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Abstract

In over-the-counter markets, the presence of two frictions is central to determine prices,

liquidity, and efficiency: the search friction reflected in how long it takes to find a trading

opportunity and the bargaining friction reflected in how promptly gains from trade are re-

alized once the opportunity is identified. This paper captures both frictions by introducing

an asset-specific trade delay into a standard search-and-bargaining model. For both exoge-

nous and endogenous specifications of delay, the set of traded assets and the dependence of

asset prices and spreads on default risk, liquidity, and market conditions are determined in

equilibrium. The proposed model with endogenous delay has several implications. First, it

offers a novel testable prediction: for assets within the same credit rating class, the liquidity

is U-shaped in quality. Assets closer to the extremes of the quality range are more liquid,

while assets in the middle of the quality range may be not traded at all. This is in contrast

with a monotone relation in models with asymmetric information. Second, this model shows

that the reduction in search and bargaining frictions may have opposite effects on market

liquidity which is reflected in the range of traded assets. Finally, it establishes a connection

between market uncertainty about the asset payoff and market liquidity. This link sheds

light on the role of transparency in over-the-counter markets and explains the occurrence of

dried-up liquidity and flights-to-quality during periods of increased market uncertainty.
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1 Introduction

Trade delay is a salient feature of many economic transactions and is predominant in over-the-

counter (OTC) markets for asset-backed securities, derivatives, corporate bonds, sovereign debt

and bank loans. In contrast to the stock market, OTC markets feature decentralized trade that

occurs through bilateral bargaining. Therefore, the presence of two trade frictions is central in

order to determine prices, liquidity, and efficiency: search friction which is reflected in the ability

of market participants to find a trading opportunity and bargaining friction which is reflected

in the ability of market participants to promptly realize gains from trade once an opportunity

is identified. The literature on search and bargaining successfully captures the notion of search

friction by introducing the random matching of agents but does not separately incorporate

bargaining friction and assumes that trade is immediate after agents are matched (see Duffie

(2012) for a literature review). Search friction is sometimes thought of as a reduced form for

both trade frictions. For example, Duffie (2012) states that “[s]earch delays ... proxy for delays

associated with reaching an awareness of trading opportunities, arranging financing and meeting

suitable legal restrictions, negotiating trades, executing trades, and so on.” This paper argues

that modeling both frictions is worthwhile because many forms of trade delay may naturally

differ across assets. It analyzes the effect of both trade frictions on prices and liquidity and

shows that these effects may differ for these two types of friction.

This study incorporates asset-specific delay into an otherwise standard search-and-bargaining

model. To capture a variety of sources of bargaining friction, the paper analyzes both a model

with exogenously-specified delay and a model with endogenous delay arising from strategic

bargaining. In both models, market liquidity proxied by a range of traded assets, and the

dependence of asset prices and yield spreads on the default risk, asset liquidity as well as market

conditions are determined in equilibrium. The model with endogenous delay has several novel

implications. First, it provides a testable prediction about the U-shaped dependence of asset

liquidity, reflected in the asset-specific trade delay, on default risk for assets within the same

credit-rating class. This contrasts with the prediction of a monotone relation in models with

asymmetric information. Second, when bargaining friction arises from strategic bargaining, there

is a drastic difference between the effect on liquidity of the reduction in search and bargaining

frictions, with the former reducing market liquidity and the latter improving market liquidity.

Hence, it is important to distinguish in the analysis the two frictions, and restricting attention

to only one type of friction is with a loss of generality. Third, the model with endogenous delay

provides a link between market liquidity and market uncertainty, reflected in the variance of asset

payoffs. This link sheds light on the role of transparency in market liquidity and on the decrease

in liquidity and flight-to-quality episodes during periods of heightened market uncertainty.

Specifically, I consider an infinite-horizon, steady-state economy with a continuum of assets

of varying quality. Asset quality is an index that summarizes various factors affecting the
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asset payoff, such as payment and risk structure. Assets of higher quality give a higher flow

payoff. Agents are hit by idiosyncratic liquidity shocks and can share risks by trading assets.

In order to trade, they search for a counter-party in a market with search frictions. Agents

are randomly matched via the search technology commonly used in the search-and-bargaining

literature (see Duffie, Gârleanu and Pedersen (2005)). After two agents are matched, they trade

following an the asset-specific delay. The price is set so that the surplus is split between parties

proportionally. The proportional split of the surplus is a common assumption in the literature,

while asset-specific delay is a novel feature of this paper.

There are various reasons why trade may not be immediate after a trade opportunity is iden-

tified. First, trade delay is a natural screening/signaling device and many theoretical strategic

bargaining models with uncertainty about values feature a significant trade delay (see Ausubel,

Cramton, and Deneckere (2002) for a survey).1 Second, assets traded in OTC markets are less

standardized than assets listed on exchanges. Publicly available information about assets, like

credit ratings and past quotes, is usually too crude to assess a particular trade, and as a result,

pre-trade evaluation of the asset by parties can be time-consuming.2,3 Another reason for trade

delay is the privacy concerns of traders. The lack of liquidity in OTC markets makes prices

sensitive to large trades. To minimize price impact, large trades are often split into smaller

trades spread over time, causing delay in the realization of gains from trade.4 Limited mobility

of capital can also lead to delayed transactions. Mitchell and Pulvino (2012) show that in 2008,

arbitrage opportunities persisted in the corporate bonds market for a long time, as arbitrage

hedge funds had trouble raising the capital to invest in those opportunities.

Motivated by these reasons for trade delay in OTC markets, I consider both models of

exogenous and endogenous delay. In the model with exogenous delay, each asset quality is

associated with a particular exogenously-specified trade delay. This model provides a framework

for analyzing asset prices and liquidity for a broad range of specifications of the bargaining

friction. However, the exogenous-delay model cannot capture situations in which trade delay

itself depends on how easily and at what price the asset can be traded in the future. When

bargaining is strategic, big differences in values of assets give market participants additional

1In the bargaining literature, an immediate agreement is obtained under quite restrictive assumptions on the
information structure and on the bargaining protocol. These assumptions are often too strong for the description
of trade in OTC markets.

2In discussions of the 2007-2008 liquidity crisis, the opaqueness of OTC markets is pointed out as one of the
main causes of the dried-up liquidity (see for example IMF (2008)). Pagano and Volpin (2012) shows theoretically
that the issuers of asset-backed securities have incentives to release only crude public information about the assets,
reducing the transparency of secondary markets.

3Saunders, Srinivasan, and Walter (2002) provides a case study of trade in the OTC market for corporate
bonds and reports that while the trade of more standardized bonds is relatively rapid, for assets with non-standard
features, traders often request a research evaluation which delays trade.

4Friewald, Jankowitsch, and Subrahmanyam (2012) and Dick-Nielsen, Feldhutter, and Lando (2012) document
that during the liquidity crisis of 2007-2008, the number of trades increased while other liquidity measures declined.
Their interpretation is that in less liquid environments, large orders are indeed executed over time through smaller
trades that have less impact on prices.
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incentives to negotiate longer in order to trade at a more favorable price. In turn, the value

of an asset depends on how easily the position can be liquidated when the holder is hit by a

liquidity shock. Hence, it is natural that trade delay is endogenously determined when strategic

bargaining is the key source of bargaining friction.

The model with endogenous delay uses a novel common screening bargaining solution to

determine the amount of delay due to strategic bargaining in equilibrium. In a companion paper,

I show that the common screening bargaining solution can be thought of as the reduced form for

the bargaining outcome in an alternating-offer bargaining model where instead of observing asset

quality, agents receive almost perfect-signals about the quality that determine their values (see

Tsoy (2014)). In a similar fashion, the generalized Nash (1950) bargaining solution commonly

used in the literature can be viewed as the reduced form for the bargaining outcome in an

alternating-offer bargaining model with perfectly observable quality (see Binmore, Rubinstein,

and Wolinsky (1986)).

Unlike the generalized Nash bargaining solution, in the common screening bargaining so-

lution, trade between matched agents is not immediate and exhibits more realistic two-sided

screening dynamics: the buyer makes a decreasing sequence of price offers and the seller re-

sponds with an increasing sequence of counter-offers, until one of the parties accepts the oppo-

nent’s offer. Despite vanishing uncertainty of agents about quality, two-sided screening dynamics

is possible because of the gap between precise private information and crude public information

about quality. Through the two-sided screening process, endogenous public information about

the asset’s quality is produced. Agents agree as soon as a sufficient amount of public information

is produced, and the quality of the asset is either the highest or the lowest quality among the

qualities that still remain. Therefore, the initial amount of public information, rather than the

precision of the private information, is crucial for both efficiency and trade dynamics of the

common screening bargaining solution. This leads to an interpretation of the common screening

bargaining solution as the description of bargaining over the price of assets within the asset class

as defined by public information, e.g. credit ratings or past quotes.

In both models, equilibrium provides an intuitive decomposition of asset prices into three

components: default-risk component, liquidity premium component and average-liquidity com-

ponent. This decomposition is consistent with the empirical evidence that there is a significant

non-default component in corporate spreads which depends both on the liquidity of bond and

marketwide liquidity. (see, for example, Longstaff, Mithal, and Neis (2005) and Bao, Pan, and

Wang (2011)). The effect of different components on asset prices is better understood through

the lens of how they affect agents’ outside options of continuing search. Factors that improve the

outside option of the seller increase price, while factors that improve the outside option of the

buyer decrease price. Naturally, the price of the asset decreases with the increase in default risk.

Holding a more risky asset is more costly for the seller and so higher default risk depreciates the

outside option of the seller and decreases price. On the contrary, the price increases with the
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asset’s liquidity, which improves the seller’s outside option in the search market. Interestingly,

higher average asset liquidity in the market decreases asset prices. In a market with higher

average asset liquidity, a buyer is more likely to be matched to a seller of a more liquid asset

which improves the buyer’s outside option.

Market conditions, like masses of searching buyers and sellers in the market, also affect prices

although not directly but through their sensitivity to asset liquidity and average asset liquidity.

When the mass of searching buyers in the market is higher, it is easier for a seller to find a

counter-party. Hence, the gains for the seller from holding a more liquid asset are higher, which

translates into the higher sensitivity of the asset price to asset liquidity. In turn, this leads to

an increase in asset prices. On the contrary, when the mass of searching sellers in the market

is higher, the buyer can more easily find a seller in the market. Hence, the gains for the buyer

from an increase in average asset liquidity are higher, which translates into the higher sensitivity

of the asset price to average asset liquidity and a dampening of prices.

The model with endogenous delay gives several insights into asset liquidity in an OTC market.

This model gives a novel, testable prediction about the relation between default risk and liquidity

for assets within the same credit ratings class. In contrast to adverse selection models in which

more risky assets are more liquid (see Guerrieri and Shimer (2014)), the two-sided screening

dynamics of the common screening bargaining solution lead to a non-monotone relation. Trade

delay is higher for qualities in the middle of the quality range and lower for qualities near the

extremes of the quality range. Owners and buyers of assets in the middle of the quality range

have incentives to delay trade to hold out for a more favorable price offer instead of trading

earlier at very low or very high prices, respectively. As a result, it is possible that a range of

asset qualities in the middle may not be traded at all. For such assets, it takes parties too long

to agree on price, and buyers prefer to reject such assets and continue their search for an asset

whose price takes less time to negotiate.

The model provides a mechanism through which market uncertainty, reflected in the variance

of asset payoffs, affects market liquidity. An increase in market uncertainty leads to longer

screening during the bargaining stage. As a result, the range of asset qualities traded in the

market decreases, as agents prefer to trade fewer assets for which the negotiation times do not

increase significantly. More generally, increasing the heterogeneity of assets decreases the set of

liquid assets. This brings up another empirical implication of the model: the range of traded

assets within the asset class (e.g. assets with the same credit rating) is negatively correlated

with the variance of asset payoffs in the asset class.

The link between market uncertainty and market liquidity describes a channel through which

market transparency improves liquidity. Improved transparency can be broadly defined as the

reduction in either search or bargaining friction, and the effect of the increase in transparency

depends crucially on which of the two frictions is reduced. An increase in transparency through

better public information leads to assets being traded in the market within more finely defined
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classes. The variance of asset payoffs in each class is lower compared to the variance of payoffs

in the market as a whole. As a result negotiation times decrease, and a greater variety of assets

becomes attractive for risk-sharing. This contrasts with the effect on liquidity of a reduction in

search friction, for example, through a better platform for matching agents. When the search

friction is lower, buyers can more easily find alternative assets in the market. Because of this,

they accept fewer assets for trade that allow for the fastest realization of gains from trade, and

market liquidity is reduced. This demonstrates that the effect of search and bargaining frictions

on market liquidity can be quite different. Market liquidity increases in response to a reduction

in bargaining friction, while it decreases in response to a reduction in search friction.

In the analysis of liquidity, it is important to take into account the fact that different assets

act as substitutes for risk-sharing. In the recent financial crisis of 2007-2008, traders reacted

to the increase in market uncertainty by a shift in their preferences towards safer assets, a

phenomenon known as flight-to-quality (Dick-Nielsen, Feldhutter, and Lando (2012), Friewald,

Jankowitsch, and Subrahmanyam (2012)). Similarly, opponents of greater transparency in OTC

markets point out that it can result in the migration of trade to certain asset classes, which

will hurt the liquidity of the market as a whole. Therefore, it is important to understand how

changes in market uncertainty affect the migration of agents.

In a simple multi-class extension of the model, I demonstrate that increased market uncer-

tainty can result in flight-to-quality episodes wherein agents migrate to trading assets that have

not suffered from increased uncertainty. The flight-to-quality exacerbates the negative effect of

increased uncertainty on liquidity. I also show that while increasing transparency is a potentially

useful measure that can increase both market liquidity and efficiency, it can also have the op-

posite effect. If after the release of public information there is an asset class that is significantly

more liquid than the rest of the market, then agents will migrate to trading assets in this class.

This adversely affects the liquidity of the rest of the market and can result in an overall decrease

in market liquidity and welfare.

The structure of the paper is as follows. Section 2 presents the model. In Section 3, I

begin the analysis with a simpler model with exogenous delay, as many steps of the analysis are

similar in the two models. I derive the effect of default risk, liquidity and market conditions on

asset prices and spreads. Section 4 analyzes the model with endogenous delay determined by

the common screening bargaining solution. I first introduce the common screening bargaining

solution for a general bargaining problem which I then apply to determine the endogenous delay.

I study properties of the model both analytically and via numerical simulations. In Section 5,

I introduce a multi-class extension of the model which I use it to analyze flights-to-quality and

transparency in OTC markets. Section 6 points out some empirical implications. Proofs are

relegated to the Appendix. Before proceeding with the analysis, I next describe the relationship

of the current paper to existing literature.
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Related literature This paper most closely related to the literature on search-and-bargaining

in OTC markets represented by Duffie, Garleanu and Pedersen (2005, 2007), Lagos and Ro-

cheteau (2007, 2009). The paper extends the analysis of the search-and-bargaining model for a

single asset by Duffie, Garleanu and Pedersen (2007) to the case of multiple asset qualities. In

this respect, it is complementary to Vayanos and Weill (2008), and Weill (2008). Many OTC

markets such as markets for corporate bonds or derivatives contain a variety of assets, rather

than specializing in a single asset. In fact, one of the purposes of OTC asset markets is to

provide liquidity for non-standard assets. Extending Duffie, Garleanu and Pedersen (2007) to

the case of multiple assets, besides capturing an important feature of OTC markets, allows for

the analysis of the liquidity and prices of different assets and for understanding of how they are

affected by changes in market conditions.

Previous multi-asset extensions have considered models in which agents choose between

asset classes with varying characteristics, like trading shares or short-selling possibilities.5 In

this paper, agents learn/acquire a signal about the quality of an asset only after they find a trade

partner which captures how trade happens within asset classes. In OTC markets, traders often

look for assets with broadly-defined characteristics, such as a certain credit rating, maturity, or

industry. However, there is a great deal of variation in expected returns among assets satisfying

these rough criteria. Therefore, both the choice between different asset classes and the trade of

assets within a particular class are important issues.

Another related strand of the literature is the literature on the dynamics of asset trading with

adverse selection. Guerrieri and Shimer (2014) studies a model with asymmetric information

about asset quality in a directed search model. In their model, in order to provide incentives

for sellers of lower-quality assets to reveal their quality, such assets should be more liquid.

Chang (2014) shows that when private information is multi-dimensional, there exist semi-pooling

equilibria in which distressed owners of higher quality assets trade faster at a lower price. In

contrast, in this paper, the dependence of liquidity on quality is U-shaped, reflecting the two-

sided screening dynamics of the common screening bargaining solution. Another distinction with

Guerrieri and Shimer (2014) and Chang (2014) is that in this paper, there is no asymmetric

information, but the bargaining solution that I apply is motivated by a model with vanishing

private information. In such setting, the range of traded asset qualities becomes important.

Hence, the difference with Guerrieri and Shimer (2014) lies in the accent on the role of public

information and market uncertainty rather than asymmetric information in the functioning of

OTC markets.

