal with drifting sequences of distributions under which these population eigenvalues may

be positive or zero for any given n; but the positive ones may drift to zero as n ! 1; possibly
at di¤erent rates. This complicates the proof considerably. For example, the rate of convergence

result of Lemma 21.1(b) below is needed in the present context, but not in the �xed distribution

scenario considered in Johansen (1991) and Robin and Smith (2000).

33



The proof uses the notation given in (20.1) and (20.2) above. The following de�nitions are used:

bD+n : = ( bDn;cW�1
n
b
�1=2n bgn) 2 Rk�(p+1); bU+n :=

24 bUn 0p�1

01�p 1

35 2 R(p+1)�(p+1);
U+n : =

24 Un 0p�1

01�p 1

35 2 R(p+1)�(p+1); h+81 :=
24 h81 0p�1

01�p 1

35 2 R(p+1)�(p+1);
B+n :

24 Bn 0p�1

01�p 1

35 2 R(p+1)�(p+1);
B+n = (B+n;q; B

+
n;p+1�q) for B

+
n;q 2 R(p+1)�q and B+n;p+1�q 2 R(p+1)�(p+1�q); (21.1)

D+n : = (Dn; 0
k) 2 Rk�(p+1); �+n := (�n; 0k) 2 Rk�(p+1);

S+n : = Diagf(n1=2�1Fn)�1; :::; (n1=2� qFn)�1; 1; :::; 1g =

24 Sn 0p�1

01�p 1

35 2 R(p+1)�(p+1);
where bgn and b
n are de�ned in (5.1) with � = �0; bDn is de�ned in (6.2) with � = �0; cWn; bUn; Un
(:= UFn); and Wn (:=WFn) are de�ned in (10.4), h81 is de�ned in (10.24), Bn (:= BFn) is de�ned

in (10.13), Dn is de�ned in (20.1), �n is de�ned in (20.2), and Sn is de�ned in (10.23).

Let b�+jn denote the jth eigenvalue of nbU+0n bD+0n cW 0
n
cWn

bD+n bU+n ; 8j = 1; :::; p+ 1; (21.2)

ordered to be nonincreasing in j: We have78

cWn
bD+n bU+n = (cWn

bDn bUn; b
�1=2n bgn) and (21.3)

�min(n(cWn
bDn bUn; b
�1=2n bgn)0(cWn

bDn bUn; b
�1=2n bgn)) = �min(nbU+0n bD+0n cW 0
n
cWn

bD+n bU+n ) = b�+(p+1)n:
The proof of Theorem 10.5 uses the following rate of convergence lemma, which is analogous to

Lemma 16.1 in Section 16 of the SM to AG1.

Lemma 21.1 Suppose Assumption WU holds for some non-empty parameter space �� � �2:

Under all sequences f�n;h : n � 1g with �n;h 2 �� for which q de�ned in (10.22) satis�es q � 1; we
have (a) b�+jn !p 1 for j = 1; :::; q and (b) b�+jn = op((n1=2� `Fn)2) for all ` � q and j = q+1; :::; p+1:
Under all subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the same result
78 In (21.3), we write (cWn

bDn
bUn; b
�1=2n bgn); whereas we write its analogue (b
�1=2n bgn; bD�

n) in (6.7) with its columns
in the reverse order. Both ways give the same value for the minimum eigenvalue of the inner product of the matrix
with itself, which is the statistic of interest. We use the order (b
�1=2n bgn; bD�

n) in AG2 because it is consistent with
the order in Moreira (2003) and Andrews, Moreira, and Stock (2006). We use the order (cWn

bDn
bUn; b
�1=2n bgn) here

(and elsewhere in the SM) because it has signi�cant notational advantages in the proofs, especially in the proof of
Theorem 10.5 in this Section.
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holds with n replaced with wn:

Proof of Theorem 10.5. We have n1=2bgn !d gh (by Lemma 10.3) and b
�1=2n !p h
�1=2
5;g (becauseb
n �
Fn !p 0

k�k by the WLLN, 
Fn ! h5;g; and h5;g is pd). In consequence, ARn !d g
0
hh
�1
5;ggh:

Given this, the de�nition of QLRn in (10.3), and (21.3), to prove the convergence result in Theorem

10.5, it su¢ ces to show that

�min(nbU+n bD+0n cW 0
n
cWn

bD+n bU+n )!d �min((�h;p�q; h
�1=2
5;g gh)

0h3;k�qh
0
3;k�q(�h;p�q; h

�1=2
5;g gh)): (21.4)

Now we establish (21.4). The eigenvalues fb�+jn : j � p + 1g of nbU+n bD+0n cW 0
n
cWn

bD+n bU+n are the

ordered solutions to the determinantal equation jnbU+n bD+0n cW 0
n
cWn

bD+n bU+n ��Ip+1j = 0: Equivalently,
with probability that goes to one (wp!1), they are the solutions to

jQ+n (�)j = 0; where (21.5)

Q+n (�) := nS+n B
+0
n U

+0
n
bD+0n cW 0

n
cWn

bD+n U+n B+n S+n � �S+0n B+0n U+0n (bU+n )�10(bU+n )�1U+n B+n S+n ;
because jS+n j > 0; jB+n j > 0; jU+n j > 0; and jbU+n j > 0 wp!1. Thus, �min(nbU+0n bD+0n cW 0

n
cWn

bD+n bU+n )
equals the smallest solution, b�+(p+1)n; to jQ+n (�)j = 0 wp!1. (For simplicity, we omit the quali�er
wp!1 that applies to several statements below.)

We write Q+n (�) in partitioned form using

B+n S
+
n = (B+n;qSn;q; B

+
n;p+1�q); where

Sn;q := Diagf(n1=2�1Fn)�1; :::; (n1=2� qFn)�1g 2 Rq�q: (21.6)

The convergence result of Lemma 10.3 for n1=2Wn
bDnUnTn (= n1=2Wn

bDnUnBnSn) can be written
as

n1=2Wn
bD+n U+n B+n;qSn;q = n1=2Wn

bDnUnBn;qSn;q !p �h;q := h3;q and

n1=2Wn
bD+n U+n B+n;p+1�q = n1=2Wn( bDn;cW�1

n
b
�1=2n bgn)U+n B+n;p+1�q

= n1=2(Wn
bDnUnBn;p�q;Wn

cW�1
n
b
�1=2n bgn)

! d (�h;p�q; h
�1=2
5;g gh); (21.7)

where �h;q and �h;p�q are de�ned in (10.24) and Bn;p�q is de�ned in (20.1).

We have cWnW
�1
n !p Ik and bU+n (U+n )�1 !p Ip+1 (21.8)
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because cWn !p h71 := limWn (by Assumption WU(a) and (c)), bU+n !p h
+
81 := limU+n (by

Assumption WU(b) and (c)), and h71 and h+81 are pd (by the conditions in FWU ):

By (21.5)-(21.8), we have

Q+n (�)

=

24 Iq + op(1) h03;qn
1=2Wn

bD+n U+n B+n;p+1�q + op(1)
n1=2B+0n;p+1�qU

+0
n
bD+0n W 0

nh3;q + op(1) n1=2B+0n;p+1�qU
+0
n
bD+0n W 0

nWnn
1=2 bD+n U+n B+n;p+1�q + op(1)

35
��

24 S2n;q 0q�(p+1�q)

0(p+1�q)�q Ip+1�q

35� �
24 Sn;qA+1nSn;q Sn;qA

+
2n

A+02nSn;q A+3n

35 ; where (21.9)

bA+n =
24 A+1n A+2n

A+02n A+3n

35 := B+0n U+0n (bU+n )�10(bU+n )�1U+n B+n � Ip+1 = op(1)
for A+1n 2 Rq�q; A

+
2n 2 Rq�(p+1�q); and A

+
3n 2 R(p+1�q)�(p+1�q); and the �rst equality uses �h;q :=

h3;q and �
0
h;q�h;q = h

0
3;qh3;q = limC

0
n;qCn;q = Iq (by (10.14), (10.16), (10.19), and (10.24)). Note

that A+jn and bA+jn (de�ned in (21.19) below) are not the same in general for j = 1; 2; 3 because their
dimensions di¤er. For example, A+1n 2 Rq�q; whereas bA+1n 2 Rr�1�r�1 :

If q = 0; then B+n = B
+
n;p+1�q and

nB+0n bU+0n bD+0n cW 0
n
cWn

bD+n bU+n B+n
= nB+0n ((U

+
n )

�1 bU+n )0(B+n )�10B+0n U+0n bD+0n W 0
n

�cWnW
�1
n

�0
�
�cWnW

�1
n

�
(Wn

bD+n U+n B+n )(B+n )�1((U+n )�1 bU+n )B+n
! d (�h;p�q; h

�1=2
5;g gh)

0(�h;p�q; h
�1=2
5;g gh); (21.10)

where the convergence holds by (21.7) and (21.8) and �h;p�q is de�ned as in (10.24) with q = 0:

The smallest eigenvalue of a matrix is a continuous function of the matrix (by Elsner�s Theorem, see

Stewart (2001, Thm. 3.1, pp. 37�38)). Hence, the smallest eigenvalue of nB+0n bU+0n bD+0n cW 0
n
cWn

bD+n bU+n B+n
converges in distribution to the smallest eigenvalue of (�h;p�q; h

�1=2
5;g gh)

0h3;k�qh
0
3;k�q(�h;p�q; h

�1=2
5;g gh)

(using h3;k�qh03;k�q = h3h
0
3 = Ik when q = 0), which proves (21.4) when q = 0:

In the remainder of (21.4), we assume q � 1; which is the remaining case to be considered in
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the proof of (21.4). The formula for the determinant of a partitioned matrix and (21.9) give

jQ+n (�)j = jQ+1n(�)j � jQ
+
2n(�)j; where

Q+1n(�) : = Iq + op(1)� �S2n;q � �Sn;qA
+
1nSn;q;

Q+2n(�) : = n
1=2B+0n;p+1�qU

+0
n
bD+0n W 0

nWnn
1=2 bD+n U+n B+n;p+1�q + op(1)� �Ip+1�q � �A+3n

�[n1=2B+0n;p+1�qU+0n bD+0n W 0
nh3;q + op(1)� �A+02nSn;q](Iq + op(1)� �S2n;q � �Sn;qA

+
1nSn;q)

�1

�[h03;qn1=2Wn
bD+n U+n B+n;p+1�q + op(1)� �Sn;qA+2n]; (21.11)

none of the op(1) terms depend on �; and the equation in the �rst line holds provided Q+1n(�) is

nonsingular.

By Lemma 21.1(b) (which applies for q � 1); for j = q+1; :::; p+1; and A+1n = op(1) (by (21.9)),
we have b�+jnS2n;q = op(1) and b�jnSn;qA+1nSn;q = op(1): Thus,

Q+1n(b�+jn) = Iq + op(1)� b�+jnS2n;q � b�+jnSn;qA+1nSn;q = Iq + op(1): (21.12)

By (21.5) and (21.11), jQ+n (b�+jn)j = jQ+1n(b�+jn)j � jQ+2n(b�+jn)j = 0 for j = 1; :::; p + 1: By (21.12),
jQ+1n(b�+jn)j 6= 0 for j = q + 1; :::; p+ 1 wp!1. Hence, wp!1,

jQ+2n(b�+jn)j = 0 for j = q + 1; :::; p+ 1: (21.13)

Now we plug in b�+jn for j = q + 1; :::; p+ 1 into Q+2n(�) in (21.11) and use (21.12). We have
Q+2n(b�+jn) = nB+0n;p+1�qU

+0
n
bD+0n W 0

nWn
bD+n U+n B+n;p+1�q + op(1)

�[n1=2B+0n;p+1�qU+0n bD+0n W 0
nh3;q + op(1)](Iq + op(1))[h

0
3;qn

1=2Wn
bD+n U+n B+n;p+1�q + op(1)]

�b�+jn[Ip+1�q +A+3n � (n1=2B+0n;p+1�qU+0n bD+0n W 0
nh3;q + op(1))(Iq + op(1))Sn;qA

+
2n

�A+02nSn;q(Iq + op(1))(h03;qn1=2Wn
bD+n U+n B+n;p+1�q + op(1))

+b�+jnA+02nSn;q(Iq + op(1))Sn;qA+2n]: (21.14)

The term in square brackets on the last three lines of (21.14) that multiplies b�+jn equals
Ip+1�q + op(1); (21.15)

because A+3n = op(1) (by (21.9)), n
1=2Wn

bD+n U+n B+n;p+1�q = Op(1) (by (21.7)), Sn;q = o(1) (by the
de�nitions of q and Sn;q in (10.22) and (21.6), respectively, and h1;j := limn1=2� jFn); A

+
2n = op(1)

(by (21.9)), and b�+jnA+02nSn;q(Iq+op(1))Sn;qA+2n = A+02nb�+jnS2n;qA+2n+A+02nb�+jnSn;qop(1)Sn;qA+2n = op(1)
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(using b�+jnS2n;q = op(1) and A+2n = op(1)):
Equations (21.14) and (21.15) give

Q+2n(b�+jn)
= n1=2B+0n;p+1�qU

+0
n
bD+0n W 0

n[Ik � h3;qh03;q]n1=2Wn
bD+n U+n B+n;p+1�q + op(1)� b�+jn[Ip+1�q + op(1)]

= n1=2B+0n;p+1�qU
+0
n
bD+0n W 0

nh3;k�qh
0
3;k�qn

1=2Wn
bD+n U+n B+n;p+1�q + op(1)� b�+jn[Ip+1�q + op(1)]

:= M+
n;p+1�q � b�+jn[Ip+1�q + op(1)]; (21.16)

where the second equality uses Ik = h3h
0
3 = h3;qh

0
3;q + h3;k�qh

0
3;k�q (because h3 = limCn is an

orthogonal matrix) and the last line de�nes the (p+ 1� q)� (p+ 1� q) matrix M+
n;p+1�q:

Equations (21.13) and (21.16) imply that fb�+jn : j = q+1; :::; p+1g are the p+1� q eigenvalues
of the matrix

M++
n;p+1�q := [Ip+1�q + op(1)]

�1=2M+
n;p+1�q[Ip+1�q + op(1)]

�1=2 (21.17)

by pre- and post-multiplying the quantities in (21.16) by the rhs quantity [Ip+1�q + op(1)]�1=2 in

(21.16). By (21.7),

M++
n;p+1�q !d (�h;p�q; h

�1=2
5;g gh)

0h3;k�qh
0
3;k�q(�h;p�q; h

�1=2
5;g gh): (21.18)

The vector of (ordered) eigenvalues of a matrix is a continuous function of the matrix (by

Elsner�s Theorem, see Stewart (2001, Thm. 3.1, pp. 37�38)). By (21.18), the matrix M++
n;p+1�q

converges in distribution. In consequence, by the CMT, the vector of eigenvalues of M++
n;p+1�q;

viz., fb�+jn : j = q + 1; :::; p + 1g; converges in distribution to the vector of eigenvalues of the
limit matrix (�h;p�q; h

�1=2
5;g gh)

0h3;k�qh
0
3;k�q(�h;p�q; h

�1=2
5;g gh): Hence, �min(nbU+0n bD+0n cW 0

n
cWn

bD+n bU+n );
which equals the smallest eigenvalue, b�+(p+1)n; converges in distribution to the smallest eigenvalue
of (�h;p�q; h

�1=2
5;g gh)

0h3;k�qh
0
3;k�q�

0
h;p�q; which completes the proof of (21.4).

The previous paragraph proves Comment (v) to Theorem 10.5 for the smallest p+ 1� q eigen-
values of n(cWn

bDn bUn; b
�1=2n bgn)0(cWn
bDn bUn; b
�1=2n bgn): In addition, by Lemma 21.1(a), the largest q

eigenvalues of this matrix diverge to in�nity in probability, which completes the proof of Comment

(v) to Theorem 10.5.

When q = p; the third and fourth lines in (21.7) become n1=2Wn
cW�1
n
b
�1=2n bgn and h�1=25;g gh;

respectively, i.e., n1=2Wn
bDnUnBn;p�q and �h;p�q drop out (because U+n B+n;p+1�q = (0p0; 1)0 in this

case). In consequence, the limit in (21.18) becomes (h�1=25;g gh)
0h3;k�qh

0
3;k�qh

�1=2
5;g gh; which has a �

2
k�p

distribution (because h�1=25;g gh � N(0k; Ik); h3 = (h3;q; h3;k�q) 2 Rk�k is an orthogonal matrix, and
h3;k�q has k � p columns when q = p):
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The convergence in Theorem 10.5 holds jointly with that in Lemma 10.3 and Proposition 10.4

because the results in Proposition 10.4 and Theorem 10.5 just rely on the convergence in distribution

of n1=2Wn
bDnUnTn; which is part of Lemma 10.3.

When q = k; the �min(�) expression does not appear in the limit random variable in the statement
of Theorem 10.5 because, in the second line of (21.16) above, the term Ik � h3;qh03;q equals 0k�k;
which implies thatM+

n;p+1�q = 0
(p+1�q)�(p+1�q)+op(1) andM++

n;p+1�q = 0
(p+1�q)�(p+1�q)+op(1)!p

0(p+1�q)�(p+1�q) in (21.17) and (21.18).

When k � p and q < k; the �min(�) expression (in the limit random variable in the statement of

Theorem 10.5) equals zero because h03;k�q(�h;p�q; h
�1=2
5;g gh) is a (k� q)� (p+ 1� q) matrix, which

has fewer rows than columns when k < p+ 1:

The convergence in Theorem 10.5 holds for a subsequence fwn : n � 1g of fng by the same
proof as given above with n replaced by wn: �

Proof of Lemma 21.1. The proof of Lemma 21.1 is the same as the proof of Lemma 16.1 in Section

16 in the SM to AG1, but with p replaced by p+1 (so p+1 is always at least two), with � (p+1)Fn := 0;

with h6;p := lim � (p+1)Fn=�pFn = 0 (using 0=0 := 0); and with bDn; bUn; Bn; b�jn; bAn; Dn; Un; h81;�n;
Bn;r�1 ; and Bn;p�r�1 replaced by

bD+n ; bU+n ; B+n ; b�+jn; bA+n ; D+n ; U+n ; h+81;�+n ; B+n;r�1 ; and B+n;p+1�r�1 ; respec-
tively, where

bA+n =
24 bA+1n bA+2nbA+02n bA+3n

35 := (B+n )0(U+n )0(bU+n )�10(bU+n )�1U+n B+n � Ip+1; (21.19)

where bA+1n 2 Rr�1�r�1 ; bA+2n 2 Rr�1�(p+1�r�1); bA+3n 2 R(p+1�r�1)�(p+1�r�1); and r�1 is de�ned as in the
proof of Lemma 13.1 in the SM to AG1. Note that the quantities bA`n for ` = 1; 2; 3; which depend
on bAn (see (13.18) in the SM to AG1), di¤er between the two proofs (because bAn di¤ers from bA+n ):
Similarly, the quantities %n (de�ned in (13.24) in the SM to AG1), b�`n(�) for ` = 1; 2; 3 (de�ned in
(13.25) in the SM to AG1), and bAj2n (de�ned in (13.28) in the SM to AG1) di¤er between the two

proofs (because the quantities on which they depend di¤er between the two proofs).

