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Abstract

This paper studies the optimal inflation target in a menu cost model with an occasionally

binding zero lower bound on interest rates. I find that the optimal inflation target is 5%, much

larger than the rates currently targeted by the Fed and the ECB, and also larger than in other

time- and state-dependent pricing models. In my model resource misallocation does not increase

greatly with inflation, unlike in previous sticky price models. The critical additions for this result

are firms’ idiosyncratic shocks. Higher inflation does indeed increase the gap between old and

new prices, but it also increases firms’ responsiveness to idiosyncratic shocks. These two effects

are balanced using idiosyncratic shocks consistent with micro-price statistics. By increasing

the inflation target, policymakers can reduce the probability of hitting the zero lower bound,

avoiding costly recessionary episodes.
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1 Introduction

During the last recession, central banks around the world quickly reduced their short-term interest

rates to zero in order to stimulate economic activity. Had they been able to, they would have

decreased rates even further, but since nominal interest rates cannot be negative, they could not.1

The zero lower bound (ZLB) constraint on nominal interest rates motivated a number of economists

to argue in favor of increasing the inflation target. According to these commentators, a higher

inflation target would increase average nominal interest rates, thus giving central bankers more

room to react to adverse shocks.

The goal of my paper is to carefully quantify the benefits and costs of a higher inflation target.

While the benefits of a higher inflation target are well-understood, much less is known about the

costs of permanently higher rates of inflation. In existing sticky price models, the major cost of

inflation is that it induces dispersion in relative prices across otherwise identical producers. Such

dispersion implies an efficiency loss due to dispersion in the producer’s marginal products. I build

a menu cost model that is capable of reproducing the salient features of the micro-data on prices;

this is critical to determine the optimal inflation target. In particular, I extend the Gertler and

Leahy (2008) and Midrigan (2011) menu cost models with idiosyncratic shocks to a standard New

Keynesian setting amenable to policy analysis. I incorporate a Taylor rule for monetary policy,

occasionally subject to a zero lower bound, as well as a rich source of aggregate dynamics arising

from several aggregate shocks.

My main result is that the optimal inflation target in this environment is about 5%, much

greater than in other leading time- and state-dependent pricing models studied in the literature

– Calvo (1983), Taylor (1980), and Dotsey, King, and Wolman (1999). Thus, my results sharply

contrast with those of Coibion, Gorodnichenko, and Wieland (2012), who find a robust result of

an optimal inflation target between 1-2 % by quantifying the optimal inflation target with an

occasionally binding zero lower bound in several time- and state-dependent pricing models.2

The reason the optimal inflation target is so much higher in my model is that the misallocation

costs do not greatly increase with a higher rate of inflation. Intuitively, a higher inflation target

increases the gap between recently-adjusted prices and those of the producers that have not adjusted

in a while. This effect, which is present in my model and all other leading sticky price models,

implies that price dispersion greatly increases with a higher inflation target. However, my model

with menu costs and firm-level shocks contains an offsetting force. Because firms optimally choose

the timing of their price changes, a higher inflation target forces some firms that would otherwise

not react to an idiosyncratic shock to do so. A higher inflation target thus forces firms to react

more forcefully to large idiosyncratic shocks, thereby reducing the dispersion in the firms’ marginal

1See Ball (2013), Blanchard, DellAriccia, and Mauro (2010), and Williams (2009) for a revival of this old proposal
by Summers (1991)

2See also Billi (2011), Walsh (2009), Williams (2009) and Schmitt-Grohé and Uribe (2010)
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productivity of labor. I find that this second effect is very strong quantitatively in versions of the

model consistent with the micro-data, offseting the first effect almost entirely. Therefore, a higher

inflation target in my model does not generate as much inefficiency as it does in economies without

idiosyncratic shocks.

To understand the difference between my results and the previous results, I characterize output

gap in the steady state for all nominal rigidity models. I characterize TFP losses due to price

dispersion and markups as a function of observable micro-price statistics.3 I show that price

dispersion depends on five micro-price statistics: mean and variance of size of price changes as

well as mean, variance, and skewness of time between price changes. Additionally, I can use

these statistics to analyze the important dimensions of different pricing models to determine price

dispersion. Moreover, I characterize aggregate markups as a function of time between price changes

and inflation target.

Consider next the benefits of having a higher inflation target. A higher inflation target decreases

the business cycle volatility of the output gap for two reasons. First, it decreases the probability

of hitting the zero lower bound. Second, in menu cost models the inflation target determines the

extent to which the aggregate price level reacts to aggregate shocks in periods where the ZLB is

binding. In models with price rigidities, an initial drop in the output gap decreases inflation; if the

zero lower bound is binding, this initial drop in inflation increases real interest rates, even further

depressing the output gap.

The important property in my menu cost model is that the deflationary spiral decreases with

the inflation target. At low levels of inflation, periods of ZLB binding are associated with deflations,

triggering downward price adjustments and a higher deflationary spiral. But higher inflation does

not trigger downward price adjustment in periods of binding ZLB. At 0% inflation target the

deflationary spiral is larger in the menu cost model than in the Calvo model, but at 4 % they are

the same.

I depart from the standard New Keynesian framework by using menu costs with fat-tailed

idiosyncratic shocks to model price rigidities, as in Gertler and Leahy (2008) and Midrigan (2011).

I also depart from standard menu cost models in two ways.4 In my model, business cycles of output

and inflation are generated by a rich set of aggregate shocks given by productivity, government

expenditure, monetary and risk premium shocks. Additionally, I model monetary policy with a

Taylor rule subject to an occasionally binding zero lower bound. Consenquently, nominal interest

rates react to inflation and ouput fluctuations, stabilizing business cycle fluctuations generated by

the structural shocks.

Without any additional assumptions, this model implies empirical counterfactual large inflation

3See Alvarez, Gonzalez-Rozada, Neumeyer, and Beraja (2011) and Burstein and Hellwig (2008) for an analytical
and numerical characterization of price dispersion in a menu cost model. For empirical studies at different inflation
targets see Gagnon (2009) and Wulfsberg (2010)

4See Golosov and Lucas (2007), Midrigan and Kehoe (2011), Nakamura and Steinsson (2010) and Vavra (2014).
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volatility.5 To yield a lower volatility of inflation, I use GHH preferences together with complemen-

tarities. Additionally, these modeling choices reduce the deflationary spiral due to the ZLB, and

therefore lower the cost of the ZLB constraint closer to the empirical evidence during the 2007-2009

recession. Finally, I assume Epstein-Zin preferences to generate a non-trivial cost of business cycles.

These features of the model deliver three main quantitative results. First, macroeconomic

dynamics in the menu cost model are similar to Calvo when the inflation target is near zero and

there is no ZLB constraint on nominal interest rates. This result confirms Gertler and Leahy (2008)

and Midrigan (2011) in a model with richer macroeconomic dynamics. The interaction between

the ZLB constraint and inflation target changes macroeconomic dynamics in the following two

ways: (i) it raises the mean level of output gap at higher inflation targets; and (ii) it increases the

deflationary spiral when the ZLB is binding at low inflation targets. To show the latter result, I

use non-linear impulse-responses.

There are two challenges to numerically solve a menu cost model in a New Keynesian framework.

First, even without the ZLB constraint, the firm problem has kinks, eliminating perturbation

methods as a means to solve these economies. Thus, I rely on global projection methods. Due

to the curse of dimensionality, I use the Smoliak sparse-grid method as in Judd, Maliar, Maliar,

and Valero (2014) and Krueger and Kubler (2004). Second, since standard application of the

Krusell-Smith algorithm fails in these economies, I develop a modified version of the algorithm.6

Typically, the Krusell-Smith algorithm projects price and quantities on a small set of moments of

the distribution of the idiosyncratic state. In this model, it consists of projecting inflation to some

moments of the distribution of relative prices. But, an exogenous inflation function and a Taylor

rule on nominal interest rates imply that these depend only on the state of the economy – thus they

don’t react to inflation and output endogenously, generating indeterminancy (see Gaĺı (2009)). To

avoid this problem, I modify the Krusell-Smith algorithm to incorporate the intensive margin of the

Phillips curve in the inflation function, making inflation partially react to output – thus nominal

interest rates react to inflation and output endogenously, generating determinacy.

This paper is closely related to recent work that has emphasized the implications of the zero

lower bound on nominal interest rates for the optimal inflation target. A thorough and rigorous

description of the cost and benefits of a higher inflation target is given by Schmitt-Grohé and Uribe

(2010). In their paper, they compute the probability of hitting the ZLB using a model with a

calibrated magnitude of shocks and reach the conclusion that the probability of hitting the zero

lower bound is zero. In my paper, I follow Barro (2006) in calculating the probability of rare events

using panel data for different countries controlling for different levels of inflation target. I find that

at 2 % inflation target, the probability of hitting the ZLB is 10 %.

Section 2 describes the model. Section 3 presents a simplified version and shows the modified

5See Christiano, Eichenbaum, and Evans (2005)
6See Krusell and Smith (2006), Midrigan (2011) and Khan and Thomas (2008) for applications of the Krusell-Smith

algorithm.
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Krusell-Smith algorithm. Section 4 calibrates the model. Section 5 explains steady state welfare

losses and section 6 quantifies the optimal inflation target in a medium scale DSGE model. Section

7 concludes.

2 Model

Time is discrete. There is a continuum measure one of intermediate firms indexed by i ∈ [0, 1], a

final competitive firm, a representative household, and a central bank.

Intermediate firms are monopolistically competitive. The producer of intermediate good i pro-

duces output yi using labor li and material ni, and the productivity of the firm is given by an

idiosyncratic component Ai and an aggregate component ηZ acording to

yi = AiηZN
α
i l

1−α
i (1)

The idiosyncratic productivity of the firm Ai follows a compound Poisson process given by

∆ log(At,i) =

{
ηt+1 with prob. p

0 with prob. 1-p
; ηt ∼i.i.d h(η) (2)

with E[η] = 0, i.e. there is no growth in the idiosyncratic productivity.

Firms face a physical cost of changing their price. Every time the firm changes her nominal

price she has to paid a fixed cost given by θ units of labor.

Intermediate firms are competitive with technology given by

Yt =

(∫ 1

0

(
yt,i
At,i

) γ−1
γ

) γ
γ−1

(3)

where final output uses a Dixit-Stiglitz aggregator with elasticity γ. The main reason to add the

productivity shock in the Dixit-Stiglitz aggregator is to decrease the state space of the firm (see

below for explanation).7

Households’ preferences are given by

Ut = u(Ct, Lt) + βEt[U1−σez
t ]

1
1−σez (4)

where σez is the risk sensibility parameter and measures the departure from expected utility. The

consumer faces the following budget constraint given by

PtCt +Bt = WtLt +

∫
Φt,idi+ ηQ,tRt−1Bt−1 + Tt (5)

7This formulation is also used in Midrigan (2011), Midrigan and Kehoe (2011) and Alvarez and Lippi (2011)
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where Wt and Pt are the nominal prices of labor and consumption, Φt,i are nominal profits for the

intermediate producer and Tt are lump sum transfers from the government. Bt−1 is the stock of one

period nominal bonds with a rate of return Rt−1η
Q
t , where the second element generates a wedge

between the nominal interest rate controlled by the central bank and the return of the assets held

by households. This shock can be micro-funded as a net-worth shock in models with the financial

accelerator and capital accumulation.

The behavior of monetary policy is described by a Taylor rule given by

R∗t =

(
1 + π̄

β

)1−φr (
R∗t−1

)φr [( Pt
Pt−1(1 + π̄)

)φπ
X
φy
t

]1−φr (
Xt

Xt−1

)φdy
ηR,t

Rt = max {1, R∗t } (6)

R is the nominal interest rate, π̄ is the target inflation, ηR is a money shock, and Xt is the output

gap, i.e. the ratio between current output and the natural level of output defined in an economy

with zero menu cost (an economy without price rigidities).

Aggregate output is equal to aggregate consumption plus government expenditure

Yt −
∫
Nt,i = Ct + ηG,t (7)

where I used Ct, ηG,t to denote consumption and government expenditure. The government follows

a balanced budget each period

ηG,tPt = Tt (8)

All aggregate shocks follow a AR(1), i.e. log(ηj) ∼ AR(1) where i ∈ {R,Z,G,Q, }. Next I will

describe each agent’s problem and the equilibrium definition.

Household: The representative consumer problem is given by

max
{C,L,B}t

U0 (9)

subject to (4) and (5). From the problem of the representative consumer we have the stochastic

nominal discount factor

Qt = β

(
Ut+1

Et[U1−σez
t+1 ]

1
1−σez

)−σez
Uc(Ct+1, Lt+1)

Uc(Ct, Lt)

Pt
Pt+1

Qt+1 (10)

with Q0 = 1.
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Final Producer: The final producer problem is given by

max
{Yt,{yt,i}i}

E0

[ ∞∑
t=0

Qt

(
PtYt −

∫ 1

0
pt,iyt,idi

)]
(11)

subject to (3). Given constant return to scale and zero profits conditions, we have that the aggregate

price level and the firm’s demand are given by

Pt =

(∫ 1

0
(pt,iAt,i)

1−γ di

) 1
1−γ

yt(At,i, pt,i) = At,i

(
At,tpt,i
Pt

)−γ
Yt (12)

Firms: The firm’s problem is given by

max
pi,t

E

[ ∞∑
t=0

QtΦt,i

]
s.t. Φi

t = yt (At,i, pt,i)

(
pi,t −

W 1−α
t Pαt ι

ηZt

)
− I(pt−1,i 6= pt,i)Wtθ (13)

subject to (2) and A−1, p−1 given. Note that I’ve already included the optimal technique in the

marginal cost of the firm with ι =
(

1−α
α

)α
+
(

α
1−α

)1−α
.

Equilibrium definition An equilibrium is a set of stochastic processes for (i) consumption,

labor supply, and bonds holding {C,L,B}t for the representative consumer; (ii) pricing policy func-

tions for firms {pi}t and inputs demand {Nt,i, lt,i} for the monopolistic firms; (iii) final output and

inputs demand {Yt, {yt,i}i}t for the final producer and (iv) nominal interest rate {R}t:

1. Given prices, {C,L,B}t solve the consumer’s problem in (9).

2. Given prices, {Yt, {yt,i}i}t solve the consumer’s problem in (11).

3. Given the prices and demand schedule, the firm’s policy pt,i solves (13) and inputs demand

are optimal.