5In Weill (2008), assets are homogeneous in quality, but have different trading shares. In equilibrium, assets
with larger trading shares are more liquid, as it is easier to find a counter-party for such assets. Vayanos and Weill
(2008) analyzes a model with homogeneous agents in which two assets have different endogenous liquidity and
prices because one of the assets is easier to short sell than the other. Vayanos and Wang (2007) studies a model
with identical assets but agents with heterogeneous horizons. They show that clientèle equilibria are possible in
which agents with shorter horizon prefer one asset over another because of its higher endogenous liquidity.
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The paper also contributes to the recent literature on the connection between liquidity and

default risk in OTC markets represented by He and Milbradt (2014), Chen, Cui, He, and Mil-

bradt (2014). He and Milbradt (2014) analyzes the feedback loop between default and liquidity.

Assets closer to default are associated with higher bid-ask spreads and, in turn, higher bid-ask

spreads make endogenous default more likely. I focus on trade delay as the measure of asset liq-

uidity instead of bid-ask spreads and show that generally the relationship between this measure

of liquidity and default risk is U-shaped.

Most of the theoretical literature on search-and-bargaining pioneered by Rubinstein and

Wolinsky (1985) focuses on the case of complete information and hence immediate agreement.

Exceptions include work by Satterthwaite and Shneyerov (2007) and Lauermann and Wolinsky

(2014) which analyzes search models with incomplete information and provides conditions for

the existence of equilibria and convergence to Walrasian outcomes. In these papers, allocations

are determined by auction mechanisms and feature no delay. In contrast, the focus of this paper

is on trading delay and how it affects the preferences of agents over assets. Another paper

that explicitly incorporates trade delay into a search model is Atakan and Ekmekci (2014). In

their model, agents imitate commitment types requesting a fixed share of the surplus, while

in my model all agents are rational. Because of the interaction of incomplete information and

search, the analysis of search-and-bargaining models with incomplete information presents a

great challenge, and existence, let alone uniqueness and clear comparative statics, is difficult to

prove. To tackle these complications while maintaining the realism of the model, the current

paper employs the common screening bargaining solution that, on the one hand, features the

two-sided screening dynamics that is common in bargaining models with two-sided incomplete

information, but on the other hand, maintains the tractability of the analysis. The application

of the novel common screening bargaining solution constitutes a methodological contribution of

this paper to the theoretical literature on search and bargaining.

The paper is also related to the literature on asset pricing with transaction costs. This

literature assumes that some assets are associated with exogenous proportional transaction costs

(Constantinides (1986), Heaton and Lucas (1996), Vayanos (1998), Huang (2003)), fixed trading

costs (Lo, Mamaysky, and Wang (2004)) or exogenous bid-ask spreads (Amihud and Mendelson

(1986)). This paper studies the asset pricing and liquidity implications of a different type of

costs, the opportunity costs of delayed trade. In the model with endogenous delay, these costs

are also determined in equilibrium.

The bargaining solution used in this paper is motivated by the analysis of a bargaining model

with private correlated values in Tsoy (2014). While Tsoy (2014) focuses on bargaining over

the price of a durable good, this paper focuses on how agents use different assets to share risk.

Correspondingly, values of agents, rather than being primitives of the model, are endogenously

determined and reflect the transitory nature of liquidity shock and the possibility of future trade.
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2 Model

There is a continuum of asset qualities θ ∈ [0, 1]. Asset θ is supplied in quantity f(θ). I assume

that f is continuous and strictly positive and normalize
´ 1

0 f(θ)dθ = 1. Denote by F the CDF

of the distribution of asset qualities.

There is a continuum of agents of mass a. Time t ≥ 0 is continuous. There are two observable

intrinsic types of agents which I call in anticipation of their equilibrium behavior buyers (b) and

sellers (s). The intrinsic type of each agent switches independently from b to s with Poisson

intensity yd, and from s to b with Poisson intensity yu. The initial distribution of types is such

that the type distribution is stationary: there is a mass yu
yu+yd

a of buyers and a mass yd
yu+yd

a of

sellers in the population.

Agents are risk-neutral and discount the future at the common discount rate r. The flow

payoff from asset θ is v(θ) for the buyer and v(θ) for the seller. I assume the following specification

for v and v:

v(θ) = kg(θ) + d, (2.1)

v(θ) = kg(θ) + d− `θ, (2.2)

for some constants k > 0 and d, measurable, positive function `θ, and weakly increasing function

g with g(0) = 0 and g(1) = 1. The interpretation is that the quality θ is an index that aggregates

various asset characteristics, and higher asset qualities translate into higher expected flow payoffs

for the buyer. Sellers experience a transitory liquidity shock, and holding the asset is associated

for them with additional holding costs `θ ≡ v(θ)−v(θ). This implies that if trade were frictionless,

buyers would purchase assets from sellers. In the endogenous-delay model, I additionally assume

that functions v and v are strictly increasing and continuously differentiable.

To interpret payoff functions, consider the following simple model for bond payoffs: v(θ) =

C − (Rθ + R)D and v(θ) = C − (Rθ + R)D − ` for positive C,R,D, `, and strictly decreasing,

continuously differentiable, positive function Rθ with values in [0, R̄]. In this example, an asset is

a bond with infinite maturity and coupon C. In case of default, the bond-holder incurs costs D,

and the bond is immediately reissued to the same holder after the default. The risk of default

consists of two components: asset-specific component Rθ and systemic component R. These

payoffs are obtained from equations (2.1) and (2.2) by setting k = R̄D, d = C − (R+ R̄)D, `θ =

`, g(θ) = 1 − Rθ
R̄

. Keeping this interpretation in mind, I interpret that g(θ) reflects the default

risk associated with the asset, k reflects the market uncertainty about the quality represented

by the variance of default risk in the market, and d reflects the aggregate default risk.

Notice that when `θ = `, holding costs are constant across asset qualities. Then it is a

standard result that without loss of generality the distribution of qualities can be assumed to
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be uniform.6 In general, one can argue both that more risky assets are associated with higher

gains from trade and `θ is decreasing (e.g. agents holding toxic assets are especially eager to sell

them), and that higher-quality assets are associated with higher benefits for the holder and `θ

is increasing (e.g. such assets can be used as collateral for cheaper short-term borrowing).

Each agent is constrained to hold at most one asset. This way, I abstract from agents’ port-

folio decisions and focus on their risk-sharing motives. Assets are initially randomly distributed

among agents.7 I assume not all agents own assets, and thus a > 1.

Agents can trade assets in a market with both search and bargaining frictions. There are

two stages to the trading process: the search stage and the bargaining stage. In the bargaining

stage, agents trade an asset θ with delay tθ at price qθ. The positive, asset-specific trade delay

represents a bargaining friction. The price of trade qθ splits the (endogenous) surplus between

the buyer and the seller in proportion α to 1 − α where α ∈ (0, 1). While the assumption of

proportional split is common in the literature where it is motivated by the generalized Nash

(1950) bargaining solution, non-trivial trade delay is a novel feature of this paper. Trade delay

tθ reflects the liquidity of the asset: an asset with lower tθ is more liquid as it can be more

quickly transferred from the seller to the buyer. This specification incorporates both exogenous

and endogenous delay. In the former, tθ is a primitive of the model, while in the latter, tθ is

pinned down by additional equilibrium conditions. I assume that once the intrinsic type of one

of the matched agents switches or agents complete the trade, the match is destroyed, and agents

do not participate in search while matched. If tθ = 0 for all qualities θ, then the model reduces

to that of Duffie, Gârleanu and Pedersen (2005).

Search is costless, and all unmatched agents participate in search. Agents are randomly

matched to each other in a market with search friction. The matching process is independent

of the evolution of intrinsic types and is given by the quadratic matching technology commonly

used in the search-and-bargaining literature (see for example Duffie (2012)). Buyers of mass

mb contact sellers of mass ms with intensity λ
2mbms and so the total meeting rate of these two

groups of agents is λmbms. This matching technology is the same as in Duffie, Garleanu, and

Pedersen (2005).8 The fact that the match is not instantaneous represents the search friction.

Each agent can be either matched (m) or unmatched (u). I refer to the intrinsic type of the

agent and his match status as the type τ ∈ {bu, su, bm, sm} of the agent. The asset position

of the agent [0, 1] ∪ {φ} is the quality of the asset that the agent owns or bargains over. I use

notation φ for agents who do not own an asset and are not matched to a seller.

When a match is found, the agents involved choose whether to participate in bargaining.

Agents’ strategies condition only on the type and the quality of the asset that the agent owns

6Indeed, I can transform function g so that the distribution of asset payoffs remains the same, but F is uniform.
7One can think of the distribution of assets as follows. Agents are associated with a point (θ, i) ∈ [0, 1]× [0, a]

such that agents that belong to {(θ, i)|0 ≤ i ≤ f(θ)} own one unit of asset θ and a fraction yu
yu+yd

of them is

buyers. Agents that belong to {(θ, i)|i > f(θ)} do not own any asset.
8Duffie and Sun (2007) provides probabilistic foundations for this matching technology.
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Figure 1: The evolution of types and asset holdings. Bold arrows indicate transitions
between types and changes in asset holding caused by bargaining, and thin arrows indicate
transitions caused by the switching of the intrinsic types (intensities are written next to arrows).

or is matched to. For exogenous delay, asset quality is directly observable. For endogenous

delay, the interpretation is that the buyer conditions his strategy on an almost-perfect signal

about the asset’s quality. The bargaining solution used in Section 4 is the reduced form for

bargaining between agents with almost-perfect signals about quality. In what follows, I will not

make a distinction between the observed quality and the arbitrary precise signals about it, but

the difference in the interpretation should be kept in mind.

I assume that sellers always choose to participate in the bargaining stage. This assumption

simplifies the notation and is without loss of generality; as I will show in the derivation of the

equilibrium, the seller always derives higher utility from bargaining than from continuing to

search. The (mixed) strategy of the buyer σθ ∈ [0, 1] specifies the probability with which the

buyer matched with the seller of asset θ participates in the bargaining stage. Denote by ΘL the

set of assets such that σθ = 1, and by ΘM the set of assets such that σθ ∈ (0, 1). I call assets

in ΘL unconditionally liquid or simply liquid, assets in ΘM conditionally liquid, and assets in

ΘI ≡ [0, 1]\(ΘL∪ΘM ) illiquid. The evolution of types and asset holdings is depicted in Figure 1.

For example, consider a group of matched sellers, each of whom holds an asset of quality θ. Then

the transition from this group could happen according to three possible scenarios. First, the

bargaining stage is completed and the asset changes hands (bold arrows from block of matched

agents in Figure 1). Second, a seller in this group recovers from liquidity shock and becomes a

buyer (arrow indexed by intensity yu). Finally, the buyer to whom the seller is matched switches

intrinsic type and the match is destroyed (arrow indexed by intensity yu).

The economy is in steady state. Denote the steady-state distribution of assets among different
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types of agents by M = {Mτ ∈ ∆([0, 1]), τ ∈ {bm, bu, sm, su}}. For example, for any measurable

set Θ ⊆ [0, 1], Mbu(Θ) gives the mass of unmatched sellers that own assets in Θ, and Mbm(Θ)

gives the mass of matched buyers that bargains over some asset in Θ. I consider equilibria such

that there exists the mass density function µτ of Mτ . I also denote by µs(θ) ≡ µsu(θ) + µsm(θ)

the mass of sellers each of whom (inefficiently) owns an assets of quality θ.

There are several balance conditions imposed on M . First, for any asset θ, the sum of agent

positions is equal to the supply of the asset,

µsu(θ) + µbu(θ) + µbm(θ) = f(θ). (2.3)

Second, since
´ 1

0 f(θ)dθ = 1 by normalization, and the total mass of assets is a, the mass of

agents that do not hold any asset is equal to a− 1,

Msu(φ) +Mbu(φ) +Mbm(ΘL ∪ΘM ) = a− 1. (2.4)

Third, the number of matched agents of each intrinsic type should coincide with the number of

matches,

µsm(θ) = µbm(θ). (2.5)

Finally, the steady-state assumption requires that there be no changes in the distribution M

over time. I analyze the equilibrium of the model in steady state defined as follows.

Definition 1. A tuple (σθ,M) constitutes an equilibrium if the buyer’s strategy σθ is optimal

given M , and M is the stead-state distribution of assets generated by σθ.

For the model with exogenous delay, I additionally assume that whenever the buyer is in-

different between proceeding to the bargaining stage and continuing to search, the probability

with which he chooses to bargain is independent of asset quality. This assumption will ensure

uniqueness of the equilibrium.

3 Equilibrium

This section analyzes the model. The steps of the analysis provided in this section do not depend

on the specification of the delay, and for the model with exogenous delay, they are sufficient to

characterize the equilibrium. In Subsection 3.1, for a given strategy σθ and delay profile tθ, I

derive the steady-state distribution M of assets among different types. In Subsection 3.2, for

a given steady-state distribution M , I derive the buyer’s optimal strategy σθ. The resulting

strategy takes a simple form. A buyer proceeds to the bargaining stage for asset qualities that

satisfy certain criteria on holding costs and trade delay associated with the asset. In Theorem

1, I combine the two relations between M and σθ to show that the equilibrium in the model

with exogenous delay is unique and to describe the properties of prices and spreads.
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3.1 Steady-State Distribution

In this subsection, I show that for a given strategy profile σθ and trade delay profile tθ, there exists

a unique steady-state distribution M , and I describe its properties. The following characteristics

of the distribution M , which I refer to as market conditions, are important for the optimality

of the behavior of agents. Let Λ ≡ λMbu(φ) be the intensity with which a seller is matched to

buyers, Λb ≡ λMsu(ΘL) be the intensity with which a buyer is matched to sellers of liquid assets

(in ΘL), and FL ∈ ∆(ΘL) be the steady-state probability distribution of asset qualities in the

pool of sellers of liquid assets ΘL. Quantities Λ and Λb reflect how easily a seller or a buyer,

respectively, can find a trade partner if they continue to search, and FL gives the probability

distribution over asset qualities that bring the buyer strictly higher utility than any utility gained

from searching for another asset in the market. Let L ≡
´

ΘL
f(θ)dθ be the mass of assets in ΘL.

I refer to L as the market liquidity ; higher L means that the buyer accepts a broader range of

assets for trade.9 Notice that when F is uniform (recall that in the constant-holding-cost case,

this is without loss of generality), market liquidity measures the range of liquid asset qualities.

The following lemma describes Λ,Λb, FL in a unique steady-state distribution corresponding to

a given strategy profile and specification of delay.

Lemma 1. For any strategy σθ and delay profile tθ, there exists a unique steady-state distribution

M in which Λ is the unique solution to

Λ

λ
=

yu
yu + yd

(a− 1)− yd
yu + yd

ˆ 1

0

Λσθ
yu + yd + Λσθ

dF (θ), (3.1)

Λb is given by

Λb =
λydL

yu + yd + Λ
, (3.2)

and FL is given by the conditional distribution of F conditional on θ ∈ ΘL.

The key simplifying feature of Lemma 1 is that Λ,Λb, and FL depend only on σθ, but not

on tθ.
10 The result that the liquidity characteristic tθ does not affect the distribution of assets

FL is a bit counter-intuitive at first sight, as one may expect that more liquid assets are traded

more quickly and so are more abundant in the market. To see why this is the case, observe that

the inflow into the group of sellers of asset θ is formed from matched sellers whose counter-party

is hit by a liquidity shock and from unmatched buyers owning asset θ who are hit by a liquidity

shock (see Figure 1). Both these inflows have intensity yd. At the same time, the outflow from

this group of sellers happens because of the recovery from the shock of sellers and the formation

9Alternatively, one could consider the mass
´

ΘL∪ΘM
f(θ)dθ of both conditionally and unconditionally liquid

assets as a measure of market liquidity. I focus on L, as it allows for clear comparative statics. Moreover, the
difference between two measures is insignificant in numerical simulations .

10Unlike Λ,Λb,FL, steady-state distribution M derived explicitly in the Appendix depends on the delay profile
tθ.
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of new matches. The former has intensity yu and the latter has intensity Λ, and both are again

independent of tθ. Therefore, tθ only changes the distribution of agents between those who have

already completed a trade and those still bargaining but does not affect the mass of sellers in

the search stage.

Equation (3.1) has a natural interpretation. The left-hand side gives the mass of buyers

without an asset, which in the absence of trade, equals yu
yu+yd

(a− 1). When agents are allowed

to trade the mass of buyers without an asset decreases, which reflects the fact that ownership

of assets becomes more efficient.

An interesting feature that follows from equation (3.1) is that if buyers accept a greater

variety of assets this reduces the chances of the seller to be matched. In particular, if σθ weakly

increases,11 then it follows from equations (3.1) and (3.2) that Λ decreases and Λb increases. The

more assets buyers accept, the more likely it is for the buyer to find a match, however, this implies

more competition for sellers and for them the likelihood of forming a match decreases. Notice

that this happens despite the fact that the matching technology does not feature externalities,

i.e. the fact that additional sellers are searching for buyers does not reduce the chances of others

to be matched. The competition between sellers arises, however, for the following reason: the

fact that buyers accept a wider variety of assets implies that more buyers find matches. These

buyers are either busy in the bargaining stage or have already completed their trades. This

reduces the number of buyers searching in the market and reduces the likelihood of a match for

unmatched sellers.

In the empirical analysis, the trade delay is often not directly observable, and various proxies

are used to measure asset liquidity. Trading volume and turnover are the most relevant charac-

teristics for my analysis, and I next show how they are related to the trade delay tθ and other

variables. Denote the trading volume by γθ. It is shown in the Appendix that the distribution

G(θ, u) of times u that a matched seller of asset θ spends in the bargaining stage is a truncated

exponential distribution supported on [0, tθ] with the parameter yu + yd. In time interval du,

matches that have already spent time [tθ − du, tθ] in the bargaining stage trade. Therefore,

trading volume can be determined from γθ = d
duG(θ, tθ) or, as shown in Appendix,

γθ =
Λσθyd

yu + yd + Λσθ
f(θ)e−(yu+yd)tθ .