The following quantities are the same in both proofs: f� jFn : j � pg; q; fh6;j : j � p�1g; Gh; frj :
j � Ghg; fr�j : j � Ghg; h�6;r�1 ;

cWn;Wn; h71; Cn; and h3: Note that the �rst p singular values of

WnDnUn (i.e., f� jFn : j � pg) and the �rst p singular values of WnD
+
n U

+
n are the same. This

holds because � jFn = �
1=2
jFn
; where �jFn is the jth eigenvalue of WnDnUnU

0
nD

0
nW

0
n; WnD

+
n U

+
n =

Wn(Dn; 0
k)U+n = (WnDnUn; 0

k); and hence, WnD
+
n U

+
n U

+0
n D

+0
n W

0
n =WnDnUnU

0
nD

0
nW

0
n:

The second equality in (13.19) in the SM to AG1, which states that WnDnUnBn = Cn�n; is

a key equality in the proof of Lemma 13.1 in the SM to AG1. The analogue in the proof of the
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current lemma is

WnD
+
n U

+
n B

+
n = (WnDn; 0

k)

24 UnBn 0p�1

01�p 1

35 = (WnDnUnBn; 0
k) = (Cn�n; 0

k) = Cn�
+
n :

(21.20)

Hence, this part of the proof goes through when Dn; Un; Bn; and �n are replaced by D+n ; U
+
n ; B

+
n ;

and �+n ; respectively. �

22 Proof of the Asymptotic Size Results

In this section we prove Theorem 10.1. For the reader�s convenience, we restate this theorem

here.

Theorem 10.1 of AG2. The AR, CQLR1; and CQLR2 tests (without the SR extensions), de�ned

in (5.2), (6.8), and (7.3), respectively, have asymptotic sizes equal to their nominal size � 2 (0; 1)
and are asymptotically similar (in a uniform sense) for the parameter spaces FAR; F1; and F2;
respectively. Analogous results hold for the corresponding AR, CQLR1; and CQLR2 CS�s for the

parameter spaces F�;AR; F�;1; and F�;2; respectively.

Theorem 10.1 is proved �rst for the CQLR tests and CS�s. For the CQLR test results, we

actually prove a more general result that applies to a CQLR test that is de�ned as the CQLR1 test

is de�ned in Section 6, but with the weight matrices (b
�1=2n ; bL1=2n ) replaced by any matrices (cWn; bUn)
that satisfy Assumption WU for some parameter space �� � �2 (stated in Section 10.1.5). Then,
we show that Assumption WU holds for the parameter spaces �1 and �2 for the weight matrices

employed by the CQLR1 and CQLR2 tests, respectively, de�ned in Sections 6 and 7. These results

combine to establish the CQLR test results of Theorem 10.1. The CQLR CS results of Theorem

10.1 are proved analogously to those for the tests, see the Comment to Proposition 10.2 for details.

In Section 22.6, we prove Theorem 10.1 for the AR test and CS.

22.1 Statement of Results

A general QLR test statistic for testing H0 : � = �0 is de�ned in (10.3) as

QLRn := ARn � �min(n bQWU;n); wherebQWU;n := (cWn
bDn bUn; b
�1=2n bgn)0(cWn

bDn bUn; b
�1=2n bgn); (22.1)

ARn is de�ned in (6.2), and the dependence of QLRn; bQWU;n;cWn; bDn; bUn; b
n; and bgn on �0 is
suppressed for notational simplicity.
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The general CQLR test rejects the null hypothesis if

QLRn > ck;p(n
1=2cWn

bDn bUn; 1� �); (22.2)

where ck;p(D; 1� �) is de�ned just below (3.5).
The correct asymptotic size of the general QLR test is established using the following theorem.

Theorem 22.1 Suppose Assumption WU (de�ned in Section 10.1.5) holds for some non-empty

parameter space �� � �2: Then, the asymptotic null rejection probabilities of the nominal size �

CQLR test based on (cWwn ; bUwn) equal � under all subsequences fwng and all sequences f�wn;h :
n � 1g with �wn;h 2 ��:

Comments: (i) Theorem 22.1 and Proposition 10.2 imply that any nominal size � CQLR test

based on matrices (cWn; bUn) that satisfy Assumption WU for some parameter space �� has correct
asymptotic size � and is asymptotically similar (in a uniform sense) for the parameter space ��:

(ii) In Lemma 22.4 below, we show that the choice of matrices (cWn; bUn) for the CQLR1 and
CQLR2 tests (de�ned in Sections 6 and 7, respectively) satisfy Assumption WU for the parameter

spaces �1 and �2 (de�ned in (10.17)), respectively. In addition, Lemma 22.4 shows that F1 � FWU

and F2 � FWU when �WU and MWU that appear in the de�nition of FWU are su¢ ciently small

and large, respectively.79 In consequence, the CQLR1 and CQLR2 tests have correct asymptotic

size � and are asymptotically similar (in a uniform sense) for the parameter spaces F1 and F2;
respectively, as stated in Theorem 10.1.

The proof of Theorem 22.1 uses Proposition 10.4 and Theorem 10.5, as well as the following

lemmas.

Let fDcn : n � 1g be a sequence of constant (i.e., nonrandom) k�p matrices. Here, we determine
the limit as n!1 of ck;p(Dcn; 1� �) under certain assumptions on the singular values of Dcn:

Lemma 22.2 Suppose fDcn : n � 1g is a sequence of constant (i.e., nonrandom) k � p matrices
with singular values f� cjn � 0 : j � minfk; pgg for n � 1 that satisfy (i) f� cjn � 0 : j � minfk; pgg
are nonincreasing in j for n � 1; (ii) � cjn ! 1 for j � q for some 0 � q � minfk; pg and (iii)
79Note that the set of distributions FWU depends on the de�nitions of (WF ; UF ); see (10.12), and (WF ; UF ) are

de�ned di¤erently for the QLR1 and QLR2 statistics, see (10.6)-(10.8) and (10.9)-(10.11), respectively. Hence, the
set of distributions FWU di¤ers for the CQLR1 and CQLR2 tests.
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� cjn ! � cj1 <1 for j = q + 1; :::;minfk; pg: Then,

ck;p(D
c
n; 1� �)! ck;p;q(�

c
1; 1� �); where � c1 := (� c(q+1)1; :::; �

c
minfk;pg1)

0 2 Rminfk;pg�q;

�(� c1) :=

0@ Diagf� c1g
0(k�p)�(p�q)

1A 2 R(k�q)�(p�q) if k � p;

�(� c1) :=
�
Diagf� c1g; 0(k�q)�(p�k)

�
2 R(k�q)�(p�q) if k < p;

ck;p;q(�
c
1; 1� �) denotes the 1� � quantile of

ACLRk;p;q(�
c
1) := Z

0Z � �min((�(� c1); Z2)0(�(� c1); Z2)); and

Z :=

0@ Z1

Z2

1A � N(0k; Ik) for Z1 2 Rq and Z2 2 Rk�q:

Comments: (i) The matrix �(� c1) is the diagonal matrix containing the minfk; pg � q �nite
limiting eigenvalues of Dcn: Note that �(�

c
1) has only k � q rows, not k rows.

(ii) If q = p (which requires that k � p); then �(� c1) has no columns, ACLRk;p;q(�
c
1) =

Z 01Z1 � �2p; and ck;p;q(� c1; 1� �) equals the 1� � quantile of the �2p distribution.
(iii) If q = k (which requires that k � p); then �(� c1) and Z2 have no rows, the �min(�)

expression in ACLRk;p;q(� c1) disappears, ACLRk;p;q(�
c
1) = Z

0Z � �2k; and ck;p;q(� c1; 1� �) is the
1� � quantile of the �2k distribution.

(iv) If k � p and q < k; then (�(� c1); Z2) has fewer rows (k � q) than columns (p � q + 1)
and, hence, the �min(�) expression in ACLRk;p;q(� c1) equals zero, ACLRk;p;q(� c1) = Z 0Z � �2k; and
ck;p;q(�

c
1; 1� �) is the 1� � quantile of the �2k distribution.

(v) The distribution function (df) of ACLRk;p;q(� c1) is shown in Lemma 22.3 below to be

continuous and strictly increasing at its 1� � quantile for all possible (k; p; q; � c1) values, which is
required in the proof of Lemma 22.2.

The following lemma proves that the df of ACLRk;p;q(� c1); de�ned in Lemma 22.2, is continuous

and strictly increasing at its 1� � quantile. This is a key lemma for showing that the CQLR1 and
CQLR2 tests have correct asymptotic size and are asymptotically similar.

Lemma 22.3 Let � c1 and �(� c1) be de�ned as in Lemma 22.2. For all admissible integers (k; p; q)

(i.e., k � 1; p � 1; and 0 � q � minfk; pg) and all minfk; pg�q (� 0) vectors � c1 with non-negative

elements in non-increasing order, the df of ACLRk;p;q(� c1) := Z
0Z��min((�(� c1); Z2)0(�(� c1); Z2))

is continuous and strictly increasing at its 1� � quantile ck;p;q(� c1; 1� �) for all � 2 (0; 1); where
Z := (Z 01; Z

0
2)
0 � N(0k; Ik) for Z1 2 Rq and Z2 2 Rk�q:

The next lemma veri�es Assumption WU for the choices of (cWn; bUn) that are used to construct
42



the CQLR1 and CQLR2 tests. Part (a) of the lemma shows that the parameter space FWU ; when

de�ned for (cWn; bUn) as in the CQLR1 test, contains the parameter space F1 that appears in the
statement of Theorem 10.1 (for suitable choices of the constants �1 and M1 that appear in the

de�nition of FWU ): Part (b) of the lemma shows that FWU ; when de�ned for (cWn; bUn) as in the
CQLR2 test, contains F2 for suitable �1 and M1:

Lemma 22.4 (a) Suppose gi(�) = ui(�)Zi; as in (4.4), and (cWn; bUn) = (b
�1=2n ; bL1=2n ); where b
n
(= b
n(�0)) and bLn (= bLn(�0)) are de�ned in (5.1) and (6.7), respectively. Then, (i) Assumption
WU holds for the parameter space �1 with (cW2n; bU2n) = (b
n; (b
n; bRn)); W1(W2) = W

�1=2
2 for

W2 2 Rk�k; U1(U2F ) = ((�0; Ip)��1(
F ; RF )(�0; Ip)0)1=2 for U2F = (
F ; RF ); h7 = limW2Fwn :=

lim
Fwn ; and h8 = limU2Fwn := lim(
Fwn ; RFwn ); where �F := �(
F ; RF ) is de�ned in (10.8),


F := EF gig
0
i; and RF is de�ned in (10.7), and (ii) F1 � FWU for �1 su¢ ciently small and M1

su¢ ciently large in the de�nition of FWU ; where F1 is de�ned in (10.1) and FWU is de�ned in

(10.12).

(b) Suppose (cWn; bUn) = (b
�1=2n ; eL1=2n ); where b
n (= b
n(�0)) and eLn (= eLn(�0)) are de�ned in
(5.1) and (7.2). Then, (i) Assumption WU holds for the parameter space �2 with (cW2n; bU2n) =
(b
n; (b
n; eRn)); W1(�) and U1(�) are de�ned as in part (a) of the lemma, h7 = limW2Fwn :=

lim
Fwn ; and h8 = limU2Fwn := lim(
Fwn ;
eRFwn ); where 
F := EF gig

0
i and eRF is de�ned in

(10.10), and (ii) F2 = FWU for �1 su¢ ciently small and M1 su¢ ciently large in the de�nition of

FWU ; where F2 is de�ned in (10.1) and FWU is de�ned in (10.12).

Comment: Theorem 22.1, Lemma 22.4, and Proposition 10.2 combine to prove the CQLR test

results of Theorem 10.1, which state that the CQLR1 and CQLR2 tests have correct asymptotic size

and are asymptotically similar (in a uniform sense) for the parameter spaces F1 and F2; respectively.
As stated at the beginning of this section, the proofs of the CQLR CS results of Theorem 10.1 are

analogous to those for the tests, see the Comment to Proposition 10.2 and, hence, are not stated

explicitly.

22.2 Proof of Theorem 22.1

Theorem 22.1 is stated in Section 22.1.

For notational simplicity, the proof below is given for the sequence fng; rather than a subse-
quence fwn : n � 1g: The same proof holds for any subsequence fwn : n � 1g:
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Proof of Theorem 22.1. Let

Zh =

0@ Zh1

Zh2

1A :=

0@ h03;qh
�1=2
5;g gh

h03;k�qh
�1=2
5;g gh

1A = h03h
�1=2
5;g gh � N(0k; Ik); (22.3)

where Zh1 2 Rq and Zh2 2 Rk�q and the distributional result holds because gh � N(0k; h5;g) (by
(10.21)) and h03h3 = limC

0
nCn = Ik: Note that Zh and (Dh;�h) are independent because gh and

(Dh;�h) are independent (by Lemma 10.3(c)).

By Theorem 10.5,

QLRn ! d g
0
hh
�1
5;ggh � �min((�h;p�q; h

�1=2
5;g gh)

0h3;k�qh
0
3;k�q(�h;p�q; h

�1=2
5;g gh))

= Z
0
hZh � �min((h03;k�q�h;p�q; Zh2)0(h03;k�q�h;p�q; Zh2)) =: QLRh; (22.4)

where the equality uses h03h3 = Ik: When q = p; the term �h;p�q does not appear and QLRh :=

Z
0
hZh � Z

0
h2Zh2 = Z

0
h1Zh1:

Let fb� jn : j � minfk; pgg denote the minfk; pg singular values of n1=2cWn
bDn bUn in nonincreasing

order. They equal the vector of square roots of the �rstminfk; pg eigenvalues of nbU 0n bDncW 0
n
cWn

bDn bUn
in nonincreasing order. De�ne

b�n = (b� 0[1]n;b� 0[2]n)0 2 Rminfk;pg; where (22.5)

b� [1]n = (b�1n; :::;b� qn)0 2 Rq and b� [2]n = (b� (q+1)n; :::;b�minfk;pgn)0 2 Rminfk;pg�q:
By Proposition 10.4(a) and (b), b� jn !p 1 for j � q (or, equivalently Diag�1fb� [1]ng !p 0

q�q)

and b� [2]n !d � [2]h; (22.6)

where b� jn = b�1=2jn for j � q and � [2]h is the vector of square roots of the �rstminfk; pg�q eigenvalues
of �

0
h;p�qh3;k�qh

0
3;k�q�h;p�q 2 Rp�q)�(p�q) in nonincreasing order. (When q = minfk; pg; no vector

� [2]h appears.) By an almost sure representation argument, e.g., see Pollard (1990, Thm. 9.4, p. 45),

there exists a probability space, say (
0;F0; P 0); and random variables (QLR0n;b�00n ; QLR0h; �00[2]h)0
de�ned on it such that (QLR0n;b�00n )0 has the same distribution as (QLRn;b� 0n)0 for all n � 1;

(QLR
0
h; �

00
[2]h)

0 has the same distribution as (QLRh; �
0
[2]h)

0; and

0BB@
QLR0n

Diag�1fb�0[1]ngb�0[2]n

1CCA!

0BB@
QLR

0
h

0q�q

�0[2]h

1CCA a.s., (22.7)
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where �0[2]h 2 R
minfk;pg�q: Let

b�0n :=
0@ Diagfb�0ng

0(k�p)�p

1A 2 Rk�p and b�n :=
0@ Diagfb�ng

0(k�p)�p

1A 2 Rk�p if k � p and (22.8)

b�0n := �Diagfb�0ng; 0k�(p�k)� 2 Rk�p and b�n := �Diagfb�ng; 0k�(p�k)� 2 Rk�p if k < p:
The distributions of b�0n and b�n are the same. The matrix b�0n has singular values given by the
vector b�0n (= (b�01n; :::;b�0minfk;pgn)0) whose �rst q elements all diverge to in�nity a.s. and whose last
minfk; pg � q elements written as the subvector b�0[2]n converge to �0[2]h a.s. Hence, for some set
C 2 F0 with P 0(! 2 C) = 1; we have b�0jn(!)!1 for j � q and b�0[2]n(!)! �0[2]h(!); where b�0jn(!);b�0[2]n(!); �0[2]h(!); and b�0n(!) denote the realizations of the random quantities b�0jn; b�0[2]n; �0[2]h; andb�0n; respectively, when ! occurs. Thus, using Lemma 22.2 with Dcn = b�0n(!) and � c1 = �0[2]h(!);

we have

ck;p(b�0n(!); 1� �)! ck;p;q(�
0
[2]h(!); 1� �) for all ! 2 C with P

0(! 2 C) = 1; (22.9)

where ck;p;q(�; 1 � �) is de�ned in Lemma 22.2. When q = minfk; pg; no vector �0[2]h(!) appears
and by Comments (ii) and (iii) to Lemma 22.2 ck;p;q(�0[2]h(!); 1 � �) equals the 1 � � quantile of
the �2minfk;pg distribution.

Almost sure convergence implies convergence in distribution, so (22.7) and (22.9) also hold

(jointly) with convergence in distribution in place of convergence a.s. These convergence in distri-

bution results, coupled with the equality of the distributions of (QLR0n; b�0n) and (QLRn; b�n) for
all n � 1 and of (QLR0h; �00[2]h)

0 and (QLRh; �
0
[2]h)

0; yield the following convergence result:

0@ QLRn

ck;p(n
1=2cWn

bDn bUn; 1� �)
1A =

0@ QLRn

ck;p(b�n; 1� �)
1A!d

0@ QLRh

ck;p;q(� [2]h; 1� �)

1A ; (22.10)

where the �rst equality holds using Lemma 6.1.

Equation (22.10) and the continuous mapping theorem give

P (QLRn > ck;p(n
1=2cWn

bDn bUn; 1� �))! P (QLRh > ck;p;q(� [2]h; 1� �)) (22.11)

provided P (QLRh = ck;p;q(� [2]h; 1 � �)) = 0: The latter holds because P (QLRh = ck;p;q(� [2]h; 1 �
�)jDh) = 0 a.s. In turn, the latter holds because, conditional on Dh; the df of QLRh is continuous
at its 1� � quantile (by Lemma 22.3, where QLRh conditional on Dh and ACLRk;p;q(� c1); which
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appears in Lemma 22.3, have the same structure with the former being based on h03;k�q�h;p�q; which

is nonrandom conditional onDh; and the latter being based on �(� c1); which is nonrandom, and the

former only depends on h03;k�q�h;p�q through its singular values, see (19.3)) and ck;p;q(� [2]h; 1� �)
is a constant (because � [2]h is random only through Dh):

By the same argument as in the proof of Lemma 6.1,

ck;p;q(� [2]h; 1� �) = ck;p;q(h03;k�q�h;p�q; 1� �); (22.12)

where (with some abuse of notation) ck;p;q(h03;k�q�h;p�q; 1��) denotes the 1�� quantile of Z 0Z�
�min((h

0
3;k�q�h;p�q; Z2)

0(h03;k�q�h;p�q; Z2)) for Z as in Lemma 22.2, because � [2]h 2 Rp�q are the
singular values of h03;k�q�h;p�q 2 R(k�q)�(p�q) and �(� [2]h) (which appears in ACLRk;p;q(� [2]h) =
Z 0Z � �min((�(� [2]h); Z2)0(�(� [2]h); Z2))) is the (k � q) � (p � q) matrix with � [2]h on the main
diagonal and zeros elsewhere.