4. Nominal interest rate satisfies the Taylor rule (6).

5. Markets clear at each date:∫ 1

0
(lt,i + I(pt,i 6= pt−1,i)θ) di = Lt

Yt −
∫ 1

0
Nt,idi = Ct + ηG

3 Equilibrium Description

This section describes equilibrium conditions, the main trade-offs for optimal target inflation and

the solution method. For exposition, I simplify the model in several dimensions in this section:
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preferences are given by expected utility σez = 0 with period utility u(C,L) = log(C)−L; the only

input of production is labor yi = Aili; the risk premium shock is the only structural shock; and the

Taylor rule is given by Rt = 1+π̄
β

(
Πt

1+π̄

)φπ
without ZLB constraint.

Firm’s Problem: The relevant state variable for firm i at time t is p̃t,i =
pt,iAt,i
Pt

, the relative

price multiplied by productivity. The relative price is the important idiosyncratic variable for the

firm since the firm’s demand and the static profits depend on it. Let v(p̃−, S) be the present

discounted value of a firm with previous relative price p̃− and current aggregate state S. Then

v(p̃−, S) satisfies

v(p̃−, S) = E∆a

[
max

change,no change

{
V c(S), V nc(

p̃−e
∆a

Π(S)
, S)

}]
V nc(p̃, S) = p̃−γ(p̃− w(S)) + βES′

[
v
(
p̃, S′

)
|S
]
}

V c(S) = −θ + max
p̃

{
p̃−γ(p̃− w(S)) + βES′

[
v
(
p̃, S′

)
|S
]}

∆a =

{
η with prob. p

0 with prob. 1− p
(14)

where I use marginal utility of consumption as the numeraire. There are two sources of fluctuation

in the relative price: inflation and idiosyncratic shocks. After the change in the relative price due

to these components, the firm has the option either to change the price or keep it the same. If it

changes the price, it has to pay the menu cost θ.

The firm’s problem depends on p̃; any combination of nominal price and productivity that

generates the same value of p̃ yields the same profits. This comes from the assumption that

productivity shocks also affect the demand of the intermediate input.

The policy of the firm is characterized by two objects: (1) a reset price and (2) a continuation

region. Let P ∗(S) be the reset price. Then

P ∗(S) = max
p̃

{
p̃−γ(p̃− w(S)) + βES′

[
v
(
p̃, S′

)
|S
]}

(15)

P ∗(S) does not depend on the idiosyncratic shock; it only depends on the aggregate state of the

economy and therefore is the same across resetting firms. The continuation region is given by all

relative prices such that the value of changing the price is less than the value of not changing the

price. Let Ψ(S) be the continuation region. Then

Ψ(S) = {p̃ : V nc(p̃, S) ≥ V c(S)} (16)

with the firm’s policy given by

change the price and set a relative price equal to P ∗(S) if and only if
p̃−e

∆a

Π(S)
/∈ Ψ(S) (17)
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As is typical in models with heterogeneity, the firm needs to forecast equilibrium prices, real wages

and inflation, and the state law of motion. If the firm knows these functions, then it has all the

elements to take the optimal decision in (14).

Aggregate State: Given that the repricing decision depends on the previous relative price

and that inflation is the aggregation of these decisions, the distribution of relative prices is the

state in the economy. I denote with S the state of the economy with the law of motion Γ(S′|S).

Therefore the state of the economy is S = (f(p̃−), ηQ) with law of motion Γ(S′|S).

Aggregate conditions: The aggregate conditions are given by the household optimality con-

ditions, feasibility and the monetary policy rule

C(S)−1 = βR(S)ES′ [
C(S′)−1

Π(S′)
ηQ(S′)|S]

C(S) = w(S)

R(S) =
1 + π̄

β

(
Π(S)

1 + π̄

)φπ
C(S) =

L(S)− Ω(S)θ

∆(S)
(18)

where Ω(S) is the fraction of repricing firms and ∆(S) is labor productivity due to price dispersion

given by

∆(S) =

∫
p̃γf(p̃) (19)

where f(p̃) is the distribution of p̃.

In aggregate conditions (18), we can see the two key distortions in models with nominal rigidities.

The first one comes from markups. In the efficient allocation, firms’ marginal costs should be equal

to the price, and therefore the aggregate real wage should be one. Monopolistic competition implies

a real wage less than one, since firms charge a positive markup (the markup is the inverse of the real

wage). Sticky prices together with monopolistic competition implies fluctuation in the aggregate

markup, and therefore inefficient fluctuation in the marginal cost and consumption. The distortion

from the first best given by markups is the first component of output gap.

The second component comes from feasibility. Aggregate consumption is given by

Ct =

[∫
l

1−γ
γ

t,i di

] γ
γ−1

(20)

In the first best it is optimal to have the same labor input across firms. Sticky price models create

a misallocation in the input of production across firms, decreasing aggregate productivity.8

The level of target inflation affects these distorsions. Increasing target inflation decreases the

volatility of the output gap coming from markup fluctuations. However, it also increases mean

8There is a third distortion coming from the physical cost of repricing, that it is almost insignificant in my model
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price dispersion. Given that the main trade-off is between the mean and the variance of the output

gap, I use Epstein-Zin preferences to have a non-trivial cost of the later component.

Aggregate equilibrium conditions (18) are triangular: consumption, real wage, and inflation can

be solved first, and then used to solve for the labor supply in the simulation. Therefore, with quasi-

linear preferences it is not necessary to know Ω(S) or ∆(S) to solve for the equilibrium nominal

interest rate, real wage, and consumption.

Given that the distribution of p̃ is the state, I use the Krusell-Smith algorithm to solve this

problem. However, the standard method to implement Krusell-Smith does not work for this prob-

lem. To understand why, we need to note two properties in the aggregate conditions. First, for a

given inflation function, in principle, it is possible to solve the equilibrium conditions. But, given

that the equilibrium equations are dynamic, it is important to satify Blanchard-Khan conditions

whenever solving for the aggregate conditions. Next, I show that the standard method does not

satisfy the Blanchard-Khan conditions.

The standard Krusell-Smith algorithm consists of projecting price and quantities to a small set

of moments of the distribution and the exogenous state. In this problem, Krusell-Smith consists of

projecting inflation on some moments of the distribution. With this common approach, it possible

to solve the aggregate conditions separate from idiosyncratic conditions, dividing the system into

two sub-systems. Formally, the algorithm is given by

1. Guess a function for inflation Π(S) and a law of motion for Γ(S′KS |SKS) for the Krusell-Smith

state denoted by SKS .

2. Solve aggregate conditions and the real wage function from (18).

3. With the real wage and inflation function, solve the firm’s value function (14).

4. Simulate and project inflation and Γ(S′KS |SKS) on the state. Update and check convergence.

To my knowledge, all the Krusell-Smith formulations have this approach.9 The next proposition

shows how the standard method generates multiplicity of equilibrium at the step of solving aggregate

conditions.

Proposition 1 For any Π(SKS), Γ̃(S′KS |SKS) and λ > 0, if {C(SKS), R(SKS), w(SKS)} is a so-

lution for (18), then {λC(S), R(S), λw(S)} is a solution.

The proof of the previous proposition is trivial, but the economic intuition is not. The reason

why Krusell-Smith fails is similar to the Taylor principle in the New Keynesian model with Calvo

pricing: nominal interest rates should respond strongly to inflation and consumption10. Krusell-

Smith implementation generates an exogenous function for inflation and therefore an exogenous

9See Krusell and Smith (2006), Midrigan (2011) and Khan and Thomas (2008)
10Given that I don’t have any real shocks, in this section consumption is equal to output gap.
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nominal interest rate. Importantly, nominal interest is not reacting to consumption whenever

solving aggregate conditions. It is a standard result that if nominal interest rates do not react to

consumption, then there exist infinite solutions to the aggregate conditions (See Gaĺı (2009)).

The main problem is that in the aggregate equilibrium conditions, there is no information on

the relationship between inflation and consumption, i.e. the Phillips curve. Replacing the Phillips

curve with an exogenous function for inflation changes the eigenvalues of the system, implying

multiplicity of equilibria.

To understand the solution to this problem we need to understand the cross-equation restriction

for inflation. Inflation depends on three objects: (1) the reset price; (2) the continuation region;

and (3) the distribution of p̃. Let C(S) be the set of relative prices and productivity growth such

that the firm does not adjust the price

C(S) =

{
(p̃−,∆a) :

p̃−e
∆a

Π(S)
∈ Ψ(S)

}
The next proposition characterizes the cross-equation restriction for inflation.

Proposition 2 Inflation dynamic is given by

Π(S) =

(
1− Ω(S)

1− Ω(S)P ∗(S)1−γ

) 1
1−γ

ϕ(S)

Ω(S) =

∫
(p̃−,∆a)/∈C(S)

f−(dp̃−)g(d∆a)

ϕ(S) =

(∫
(p̃−,∆a)∈C(S)

(
p̃−e

∆a
)1−γ

1− Ω(S)
f−(dp̃−)g(d∆a)

) 1
1−γ

(21)

I define ϕ(S) as menu cost inflation. Inflation is a function of three elements: reset price, the

firm’s inaction set, and the distribution of p̃. Inflation depends on two forward-looking variables

(reset price and the Ss bands), and a backward-looking variable (the distribution of p̃). For this

problem, the issue in the standard application of Krusell-Smith is not decomposing between the

optimal decisions of the firms (forward-looking variables) and the distribution of relative prices

(backward-looking variable). Without this decomposition at the time of solving the aggregate

conditions, the eigenvalues of the aggregate dynamic system do not satisfy the Blanchard-Khan

conditions for a unique equilibrium.

In this model, the main components of inflation fluctuation iare given by menu cost inflation and

reset price. The fraction of resetting firms is quantitatively insignificant in the inflation dynamics.

First, the first order effect of the fraction of repricing firms on inflation is zero whenever the reset

price is equal to one
∂Π(S)

∂Ω(S)
|P ∗(S)=1 = 0 (22)
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Moreover, the fraction of repricing firms is almost a symmetric function with respect to the

state, and therefore the first order effect of the the structural shocks on the fraction of repricing

firms is also zero.11

Menu cost inflation captures the inflation due to changes in the distribution of non-adjusting

prices. I could not find a method to endogenize ϕ(S) in the aggregate conditions equation, since

it depends on the interaction between inflation, Ss bands, and distribution, but the method I

propose below endogenizes the intensive margin of inflation in the Phillips curve whenever solving

the aggregate conditions.

The solution I propose is to apply Krusell-Smith to the frequency of price change and menu cost

inflation, and solve the aggregate conditions together with the firm’s problem. Even if this method

generates numerical challenges, it provides the central bank with the cross-equation restriction of

the intensive margin of the Phillips curve, breaking the multiplicity mensioned before. I don’t have

a theorem showing that this method works,12 but though numerical computation, it seem a reliable

method.

Before describing the solution, we need to find the state. In models with nominal rigidities, the

important object for the repricing of the firm is the markup, the ratio between p̃ and real marginal

cost. Therefore I use real marginal cost in the previous period as the state in Krusell-Smith. This

variable is significant to predict menu cost inflation. Next I describe the algorithm used to solve

the model.

1. Guess a function Ω(w−, η
Q), ϕ(w−, η

Q) as a function of the state.

2. Solve for the equilibrium conditions: the joint system of (14), (18), and (21). Get the law

of motion for inflation and real wage (w(S),Π(s)), and the continuation set and reset price

(Ψ(S), P ∗(S)).

3. Simulate a measure of firms and compute {Ω, ϕ, S}t.

4. Project Ω, ϕ on the state. Check convergence. If not, update and go to step 2.

Note that no law of motion of the state is given in step 3. The law of motion for the endogenous

state comes from step 2 solving the aggregate conditions. Secondly, even without ZLB I need to

solve the model globally given the kinked property of idiosyncratic policies. In the appendix, I

describe the computational details in the quantitative model and Krusell-Smith evaluation.

11See Numerical Appendix
12I use one method to check Blanchard-Khan conditions. I solve the linear version of the model with the reset

price from the Calvo model and the frequency and menu cost inflation as exogenous function in Krusell-Smith. In
this case, (18) satisfies Blanchard-Khan conditions.
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4 Calibration

I calibrate the model to perform the quantitative evaluation of optimal target inflation. For the

majority of the parameters, I use standard values in the New Keynesian model with Calvo pricing.

Table 8.1 shows the calibrated parameters.

A period in the model is a month. I choose β = 0.961/12 because it implies a risk-free annual

interest rate of 4 %. I use GHH preferences

u(C,L) =

(
C − κL1+χ

1+χ

)1−σ

1− σ (23)

and set σ = 1.5 and χ = 0.5. The second parameter implies a Frisch elasticity of 2. I set the

Epstein-Zin parameter equal to -45. A similar number was used in Rudebusch and Swanson (2012)

and van Binsbergen, Fernandez-Villaverde, Koijen, and Rubio-Ramirez (2008) to match features of

asset prices.

For the production function, I choose an elasticity between inputs γ equal to 5, an upper bound

in micro estimations. 13 For the production technology, I set the elasticity with respect to materials

equal to 0.7.

The parameters for the Taylor rule are given by (φr, φπ, φy, φdy) = (0.8, 1.7, 0.05, 0.08) as in

Alejandro Justiano and Tambalotti (2010) and Del Negro, Schorfheide, Smets, and Wouters (2007).

Government expenditure process and money shocks are calibrated as in Del Negro, Schorfheide,

Smets, and Wouters (2007). For the labor productivity, I used labor productivity by the Bureau of

Labor Statistics. The key process to match the probability of hitting the zero lower bound is the

risk premium shock’s stochastic process. I set the persistence equal to Smets and Wouters (2007)

and I choose the innovation to match the probability of hitting the ZLB in the data.