Trading volume is decreasing in the length of bargaining delay, and it is also affected by the

intensity Λ as well as by buyer strategy σθ. In my model, the asset turnover is given by γθ
f(θ) ,

and is again decreasing with the trade delay associated with the asset. Both liquidity proxies

increase with the decrease in trade delay.

11Here and further on, I say that function f1 is greater than f2 if f1 is greater than or equal to f2 at all points.
For a sequence of functions fi indexed by i belonging to some interval, I say that fi is increasing if for any i > i′,
fi is greater than fi′ . Definitions for a decreasing sequence of functions are analogous.
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3.2 Equilibrium

In this subsection, given a steady-state distribution M , I compute the optimal strategy σθ.

For τ ∈ {bu, su, bm, sm}, let Vτ (θ) be the expected utility of an agent of type τ owning (or

bargaining over) asset θ, and for τ ∈ {bu, su}, let Vτ (φ) be the expected utility of an agent of

type τ owning no asset. Value functions during the search stage are determined by the following

Bellman equations,

rVsu(φ) = yu(Vbu(φ)− Vsu(φ)), (3.3)

rVbu(θ) = v(θ) + yd(Vsu(θ)− Vbu(θ)), (3.4)

rVbu(φ) = yd(Vsu(φ)− Vbu(φ)) + Λb(E [Vbm(θ)|θ ∈ ΘL]− Vbu(φ)) (3.5)

rVsu(θ) = v(θ) + yu(Vbu(θ)− Vsu(θ)) + σθΛ(Vsm(θ)− Vsu(θ)). (3.6)

The depreciation of value functions in the left-hand side of equations (3.3) − (3.6) equals the

sum of flow payoffs and changes in value functions due either to switches of intrinsic types or the

formation of matches. For example, consider equation (3.5). The flow payoff of the searching

buyer without an asset is zero. If the buyer is hit by a liquidity shock, his value function drops to

Vsu(φ), while if he is matched to a seller, then his value function increases to E [Vbm(θ)|θ ∈ ΘL].

Notice that if a buyer is matched to a seller of an asset in ΘM , then his continuation utility

is Vbu(φ) irrespective of whether he starts to negotiate or continues to search. Therefore, in

equation (3.5), it is sufficient to consider the case when the buyer is matched to sellers of assets

ΘL and the relevant distribution is FL.

In the bargaining stage, the match can be exogenously destroyed if the intrinsic type of one

of the agents switches, so the efficient discount factor is given by ρ ≡ r+ yu + yd. To determine

the price of trade, I compute the benefits v(θ) from trade for the buyer of asset θ, and the costs

of trade c(θ) for the seller of asset θ. Let ĉ(θ) be the value for the seller of asset θ from staying in

the match but never selling the asset, and v̂ be the value for the buyer from staying in the match

but not buying from the current seller. Then c(θ) = −(Vsu(φ)− ĉ(θ)) and v(θ) = Vbu(θ)− v̂. By

the assumption of the proportional split of the surplus, the price of trade is given by

qθ = (1− α)v(θ) + αc(θ). (3.7)

Given the Bellman equations (3.3) − (3.6), the price of trade (3.7) and the delay profile tθ,

one can find value functions and determine optimal strategies. Before describing the optimal

strategies, let me introduce the key asset liquidity measure. Denote by xθ = e−ρtθ the loss from

delay, the factor by which the surplus from trade of the asset θ is dissipated due to delay. I

refer to xθ as the liquidity of asset θ. Let zθ = ξθxθ be the expected surplus from trade where

ξθ ≡ v(θ) − c(θ) is the trade surplus. The interpretation is that with probability 1 − xθ, the

match is destroyed because of switches of types or discounting and the realized surplus in the
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match is zero, and with complementary probability xθ, the surplus ξθ is realized after agents

negotiate for time tθ. The following lemma states that the equilibrium strategy takes the simple

threshold form.

Lemma 2. Given a profile of expected surpluses zθ, the asset of quality θ is liquid (θ ∈ ΘL) if

and only if

zθ > z ≡ Λb
ρ+ Λb

z, (3.8)

where z ≡ 1
L

´
θ∈ΘL

zθdF (θ).

By Lemma 2, the buyer trades off the trade delay and the surplus from trade. Even when the

gains from trade are large, the buyer may reject the asset because of the high delay associated

with it. The threshold z is equal to a fraction of the average (over assets in ΘL) asset liquidity

z. The difference between the buyer threshold z and the average liquidity z depends on how

easily the buyer can find another seller. If the intensity of a match is low for the buyer (low Λb),

then z is much lower than z, and the buyer accepts a greater variety of assets.

Observe that when holding costs are constant across asset qualities, preferences of buyers

over assets are driven solely by liquidity considerations. Indeed, in this case, zθ = ξxθ for all θ

where ξ is the constant trade surplus. Denoting by x̄ ≡ 1
L

´
θ∈ΘL

xθdF (θ) the average liquidity

for assets in ΘL, I see from Lemma 2 that buyers search for most liquid assets in the market

and accept assets with xθ > x ≡ Λb
ρ+Λb

x.

For the model with exogenous delay, in the next theorem I combine Lemmas 1 and 2 with the

exogenous-delay profile tθ to show the existence and uniqueness of the equilibrium and describe

the behavior of prices and spreads. Yield spreads are defined as the difference between the asset

yield (flow payoff of the buyer divided by the price) and risk-free rate, i.e. sθ ≡ v(θ)
qθ
− r.

Theorem 1. In the model with exogenous delay, there exists a unique equilibrium. In equilib-

rium, the following hold:

1. Prices of assets in ΘL ∪ΘM are given by

qθ =
1

r
(kg(θ) + d− (r + yd)ξθ) + (1− α)ξθ︸ ︷︷ ︸

default-risk

+ (1− α)
yd
r

σθΛ

ρ+ σθΛ
zθ︸ ︷︷ ︸

liquidity premium

− α
yu
r

Λb
ρ+ Λb

z̄︸ ︷︷ ︸
average liqudity

.

(3.9)

2. If the yield spread sθ is positive, then the partial derivatives of sθ with respect to g(θ), σθ,zθ

are negative and with respect to d are positive.

3. The equilibrium strategy and asset distribution (σθ,M) are characterized by the match

intensity of the seller and the threshold of the buyer (Λ, z) and are independent of the

aggregate default risk parameter d.
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An important implication of Theorem 1 is the decomposition of prices in equation (3.9) into

three components: the default-risk component, the liquidity premium and the average liquidity

component. To interpret these various components, we first focus on the case of constant holding

costs. The first component gives the asset’s price if there were no market where the buyer and

the seller can search for another trade partner. This price captures the value of holding the asset

for the seller plus his fraction of the trade surplus. The flow payoff from the asset enters the

price only through this component. Given the earlier interpretation of flow payoffs as reflecting

the risk of default, I call this component the default-risk component. When holding costs are

constant, differences in the first component are driven solely by differences in the default-risk

associated with assets.

The other two components reflect how the outside options created by the search market affect

prices. The second component of the price depends on xθ and reflects the liquidity premium.

The more liquid the asset is, the higher the price the buyer is willing to pay. This effect is

driven by the outside option of the seller to search in the market for another buyer. For a

more liquid asset, after the new match is formed, less surplus is dissipated due to delay, which

increases the outside option of the seller and hence increases the price of asset. Observe that

this outside option depends on the ability of the seller to find a buyer (Λ). The more unmatched

buyers in the market, the more valuable the outside option of the seller and the higher the price

sensitivity to the asset’s liquidity. The fact that the sensitivity of the price to liquidity depends

on aggregate market conditions was documented empirically in Bao, Pan, and Wang (2011) and

Friewald, Jankowisch, and Subrahmanyam (2012).

The third component is the effect of average (across assets in ΘL) liquidity in the market.

This component accounts for the buyer’s outside option of finding another seller. Naturally, the

outside option of the buyer is increasing in the average liquidity and pushes the price down.

Therefore, the third component has a negative sign. This effect is larger the easier it is for the

buyer to find a trade partner (higher Λb).

When `θ varies with quality, higher holding costs decrease the default-risk component, but

increase the liquidity premium component. The intuition is that for higher level of liquidity

shock, the value of holding an asset is lower. However, this drop in asset value because of

the default-risk component is partially compensated for by the liquidity premium component.

Higher holding costs imply that the surplus from trade is larger, and hence, gains from trade

for the seller are larger. This increases the outside option of the seller and hence, increases the

asset price.

When zθ = z for all θ, my model reduces to Duffie, Gârleanu and Pedersen (2007) which

already allows us to distinguish between the default and non-default components of asset prices.

An important new feature of this paper is that equation (3.9) further separates the liquidity

premium component which varies in the cross-section of assets, and the average-liquidity com-

ponent which will be shown in Section 5 to depend on the liquidity of other asset classes. This
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distinction is empirically relevant as demonstrated in Longstaff, Mithal, and Neis (2005).

It should be noted that even though illiquid assets not in ΘL ∪ΘM are rejected by buyers,

equation (3.9) with σθ = 0 also determines the price of these assets when the buyer deviates

from his equilibrium strategy and proceeds to the bargaining stage with the seller of an illiquid

asset. Also note that by the second conclusion of Theorem 1 whenever spreads are positive, the

reaction of yield spreads to the default risk, liquidity, and aggregate default risk is the opposite

of the reaction of prices to these same factors.

The last conclusion of Theorem 1 reveals the key simplifying step in the analysis of the model.

In general, equilibrium in the search-and-bargaining model with varying delay is a fixed-point

(M,σθ) of some functional operator. Distribution M should be generated by the behavior of

agents following strategy σθ and at the same time, given the distribution M , strategy σθ should

be optimal for buyers. By conclusion 3 of Theorem 1, in my setting, a pair (Λ, z) is sufficient

to compute the equilibrium (M,σθ) and hence, the problem of the existence and uniqueness of

the fixed-point in the functional space is reduced to the simpler problem of finding a pair of

numbers (Λ, z) that completely specifies the equilibrium.

Finally, the aggregate default risk reflected by parameter d does not affect the liquidity of

assets but does affect the level of asset prices and yield spreads. An increase in the aggregate

default risk leads to an increase in spreads, but does not affect the preferences of agents over

assets. In subsequent sections, this feature of the model will allow me to show that preferences

of agents during periods of heightened uncertainty are driven by liquidity concerns, rather than

by quality concerns.

4 Endogenous Bargaining Delay.

This section studies the model with endogenous trade delay. A central assumption of the model

is that prices and delay are given by the common screening bargaining solution (CSBS), which

can be thought of as a reduced form for a bargaining outcome with almost-perfect information

about an asset’s quality. In Subsection 4.1, I describe this bargaining solution as well as its

game-theoretic foundations as provided in Tsoy (2014). In Subsection 4.2, the CSBS is applied

to determine the endogenous bargaining delay in a search-and-bargaining model. The analysis

is particularly tractable in its linear specification with constant holding costs for which the

comparative statics is derived analytically. In Subsection 4.3, the effect of market uncertainty

on welfare and liquidity is further analyzed via a numerical simulation.

4.1 Common Screening Bargaining Solution.

In this subsection, I define and characterize the CSBS for a general class of bargaining problems.

The CSBS exhibits intuitive, two-sided screening dynamics and has game-theoretic foundations
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similar to those of the generalized Nash (1950) bargaining solution commonly used in the liter-

ature.

Consider the following general bargaining problem described by the tuple (ρ, v, c).12 There is

a unit continuum of asset qualities θ ∈ [0, 1] and for each θ, the buyer’s valuation is v(θ) and the

seller’s cost is c(θ). Suppose that v and c are strictly increasing, continuously differentiable, and

the trade surplus ξθ ≡ v(θ)− c(θ) is positive for all θ. Time is continuous, and parties discount

at rate ρ. If parties trade at time t at price q, then the payoff to the buyer is e−ρt(v(θ) − q)
and the payoff to the seller is e−ρt(q − c(θ)). The CSBS to this bargaining problem is defined

as follows.

Definition 2. The common screening bargaining solution (CSBS) (qθ, tθ, θ
∗) to the bargaining

problem (ρ, v, c) with the surplus split α ∈ (0, 1) requires the following conditions:

1. The price of trade qθ is given by qθ = (1− α)v(θ) + αc(θ), for all θ ∈ [0, 1].

2. The delay of trade tθ satisfies

θ ∈ argmax θ′∈[θ∗,1]e
−ρtθ′ (v(θ)− qθ′), for θ ≥ θ∗, (4.1)

θ ∈ argmax θ′∈[0,θ∗]e
−ρtθ′ (qθ′ − c(θ)), for θ < θ∗, (4.2)

with t0 = t1 = 0 and lim
θ→θ∗−

tθ = lim
θ→θ∗+

tθ.

The first condition in Definition 2 states that trade happens at prices that split the surplus

proportionally in accordance with the description of the model in Section 2. The last two

conditions implicitly define the delay for every asset quality. Before providing an interpretation

of the delay in the CSBS, the next lemma gives the explicit equations determining delay tθ as a

function of primitives (ρ, v, c) of the bargaining problem and describes its properties.

Lemma 3. In CSBS (qθ, tθ, θ
∗), trade delay tθ is continuously differentiable, strictly increasing

for θ ≤ θ∗and strictly decreasing for θ > θ∗, and is characterized as follows:

tθ =


´ θ

0

c′(θ)+(1−α)ξ′θ
ρ(1−α)ξθ

dθ, for all θ ≤ θ∗,´ 1
θ

v′(θ)−αξ′θ
ραξθ

dθ, for all θ > θ∗.

Moreover, holding ξ′θ fixed, an increase in v′ and/or c′ results in an increase in tθ.

The CSBS exhibits two-sided screening dynamics. To see this, consider the following related

continuous-time bargaining game. For t ∈ [0, tθ∗ ], define the path of seller price offers by

12With a little abuse of the notation, I use the same notation for the discount factor and agents’ values in the
description of the bargaining problem in this subsection as for the efficient discount factor and value functions in
the description of the bargaining stage in Section 3. In the next subsection, I use the latter as primitives of the
bargaining problem to determine the endogenous trade delay.
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qSt = max{qθ : tθ = t} and the path of buyer price offers by qBt = min{qθ : tθ = t}. For t > tθ∗ ,

let qSt = qBt = qθ∗ . By Lemma 3, such price-offer paths are well-defined, and qSt is decreasing

and qBt is increasing.13 Both sides follow the corresponding path of offers and only choose the

time when they accept the offer of the opponent. In the unique Nash equilibrium of this game,

buyers of asset qualities θ ≥ θ∗ accept at time tθ , sellers of asset qualities θ < θ∗ accept at time

tθ, and the remaining buyers and sellers accept at time tθ∗ . It is easy to see that the equilibrium

outcome of this game coincides with the outcome of the CSBS. Moreover, the bargaining game

can be interpreted as the two-sided screening process. The seller makes decreasing offers to

screen buyers of asset qualities above θ∗, and the buyer makes increasing offers to screen sellers

of asset qualities below θ∗. By time tθ∗ , the game ends with one of the parties accepting the

offer of the opponent.

A natural concern about the continuous-time bargaining game described above is why parties

have incentives to stick to screening offers qSt and qBt . Indeed, if the asset quality were known,

then both parties would know that they trade after a specific costly delay, and they would have

incentives to make different offers to trade earlier. Tsoy (2014) addresses this concern and shows

that this behavior can arise in equilibrium in a standard bargaining model with private correlated

values. Specifically, instead of directly observing the quality, both parties receive conditionally

independent signals about the quality that determine their values. After parties observe their

signals, they determine the price of trade by making alternating offers until one of the parties

accepts the opponent’s offer. Tsoy (2014) shows that there is a sequence of equilibrium outcomes

that converges to the CSBS as the time between offers converges to zero and the correlation

between signals becomes perfect.14

The two-sided screening dynamics of the continuous-time bargaining game is sustained as

follows. There is a gap between arbitrarily precise private information about values given by

parties’ signals and relatively crude public information about values reflected in the range of

values possible before parties get signals about quality. Because of this gap, it is possible to

construct continuation equilibrium in which trade is almost immediate and the side that deviates

from the prescribed price-offer path gets a very low share of the surplus. As a result, despite

the fact there is an efficiency loss due to trade delay, both parties prefer adhering to equilibrium

price paths and getting their share (α or 1− α) of the smaller surplus to deviating and getting

a lower share of the larger surplus in the continuation equilibrium.15 The crucial element of the

argument is the gap between private and public information. This assumption is realistic in OTC

13To see this, observe that since tθ is strictly monotone, continuous on intervals [0, θ∗] and (θ∗, 1], and v and c
are strictly increasing and continuous, for any t ∈ [0, tθ∗), there exist exactly two asset qualities θ1 < θ∗ < θ2 for
which tθ = t and qSt = qθ2 ,qBt = qθ1 . Moreover, the monotonicity of paths follows from the monotonicity of tθ on
intervals [0, θ∗] and (θ∗, 1] and the monotonicity of qθ on [0, 1].