Thus, we have

P (QLRh > ck;p;q(� [2]h; 1� �))

= P (QLRh > ck;p;q(h
0
3;k�q�h;p�q; 1� �))

= EP (QLRh > ck;p;q(h
0
3;k�q�h;p�q; 1� �)j�h;p�q)

= E� = �; (22.13)

where the second equality holds by the law of iterated expectations and the third equality holds

because, conditional on �h;p�q; ck;p;q(h03;k�q�h;p�q; 1 � �) is the 1 � � quantile of QLRh (by the
de�nitions of ck;p;q(�; 1��) in Lemma 22.2 and QLRh in (22.4)) and the df of QLRh is continuous
at its 1� � quantile (see the explanation following (22.11)). �

22.3 Proof of Lemma 22.2

Lemma 22.2 is stated in Section 22.1.

The proof of Lemma 22.2 uses the following two lemmas. Let f� cjn : j � minfk; pgg be the
singular values of Dcn; as in Lemma 22.2. De�ne

�cn :=

0@ Diagf� c1n; :::; � cpng
0(k�p)�p

1A 2 Rk�p if k � p and

�cn :=
�
Diagf� c1n; :::; � ckng; 0k�(p�k)

�
2 Rk�p if k < p: (22.14)
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Lemma 22.5 Suppose the scalar constants f� cjn � 0 : j � minfk; pgg for n � 1 satisfy (i) f� cjn �
0 : j � minfk; pgg are nonincreasing in j for n � 1; (ii) � cjn ! 1 for j � q for some 1 � q �
minfk; pg; (iii) � cjn ! � cj1 <1 for j = q+1; :::;minfk; pg; and (iv) when p � 2; � c(j+1)n=�

c
jn ! hc6;j

for some hc6;j 2 [0; 1] for all j � minfk; pg � 1: Let �cn be de�ned as in (22.14). Let f�Zjn : j �
p + 1g denote the p + 1 eigenvalues of (�cn; Z)0(�cn; Z); ordered to be nonincreasing in j; where
Z � N(0k; Ik): Then,

(a) �Zjn !1 8j � q for all realizations of Z and
(b) �Zjn = o((�

c
`n)

2) 8` � q and 8j = q + 1; :::; p+ 1 for all realizations of Z:

Comment: Lemma 22.5 only applies when q � 1; whereas Lemma 22.2 applies when q � 0:

Lemma 22.6 Let fF �n(x) : n � 1g and F �(x) be df�s on R and let � 2 (0; 1) be given. Suppose
(i) F �n(x) ! F �(x) for all continuity points x of F �(x) and (ii) F �(q1 + ") > 1 � � for all " > 0;
where q1 := inffx : F �(x) � 1 � �g is the 1 � � quantile of F �(x): Then, the 1 � � quantile of
F �n(x); viz., qn := inffx : F �n(x) � 1� �g; satis�es qn ! q1:

Comment: Condition (ii) of Lemma 22.6 requires that F �(x) is increasing at its 1� � quantile.

Proof of Lemma 22.2. By Lemma 6.1, ck;p(Dcn; 1 � �) = ck;p(�
c
n; 1 � �); where �cn is de�ned

in (22.14). Hence, it su¢ ces to show that ck;p(�cn; 1� �)! ck;p;q(�
c
1; 1� �): To prove the latter,

it su¢ ces to show that for any subsequence fwng of fng there exists a subsubsequence fung such
that ck;p(�

c
un ; 1 � �) ! ck;p;q(�

c
1; 1 � �): When p � 2; given fwng; we select a subsubsequence

fung for which � c(j+1)un=�
c
jun

! hc6;j for some constant h
c
6;j 2 [0; 1] for all j = 1; :::;minfk; pg � 1

(where 0=0 := 0): We can select a subsubsequence with this property because every sequence of

numbers in [0; 1] has a convergent subsequence by the compactness of [0; 1]:

For notational simplicity, when p � 2; we prove the full sequence result that ck;p(�cn; 1� �)!
ck;p;q(�

c
1; 1� �) under the assumption that

� c(j+1)n=�
c
jn ! hc6;j for all j � minfk; pg � 1 (22.15)

(as well as the other assumptions on the singular values stated in the theorem).80 The same

argument holds with n replaced by un below, which is the result that is needed to complete the

proof. When p = 1; we prove the full sequence result that ck;p(�cn; 1 � �) ! ck;p;q(�
c
1; 1 � �)

without the condition in (22.15) (which is meaningless in this case because there is only one value

� cjun ; namely �
c
1un ; for each n): In this case too, the same argument holds with n replaced by un

80The condition in (22.15) is required by Lemma 22.5, which is used in the proof of Lemma 22.2 below.
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below, which is the result that is needed to complete the proof. We treat the cases p � 2 and p = 1
simultaneously from here on.

First, we show that

CLRk;p(�
c
n) : = Z 0Z � �min((�cn; Z)0(�cn; Z))

! Z 0Z � �min((�(� c1); Z2)0(�(� c1); Z2)) := ACLRk;p;q(� c1) (22.16)

for all realizations of Z: If q = 0; then (22.16) holds because �cn ! �(� c1) (by the de�nition of

�cn in (22.14), the de�nition of �(�
c
1) in the statement of the Lemma 22.2, and assumption (iii) of

Lemma 22.2) and the minimum eigenvalue of a matrix is a continuous function of the matrix (by

Elsner�s Theorem, see Stewart (2001, Thm. 3.1, pp. 37�38)).

Now, we establish (22.16) when q � 1: The (ordered) eigenvalues f�Zjn : j � p + 1g of
(�cn; Z)

0(�cn; Z) are solutions to

j(�cn; Z)0(�cn; Z)� �Ip+1j = 0 or

jQcn(�)j = 0; where Qcn(�) := Scn(�cn; Z)0(�cn; Z)Scn � �(Scn)2 and

Scn := Diagf(� c1n)�1; :::; (� cqn)�1; 1; :::; 1g 2 R(p+1)�(p+1): (22.17)

De�ne

Scn;q := Diagf(� c1n)�1; :::; (� cqn)�1g 2 Rq�q: (22.18)

We have

(�cn; Z)S
c
n =

0@(�cn; Z)
0@ Iq

0(p+1�q)�q

1AScn;q; (�cn; Z)
0@ 0q�(p+1�q)

Ip+1�q

1A1A
= (Ik;q;�

c
n;p�q; Z) 2 Rk�(p+1); where

Ik;q : =

0@ Iq

0(k�q)�q

1A 2 Rk�q; (22.19)

�cn;p�q : =

0BB@
0q�(p�q)

Diagf� c(q+1)n; :::; �
c
png

0(k�p)�(p�q)

1CCA 2 Rk�(p�q) if k � p; and

�cn;p�q : =

0@ 0q�(k�q) 0q�(p�k)

Diagf� c(q+1)n; :::; �
c
kng 0(k�q)�(p�k)

1A 2 Rk�(p�q) if k < p:
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By (22.17) and (22.19), we have

Qcn(�) =

24 Iq I 0k;q(�
c
n;p�q; Z)

(�cn;p�q; Z)
0Ik;q (�cn;p�q; Z)

0(�cn;p�q; Z)

35� �
24 (Scn;q)

2 0q�(p+1�q)

0(p+1�q)�q Ip+1�q

35 : (22.20)
By the formula for the determinant of a partitioned inverse (see the footnote above),

jQcn(�)j = jQcn;1(�)j � jQcn;2(�)j; where

Qcn;1(�) := Iq � �(Scn;q)2 2 Rq�q and

Qcn;2(�) := (�
c
n;p�q; Z)

0(�cn;p�q; Z)� �Ip+1�q (22.21)

�(�cn;p�q; Z)0Ik;q(Iq � �(Scn;q)2)�1I 0k;q(�cn;p�q; Z) 2 R(p+1�q)�(p+1�q):

For j = q + 1; :::; p+ 1; we have

Qcn;1(�
Z
jn) = Iq � �Zjn(Scn;q)2 = Iq �Diagf�Zjn(� c1n)�2; :::; �Zjn(� cqn)�2g = Iq + o(1) (22.22)

for all realizations of Z; where the last equality holds by Lemma 22.5 (which applies for q � 1):

This implies that jQcn;1(�Zjn)j 6= 0 for j = q + 1; :::; p+ 1 for n large. Hence, for n large,

jQcn;2(�Zjn)j = 0 for j = q + 1; :::; p+ 1: (22.23)

We write

Ik = (Ik;q; Ik;k�q); where Ik;k�q :=

0@ 0q�(k�q)

Ik�q

1A 2 Rk�(k�q) (22.24)

and Ik;q is de�ned in (22.19).81

For j = q + 1; :::; p+ 1; we have

Qcn;2(�
Z
jn) = (�cn;p�q; Z)

0(�cn;p�q; Z)� �ZjnIp+1�q � (�cn;p�q; Z)0Ik;q(Iq + o(1))I 0k;q(�cn;p�q; Z)

= (�cn;p�q; Z)
0Ik;k�qI

0
k;k�q(�

c
n;p�q; Z) + o(1)� �ZjnIp+1�q

:= M c
n;p+1�q � �ZjnIp+1�q; (22.25)

where the �rst equality holds by (22.22) and the de�nition of Qcn;2(�) in (22.21) and the second

equality holds because Ik = (Ik;q; Ik;k�q)(Ik;q; Ik;k�q)0 = Ik;qI 0k;q + Ik;k�qI
0
k;k�q and �

c
n;p�q = O(1)

by its de�nition in (22.19) and the condition (iii) of Lemma 22.2 on f� cjn : j = q+ 1; :::;minfk; pgg
81There is some abuse of notation here because Ik;q does not equal Ik;k�q even if q equals k � q:
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for n � 1:
Equations (22.23) and (22.25) imply that f�Zjn : j = q+1; :::; p+1g are the p+1� q eigenvalues

of the matrix M c
n;p+1�q: By the de�nition of �

c
n;p�q in (22.19) and the conditions of the theorem

on f� cjn : j = q + 1; :::;minfk; pgg for n � 1; we have

M c
n;p+1�q !

0@0@ 0q�(p�q)

�(� c1)

1A ; Z
1A0 Ik;k�qI 0k;k�q

0@0@ 0q�(p�q)

�(� c1)

1A ; Z
1A

= (�(� c1); Z2)
0(�(� c1); Z2) (22.26)

for all realizations of Z; where the equality uses the de�nitions of �(� c1) and Z2 in the statement

of the theorem.

The vector of (ordered) eigenvalues of a matrix is a continuous function of the matrix (by

Elsner�s Theorem, see Stewart (2001, Thm. 3.1, pp. 37�38)). Hence, by (22.26), the eigenvalues

f�Zjn : j = q+1; :::; p+1g ofM c
n;p+1�q converge (for all realizations of Z) to the vector of eigenvalues

of (�(� c1); Z2)
0(�(� c1); Z2): In consequence, the smallest eigenvalue �

Z
(p+1)n (of both M

c
n;p+1�q and

(�cn; Z)
0(�cn; Z)) satis�es

�min((�
c
n; Z)

0(�cn; Z)) = �
Z
(p+1)n ! �min((�(�

c
1); Z2)

0(�(� c1); Z2)); (22.27)

where the equality holds by the de�nition of �Z(p+1)n in (22.17). This establishes (22.16).

Now we use (22.16) to establish that ck;p(�cn; 1 � �) ! ck;p;q(�
c
1; 1 � �); which proves the

theorem. Let

Fk;p;q;�c1(x) = P (ACLRk;p;q(�
c
1) � x): (22.28)

By (22.16), for any x 2 R that is a continuity point of Fk;p;q;�c1(x); we have

1(CLRk;p(�
c
n) � x)! 1(ACLRk;p;q(�

c
1) � x) a.s. (22.29)

Equation (22.29) and the bounded convergence theorem give

P (CLRk;p(�
c
n) � x)! P (ACLRk;p;q(�

c
1) � x) = Fk;p;q;�c1(x): (22.30)

Now Lemma 22.6 gives the desired result, because (22.30) veri�es assumption (i) of Lemma 22.6

and the df of ACLRk;p;q(� c1) is strictly increasing at its 1 � � quantile (by Lemma 22.3), which
veri�es assumption (ii) of Lemma 22.6. �

Proof of Lemma 22.5. The proof is similar to the proof of Lemma 16.1 given in Section 16 in
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the SM of AG1. But there are enough di¤erences that we provide a proof.

By the de�nition of q (� 1) in the statement of Lemma 22.5, hc6;q = 0 if q < minfk; pg: If
q = minfk; pg; then hc6;q is not de�ned in the statement of Lemma 22.5 and we de�ne it here to
equal zero. If hc6;j > 0; then f� cjn : n � 1g and f� c(j+1)n : n � 1g are of the same order of magnitude,
i.e., 0 < lim � c(j+1)n=�

c
jn � 1: We group the �rst q values of � cjn into groups that have the same

order of magnitude within each group. Let G (2 f1; :::; qg) denote the number of groups. Note
that G equals the number of values in fhc6;1; :::; hc6;qg that equal zero. Let rg and rcg denote the
indices of the �rst and last values in the gth group, respectively, for g = 1; :::; G: Thus, r1 = 1;

rcg = rg+1 � 1; where by de�nition rG+1 = q + 1; and rcG = q: By de�nition, the � cjn values in the
gth group, which have the gth largest order of magnitude, are f� crgn : n � 1g; :::; f� crcgn : n � 1g: By
construction, hc6;j > 0 for all j 2 frg; :::; rcg � 1g for g = 1; :::; G: (The reason is: if hc6;j is equal to
zero for some j � rcg � 1; then f� crcgn : n � 1g is of smaller order of magnitude than f�

c
rgn : n � 1g;

which contradicts the de�nition of rcg:) Also by construction, lim �
c
j0n=�

c
jn = 0 for any (j; j0) in

groups (g; g0); respectively, with g < g0:

The (ordered) eigenvalues f�Zjn : j � p+1g of (�cn; Z)0(�cn; Z) are solutions to the determinantal
equation j(�cn; Z)0(�cn; Z)� �Ip+1j = 0: Equivalently, they are solutions to

j(� cr1Fn)
�2(�cn; Z)

0(�cn; Z)� (� cr1Fn)
�2�Ip+1j = 0: (22.31)

Thus, f(� cr1n)
�2�Zjn : j � p+ 1g solve

j(� cr1n)
�2(�cn; Z)

0(�cn; Z)� �Ip+1j = 0: (22.32)

Let

hcc6;rc1 := Diagf1; h
c
6;1; h

c
6;1h

c
6;2; :::;

rc1�1Y
`=1

hc6;`g 2 Rr
c
1�rc1 : (22.33)

When k � p; we have

(� cr1n)
�1(�cn; Z)

=

2666664
hcc6;rc1

+ o(1) 0r
c
1�(q�rc1) 0r

c
1�(p�q) O(1=� cr1n)

rc1�1

0(q�r
c
1)�rc1 O(� cr2n=�

c
r1n)

(q�rc1)�(q�rc1) 0(q�r
c
1)�(p�q) O(1=� cr1n)

(q�rc1)�1

0(p�q)�r
c
1 0(p�q)�(q�r

c
1) O(1=� cr1n)

(p�q)�(p�q) O(1=� cr1n)
(p�q)�1

0(k�p)�r
c
1 0(k�p)�(q�r

c
1) 0(k�p)�(p�q) O(1=� cr1n)

(k�p)�1

3777775
!

24 hcc6;rc1
0r

c
1�(p+1�rc1)

0(k�r
c
1)�rc1 0(k�r

c
1)�(p+1�rc1)

35 ; (22.34)
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where O(dn)s�s denotes a diagonal s�s matrix whose elements are O(dn) for some scalar constants
fdn : n � 1g; O(dn)s�1 denotes an s vector whose elements are O(dn); the equality uses � cjn=� cr1n =
j�1Y
`=1

(� c(`+1)n=�
c
`n) =

j�1Y
`=1

hc6;` + o(1) for j = 2; :::; rc1 (which holds by the de�nition of h
c
6;`) and

� cjn=�
c
r1n = O(� cr2n=�

c
r1n) for j = r2; :::; q (because f� cjn : j � qg are nonincreasing in j); and the

convergence uses � cr1n !1 (by assumption (ii) of the lemma since r1 � q) and � cr2n=�
c
r1n ! 0 (by

the de�nition of r2):

When k < p; (22.34) holds but with the rows dimensions of the submatrices in the second line

changed by replacing p� q by k � q and k � p by p� k four times each.
Equation (22.34) yields

(� cr1n)
�2(�cn; Z)

0(�cn; Z)!

24 (hcc6;rc1
)2 0r

c
1�(p+1�rc1)

0(p+1�r
c
1)�rc1 0(p+1�r

c
1)�(p+1�rc1)

35 : (22.35)

The vector of eigenvalues of a matrix is a continuous function of the matrix (by Elsner�s The-

orem, see Stewart (2001, Thm. 3.1, pp. 37�38)). Hence, by (22.32) and (22.35), the �rst rc1

eigenvalues of (� cr1n)
�2(�cn; Z)

0(�cn; Z); i.e., f(� cr1n)
�2�Zjn : j � rc1g; satisfy

((� cr1n)
�2�Z1n; :::; (�

c
r1n)

�2�Zrc1n)!p (1; h
c
6;1; h

c
6;1h

c
6;2; :::;

rc1�1Y
`=1

hc6;`) and so

�Z1n !1 8j = 1; :::; rc1 (22.36)

because � cr1n ! 1 (since r1 � q) and hc6;` > 0 for all ` 2 f1; :::; rc1 � 1g (as noted above). By the
same argument, the last p+ 1� rc1 eigenvalues of (� cr1n)

�2(�cn; Z)
0(�cn; Z); i.e., f(� cr1n)

�2�Zjn : j =

rc1 + 1; :::; p+ 1g; satisfy
(� cr1n)

�2�Zjn ! 0 8j = rc1 + 1; :::; p+ 1: (22.37)

Next, the equality in (22.34) gives

(� cr1n)
�2(�cn; Z)

0(�cn; Z) (22.38)

=

2666664
(hcc6;rc1

)2 + o(1) 0r
c
1�(q�rc1) 0r

c
1�(p�q) O(1=� cr1n)

rc1�1

0(q�r
c
1)�rc1 O((� cr2n=�

c
r1n)

2)(q�r
c
1)�(q�rc1) 0(q�r

c
1)�(p�q) O(� cr2n=(�

c
r1n)

2)(q�r
c
1)�1

0(p�q)�r
c
1 0(p�q)�(q�r

c
1) O(1=(� cr1n)

2)(p�q)�(p�q) O(1=(� cr1n)
2)(p�q)�1

O(1=� cr1n)
1�rc1 O(� cr2n=(�

c
r1n)

2)1�(q�r
c
1) O(1=(� cr1n)

2)1�(p�q) O(1=(� cr1n)
2)1�1

3777775 :

Equation (22.38) holds when k � p and k < p (because the column dimensions of the submatrices
in the second line of (22.34) are the same when k � p and k < p):
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De�ne Ij1;j2 to be the (p+1)� (j2� j1) matrix that consists of the j1+1; :::; j2 columns of Ip+1
for 0 � j1 < j2 � p+ 1: We can write

Ip+1 = (I0;rc1 ; Irc1;p+1); where I0;rc1 :=

0@ Irc1

0(p+1�r
c
1)�rc1

1A 2 R(p+1)�rc1 and

Irc1;p+1 :=

0@ 0r
c
1�(p+1�rc1)

Ip+1�rc1

1A 2 R(p+1)�(p+1�rc1): (22.39)

In consequence, we have

(�cn; Z) = ((�cn; Z)I0;rc1 ; (�
c
n; Z)Irc1;p+1) and

%cn := (� cr1n)
�2I 00;rc1(�

c
n; Z)

0(�cn; Z)Irc1;p+1 = o(�
c
r2n=�

c
r1n); (22.40)

where the last equality uses the �rst row of the matrix on the rhs of (22.38) and O(1=� cr1n) =

o(� cr2n=�
c
r1n) (because �

c
r2n !1):

As in (22.32), f(� cr1n)
�2�Zjn : j � p+ 1g solve

0 = j(� cr1n)
�2(�cn; Z)

0(�cn; Z)� �Ip+1j

=

������
24 (� cr1n)�2I 00;rc1(�cn; Z)0(�cn; Z)I0;rc1 � �Irc1
(� cr1n)

�2I 0rc1;p+1
(�cn; Z)

0(�cn; Z)I0;rc1

...