To calibrate the probability of hitting the ZLB, I construct a international database for CPI

inflation and call rates of the majority of countries around the world from the International Financial

Statistics of the IMF. After doing this, I discard time periods before 1990Q1, since before that date

central banks did not incorporate implicit or explicit inflation targeting. Then, I drop all countries

with average inflation more than 4 % such as Mexico and Peru. In the sample, there are countries

that hit the ZLB around 30 % and 55 % of the times, such as Switzerland and Japan, but also

countries such as South Korea, New Zeland and Australia that hadn’t hit the ZLB. I compute

the average inflation across countries and the probability of hitting the zero lower bound. The

mean inflation is 2 % and the probability of hitting the ZLB is 0.11. I calibrate σQ to match this

probability. Appendix 9 shows the probability of hitting the ZLB for the countries in the sample.

I set the resources devoted to price-adjustment equal to 0.55 percent of revenue.14 This implies

13See Nevo (2001), Barsky, Bergen, Dutta, and Levy (2003) and Chevalier, Kashyap, and Rossi (2000) for micro-
estimation and Burstein and Hellwig (2008) for an estimation in menu cost models

14See Zbaracki, Ritson, Levy, Dutta, and Bergen (2004) and Levy and Venable (1997)
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Figure 1: Panel A describes productivity changes due to price dispersion measure as ( 1
E[∆t]

− 1)100. Panel

B describes changes in the labor wedge due to markups measure as ( 1
E[mct]

− 1)100. Both panels describe these

statistics in: (i) Calvo pricing model in steady state; (ii) Calvo pricing model with business cycle and no ZLB; (iii)
Menu cost model in steady state; (iv) Menu cost model with business cycle and no ZLB.

θE[ Ωt
ηG+Ct

] = 0.0055. I calibrate the idiosyncratic process with normal innovation given by ηt ∼
N(0, σa). For the idiosyncratic productivity process, I choose two moments of the micro-price

behavior: frequency of price change and standard deviation of price change. These two moments

pin down the idiosyncratic productivity shocks exactly as Baley and Blanco (2013) have shown.

Finally, to solve the New Keynesian model I assume σa = 0, since adding idiosyncratic shocks

to the Calvo pricing model generates infinite price dispersion at low levels of target inflation.

5 Welfare Cost of inflation: Steady State

This section characterizes price dispersion and markups for different levels of target inflation in the

steady state. There are two reasons to analyze the steady state. First, I provide a full analytical

characterization of both distortions as a function of micro-price statistics. Second, I can focus

mainly on the steady state because business cycles affect the mean of both distortions, but this

relationship does not move with target inflation. Figure 1 describes price dispersion and markups

in Calvo and menu cost models with and without business cycles. As we can see, adding business

cycle fluctuations only changes the level of the distortions but not the slope with respect to target

inflation. As I will explain in section 6, this result does not hold when the ZLB constraint affects

business cycle dynamics.

To characterize the steady state distortions, I use a continuous time formulation of the model.

In continuous time, the log relative price, p̂t = log (p̃t), follows the stochastic differential equation

14



given by

p̂t = p̂∗ − π̄t+

Nt∑
i=1

ηi (24)

where
∑Nt

i=1 ηi is a compound Poisson process with arrival rate λ = − log(p).

Let τ be the time between price changes.15 The time between price changes is the key firm

decision that affects price dispersion. For example, in a Taylor pricing model the time between price

changes is a fixed date (τ = E[T ]); in Calvo it is given by an exponential distribution (τ ∼ exp( 1
E[τ ]))

and in menu cost it is given by τp,p = min{t : p̂t /∈ [p, p]}.
Note that ∆ss = Et[p̃−γ ] is not exactly price dispersion, but using a second order approximation

we can show that it is proportional to price dispersion

log(∆ss) ≈
γV[p̂]

2
(25)

where γ is the demand elasticity. The next proposition characterizes the variance of relative prices

where I use the notation ∆p to denote the size of price changes.

Proposition 3 Let τ be a stopping time with one of the following properties

1. ∃c ∈ R s.t. τ < c almost surely.

2. Or Pr[τ <∞] = 1 and Xi
t for i=1,2 define as

dXi
t =

( Nt∑
i=1

ηi

)i
− E[ηi]t

 dt (26)

with the property that E[|Xi
t |] <∞ and limt→∞ E[|Xi

tI{τ>t}|] = 0 for i = 1, 2.

Then if there exists an ergodic distribution of relative prices we have that

Vπ̄i [p̂i] =
(Eπ̄[τ ]π̄)2

12
D(Vπ̄[τ̂ ], Skeπ̄[τ̂ ]) +

Ex[∆p2]− x2Ex[τ2]

2

Eπ̄[τ ]

Ex[τ ]
(1 + Vπ̄[τ̂ ])

D(Vπ̄[τ̂ ], Skeπ̄[τ̂ ]) = 1 + Vπ̄[τ̂ ]
3
2Skeπ̄[τ̂ ] + 3Vπ̄[τ̂ ](2− Vπ̄[τ̂ ]) (27)

where τ̂ = τ
Eπ̄ [τ̂ ] .

There are two requirements in this theorem. Conditions 1-2 are sufficient to use the optimal

sampling theorem. The second condition assumes the existence of the ergodic distribution of relative

prices. For example, in the Taylor pricing model the ergodic distribution of relative prices exists if

and only if the initial distribution of relative prices is uniform.

15Formally τ : Ω→ [−,+∞)∪+∞ is a measurable function on a probability space (Ω,F, P ) with the property that
{ω ∈ Ω ≤ t} ∈ Ft}
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This formula is not the same as the one I described in the introduction. I have simplified

equation (40) in the following way: if the ergodic distribution of relative prices exists, then we can

apply the renewal theorem and show that Eπ̄[∆p] 1
Eπ̄ [τ ] = π̄. Replacing Eπ̄[τ ]π̄ = Eπ̄[∆p] in (40)

and set x = 0, we get the formula in the introduction.

To understand the previous formula, let’s focus on the case without idiosyncratic shocks where

the second term of (40) is equal to zero. Under this assumption, the variance of the relative prices

only depends increasingly on mean, variance, and skewness of the time between price changes.

Higher time between price changes increases the dispersion in relative prices since on average they

accumulate higher inflation. The variance in the relative time between price changes increases price

dispersion since it increases the measure of firms with more accumulated inflation. To see this, let’s

assume the following pricing model

τT =

{
ε with prob.1/2

2− ε with prob. 1/2
(28)

In this example, the mean and skewness are the same as in the Taylor pricing model and the only

difference is the variance. It is easy to show that the distribution of relative prices whenever ε→ 0

is only composed by the time between price changes every two periods. Therefore this model is

equivalent to a Taylor model with twice the mean between price changes. Using (40) we can see

that in Taylor pricing model the variance of relative prices is equal to (Eπ̄ [τ ]π̄)2

12 and in the example

described above with ε→ 0, the variance of relative prices is equal to (2Eπ̄ [τ ]π̄)2

12 , i.e. a Taylor model

with higher expected time between price changes. Finally, higher skewness of the relative time

between price changes increases the tail of low relative prices.

To compare the sensitivity of different pricing models with respect to target inflation, it would

be useful to see some examples of different pricing models without idiosyncratic shocks. In Taylor

and menu cost models, price dispersion is given by Vπ̄i [p̂i] = (Eπ̄ [τ ]π̄)2

12 , with the only difference that

in the Taylor model the expected time is independent of target inflation. It is easy to see that these

two models are the minimum price dispersion models, since they have zero variance and skewness.

In Calvo the variance of relative prices is equal to Vπ̄i [p̂i] = (Eπ̄[τ ]π̄)2, much larger than the previous

models.

Remember, for a model to have low sensitivity of price dispersion with respect to target inflation,

the most important property is low variance and skewness. The previous proposition (40) highlights

the low optimal target inflation obtained by Coibion, Gorodnichenko, and Wieland (2012). First,

among all the models they analyze, the one with highest optimal target inflation is the Taylor

pricing model. This is clear since there is no variance and skewness of the time between price

changes in the Taylor pricing model. Notice that even though this model is time dependent, it has

lower sensitivity with respect target inflation than the state-dependent models analyzed in Coibion,

Gorodnichenko, and Wieland (2012).
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Coibion, Gorodnichenko, and Wieland (2012) study two state-dependent models: Calvo with

adjusted frequency of price adjustment and the Dotsey, King, and Wolman (1999) model. Calvo

with data adjusted frequency has large sensitivity to target inflation since variance and skewness

of relative time between price changes is constant. Moreover, the mean of the time between price

changes has low elasticity with respect to target inflation at low levels.16 The Dotsey, King, and

Wolman (1999) model is similar to Calvo with a truncated tail. In this model, the time between

price changes is given by 17

f(t) =
π̄ϕ

p
te
− πϕ
p
√
π
t2

I(π̄t < p) (29)

where p is the maximum Ss bands width and ϕ is the arrival rate of a lower menu cost. If the model

is calibrated to match the expected time between price changes at 3 % target inflation, then p is

large and therefore the distribution of time between price changes is similar to the Calvo pricing

model, but with lower variance and skeness. For both models they found an optimal target inflation

around 1 % – half as much as they found in Taylor.

As we can see in figure 1, even with zero inflation, menu cost models have positive price

dispersion due to idiosyncratic shocks. This is the second term in the equation (40). To have

an intuition of this formula, note that in time-dependent models the idiosyncratic component

simplifies to
V[∆p]

2
(1 + V[τ̂ ]) (30)

where there is a penalization for the increase in the variance of relative time between price changes

with a similar intuition as above. For example, if target inflation is zero, the variance of relative

prices is V[∆p]
2 in Taylor pricing model and V[∆p] in Calvo pricing model.

The key difference between my model and Coibion, Gorodnichenko, and Wieland (2012) comes

from the assumption of idiosyncratic shocks and fixed menu costs. With these two features, variance

and skewness are decreasing with respect to target inflation, as I will show next. This implies that

the target inflation component increases more slowly than in Calvo with respect to target inflation.

More importantly, the main component of price dispersion due to idiosyncratic shocks decreases

with target inflation and almost offsets the increase in the target inflation component.

I solve numerically the micro-price statistics in the menu cost model with idiosyncratic shocks.

The key property to understand the micro price statistics in this model is the relationship between

the width of the Ss and target inflation. For low levels of target inflation, the width of the Ss bands

are insensitive with respect to it. Given this result, higher target inflation triggers price changes

for relative prices with sufficiently accumulated inflation. Therefore skewness, variance, and mean

decrease with the property that skewness is the most affected and mean is the least affect.

16See Gagnon (2009), Alvarez, Gonzalez-Rozada, Neumeyer, and Beraja (2011) and Wulfsberg (2010)
17The continuous time formulation of Dotsey, King, and Wolman (1999) is given by τg,ϕ = min{t, p̂t /∈ Ct} ; Ct ={ [
p∗ − p, p∗

]
if Dt = Dt−

[p∗ − x, p∗] if Dt = Dt− + 1
where x ∼ U [0, p] and Dt is a Poisson counting process with arrival rate ϕ.
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The next proposition characterizes the width of Ss bands with respect to target inflation. To

show the next proposition, I assume a quadratic static profit function Bp̂2
t , h(z) ∈ C4 and symmetric

around zero, and a discount factor of the firm given by ρ = − log(β). Define θ̃ = wssθ
B as the

normalized menu cost.

Proposition 4 Define

U = log

(
maxp̃{Ψ(Sss)}

P ∗

)
L = log

(
minp̃{Ψ(Sss)}

P ∗

)
Then U = u( π̄

ρ+λ , θ̃) and U = l( π̄
ρ+λ , θ̃) with the following properties

1. u(·), l(·) are increasing in both arguments.

2. limx→0+ ux(x, y) = limx→0+ ly(x, y) = 0 with

Eu,x ∈ (0, 1/3) ; El,x ∈ (0, 1/3)

increasing in x.

The main intuition of this result is that for low levels of inflation target the main value for

waiting, and not changing a suboptimal price, is given by the idiosyncratic shocks and not by

inflation target. This implies that the width of the Ss bands is almost independent to inflation for

low levels of inflation.

Given that Ss bands are almost constant for low levels of target inflation, higher target inflation

generates a tighter bound of how old prices can get, decreasing the skewness, variance, and mean of

time between price changes. The specific formula for the mean, variance, and skewness depend on

the calibration of the Ss and the stochastic process for the idiosyncratic shocks. Figure 2 describes

these moments for the final calibration in menu cost and Calvo pricing models, and it is easy to

see that higher order moments are more sensitive with respect to the inflation target.

Now I study how markups react with respect target inflation. Let M̂ss = log(Mγ−1
γ ). Next

theorem characterizes the level of markups as function of observables.

Proposition 5 For any model of firm behavior (τ), the aggregate markup gap is given by

M̂ss = π̄E
[∫ ∞

0
a(ρ, τ, s)sds

]
+

(
γ − 1

γ − 1

)
E[

∫ ∞
0

b(ρ, τ, s)(p̂s + M̂ss)
2ds] (31)

Where

• E
[∫∞

0 a(0, τ, s)ds
]

= 0 and E[
∫∞

0 b(ρ, τ, s)ds] = 1.
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Figure 2: Expected time between price changes, variance of relative time between price changes and skewness of
the relative time between price changes.

• E
[∫∞

0 a(ρ, τ, s)sds
]
< 0 and E

[∫∞
0 a(0, τ, s)sds

]
= 0.

• E
[∫∞

0 a(ρ, τ, s)sds
]

is decreasing in ρ.

• E
[∫∞

0 a(ρ, τ + k, s)sds
]
< E

[∫∞
0 a(ρ, τ, s)sds

]
for all k > 0.

Moreover ρ→ 0

M̂ss ≈
(
γ − 1

γ − 1

)
Vi[p̂i] (32)

The equilibrium level of markups depends on two effects that I denominate discounting and

dispersion effect. The first term in (31) comes from the firm’s inter-temporal marginal rate of

substitution and reflects the discounting effect. After price adjustment, the firm’s relative price

falls over time; therefore at the time of the price adjustment the firm overadjusts its relative price to

compensate for the expected fall. If the firm does not discount the future, then the price adjustment

is the same as the expected fall and therefore the equilibrium level of markups does not change.