14Tsoy (2014) puts an additional regularity assumption on v and c. The assumption is needed to obtain the
characterization of all limit equilibrium outcomes of the bargaining game, but can be dispensed with in proving
the foundations for the CSBS in which prices split the surplus proportionally.

15See Tsoy (2014) for more details.
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Figure 2: Trade delay tθ as a function of asset quality θ. Increase in the slope of v and c
leads to a downward shift in tθ to t̃θ depicted by solid and dashed lines, respectively.

markets that are known for their opaqueness as well as sophistication of market participants.

In this paper, I do not model the bargaining process explicitly as a game but rather use the

CSBS as a reduced form for strategic bargaining. Tsoy (2014) provides the foundations for the

use of the CSBS as a limit outcome of the alternating-offer bargaining game as the frequency

of offers increases and signals about quality become almost perfect.16 In the same fashion, the

generalized Nash bargaining solution commonly used in the search-and-bargaining literature is

motivated as the limit outcome of the complete-information, alternating-offer bargaining game

as frequency of offers increases (Binmore, Rubinstein, and Wolinsky (1986)).

I next describe properties of the CSBS that are useful in understanding the liquidity pattern

in the model with endogenous delay. The first observation is that the delay is inverse-U-shaped.

Figure 2 depicts typical delay times tθ. It follows from Lemma 3 that for asset qualities above

θ∗, assets of higher quality are traded earlier. This is a standard distortion of the efficient

allocation at the bottom known from the screening literature (see for example Rothchild and

Stiglitz (1976)). Buyers of higher-quality assets are more impatient and are willing to accept

higher prices, while buyers of lower-quality assets wait longer in hopes of more favorable terms

of trade. The situation is reversed for asset qualities below θ∗. For θ ∈ [0, θ∗], the allocation is

distorted for higher asset qualities, while it is more efficient for lower qualities. As a result, the

delay has an inverse U-shape and is highest closer to the threshold quality θ∗ and lower closer

to the extremes of the quality range.

16Empirical evidence suggests that the assumption that agents have only a small amount of private information
can be relevant in OTC markets. Downing, Jaffee and Wallace (2009) documents that in primary markets,
asymmetric information between the originator of the MBS and the investor is both present and statistically
significant, however, the absolute magnitude of its effect on transactions costs and prices is small. A natural
conjecture is that a similar pattern is inherited by secondary OTC markets.
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Another observation concerns the reaction of tθ to an increase in the variance of values v

and c. Lemma 3 shows that the absolute value of the slope of tθ is increasing in the slope of v

and c. Figure 2 depicts with a dashed line the effect of an increase in the slope of v and c on

trade delay. A higher difference in payoffs gives agents additional incentives to wait for more

favorable terms of trade. In the next section, the variance of endogenous values v and c will

depend on the variance of payoffs v and v. This will provide a link between primitives of the

model, like market uncertainty k and the curvature of g, and market liquidity L.

4.2 Equilibrium with Endogenous Delay

In this subsection, I apply the CSBS to determine delay endogenously within the search-and-

bargaing framework. The equilibrium always exists, and comparative statics can be derived

analytically for the linear specification with constant holding costs.

Proceeding as in Subsection 3.2, one can derive the value of trade for the buyer v(θ) and

the cost of trade for the seller c(θ) during the bargaining stage (see equations (8.13) and (8.14)

in the Appendix). Together with the efficient discount factor ρ in the bargaining stage, they

define bargaining problem (ρ, v, c). If functions v and c are strictly increasing and continuously

differentiable, then the CSBS to the bargaining problem (ρ, v, c) determines the endogenous delay

(which can be computed from Lemma 3). However, there is one nuance that does not make

the application of the CSBS immediate. Because buyers can reject assets or accept them with

probability strictly less than one, endogenous value functions v and c can have discontinuities

or be constant on some intervals. To incorporate these possibilities, I proceed as follows. I first

restrict attention to equilibria satisfying the following condition on v and c which is maintained

throughout the rest of the paper.

Condition R. Functions v and c are piecewise continuously differentiable, weakly increasing,

and continuously differentiable on ΘL and ΘM .

For functions satisfying condition R, construct a sequence of strictly increasing and continu-

ously differentiable functions vi and ci such that functions vi and ci, as well as their derivatives

v′i and c′i, converge to corresponding limits v, c, v′, c′ at all differentiability points of v and c.

Define the CSBS (qθ, tθ, θ
∗) for bargaining problem (ρ, v, c) as the limit of the CSBSs for bar-

gaining problems (ρ, vi, ci) passing to subsequence if necessary. In general, the limit outcome

depends on the choice of sequences vi and ci. However, under condition R, the limit outcome

for assets in ΘL∪ΘM does not depend on the choice of sequences vi and ci (see Lemma 8 in the

Appendix). In other words, for observable trades, the choice of approximating sequence is not

consequential. Additionally, to guarantee that v and c are, indeed, weakly increasing, I assume

that the buyer’s share of the surplus is sufficiently large,

α ≥ yd
r + yd

. (4.3)
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Specifying how trade delay is determined in equilibrium allows for more precise predictions

about the asset’s liquidity compared to those in Lemma 2. The following lemma shows that sets

ΘL and ΘM have a particularly simple form.

Lemma 4. In any equilibrium, either ΘL = [0, 1] or there exist 0 < θ̌ < θ ≤ θ̂ < 1 such that

ΘL = [0, θ̌] ∪ [θ̂, 1] and ΘM = (θ̌, θ).

Lemma 4 is intuitive given the discussion of the CSBS in the previous subsection. To see

this consider the case of constant holding costs. Asset liquidity xθ is U-shaped (by Lemma 3),

and xθ exceeds the cutoff x for asset qualities that are sufficiently high or sufficiently low. This

implies the structure of liquid assets as in Lemma 4.

Now I can combine the specification of prices and trade delays given by the CSBS with

Lemmas 1 and 2 to show that an equilibrium always exists and that the decomposition of the

price of the asset in Theorem 1 holds.

Theorem 2. In the model with endogenous delay, an equilibrium always exists and conclusions

1-3 of Theorem 1 hold.

The analysis is particularly tractable for a linear model in which the equilibrium is unique

and comparative statics are derived analytically.

Proposition 1. For the linear model with constant holding costs, the equilibrium is unique and

the following comparative statics obtain. Suppose that a tuple of parameters ν = (k, `, a, λ, α) is

such that in equilibrium, ΘI is not empty. Then in some neighborhood of ν the following hold:

• market liquidity L is decreasing in market uncertainty k and contact intensity λ, and

increasing in holding cost ` and mass of agents a;

• match intensity for sellers Λ is increasing in market uncertainty k and mass of agents a,

and decreasing in holding cost `;

• L and Λ are independent of the buyer’s share of surplus α, while θ̂ and θ̌ are increasing in

α;

• if, in addition, the equilibrium under ν is such that L = 1 and xθ∗ > e
− k
ξr , then xθ is

decreasing in market uncertainty k for all θ.

In the limit λ→∞, the equilibrium is characterized by (Mbu(φ), L) = (m,max{l, 1}) where

m =
yd
ρ

(
ξr

k

(
e
k
ξr
l − 1

)
− l
)

and ` is given by the unique solution of

yd
ρ

(
ξr

k

(
e
k
ξr
l − 1

)
− l
)

=
yu

yu + yd
(a− 1)− yd

yu + yd
max{l, 1} −H; (4.4)
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where H is a constant depending on the parameters of the model.

In addition to the characterization of prices and spreads in Theorem 1, a particular spec-

ification of delay sheds light on the dependence of market liquidity on search and bargaining

frictions. The bargaining friction is reflected in the variance of asset payoffs captured by mar-

ket uncertainty parameter k. To see this, notice that a greater variance of payoffs k results in

higher slopes of v and c, and by Lemma 3, leads to longer a two-sided screening process in the

bargaining stage. Therefore, delay caused by bargaining increases.

Proposition 1 shows that higher bargaining friction due to higher market uncertainty k

results in lower market liquidity L. On the other hand, increasing search friction through the

decrease in search efficiency λ leads to higher market liquidity. When it is harder for buyers to

find another seller, buyers are willing to accept a wider range of asset qualities for trade. Higher

market liquidity, however, does not imply that welfare is increasing. The fact that a wider range

of assets is traded leads to a more efficient allocation of these assets which does increase welfare,

but at the same time the increase in search times decreases welfare. Therefore, despite the

increase in the market liquidity, it is possible that the equilibrium becomes less efficient with the

increase in search friction. In the next subsection, I demonstrate this with a numerical example.

The comparative statics with respect to k and λ shows that only one type of friction cannot

serve as a proxy for the other, and in fact, may give rise to misleading predictions. For example,

one might conjecture that when bargaining friction increases, agents negotiate longer, and the

longer negotiation time simply adds to the search time, increasing search friction. However, this

logic does not take into account the fact that this changes the set of asset qualities that are

traded.

The increase in bargaining friction increases the match intensity of sellers Λ. This is the

effect of competition among sellers for buyers. When bargaining friction is greater, fewer assets

are actively traded. Therefore, a larger fraction of unmatched buyers then searches for more

scarce trade opportunities, which improves the match intensity for sellers.

Notice that even though the mass of liquid assets and expected search time of the seller do

not depend on α, the composition of traded assets depends on the split of surplus. The greater

the share of the buyer, the higher the fraction of high-quality assets (above θ∗) in the set of

liquid assets. For high-quality assets, the buyer is screened in the CSBS. A higher fraction of the

buyer surplus gives the buyer additional incentives to trade faster, as he bears a larger fraction

of costs of trade delay. As a result, the endogenous liquidity of high-quality assets increases.

For low-quality assets (below θ∗), the logic is the opposite. The seller bears a smaller fraction of

the delay costs, which increases his incentives to wait longer, and hence, decreases the liquidity

of such asset qualities.

Observe that even when search friction vanishes (λ→∞), markets are not perfectly liquid,

and prices differ from the Walrasian equilibrium prices. This happens because there is additional

bargaining friction in the model, reflected in the trade delay. This contrasts with Duffie, Gârleanu
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and Pedersen (2007) where in the limit of vanishing search frictions prices approach competitive

levels and equilibrium is efficient.

In the next subsection, I study the exponential convex model via numerical simulations.

The next proposition shows that in this model equilibria are ordered by the utility of agents.

Hence, in the simulation, I focus on the equilibrium which is either the best or the worst for

both sides.17

Proposition 2. For the convex exponential model with constant holding costs, all equilibria

are ordered by the utility of agents: equilibria corresponding to higher utility of the buyer also

correspond to higher utility of the seller conditional on asset liquidity and acceptance probability,

i.e. for any two equilibria (σθ,M) and (σ̃θ, M̃), Vbu(φ) ≥ Ṽbu(φ) implies Vsm(θ) ≥ Ṽsm(θ̃), for

any θ and θ̃ such that xθ = x̃θ̃, σθ = σ̃θ̃.

In Proposition 2, I refer to the conditional utility of the seller for the following reason. From

Theorem 2 equilibrium is pinned down by two quantities: the lowest expected surplus z accepted

by the buyer and the match intensity of the seller Λ. As these quantities vary across equilibria

of the model or across equilibria corresponding to different parameters of the model, the set of

liquid assets ΘL changes, and in particular, it is possible that in one equilibrium the asset can

be traded, while in the other it can be illiquid. For this reason, to compare the utility of the

seller in different equilibria, I condition on the liquidity characteristics xθ and σθ of the asset

and focus on whether market conditions improved for the seller or not. As Proposition 2 shows,

interests of buyers and sellers are aligned in the case of a convex exponential model.

4.3 Numerical Simulations

In this section, I further explore properties of the model via numerical simulations. Analytic

insights from the analysis of the linear model with constant surplus derived in the previous

section are useful in understanding the behavior of other model specifications. The numerical

simulations allow one not only to explore the effect of curvature of the payoffs and varying

holding costs on liquidity, but also to study how welfare changes with the changes in search and

bargaining frictions.

To illustrate the results of simulations, I use the market liquidity L and the average delay

as aggregate indicators of liquidity and the distribution of inefficient asset holdings µs as the

measure of equilibrium efficiency. I also introduce the following welfare measure

W = 1−
´ 1

0 µs(θ)sθdθ´ 1
0

yd
yu+yd

f(θ)sθdθ
,

which shows by how much trade improves efficiency as compared to the absence of trade. Higher

17In fact, in all numerical simulations the equilibrium appears to be unique.
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yu yd λ r(%) α a

70 .1 1500 10 .5 1.5

Table 1: Parameters of the model.

W indicates a larger improvement in the welfare from the introduction of the market and cor-

responds to more efficient equilibria. The mass of traded assets L gives only a rough indication

of equilibrium efficiency. On the one hand, compared to W , market liquidity L overstates the

welfare, as it only captures the fact that assets in ΘL are traded eventually, but ignores the fact

they are traded with different levels of delay. On the other hand, L understates welfare, as it

ignores assets that are accepted for trade with probability strictly less than one. As I will show

below, sometimes efficiency and liquidity move in opposite directions.

Parameters of the model are given in Table 1. In the baseline specification, liquidity shocks

are relatively rare, and agents expect to recover from the shock in 3.6 days. Each agent expects

to contact nine other agents per day. Despite relatively quick recoveries, because of the high

intensity of contact, agents hit by a liquidity shock have strong incentives to search for a counter-

party to unload their position (rather than hold the asset and wait for a recovery). In negotiation,

the surplus is split equally between the buyer and seller.18 Agents holding assets constitute 67%

of the population. I also assume that each asset quality is in unit supply, i.e. f(θ) = 1 for all

θ ∈ [0, 1].

I consider the exponential specification of flow payoffs given by (2.1) − (2.2) with g(θ) =
exp(βθ)−1
exp(β)−1 . Parameter β controls the curvature of payoff functions and determines in what parts

of the quality range the variance of payoffs is the highest. For β > 0, payoffs are convex in

quality, and most of the variance in payoffs is concentrated in high-quality assets, while for

β < 0, payoffs are concave in quality, and most of the variance in payoffs comes from the low-

quality assets. As before, ` denotes the constant holding costs, k controls the variance of asset

payoffs and is interpreted as market uncertainty, and d is interpreted as the aggregate default

risk.

I depict results of simulations in Figure 3 and present aggregate measures in Table 2. As a

benchmark, consider the model with convex payoffs specified by k = .025, β = 3, ` = 4, d = 4.

Figure 3a depicts the steady-state distribution µs of assets among inefficient holders, trade delay

tθ, and yield spread sθ for this specification. All assets are liquid in equilibrium and buyers do not

randomize (L = 1). However, each asset is associated with delay, which results from two-sided

screening during the bargaining stage. The average delay is 5 days (with mode 3.4 days) and is

significant compared to the seller’s search time (250/Λ ≈ 2.4 hours). Trade delay is highest for

assets in the middle of the quality range reaching the maximum of 15.6 days for θ∗ = 0.82, and

18Observe that yd
r+yd

= .5 = α, and condition (4.3) holds.
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(a) Equilibrium for k = .025, β = 3, ` = 4, d = 4.
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(b) Equilibrium for k = .06, β = 3, ` = 4, d = 1.
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(c) Equilibrium for β = −5
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(d) Equilibrium for linear model
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(e) Equilibrium with increasing surplus

Figure 3: The steady-state distribution µs of assets among sellers (first column), trade delay tθ
(second column), yield spread sθ (third column) for various specifications with parameters as in
Table 1. Dashed lines depict µsu, average tθ, and average sθ, respectively.



W (%) L(%) average delay (days) average spread (bps)

convex (low market uncertainty)

k = .025, ` = 4, β = 3

39.5 100 5 2.4

convex

k = .06, ` = 4, β = 3

23.4 81.9 8.5 8.9

concave

k = .06, ` = 4, β = −5

22.1 85.8 8.2 8.7

linear

k = .06, ` = 4, β → 0

8.7 78.8 14.8 8.5

increasing surplus (k > k)

k = .06, k = .06, ` = 3.995, β → 0

7.5 67.6 14.7 8.4

Table 2: Comparison of welfareW , range of traded qualities L, average delay, and average spread
for concave , convex and linear models with constant surplus, linear models with increasing
surplus. For the first specification d = 4 and d = 1 for the others.

lowest closer to the extremes of the quality distribution.19 The cutoff θ∗ is shifted to the right

from the middle of the quality range, as payoffs are convex and it takes more time to screen

higher-quality assets. Despite a relatively low levels of search friction, inefficiency still remains

due to the bargaining friction. Trade improves the efficiency of the equilibrium by W = 39.5%.

Notice that consistent with Lemma 1, µsu is uniform as is the distribution of the supply of

assets. The average spread is 2.4 bps with the narrow range between 2 and 2.7 bps.

Bargaining Friction I start with an illustration of the effect on liquidity and efficiency of

increased bargaining friction. When asset-specific delay arises from strategic bargaining, bar-

gaining friction is determined by market uncertainty reflected in the range k of asset payoffs.

Figure 3b and Table 2 represent results of simulations for higher k = .06. It is a natural

assumption that during a crisis regime, the systemic component in the default risk increases si-

multaneously with the increase in the market uncertainty. Therefore, I carry out the simulations

for lower d = 1.

An increase in the variance of asset qualities leads to a smaller range of liquid assets: around

18.1% of asset qualities are not traded (L = 81.9%) and the efficiency of the market decreases by

40% (W = 23.4%). Since the difference in payoffs is larger, agents spend more time negotiating,

and as a result, fewer assets are liquid enough to be an attractive means of risk-sharing. Because

of that, the average negotiation time increases to 8.5 days (and is as high as 25.6 days for the

least liquid assets in ΘL), while the search time for sellers still remains small (2.6 hours).