(� cr1n)
�2I 00;rc1

(�cn; Z)
0(�cn; Z)Irc1;p+1

(� cr1n)
�2I 0rc1;p+1

(�cn; Z)
0(�cn; Z)Irc1;p+1 � �Ip+1�rc1

35������
= j(� cr1n)

�2I 00;rc1(�
c
n; Z)

0(�cn; Z)I0;rc1 � �Irc1 j

�j(� cr1n)
�2I 0rc1;p+1(�

c
n; Z)

0(�cn; Z)Irc1;p+1 � �Ip+1�rc1
�%c0n ((� cr1n)

�2I 00;rc1(�
c
n; Z)

0(�cn; Z)I0;rc1 � �Irc1)
�1%cnj; (22.41)

where the third equality uses the standard formula for the determinant of a partitioned matrix, the

de�nition of %cn in (22.40), and the result given in (22.42) below that the matrix which is inverted

that appears in the last line of (22.41) is nonsingular for � equal to any solution (� cr1n)
�2�Zjn to the

�rst equality in (22.41) for j = rc1 + 1; :::; p+ 1:

Now we show that, for j = rc1+1; :::; p+1; (�
c
r1n)

�2�Zjn cannot solve the determinantal equation

j(� cr1n)
�2I 00;rc1

(�cn; Z)
0(�cn; Z)I0;rc1 � �Irc1 j = 0; where this determinant is the �rst multiplicand on

the rhs of (22.41). Hence, f(� cr1n)
�2�Zjn : j = r

c
1+1; :::; p+1g must solve the determinantal equation
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based on the second multiplicand on the rhs of (22.41). For j = rc1 + 1; :::; p+ 1; we have

(� cr1n)
�2I 00;rc1(�

c
n; Z)

0(�cn; Z)I0;rc1 � (�
c
r1n)

�2�ZjnIrc1 = (h
cc
6;rc1
)2 + o(1); (22.42)

where the equality holds by (22.35) and (22.37). Equation (22.42) and �min((hcc6;rc1)
2) > 0 (which

follows from the de�nition of hcc6;rc1 in (22.33) and the fact that h
c
6;j > 0 for all j 2 f1; :::; rc1 � 1g)

establish the desired result.

For j = rc1+1; :::; p+1; plugging (�
c
r1n)

�2�Zjn into the second multiplicand on the rhs of (22.41)

and using (22.40) and (22.42) gives

0 = j(� cr1n)
�2I 0rc1;p+1(�

c
n; Z)

0(�cn; Z)Irc1;p+1 + o((�
c
r2Fn=�

c
r1Fn)

2)� (� cr1n)
�2�ZjnIp+1�rc1 j: (22.43)

Thus, f(� cr1n)
�2�Zjn : j = r

c
1 + 1; :::; p+ 1g solve

0 = j(� cr1n)
�2I 0rc1;p+1(�

c
n; Z)

0(�cn; Z)Irc1;p+1 + o((�
c
r2Fn=�

c
r1Fn)

2)� �Ip+1�rc1 j: (22.44)

Or equivalently, multiplying through by (� cr2Fn=�
c
r1Fn

)�2; f(� cr2n)
�2�Zjn : j = r

c
1 + 1; :::; p+ 1g solve

0 = j(� cr2n)
�2I 0rc1;p+1(�

c
n; Z)

0(�cn; Z)Irc1;p+1 + o(1)� �Ip+1�rc1 j (22.45)

by the same argument as in (22.31) and (22.32).

Now, we repeat the argument from (22.32) to (22.45) with the expression in (22.45) replacing

that in (22.32) and with Ip+1�rc1 ; �
c
r2n; �

c
r3n; r

c
2 � rc1; p + 1 � rc2; and hcc6;rc2 = Diagf1; hc6;rc1+1;

hc6;rc1+1
hc6;rc1+2

; :::;

rc2�1Y
`=rc1+1

hc6;`g 2 R(r
c
2�rc1)�(rc2�rc1) in place of Ip+1; � cr1n; �

c
r2n; r

c
1; p+1� rc1; and hcc6;rc1 ;

respectively. In addition, I0;rc1 and Irc1;p+1 in (22.41) are replaced by the matrices Irc1;rc2 and Irc2;p+1:

This argument gives

�Zjn !1 8j = r2; :::; rc2 and (� cr2n)
�2�Zjn = o(1) 8j = rc2 + 1; :::; p+ 1: (22.46)

Repeating the argument G� 2 more times yields

�Zjn !1 8j = 1; :::; rcG and (� crgn)
�2�Zjn = o(1) 8j = rcg + 1; :::; p+ 1;8g = 1; :::; G: (22.47)

Note that �repeating the argument G � 2 more times� is justi�ed by an induction argument that
is analogous to that given in the proof of Lemma 16.1 given in Section 16 in the SM of AG1.

Because rcJ = q; the �rst result in (22.47) proves part (a) of the lemma.
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The second result in (22.47) with g = G implies: for all j = q + 1; :::; p+ 1;

(� crGn)
�2�Zjn = o(1) (22.48)

because rcG = q: Either rG = rcG = q or rG < rcG = q: In the former case, (� cqn)
�2�Zjn = o(1) for

j = q + 1; :::; p+ 1 by (22.47). In the latter case, we have

lim
� cqn
� crGn

= lim
� crcGn

� crGn
=

rcG�1Y
j=rG

hc6;j > 0; (22.49)

where the inequality holds because hc6;j > 0 for all j 2 frG; :::; rcG� 1g; as noted at the beginning of
the proof. Hence, in this case too, (� cqn)

�2�Zjn = o(1) for j = q+1; :::; p+1 by (22.48) and (22.49).

Because � cjn � � cqn for all j � q; this establishes part (b) of the lemma. �

Proof of Lemma 22.6. For " > 0 such that q1 � " are continuity points of F �(x); we have

F �n(q1 � ") ! F �(q1 � ") < 1� � and

F �n(q1 + ") ! F �(q1 + ") > 1� � (22.50)

by assumptions (i) and (ii) of the lemma and F �(q1�") < 1�� by the de�nition of q1: The �rst line
of (22.50) implies that qn � q1�" for all n large. (If not, there exists an in�nite subsequence fwng of
fng for which qwn < q1�" for all n � 1 and 1�� � F �wn(qwn) � F �wn(q1�")! F �(q1�") < 1��;
which is a contradiction). The second line of (22.50) implies that qn � q1+ " for all n large. There
exists a sequence f"k > 0 : k � 1g for which "k ! 0 and q1 � "k are continuity points of F �(x) for
all k � 1: Hence, qn ! q1: �

22.4 Proof of Lemma 22.3

Lemma 22.3 is stated in Section 22.1.

Proof of Lemma 22.3. We prove the lemma by proving it separately for four cases: (i) q � 1;
(ii) k � p; (iii) � cminfk;pg1 = 0; where � cminfk;pg1 denotes the minfk; pgth (and, hence, last and
smallest) element of � c1; and (iv) q = 0; k > p; and �

c
p1 > 0: First, suppose q � 1: Then,

ACLRk;p;q(�
c
1) : = Z 0Z � �min((�(� c1); Z2)0(�(� c1); Z2))

= Z 01Z1 + Z
0
2Z2 � �min((�(� c1); Z2)0(�(� c1); Z2)) (22.51)

and ACLRk;p;q(� c1) is the convolution of a �
2
q distribution (since Z

0
1Z1 � �2q) and another dis-
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tribution. Consider the distribution of X + Y; where X is a random variable with an absolutely

continuous distribution and X and Y are independent. Let B be a (measurable) subset of R with

Lebesgue measure zero. Then,

P (X + Y 2 B) =
Z
P (X + y 2 BjY = y)dPY (y) =

Z
P (X 2 B � y)dPY (y) = 0; (22.52)

where PY denotes the distribution of Y; the �rst equality holds by the law of iterated expectations,

the second equality holds by the independence of X and Y; and the last equality holds because

X is absolutely continuous and the Lebesgue measure of B � y equals zero. Applying (22.52) to
(22.51) with X = Z 01Z1; we conclude that ACLRk;p;q(�

c
1) is absolutely continuous and, hence, its

df is continuous at its 1� � quantile for all � 2 (0; 1):
Next, we consider the df of X + Y; where X has support R+ and X and Y are independent.

Let c denote the 1� � quantile of X + Y for � 2 (0; 1); and let cY denote the 1� � quantile of Y:
Since X � 0 a.s., cY � c: Hence, for all " > 0;

P (Y < c+ ") � P (Y < cY + ") � 1� � > 0: (22.53)

For " > 0; we have

P (X + Y 2 [c; c+ "]) =
Z
P (X + y 2 [c; c+ "]jY = y)dPY (y)

=

Z
P (X 2 [c� y; c� y + "])dPY (y) > 0; (22.54)

where the �rst equality holds by the law of iterated expectations, the second equality holds by the

independence of X and Y; and the inequality holds because P (X 2 [c � y; c � y + "]) > 0 for all

y < c + " (because the support of X is R+) and P (Y < c + ") > 0 by (22.53). Equation (22.54)

implies that the df of X + Y is strictly increasing at its 1� � quantile.
For the case when q � 1; we apply the result of the previous paragraph with ACLRk;p;q(� c1) =

X + Y and Z 01Z1 = X: This implies that the df of ACLRk;p;q(�
c
1) is strictly increasing at its 1��

quantile when q � 1:
Second, suppose k � p: Then, (�(� c1); Z2)0(�(� c1); Z2) 2 R(p�q+1)�(p�q+1) is singular because

(�(� c1); Z2) 2 R(k�q)�(p�q+1) and k � q < p � q + 1: Hence, �min((�(� c1); Z2)0(�(� c1); Z2)) = 0;

ACLRk;p;q(�
c
1) = Z

0Z � �2k; ACLRk;p;q(� c1) is absolutely continuous, and the df ofACLRk;p;q(� c1)
is continuous and strictly increasing at its 1� � quantile for all � 2 (0; 1):

Third, suppose � cminfk;pg1 = 0: Then, �min((�(� c1); Z2)
0(�(� c1); Z2)) = 0; ACLRk;p;q(�

c
1) =

Z 0Z � �2k; ACLRk;p;q(�
c
1) is absolutely continuous, and the df of ACLRk;p;q(�

c
1) is continuous
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and strictly increasing at its 1� � quantile for all � 2 (0; 1):
Fourth, suppose q = 0; k > p; and � cp1 > 0: In this case, Z2 = Z (because q = 0) and

�(� c1) = (D; 0
p�(k�p))0; where D := Diagf� c1g is a pd diagonal p� p matrix (because � cp1 > 0):

We write Z = (Z 0a; Z
0
b)
0 (� N(0k; Ik)); where Za 2 Rp and Zb 2 Rk�p and Zb has a positive number

of elements (because k > p): Let ACLR abbreviate ACLRk;p;q(� c1): In the present case, we have

ACLR = Z 0Z � �min

0@0@ D Za

0(k�p)�p Zb

1A00@ D Za

0(k�p)�p Zb

1A1A
= Z 0Z � inf

�=(�01;�2)
0:jj�jj=1

0@ �1

�2

1A00@ D2 DZa

Z 0aD Z 0Z

1A0@ �1

�2

1A (22.55)

= sup
�=(�01;�2)

0:jj�jj=1

�
(1� �22)(Z 0bZb + Z 0aZa)� �01D2�1 � 2�2Z 0aD�1

�
;

where �1 2 Rp; �2 2 R; and �01�1 + �22 = 1:
We de�ne the following non-stochastic function

ACLR(za; !) := sup
�=(�01;�2)

0:jj�jj=1

�
(1� �22)(! + z0aza)� �01D2�1 � 2�2z0aD�1

�
(22.56)

for za 2 Rp and ! 2 R+: Note that ACLR = ACLR(Za; Z 0bZb):
We show below that the function ACLR(za; !) is (i) nonnegative, (ii) strictly increasing in

! on R+ 8za 6= 0p; and (iii) continuous in (za; !) on Rp � R+; and ACLR(za; !) satis�es (iv)
lim!!1ACLR(za; !) = 1: In consequence, 8za 6= 0p; ACLR(za; !) has a continuous, strictly-

increasing inverse function in its second argument with domain [ACLR(za; 0);1) � R+; which we
denote by ACLR�1(za; x):82 Using this, we have: for all x � ACLR(za; 0) and za 6= 0p;

ACLR(za; !) � x i¤ ! � ACLR�1(za; x); (22.57)

where the condition x � ACLR(za; 0) ensures that x is in the domain of ACLR�1(za; �):
Now, we show that for all x0 2 R and za 6= 0p;

lim
x!x0

P (ACLR(za; Z
0
bZb) � x) = P (ACLR(za; Z 0bZb) � x0): (22.58)

82Properties (i), (iii), and (iv) determine the domain of ACLR�1(za; x) for its second argument.

57



To prove (22.58), �rst consider the case x0 > ACLR(za; 0) (� 0) and za 6= 0p: In this case, we have

lim
x!x0

P (ACLR(za; Z
0
bZb) � x) = lim

x!x0
P (Z 0bZb � ACLR�1(za; x))

= P (Z 0bZb � ACLR�1(za; x0)); (22.59)

where the �rst equality holds by (22.57) and the second equality holds by the continuity of the df

of the �2k�p random variable Z 0bZb and the continuity of ACLR
�1(za; x) at x0: Hence, (22.58) holds

when x0 > ACLR(za; 0):

Next, consider the case x0 < ACLR(za; 0) and za 6= 0p: We have

P (ACLR(za; Z
0
bZb) � x0) � P (ACLR(za; Z 0bZb) < ACLR(za; 0)) = 0; (22.60)

where the equality holds because ACLR(za; x) is increasing on by property (ii) and Z 0bZb � 0 a.s.
For x su¢ ciently close to x0; x < ACLR(za; 0) and by the same argument as in (22.60), we obtain

P (ACLR(za; Z
0
bZb) � x) = 0: Thus, (22.58) holds for x0 < ACLR(za; 0):

Finally, consider the case x0 = ACLR(za; 0) and za 6= 0p: In this case, (22.58) holds for

sequences of values x that strictly decline to x0 by the same argument as for the �rst case where x0 >

ACLR(za; 0): Next, consider a sequence that strictly increases to x0:We have P (ACLR(za; Z 0bZb) �
x) = 0 8x < x0 by the same argument as given for the second case where x0 < ACLR(za; 0): In

addition, we have

P (ACLR(za; Z
0
bZb) � x0) = P (ACLR(za; Z 0bZb) � ACLR(za; 0)) � P (Z 0bZb � 0) = 0; (22.61)

where the inequality holds because ACLR(za; x) is strictly increasing on for za 6= 0p by property
(ii). This completes the proof of (22.58).

Using (22.58), we establish the continuity of the df of ACLR on R: For any x0 2 R; we have

lim
x!x0

P (ACLR � x) = lim
x!x0

P (ACLR(Za; Z
0
bZb) � x)

= lim
x!x0

Z
P (ACLR(za; Z

0
bZb) � x)dFZa(za)

=

Z
P
�
ACLR(za; Z

0
bZb) � x0

�
dFZa(za)

= P (ACLR � x0); (22.62)

where FZa(�) denotes the df of Za; the �rst and last equalities hold because ACLR = ACLR(Za;
Z 0bZb); the second equality uses the independence of Za and Zb; and the third equality holds by the
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bounded convergence theorem using (22.58) and P (Za 6= 0p) = 1: Equation (22.62) shows that the
df of ACLR is continuous on R:

Next, we show that the df of ACLR is strictly increasing at all x > 0: Because the df of ACLR

is continuous on R and equals 0 for x � 0 (because ACLR � 0 by property (i)), the 1�� quantile
of ACLR is positive. Hence, the former property implies that the df of ACLR is increasing at its

1� � quantile, as stated in the Lemma.
For x � ACLR(za; 0); � > 0; and za 6= 0p; we have

P (ACLR(za; Z
0
bZb) 2 [x; x+ �]) = P

�
Z 0bZb 2 [ACLR�1(za; x); ACLR�1(za; x+ �)]

�
> 0; (22.63)

where the equality holds by (22.57) and the inequality holds because ACLR�1(za; x) is strictly

increasing in x for x in [ACLR(za; 0);1) when za 6= 0p and Z 0bZb has a �2k�p distribution, which is
absolutely continuous.

The function ACLR(za; 0) is continuous at all za 2 Rp (by property (iii)) and ACLR(0p; 0) = 0
(by a simple calculation using (22.56)). In consequence, for any x > 0; there exists a vector z�a 2 Rp

and a constant " > 0 such that ACLR(za; 0) < x for all za 2 B(z�a; "); where B(z�a; ") denotes a
ball centered at z�a with radius " > 0: Using this, we have: for any x > 0 and � > 0;

P (ACLR 2 [x; x+ �]) =
Z
P (ACLR(za; Z

0
bZb) 2 [x; x+ �])dFZa(za)

�
Z
B(z�a;")

P (ACLR(za; Z
0
bZb) 2 [x; x+ �])dFZa(za) > 0; (22.64)

where the equality uses the independence of Za and Zb; the �rst inequality holds because B(z�a; ") �
R and the integrand is nonnegative, and the second inequality holds because P (Za 2 B(z�a; ")) > 0
(since Za � N(0p; Ip) and B(z�a; ") is a ball with positive radius) and the integrand is positive for
za 2 B(z�a; ") by (22.63) using the fact that x > ACLR(za; 0) for all za 2 B(z�a; ") by the de�nition
of B(z�a; "): Equation (22.64) shows that the df of ACLR is strictly increasing at all x > 0 and,

hence, at its 1� � quantile which is positive.
It remains to verify properties (i)-(iv) of the function ACLR(za; !); which are stated above.