If the firm intertemporal marginal rate of substitution is less than one, then the firm adjusts less

than the expected fall in the relative price, decreasing the equilibrium level of markups.

The second term in (31) comes directly from the asymmetry of the static profit function and

reflects the discounting effect. Given that the static profit function penalizes negative price gaps

more18 than positive price gaps, the firm always prefers a positive rather than a negative price

gap with the same magnitude. If price dispersion if high, then the firm’s relative price is more

volatile and the firm increases the reset price as a precautionary motive to avoid negative price

18Price gap is the difference between current price and the static optimal price.
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gaps. Therefore, an increase in the fluctuation of the relative price raises the reset price, increasing

the equilibrium level of markups.

Figure (1) shows the level of markup in Calvo and menu cost model. Given that in menu cost

models price dispersion is insensitive with respect to the inflation target, the discounting effect

implies a decreasing aggregate markup with respect to the inflation target. In Calvo, for low levels

of target inflation, price dispersion does not react since it depends up to a second order with respect

target inflation. Therefore the discounting effect dominates and markups are decreasing. For higher

target inflation, price dispersion start increasing and the discounted effect dominates.

Note that in models with nominal rigidities it is always optimal to have positive target inflation.

The main intuition of this result is that price dispersion depends up to a second order with respect

to the inflation target but the level of markups depends up to first order.

5.1 Business Cycle Without ZLB

What are the consequences of increasing the inflation target? Are inflation and output more

volatile? Is inflation more or less forward-looking for a higher inflation target? These are important

questions to answer before analyzing the optimal inflation target with a ZLB constraint. For

example, in a recent paper, Ascari and Sbordone (2013) argue that a higher inflation target makes

firms more forward-looking and therefore inflation dynamics become more unstable. This is not the

case in the menu cost model as I show in this section. To keep it as simple as possible, I abstract

from the ZLB constraint on nominal interest.
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Figure 3: Risk premium shock impulse-response function from the estimated VAR in the simulation. Panel A.
and B. plot consumption and output. Panel C. and D. plot inflation and nominal interest rate.

At zero inflation, aggregate dynamics in Calvo and menu cost models are similar. This is a

quantitative statement that reinforces previous findings in Gertler and Leahy (2008) and Midrigan
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(2011) in a model with richer aggregate dynamics. This is not obvious since in the case of Gertler

and Leahy (2008), they assume that firms cannot change their price if they don’t receive an id-

iosyncratic shock –an assumption that I don’t have. In the case of Midrigan (2011), he use only

small money shocks; in my model I have larger empirically relevant shocks for the US economy.19

To show this, figure 3 presents the non-linear impulse-response to the risk premium shock.20 I focus

on this shock since it is the main driving shock that triggers the ZLB. The linear impulse-response

for money, government expenditure, and productivity are in the appendix (See figures 8.3 to 8.3).

Aggregate dynamics are not exactly the same since in menu cost models inflation reacts more with

respect to real marginal cost, especially on impact. Once of the reasons I have this property is

because the model overshoots the volatility of the frequency of price change. In the US economy

the standard deviation of the frequency of price change is 3.2 % (See Klenow and Kryvtsov (2008)),

but in the model at 2 % inflation target this statistic is 7.2 %, twice as much in the data.

A standard property of monetary policy is that it underreacts to the structural shocks. In prac-

tice, central banks adjust interest rate more cautiously than standard models predict (See Clarida,

Gali, and Gertler (1997) and Rotemberg and Woodford (1997)). After a risk premium shock, the

marginal utility of consumption increases, generating a drop in consumption and marginal cost. In-

flation follows the marginal cost and nominal interest drops without offseting the structural shock.

A higher inflation target changes this property since it increases the slope of the Phillips curve as

I will show later (See impulse-response in figure 7).
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Figure 4: Panel A describes the mean frequency of price change and mean size of price change for the menu cost
model. Panel B describes inflation variance for Calvo and menu cost models and Panel C decomposes the inflation
variance into intensive and extensive margin in the menu cost model. The intensive margin is given by E[Ωt]

2V[∆p]
and the extensive margin is given by E[∆p]2V[Ωt] + 2E[∆p]E[Ωt]Cov(Ωt,∆pt).

At higher inflation targets, aggregate dynamics in the Calvo and menu cost models are not

19He uses only money shocks with a quarterly persistence 0.6 and innovations of 0.0018
20See quantitative section for an explanation of how to compute the impulse-response.
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similar since the Phillips curve differs in both models. In figure 4, we can see that higher inflation

target increases the frequency of price change slightly and also has the same effect on inflation

volatility. It would be incorrect to conclude that inflation is slightly more volatile in the menu cost

model than in Calvo since the equilibrium process for marginal cost also changes with inflation.

The first key difference from Calvo is that in the menu cost model a higher inflation target

activates the extensive margin of inflation, i.e. the volatility of inflation that comes directly from

movements in the frequency of price change. This is not the same in Calvo, since frequency of price

change is constant. Following Klenow and Kryvtsov (2008), I measure the extensive margin for

inflation as

extensive margin =
E[∆p]2V[Ωt] + 2E[∆p]E[Ωt]Cov(Ωt,∆pt)

E[∆p]2V[Ωt] + 2E[∆p]E[Ωt]Cov(Ωt,∆pt) + E[Ωt]2V[∆p]
(33)

In part, the extensive margin increases since the expected size of price change increases, but the

key component is the variance of frequency of price change. 21

The extensive margin becomes more important in the menu cost model since more prices are

activated at business cycle frequency. Target inflation changes the distribution of relative prices,

moving the mass of relative prices more closely to the lower Ss band. This property implies that

more prices are activated at business cycle frequency and therefore the extensive margin of inflation

becomes predominant. Figure 5 shows the ergodic mean distribution at 0 and 4 % inflation. As we

can see in the figure, there is a higher inflation target near the lower Ss bands and therefore more

price are activates at business cycle frequency. Given that these prices have a large size of price

change, higher inflation activates what Golosov and Lucas (2007) call selection effect: a steeper

Phillips curve since a small measure of firms makes large sized price change.

The fact that higher inflation activates prices near Ss bands is reflected in the business variance of

the “menu cost” inflation. Remember that the menu cost inflation is given by the mean distribution

of relative prices conditional on no adjustment. As we can see, a higher inflation target significantly

increases the variance of the “menu cost” inflation. As we can see in table 8.2, this is the case with

higher inflation targets.

The fact that a higher inflation target activates the tail of the time between price change –as

explained in the previous section– affects the forward-looking behavior of the reset price. Impor-

tantly, firms are less forward in menu cost model for a higher inflation target. The next proposition

shows how cross-equation restriction for the reset price.

21See table 8.2 in the appendix with micro-price statics.
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. The doted lines are the mean Ss bands with respect the reset price

Proposition 6 In the menu cost model, the reset price is given by

P ∗(St) =
γ

γ − 1
ESt

 ∞∑
j=0

ω̃
(
St+j ,∆at+j |St

)
F
(
St+j ,∆at+j |St

)
mc (St+j)


F
(
St+j ,∆at+j |St

)
=

j−1∏
h=0

Π (St+h+1)

e∆at+h+1

Z
(
St+j ,∆at+j |St

)
=

j−1∏
h=0

βuc (St+h+1)

uc (St+h)

(
U(St+h+1)

ESt+h [U(St+h+1)1−σez ]
1

1−σez

)−σez (
Π (St+h+1)

e∆at+h+1

)γ−1

ω̃
(
St+j ,∆at+j |St

)
=

Y (St+j)Z
(
St+j ,∆at+j |St

)
I(P

∗(St)
Ft,t+h

∈ C(St+h,∀h ≤ j))

E
[∑∞

j=0 Y (St+j)Z (St+j ,∆at+j |St) I(P
∗(St)
Ft,t+h

∈ C(St+h,∀h ≤ j))
] (34)

where

ESt

 ∞∑
j=0

ω̃
(
St+j ,∆at+j |St

) = 1 (35)

I show this proposition for the menu cost model but it extends to all models of nominal rigidites;

the only difference is the indicator function in 34. In models with nominal rigidities and forward-

looking firms, reset prices follows a weighted average of future marginal cost adjusted by two

elements: the level of markups and the expected fall in the relative price.

Reset price is a weighted average of the expected inflation and the expected marginal cost.

The expected fall in the relative price between period St and St+j is given by F
(
St+j ,∆at+j |St

)
(given that the idiosoyncratic shocks are i.i.d. with zero mean, the only drift comes from inflation).

Ceteris paribus the weighting, a higher level of trend inflation increases the reset price since the
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firm internalizes the expected fall of the relative price.

Inflation target alters the weighting though two effects. The first effect is that higher trend

inflation decreases the relative price over time, and therefore increases the firm’s revenue over time.

This effect generates more forward-looking behavior of the firm and is present in both Calvo and

menu cost. This is the only effect in Calvo model, implying a higher forward-looking Phillips curve.

In menu cost models, there is a second effect. Higher trend inflation activates the frequency

of price change for “older” prices, and therefore the firm will not internalize future marginal costs

in their pricing decision today. This effect implies less forward-looking behavior. Quantitatively,

this effect is larger since the revenue effect is third-order in profits (See Alvarez and Lippi (2011))

but the state where the firm changes the price is first order. Given that in Calvo the skewness

of stopping times is constant for all levels of inflation, the opposite is present in the Calvo price

model.
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Figure 6: Panel A describes log-deviation of the business cycle fluctuation of marginal cost and inflation for zero
inflation, together with a quadratic fit of inflation over real marginal cost. Panel B describes log-deviation of the
business cycle fluctuation of marginal cost and inflation for zero inflation, together with a quadratic fit.

Given that we have characterized the reset price and the “menu cost” inflation, we can now

undertand how the Phillips curve changes with inflation. It is almost linear with zero inflation

target, while it is steeper and non-linear with higher inflation target. The relationship between

inflation and real marginal cost is the key object, and is depicted in figure 6. At zero inflation

level, it is easy to see that there is an almost linear relationship between inflation and marginal

cost. To see this, note that if x̂t is the log-deviation of a variable with respect to the mean level

and assuming that inflation is approximately a martingale, Gertler and Leahy (2008) have shown

that at zero inflation

π̂t = λm̂ct + βE[π̂t+1] ; π̂t =
λ

1− β m̂ct (36)

Therefore, the Phillips curve is linear for almost all values of marginal cost. Note that the non-
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linearity at higher inflation targets comes at larger values of deviation of marginal cost with respect

to the mean.

Higher inflation target increases the slope of Phillips curve and since the nominal interest rate

depends on inflation, the nominal interest rate reacts more with respect to the structural shocks

at higher inflation target. This implies that consumption is less volatile at higher inflation targets,

even if inflation is more volatile. In figure 7 we can see the impulse-response for a positive/negative

risk premium shock at 0 and 5% inflation target. As we can see, inflation reacts more to marginal

cost (in this model almost colinear with consumption), and therefore the nominal interest rate

reacts more to the same structural shock, implying less consumption volatility.
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Figure 7: Panel A to D describe the non-linear impulse-response of consumption, inflation, nominal interest rate
and risk premium.
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Figure 8: Normalize welfare for different levels of target inflation. The blue lines describe the welfare in the Calvo
pricing model with and without ZLB. The black lines describe the welfare in menu cost pricing model with and
without ZLB.

6 Quantitative Analysis

This section quantitatively studies my menu cost model to understand the optimal level of target

inflation. I also solve the Calvo pricing model, the standard workhorse monetary model, to see

the main difference with respect to it. Remember, this is the main model that allows Coibion,

Gorodnichenko, and Wieland (2012) to claim that target inflation is not the right tool to reduce

business cycle fluctuation of inflation and output gap due to the zero lower bound.

The optimal level of inflation with zero lower bound constraint in the Calvo model is 1% and

5% in the menu cost model. For this result, it is necessary to have the zero lower bound constraint

on nominal interest rates since without it the optimal level of inflation is less than 1 % in both

models. I compute the household welfare defined as

W(π̄) =

∫
U π̄(S)dF π̄(S)

|
∫
U π̄(S)dF 0(S)| =

(∑T
t=1

U π̄(Sπ̄t )
T

)
|
(∑T

t=1
U0(S0

t )
T

)
|

(37)

where dF π̄ is the ergodic distribution of the state and U π̄(S) is the value function of the household.

These variables depend on the Taylor rule parameter for target inflation π̄.22

Figure 8 describes the welfare in Calvo and menu cost pricing models for different levels of target

inflation. Two conditions hold at low levels of target inflation: without the ZLB constraint, both

models have similar levels of welfare since price dispersion is insensitive. As I explain in section

5, this is given since price dispersion is a second order moment with respect to target inflation.

Second, the menu cost model has a much higher welfare benefit than the Calvo model. As I will

22To compute this statistic and the ones described below, I use Monte-Carlo integration over T = 2399980 simula-
tions.
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explain below, in the menu cost model the cost of ZLB is much higher in this region.

To understand welfare, first I discuss the probability of hitting the zero lower bound at different

levels of target inflation. Then, I explain how the zero lower bound constraint affects the mean

level of markups and price dispersion. Finally, I explain output and inflation dynamics under the

ZLB constraint. The main takeaway is that without the ZLB, the Calvo and the menu cost pricing

model have similar macroeconomics dynamics at low target inflation. The ZLB constraint generates

differences in output and inflation dynamics that I explain below.
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Figure 9: Probability of hitting the zero lower bound computed as
∑T
t=1

I(Rt<1)
T

.

The probability of hitting the zero lower bound is decreasing with the level of target inflation.

Moreover, at all levels of target inflation, the probability of hitting the zero lower bound is always

higher in the menu cost than in the Calvo model. Figure 9 shows the probability of hitting the

ZLB for different levels of target inflation. There are two reasons why nominal interest rates hit

the ZLB more often in the menu cost model. First, given that slope of the Phillips curve is higher

than in Calvo,23 nominal interest rates are more volatile and therefore the probability of hitting the

ZLB is higher. Additionally, at higher levels of target inflation, the extensive marginal component

of inflation is higher, increasing the slope of the Phillips curve even more, as we can see in figure

4 in the appendix.24 Second, at low levels of target inflation, the deflationary spiral in menu cost

models is larger than in Calvo, increasing the probability of hitting the ZLB even further since ZLB

periods become more absorbing.