If d remained high at d = 4, then the average yield spread would decrease to 2.2 with the

19Trade delay is 2.4 hours for the 10% most liquid assets.
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Figure 4: Distribution µs for λ = 10, 30, 100, 300, 1500.

λ 10 30 100 300 1500

L(%) 87.2 87.3 87.6 83.9 81.9

W (%) 1.4 3.8 9.5 16.6 23.4

average tθ(days) 10.9 10.7 10.4 9.3 8.5

seller search time (days) 50.1 16.7 5 1.7 .3

Table 3: Equilibrium characteristics for various λ.

increase in k. This happens because the outside options of buyers worsen (the third term in

(3.9)). With longer negotiation times, the alternative of continuing the search deteriorates and

so the price of assets increases, decreasing in turn the spreads. When d decreases together with

the increase in k, the average spread more than triples and reaches 8.9bps and there is a higher

variance in spreads ranging from 6.7 bps to 9.6 bps. Figure 3b shows that there is a negative

correlation between liquidity and yield spreads, a pattern which is confirmed empirically.

Search Friction I next demonstrate that increases in search and bargaining frictions have

opposite effects on liquidity. Figure 4 illustrates changes in the inefficient asset holdings µs

as the search friction vanishes (λ increases from 10 to 1500) for k = 0.06. First, notice that

equilibria do not converge to the competitive equilibrium, and bargaining friction is sufficient

to generate imperfectly liquid markets. For low λ all assets are traded in equilibrium. As λ

increases, the range L of traded assets decreases, which is consistent with the intuition from

Proposition 1. At the same time, the allocation for the liquid assets becomes more efficient

(µs(θ) decreases for θ ∈ ΘL).

Table 3 provides characteristics of equilibria as λ increases. A decrease in search friction

increases welfare but decreases the range of traded assets. As search friction vanishes, costs of

continuing the search for buyers decrease, and hence, buyers accept only the most liquid assets
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for trade. The improvement in efficiency stems from the decreased seller search time (from

more than 5 months to less than a day). This suggests that L can be misleading for estimating

efficiency, as in this example it moves in the opposite direction from welfare. Moreover, Figure 4

demonstrates that even though welfare W increases with an increase in λ, it does not imply that

the allocation of all assets becomes more efficient. An increase in λ leads to a decrease in L and

so, for a wider range of assets the allocation becomes more inefficient. However, this inefficiency

is compensated by an increase in efficiency of allocation of the remaining assets which results in

an increase in W .

Curvature and Increasing Holding Costs I now turn to the analysis of the curvature

of payoffs. Table 2 provides a comparison of equilibrium characteristics for different payoff

specifications. Instead of convex payoffs, I consider the case of concave payoffs given by β = −5.

The results of this simulation are illustrated in Figure 3c. Observe that this equilibrium is close

in the efficiency (W = 22.1%), range of traded assets (L = 85.8%), average size of spreads (8.7

bps), as well as average delay (8.2 days) to the model with concave payoffs (β = 3). However,

now the illiquid assets are assets of lower quality. The composition of the liquid assets changes

substantially. While for the model with convex payoffs, assets in [.64, .92] constitute the 10%-

quantile of the delay distribution, and for concave payoffs, it is assets in [.07, .24].

These results are in line with the intuition from the comparative statics with respect to k.

The analyses of the linear and exponential models for different k suggest that the sharper the

slope of v and v, the longer it takes to negotiate the price of assets and the fewer asset qualities

are traded. When the payoff function becomes convex instead of concave, most of the payoff

variance is concentrated at higher asset qualities. As a result, it takes agents longer to negotiate

the price of these assets, which leads to a smaller fraction of high quality assets among traded

assets. The situation is reversed for concave payoffs.

Finally, I analyze the effect of increasing holding costs in a linear model v(θ) = kθ+d+` and

v(θ) = kθ + d with k ≥ k.20 I take as a benchmark the case with constant surplus depicted in

Figure 3d. This case is also a useful illustration of the effect of the curvature as it is the limit of

the exponential model as β → 0. It follows from Table 2 that compared to models with non-zero

curvature, the range of traded assets decreases, mean delay increases and welfare decreases. In

the convex model, agents spend large amount of time screening high-quality assets, while trading

relatively quickly low-quality assets, and the situation is reversed for the concave model. In the

linear model, both high- and low-quality assets are screened for a significant amount of time,

which results in a relatively more inefficient outcome.

I compare the linear model with constant surplus with the case of increasing holding costs.

As shown above, in this case asset prices and liquidity depend on expected surplus from trade

zθ which trades off the time of negotiation and the size of the holding costs. Consider a linear

20This functional form is obtained from equations (2.1)− (2.2) by setting k = k and `θ = (k − k)g(θ).
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model with k = .06, k = .05, ` = 3.995, and d = 1. In this specification, holding costs increase

with quality and ` is adjusted so that the total surplus from trading all assets remains the

same as in the linear model. These results are depicted in Figure 3e. The set of liquid assets

decreases in size, average delay increases, and welfare decreases. This effect is similar to the

effect of increased uncertainty. Making assets more heterogeneous increases the willingness of

parties to wait in negotiation. This reduces the range of traded assets and decreases the scope

of risk-sharing. Notice that in Figure 3e, the delay associated with asset θ̂ is slightly higher than

the delay associated with θ̌. This reflects the fact that buyers decide whether to negotiate the

deal or continue searching based on zθ, which incorporates both delay and the size of surplus.

5 Transparency and Flights-to-Quality

Often, the increase in market uncertainty or transparency of a particular class of assets can result

in an inflow in or outflow from trading this asset class. To study this migration of agents, in this

section I consider a simple, multi-class extension of the baseline model in Section 2. Although

stylized, the model allows one to illustrate flight-to-quality episodes and study the effect of the

increased transparency on liquidity and welfare. As in the previous section, I derive results

analytically for the linear specification and give the numerical illustration for the exponential

specification.

There are two asset classes indexed by i = 1, 2, each of mass 1 and a mass a > 2 of

agents. For each asset class i, flow payoffs of the buyer and seller are given by functions vi

and vi, respectively. The mass ai ≥ 1 of agents trading assets in each class i is determined

in equilibrium so that a1 + a2 = a. Other than that, parameters of the search-and-bargaining

model are as in the baseline model in Section 2. The delay is endogenous and is described by the

CSBS. I allow that for one of the classes it holds that for some v < v, vi(θ) = v and vi(θ) = v

for all θ.21 In this case, there is no market uncertainty for asset class i and all asset qualities

in the class are traded immediately. The equilibrium in the multi-class model is defined next.

Super-indices indicate equilibrium quantities for the corresponding asset class.

Definition 3. A tuple (σiθ,M
i, ai)i=1,2 is a multi-class equilibrium if (σiθ,M

i) is the equilibrium

of the baseline model with mass of agents ai and the following conditions hold
z1 = z2, if a− 1 > a1 > 1,

z1 ≤ z2, if a1 = 1,

z1 ≥ z2, if a1 = a− 1.

(5.1)

The interpretation of (5.1) is that sellers cannot switch between asset classes, while buyers

can choose what asset class they want to use for the risk-sharing. To see this, recall that buyers’

21This case can be analyzed as a limit case of the model with endogenous delay as k → 0.
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γ(%) 0 48 7.5

L(%) 81.9 90 75.6

W (%) 23.4 30.8 20

average delay (days) 8.5 6.5 7.2

Table 4: Comparison of liquidity and welfare measures for single-class model (γ = 0), optimal
split into classes (γ = 48%), and adverse split into classes (γ = 7.5%).

preferences over assets within each class are determined by thresholds z1 and z2 (cf. Lemma

2). If both are equal, then buyers are indifferent between the two classes. If one is greater, then

all agents migrate to the more preferable (for buyers) class making the other class illiquid. The

next theorem shows that equilibrium exists in this model and is unique.

Theorem 3. Suppose that parameters of the model are such that in every asset class, there exists

a unique equilibrium of the baseline model for every a. Then there exists a unique multi-class

equilibrium.

Transparency I next study the effect of transparency on market liquidity. There are two

ways an increase in transparency can affect variables in the model. First, greater transparency

can result in a decrease in search friction λ. The effect of lower λ was studied in the previous

section, where it was shown that it reduces market liquidity, but improves welfare. Second,

increased transparency through the distribution of past quotes and more accurate or finer credit

ratings can lead to assets being traded within more narrowly-defined classes. This results in the

switch from the single-class model to a multi-class model, the effect of which I analyze next.

More precisely, suppose that for some γ ∈ (0, 1), asset qualities below γ are traded in class 1,

and asset qualities above γ are traded in class 2. To develop some intuition let me first abstract

from the migration of agents, and a fraction γ of agents trades assets in class 1, and a fraction

1 − γ trades assets in class 2. This assumption implies that the ratio of agents to the asset

supply is still equal to a. Then trading within each asset class is described by a model identical

to the benchmark model describing trading before the division into classes in all respects but

the range of asset payoffs. Specifically, for class 1, the range of payoffs equals γk, and for class

2, it is (1 − γ)k. As was shown in the previous subsection, in each class i, the mass of liquid

assets Li increases and, as a result, market liquidity γL1 +(1−γ)L2 after increased transparency

exceeds market liquidity L before the division. I next show that if one allows for migration of

agents between asset classes, then the division of one asset class into several asset classes need

not always improve liquidity and efficiency.

To explore the effect of the increased number of asset classes consider the exponential model

with parameters as in the convex model in Table 2. Suppose that the market is divided into
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(a) Welfare measure W and mass of liquid assets L as a function of γ.

Dashed line represents levels for a single-class model.
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Figure 5: Effect of increased transparency on the liquidity and welfare.
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two asset classes: θ < γ and θ ≥ γ. In Figure 5a, I compare changes in welfare and liquidity

in the multi-class model as the border γ dividing asset classes varies. Changes in liquidity and

welfare do not always go together. In particular, maximum welfare is reached when γ = 48%,

while maximal liquidity is reached for higher γ.

Observe that it is possible that for some split of the market into classes, welfare decreases.

For example, for γ = 7.5% both welfare and market liquidity decrease compared to the single-

class model (see Table 4). This happens because many agents migrate from trading assets θ ≥ γ
into trading assets θ < γ, leading to a decrease in efficiency and liquidity in the former segment.

On the other hand, an optimal split of assets into classes (γ = 48%) results in greater

liquidity and welfare (market liquidity increases by 31.6% and welfare increases by 9.9%). The

improvement in the allocation is obtained for every asset quality as can be seen from the right

panel of Figure 5b. For comparison, in the left panel of Figure 5b, I depict the distribution of

assets µs(θ) for suboptimal γ = 7.5%. Allocation of assets in class 1 is more efficient compared

to the no-division case (the solid line is below the dashed line for θ < 7.5%). This happens

both because of the reduced variance of payoffs in the class and the increased mass of agents

trading assets in class 1. However, there is a wide range of asset qualities in class 2 for which

allocation is less efficient in the multi-class model. The two classes combined result in a less

efficient allocation compared to no-division case.

Flight-to-Liquidity I next show that a flight-to-quality occurs as a response to the increase

in market uncertainty in one of the asset classes. Specifically, in the multi-class model, suppose

that v1(θ) = kg(θ) and v1(θ) = kg(θ) − `, while v2 = 1 and v2 = 1 − `. After the uncertainty

shock, k increases to k̃ > k. That is, after the shock there is greater variation in the asset

payoffs within assets in class 1. The next proposition describes the effect of such a shock on the

distribution of agents between classes and the liquidity in the linear model. I use tildes to refer

to equilibrium quantities after the shock.

Proposition 3. Suppose the payoffs in the first asset class are linear (g(θ) = θ). Suppose that

k increases to k̃ and let multi-class equilibria corresponding to k and k̃ be such that masses of

agents in the first class a1 and ã1 lie strictly between 1 and a − 1. Then an increase in k to k̃

leads to a decrease in the range of traded assets in the first class (L̃1 ≤ L1), a flight-to-quality

(ã1 ≤ a1 and ã2 ≥ a2), and a reduction in the buyer utility Vbu(φ).

Proposition 3 shows that after the shock, a flight-to-quality occurs: fewer agents trade assets

from class 1 with greater variance of asset payoffs, and agents migrate to trading assets in class

2. The flight-to-quality exacerbates the drop in liquidity. By Proposition 1, both an increase in

k and a decrease in a lead to a decrease in L. As a result, as fewer agents are trading assets in

class 1, the negative effect on liquidity of the uncertainty shock is amplified.

To illustrate the flight-to-quality numerically, consider a multi-class model in which asset

payoffs in asset class 1 are given by the exponential specification with k = .025, ` = 4, d = 1,
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a W (%) L(%) average delay (days) average spread (bps)

low market uncertainty

(k = .025, ` = 4, d = 4)

1.57 41 100 5 2.2

high market uncertainty

(k = .06, ` = 4, d = 1)

1.26 24 80.1 8.2 8.4

Table 5: Equilibrium quantities in a multi-class model before and after the shock to market
uncertainty.

and asset class 2 has constant payoffs across assets and the same ` and d. Parameters of the

model are as in Table 1 except for now the total mass of agents is a = 3.67. The total mass a is

chosen so that in the multi-class equilibrium a1 ≈ 1.57 is close to the equilibrium in the baseline

specification, and I can use Figure 3a as an illustration of equilibrium in class 1.

Suppose that there is an uncertainty shock and k increases to .06, and d decreases to 1 for

assets in class 1. Equilibrium quantities before and after the shock are presented in Table 5.

After the shock, the mass of agents trading assets in class 1 decreases by 19.7%. These agents

migrate into trading assets in class 2 that did not experience the shock and the flight-to-quality

takes place. The flight-to-quality is associated with a drop in liquidity in class 1: 19.9% of assets

become illiquid. Average bargaining delay increases dramatically from 5 days to 8.2 days. This

leads to a loss in welfare (W decreases from 41% to 24%). Because of the increase in aggregate

default risk d, average spreads increase to 8.4 bps.

I can use the results of the numerical simulation in Table 2 (first line) to compare the effect of

flight-to-quality on welfare and liquidity. The flight-to-quality exacerbates the negative liquidity

consequences of the uncertainty shock. Namely, the set of liquid assets decreases by an additional

1.8%. It is interesting that this does not change welfare significantly.

Notice that by Theorem 2 the level of aggregate default-risk d does not affect the distribution

of agents across asset classes. In particular, if asset class 1 experienced an increase in market

uncertainty (k) but at the same time a decrease in the aggregate default-risk (d), then the

direction and the magnitude of the migration to trading assets in class 2 would not change. This

is consistent with the empirical evidence that default risk plays a smaller role than liquidity in

flights (see Beber, Brandt, and Kavajecz (2009)).

6 Empirical Implications.

This paper develops a theory of asset pricing and liquidity that takes into account trade delay due

to both search and bargaining frictions. The search friction reflects the time it takes to identify

a gainful trade, while the bargaining friction reflects trade delay after the trade opportunity

has been found. Incorporating bargaining friction into a standard search-and-bargaining model
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leads to a number of testable empirical predictions. Next, I discuss empirical implications of the

model and compare them to existing empirical evidence.

Existing empirical evidence on the behavior corporate spreads suggests that the decompo-

sition in the pricing equation (3.9) captures key components of asset prices in OTC markets.

Longstaff, Mithal, and Neis (2005) shows that the default component does not explain entirely

corporate spreads. The non-default component varies with liquidity measures in the cross-section

of assets and depends on the marketwide liquidity in the time series analysis. While Longstaff,

Mithal, and Neis (2005) does not provide a direct test of my theory, my model can be useful in

explaining these effects on corporate spreads. In my model the last two components in equation

(3.9) correspond to the non-default component. While the liquidity premium component en-

sures the variation of the non-default component across assets, the average-liquidity component

ensures the variation of the non-default component with respect to marketwide liquidity. The

analysis of flights-to-quality in Section 5 reveals that in the corporate bond market, the latter

component would decrease asset prices of all bonds with the improvement in the liquidity of

the Treasure market, a regularity confirmed empirically in Longstaff, Mithal, and Neis (2005).

Moreover, Longstaff, Mithal, and Neis (2005) shows that the variance of the non-default com-

ponent across asset classes with different credit rating is much smaller than the variance of the

default component. This is in line with the analysis of the model with endogenous delay. By

Theorem 2, the aggregate default risk parameter d (which varies across credit rating classes)

affects the level of prices and hence the default component. However, it does not affect liquidity

xθ of assets and it is possible that different asset classes have similar average liquidity.22

Next, let me mention that the bargaining dynamics that I obtain possess realistic features of

the process of price discovery in OTC markets. The common screening bargaining solution used

in this paper to model the bargaining process exhibits two-sided screening dynamics: each side

makes offers to screen the opponent. These dynamics, in which parties gradually trade through

alternating offers, is a realistic description of actual negotiations in OTC markets.23

An important implication of this trade dynamic is that the range of asset payoffs plays an

22Longstaff, Mithal, and Neis (2005) also show that an increase in the supply of debt in the market leads to
an increase in the non-default component of corporate spreads. In my model, this translates into a decrease in a,
and it can be shown that in the linear model it results in a decrease in x and decrease in asset prices which is in
line with the empirical evidence.