The function ACLR(za; !) is seen to be nonnegative by replacing the supremum in (22.56) by

� = (0p0; 1)0: Hence, property (i) holds. The function ACLR(za; !) can be written as

ACLR(za; !) = ! + z
0
aza � �min

0@ D2 Dza

z0aD z0aza + !

1A (22.65)

by analogous calculations to those in (22.55). The minimum eigenvalue is a continuous function
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of a matrix is a continuous function of its elements by Elsner�s Theorem, see Stewart (2001, Thm.

3.1, pp. 37�38). Hence, ACLR(za; !) is continuous in (za; !) 2 Rp �R+ and property (iii) holds.
For any �2�2 2 [0; 1) and ��1 2 Rp such that �0�1��1 = 1� �2�2; we have

ACLR(za; !) � (1� �2�2)(! + z0aza)� �0�1D2��1 � 2��2z0aD��1 !1 as ! !1; (22.66)

where the inequality holds by replacing the supremum over � in (22.56) by the same expression

evaluated at �� = (�
0
�1; ��2)

0 and the divergence to in�nity uses 1 � �2�2 > 0: Hence, property (iv)
holds.

It remains to verify property (ii), which states that ACLR(za; !) is strictly increasing in ! on

R+ 8za 6= 0p: For ! 2 R+; let �! = (�0!1; �!2)0 (for �!1 2 Rp and �!2 2 R) be such that jj�!jj = 1
and

ACLR(za; !) = (1� �2!2)(! + z0aza)� �0!1D2�!1 � 2�!2z0aD�!1: (22.67)

Such a vector �! exists because the supremum in (22.56) is the supremum of a continuous function

over a compact set and, hence, the supremum is attained at some vector �!: (Note that �! typically

depends on za as well as !:) Using (22.67), we obtain: for all � > 0; if �2!2 < 1;

ACLR(za; !) < (1� �2!2)(! + � + z0aza)� �0!1D2�!1 � 2�!2z0aD�!1

� sup
�=(�01;�2)

0:jj�jj=1

�
(1� �22)(! + � + z0aza)� �01D2�1 � 2�2z0aD�1

�
= ACLR(za; ! + �): (22.68)

Equation (22.68) shows that ACLR(za; !) is strictly increasing at ! provided �2!2 < 1:

Next, we show that �2!2 = 1 only if za = 0p: By (22.56) and (22.67), �! maximizes the rhs

expression in (22.56) over � 2 Rp+1 subject to �01�1 + �22 = 1: The Lagrangian for the optimization
problem is

(1� �22)(! + z0aza)� �01D2�1 � 2�2z0aD�1 + (1� �22 � �01�1); (22.69)

where  2 R is the Lagrange multiplier. The �rst-order conditions of the Lagrangian with respect
to �1; evaluated at the solution (�

0
!1; �!2)

0 and the corresponding Lagrange multiplier, say !; are

� 2D2�!1 � 2�!2Dza � 2!�!1 = 0p: (22.70)

The solution is �!1 = 0
p (which is an interior point of the set f�1 : jj�1jj � 1g) only if �!2 = 0 or

za = 0p (because D is a pd diagonal matrix). Thus, �2!2 = 1 � �0!1�!1 = 1 only if za = 0p: This

concludes the proof of property (iv). �

60



22.5 Proof of Lemma 22.4

Lemma 22.4 is stated in Section 22.1.

For notational simplicity, the following proof is for the sequence fng; rather than a subsequence
fwn : n � 1g: The same proof holds for any subsequence fwn : n � 1g:

Proof of Lemma 22.4. We prove part (a)(i) �rst. We have

cW2n = n
�1

nX
i=1

(gig
0
i � EFngig0i) + EFngig0i !p h5;g; (22.71)

where the convergence holds by the WLLN (using the moment conditions in F2) and �7;Fn =
W2Fn = 
Fn := EFngig

0
i ! h5;g (by the de�nition of the sequence f�n;h : n � 1g). Hence,

Assumption WU(a) holds for the parameter space �1 with h7 = h5;g:

Next, we verify Assumption WU(b) for the parameter space �1 for bU2n = (b
n; bRn): Using the
de�nition of bVn (= bVn(�0)) in (6.3), we have

bVn = n�1
nX
i=1

(u�iu
�0
i 
 ZiZ 0i)� n�1

nX
i=1

(bu�inu�0i 
 ZiZ 0i)� n�1 nX
i=1

(u�i bu�0in 
 ZiZ 0i)
+n�1

nX
i=1

(bu�inbu�0in 
 ZiZ 0i): (22.72)

We have

n�1
nX
i=1

(u�iu
�0
i 
 ZiZ 0i) = EFnfif 0i + op(1);

b�n = (n�1Z 0n�kZn�k)�1n�1Z 0n�kU� = (EFnZiZ 0i)�1EFnZiu�0i + op(1)
= (EFnZiZ

0
i)
�1EFn(gi; Gi) + op(1) =: �Fn + op(1); (22.73)

n�1
nX
i=1

(bu�inu�0i 
 ZiZ 0i) = n�1 nX
i=1

(b�0nZiu�0i 
 ZiZ 0i) = EFn(�0Fn(gi; Gi)
 ZiZ 0i) + op(1); and
n�1

nX
i=1

(bu�inbu�0in 
 ZiZ 0i) = n�1 nX
i=1

(b�0nZiZ 0ib�n 
 ZiZ 0i) = EFn(�0FnZiZ 0i�Fn 
 ZiZ 0i) + op(1);
where the �rst line holds by the WLLN�s (since u�iu

�0
i 
 ZiZ 0i = fif

0
i for fi de�ned in (10.7) and

using the moment conditions in F2), the second line holds by the WLLN�s (using the conditions in
F1 and F2), Slutsky�s Theorem, and Ziu�0i = (gi; Gi); the fourth line holds by the WLLN�s (using
EF ((jj(gi; Gi)jj � jjZijj2)1+=4) � (EF jj(gi; Gi)jj2+=2EF jjZijj4+)1=2 < 1 for  > 0 by the Cauchy-

Bunyakovsky-Schwarz inequality and the moment conditions in F1 and F2) and the result of the
second and third lines, and the �fth line holds by the WLLN�s (using the moment conditions in F1
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and F2) and the result of the second and third lines.
Equations (10.7) (which de�nes VF ), (22.72), and (22.73) combine to give

bVn � VFn !p 0: (22.74)

Using the de�nitions of bRn and RF (in (6.3) and (10.7)), (22.71), (22.74), and h7 := limW2Fn =

lim
Fn yield

(b
n; bRn)!p lim(
Fn ; RFn) =: h8: (22.75)

This establishes Assumption WU(b) for the parameter space �1 for part (a) of the lemma.

Now we establish Assumption WU(c) for the parameter space �1 for part (a) of the lemma.

We take W2 (which appears in the statement of Assumption WU(c)) to be the space of psd k � k
matrices and U2 (which also appears in Assumption WU(c)) to be the space of non-zero psd matrices
(
; R) for 
 2 Rk�k and R 2 R(p+1)k�(p+1)k: By the de�nition of cW2n; cW2n 2 W2 a.s. We have

W2F 2 W2 8F 2 FWU because W2F = EF gig
0
i is psd. We have U2F 2 U2 8F 2 FWU because

U2F = (
F ; RF ); 
F := EF gig
0
i is psd and non-zero (by the last condition in F2; even if that

condition is weaken to �max(EF gig0i) � �) and RF := (B0 
 Ik)VF (B 
 Ik) is psd and non-zero
because B (de�ned in (6.3)) is nonsingular and VF (de�ned in (10.7)) is non-zero by the argument

given in the paragraph following (22.78) below. By their de�nitions, b
n and bRn are psd. In

addition, they are non-zero wp!1 by (22.75) and the result just established that the two matrices
that comprise h8 are non-zero. Hence, (b
n; bRn) 2 U2 wp!1.

The function W1(W2) = W
�1=2
2 is continuous at W2 = h7 on W2 because �min(h7) > 0 (given

that h7 = limEFngig
0
i and �min(EF gig

0
i) � � by the last condition in F2).

The function U1(�) de�ned in (10.8) is well-de�ned in a neighborhood of h8 and continuous at
h8 provided all psd matrices 
 2 Rk�k and R 2 R(p+1)k�(p+1)k with (
; R) in a neighborhood
of h8 := lim(
Fn ; RFn) are such that �

"(
; R) is nonsingular, where �(
; R) is de�ned in the

paragraph containing (10.8) with (
; R) in place of (
F ; RF ) and �"(
; R) is de�ned given �(
; R)

by (6.6). Lemma 17.1(b) shows that �"(
; R) is nonsingular provided �max(�(
; R)) > 0:We have

�max(�(
; R)) � max
j�p+1

�jj(
; R) = max
j�p+1

tr(
�1=2Rjj

�1=2)=k

� max
j�p+1

�max(

�1=2Rjj


�1=2)=k = max
j�p+1

sup
�:jj�jj=1

�0
�1=2

jj
�1=2�jj
Rjj


�1=2�

jj
�1=2�jj
� jj
�1=2�jj2=k

� max
j�p+1

�max(Rjj)�min(

�1)=k > 0; (22.76)

where �jj(
; R) denotes the (j; j) element of �(
; R); Rjj denotes the (j; j) k � k submatrix of
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R; the �rst inequality holds by the de�nition of �max(�); the �rst equality holds by (6.5) with
(
; R) in place of (b
n(�); bRn(�)); the second inequality holds because the trace of a psd ma-
trix equals the sum of its eigenvalues by a spectral decomposition, the third inequality holds

by the de�nition of �min(�); and the last inequality holds because the conditions in F2 imply
that �min(
�1) = 1=�max(
) > 0 for 
 in some neighborhood of lim
Fn (because �max(
F )

= sup�2Rk:jj�jj=1EF (�
0gi)2 � EF jjgijj2 � M2=(2+) < 1 for all F 2 F2 using the Cauchy-

Bunyakovsky-Schwarz inequality) and infF2F2 �max(RF ) > 0; which we show below, implies that

�max(Rjj) > 0 for some j � p+ 1:
To establish Assumption WU(c) for part (a) of the lemma, it remains to show that

inf
F2F2

�max(RF ) > 0: (22.77)

We show that the last condition in F2, i.e., infF2F2 �min(EF gig0i) > 0 implies (22.77). In fact, the
last condition in F2 is very much stronger than is needed to get (22.77). (The full strength of the
last condition in F2 is used in the proof of Lemma 10.3, see Section 20, because b
�1=2n enters the

de�nition of bDn and b
n�
Fn !p 0
k�k; where 
F = EF gig0i:)We show that (22.77) holds provided

infF2F2 �max(EF gig
0
i) > 0:

Let x� 2 R(p+1)k be such that jjx�jj = 1 and �max(VF ) = x�0VFx�: Let xy = (B
Ik)�1x�: Then,
we have

�max(RF ) := �max((B
0 
 Ik)VF (B 
 Ik)) = sup

x2R(p+1)k:jjxjj=1
x0(B0 
 Ik)VF (B 
 Ik)x

� xy0(B0 
 Ik)VF (B 
 Ik)xy � jjxyjj�2 = x�0VFx�=(x�0(B 
 Ik)�10(B 
 Ik)�1x�)

� �max(VF )=�max((B 
 Ik)�10(B 
 Ik)�1) � K�max(VF ); (22.78)

where K := 1=�max((B 
 Ik)�10(B 
 Ik)�1) is positive and does not depend on F (because B and

B 
 Ik are nonsingular and do not depend on F for B = B(�0) de�ned in (6.3)).
Next, infF2F2 �max(VF ) � infF2F2 �max(EF gig0i) because VF can be written as EF (u�i��0FZi)(u�i�

�0FZi)
0 
 ZiZ 0i; the �rst element of �0FZi is zero (because �F := (EFZiZ 0i)�1EF (gi; Gi); see (10.7),

and EF gi = 0k); the �rst element of u�i � �0FZi = ui (because u�i = (ui; u0�i)0); the upper left k � k
submatrix of VF equals EFu2iZiZ

0
i = EF gig

0
i; and so, �max(VF ) � �max(EF gig

0
i): This result and

(22.78) imply that (22.77) holds provided infF2F2 �max(EF gig
0
i) > 0: As noted above, the latter is

implied by the last condition in F2: This completes the veri�cation (22.77) and the veri�cation of
Assumption WU(c) in part (a) of the lemma.

Now, we prove part (a)(ii) of the lemma. We need to show that the four conditions in the
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de�nition of FWU in (10.12) hold.

(I) We show that infF2F1 �min(WF ) > 0; where WF := W1(W2F ) := 

�1=2
F := (EF gig

0
i)
�1=2

(by (10.5) and the paragraph containing (10.6)). The inequality EF jjgijj2+ � M in F2 implies
�min(WF ) � �1 for �1 su¢ ciently small (because the latter holds if �max(W�2

F ) � ��21 and W�2
F =


F = EF gig
0
i:

(II) We show that supF2F2 jjWF jj < 1; where WF := W1(W2F ) := 

�1=2
F := (EF gig

0
i)
�1=2 (by

(10.5) and the paragraph containing (10.11)). We have infF2F2 �min(
F ) > 0 (by the last condition

in F2).
(III) We show that infF2F1 �min(UF ) > 0; where in the present case UF := U1(U2F ) :=

((�0; Ip)(�
"(
F ; RF ))

�1(�0; Ip)0)1=2 and �(
F ; RF ) has (j; `) element equal to tr(R0j`F

�1
F )=k (by

(10.8)). The inequalities EF jjZijj4+ � M; EF jj(g0i; vec(Gi)0)0jj2+ � M; and �min(EFZiZ 0i) � �

imply that supF2F1(jj�F jj+ jjEF fif 0i jj+ jjEF (�0FZiZ 0i�F 
ZiZ 0i)jj+ jjEF (gi; Gi)�F 
ZiZ 0ijj) <1;
where �F is de�ned in (10.7) (using the Cauchy-Bunyakovsky-Schwarz inequality). This, in turn,

implies that supF2F1 jjVF jj < 1; supF2F1 jjRF jj < 1; supF2F1 jj�F jj < 1; supF2F1 jj�"F jj < 1;
and �min(LF ) � �2 for some �2 > 0; where VF and RF are de�ned in (10.7), �F := �(
F ; RF );

LF := (�0; Ip)(�
"
F )
�1(�0; Ip)0; and (�"F )

�1 exists by (IV) below (and �min(LF ) � �2 holds be-

cause A := (�0; Ip) 2 Rp�(p+1) has full row rank p; and �min(LF ) = inf�2Rp:jj�jj=1 �
0A(�"F )

�1A0�

� inf�2Rp:jj�jj=1(A0�)0(�"F )�1(A0�)=jjA0�jj2 � inf�2Rp:jj�jj=1 jjA0�jj2 = �min((�"F )�1)�min(AA0) � �2
for some �2 > 0 that does not depend on F ): Finally, �min(LF ) � �2 implies the desired result that
�min(UF ) � �1 for some �1 > 0 (because UF := L1=2F ):

(IV) We show that supF2F1 jjUF jj <1; where UF is as in (III) immediately above. By the same
calculations as in (22.76) (which use (22.77)) with �F and (
F ; RF ) in place of �(
; R) and (
; R);

respectively, we have infF2F1 �max(�F ) > 0: The latter implies infF2F1 �min(�
"
F ) > 0 by Lemma

17.1(b). In turn, the latter implies the desired result supF2F1 jjUF jj = supF2F1 jj((�0; Ip)(�"F )�1

� (�0; Ip)0)1=2jj <1:
Results (I)-(IV) establish the result of part (a)(ii).

Now, we prove part (b)(i) of the lemma. Assumption WU(a) holds for the parameter space �2

with h7 = h5;g by the same argument as for part (a)(i). Next, we establish Assumption WU(b) for

the parameter space �2: Using the de�nition of eVn (= eVn(�0)) in (7.1), we have
eVn = n�1 nX

i=1

fif
0
i � bfn bf 0n = EFnfif 0i � (EFnfi)(EFnfi)0 + op(1) (22.79)
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by the WLLN�s (using the moment conditions in F2). In consequence, we have

eRn = �
B0 
 Ik

�
(EFnfif

0
i � (EFnfi)(EFnf 0i)) (B 
 Ik) + op(1)

!p
eRh := �B0 
 Ik� [h5 � vec((0k; h4))vec((0k; h4))0] (B 
 Ik) ; (22.80)

where B = B(�) is de�ned in (6.3), the convergence uses the de�nitions of �4;F and �5;F in (10.16),

and the de�nition of f�n;h : n � 1g in (10.18).
This yields bU2n = (b
n; eRn)!p (h5;g; eRh) = h8; (22.81)

which veri�es Assumption WU(b) for the parameter space �2 for part (b) of the lemma.

Assumption WU(c) holds for the parameter space �2; with W2 and U2 de�ned as above, by
the argument given above to verify Assumption WU(c) in part (a) of the lemma plus the in-

equality �max( eRh) > 0; which is established as follows. The inequality �max( eRh) > 0 is im-

plied by infF2F2 �max( eRF ) > 0: The latter holds by the same argument as used above to show

infF2F2 �max(RF ) > 0 (which is given in the paragraph containing (22.78) and the paragraph follow-

ing it), but with (i) eRF in place ofRF and (ii) infF2F2 �max(eVF ) > 0; rather than infF2F2 �max(VF ) >
0; holding because EF gig0i is the upper left p� p submatrix of eVF ; which implies that �max(eVF ) �
�max(EF gig

0
i); and �max(EF gig

0
i) � � by the last condition in F2:

Now we prove part (b)(ii). It su¢ ces to show that F2 � FWU for �1 su¢ ciently small and

M1 su¢ ciently large because FWU � F2 by the de�nition of FWU : We need to show that the four

conditions in the de�nition of FWU in (10.12) hold.

(I) & (II) We have infF2F2 �min(WF ) > 0 and supF2F2 jjWF jj <1 by the proofs of (I) and (II)

for part (a)(ii) of the lemma.

(III) We show that infF2F2 �min(UF ) > 0; where in the present case UF := U1(U2F ) :=

((�0; Ip)(e�"F )�1(�0; Ip)0)1=2 and e�F := �(
F ; eRF ) has (j; `) element equal to tr( eR0j`F
�1F )=k (by the
paragraph containing (10.11)). We have supF2F2 jj eRF jj = supF2F2 jj (B0 
 Ik)�V arF (fi) (B 
 Ik) jj <
1 (where the inequality uses the condition EF jj(g0i; vec(Gi)0)0jj2+ �M in F2): In addition, infF2F2
�min(
F ) > 0 (by the last condition in F2). The latter results imply that supF2F2 jje�F jj <1 (be-

cause e�F minimizes jj(Ip+1 
 
�1=2F )[�
 
F � eRF ](Ip+1 
 
�1=2F )jj; see the paragraph containing
(10.11)). This implies that supF2F2 jje�"F jj < 1: In addition, e�F is nonsingular 8F 2 F2 (because
infF2F2 �min(e�F ) > 0 by the proof of result (IV) below). The last two results imply the desired re-
sult infF2F2 �min(UF ) = infF2F2 �min((�0; Ip)(e�"F )�1(�0; Ip)0)1=2) > 0 (because (�0; Ip) 2 Rp�(p+1)
has full row rank p):

(IV) We show that supF2F2 jjUF jj < 1; where UF is de�ned in (III) immediately above. The
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proof is the same as the proof of (IV) for part (a) of the lemma given above, but with eRF in place of
RF and with the veri�cation that infF2F2 �max( eRF ) > 0 given in the the veri�cation of Assumption
WU(c)) above.