What are the shocks that trigger the ZLB? The main shocks that trigger the ZLB are the

risk premium shock and, at less magnitude, the TFP shock. Moreover, smaller shocks trigger the

ZLB in the menu cost model. Figures 14 and 15 in the appendix describe the distribution of the

structural shocks conditional on hitting ZLB.

The level of the target inflation affects the mean of both distortions, since it determines the

23See Gertler and Leahy (2008) for an analytical characterization of the Phillips curve in menu cost model with
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Figure 10: Panel A describes productivity changes due to price dispersion measured as ( 1
E[∆t]

− 1)100. Panel

B describes changes in the labor wedge due to markups measured as ( 1
E[mct]

− 1)100. Both panels describe these

statistics in: (i) Calvo pricing model with ZLB; (ii) Calvo pricing model without ZLB; (iii) Menu cost model with
ZLB; (iv) Menu cost model without ZLB.

probability of hitting the ZLB constraint. The ZLB constraint affects price dispersion more in the

Calvo pricing model and affects markups more in the menu cost pricing model. We can see the

mean in the ergodic distribution of price dispersion and markups as a function of target inflation

in figure 10.

In the Calvo pricing model, the mean of price dispersion is highly sensitive to business cycle

volatility of inflation; this is the main determinant of the optimal inflation target. Since the ZLB

constraint increases inflation volatility, there is an additional gap in price dispersion due to the

ZLB at low levels of inflation. In the case of the menu cost model, price dispersion is insensitive

to changes in inflation volatility and therefore the ZLB constraint does not affect the level of this

variable. The deflationary spiral due to the ZLB constraint is much larger in the menu cost model,

affecting the mean markups much more in this model.

Given that I’m working in a menu cost model with fat-tailed shocks, aggregate dynamics without

the ZLB constraint are similar in both models at low levels of inflation target. This property doesn’t

hold in the model with the ZLB constraint.

The deflationary spiral is larger in the menu cost model than in Calvo for low inflation targets,

but becomes similar at higher inflation targets. My interest is in understanding the average effect of

the ZLB over aggregate dynamics. To analyze this I will compute the impulse-response of the model.

Positive inflation target and ZLB constraint generate non-linearities in the aggregate dynamics. In

non-linear models, there are several different ways to construct the associated impulse-response.

Ideally, I would like to choose a sequence of shocks that can lead to the ZLB with sufficient

fat-tailed shocks.
24See Klenow and Kryvtsov (2008) for the decomposition of inflation in intensive and extensive margin.
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probability in the ergodic distribution, but I could not find a non-arbitrary way of constructing

this sequence.25

To analyze the effect of the ZLB on aggregate dynamics, I proceed as follows: I simulate both

economies for T = 2399980 and construct 5000 random draws of the state in both models. Each

draw is going to be one economy. In the case of the menu cost model, the state includes the

distribution of relative prices. Then I simulate over 100 months; at t=101, I feed all the 5,000

economies with the same shocks; and from then onward keep on independently simulating each

economy. The impulse response is the average over the 5,000 economies for each period. Figure 11

describes the impulse response at 0 and 4 % target inflation. As discused above, the main driving

shock that triggers the ZLB constraint is given by the risk premium shock. For this reason, at

period 100, I hit all the economies with a large positive risk premium shock given by 10σQ to

analyze the dynamics during a binding ZLB.
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Figure 11: Panels A to C describe consumption, inflation, and nominal interest rates in the Calvo and in the menu
cost models for 0 % target inflation. Panels D to F describe consumption, inflation, and nominal interest rates in the
Calvo and in the menu cost models for 4 % target inflation.

An initial drop in consumption decreases inflation and if the zero lower bound is binding, this

initial drop in inflation increases real interest rates, even further depressing the consumption. In

figure 11, panels A to C describe consumption, inflation and nominal interest rates for a risk

premium shock at zero target inflation. On impact, there is a large deflation, especially in the

menu cost model. This large deflation does not affect aggregate dynamics since real interest rates

depend on expected inflation and nominal interest rates is constraint and cannot react to inflation.

At higher inflation target Calvo and menu cost models have similar aggregate dynamics when

the ZLB is binding. To understand this we have to see which prices are activated during periods

25Another method to compute the impulse-response is starting in an initial state where the ZLB is binding and
analyzing the response to aggregate shocks conditional from this state. Given that the distribution of relative price
is part of my state, I choose not to use this methodology.
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where the monetary authority is binding. Remember that inflation dynamics is given by

Π(S) =

(
1− Ω(S)

1− Ω(S)P ∗(S)1−γ

) 1
1−γ

ϕ(S) (38)

Note that at zero inflation there is a persistent increase in the fraction of repricing firms. The key

feature in menu cost models is that the increase in the fraction of repricing firms is not random

across firms. This new mass of repricing firms hits the upper Ss band with a large downward price

adjustment, which is not present at higher inflation target level as figure 12 shows.

Menu cost models during periods where the ZLB is binding are similar to a domino effect. An

initial drop in consumption decreases the real marginal cost and triggers downward price adjust-

ments with a large price change. If ZLB is not binding, this drop in inflation decreases nominal

interest. Given that ZLB is binding, real interest rates increase, generating even further drops in the

marginal cost and triggering new price adjustments. The key assumption to break this deflationary

spiral is the elasticity of the real marginal cost with respect to real interest rates. Complementari-

ties and GHH preferences decrease the elasticity of the real marginal cost significantly with respect

to real interest rates.
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Figure 12: Panels A and B describe menu cost inflation and frequency of price change in menu cost models

There are two mechanisms to explain why dynamics in menu cost and Calvo are the same at 4

% inflation target. First, at higher target inflation, the measure in the upper Ss is smaller since on

average there is positive inflation. In figure 13 we can see the ergodic mean distribution of relative

prices at 0% and 4% inflation target under different conditional sets. When ZLB is not binding for

higher levels of target inflation, the mass near the upper Ss bands is near zero, and therefore the

mass with downward price adjustment is lower. Second, at 4% inflation target, a drop in inflation

offsets the initial target inflation. The fact that during periods of binding ZLB there is no drift

in the distribution implies that there are not price adjustments because prices hit the Ss bands.
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Therefore the only prices changed during periods of binding ZLB are the ones that are hit by

idiosyncratic productivity shocks. This is the main reason, as shown in figure 13, the distribution

of relative prices at 0 % target inflation and no binding ZLB is equal to the distribution of relative

prices at 4 % target inflation and binding ZLB.
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Figure 13: Panel A describes the ergodic mean distribution, the mean ergodic distribution conditional of no
binding ZLB and the mean and the mean ergodic distribution whenever the ZLB is binding at zero inflation. The
vertical read lines are the mean Ss bands conditional of a binding ZLB. Panel B is similar for 4 % target inflation.

All the ergodic mean are given by
∑T
t ft(p̃)I(Xt)∑T
t I(Xt)

where Xt = {Rt ≥ 1, Rt > 1, Rt = 1}

In the Calvo pricing model, consumption falls during periods of binding ZLB because the

marginal cost decreases and because price dispersion increases. This is not the same in the menu

cost model; the only relevant wedge is given by markups and there is no additional contribution

due to price dispersion. Moreover, inflation decreases at the same magnitude as the marginal cost

in the Calvo model, since the slope of the Phillips curve is almost constant. This property doesn’t

hold in the menu cost model, since inflation targets affect the slope of the Phillips curve differently

when the ZLB is binding, as I explain above. Table 1 describes business cycle statistics in Calvo

and menu cost models. From row 3 to 8, I compute the mean of the logarithm of the variable

conditional on hitting the ZLB and I subtract the unconditional mean.

7 Conclusion

As Golosov and Lucas (2007) observe, US firms change their prices once a year, with an average

size of 10 % and half of these changes are downward. This cannot be rationalized in a model

where firms react to aggregate inflation only, but it can be rationalized in a model with menu

cost and idiosyncratic shocks. This paper used this framework, founded on micro data, to find an

optimal inflation target of 5 %, twice as high as several leading sticky price models (See Coibion,

Gorodnichenko, and Wieland (2012)). In order to do this, I extend a menu cost model with
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Calvo Menu Cost
Mean π̄ = 0 π̄ = 4 % change π̄ = 0 π̄ = 4 % change

Prob. of hitting ZLB 0.25 0.029 -88 % 0.31 0.037 -65 %
Monthly duration 19.55 4.3 -77 % 21.64 11 -43 %

Consumption drop −5.21 −9.38 78 % −7.52 −9.5 28 %
Price dispersion drop 0.28 0.71 153% 0.03 0.04 33%
Marginal cost drop −0.84 −1.42 40 % −1.42 −1.96 38%

Inflation drop −.57 −0.82 43 % −0.72 −0.81 12 %
Reset price drop −1.34 −2.32 73 % −.91 −1.12 38 %

Menu cost inflation drop (−) (−) (−) −0.15 −0.17 13 %

Table 1: Row 3 to 8 is computed as E[log(x)|R = 1]−E[log(x)] where x is consumption, price dispersion, marginal
cost, inflation, reset price and menu cost inflation.

idiosyncratic shocks to a standard new Keynesian framework with a Taylor rule subject to a ZLB

constraint and rich aggregate dynamics given by aggregate, government expenditure, money and

risk premium shocks. The main reason for this result is that price dispersion –the main cost in

sticky price model– has low sensitivity with respect to inflation target. Moreover, the likelihood

of hitting the ZLB constraint and deflationary spirals during period when the ZLB is binding are

decreasing with the inflation target.
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8 Table and Graphs

8.1 Calibration

Calibrated Parameters

Parameter Value Target (data,model)

β 0.961/12 Interest Rate 4%
σez −45 Learning stage

(σnp, χ) (1.5, 0.5) Fisch Elasticity 2.5

γ 5 Micro-estimate (4-6,5)
α 0.7 Kehoe-Midrigan (2014)

σa 0.15 Std log-price change (8%)
p 0.17 Mean frequency of price change (10m)
θ 0.8 Physical Cost of Menu Cost (0.5% of GDP)

(φr, φπ, φy, φdy) (0.8, 1.7, 0.05, 0.08) adjusted-Justiniano et al. (2010)

(ρZ , σZ) (0.91, 0.002) Output Per Person (BLS)
(ρG, σG) (0.97, 0.0035) Justiniano et al. (2010)
(ρR, σR) (0, 0.0006) Output Per Person (BLS)
(ρQ, σQ) (0.98, 0.0008) ZLB frequency and duration

8.2 Welfare Cost of Inflation: Micro Price Statistics

Parameter target 0 target 3 target 6

mean of abs. price change 17.89 17.77 17.2
std. dev. of of abs. price change 7.8 7.9 8

Kurtosis of abs. price change 1.18 1.19 1.26
min. of abs. price change 7 7.4 6.46

exp. time bet. price changes 9.91 9.72 8.79
std. of time bet. price changes 9.16 8.81 7.36
Ske. of time bet. price change 1.91 1.87 1.71

Std reset price 0.6 0.6 0.43
Std menu Cost inflation 0.08 0.09 0.12

Std frequency 3.36 6.54 11.86
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8.3 Welfare Cost of Inflation: Business Cycle without ZLB
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8.4 Quantitative Analyzis appendix
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Figure 14: Panel A, B and C describe unconditional distribution of the strutural shocks and distribution of the
structural shocks conditional of hitting the ZLB for 4 % level of trend inflation.
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Figure 15: Panel A, B and C describe unconditional distribution of the strutural shocks and distribution of the
structural shocks conditional of hitting the ZLB for 4 % level of trend inflation.

9 Data Appendix

To construct the probability of hitting the ZLB I construct a data base for all the countries of nominal interest

rate using the call rates and CPI in the world. I discard countries where I didn’t have data from 1990Q1-2013Q1.

This data base consist of the following countries: Australia, Belgium, Canada, Denmark, Finland, France, Germany,

Israel, Japan, Korea, Mexico, New Zealand, Peru, Philippines, South Africa, Switzerland, United Kindom and United

States. I use probability of hitting ZLB whenever the call rate is less than 0.07. Table 9 describes the data for each

country where the last column and row compute the average across countries with inflation less than 4 %.
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country Time period ZLB prob. mean inflation in/out

Australia 90Q1-13q1 2.573 0 in
Belgium 90Q1-13q1 2.133 .068 in
Canada 90Q1-13q1 1.987 .045 in

Denmark 90Q1-13q1 2.082 .038 in
Finland 90Q1-13q1 1.803 .068 in
France 90Q1-13q1 1.708 .068 in

Germany 90Q1-13q1 1.925 .0684 in
Israel 90Q1-13q1 5.273 .0228 out
Japan 90Q1-13q1 .2270 .540 in
Korea 90Q1-13q1 3.878 0 in
Mexico 90Q1-13q1 9.995 0 in

New Zealand 90Q1-13q1 2.169 0 out
Peru 90Q1-13q1 23.662 0 out

Philippines 90Q1-13q1 5.906 0 out
South Africa 90Q1-13q1 7.014 0 out
Switzerland 90Q1-13q1 1.222 .2663 in

United Kindom 90Q1-13q1 2.478 .1293 in
United States 90Q1-13q1 2.563 .038 in

Mean 90Q1-13q1 5.89 .144 2.058 (.1106)

10 Technical Appendix

10.1 Steady State

Proposition 7 Let τ be a stopping time with one of the following properties

1. ∃c ∈ R s.t. τ < c almost surely.

2. Or Pr[τ <∞] = 1 and Xi
t for i=1,2 define as

dXi
t =

( Nt∑
i=1

ηi

)i
− E[ηi]t

 dt (39)

with the property that E[|Xi
t |] <∞ and limt→∞ E[|Xi

tI{τ>t}|] = 0 for i = 1, 2.