23For example, Lewis (2011) (pp. 212-213) describes the negotiation between Morgan Stanley and Deutsche
Bank over the price of subprime CDOs:

What do you mean seventy? Our model says they are worth ninety-five, said one of the Morgan
Stanley people on the phone call.

Our model says they are worth seventy, replied one of the Deutsche Bank people.

Well, our model says they are worth ninety-five, repeated the Morgan Stanley person, and then went
on about how the correlation among the thousands of triple-B-rated bonds in his CDOs was very
low, ... he didn’t want to take a loss, and insisted that his triple-A CDOs were still worth 95 cents
on the dollar.

In this example, both parties begin the negotiation from extreme offers as in the model in this paper until
eventually the trade takes place at some compromising price.
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important role in asset liquidity, as it determines how quickly two-sided screening ends and

parties trade. My interpretation of the range of asset payoffs is that public information about

asset quality, like credit ratings, splits assets into several classes, and assets are traded within

each class.24 If public information is crude, then each asset class will contain a variety of

asset qualities with a wide range of associated default risks and payoffs. This assumption is

relevant in many OTC markets. Many OTC markets, like markets for credit default swaps,

credit derivatives, corporate bonds, and asset-backed securities, are opaque and only a limited

amount of information about assets is public. In these markets, assets are traded within crudely-

defined classes, and traders use public information such as credit ratings as a starting point for

negotiation. For example, the Committee on the Global Financial System (2005) gives the

following account of the OTC trade:

Interviews with large institutional investors in structured finance instruments suggest

that they do not rely on ratings as the sole source of information for their investment

decisions ... Indeed, the relatively coarse filter a summary rating provides is seen, by

some, as an opportunity to trade finer distinctions of risk within a given rating band.

Nevertheless, rating agency ‘approval’ still appears to determine the marketability

of a given structure to a wider market.

Hence, credit ratings place only crude restrictions on the price of trade, and the actual price

is determined during negotiations between the buyer and the seller. In this paper, the range

of assets traded restricts the highest and the lowest prices of assets (q1 and q0, respectively),

and agents use delay to arrive at the actual trade price qθ belonging to this range. I show

that in asset classes with smaller variance in asset payoffs within the class (smaller k), more

asset qualities are liquid (higher L), and the average trade delay caused by bargaining is smaller

(see conclusions 1 and 4 in Proposition 1). This prediction can be tested by splitting assets

into classes by the public information available about assets, like credit ratings, maturity and

industry, and by exploring the correlation between the variance of the default risk within each

class and the liquidity of assets within each class. The model predicts that higher variance

results into lower liquidity of the class.

The recent financial crisis of 2007-2008 suggests that there is a negative relationship between

the range of asset payoffs and market liquidity, confirming the finding of the paper. Benmelech

and Dlugosz (2010) reports that for structured finance products, the amount of downgrades in-

creased from 986 in 2006 to 8109 in 2007 and increased further to 36880 in 2008, while the amount

of upgrades either decreased or increased slightly. At the same time, the average downgrade size

increased from 2.5 notches to 4.7 in 2007, and to 5.6 in 2008. Ashcraft, Goldsmith-Pinkham,

and Vickery (2010) documents a similar spike in downgrades for subprime and Alt-A mortgage-

backed securities. The increase in the number of rating downgrades and the fact that this

24See the discussion of the CSBS in the introduction.
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increase continued for an extended period of time indicates that in 2007 traders realized that

the range of expected payoffs from assets with a particular credit rating would be significantly

higher than it was before (k increased). This paper predicts that in this environment, there will

be a drop in market liquidity (see Proposition 1 and Figures 3a and 3b for illustration). More-

over, the liquidity drop will be accompanied by a spike in spreads, if simultaneously the risk of

default increases for all assets (increase in d). The fact that ratings were mostly downgraded

suggests that the default risk indeed increased for all assets during this period. Downgrades

of structured products coincided with dried-up liquidity of structured finance products (see

Brunnermeier (2009)) which is consistent with predictions of this paper.

This paper provides testable implications about the relationship between liquidity and default

risk. The model predicts that asset liquidity depends on the default risk, and this dependence is

U-shaped. Assets with the highest and lowest default risk within a particular asset class (defined,

for example, by credit rating) are the most liquid, as one of the sides quickly accepts the highest

and the lowest prices, respectively. On the other hand, traders negotiating the price of assets

with default risk in the middle of the range have incentives to delay trade to get a more favorable

price. This prediction differs from the implication of Guerrieri and Shimer (2014). They study

the model with asymmetric information and discover an increasing relationship between the

liquidity and default risk. This stems from the fact that in order to incentivize owners of assets

to reveal their private information, assets of higher quality should be traded at higher prices but

with lower probability compared to the lower-quality assets.

The empirical literature so far has not explored the relationship between default risk and

liquidity within asset classes with different credit ratings or other publicly-observable character-

istics. The reason for this is that in empirical studies, credit ratings themselves serve as proxies

for default risk. However, one can use other proxies for default risk, like yield spreads of credit

default swaps, to measure a finer distinction of the default risk within the asset class with the

same credit rating to test the implications of this paper.

The existing empirical literature agrees that liquidity is the most important factor after

default risk for asset prices in OTC markets. However, there is contradicting empirical evidence

about the sign of the correlation of default risk and liquidity. Longstaff, Mithal, and Neis (2005),

and Ericsson and Renault (2006) document a positive correlation between illiquidity and default

risk for corporate bonds. At the same time, Beber, Brandt, and Kavajecz (2009) shows that

for Euro-bonds the correlation is reversed: more risky sovereign debt is also more liquid. The

model in this paper reconciles this evidence within a single framework. While in general the

dependence is U-shaped, the shape can be skewed to either side depending on the specification

of the payoff function. For convex payoffs (Figure 3b), for the majority of traded assets, higher

quality (lower default risk) is associated with lower liquidity. For concave payoffs (Figure 3c)

the situation is reversed: for the majority of assets the correlation between liquidity and default

risk is positive.
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Another testable prediction of the model is that the direction of flights-to-quality is deter-

mined by the liquidity preferences of traders. Proposition 3 shows that an increase in market

uncertainty results in the migration of agents to trade in asset classes not affected by this in-

crease. The direction of the migration is orthogonal to the change in the aggregate default risk

(d does not affect market liquidity).

OTC markets are known to be prone to flights-to-quality episodes when, due to increased

market uncertainty, agents shift their portfolio preferences to safer and more liquid assets. These

phenomena are associated with dried-up liquidity in markets for more risky assets. Friewald,

Jankowitsch, and Subrahmanyam (2012) and Dick-Nielsen, Feldhutter, and Lando (2012) show

empirically that flight-to-quality episodes were observed during the recent liquidity crisis of 2007-

2008. The implication of my model is confirmed empirically by Beber, Brandt and Kavajecz

(2009). Using the unique negative correlation between liquidity and default risk for sovereign

debt, they show that flights are driven by preferences for liquidity rather than quality.

Finally, the model adds to the debate about the effect of transparency on the liquidity of OTC

markets. There is a tendency toward increasing transparency of OTC markets. In July 2002, the

Transaction Reporting and Compliance Engine (TRACE) was introduced in the U.S. corporate

bond market. Currently, the information on nearly all transactions is publicly available. Recent

financial crises increased the pressure for greater transparency of markets for credit derivatives

and credit-default swaps. The model reveals how the increased transparency can be beneficial

and whether or not it will necessarily lead to more liquid markets.

There are two ways to measure the effect of transparency in my model. On the one hand,

transparency can be interpreted as the amount of public information available in the market.

When more public information is disseminated, assets are traded within more narrowly-defined

classes. Numerical simulations in Figure 5b show that under some choice of the division of the

market into several classes by the default risk, both liquidity and welfare improve. Bessembinder,

Maxwell, and Venkataraman (2006), and Edwards, Harris, and Piwowar (2007) provide empirical

evidence that the introduction of the electronic reporting system TRACE in to corporate bond

markets improved liquidity and led to a decrease in transaction costs. However, the division of

the market into classes can be detrimental for liquidity and welfare. If one asset class has much

smaller variance of payoffs within the class, then a flight-to-quality emerges between classes.

Agents migrate into trading assets in the class with less bargaining friction, which hurts the

liquidity of the remaining classes.

On the other hand, one can interpret transparency as how difficult it is to find a counter-party

in the market. This is reflected by parameter λ. Proposition 1 implies that increasing λ decreases

the set of liquid assets. Therefore, facilitating search through providing better information to

agents does not lead to improved market liquidity. This does not mean that transparency is bad

for welfare. On the contrary, Figure 4 and Table 3 demonstrate that welfare improves with the

increase of λ, despite the decrease in the set of liquid assets. This suggests that liquidity might
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not always be the best indicator of efficiency and one cannot evaluate the effect of reforms, such

as the introduction of public quotes, solely based on the effect on market liquidity.

7 Conclusion

This paper captures both bargaining and search frictions in OTC markets by introducing asset-

specific trade delay in a standard search-and-bargaining model. I study these frictions in both

the model with exogenous delay and the model with endogenous delay arising from strategic

bargaining. In both models, the dependence of asset prices on the default risk, liquidity, and

market conditions is determined in equilibrium. The asset pricing equation provides a decompo-

sition of prices into three components: default-risk component, liquidity-premium component,

and average-liquidity component. Existing empirical literature suggests that these components

are important determinants of yield spreads. In equilibrium, the set of traded assets is deter-

mined by buyers’ optimal strategy: buyers accept for trade only assets with sufficiently large

expected surplus from trade.

In the model with endogenous delay, trade delay is determined by the common screening

bargaining solution which features realistic two-sided screening dynamics of price discovery.

Specifying the mechanism through which trade delay is determined allows for more detailed

predictions about asset liquidity. The model has several implications for liquidity of assets

within the asset class with the same credit rating that can be tested empirically. First, an

increase in the variance of payoffs within the asset class leads to an increase in bargaining

friction and decreases the range of traded assets. Second, the relationship between liquidity

and default risk is U-shaped within the asset class, which contrasts with the prediction of a

monotone relationship in adverse selection models.

The analysis of the model with endogenous delay also reveals that both frictions are im-

portant in determining the liquidity of assets. Market liquidity increases with an increase in

the search friction, while it decreases with an increase in bargaining friction. The model with

endogenous delay provides a channel through which market uncertainty affects market liquidity.

I use this channel to explain the effect of transparency on market liquidity and the emergence of

flights-to-quality during periods of increased market uncertainty. Flights-to-quality cause trade

to migrate from asset classes with increased uncertainty about payoffs to asset classes where the

uncertainty about payoffs has not changed. Hence, flights-to-quality exacerbate the negative

effect on liquidity of an increase in uncertainty about payoffs within an asset class. Similarly,

greater transparency through the division of assets into more narrowly-defined classes can be

detrimental to liquidity. If, as a result of the division, an asset class emerges that has very little

uncertainty about payoffs within the class, then trade will be concentrated in this asset class

leaving the rest of the market relatively illiquid.

I next point out several directions for future research. The empirical literature on asset
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liquidity so far has used credit ratings as proxies for default risk, but has not looked at the

relationship between liquidity and default risk within credit rating classes. This paper provides

a framework for analysis of liquidity within asset classes and gives several novel empirical pre-

dictions. Testing these predictions is an exciting topic for future research. Moreover, equation

(3.9) gives the decomposition of asset prices into default and non-default components and can

be structurally estimated to determine the importance of various components in determining

spreads.

Further, one can follow the analysis in Sections 3 and 4 to explore the implications of other

endogenous bargaining frictions for liquidity. For example, instead of the CSBS one can use

the limit of the bargaining model with interdependent values obtained in Fuchs and Skrzypacz

(2014) to determine price and delay. In fact, heuristically the equilibrium of such a model can

be obtained from the model in this section by setting α = 0 and specifying in Definition 2

that θ∗ = 1.25 Exploring other significant sources of bargaining friction in OTC markets is an

important direction for future research.

Finally, there are several further developments of the model in this paper that seem promis-

ing. First, it is interesting to introduce market makers in the model which would establish the

connection between endogenous bid-ask spreads (a measure commonly used in the empirical

research to measure liquidity) and liquidity. Second, the CSBS used in this paper is the reduced

form for the sequential bargaining model with private almost-perfectly correlated values. It is

exciting and challenging to study the model in which values are imperfectly correlated. Third,

the analysis of the model relies on the assumption that the economy is in steady-state. The

study of transitional dynamics is another potential direction for future research.

25One also needs to put additional restrictions on payoff functions. In particular, Fuchs and Skrzypacz (2014)
assume that v(1) = c(1) (no-gap assumption).
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8 Appendix

8.1 Steady-State Distribution

Proof of Lemma 1. In the proof, I find explicitly the steady-state distribution M for given tθ

and σθ. Before deriving the conditions on M , let me first derive the steady-state distribution of

times spent in the match which will allow me to compute at what rate matched agents complete

the trade.

For θ ∈ ΘL ∪ΘM , let G(θ, u) for u ∈ [0, tθ] be the steady-state cumulative mass distribution

of times that the buyer and the seller of asset θ have already spent in the match by the current

time. Observe that after time du the mass of agents that have spent in the match time less than

u is G(θ, u− du). In addition, a fraction (yu + yd)du of matches are destroyed during the time

du due to switching of intrinsic types by one of sides, and a mass λMbu(φ)µsu(θ)σθdu of agents

enter the bargaining stage for asset quality θ. By the time-invariance of G(θ, u),

G(θ, u) = (1− yudu− yddu)G(θ, u− du) + λMbu(φ)µsu(θ)σθdu (8.1)

or

G′(θ, u) = −(yu + yd)G(θ, u) + λMbu(φ)µsu(θ)σθ. (8.2)

The distribution G(θ, u) is given by the differential equation (8.2) with the initial condition

G(θ, 0) = 0:

G(θ, u) =
1− e−(yu+yd)u

yu + yd
λMbu(φ)µsu(θ)σθ.

Moreover, total mass of agents in the bargaining stage for asset θ is equal to µbm(θ) which puts

the restriction on the distribution M , G(θ, tθ) = µbm(θ), or

µbm(θ) =
1− e−(yu+yd)tθ

yu + yd
λMbu(φ)µsu(θ)σθ. (8.3)

Let γθ be the intensity with which agents leave the match. Then

γθ = G′(θ, tθ) = λMbu(φ)µsu(θ)e−(yu+yd)tθσθ. (8.4)

Now, I can find distribution M . For illiquid assets (in ΘI), it is necessary that µsu(θ) =
yd

yu+yd
f(θ), µbu(θ) = yu

yu+yd
f(θ) and I focus on assets in ΘL ∪ΘM . The following conditions hold
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in the steady state:

ydµsm(θ) + ydµbu(θ) = yuµsu(θ) + λMbu(φ)µsu(θ)σθ,

yuµsm(θ) + yuµsu(θ) + γθ = ydµbu(θ),

yuMbm(Θ̄L) + yuMsu(φ) = ydMbu(φ) + λMbu(φ)
(´

Θ̄L
µsu(θ)σθdθ

)
,

ydMbm(Θ̄L) + ydMbu(φ) +
´

Θ̄L
γθdθ = yuMsu(φ).

(8.5)

The first equation in (8.5) states that in the steady-state mass µsu(θ) is constant. The inflow

into µsu(θ) consists of matched sellers of asset θ whose counter-party buyer became seller (which

happens with intensity yd) and unmatched buyers with asset θ who become sellers (again with

intensity yd). The outflow from µsu(θ) happens with intensity yu (due to sellers of type su

with asset θ becoming buyers) and with intensity λMbu(φ)µsu(θ)σθ (due to unmatched sellers

of asset θ finding a match). All these transitions should be balanced which is reflected in the

first equation of (8.5). The interpretation of the rest of the equations in (8.5) is analogous.

Combining system (8.5) with the balance conditions (2.3) − (2.5) and (8.3) − (8.4), I get the

following system of equations:

ydµsm(θ) + ydµbu(θ)− yuµsu(θ)− λMbu(φ)µsu(θ)σθ = 0,

yuµsm(θ) + yuµsu(θ)− ydµbu(θ) + λMbu(φ)µsu(θ)e−(yu+yd)tθσθ = 0,

µsu(θ) + µbu(θ) + µsm(θ) = f(θ),

(yu + yd)µsm(θ)− (1− e−(yu+yd)tθ)λMbu(φ)µsu(θ)σθ = 0,

yuMsm(ΘL ∪ΘM ) + yuMsu(φ)− ydMbu(φ)− λMbu(φ)
(´

ΘL∪ΘM
µsu(θ)σθdθ

)
= 0,

ydMsm(ΘL ∪ΘM ) + ydMbu(φ)− yuMsu(φ) + λMbu(φ)
(´

ΘL∪ΘM
µsu(θ)e−(yu+yd)tθσθdθ

)
= 0,

Msu(φ) +Mbu(φ) +Msm(ΘL ∪ΘM ) = a− 1.