This completes the proof of part (b)(ii). �

22.6 Proof of Theorem 10.1 for the Anderson-Rubin Test and CS

Theorem 10.1 is stated in Section 8 of AG2 and, for convenience, is restated at the beginning

of this section, i.e., Section 22.

Proof of Theorem 10.1 for AR Test and CS. We prove the AR test results of Theorem 10.1

by applying Proposition 10.2 with

� = �F := EF gig
0
i; hn(�) := �; and � := f� : � = �F for some F 2 FARg: (22.82)

We de�ne the parameter space H as in (10.2). For notational simplicity, we verify Assumption B�

used in Proposition 10.2 for a sequence f�n 2 � : n � 1g for which hn(�n) ! h 2 H; rather than
a subsequence f�wn 2 � : n � 1g for some subsequence fwng of fng: The same argument as given
below applies with a subsequence f�wn : n � 1g: For the sequence f�n 2 � : n � 1g; we have

�Fn ! h := limEFngig
0
i: (22.83)

The k�k matrix h is pd because �min(EFngig0i) � � > 0 for all n � 1 (by the last condition in FAR)
and lim�min(EFngig

0
i) = �min(h) (because the minimum eigenvalue of a matrix is a continuous

function of the matrix).

By the multivariate central limit theorem for triangular arrays of row-wise i.i.d. random vectors

with mean 0k; variance �Fn that satis�es �Fn ! h; and uniformly bounded 2+ moments, we have

n1=2bgn !d h
1=2Z; where Z � N(0k; Ik): (22.84)

We have

b
n = n�1 nX
i=1

(gig
0
i � EFngig0i)� bgnbg0n + EFngig0i !p h and b
�1n !p h

�1; (22.85)

where the equality holds by de�nition of b
n in (5.1), the �rst convergence result uses (22.83),
(22.84), and the WLLN�s for triangular arrays of row-wise i.i.d. random vectors with expectation

that converges to h; and uniformly bounded 1 + =2 moments, and the second convergence result
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holds by Slutsky�s Theorem because h is pd.

Equations (22.84) and (22.85) give

ARn := nbg0nb
�1n bgn !d Z
0h1=2h�1h1=2Z = Z 0Z � �2k: (22.86)

In turn, (22.86) gives

PFn(ARn > �
2
k;1��)! P (Z 0Z > �2k;1��) = �: (22.87)

where the equality holds because �2k;1�� is the 1 � � quantile of Z 0Z: Equation (22.87) veri�es
Assumption B� and the proof of the AR test results of Theorem 10.1 is complete.

The proof of the AR CS results of Theorem 10.1 is analogous to those for the tests, see the

Comment to Proposition 10.2. �

23 Proof of Theorem 9.1

Theorem 9.1 of AG2. Suppose k � p: For any sequence f��n;h : n � 1g that exhibits strong or
semi-strong identi�cation and for which ��n;h 2 ��1 8n � 1 for the SR-CQLR1 test statistic and

critical value and ��n;h 2 ��2 8n � 1 for the SR-CQLR2 test statistic and critical value, we have
(a) SR-QLRjn = QLRjn + op(1) = LMn + op(1) = LM

GMM
n + op(1) for j = 1; 2;

(b) ck;p(n1=2 bD�n; 1� �)!p �
2
p;1��; and

(c) ck;p(n1=2 eD�n; 1� �)!p �
2
p;1��:

The proof of Theorem 9.1 uses the following Lemma that concerns the QLRn statistic, which is

based on general weight matrices cWn and bUn; see (10.3), and considers sequences of distributions F
in F1 or F2; rather than sequences in FSR1 or FSR2 : Given the result of this Lemma, we obtain the

results of Theorem 9.1 using an argument that is similar to that employed in Section 10.2, combined

with the veri�cation of Assumption WU for the parameter spaces �1 and �2 for the CQLR1 and

CQLR2 tests, respectively, that is given in Lemma 22.4 in Section 22.

For the weight matrix cWn 2 Rk�k; Kleibergen�s LM statistic and the standard GMM LM

statistic are de�ned by

LMn(cWn) := nbg0nb
�1=2n PcWn bDn b
�1=2n bgn and LMGMM
n (cWn) := nbg0nb
�1=2n PcWn bGn b
�1=2n bgn; (23.1)

respectively, where bGn is the sample Jacobian de�ned in (5.1) with � = �0: In Lemma 23.1, we

show that when n1=2�pFn ! 1; the QLRn statistic is asymptotically equivalent to the LMn(cWn)

and LMGMM
n (cWn) statistics.
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The condition n1=2�pFn !1 corresponds to strong or semi-strong identi�cation in the present

context. This holds because, for F 2 FWU ; the smallest and largest singular values ofWF (EFGi)UF

(i.e., �minfk;pgF and �1F ) are related to those of 

�1=2
F EFGi; denoted (as in the Introduction) by

sminfk;pgF and s1F ; via c1sjF � � jF � c2sjF for j = minfk; pg and j = 1 for some constants

0 < c1 < c2 <1: This result uses the condition �min(
F ) � � > 0 in FWU : (See Section 8.3 in the

Appendix of AG1 for the argument used to prove this result.) In consequence, when k � p; the

standard weak, nonstandard weak, semi-strong, and strong identi�cation categories de�ned in the

Introduction are unchanged if sjFn is replaced by � jFn in their de�nitions for j = 1; p:

Lemma 23.1 Suppose k � p and Assumption WU holds for some non-empty parameter space

�� � �2: Under all sequences f�n;h : n � 1g with �n;h 2 �� for which n1=2�pFn !1; we have
(a) QLRn = LMn(cWn) + op(1) = LM

GMM
n (cWn) + op(1) and

(b) ck;p(n1=2cWn
bDn bUn; 1� �)!p �

2
p;1��:

Comment: The choice of the weight matrix bUn that appears in the de�nition of the QLRn
statistic, de�ned in (10.3), does not a¤ect the asymptotic distribution of QLRn statistic under

strong or semi-strong identi�cation. This holds because QLRn is within op(1) of LM statistics that

project onto the matrices cWn
bDn bUn and cWn

bGn bUn; but such statistics do not depend on bUn because
PcWn

bDn bUn = PcWn
bDn and PcWn

bGn bUn = PcWn
bGn when bUn is a nonsingular p�p matrix. In consequence,

the LM statistics that appear in Lemma 23.1 (and are de�ned in (23.1)) do not depend on bUn:
Proof of Theorem 9.1 of AG2. By the last paragraph of Section 6.2, for j = 1; SR-QLRjn(�0) =

QLRjn(�0) wp!1 under any sequence fFn 2 FSR2 : n � 1g with rFn(�0) = k for n large. By the
same argument as given there, the same result holds for j = 2: This establishes the �rst equality in

part (a) of Theorem 9.1 because by assumption �min(EFngig
0
i) > 0 for all n � 1 (see the paragraph

preceding Theorem 9.1).

Assumption WU for the parameter spaces �1 and �2 is veri�ed in Lemma 22.4 in Section 22

for the CQLR1 and CQLR2 tests, respectively. Hence, Lemma 23.1 implies that under sequences

f�n;h : n � 1g we have QLRjn = LMn(b
�1=2n ) + op(1) = LMGMM
n (b
�1=2n ) + op(1) for j = 1; 2;

where QLR1n and QLR2n are de�ned in (6.7) and in the paragraph containing (7.3), respectively,

and LMn(b
�1=2n ) and LMGMM
n (b
�1=2n ) are de�ned in (23.1) with cWn = b
�1=2n : In addition, Lemma

23.1 implies that ck;p(n1=2 bD�n; 1��)!p �
2
p;1�� and ck;p(n

1=2 eD�n; 1��)!p �
2
p;1��: Note that all of

these results are for sequences of distributions F in F1 or F2; not FSR1 or FSR2 :

Next, we employ a similar argument to that in (10.30)-(10.32) of Section 10.2. Speci�cally, we

apply the version of Lemma 23.1 described in the previous paragraph with g�Fi := �
�1=2
1F A0F gi
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and G�Fi := �
�1=2
1F A0FGi in place of gi and Gi to the QLRjn test statistics and their corre-

sponding critical values for j = 1; 2: We have n1=2s�pFn ! 1 i¤ n1=2��pFn ! 1; where s�pF de-

notes the smallest singular value of EFG�Fi and �
�
pF is de�ned to be the smallest singular value

of (EF g�Fig
�0
Fi)

�1=2(EFG
�
Fi)UF = (�

�1=2
1F A0F
FAF�

�1=2
1F )�1=2(EFG

�
i )UF = (EFG

�
i )UF : In conse-

quence, the condition n1=2�pFn ! 1 of Lemma 23.1 holds for the transformed variables g�Fni and

G�Fni; i.e., n
1=2��pFn !1: In the present case, f��1=21Fn

A0Fn : n � 1g are nonsingular k � k matrices
by the assumption that �min(EFngig

0
i) > 0 for all n � 1 (as speci�ed in the paragraph preceding

Theorem 9.1). In consequence, by Lemma 6.2 (and a footnote in Section 7, which extends the

results of Lemma 6.2 to the QLR2n statistic and its critical value), the QLR1n and QLR2n test

statistics and their corresponding critical values are exactly the same when based on g�Fi and G
�
Fi

as when based on gi and Gi: By the de�nitions of FSR1 and FSR2 ; the transformed variables g�Fi and

G�Fi satisfy the conditions in F1 and F2; see (10.31) and (10.32). In particular, EF g�Fig�0Fi = Ik and
�min(EFZ

�
FiZ

�0
Fi) � 1=(2c) > 0; where Z�Fi := �

�1=2
1F A0FZi and c is as in the de�nition of FSR1 in

(4.9). In addition, the LMn and LMGMM
n statistics are exactly the same when based on g�Fi and

G�Fi as when based on gi and Gi: (This holds because, for any k � k nonsingular matrix M; such
as M = �

�1=2
1F A0F ; we have LMn := nbg0nb
�1n bDn[ bD0nb
�1n bDn]�1 bD0nb
�1n bgn = nbg0nM 0(M b
nM 0)�1M bDn

[ bD0nM 0(M b
nM 0)�1M bDn]�1 bD0nM 0(M b
nM 0)�1bgn and likewise for LMGMM
n :) Using these results,

the version of Lemma 23.1 described in the previous paragraph applied to the transformed variables

g�Fi and G
�
Fi establishes the second and third equalities of part (a) and parts (b) and (c) of Theorem

9.1. �

Proof of Lemma 23.1. We start by proving the �rst result of part (a) of the lemma. We have

n1=2�pFn ! 1 i¤ q = p (by the de�nition of q in (10.22)). Hence, by assumption, q = p: Given

this, Q+2n(�) (de�ned in (21.11) in the proof of Theorem 10.5) is a scalar. In consequence, (21.13)

and (21.16) with j = p+ 1 give

0 = jQ+2n(b�+(p+1)n)j = jM+
n;p+1�q � b�+(p+1)n(1 + op(1))j and, hence,b�+(p+1)n = M+

n;p+1�q(1 + op(1))

= (n1=2B+0n;p+1�qU
+0
n
bD+0n W 0

n)h3;k�qh
0
3;k�q(n

1=2Wn
bD+n U+n B+n;p+1�q)(1 + op(1)) + op(1)

= (n1=2bg0nb
�1=2n
cW�10
n W 0

n)h3;k�qh
0
3;k�q(n

1=2Wn
cW�1
n
b
�1=2n bgn)(1 + op(1)) + op(1)

= nbg0nb
�1=2n h3;k�qh
0
3;k�qb
�1=2n bgn + op(1); (23.2)

where b�+(p+1)n is de�ned in (21.2), the equality on the third line holds by the de�nition of M+
n;p+1�q

in (21.16), the equality on the fourth line holds by lines two and three of (21.7) because when q = p
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the third line of (21.7) becomes n1=2Wn
cW�1
n
b
�1=2n bgn; i.e., n1=2Wn

bDnUnBn;p�q drops out, as noted
near the end of the proof of Theorem 10.5, and the last equality holds becauseWn

cW�1
n = Ik+op(1)

by Assumption WU and n1=2b
�1=2n bgn = Op(1):
Next, we have

QLRn := ARn � �min(n bQWU;n)

= ARn � b�+(p+1)n
= nbg0nb
�1=2n (Ik � h3;k�qh03;k�q)b
�1=2n bgn + op(1)
= nbg0nb
�1=2n h3;qh

0
3;q
b
�1=2n bgn + op(1); (23.3)

where the �rst equality holds by the de�nition of QLRn in (10.3), the second equality holds by the

de�nition of b�+(p+1)n in (21.2), the third equality holds by (23.2) and the de�nition ARn := nbg0nb
�1n bgn
in (5.2), and the last equality holds because h3 = (h3;q; h3;k�q) is a k � k orthogonal matrix.

When q = p; by Lemma 10.3, we have

n1=2Wn
bDnUnTn !d �h = h3;q and so

n1=2cWn
bDnUnTn !p h3;q; (23.4)

where the equality holds by the de�nition of �h in (10.24) when q = p and the second convergence

uses Wn
cW�1
n = Ik + op(1) by Assumption WU. In consequence,

PcWn bDn = P
n1=2cWn

bDnUnTn = Ph3;q + op(1) = h3;qh03;q + op(1) and
QLRn = LMn(cWn) + op(1); (23.5)

where the �rst equality holds because n1=2UnTn is nonsingular wp!1 by Assumption WU and post-
multiplication by a nonsingular matrix does not a¤ect the resulting projection matrix, the second

equality holds by (23.4), the third equality holds because h03;qh3;q = Iq (since h3 = (h3;q; h3;k�q)

is an orthogonal matrix), and the second line holds by the �rst line, (23.3), n1=2b
�1=2n bgn = Op(1);
and the de�nition of LMn(cWn) in (23.1).

As in (20.5) in Section 20 with bGn in place of bDn; we have
Wn

bGnUnBn;q��1n;q = WnDnUnBn;q�
�1
n;q +Wnn

1=2( bGn �Dn)UnBn;q(n1=2�n;q)�1
= Cn;q + op(1)!p h3;q; (23.6)

where Dn := EFnGi; the second equality uses (among other things) n
1=2� jFn ! 1 for all j � q
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(by the de�nition of q in (10.22)). The convergence in (23.6) holds by (10.19), (10.24), and (20.1).

Using (23.6) in place of the �rst line of (23.4), the proof of QLRn = LMGMM
n (cWn) + op(1) is the

same as that given for QLRn = LMn(cWn) + op(1): This completes the proof of part (a) of Lemma

23.1.

By (22.10) in the proof of Theorem 22.1, we have

ck;p(n
1=2cWn

bDn bUn; 1� �) !d ck;p;q(� [2]h; 1� �) and

ck;p;q(� [2]h; 1� �) = �2p;1�� when q = p; (23.7)

where the second line of (23.7) holds by the sentence following (22.9). This proves part (b) of Lemma

23.1 because convergence in distribution to a constant is equivalent to convergence in probability

to the same constant. �

24 Proofs of Lemmas 14.1, 14.2, and 14.3

24.1 Proof of Lemma 14.1

In this section, we suppress the dependence of various quantities on �0 for notational simplicity.

Thus, gi := gi(�0); Gi := Gi(�0) = (Gi1; :::; Gip) 2 Rk�p; and similarly for bgn; bGn; fi; B; bRn; bD�n;bDn; bLn; b�jn; and b
n:
The proof of Lemma 14.1 uses the following lemmas. De�ne

A�0 := �VB

0@ b00�V 2c0; :::; b
0
0�V p+1c0

Ip

1A 2 R(p+1)�p; B :=

0@ 1 00p

��0 �Ip

1A 2 R(p+1)�(p+1);

c0 := (b00�V b0)
�1; b0 := (1;��00)0; (�V 1; :::;�V p+1) := �V 2 R(p+1)�(p+1); and

LV 0 := (�0; Ip)�
�1
V (�0; Ip)

0 2 Rp�p: (24.1)

As de�ned in (3.4), A0 := (�0; Ip)0 2 R(p+1)�p:

Lemma 24.1 A�0LV 0 = �A0:

Comment: Some calculations show that the columns of A�0 and A0 are all orthogonal to b0: Also,

A�0 and A0 both have full column rank p: Hence, the columns of A
�
0 and A0 span the same space

in Rp+1: It is for this reason that there exists a p� p positive de�nite matrix L = LV 0 that solves
A�0L = �A0:
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Lemma 24.2 Suppose Assumption HLIV holds. Under H0; we have (a) n1=2bgn !d N(0
k; b00�V b0 �

KZ); (b) n�1
nP
i=1
(Gijg

0
i�EGijg0i) = op(1) 8j � p; (c) bGn = Op(1); (d) n�1 nP

i=1
(gig

0
i�Egig0i) = op(1);

and (e) bGn � n�1Pn
i=1EGi = Op(n

�1=2):

Proof of Lemma 14.1. To prove part (a), we determine the probability limit of bVn de�ned in
(6.3). By (6.3) and (3.1)-(3.3), in the linear IV regression model with reduced-form parameter �n;

we have

ui := ui(�0) = y1i � Y 02i�0; Eui = 0; u�i = �Y2i = ��0nZi � V2i; Eu�i = ��0nZi;

u�i :=

0@ ui

u�i

1A =

0@ ui

�Y2i

1A = �0nZi +

0@ ui

�V2i

1A ; where �n = (0k;��n) 2 Rk�(p+1);
Eu�i = �0nZi; u

�
i � Eu�i =

0@ ui

�V2i

1A = B0Vi; bu�in � Eu�i = (b�n � �n)0Zi; and
U� := (u�1; :::; u

�
n)
0 = Zn�k�n + V B; where V := (V1; :::; Vn)

0 2 Rn�(p+1) (24.2)

and B := B(�0) is de�ned in (6.3).