Then if there exists an ergodic distribution of relative prices we have that

Vπ̄i [p̂i] =

(
Eπ̄[τ ]π̄

)2
12

D(Vπ̄[τ̂ ], Skeπ̄[τ̂ ]) +
Ex[∆p2]− x2Ex[τ2]

2

Eπ̄[τ ]

Ex[τ ]
(1 + Vπ̄[τ̂ ])

D(Vπ̄[τ̂ ], Skeπ̄[τ̂ ]) = 1 + Vπ̄[τ̂ ]
3
2 Skeπ̄[τ̂ ] + 3Vπ̄[τ̂ ](2− Vπ̄[τ̂ ]) (40)

where τ̂ = τ
Eπ̄ [τ̂ ]

.

Proof. The stochastic process for the relative price is given by

p̂t = p̂∗ − πt+

Nt∑
i=1

ηi (41)
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Remember that by definition of relative price E [p̂i] = 0. To compute the reset relative price note that

0 =

∫
p̂f(dp̂)

=

∫ τ
0
p̂tdt

Eπ̄[τ ]

=
E[
∫ τ

0

(
p̂∗ − πs+

∑Ns
i=1 ηi

)
ds]

Eπ̄[τ ]

= p̂∗ − π̄E
π̄[τ2]

2Eπ̄[τ ]
+

Eπ̄
[∫ τ

0

∑Ns
i=1 ηi

]
Eπ̄[τ ]

Where in the second line I use that the undiscounted first moment also describes the cross-sectional average (see

Stokey (2008)). Now we’ll show the the last term is zero. Define

Xt =

∫ t

0

Ns∑
i=1

ηids X0 = 0 (42)

First it is easy to see that Xt is a martingale.

E[Xt+j |Ft] = Xt + E[

∫ t+j

t

Ns∑
i=1

ηids] = Xt (43)

Applying the optimal sampling theorem

E[Xτ |F0] = X0 = 0 (44)

Therefore the reset price is given by

p̂∗ = π̄
Eπ̄[τ2]

2Eπ̄[τ ]
(45)

The variance of the relative prices is given by

Vπ̄[p̂i] =

∫
p̂2f π̄(dp̂)−

(∫
p̂f π̄(dp̂)

)2

=

Eπ̄
[∫ τ

0

(
p̂∗ − πs+

∑Ns
i=1 ηi

)2

ds

]
Eπ̄[τ ]

= (p̂∗)2 + π̄2 Eπ̄[τ3]

3Eπ̄[τ ]
+

Eπ̄
[
(
∑Ns
i=1 ηi)

2ds
]

Eπ̄[τ ]
− (p̂∗)π̄

Eπ̄[τ2]

Eπ̄[τ ]
+ (p̂∗)

Eπ̄
[∫ τ

0

∑Ns
i=1 ηids

]
Eπ̄[τ ]

− π̄
Eπ̄
[∫ τ

0
s
∑Ns
i=1 ηids

]
Eπ̄[τ ]

With simular argument as before the last two terms are zero. Given that

E[

∫ t

0

(

Ns∑
i=1

ηi)
2ds] =

∫ t

0

E[

Ns∑
i=1

η2
i ]ds =

∫ t

0

V[

Ns∑
i=1

η2
i ]ds = λE[η2]

t2

2
(46)

Where in the last inequality I used that E[η2] = 0. Therefore
∫ t

0
(
∑Ns
i=1 ηi)

2ds− λE[η2] t
2

2
is a martingale. Using the

optimal sampling theorem

Eπ̄
[∫ τ

0
(
∑Ns
i=1 ηi)

2ds
]

E[τ ]
− λE[η2]

Eπ̄[τ2]

2
= 0 (47)

The variance of relative prices are given by

V[p̂i]
π̄ = π̄2

(
Eπ̄[τ3]

3Eπ̄[τ ]
− Eπ̄[τ2]2

4Eπ̄[τ ]2

)
+ λE[η2]

Eπ̄[τ2]

2Eπ̄[τ ]
(48)
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To get an expression for the idiosyncratic shocks as function of observables note that using Ito lemma at zero inflation

dp̂2
t = 2p̂tdpt +

(
(ηt + p̂t−)2 − p̂2

t−
)
dqt = −2p̂tπ̄dt+

[
ηt + (ηtpt−) + η2

t

]
dqt (49)

Using the previous equation

E[(p̂t − p∗)2] = −2π̄

∫ t

0

E[p̂s]ds+ λE[η2]t = π̄2t2ds+ λE[η2]t (50)

where we used that E[η] = E[ηp̂−] = 0. Therefore (p̂t − p̂∗)2 + (π̄t)2 − λE[η2]t is a martingale and using the optimal

sampling theorem

Eπ̄[∆p2] = Eπ̄[(p̂τ − p̂∗)2] = π̄2Eπ̄[τ2] + λE[η2]Eπ̄[τ ] (51)

Therefore

λE[η2] =
Eπ̄[∆p2]− π̄2Eπ̄[τ2]

Eπ̄[τ ]
(52)

and we have that

V[p̂i] = π̄2

(
Eπ̄[τ3]

3Eπ̄[τ ]
− Eπ̄[τ2]2

4Eπ̄[τ ]2

)
+

Ex[∆p2]− x2Ex[τ2]

Ex[τ ]

Eπ̄[τ2]

2Eπ̄[τ ]
(53)

We can write second term as

=
E0[∆p2]

E0[τ ]

Eπ̄[τ2]

2Eπ̄[τ ]
(54)

= E0[∆p2]
Eπ̄[τ ]

E0[τ ]

E[τ2]

2E[τ ]2
(55)

=
E0[∆p2]

2

Eπ̄[τ ]

E0[τ ]
(1 + V[τ̂ ]) (56)

where τ̂ = τ
Eπ̄ [τ ]

. For the first term

= π̄2

(
Eπ̄[τ3]

3Eπ̄[τ ]
− Eπ̄[τ2]2

4Eπ̄[τ ]2

)
(57)

=

(
Eπ̄[τ ]π̄

)2
12

(
4Eπ̄[τ̂3]− 3Eπ̄[τ̂2]2

)
(58)

=

(
Eπ̄[τ ]π̄

)2
12

(
1 + V[τ̂ ]

3
2 Ske(τ̂) + 3V[τ̂ ](2− V[τ̂ ])

)
(59)

Where we use that V[τ̂ ]
3
2 Ske[τ̂ ] = Eπ̄[τ̂3]− 3V[τ̂ ]− 1

Proposition 8 Assume a quadratic approximation of the profit function Bp̂2
t with h(η) symmetric around zero.

Define

U =
log(maxp̃{Ψ(Sss)})

P ∗

L =
log(minp̃{Ψ(Sss)})

P ∗

Then U = u( π̄
ρ+λ

, θ̃) and U = l( π̄
ρ+λ

, θ̃) with the following properties

1. u(·), l(·) are increasing in both arguments.

2. limx→0+ ux(x, y) = limx→0+ ly(x, y) = 0 with

Eu,x ∈ (0, 1/3) ; El,x ∈ (0, 1/3)

increasing in x.
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Proof. This proof is not complicate but it is long. Therefore I’m going to skip some steps in the proof. It would be

easier to redefine the firm’s problem in the markup space, since the reset markup is a decision variable (reset price is

an equilibrium condition, see above). Note that the Ss band in markups space is a re-scalation of the Ss in relative

price space. The firm’s problem is given by

V (µ) = max
τ

E
[∫ τ

0

−e−ρtBµ̂2
tdt+ e−ρτ (max

x
V (x)− θ)

]
(60)

subject to

dµ̂t = −π̄dt+ ηat dq with µ̂0 = µ (61)

where qt is a Poisson problem with arrival rate λ. The first step consist in showing that if θ̃, h′′(0) small then the

policy for low level of inflation can be computed as

L = π̃L̄

(
θ̃

π̃2

)
µ∗ = π̃µ̄∗

(
θ̃

π̃2

)
U = π̃Ū

(
θ̃

π̃2

)
where L̄(x), Ū(x), µ̄∗(x) satisfy the triangular system

x = L̄(x)2 + 2
L̄(x)

eL̄(x) − 1

(
−
(
eL̄(x) − 1

)
+ ¯L(x)

)
x = Ū(x)2 − 2

L̄(x)

eL̄(x) − 1

(
(e−Ū(x) − 1) + Ū(x)

)
µ̄∗ = 1− L̄(x)

exp(L̄(x))− 1

Note that the JBE is given by

(ρ+ λ)V (µ) = −µ2 + λ

∫ ∞
−∞

max{V (µ∗)− θ

B
, V (µ+ x)}h(x)dx− πV ′µ(µ) (62)

With the optimality and border conditions

V ′µ(µ∗(π)) = 0 (63)

V (µ∗ − L) = V (µ∗ + U) = V (µ∗)− θ

B
(64)

and the smooth pasting condition

V ′(µ∗ − L) = 0 (65)

Using the assumption of symmetry (h′(0) = h′′′(0) = 0) and optimality of µ∗

=

∫ ∞
−∞

max{V (µ∗)− θ, V (µ+ x)}h(x)dx

= V (µ∗)− θ

B
+

∫
[−L,U ]

(V (µ∗ + x)− (V (µ∗)− θ))h(µ∗ − µ+ x)dx

= V (µ∗)− θ

B
+

[∫
[−L,U ]

(
θ

B
+
Vµ2(µ∗)

2
x2 +O(x3)

)
(h(0) +

h′′(0)

2
(µ∗ − µ+ x)2) +O((µ∗ − µ+ x)4)

]
dx

= B1 +
h′′(0)

2

(
(µ∗ − µ)(θ

U2 − L2

2
+
V ′′(µ∗)

2

U4 − L4

4
) + (µ∗ − µ)2(θ(U + L) +

V ′′(µ∗)

2

U3 − L3

3
)

)
+ . . .

· · ·+
∫

[−L,U ]

O((µ∗ − µ+ x)4x2)dx

= B0 +
h′′(0)

2

(
(µ∗ − µ)(θ

U2 − L2

2
+
V ′′(µ∗)

2

U4 − L4

4
) + (µ∗ − µ)2(θ(U + L) +

V ′′(µ∗)

2

U3 − L3

3
)

)
+ o((µ∗ − µ)4)
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Note that if h′′(0) goes to zero then this term coverge to a constant. But even if h′′(0) does not converge to

a constant, all the term in the expantion are small U2 − L2, θ
B

with respect to µ2 (the norminlize static profit).

Therefore V (µ) = B0 +G(µ). Using a Taylor approximation over G(µ)

G(µ) =

∞∑
n=0

Gn(µ∗)

n!
(µ− µ∗)n (66)

For n ≥ 3 and µ ∈ [µ∗ − L, µ∗ + U ] we have that

(r + λ)Gn(µ∗) = −πGn+1(µ∗) (67)

Skipping intermediate step, it is easy to see that the value function is given by

G(µ) = G(µ∗) +
G2(µ∗)

2
(µ− µ∗)2 +G3(µ∗)

[
−π̃3 exp

(
−µ− µ

∗

π̃

)
+ π̃3 − π̃2 (µ− µ∗) + π̃

(µ− µ∗)2

2

]
(68)

= G(µ∗) +
G2(µ∗) + π̃G3(µ∗)

2
(µ− µ∗)2 + V 3(µ∗)

[
−π̃3 exp

(
−µ− µ

∗

π̃

)
+ π̃3 − π̃2 (µ− µ∗)

]
(69)

Imposing smooth-pasting condition over G

L

π̃
=

G3(µ∗)π̃

G2(µ∗) +G3(µ∗)π̃

(
exp

(
−L
π̃

)
− 1

)
(70)

From the other two border conditions

− θ̃ = (r + λ)
G2(µ∗) +G3(µ∗)π̃

2
L2 + (r + λ)G3(µ∗)π̃[−π̃2(exp

(
L

π̃

)
− 1) + π̃L] (71)

−θ̃ = (r + λ)
G2(µ∗) +G3(µ∗)π̃

2
U2 + (r + λ)G3(µ∗)π̃[−π̃2(exp

(
−U
π̃

)
− 1)− π̃U ] (72)

Using the previous conditions and working with the algebra

θ̃ = L2 + 2
L/π̃

exp(L/π̃)− 1

(
−π̃2

(
eL/π̃ − 1

)
+ π̃L

)
θ̃ = U2 + 2

L/π̃

exp(L/π̃)− 1

(
−π̃2(e−U/π̃ − 1)− π̃U

)
µ∗ = π̃

(
1− L/π̃

exp(L/π̃)− 1

)

or equivalently

θ̃

π̃2
= L̄2 + 2

L̄

eL̄ − 1

(
−
(
eL̄ − 1

)
+ L̄

)
θ̃

π̃2
= Ū2 − 2

L̄

eL̄ − 1

(
(e−Ū − 1) + Ū

)
µ̄∗ = 1− L̄

exp(L̄)− 1

where

L = π̃L̄

(
θ̃

π̃2

)
µ∗ = π̃µ̄∗

(
θ̃

π̃2

)
U = π̃Ū

(
θ̃

π̃2

)
Now we need to show that L̄(x) and Ū(x) satisfy:
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1. limx→∞

(
L̄(x)√
x
, Ū(x)√

x

)
= 1.

2. L̄(x) and Ū(x) are increasing in x.

3. ΞŪ,x,ΞL̄,x increases from 1/3 to 1/2.

Taking limit

lim
L̄↓0

L̄2 + 2

=1︷ ︸︸ ︷
L̄

eL̄ − 1

=−L̄+L̄=0︷ ︸︸ ︷(
−
(
eL̄ − 1

)
+ L̄

)
= 0 (73)

Therefore L(x) finish
√
x, with limx↓0 L̄(x) = 0. The last two properties can be checked numerically or using Taylor

approximation of arbitrary number. Similar arguments with U(x).