Observe that equations are linearly dependent and the rank of the system is five. Forth and

sixth equations are linear combinations of the remaining equations and I eliminate them to make

the system have a full rank. First, consider a subsystem involving only asset θ,
ydµsm(θ) + ydµbu(θ)− yuµsu(θ)− λMbu(φ)µsu(θ)σθ = 0,

yuµsm(θ) + yuµsu(θ)− ydµbu(θ) + λMbu(φ)µsu(θ)e−(yu+yd)tθσθ = 0,

µsu(θ) + µbu(θ) + µsm(θ) = f(θ);
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which has the solution
µsu(θ) = yd

yu+yd+λMbu(φ)σθ
f(θ),

µbm(θ) = λMbu(φ)σθ(1−e−(yu+yd)tθ )yd
(yu+yd)(yu+yd+λMbu(φ)σθ) f(θ),

µbu(θ) = yu(yu+yd)+λMbu(φ)σθ(yu+yde
−(yu+yd)tθ )

(yu+yd)(yu+yd+λMbu(φ)σθ) f(θ).

(8.6)

Now I can solve for Mbu(φ) and Msu(φ) fromyuMsm(ΘL ∪ΘM ) + yuMsu(φ)− ydMbu(φ)− λMbu(φ)
´

ΘL∪ΘM
µsu(θ)σθdθ = 0,

Msu(φ) +Mbu(φ) +Msm(ΘL ∪ΘM ) = a− 1;

Subtracting the first equation from the second equation multiplied by yu, I get

λMbu(φ)

ˆ
Θ̄L

µsu(θ)σθdθ = yu(a− 1)− (yu + yd)Mbu(φ).

Plugging µsu(θ) from the first line of (8.6),

Mbu(φ) =
yu

yu + yd
(a− 1)− yd

yu + yd

ˆ 1

0

λMbu(φ)σθ
yu + yd + λMbu(φ)σθ

dF (θ), (8.7)

which after the change of variables Mbu(φ) = Λ
λ gives equation (3.1). The left-hand side of (8.7)

is increasing in Mbu(φ) and the right-hand side is decreasing in Mbu(φ). At Mbu(φ) = 0, the

left-hand side equals zero and the right-hand side equals yu
yu+yd

(a− 1) > 0. Therefore, equation

(8.7) has a unique solution that is positive. Notice that for positive Mbu(φ), it follows from (8.7)

that Mbu(φ) does not exceed the total mass of buyers in the population.

Quantities µsu(θ), µbm(θ), µbu(θ) can be found from (8.6). The distribution of assets of

unmatched sellers of ΘL that are searching on the market is given by FL(θ) =
´ θ
0 µsu(θ)dθ

Msu(ΘL) =

F (θ|θ ∈ ΘL).

8.2 Analysis of Value Functions

Here, I derive value functions of agents. Denote by Us the utility of the seller who does not

participate in search and simply holds the asset. Then Us can be found from equation (3.6) by

setting σθ = 0:

Us(θ) =
1

r

(
yu

r + yu + yd
v(θ) +

r + yd
r + yu + yd

v(θ)

)
. (8.8)

Therefore, Us is a weighted average of the present value of holding the asset as a buyer and as

a seller, and weights are given by the long-run fractions of time yu
r+yu+yd

and r+yd
r+yu+yd

an agent

is a buyer or a seller, respectively. Notice that the utility of sellers of illiquid assets is given by
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Vsu(θ) = Us(θ) for θ ∈ ΘI .

The next lemma simplifies equations (3.3) − (3.6) and shows that Vbu and Vsu(φ) can be

expressed through Vbu(φ) and Vsu.

Lemma 5. For all θ ∈ [0, 1],

Vbu(θ) =
v(θ) + ydVsu(θ)

r + yd
, (8.9)

Vsu(φ) =
yuVbu(φ)

r + yu
, (8.10)

Vbu(φ) = Λb
r + yu
rρ

(E [Vbm(θ)|θ ∈ ΘL]− Vbu(φ)) , (8.11)

Vsu(θ) = Us(θ) + σθΛ
r + yd
rρ

(Vsm(θ)− Vsu(θ)) . (8.12)

I further find Vbu(φ) and Vsu. For this purpose, I next turn to the outcome of the bargaining

stage and express value functions of matched agents,Vbm and Vsm, through Vbu(φ) and Vsu. In

Subsection 3.2, I introduced functions v̂ and ĉ(θ) as the value functions of the buyer and the

seller who remain in the match and never trade with the current partner. By the definition, ĉ(θ)

is given by the Bellman equation

rĉ(θ) = v(θ) + yu(Vbu(θ)− ĉ(θ)) + yd(Vsu(θ)− ĉ(θ)),

and so, it is given by

ĉ(θ) =
1

ρ
(v(θ) + yuVbu(θ) + ydVsu(θ)) =

r

r + yd
Us(θ) +

yd
r + yd

Vsu(θ).

Analogously, the value v̂ of the buyer who never buys the asset traded, but stays in the match

evolves according to

rv̂ = yu(Vbu(φ)− v̂) + yd(Vsu(φ)− v̂),

or solving for v̂,

v̂ =
1

ρ
(yuVbu(φ) + ydVsu(φ)) =

yu
r + yu

Vbu(φ).

Then functions v and c are given by

c(θ) = ĉ(θ)− Vsu(φ) =
r

r + yd
Us(θ) +

yd
r + yd

Vsu(θ)− yu
r + yu

Vbu(φ), (8.13)

v(θ) = Vbu(θ)− v̄ =
v(θ)

r + yd
+

yd
r + yd

Vsu(θ)− yu
r + yu

Vbu(φ). (8.14)

Observe that ξθ ≡ v(θ) − c(θ) = `θ
ρ . The next lemma expresses value functions of matched

agents through zθ, Vsu and Vbu(φ).
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Lemma 6. For any θ ∈ [0, 1],

Vbm(θ) = αzθ +
yu

r + yu
Vbu(φ), (8.15)

Vsm(θ) = (1− α)zθ +
r

r + yd
Us(θ) +

yd
r + yd

Vsu(θ). (8.16)

Proof of Lemma 6. Given that the trade at the bargaining stage is not immediate, the utility

of matched agents depends on time and I index V t
τ (θ̄) by time for τ ∈ {bm, sm}. Observe that

V tθ
bm(θ) = Vbu(θ)− qθ and V tθ

sm(θ) = qθ +Vsu(φ). Moreover, the following Bellman equation holds

for V t
bm(θ):

rV t
bm(θ) = yu(Vbu(φ)− V t

bm(θ)) + yd(Vsu(φ)− V t
bm(θ)) + V̇ t

bm(θ).

I solve this differential equation to get

V t
bm(θ) = (Vbu(θ)− qθ) e−ρ(tθ−t) +

yuVbu(φ)

r + yu

(
1− e−ρ(tθ−t)

)
.

From V 0
bm(θ) = Vbm(θ), I get (8.15). Symmetrically, the Bellman equation for V t

sm(θ) is

rV t
sm(θ) = v(θ) + yu(Vbu(θ)− V t

sm(θ)) + yd(Vsu(θ)− V t
sm(θ)) + V̇ t

sm(θ),

which has solution

V t
sm(θ) = (qθ + Vsu(φ)) e−ρ(tθ−t) +

1

ρ
(v(θ) + yuVbu(θ) + ydVsu(θ))

(
1− e−ρ(tθ−t)

)
.

From V 0
sm(θ) = Vsm(θ), I get (8.16).

It follows from (8.15) that the payoff from the match of the buyer depends only on the trade

expected surplus zθ, but does not depend on the asset quality otherwise. In equilibrium buyers

trade off liquidity and surplus from trade and choose assets with the highest expected surplus.

Combining (8.9) and (8.15), I get

Vbu(φ) = α
r + yu
r

Λb
ρ+ Λb

z̄. (8.17)

The buyer prefers to trade with the seller of asset θ if and only if Vbm(θ) ≥ Vbu(φ), or combining

(8.15) and (8.17), I get the condition

zθ ≥ z ≡
Λb

ρ+ Λb
z̄. (8.18)

The inequality (8.18) is strict for θ ∈ ΘL, and it holds as equality for θ ∈ ΘM . This proves

Lemma 2.
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It follows from (8.12) and (8.16) that for θ ∈ ΘL ∪ΘM function Vsu(θ) is given by

Vsu(θ) = Us(θ) + (1− α)
r + yd
r

σθΛ

ρ+ σθΛ
zθ (8.19)

Equation (8.19) implies that Vsu(θ) > Us(θ) whenever zθ > 0 and so, sellers always prefer to

trade. This implies that the liquidity of the asset is determined solely by the buyer strategy.

This completes the derivation of the value functions.

8.3 Model with Exogenous Delay

Since σθ takes values in [0, 1] and Λ is decreasing in σθ (by Lemma 1), the following lemma

follows.

Lemma 7. Λ takes values in the range [Λmin,Λmax] where Λmax ≡ λ yu
yu+yd

(a− 1) and Λmin is

given by the unique positive root of the quadratic equation

Λmin
λ

=
yu

yu + yd
(a− 1)− yd

yu + yd

Λmin
yu + yd + Λmin

. (8.20)

Proof of Theorem 1. Denote by [zmin, zmax] the range of values of zθ. To find the equilibrium, I

solve for equilibrium quantities Λ > 0 and z ∈ [0, zmax]. The equilibrium conditions that define

these quantities are as follows. First, from Lemma 2, the strategy is given by

σθ =


1, if zθ > z,

σ, if zθ = z,

0, if zθ < z;

where σ is some number in [0, 1] determined in equilibrium. Here, I used the assumption that

whenever buyers mix between accepting and rejecting the asset, they do not condition on the

quality of the asset.

Second, for z ∈ [zmin, zmax], it follows from (3.1) that

ˆ
zθ≥z

ydΛσθ
yu + yd + Λσθ

dF (θ)− yu(a− 1) + (yu + yd)
Λ

λ
= 0. (8.21)

By Lemma 1, for fixed σ, equation (8.21) has a unique solution Λ1(z, σ). Let Λ1(z) ≡ ∪σ∈[0,1]Λ1(z, σ).

Since the left-hand side of (8.21) is continuous in σ, Λ1(z) is upper hemi-continuous. The left-

hand side of (8.21) is weakly decreasing in z and strictly increasing in Λ. Therefore, Λ1(z) is

increasing in z for intervals on which it is single-valued. I can find Λ1(zmin) = Λmin. Since the

strategy σθ does not depend on z once it is below zmin, I have that for z ≤ zmin, Λ1(z) = Λ1(zmin)

. Therefore, for all z ∈ [0, zmax], Λ1(z) > 0.
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Third, from (3.2) and (3.8),

ρ =

ˆ
zθ>z

(
zθ
z
− 1

)
λyd

yu + yd + Λ
dF (θ). (8.22)

The right-hand side of (8.22) is strictly decreasing in Λ and strictly decreasing in . Therefore,

there is a unique solution Λ2(z) to (8.22) and it is decreasing in z. Moreover, the solution Λ2(z)

is upper semi-continuous. As z → zmax, the right-hand side of (8.22) converges to zero for all

Λ ≥ 0. Therefore, Λ2(zmax) < 0. As z → 0, the right-hand side of (8.22) diverges to infinite.

Therefore, for any positive constant C, there exists z ∈ (0, zmax) such thatΛ2(z) > C.

Combining the observations about mappings Λ1 and Λ2:

• Λ1(z) is strictly increasing and upper hemi-continuous, Λ1(z) = Λ1(zmin) for z ∈ [0, zmin];

• is decreasing, upper semi-continuous, and limz→0 Λ2(z) =∞;

• Λ1(zmax) > 0 > Λ2(zmax).

Therefore, there exists a unique solution z to equations (8.21) and (8.22), and corresponding Λ

and σ. This completes the proof of existence and uniqueness of the equilibrium.

The fact that equilibrium does not depend on d follows directly from the derivation of the

equilibrium conditions. To derive equation (3.9), I plug functions v and c from (8.13) and (8.14)

into equation (3.7), and then substitute Vsu(θ) and Vbu(φ) from (8.17) and (8.19). Then spreads

are given by

sθ = r

(
kg(θ) + d

kg(θ) + d− (r + yd)ξθ + (1− α)ξθ + (1− α)yd
σθΛ
ρ+σθΛzθ − αyu

Λb
ρ+Λb

z̄
− 1

)
. (8.23)

The sign of partial derivatives of sθ can be obtained from the formula (8.23).

8.4 Model with Endogenous Delay

Suppose v and c are weakly increasing and piecewise continuously differentiable and a sequence

of continuously differentiable functions vi and ci is such that (vi, ci, v
′
i, c
′
i) → (v, c, v′, c′) at

all differentiability points of v and c. Denote by (qiθ, t
i
θ, θ
∗
i ) the CSBS for bargaining problem

(ρ, vi, ci), and let xiθ ≡ e−ρt
i
θ and ziθ ≡ xiθξθ.

Proof of Lemma 3. I show that (4.1) is equivalent to conclusion 1 in Lemma 3, and showing

that (4.2) is equivalent to condition 2 is analogous. First, I rewrite the maximization problem

in (4.1) as follows

θ ∈ argmaxθ′∈[θ∗,1]xθ′(v(θ)− qθ′). (8.24)

By the envelope theorem (Milgrom and Segal (2002)), function xθ(v(θ)− qθ) is absolutely con-

tinuous and at differentiability points satisfies (xθ(v(θ)− qθ))′ = xθv
′(θ). This implies that xθ is
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continuously differentiable. Since v(θ) is continuously differentiable, the maximized function in

(8.24) is continuously differentiable. Therefore, the first-order condition holds for this problem:

x′θ(v(θ)− qθ)− xθq′θ = 0. (8.25)

Expression for tθ in condition 1 of Lemma 3 gives the solution to this first-order condition.

I next show that the first-order condition is also sufficient. The maximized function in (8.24)

has the smooth single crossing differences property (see Milgrom (2004)). By q′θ > 0, x′θ > 0, and

by (8.25), the envelope formula holds. By Theorem 4.2 in Milgrom (2004), xθ given by (8.25)

is the optimum of (8.24). Moreover, since (8.25) is the necessary condition, and the unique

solution to (8.25) is the unique optimum of (8.24).

The comparative statics of tθ with respect to v′ and c′ follows directly from the expression

for tθ in the lemma.

Lemma 8. There exists a subsequence of bargaining problems (ρ, vi, ci) such that (qiθ, t
i
θ, θ
∗
i ) con-

verges point-wise at all differentiability points of v and c to (qθ, tθ, θ
∗) that satisfies the following

properties.

1. qθ = (1− α)v(θ) + αc(θ) at all differentiability points of v and c.

2. tθ and zθ are piece-wise continuously differentiable, decreasing for θ < θ∗ and increasing

for θ > θ∗.

3. Consider θ′ and θ′′ such that v and c are continuous on [θ′, θ′′]. Then

tθ′′ − tθ′ = −
ˆ θ′′

θ′

v′(θ)− αξ′θ
ραξθ

dθ and ln

(
zθ′′

zθ′

)
= −

ˆ θ′′

θ′

v′(θ)

αξθ
dθ, if θ′ > θ∗,

tθ′′ − tθ′ =

ˆ θ′′

θ′

c′(θ) + (1− α)ξ′θ
ρ(1− α)ξθ

dθ and ln

(
zθ′′

zθ′

)
=

ˆ θ′′

θ′

c′(θ)

(1− α)ξθ
dθ, if θ′′ < θ∗.

4. For differentiability points θ > θ∗ of v, z′θ = 0 if and only if v′(θ) = 0, and for differentia-

bility points θ < θ∗ of c, z′θ = 0 if and only if c′(θ) = 0.

Proof. By (3.7), point-wise convergence of vi and ci to v and c, respectively, implies convergence

of qiθ to (1− α)v(θ) + αc(θ) at all differentiability points of v and c.

By the definition of θ∗, for every θ′ > θ∗ and θ′′ < θ∗, there exists I such that for all

i > I, tiθ and ziθ are monotone on [θ′, 1] and [0, θ′′]. By Helly’s theorem, tiθ and ziθ converge over

subsequence to monotone functions tθ and zθ on [θ′, 1] and [0, θ′′]. Therefore, tiθ and ziθ converge

over subsequence to monotone functions tθ and zθ on (θ∗, 1] and [0, θ∗).

If θ′ > θ∗, by Lemma 2, for every θ ∈ (θ′, θ′′), eventually tiθ′′ − tiθ′ = −
´ θ′′
θ′

v′i(θ)−αξ′iθ
ραξiθ

dθ,

and it converges to tθ′′ − tθ′ = −
´ θ′′
θ′

v′(θ)−αξ′θ
ραξθ

dθ by the dominated convergence theorem. By the

same reasoning, if θ′′ < θ∗, tiθ′′ − tiθ′ converges to tθ′′ − tθ′ =
´ θ′′
θ′

c′(θ)+(1−α)ξ′θ
ρ(1−α)ξθ

dθ.
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By the definition of xθ, I can rewrite condition 1 in Lemma 2 as follows

(vi(θ)− qiθ)(xiθ)′ = (qiθ)
′xiθ.

for θ > θ∗i . By the proportional split of the surplus, vi(θ)− qiθ = αξiθ and so,

αξiθ(x
i
θ)
′ = (qiθ)

′xiθ

or
(ziθ)

′

ziθ
=
v′i(θ)

αξiθ
.

Therefore, for differentiability points θ > θ∗ of v,

z′θ
zθ

=
v′(θ)

αξθ
, (8.26)

and so, z′θ = 0 if and only if v′(θ) = 0.

Analogously, for differentiability points θ < θ∗ of c,

z′θ
zθ

= − c′(θ)

(1− α)ξθ
, (8.27)

and so, z′θ = 0 if and only if c′(θ) = 0.