Next, we have

b�n � �n = (Z 0n�kZn�k)�1Z 0n�kU� � �n = (n�1Z 0n�kZn�k)�1n�1Z 0n�kV B = Op(n�1=2); (24.3)

where the �rst equality holds by the de�nition of b�n in (6.3), the second equality uses the last line of
(24.2), and the third equality holds by Assumption HLIV(c) (speci�cally, n�1Z 0n�kZn�k ! KZ and

KZ is pd) and by n�1=2Z 0n�kV = Op(1) (which holds because EZ
0
n�kV = 0 and the variance of the

(j; `) element of n�1=2Z 0n�kV is n�1
Pn
i=1 Z

2
ijEV

2
i` ! KZjjEV

2
i` < 1 using Assumption HLIV(c),

where KZjj denotes the (j; j) element of KZ ; for all j � k; ` � p+ 1):
By the de�nition of bVn in (6.3) and simple algebra, we have
bVn := n�1

nX
i=1

�
(u�i � bu�in) (u�i � bu�in)0 
 ZiZ 0i� (24.4)

= n�1
nX
i=1

�
(u�i � Eu�i ) (u�i � Eu�i )

0 
 ZiZ 0i
�
� n�1

nX
i=1

�
(bu�in � Eu�i ) (u�i � Eu�i )0 
 ZiZ 0i�

�n�1
nX
i=1

�
(u�i � Eu�i ) (bu�in � Eu�i )0 
 ZiZ 0i�+ n�1 nX

i=1

�
(bu�in � Eu�i ) (bu�in � Eu�i )0 
 ZiZ 0i� :
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Using the third line of (24.2), the fourth summand on the rhs of (24.4) equals

n�1
nX
i=1

h
(b�n � �n)0ZiZ 0i(b�n � �n)
 ZiZ 0ii : (24.5)

The elements of the fourth summand on the rhs of (24.4) are each op(1) because each is bounded

by Op(n�1)n�1
Pn
i=1 jjZijj4 using (24.3) and n�1

Pn
i=1 jjZijj4 � n�1

Pn
i=1 jjZijj41(jjZijj > 1) + 1 �

n�1
Pn
i=1 jjZijj6 + 1 = o(n) by Assumption HLIV(c).

Using the third line of (24.2), the second summand on the rhs of (24.4) (excluding the minus

sign) equals

n�1
nX
i=1

h
(b�n � �n)0ZiV 0iB 
 ZiZ 0ii : (24.6)

The elements of the second summand on the rhs of (24.4) are each op(1) because b�n � �n =
Op(n

�1=2) by (24.3) and for any j1; j2; j3 � k and ` � p we have n�1
Pn
i=1 Zij1Zij2Zij3Vi` = op(n

1=2)

because its mean is zero and its variance is EV 2i`n
�1Pn

i=1 Z
2
ij1
Z2ij2Z

2
ij3

= o(n) by Assumption

HLIV(c). By the same argument, the elements of the third summand on the rhs of (24.4) are each

op(1):

In consequence, we have

bVn = n�1
nX
i=1

�
B0ViV

0
iB 
 ZiZ 0i

�
+ op(1)

= n�1
nX
i=1

�
(B0ViV

0
iB �B0�VB)
 ZiZ 0i

�
+

"
B0�VB 
 n�1

nX
i=1

ZiZ
0
i

#
+ op(1)

! p B
0�VB 
KZ ; (24.7)

where the �rst equality holds using (24.4), the argument in the two paragraphs following (24.4), and

the third line of (24.2), the second equality holds by adding and subtracting the same quantity, and

the convergence holds by Assumption HLIV(c) (speci�cally, n�1
Pn
i=1 ZiZ

0
i ! KZ) and because

the �rst summand on the second line is op(1) (which holds because it has mean zero and each of

its elements has variance that is bounded by O(n�2
Pn
i=1 jjZijj4) = o(1); where the latter equality

holds by the calculations following (24.5)).

Equation (24.7) gives

bRn := �B0 
 Ik� bVn (B 
 Ik)!p �V 
KZ (24.8)

because B0B0 = BB = Ip+1: Hence, part (a) holds.
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To prove part (b), we have

b
n := n�1
nP
i=1
gig

0
i � bgnbg0n = n�1 nP

i=1
Egig

0
i + n

�1
nP
i=1
(gig

0
i � Egig0i) +Op(n�1)

= n�1
nP
i=1
ZiZ

0
iEu

2
i + op(1)!p (b

0
0�V b0)KZ ; (24.9)

where the �rst equality holds by the de�nition in (5.1), second equality uses n1=2bgn = Op(1)

by Lemma 24.2(a), the third equality holds by Lemma 24.2(d), and the convergence holds by

Assumption HLIV(c) and because Eu2i = E(V
0
i b0)

2 = b00�V b0 by Assumption HLIV(b).

Part (c) holds because

b�j`n = tr( bRj`nb
�1n )=k !p tr(�V j`KZ(b
0
0�V b0)

�1K�1
Z )=k = �V j`(b

0
0�V b0)

�1; (24.10)

where b�j`n and �V j` denote the (j; `) elements of b�n and �V ; respectively, bRj`n denotes the (j; `)
submatrix of bRn of dimension k � k; and the convergence holds because bRj`n !p �V j`KZ for

j; ` = 1; :::; p+ 1 and b
n !p (b
0
0�V b0)KZ by parts (a) and (b) of the lemma.

Part (d) holds because b�"n !p ((b
0
0�V b0)

�1�V )
" by part (c) of the lemma and Lemma 17.1(e),

((b00�V b0)
�1�V )

" = (b00�V b0)
�1�"V by Lemma 17.1(d), and �

"
V = �V by Assumption HLIV(e) and

Comment (ii) to Lemma 17.1).

We prove part (f) next. We have

n�1Z 0n�kY =

 
n�1

nX
i=1

Zi(y1i � Y 02i�0) + n�1
nX
i=1

ZiY
0
2i�0; n

�1
nX
i=1

ZiY2i

!

= (bgn � bGn�0;� bGn) = (bgn; bGn)
0@ 1 00p

��0 �Ip

1A = (bgn; bGn)B; (24.11)

where the expressions for bgn and bGn use (3.3). Using (24.11) and the de�nition of LV 0 in (24.1),
the statistic Tn de�ned in (3.4) can be written as

Tn := (Z 0n�kZn�k)
�1=2Z 0n�kY �

�1
V A0(A

0
0�

�1
V A0)

�1=2

= n1=2(n�1Z 0n�kZn�k)
�1=2(bgn; bGn)B��1V A0L�1=2V 0 : (24.12)

Note that, using the de�nitions of B and LV 0 in (24.1) and A0 in (3.4), the rhs expression for Tn

equals the expression in (3.4).

Now we simplify the statistic bDn := ( bD1n; :::; bDpn); where bDjn := bGjn�b�jnb
�1n bgn for j = 1; :::; p;
by replacing b�jn and b
n by their probability limits plus op(1) terms. Let �n := (�1n; :::; �pn) 2
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Rk�p: For j = 1; :::; p; we have

b�jn := n�1
nP
i=1
(Gij � bGjn)g0i = n�1 nP

i=1
EGijg

0
i + n

�1
nP
i=1
(Gijg

0
i � EGijg0i)� bGjnbg0n

= n�1
nP
i=1
EGijg

0
i + op(1) = �n�1

nP
i=1
EZiY2ijZ

0
iui + op(1)

= �n�1
nP
i=1
ZiZ

0
iEV2ijV

0
i b0 + n

�1
nP
i=1
ZiZ

0
i(Z

0
i�jn)Eui + op(1)

= �n�1
nP
i=1
ZiZ

0
i�
0
V j+1b0 + op(1); (24.13)

where gi = Zi(y1i � Y 02i�0) = Ziui by (3.3), the third equality holds by Lemma 24.2(a)-(c), the

fourth equality holds by (3.3) with � = �0; the �fth equality uses Y2ij = Z 0i�jn+V2ij and ui = V
0
i b0;

and the sixth equality holds because EVi = 0 by Assumption HLIV(b), ui = V 0i b0; and �V :=

(�V 1; :::;�V p+1) := EViV
0
i :

Equations (24.9) and (24.13) give

bDjn := bGjn � b�jnb
�1n bgn = bGjn +�0V j+1b0(b00�V b0)�1bgn + op(n�1=2) and
bDn := ( bD1n; :::; bDpn) = (bgn; bGn)

0@ �0V 2b0c0; :::;�
0
V p+1b0c0

Ip

1A+ op(n�1=2)
= (bgn; bGn)B��1V

0@�VB
0@ �0V 2b0c0; :::;�

0
V p+1b0c0

Ip

1A1A+ op(n�1=2)
= (bgn; bGn)B��1V A�0 + op(n�1=2); (24.14)

where the second equality on the �rst line uses bgn = Op(n�1=2) by Lemma 24.2(a), the second line
uses c0 = (b00�V b0)

�1; the second last equality holds because B�1 = B; and the last equality holds

by the de�nition of A�0 in (24.1).

Now, we have

n1=2 bD�n := n1=2b
�1=2n
bDnbL1=2n

= (b00�V b0)
�1=2(Ik + op(1))(n

�1Z 0n�kZn�k)
�1=2n1=2(bgn; bGn)B��1V A�0

�(b00�V b0)1=2L
1=2
V 0 (Ip + op(1)) + op(1)

= �(Ik + op(1))(n�1Z 0n�kZn�k)�1=2n1=2(bgn; bGn)B��1V A0L�1=2V 0 (Ip + op(1)) + op(1)

= �(Ik + op(1))Tn(Ip + op(1)) + op(1); (24.15)

where the �rst equality holds by the de�nition of bD�n in (6.7), the second equality holds by (24.14),
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b
n !p (b
0
0�V b0)KZ (which holds by part (b) of the lemma), and bLn := (�0; Ip)(b�"n)�1(�0; Ip)0 !p

(b00�V b0)LV 0 (which holds because b�"n !p (b
0
0�V b0)

�1�V by part (d) of the lemma), for LV 0 :=

(�0; Ip)�
�1
V (�0; Ip)

0 de�ned in (24.1), the third equality holds by Lemma 24.1, and the last equality

holds by (24.12). This completes the proof of part (f).

Lastly, we prove part (e). The statistic Sn satis�es

Sn := (Z 0n�kZn�k)
�1=2Z 0n�kY b0(b

0
0�V b0)

�1=2

= n1=2(n�1
nP
i=1
ZiZ

0
i)
�1=2bgn(b00�V b0)�1=2

= n1=2b
�1=2n bgn + op(1); (24.16)

where the �rst equality holds by the de�nition of Sn in (3.4), the second equality holds because

Y 0i b0 = ui; and the third equality holds by (24.9) and n1=2bgn = Op(1) by Lemma 24.2(a). This

proves part (e). �

Proof of Lemma 24.1. By pre-multiplying by B��1V ; the equation A
�
0LV 0 = �A0 is seen to be

equivalent to0@ b00�V 2c0; :::; b
0
0�V p+1c0

Ip

1ALV 0 = �B��1V
0@ �00

Ip

1A =

0@ �1 0p0

�0 Ip

1A��1V
0@ �00

Ip

1A : (24.17)

The last p rows of these p+ 1 equations are

LV 0 = (�0; Ip)�
�1
V (�0; Ip)

0; (24.18)

which hold by the de�nition of LV 0 in (24.1).

Substituting in the de�nition of LV 0; the �rst row of the equations in (24.17) is

(b00�V 2c0; :::; b
0
0�V p+1c0)(�0; Ip)�

�1
V (�0; Ip)

0 = (�1; 0p0)��1V (�0; Ip)
0: (24.19)

Equation (24.19) holds by the following argument. Write �V := (�V 1;�
�
V 2) for �

�
V 2 2 R(p+1)�p:

Then, b00�
�
V 2�0 = �b00�V b0 + b00�V 1; since b0 := (1;��00)0: The left-hand side of (24.19) equals

(b00�
�
V 2�0c0; b

0
0�V 2c0; :::; b

0
0�V p+1c0)�

�1
V (�0; Ip)

0

= ((�b00�V b0 + b00�V 1)c0; b00�V 2c0; :::; b00�V p+1c0)��1V (�0; Ip)
0

= (�1 + b00�V 1c0; b00�V 2c0; :::; b00�V p+1c0)��1V (�0; Ip)
0; (24.20)
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where the second equality uses the de�nition of c0 in (24.1).

Hence, the di¤erence between the left-hand side (lhs) and the rhs of (24.19) equals

(b00�V 1c0; :::; b
0
0�V p+1c0)�

�1
V (�0; Ip)

0 = c0b
0
0�V �

�1
V

0@ �00

Ip

1A = 00p (24.21)

using b00 := (1;��00): Thus, (24.19) holds, which completes the proof. �

Proof of Lemma 24.2. Part (a) holds by the CLT of Eicker (1963, Thm. 3) and the Cramér-

Wold device under Assumptions HLIV(a)-(c) because n1=2bgn = n�1Pn
i=1 Ziui is an average of i.i.d.

mean-zero �nite-variance random variables ui with nonrandom weights Zi:

To show part (b), we write

n�1
nP
i=1
(Gijg

0
i � EGijg0i) = �n�1

nP
i=1
ZiZ

0
i(Y2ijui � EY2ijui) (24.22)

= �n�1
nP
i=1
ZiZ

0
i(Z

0
i�jn)ui � n�1

nP
i=1
ZiZ

0
i(V2ijui � �0V j+1b0);

where the �rst equality holds because gi = Ziui and Gij = �ZiY2ij ; the second equality holds
because Y2ij = Z 0i�jn + V2ij and EV2ijui = EV2ijV

0
i b0 = �

0
V j+1b0: Both summands on the rhs have

mean zero. The (`1; `2) element of the �rst summand has variance equal to n�2
Pn
i=1(Zi`1Zi`2Z

0
i�jn)

2

� V ar(ui); which converges to zero for all `1; `2 � k because n�1
Pn
i=1 jjZijj6 = o(n); V ar(ui) =

b00�V b0 <1; and supj�p;n�1 jj�jnjj <1 by Assumption HLIV(b)-(d). The (`1; `2) element of the

second summand has variance equal to n�2
Pn
i=1 Z

2
i`1
Z2i`2V ar(V2ijui); which converges to zero for

all `1; `2 � k because n�1
Pn
i=1 jjZijj6 = o(n) and V ar(V2ijui) � E(V2ijV 0i b0)2 � b00b0EjjVijj4 < 1

by Assumptions HLIV(b)-(c). This establishes part (b).

For part (c), we have

bGn = �n�1 nP
i=1
ZiY

0
2i = �n�1

nP
i=1
ZiZ

0
i�n � n�1

nP
i=1
ZiV

0
2i: (24.23)

The �rst term on the rhs is O(1) by Assumption HLIV(c)-(d). The second term on the rhs is

Op(n
�1=2) (= op(1)) because it has mean zero and its (`; j) element for ` � k and j � p has

variance n�2
Pn
i=1 Z

2
i`�V j�j� ; where �V j�j� <1 is the (j�; j�) element of �V and j� = j + 1; and

n�1
Pn
i=1 Z

2
i`�V j�j� ! KZ``�V j�j� ; where KZ`` <1 is the (`; `) element of KZ : Hence, the rhs is

Op(1); which establishes part (c).
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To prove part (d), we have

n�1
nP
i=1
(gig

0
i � Egig0i) = n�1

nP
i=1
ZiZ

0
i(u

2
i � Eu2i )!p 0; (24.24)

where the convergence holds because the rhs of the equality has mean zero and its (`1; `2) element

has variance equal to n�1 times n�1
Pn
i=1(Z

2
i`1
Z2i`2V ar((V

0
i b0)

2) � n�1
Pn
i=1 jjZijj4EjjVijj4jjb0jj4 <

1 by Assumption HLIV(b)-(c) for all `1; `2 � k: This proves part (d).
Part (e) holds by the following argument:

bGn � n�1 nX
i=1

EGi = �n�1
nX
i=1

Zi(Y2i � EY2i)0 = �n�1
nX
i=1

ZiV
0
2i = Op(n

�1=2); (24.25)

where the last equality holds by the argument following (24.23). �

24.2 Proof of Lemma 14.2

Proof of Lemma 14.2. To prove part (a), we determine the probability limit of eVn de�ned in
(7.1), where fi = (Z 0iui;�vec(ZiY 02i)0)0 by (3.1) and (3.3). For �n(�) de�ned in (14.1), we can write

�n(�n) = n
�1

nX
i=1

Z�niZ
�0
ni; where (24.26)

Z�ni := vec

 
ZiZ

0
i�n � n�1

nX
`=1

Z`Z
0
`�n

!
= (�0n 
 Zi)Zi � n�1

nX
`=1

(�0n 
 Z`)Z` 2 Rkp

and the second equality in the second line follows from vec(ABC) = (C 0 
A)vec(B):
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We have

eVn := n�1
nX
i=1

 
fi � n�1

nX
`=1

Ef`

! 
fi � n�1

nX
`=1

Ef`

!0
�
 bfn � n�1 nX

`=1

Ef`

! bfn � n�1 nX
`=1

Ef`

!0

= n�1
nX
i=1

0@ Ziui

�vec(ZiV 02i)� Z�ni

1A0@ Ziui

�vec(ZiV 02i)� Z�ni

1A0 + op(1)
= n�1

nX
i=1

0@0@ ui

�V2i

1A0@ ui

�V2i

1A0 
 ZiZ 0i
1A+

0@ 0k�k 0k�kp

0kp�k �n(�n)

1A
+n�1

nX
i=1

0@ Ziui

�vec(ZiV 02i)

1A0@ 0k

�Z�ni

1A0 + n�1 nX
i=1

0@ 0k

�Z�ni

1A0@ Ziui

�vec(ZiV 02i)

1A0 + op(1)
=

0@0@ 1 ��00
0p �Ip

1A�V
0@ 1 ��00
0p �Ip

1A01A
 n�1 nX
i=1

ZiZ
0
i

!
+

0@ 0k�k 0k�kp

0kp�k �(��)

1A+ op(1)
=
�
B0�VB

�


 
n�1

nX
i=1

ZiZ
0
i

!
+

0@ 0k�k 0k�kp

0kp�k �(��)

1A+ op(1); (24.27)

where the second equality holds using Eui = 0; EV2i = 0p; Y2i = �0nZi+V2i; vec(ZiY
0
2i�n�1

Pn
`=1

EZ`Y
0
2`) = vec(ZiV

0
2i)+Z

�
ni; and Lemma 24.2(a) and (e) because bfn�n�1Pn

`=1Ef` = (bg0n; vec( bGn�
n�1

Pn
`=1EG`)

0)0; the third equality holds by (24.26) and simple rearrangement, the fourth equality

holds because (i) the �rst summand on the rhs of the fourth equality is the mean of the �rst

summand on the lhs of the fourth equality using ui = (1;��00)Vi; (ii) the variance of each element
of the lhs matrix is o(1) because EjjVijj4 <1 and n�1

Pn
i=1 jjZijj4 = o(n) by Assumption HLIV(b)-

(c) (because n�1
Pn
i=1 jjZijj4 � n�1

Pn
i=1 jjZijj41(jjZijj > 1)+1 � n�1

Pn
i=1 jjZijj6+1 = o(n) using

Assumption HLIV(c)), (iii) �n(�n) ! �(��) by Assumption HLIV2(a)-(b), and (iv) the third and

fourth summands on the lhs of the fourth equality have zero means and the variance of each

element of these summands is o(1) (because each variance is bounded by n�2
Pn
i=1 jjZ�nijj2jjZijj2 �

jj�njj2(n�2
Pn
i=1 jjZijj6+2n�2

Pn
i=1 jjZijj4n�1

Pn
`=1 jjZ`jj2+n�2

Pn
i=1 jjZijj2(n�1

Pn
`=1 jjZ`jj2)2) =

o(1); using jjZ�nijj � jj�njj(jjZijj2 + n�1
Pn
`=1 jjZ`jj2); sup�2� jj�njj < 1; and EjjVijj2 < 1 by

Assumption HLIV(b)-(d)), and the �fth equality holds by the de�nition of B in (6.3).