Proposition 9 For any model of firm behaviour (τ), the aggregate markup gap is given by

M̂ss = π̄E
[∫ ∞

0

a(ρ, τ, s)sds

]
+

(
γ − 1

γ − 1

)
E[

∫ ∞
0

b(ρ, τ, s)(p̂s − wss)2ds] (74)

Where

• E
[∫∞

0
a(ρ, τ, s)sds

]
< 0 and E

[∫∞
0
a(0, τ, s)sds

]
= 0

• E
[∫∞

0
a(ρ, τ, s)sds

]
is decreasing in ρ

• E
[∫∞

0
a(ρ, τ + 1, s)sds

]
< E

[∫∞
0
a(ρ, τ, s)sds

]
More over ρ→ 0

M̂ss ≈
(
γ − 1

γ − 1

)
Vi[p̂i] (75)

Proof. For the proof it is easier to work with markups µ̂ = p̂ − log(mc). With similar argument as the previous

proof it easy to show that

Eπ̄i [µ̂i] = µ∗ − π̄E
π̄[τ2]

2Eπ̄[τ ]
(76)

Given that in steady state the level of output and marginal utility is constant the optimal program of the firm is

given by

=

{∫ τ

0

e−ρtKµ−γt (µt − 1)

}
(77)

= K1 +K

{∫ τ

0

e−ρt
(
Φ2(µ∗)2µ̂2

t + Φ3(µ∗)3µ̂3
t

)}
(78)

Using the envelope condition we have that

µ∗ = π̄
Eπ̄
[∫ τ

0
e−ρssds

]
Eπ̄
[∫ τ

0
e−ρsds

] − 3Φ3(µ∗)3

2Φ2(µ∗)2

E[
∫ τ

0
e−ρsµ̂2

sds]

E[
∫ τ

0
e−ρsds]

(79)

= π̄
Eπ̄
[∫ τ

0
e−ρssds

]
Eπ̄
[∫ τ

0
e−ρsds

] +

(
γ − 1

γ − 1

) E[
∫ τ

0
e−ρsµ̂2

sds]

E[
∫ τ

0
e−ρsds]

(80)

Conving the two previous results we have that

Ei[µ̂i] = π̄

(
Eπ̄
[∫ τ

0
e−ρssds

]
Eπ̄
[∫ τ

0
e−ρsds

] − Eπ̄[τ2]

2Eπ̄[τ ]

)
+

(
γ − 1

γ − 1

) Eπ̄[
∫ τ

0
e−ρsµ̂2

sds]

Eπ̄[
∫ τ

0
e−ρsds]

(81)
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we can redefine

a(ρ, τ, s) =

[
e−ρs

Eπ̄
[∫ τ

0
e−ρsds

] − 1

Eπ̄
[∫ τ

0
1ds
]] I(s < τ) (82)

b(ρ, τ, s) =
e−ρs

Eπ̄
[∫ τ

0
e−ρsds

]I(s < τ) (83)

(84)

Note that a(ρ, τ, s) is a decreasing function in s with the property that Eπ̄
[∫∞

0
a(ρ, τ, s)ds

]
, therefore Eπ̄

[∫∞
0
a(ρ, τ, s)sds

]
<

0. The second properties with respect the discount factor are strightforward. For the last propery note that if we

define s(τ) = minx a(ρ, ρ, x), then a(a, τ, x) > a(ρ, τ + 1, x) for all x ≤ s(τ). From this property is straightforward

the last property.

Taking the limit of ρ→ 0

Ei[µ̂i] =

(
γ − 1

γ − 1

)(
Vi[p̂i] + Ei[µ̂i]2

)
≈
(
γ − 1

γ − 1

)
Vi[p̂i] (85)

11 Numerical Appendix

The cost function is given by

minWtlt + PtNt s.t. AtηZ,tN
α
t,il

1−α
t,i = yt,i (86)

Define wt as the real wage. The demand functions are given, total cost and marginal cost are given by

Nt,i =
yt,i

ηZ,tAt,i
w1−α
t

(
α

1− α

)1−α

(87)

lt,i =
yt,i

At,iηZ,t
w−αt

(
1− α
α

)α
(88)

TCt =
yt,i

At,iηZ,t
w1−α
t

((
1− α
α

)α
+

(
α

1− α

)1−α
)

(89)

MCt =
1

At,iηZ,t
w1−α
t

((
1− α
α

)α
+

(
α

1− α

)1−α
)

(90)
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Let define ι =

((
1−α
α

)α
+
(

α
1−α

)1−α
)

. From the equation of labor demand

lt,i − Ωtθ =

∫ 1

0

(
yt,i

ηZ,tNα
t,i

) 1
1−α

di (91)

=

(
(1− α)

αwt

)α
1

ηZ,t

∫ 1

0

(
yt,i
At,i

)
di (92)

=
Yt
ηZ,t

(
(1− α)

αwt

)α ∫ 1

0

p̃−γt,i di (93)

=
Yt
ηZt

Yt

(
(1− α)

αwt

)α
∆t (94)

ηGt + Ct = Yt −
∫
Nt,idt (95)

= Yt

(
1−

(
wtα

1− α

)1−α
∆t

ηZ,t

)
(96)
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11.1 Computation of the Equilibrium in the Menu Cost Model

The equilibrium conditions are given by

mu(S) = βES′ [R(S)Ξ(S′)mu(S′)
ηQ(S′)

Π(S′)
|S]

κL(S)χ = w(S)

u(S) = K
(C(S)− κL(S)1+χ

1+χ
)1−σn

1− σn

mu(S) = K(C(S)− κL(S)1+χ

1 + χ
)−σn

U(S) = u(S)− βE[
(
−U(S′)

)1−σez |S]
1

1−σez

Ξ(S) =

(
−U(S)

Et[(−U(S))1−σez ]
1

1−σez

)−σez
R(S)β

1 + π̄
= max

 β

1 + π̄
, R̃−1(S)

((
Π(S)

1 + π̄

)φπ ( mc(S)

mc−(S)

)φ̃y)1−φr


R̃(S) =

(
R(S)β

1 + π̄

)φr
eσ
RεR

ηZ(S) (L(S)− Ω(S)θ) = Y (S)

(
(1− α)

αw(S)

)α
∆(S)

ηG(S) + C(S) = Y (S)

(
1−

(
w(S)α

1− α

)1−α
∆(S)

ηZ(S)

)

Π(S) =

(
1− Ω(S)

(1− ΩP ∗(S)1−γ)

) 1
1−γ

ϕ(S)

mc(S) =
ιw(S)1−α

ηZ(S)

∆(S) = Ω(S)P ∗(S)−γ + (1− Ω(S))Π(S)γυ(S)

P ∗(S) = arg max
x
{V (x, S)}

v(p̃, S) = Ep̃′,S′
[
Ξ(S′) max

c,nc
{max

x
{V (x, S′)} − w(S′)mu(S′)θ, V (p̃′, S′)}|p̃, S

]
V (p̃, S) = Φ(p̃, S) + βv(p̃, S)

Φ(p̃, S) = mu(S)Y (S)p̃−γ (p̃−mc(S))

p̃′(p̃) =

{
p̃

Π(S′) with pr. e−λ

p̃eta
Π(S′) with pr. 1− e−λ

log(ηZ(S′)) = (1− ρz) log(ηZ) + ρz log(ηZ(S)) + σzε
Z

log(ηG(S′)) = (1− ρg) log(ηG) + ρg log(ηG(S)) + σgε
G

log(ηQ(S′)) = (1− ρq) log(ηQ) + ρq log(ηQ(S)) + σqε
Q
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where

C(S) =

{
(p,∆a) :

pe∆a

Π(S)
∈ Ψ(S)

}
∆(S) =

∫
p̃−γf(dp̃)

Ω(S) =

∫
(p̃,∆a)/∈C(S)

f(dp̃−)g(d∆a)

Π(S) =

(
1− Ω(S)

(1− Ω(S)P ∗(S)1−γ)

) 1
1−γ

ϕ(S)

ϕ(S) =

(∫
Γ(S)

(p̃−)1−γ

1− Ω(S)
f(dp̃−)

) 1
1−γ

∆(S) = Ω(S)P ∗(S)−γ + (1− Ω(S))Π(S)γυ(S)

υ(S) =

∫C p̃− γ
1−α
− f(dp̃−)

1− Ω(S)


11.2 Solution Algorith: General outline

The solution algorith consist in 4 steps

Step 1: Solve the steady state and obtain initial guess for the steady state

(Css, Lss, P
∗
ss,Πss, Rss,∆ss,Ωss, ϕss,mcss) (97)

Step 2: Use perturbations methods to approximate the equilibrium dynamics without the ZLB. Approximate reset

price with Calvo pricing using as probability of changing the price the probability of receving an idiosyncratic

shock.

Step 3: Solve equilibrium conditions with global methods ignoring the zero lower bound.

Step 4: Solve equilibrium conditions with global methods with the zero lower bound.
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11.3 Step 1: Solve Steady State economy

1. Guess (∆i
ss; Ωiss,mc

i
ss) and solve

wss =

(
mcssη

Z
ss

ι

) 1
1−α

Lss =
(wss
κ

) 1
χ

Yss = ηZss
Lss − Ωssθ

∆ss

(
αwss
1− α

)α
Css = Yss

(
1−

(
wssα

1− α

)1−α
∆ss

ηZss

)
− ηGss

uss = K
(Css − κL

1+χ
ss

1+χ
)1−σn

1− σn

muss = K(Css − κ
L1+χ
ss

1 + χ
)−σn

Uss =
uss

1− β
Πss = 1 + π̄

Rss =
1 + π̄

β

R̃ss = 1

2. Given (Y iss,mu
i
ss, w

i
ss, L

i
ss), solve

v(p̃)i = Ep̃′
[
max
c,nc

{
max
x
{V i(x)i} − wssθ, V i(p̃′)i

}
|p̃
]

V i(p̃)i = Φ(p̃) + βv(p̃)

Φ(p̃) = mussYssp̃
−γ (p̃−mcss)

p̃′(p̃) =

{
p̃

1+π̄
with pr. e−λ

p̃eσaε
a

1+π̄
with pr. 1− e−λ

and get (P ∗ss)
i, U iss, L

i
ss.

(a) Technical 1: For the firm problem of spline of 3 order to approximate the value function.

(b) Technical 2: Use contraction together with colotion to solve the Bellman equation of the firm.

(c) Technical 3: Use Golden search to solve the firm problem.

3. Fix a grid between [p̃min,s, p̃max,s] with ns points. With (P ∗ss)
i, U iss, L

i
ss, construct the three transition

F∆a, FΠ, Fp′ where

(a) F∆a is given by the transition probability p̃1 = p̃ηt.

(b) FΠ is given by the transition probability p̃1 = p̃
Πss

.

(c) Fp′ is given by the transition probability p̃1 = P ∗ssI(p̃ ∈ C) + I(p̃ /∈ C)P ∗ss.

using linear splines over the grid [p̃min,s, p̃max,s].and compute the eigenvector of the unit eigenvalue of F∆aFΠFp′

that gives the ergodic distribution nss. After having the ergodic distribution compute the reset inflation, price

dispersion and frequency of price change.
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• naux = (nssF∆aFΠ)I(p ∈ C).

• Ωss = 1−
∑
i naux(i).

• ϕss = (1 + π̄)
(∑

i p̃(i)
naux(i)∑
i naux(i)

) 1
1−γ

.

• Πss =
(

1−Ωss

1−ΩP
1−γ
ss

) 1
1−γ

ϕss.

• ∆ss =
∑
i p̃(i)

−γnss(i)

4. Update aggregate state from the simulation.

(a) If abs(mean(Πt)
1+π̄

) < A, then

mci+1
ss = mciss

(
1 + π̄

Πss

)adj
Ωi+1
ss = Ωiss + adj(Ωi+1

ss − Ωiss) ∆i+1
ss = ∆i

ss + adj(∆i+1
ss −∆i

ss)

(98)

(b) If abs(mean(Πt)
1+π̄

) > A, then

mci+1
ss = mciss

(
1 + π̄

mean(Πt)

)adj
(99)

5. Go to step 1 and check convergence of the policy

max(abs(
Ci+1
ss − Ciss
Ciss

,
Li+1
ss − Liss
Liss

,
MCi+1

ss −MCiss
MCiss

,Ωi+1
ss − Ωiss,

∆i+1
ss −∆i

ss

∆i
ss

,
Y i+1
ss − Y iss
Y iss

)) < tolconv (100)

Continue the procedure if it doesn’t converge.

1. After converge compute micro-price statistics with extended F ∗∆a, then we can compute the the distribution

of price change as f(p) = nss ∗ F∆aFΠ ∗ (pi /∈ C).
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11.4 Step 2: Approximation of the solution

1. Solve the steady state: Given

(∆i
ss,Ω

i
ss, ϕ

i
ss,mc

i
ss, (P

∗
ss)

i) (101)

solve

wss =

(
mcssη

Z
ss

ι

) 1
1−α

Lss =
(wss
κ

) 1
χ

Yss = ηZss
Lss − Ωssθ

∆ss

(
αwss
1− α

)α
Css = Yss

(
1−

(
wssα

1− α

)1−α
∆ss

ηZss

)
− ηGss

uss = K
(Css − κL

1+χ
ss

1+χ
)1−σn

1− σn

muss = K(Css − κ
L1+χ
ss

1 + χ
)−σn

Uss =
uss

1− β
Πss = 1 + π̄

Rss =
1 + π̄

β

R̃ss = 1

2. Given

Ω(S) = LiΩ(log(S)) ∆(S) = Li∆(log(S)) ϕ(S) = Liϕ(log(S)) (102)

Solve the following system around

(∆ss,Ωss, ϕss, wss, P
∗
ss, Css, Lss, Yss,mcss) (103)
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using 1 order perturvation methods. The system is given by

mut = βEt[RtΞt+1mut+1

ηQt+1

Πt+1
|S]

κLχt = wt

ut = K
(Ct − κL

1+χ
t

1+χ
)1−σn

1− σn

mut = K(Ct − κ
L1+χ
t

1 + χ
)−σn

Ut = ut − β(−Uss)Et[
(
−Ut+1

Uss

)1−σez
]

1
1−σez

Ξaux,t = Et[
(
−Ut+1

(−Uss)

)1−σez

Ξt+1 =

− Ut+1

(−Uss)

Ξ
1

1−σez
aux,t

−σez

Rtβ

1 + π̄
= R̃t

((
Πt

1 + π̄

)φπ ( mct
mct−1

)φ̃y)1−φr

R̃t =

(
Rt−1β

1 + π̄

)φr
eσ
RεRt

ηZt (Lt − Ωtθ) = Yt

(
(1− α)

αwt

)α
∆t

ηGt + Ct = Yt

(
1−

(
wtα

1− α

)1−α
∆t

ηZt

)

Πt =

(
1− Ωt

(1− Ω(P ∗t )1−γ)

) 1
1−γ

ϕt

mct =
ιw1−α

t

ηZt

∆t = Ωt(P
∗
t )−γ + (1− Ωt)Π

γ
t υt

St =
γ

γ − 1
mutYtMCt + β(1− p)Et[Πγ

t+1Ξt+1St+1]

Ft = mutYt + β(1− p)Et[Πγ−1
t+1 Ξt+1Ft+1]

P ∗t =
St
Ft

log(ηZ(S′)) = (1− ρz) log(ηZ) + ρz log(ηZ(S)) + σzε
Z

log(ηG(S′)) = (1− ρg) log(ηG) + ρg log(ηG(S)) + σgε
G

log(ηQ(S′)) = (1− ρq) log(ηQ) + ρq log(ηQ(S)) + σqε
Q

With the solution generate the coefficient for the policies using projection methods (smoliak) for the following

functions

(Ci(S), Li(S), Y i(S), Gi(S), R̃i(S),mci(S),∆i(S),Ωi(S), ϕi(S),Π(S), ηZ(S), ηQ(S)) (104)

(a) Technical 1: Note that we are not approximating the solution from the steady state, but we are approx-

imating the solution from the mean in the simulation with respect to (∆ss,Ωss, ϕss, wss, P
∗
ss).