Using the de�nitions of eRn in (7.1) and R(��) in (14.2), part (a) of the lemma follows from
(24.27).

Next we prove part (b). We have

e�j`n = tr( eR0j`nb
�1n )=k !p tr(Rj`(��)
0(b00�V b0)

�1K�1
Z )=k =: (b00�V b0)

�1�V �j`; (24.28)
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where e�j`n and �V �j` denote the (j; `) elements of e�n and �V �; respectively, eR0j`n and Rj`(��)
denote the (j; `) submatrices of dimension k � k of eR0n and R(��); respectively, the convergence
holds by part (a) of the lemma and Lemma 14.1(b), and the last equality holds by the de�nition

of �V �j` in (14.3). Equation (24.28) establishes part (b).

Part (c) holds because part (b) of the lemma and Lemma 17.1(e) imply that e�"n !p

((b00�V b0)
�1�V �)

"; Lemma 17.1(d) implies that ((b00�V b0)
�1�V �)

" = (b00�V b0)
�1�"V �; and Assump-

tion HLIV2(c) implies that �"V � = �V �:

To prove part (d), we have

n1=2 eD�n
:= n1=2b
�1=2n

bDneL1=2n
= ((b00�V b0KZ)

�1=2K
1=2
Z + op(1))(n

�1Z 0n�kZn�k)
�1=2n1=2(bgn; bGn)B��1V A�0L1=2V 0

�(L�1=2V 0 (b00�V b0LV �)
1=2 + op(1)) + op(1)

= �(Ik + op(1))(n�1Z 0n�kZn�k)�1=2n1=2(bgn; bGn)B��1V A0L�1=2V 0 (L
�1=2
V 0 L

1=2
V � + op(1)) + op(1)

= �(Ik + op(1))Tn(L�1=2V 0 L
1=2
V � + op(1)) + op(1); (24.29)

where the �rst equality holds by the de�nition of eD�n in (7.2), the second equality holds by (i)
(24.14), (ii) the result of part (c) of the lemma that e�"n !p (b

0
0�V b0)

�1�V �; (iii) the result of

Lemma 14.1(b) that b
n !p (b
0
0�V b0)KZ ; (iv) n

�1Z 0n�kZn�k ! KZ by Assumption HLIV(c), (v)eLn := (�0; Ip)(e�"n)�1(�0; Ip)0 as de�ned in (7.2) with � = �0; and (vi) eLn !p b
0
0�V b0LV � for LV �

de�ned in part (d) of the lemma, the third equality holds by Lemma 24.1, and the last equality

holds by (24.12). This completes the proof of part (d). �

24.3 Proof of Lemma 14.3

When p = 1; we write

�V := EViV
0
i := (�V 1;�V 2) :=

0@ �21 ��1�2

��1�2 �22

1A 2 R2�2 (24.30)

for �V 1;�V 2 2 R2; using the de�nition in (3.2).
The proof of Lemma 14.3 uses the following lemma.

Lemma 24.3 Under the conditions of Lemma 14.3, (a) LV 0 =
�21�2�0��1�2+�20�22

�21�
2
2(1��2)

> 0; (b) b00�V b0 =

�21 � 2�0��1�2 + �20�22; and (c) LV 0(�22 � (b00�V 2)2(b00�V b0)�1) = 1:
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Proof of Lemma 14.3. We prove part (b) �rst. By (24.9) and (24.14),

n1=2b
�1=2n
bDn = n1=2(Ik + op(1))(n

�1Z 0n�kZn�k)
�1=2(bgn; bGn)B��1V A�0(b00�V b0)�1=2 + op(1)

= �n1=2(Ik + op(1))(n�1Z 0n�kZn�k)�1=2(bgn; bGn)B��1V A0L�1V 0(b00�V b0)�1=2 + op(1)
= �(Ik + op(1))Tn(LV 0b00�V b0)�1=2 + op(1); (24.31)

where the second equality holds by Lemma 24.1 and the third equality holds by (24.12). Because

T
0
n(Ik + op(1))Tn = T

0
nTn + op(1)jjTnjj2; the result of part (b) follows.

Next, we prove part (a). We have

n�1
nX
i=1

(Gi � bGn)(Gi � bGn)0
= n�1

nX
i=1

 
Gi � n�1

nX
`=1

EG`

! 
Gi � n�1

nX
`=1

EG`

!0
�
 bGn � n�1 nX

i=1

EGi

! bGn � n�1 nX
i=1

EGi

!0

= n�1
nX
i=1

 
�ZiZ 0i�n � ZiV2i + n�1

nX
`=1

Z`Z
0
`�n

! 
�ZiZ 0i�n � ZiV2i + n�1

nX
`=1

Z`Z
0
`�n

!0
+ op(1)

= n�1
nX
i=1

(ZiV2i)(ZiV2i)
0 + 2n�1

nX
i=1

(ZiZ
0
i�n)(ZiV2i)

0 � 2
 
n�1

nX
`=1

Z`Z
0
`�n

! 
n�1

nX
`=1

ZiV2i

!0
+�n(�n) + op(1)

= n�1Z 0n�kZn�k�
2
2 + �n(�n) + op(1); (24.32)

where the �rst equality holds by algebra, the second equality holds by Lemma 24.2(e), Gi = �ZiY2i;
Y2i = Z

0
i�n + V2i; and so Y2i � EY2i = V2i; the third equality holds by multiplying out the terms

on the lhs of the third equality and using the de�nition of �n(�) in (14.10), the �rst summand on

the lhs of the fourth equality equals the �rst summand on the rhs of the fourth equality plus op(1)

by the same argument as for Lemma 24.2(d) with V 22i in place of u
2
i and �

2
2 := EV 22i in place of

Eu2i ; the second summand on the lhs of the fourth equality is op(1) because it has mean zero and

its elements have variances that are bounded by 4�22n
�2Pn

i=1 jjZijj6 sup�2� jj�jj2; which is o(1) by
Assumption HLIV(c)-(d), and the third summand on the lhs of the fourth equality is op(1) because

n�1
Pn
`=1 Z`Z

0
`�n = O(1) by Assumption HLIV(c) and (d) and n�1

Pn
`=1 ZiV2i = op(1) by the

argument following (24.23).
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Combining (24.13), (24.9), (24.32) and the de�nition of eVDn in (14.9), we obtain
eVDn = n�1

nX
i=1

ZiZ
0
i(�

2
2 � (b00�V 2)2(b00�V b0)�1) + �n(�n) + op(1)

= KZL
�1
V 0 + �n(�n) + op(1); (24.33)

where the second equality holds by Lemma 24.3(c) and Assumption HLIV(c).

Next, we have

n1=2
�
n�1Z 0n�kZn�k

��1=2 bDnL1=2V 0 = n1=2 �n�1Z 0n�kZn�k��1=2 (bgn; bGn)B��1V A�0L1=2V 0 + op(1)
= �n1=2

�
n�1Z 0n�kZn�k

��1=2
(bgn; bGn)B��1V A0L�1=2V 0 + op(1) = �Tn + op(1); (24.34)

where the �rst equality holds by (24.14), the second equality holds by Lemma 24.1, and the third

equality holds by (24.12).

Using (24.33), we obtain

n1=2 eV �1=2Dn
bDn = [KZL

�1
V 0 + �n(�n) + op(1)]

�1=2n1=2 bDn
= �[KZL�1V 0 + �n(�n) + op(1)]

�1=2 �n�1Z 0n�kZn�k�1=2 TnL�1=2V 0 + op(1)

= �[KZL�1V 0 + �n(�n) + op(1)]
�1=2K

1=2
Z TnL

�1=2
V 0 (1 + op(1)) + op(1); (24.35)

where the second equality holds using (24.34) and Assumption HLIV(c), the third equality holds

by Assumption HLIV(c) and some calculations. Using this, we obtain

rk1n := n bD0n eV �1Dn
bDn = T 0nK1=2

Z [KZL
�1
V 0 + �n(�n) + op(1)]

�1K
1=2
Z TnL

�1
V 0(1 + op(1)) + op(1)

= T
0
n[Ik + LV 0K

�1=2
Z �n(�n)K

�1=2
Z + op(1)]

�1Tn(1 + op(1)) + op(1); (24.36)

where the last equality holds by some algebra. This proves part (a) of the lemma.

Part (c) of the lemma follows from Lemma 24.3(a) and (b) by substituting in �22 = c
2�21: �

Proof of Lemma 24.3. Part (a) holds by the following calculations:

LV 0 := (�0; 1)

0@ �21 ��1�2

��1�2 �22

1A�10@ �0

1

1A (24.37)

=
1

�21�
2
2(1� �2)

(�0; 1)

0@ �22 ���1�2
���1�2 �21

1A0@ �0

1

1A =
�21 � 2�0��1�2 + �20�22

�21�
2
2(1� �2)

:
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We have LV 0 > 0 because �V is pd by Assumption HLIV(b) and (�0; 1) 6= 02:
Part (b) holds by the �rst of the following two calculations:

b00�V b0 := (1;��0)

0@ �21 ��1�2

��1�2 �22

1A0@ 1

��0

1A = �21 � 2�0��1�2 + �20�22 and

b00�V 2 := (1;��0)(��1�2; �22)0 = ��1�2 � �0�22: (24.38)

Using (24.38), we obtain

�22 � (b00�V 2)2(b00�V b0)�1 = �22 �
(��1�2 � �0�22)2

�21 � 2�0��1�2 + �20�22
(24.39)

=
�21�

2
2 � 2�0��1�32 + �20�42 � (��1�2 � �0�22)2

�21 � 2�0��1�2 + �20�22
=

�21�
2
2(1� �2)

�21 � 2�0��1�2 + �20�22
= L�1V 0;

which proves part (c). �

25 Proof of Theorem 12.1

In Section 8, we establish Theorem 8.1 by �rst establishing Theorem 10.1, which concerns non-

SR versions of the AR, CQLR1; and CQLR2 tests and employs the parameter spaces FAR; F1;
and F2; rather than FSRAR; FSR1 ; and FSR2 : We prove Theorem 12.1 here using the same two-step

approach.

In the time series context, the non-SR version of the AR statistic is de�ned as in (5.2) based

on ffi � bfn : i � ng; but with b
n de�ned in (12.3) and Assumption 
 below, rather than in (5.1),
and the critical value is �2k;1��: The non-SR QLR1 time series test statistic and conditional critical

value are de�ned as in Section 6.1, but with bVn and b
n de�ned in (12.3) and Assumption V1 below
based on f(u�i � bu�in)
 Zi : i � ng; rather than in (6.3) and (5.1), respectively. The non-SR QLR2
time series test statistic and conditional critical value are de�ned as in Section 7, but with bVn andb
n de�ned in (12.3) and Assumption V below based on ffi � bfn : i � ng; in place of eVn and b
n
de�ned in (7.1) and (5.1), respectively.

For the non-SR AR and non-SR CQLR tests in the time series context, we use the following

parameter spaces. We de�ne

FTS;AR := fF : fWi : i = :::; 0; 1; :::g are stationary and strong mixing under F with

strong mixing numbers f�F (m) : m � 1g that satisfy �F (m) � Cm�d;

EF gi = 0
k; EF jjgijj2+ �M; and �min(
F ) � �g (25.1)
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for some ; � > 0; d > (2 + )=; and C;M < 1; where 
F is de�ned in (12.4). We de�ne FTS;2
and FTS;1 as F2 and F1 are de�ned in (10.1), respectively, but with FTS;AR in place of FAR. For
CS�s, we use the corresponding parameter spaces FTS;�;AR := f(F; �0) : F 2 FTS;AR(�0); �0 2 �g;
FTS;�;2 := f(F; �0) : F 2 FTS;2(�0); �0 2 �g; and FTS;�;1 := f(F; �0) : F 2 FTS;1(�0); �0 2 �g;
where FTS;AR(�0); FTS;2(�0); and FTS;1(�0) denote FTS;AR; FTS;2; and FTS;1; respectively, with
their dependence on �0 made explicit.

For the (non-SR) CQLR2 test and CS in the time series context, we use the following assump-

tions.

Assumption V: bVn(�0) � VFn(�0) !p 0
(p+1)k�(p+1)k under fFn : n � 1g for any sequence fFn 2

FTS;2 : n � 1g for which VFn(�0) ! V for some matrix V whose upper left k � k submatrix 
 is
pd.

Assumption V-CS: bVn(�0n) � VFn(�0n) !p 0
(p+1)k�(p+1)k under f(Fn; �0n) : n � 1g for any

sequence f(Fn; �0n) 2 FTS;�;2 : n � 1g for which VFn(�0n) ! V for some matrix V whose upper

left k � k submatrix 
 is pd.

For the (non-SR) CQLR1 test and CS, we use Assumptions V1 and V1-CS, which are de�ned

to be the same as Assumptions V and V-CS, respectively, but with FTS;1 and FTS;�;1 in place of
FTS;2 and FTS;�;2:

For the (non-SR) AR test and CS, we use Assumptions 
 and 
-CS, which are de�ned as

follows. Assumption 
: b
n(�0) � 
Fn;n(�0) !p 0
k�k under fFn : n � 1g for any sequence

fFn 2 FTS;AR : n � 1g for which 
Fn;n(�0)! 
 for some pd matrix 
 and rFn;n(�0) = r for all n

large, for any r 2 f1; :::; kg: Assumption 
-CS is the same as Assumption 
; but with �0n and
FTS;�;AR in place of �0 and FTS;AR:

For the time series case, the asymptotic size and similarity results for the non-SR tests and CS�s

are as follows.

Theorem 25.1 Suppose the AR, CQLR1; and CQLR2 tests are de�ned as above, the parame-

ter spaces for F are FTS;AR; FTS;1; and FTS;2; respectively (de�ned in the paragraph containing
(25.1)), and the corresponding Assumption 
; V1, or V holds for each test. Then, these tests have

asymptotic sizes equal to their nominal size � 2 (0; 1) and are asymptotically similar (in a uniform
sense). Analogous results hold for the AR, CQLR1; and CQLR2 CS�s for the parameter spaces

FTS;�;AR; FTS;�;1; and FTS;�;2; respectively, provided the corresponding Assumption 
-CS, V1-CS,
or V-CS holds for each CS, rather than Assumption 
, V1; or V.

The proof of Theorem 12.1 uses Theorem 25.1 and the following lemma.
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Lemma 25.2 Suppose fXi : i = :::; 0; 1; :::g is a strictly stationary sequence of mean zero, square
integrable, strong mixing random variables. Then, V ar(Xn) = 0 for any n � 1 implies that Xi = 0
a.s., where Xn := n

�1Pn
i=1Xi:

Proof of Theorem 12.1. The proof of Theorem 12.1 using Theorem 25.1 is essentially the same

as the proof (given in Section 10.2) of Theorem 8.1 using Theorem 10.1 and Lemma 10.6. Thus, we

need an analogue of Lemma 10.6 to hold in the time series case. The proof of Lemma 10.6 (given

in Section 10.2) goes through in the time series case, except for the following:

(i) in the proof of brn � r (= rFn) a.s. 8n � 1 we replace the statement �for any constant vector
� 2 Rk for which �0
Fn� = 0; we have �0gi = 0 a.s.[Fn] and �0b
n� = n�1 nP

i=1
(�0gi)2 � (�0bgn)2 = 0

a.s.[Fn]�by the statement �for any constant vector � 2 Rk for which �0
Fn� = 0; we have �0gi = 0
a.s.[Fn] by Lemma 25.2 (with Xi = �0gi) and in consequence �0b
n� = 0 a.s.[Fn] by Assumption

SR-V2(c), SR-V2-CS(c), SR-V1(c), SR-V1-CS(c), SR-
(c), or SR-
-CS(c).�

(ii) in the proof of brn � r a.s. 8n � 1 we have ��1=21Fn
A0Fn

b
nAFn��1=21Fn
!p Ir; with �1Fn and

AFn replaced by �1Fn;n and AFn;n; respectively, by Assumption SR-V2(a) or SR-V2-CS(a), rather

than by the de�nition of b
n combined with a WLLN for i.i.d. random variables,

(iii) in (10.27), the second implication holds by Lemma 25.2 (with Xi = �0gi) and the fourth

implication holds by Assumption SR-V2(c), SR-V2-CS(c), SR-V1(c), SR-V1-CS(c), SR-
(c), or

SR-
-CS(c), and

(iv) the result of Lemma 6.2, which is used in the proof of Lemma 10.6, holds using the equivari-

ance condition in Assumption SR-V2(b), SR-V2-CS(b), SR-V1(b), SR-V1-CS(b), SR-
(b), or SR-


-CS(b). �

Proof of Theorem 25.1. The proof is essentially the same as the proof of Theorem 10.1 (given

in Section 22) and the proofs of Lemma 10.3 and Proposition 10.4 (given in Section 20 above and

Section 16 in the SM of AG1, respectively) for the i.i.d. case, but with some modi�cations. The

modi�cations are the �rst, second, third, and �fth modi�cations stated in the proof of Theorem 7.1

in AG1, which is given in Section 19 in the SM to AG1. Brie�y, these modi�cations involve: (i) the

de�nition of �5;F ; (ii) justifying the convergence in probability of b
n and the positive de�niteness
of its limit by Assumption V, V-CS, V1, V1-CS, 
; or 
-CS, rather than by the WLLN for i.i.d.

random variables, (iii) justifying the convergence in probability of b�jn (= b�jn(�0)) by Assumption
V, V-CS, V1, or V1-CS, rather than by the WLLN for i.i.d. random variables, and (iv) using the

WLLN and CLT for triangular arrays of strong mixing random vectors given in Lemma 16.1 in the

SM of AG1, rather than the WLLN and CLT for i.i.d. random vectors. For more details on the

modi�cations, see Section 19 in the SM to AG1. These modi�cations a¤ect the proof of Lemma
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10.3. No modi�cations are needed elsewhere. �

Proof of Lemma 25.2. Suppose V ar(Xn) = 0: Then, Xn equals a constant a.s. Because

EXn = 0; the constant equals zero. Thus,
Pn
i=1Xi = 0 a.s. By strict stationarity,

Pn
i=1Xi+sn = 0

a.s. and
Pn+1
i=2 Xi+sn = 0 a.s. for all integers s � 0: Taking di¤erences yields X1+sn = X1+n+sn for

all s � 0: That is, X1 = X1+sn for all s � 1:
Let A be any Borel set in R: By the strong mixing property, we have

�s := jP (X1 2 A;X1+sn 2 A)� P (X1 2 A)P (X1+sn 2 A)j � �X(sn)! 0 as s!1; (25.2)

where �X(m) denotes the strong mixing number of fXi : i = :::; 0; 1; :::g for time period separations
of size m � 1: We have

�s = jP (X1 2 A)� P (X1 2 A)2j = P (X1 2 A)(1� P (X1 2 A)); (25.3)

where the �rst equality holds because X1 = X1+sn a.s. and by strict stationarity. Because �s ! 0

as s ! 1 by (25.2) and �s does not depend on s by (25.3), we have �s = 0: That is, P (X1 2 A)
equals zero or one (using (25.3)) for all Borel sets A and, hence, Xi equals a constant a.s. Because

EXi = 0; the constant equals zero. �
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