(b) Technical 2: I will never use P ∗(S) since this function comes from the optimality conditions of the firm.
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(c) Technical 3: If blachard conditions are not satisfied put a stochastic discount factor to the firm of βD.

4. Given (Ci(S),Πi(S),mci(S), R̃i(S), wi(S),∆i(S)) solve

v(p̃, S) = Ep̃′,S′
[
max
c,nc
{max

x
{V (x, S′)} −mu(S′)w(S′)θ, V (p̃′, S′)}|S

]
V (p̃, S) = Φ(p̃, S) + βv(p̃, S)

Φ(p̃, S) = Y (S)mu(S)p̃−γ (p̃−mc(S))

p̃′(p̃) =

{
p̃

Π(S′) with pr. e−λ

p̃eσaε
a

Π(S′) with pr. 1− e−λ

and get P i(S), V i(S).

(a) Technical 1: For the firm problem I used Anisotropic construction of smoliak polinomial with coefficients

µ = (3p̃, 2mc− , 2∆− , 3R̃− , 3ηZ , 3ηG , 3ηQ).

(b) Technical 2: I generate the base before starting contraction and colocation, note that there is no decision

variable for competing the integral!!!!!.

5. Given

Πi(S),mci(S), R̃i(S), V i(p̃, S), vi(p̃, S), P ∗,i(S) (105)

start from the previous simulation sidio0 and Saggre0.

(a) Compute Πt(Saggret) from the aggregate equilibrium conditions.

(b) With Π̂t(Saggret) compute the following matrices

i. FΠt is given by the transition probability p̃1 = p̃

Π̂t(Saggret)
using linear splines over the simulated

grid.

ii. Fp′t is given by the transition probability p̃1 = P ∗t (Saggret)I(p̃ ∈ C(Saggret))+I(p̃ /∈ C(Saggret))p̃∗
π̂t
Πst

.

(c) Compute micro-price statistics

i. naux,t = (nt−1F∆aFΠt)I(p ∈ C(Saggret)).

ii. Ωt = 1−
∑
i naux,t(i).

iii. ϕt = Π̂t

(∑
i p̃(i)

naux,t(i)∑
i naux,t(i)

) 1
1−γ

.

iv. Πt =

(
1−Ωt

1−ΩtP
1−γ
t

) 1
1−γ

ϕt.

v. ∆s
t =

∑
i p̃(i)

−γnt(i)

vi. nt = (nt−1F∆aFΠt)Fp′t

(d) Update the exogenous and endogenous states for the firm for period t+ 1

ηZt+1 = (ηZss)
1−ρZ (ηZt )ρZ exp(σZεt+1) (106)

ηGt+1 = (ηGss)
1−ρG(ηGt )ρG exp(σGεt+1) (107)

ηQt+1 = (ηQss)
1−ρQ(ηQt )ρQ exp(σQεt+1) (108)

Rt+1 = R̃(St)e
σRεt+1 (109)

mct = mc(St) (110)

∆t = ∆s
t (111)
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4. Given the simulation (Ωt, ϕt,∆t) estimate

Ωt = exp(P (1)Ω(log(St))) ∆t = exp(P 1
∆(log(St))) ϕt = exp(P 1

ϕ(log(St))) (112)

using linear regression methods.

5. Update aggregate state from the simulation.

(a) If abs(mean(Πt)
1+π̄

) < A, then

mci+1
ss = mciss

(
1 + π̄

mean(Πt)

)adj
Ωi+1
ss = Ωiss + adj(Ωi+1

ss − Ωiss) ∆i+1
ss = ∆i

ss + adj(∆i+1
ss −∆i

ss)

ϕi+1
ss = ϕiss + adj(ϕi+1

ss − ϕiss) (P ∗ss)
i+1 = (P ∗ss)

i + adj((P ∗ss)
i+1 − (P ∗ss)

i)

P 2,i+1
Ω (log(St)) = P 2,i+1

Ω (log(St)) + adj(P 2
Ω(log(St))− P 2,i

Ω (log(St)))

P 2,i+1
∆ (log(St)) = P 2,i+1

∆ (log(St)) + adj(P 2
∆(log(St))− P 2,i

∆ (log(St)))

P 2,i+1
ϕ (log(St)) = P 2,i+1

ϕ (log(St)) + adj(P 2
ϕ(log(St))− P 2,i

ϕ (log(St)))

(λ1, λ2)i+1 = (λ1, λ2)i + adj((λ1, λ2)− (λ1, λ2)i)

(b) If abs(mean(Πt)
1+π̄

) > A, then

mci+1
ss = mciss

(
1 + π̄

mean(Πt)

)adj
(113)

6. Go to step 1 and check convergence of the policy.

max
S∈Serg

(abs(
Ci+1(S)− Ci(S)

Ci(S)
,
Li+1(S)− Li(S)

Li(S)
,
MCi+1(S)−MCi(S)

MCi(S)
,Ωi+1(S)−Ωi(S),

∆i+1(S)−∆i(S)

∆i(S)
)) < tolconv

(114)

where S = {S1, S2, S3, ...} is obtaint from the simulation to evaluate the model in the ergodic set. Continue

the procedure if it doesn’t converge.
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11.5 Solve the model without ZLB

1. Guess

Ω(S) = P 2,i
Ω (log(S)) ∆(S) = P 2,i

∆ (log(S)) ϕ(S) = P 2,i
ϕ (log(S)) υ(S) = P 2,i

υ (log(S)) (115)

I found that it is better doing KS directly on ∆ than on υ. So I will describe the algorith with ∆(S). Let

(Cj,i(S), Lj,i(S), Y j,i(S), Rj,i(S), R̃j,i(S), uj,i(S),muj,i(S), U j,i(S), . . .

∆i(S),Ωi(S), ϕi(S), . . .

mcj,i(S), wj,i(S),Πj,i(S), P ∗,j,i(S)), vj,i(p̃, S), V j,i(p̃, S)

(116)

for j=0 an initial condition for the global solution. I use fixed point interation to solve global, explained below.

(a) Let Kglo be a positive integer, for k = j, ..., j +Kglo − 1 update the policy as

muk+1,i(S) = βRk,i(S)E
[
muk,i(S′)ηQ(S′)Ξk,i(S′)

Πj,i(S)
|S
]

(117)

Ξk,i(S
′) =

(
Uk,i(S′)

E [(−Uk,i(S′))1−σez |S]
1

1−σez

)−σez
(118)

(119)

with muk+1,i(S) solve

wk+1,i = κLk+1,i(S)χ (120)

ηG(S) + Ck+1,i(S) = Y k+1,i(S)

(
(1− α)

αwk+1,i

)α
∆i(S) (121)

ηZ(S)(Lk+1,i(S)− θΩi(S)) = Y k+1,i(S)

(
1−

(
wk+1,i(S)α

1− α

)1−α
∆i(S)

ηZ(S)

)
(122)

muk+1,i = K

(
Ck+1,i(S)− κ

1 + χ
Lk+1,i(S)1+χ

)−σnp
(123)

Then solve

mck+1,i =
ι(wk+1,i)1−α

ηZ(S)
(124)

uk+1,i = K

(
Ck+1,i(S)− κ

1+χ
Lk+1,i(S)1+χ

)1−σnp

1− σnp
(125)

Uk+1,i = uk+1,i − βE
[
(−Uk,i(S′))1−σez |S

] 1
1−σez (126)

Rk+1,i(S) =
1 + π̄

β
R−(S)φr

(Πj,i(S)

1 + π̄

)φπ (MCk+1,i(S)

MC−(S)

(
∆−(S)

∆i(S)

) χ
1−α

) φy

σ+
χ+α
1−α


1−φr

(127)

(128)
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For k = j +Kglo I solve equilibrium inflation given by

vj+Kglo,i(p̃, S) = Ep̃′,S′
[
max
c,nc
{max

x

{
V (x, S′)j+Kglo,i} − wj+Kglo,i(S′)θ, V j+Kglo,i(p̃′, S′)

}
|S, p̃

]
V j+Kglo,i(p̃, S) = {Φ(p̃, S) + βvj+Kglo,i(p̃, S)}

Φ(p̃, S) = muj+Kglo,i(S)Y j+Kglo,i(S)p̃−γ
(
p̃−mcj+Kglo,i(S)

)
}

p̃′(p̃) =

{
p̃

Π(S′) with pr. e−λ

p̃eσaε
a

Π(S′) with pr. 1− e−λ

P ∗(S)j+Kglo,i = arg max
x

{
V (x, S)j+Kglo,i

}
Πj+Kglo,i(S) =

(
1− Ωi(S)

1− Ωi(P ∗(S)j+Kglo,i)1−γ

) 1
1−γ

ϕi

2. Idem. as equilbirium approximation.

3. Given the simulation (Ωt, ϕt, υt) estimate

Ωt = exp(P 2
Ω(log(St))) υt = exp(P 2

υ (log(St))) ϕt = exp(P 2
ϕ(log(St))) ∆t = exp(∆2

ϕ(log(St)))

(129)

using linear regression methods. Generate the coefficient of the policies as

Ω∗ = max(min(exp(P 2
Ω(log(St))), Q

99(Ωt)), Q
1(Ωt)) (130)

∆∗ = max(min(exp(P 2
∆(log(St))), Q

99(∆)), Q1(∆)) (131)

ϕ∗ = max(min(exp(P 2
ϕ(log(St))), Q

99(ϕ)), Q1(ϕ)) (132)

5. Update aggregate state from the simulation.

Ci+1
ss = Ciss + adj(Ci+1

ss − Ciss)

P 2,i+1
Ω (log(St)) = P 2,i+1

Ω (log(St)) + adj(P 2
Ω(log(St))− P 2,i

Ω (log(St)))

P 2,i+1
υ (log(St)) = P 2,i+1

υ (log(St)) + adj(P 2
υ (log(St))− P 2,i

∆ (log(St)))

P 2,i+1
ϕ (log(St)) = P 2,i+1

ϕ (log(St)) + adj(P 2
ϕ(log(St))− P 2,i

ϕ (log(St)))

6. Go to step 1 and check convergence of the policy.

max
S∈Serg

(abs(
Ci+1(S)− Ci(S)

Ci(S)
,
Li+1(S)− Li(S)

Li(S)
,
MCi+1(S)−MCi(S)

MCi(S)
,Ωi+1(S)−Ωi(S),

∆i+1(S)−∆i(S)

∆i(S)
)) < tolconv

(133)

where S = {S1, S2, S3, ...} is obtaint from the simulation to evaluate the model in the ergodic set. Continue

the procedure if it doesn’t converge.
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11.6 Equilibrium Solution with ZLB

Change the equation of the zero lower bound.

Rk+1,i(S) = max

1,
1 + π̄

β
R̃−(S)φr

(Πj,i(S)

1 + π̄

)φπ (MCk+1,i(S)

MC−(S)

(
∆−(S)

∆i(S)

) χ
1−α

) φy

σ+
χ+α
1−α


1−φr (134)

11.7 Evaluation of Krusell-Smith

To evaluate Krusell-Smith, first I simulate the model and construct a time series of

(mc−(Sst ),∆s
t−1, R−(Sst ), ηZ(St)

s, ηG(St)
s, ηQ(St)

s,Πs
t ,Ω

s
t )t (135)

Then I construct the implied by the model in the simulation in the static equations

R̂t = R̃−(Sst )φπ
(

Πs
t

1 + π̄

)φπ(1−φr)(
mc(Sst )

mc−(Sst )

)φy(1−φr)

(136)

(137)

Given mu(St)
s in the simulation

ŵ = κL̂χt (138)

ηG(St)
s + Ĉt = Ŷt

(
(1− α)

αŵt

)α
∆s
t (139)

ηZ(St)
s(L̂t − θΩst ) = Ŷt

(
1−

(
ŵtα

1− α

)1−α
∆s
t

ηZ(St)s

)
(140)

mu(St)
s = K

(
Ĉt −

κ

1 + χ
L̂1+χ
t

)−σnp
(141)

Finally for the dynamic equation, euler equation and belman equation of the firm, estimate a second order linear

regression Π̂(St) = L(Sst ) and with this function solve

m̂u(St) = βR̂tES′
[
mu(S′)

Π̂(S′)
ηQ(S′)|S

]
(142)

P̂ s(St) = arg max
x
{V (x, S)} (143)

Figure ?? and ?? plots the Krusell-Smith evaluation for consumption, labor supply, reset price and nominal

interest rate.

11.8 Computation of the Equilibrium in the New Keynesian Model
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Figure 16: Predicted and simulated consumption, labor supply, nominal interest rate and reset
price at 0 % trend inflation
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Figure 17: Predicted and simulated consumption, labor supply, nominal interest rate and reset
price at 6 % trend infla
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