Lemma 9. If in equilibrium σθ = 1 on an interval (θ′, θ′′) on which v and c are continuously

differentiable, and either θ′ > θ∗ or θ′′ < θ∗, then for θ′ > θ∗, zθ is strictly increasing and

satisfies

z′θ

(
α
ξθ
zθ
− yd

r

Λ

ρ+ Λ
(1− α)

)
=
v′(θ) + ydU

′
s(θ)

(r + yd)
. (8.28)

and for θ′′ < θ∗, zθ is strictly decreasing and satisfies

(1− α)z′θ

(
ξθ
zθ

+
yd
r

Λ

ρ+ Λ

)
= −U ′s(θ), (8.29)

Moreover, functions v and c are strictly increasing on (θ′, θ′′).

Proof of Lemma 9. For θ′ > θ∗, plugging v′(θ) from (8.14) into (8.26), I get

z′θ
zθ

=
v′(θ) + ydV

′
su(θ)

αξθ(r + yd)
.

By (8.19),

V ′su(θ) = U ′s(θ) + (1− α)
r + yd
r

Λ

ρ+ Λ
z′θ (8.30)
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and so,

z′θ = ζ>(zθ, θ,Λ), (8.31)

where

ζ>(z, θ,Λ) =
v′(θ) + ydU

′
s(θ)

(r + yd)
(
αξθ
z −

yd
r

Λ
ρ+Λ(1− α)

) . (8.32)

From (4.3), the denominator of (8.32) is positive. Indeed,

αξθ
z
≥ α ≥ yd

r
(1− α) >

yd
r

Λ

ρ+ Λ
(1− α).

Plugging (8.31) into (8.30), I get that

V ′su(θ) = U ′s(θ) +
1

r

Λ

ρ+ Λ
(1− α)

v′(θ) + ydU
′
s(θ)

α
xθ
− yd

r
Λ
ρ+Λ(1− α)

and so, from (8.14),

v′(θ) =

(
v′(θ)

r + yd
+

yd
r + yd

U ′s(θ)

)(
α

α− yd
r

Λ
ρ+Λ(1− α)xθ

)
> 0.

Analogously, plugging in c′(θ) from (8.13),

z′θ
zθ

= −rU
′
s(θ) + ydV

′
su(θ)

(1− α)ξθ(r + yd)
,

or using (8.19) to find V ′su(θ),

z′θ = ζ<(zθ, θ,Λ)

where

ζ<(z, θ,Λ) = − U ′s(θ)

(1− α)
(
ξθ
z + yd

r
Λ
ρ+Λ

) . (8.33)

By (8.30),

V ′su(θ) = U ′s(θ)

ξθ
zθ
− Λ

ρ+Λ

ξθ
zθ

+ yd
r

Λ
ρ+Λ

> 0

and so, since ξθ/zθ = 1/xθ ≥ 1 > Λ
ρ+Λ , c′(θ) > 0.

I next prove Lemma 4 stated in the text.

Proof of Lemma 4. The analysis proceeds in a series of claims.

Claim 1. If zθ = z for some set (θ′, θ′′), then σθ ∈ (0, 1) for almost every θ ∈ (θ′, θ′′).

Proof. Suppose that zθ = z, but σθ = 0 for some set (θ′, θ′′). Then Vsu is strictly increasing
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on this set by (8.19) and so, by (8.13) and (8.14), v and c are strictly increasing. This contradicts

conclusion 4 in Lemma 8. Now suppose that zθ = z, but σθ = 1 for some set (θ′, θ′′). By Lemma

9, v and c are strictly increasing. This again contradicts conclusion 4 in Lemma 8. q.e.d.

Claim 2. If σθ > 0 for some θ > θ∗, then σθ′ > 0 for almost every θ′ > θ. If for some θ ≤ θ∗,

σθ > 0, then for almost every θ′ < θ, σθ′ > 0. Moreover, ΘL = [0, θ̌] ∪ [θ̂, 1].

Proof. By Lemma 2, buyers accept only asset qualities with zθ ≥ z. By Lemma 8, zθ has a

U-shape and so, zθ ≥ z on a set [0, θ′] ∪ [θ′′, 1] and zθ > z on a set [0, θ̌] ∪ [θ̂, 1]. The statement

then follows from Claim 1. q.e.d.

In the next two claims, I use the following notation. For a set A, I denote by A the closure

of A.

Claim 3. ΘL ∩ [0, θ∗] ∩ΘI = φ.

Proof. Suppose not and there exists θ′ = inf ΘL ∩ [0, θ∗]∩ΘI . There is an increasing sequence

of {θ′i} ⊂ ΘL ∪ [0, θ∗] and a decreasing sequence {θ′′i } ⊂ ΘI both converging to θ′. From (8.19)

and (8.13), this implies that for sufficiently large i, c(θ′i) > c(θ′′i ) while θ′i < θ′′i , which contradicts

monotonicity of c. q.e.d.

Claim 4. ΘL ∩ [θ∗, 1] ∩ΘM = φ

Proof. Suppose not and there exists θ′ = sup ΘL ∩ [θ∗, 1] ∩ ΘM . There is a decreasing

sequence of {θ′i} ⊂ ΘL ∪ [θ∗, 1] and an increasing sequence {θ′′i } ⊂ ΘM both converging to .

From (8.19) and (8.14), this implies that for sufficiently large i, v(θ′′i ) is constant and σ(θ′′i )

decreases. This contradicts the continuity of v at θ′. q.e.d.

It follows from Claims 1-4 that the only possible order of sets is ΘL∩[0, θ∗],ΘM ,ΘI ,ΘL∩[θ∗, 1]

which is the desired conclusion.

Lemma 10. Function zθ is determined by Λ on a set ΘL. For θ ∈ [θ̂, 1], zθ is strictly increasing

and given by the unique solution of (8.28) with the initial condition z1 = ξ1, and for θ ∈ [0, θ̌], zθ

is strictly decreasing and given by the unique solution of (8.29) with the initial condition z0 = ξ0.

Moreover, there exists zmin > 0 such that for any Λ, zθ ≥ zmin for all θ ∈ ΘL.

Proof. Combining Lemmas 4 and 9, I get that zθ is determined on ΘL as in the statement

of the lemma. Since equations (8.28) and (8.29) depend only on Λ, zθ depends only on Λ on

ΘL. Moreover, the existence and uniqueness of the solution to differential equations (8.28)

with the initial condition z1 = ξ1 and (8.29) with the initial condition z0 = ξ0 follow from the

Picard-Lindeloef theorem.

For given Λ (not necessarily equilibrium Λ), denote by zθ,>(Λ) the solution to (8.32) and by

zθ,<(Λ) the solution to (8.33). Then

zθ > min
Λ∈[Λmin,Λmax]

min
θ∈[0,1]

{max {zθ,>(Λ), zθ,<(Λ)}} ≡ zmin.
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Minimized function is continuous in Λ, and Λ belongs to a compact interval. Therefore, the

minimum is attained for some Λ and zmin > 0.

Equilibrium Expected Surplus zθ and strategies σθ I now can describe zθ for given Λ

and z. For θ ∈ ΘM , zθ is constant and equal to z. For θ ∈ ΘL, zθ is described by Lemma 10, and

it is only left to find conditions to determine thresholds θ̂, θ̌, θ. Let θ<(z) and θ>(z) be inverse

functions of zθ for θ ∈ [0, θ̌] and θ ∈ [θ̂, 1], respectively. By the strict monotonicity of zθ on the

respective intervals (Lemma 10), these functions are well-defined and θ< is strictly increasing

and θ> is strictly decreasing. Since z = zθ̌ = zθ̂,

θ̌ = θ<(z), (8.34)

θ̂ = θ>(z), (8.35)

For each θ ∈ ΘM , zθ = z and so, c(θ) = c(θ̌) by Lemma 8. Therefore, for θ ∈ ΘM ,

Vsu(θ) = Vsu(θ̌)− r

yd
(Us(θ)− Us(θ̌)) (8.36)

or

Vsu(θ)−Us(θ) = Vsu(θ̌)−
(

1 +
r

yd

)
Us(θ)+

r

yd
Us(θ̌) =

r + yd
r

(
r

yd
(Us(θ̌)− Us(θ)) + (1− α)

Λ

ρ+ Λ
z

)
.

(8.37)

Threshold θ is determined as the minimum of θ̂ and the solution to the equation Us(θ) = Vsu(θ)

and so, from (8.37),

θ = min

{
θ̂, U−1

s

(
Us(θ̌) + (1− α)

yd
r

Λ

ρ+ Λ
z

)}
. (8.38)

This completes the description of zθ for a given Λ and z. The following monotonicity property

of θ̂, θ̌, θ is immediate from (8.34),(8.35),(8.38), and the strict monotonicity of θ> and θ<.

Lemma 11. θ̂ is strictly increasing in z, θ̌ and θ are strictly decreasing in z.

The next lemma determines equilibrium strategies.

Lemma 12. For given Λ and z,

σθ =


1, if θ ∈ [0, θ̌] ∪ [θ̂, 1],

0, if θ ∈ [θ, θ̂),

ρ

(
(1−α) Λ

ρ+Λ
z− r

yd
(Us(θ)−Us(θ̌))

(1−α) ρ
ρ+Λ

z+ r
yd

(Us(θ)−Us(θ̌))

)
, if θ ∈ (θ̌, θ).

(8.39)

Moreover, (Λσθ)
′
z > 0 for θ ∈ (θ̌, θ).
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Proof. Lemma 4 determines equilibrium strategies for θ ∈ ΘM ∪ΘI , and it remains to determine

equilibrium strategies for θ ∈ ΘM from (8.19) with zθ = z and (8.37):

σθ =
ρ

Λ

r
r+y (Vsu(θ)− Us(θ))

(1− α)z − r
r+y (Vsu(θ)− Us(θ))

=
ρ

Λ

(
(1− α) Λ

ρ+Λz −
r
yd

(Us(θ)− Us(θ̌))
(1− α) ρ

ρ+Λz + r
yd

(Us(θ)− Us(θ̌))

)
.

To see that d(Λσθ)
dz < 0 for θ ∈ (θ̌, θ), observe that using (8.33),

d

dz

(
(1− α)

Λ

ρ+ Λ
z − r

yd
(Us(θ)− Us(θ̌))

)
= (1− α)

Λ

ρ+ Λ
+

r

yd
U ′s(θ̌)θ

′
<(z) =

(1− α)
Λ

ρ+ Λ
− r

yd
(1− α)

(
ξθ
zθ

+
yd
r

Λ

ρ+ Λ

)
= − r

yd
(1− α)

ξθ
zθ
< 0,

and using (8.32),

d

dz

(
(1− α)

ρ

ρ+ Λ
z +

r

yd
(Us(θ)− Us(θ̌))

)
= (1− α)

Λ

ρ+ Λ
− r

yd
U ′s(θ̌)θ

′
<(z) =

(1− α)
Λ

ρ+ Λ
+

r

yd
(1− α)

(
ξθ
zθ

+
yd
r

Λ

ρ+ Λ

)
= 2(1− α)

Λ

ρ+ Λ
+

r

yd
(1− α)

ξθ
zθ
> 0.

Therefore, I have expressed strategy σθ and expected surplus zθ through Λ and z. Now I can

find equilibrium by solving for z and Λ from conditions (8.21) and (8.22) which I repeat here

Λ

λ
=

yu
yu + yd

(a− 1)− yd
yu + yd

ˆ 1

0

Λσθ
yu + yd + Λσθ

dF (θ), (8.40)

ρ =

ˆ
zθ>z

(
zθ
z
− 1

)
λyd

yu + yd + Λ
dF (θ). (8.41)

I next prove that there is always a solution satisfying (8.40) and (8.41).

Proof of Theorem 2 Equilibrium existence follows from the claim below.

Claim 5. For any Λ ∈ [Λmin,Λmax], there exists a unique continuous z1(Λ) satisfying (8.40) and

a unique continuous z2(Λ) satisfying (8.41).

Proof. Fix Λ ∈ [Λmin,Λmax]. By Lemma 10, there exist zmin and zmax = max{z1, z0} such

that zθ ∈ [zmin, zmax]. From (8.39), the right-hand side of (8.40) is continuous and strictly

decreasing in z on [zmin, zmax], is Λmin at z = zmin and Λmax at z = zmax, and so, there

exists a unique z1(Λ) satisfying (8.40). The right-hand side of (8.41) is continuous and strictly

decreasing in z on (0, zmax], converges to infinity as z → ∞, and is zero at z = zmax. Since
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ρ > 0, there exists a unique solution z1(Λ) to (8.41). The continuity of the solution follows from

the continuity of the respective equations in Λ. q.e.d.

Restrict Λ to the interval [Λmin,Λmax]. Notice that I can let z1(Λmin) = (0, zmin], since for

z < zmin, σθ = 1 for all θ and so, any z ∈ (0, zmin] is compatible with equilibrium in which

Λ = Λmin. Also z1(Λmax) = zmax and z2(Λ) ∈ (0, zmax]. By the continuity of z1 and z2, there

exists a solution to (8.40)-(8.41).

Proof of Proposition 1 For the linear model, equations (8.48) and (8.49) take form

θ>(x) = 1 +
r

k
αξ lnxθ +

yd
k

(1− α)ξ
Λ

ρ+ Λ
(1− xθ), for θ > θ∗,

θ≤(x) = − r
k

(1− α)ξ lnxθ +
yd
k

(1− α)ξ
Λ

ρ+ Λ
(1− xθ), for θ ≤ θ∗.

Given these expressions, one can explicitly calculate

X ≡
ˆ 1

θ̂
xθdθ +

ˆ θ̌

0
xθdθ =

ˆ 1

x
x
dθ>(x)

dxθ
dx−

ˆ 1

x
x
dθ≤(x)

dxθ
dx =

rξ

k
(1− x) (8.42)

and

L = 1− θ̂ + θ̌ = −rξ
k

lnx. (8.43)

Then equilibrium conditions (8.40) and (8.41) for ΘI 6= φ become

Λ =
λyd
ρ

(
ξr

k

(
e
k
ξr
L − 1

)
− L

)
− (yu + yd), (8.44)

L =
yu + yd + Λ

ydΛ

(
yu(a− 1)− (yu + yd)

Λ

λ
− h(Λ)

)
; (8.45)

where

h(Λ) =

ˆ 1

0

(1− s)yd
1 + yu+yd

Λ −
(

1− yu+yd
ρ

)
s
ds.

For the case when L = 1 (and hence, ΘI = φ), equilibrium is given by Λ = Λmin

Λmin ≥
λyd
ρ

(
ξr

k

(
e
ξr
k − 1

)
− 1

)
− (yu + yd). (8.46)

To derive the comparative statics, denote by Λ1(L), Λ as a function of L expressed from

equation (8.44), and by Λ2(L), Λ as a function of L expressed from equation (8.45). Function

Λ1 is increasing and Λ2 is decreasing and so, equilibrium is unique.26 Since
(
ξr
k

(
e
k
ξr
L − 1

))′
k

=

26The right-hand of (8.44) is increasing in L, as
(
ξr
k

(
e
k
ξr
L − 1

)
− L

)′
L

= e
k
ξr
L−1 > 0, and the right-hand side
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ξr
k2

(
1 + e

k
ξr
L
(
k
ξrL− 1

))
> 0, Λ1 is increasing in k and so, an increase in k leads to the upward

shift of Λ1 and as a result, to an increase in Λ and a decrease in L. By the same logic, Λ is

decreasing in ` and L is increasing in `. Finally, an increase in a leads to an increase in Λ2 and

so, an increase in Λ and L. Since (8.44) and (8.45) do not depend on α, L is independent of α.

To derive the comparative statics in λ, I express equilibrium conditions (8.44) and (8.45) in

terms of variables L and Mbu(φ) as followsMbu(φ) = yd
ρ

(
ξr
k

(
e
k
ξr
L − 1

)
− L

)
− yu+yd

λ ,

L = (yu+yd)/λ+Mbu(φ)
ydMbu(φ) (yu(a− 1)− (yu + yd)Mbu(φ)−H(Mbu(φ))) ;

(8.47)

where

H(Mbu(φ)) =

ˆ 1

0

(1− s)yd
1 + yu+yd

λMbu(φ) −
(

1− yu+yd
ρ

)
s
ds.

The right-hand side of the first equation in (8.47) is increasing in L and increasing in λ, while

the right-hand side of the second equation in (8.47) is decreasing in Mbu(φ) and decreasing in λ.

Therefore, an increase in λ leads to a decrease in L. Taking the limits of the equations (8.47)

one gets (4.4) and H = ρ
r

(
1 + yu+yd

r ln
(

1− r
ρ

))
= limλ→∞ H(Mbu(φ)).

Proof of Proposition 2 In the proof of Theorem 2, I introduced two functions z1 and z2

whose intersection gives equilibrium z and Λ. Observe that if z1 is increasing in Λ, which is the

case for the convex model (see Lemma 13 below), then equilibria with higher Λ also have higher

z. From (8.17) the utility of the buyer is increasing in z, while from (8.19), given zθ and σθ, the

utility of the seller is increasing in Λ.

I next make several useful observations about the model with constant holding costs. First,

recall that it is without loss of generality to take F as uniform. Second, in the model with

constant holding costs only the liquidity xθ of the asset matters for the preferences of the buyer

and so, I will analyze the equilibrium value of x instead of z. Third, for assets in ΘL differential

equations (8.28) and (8.29) determining zθ can be integrated to get

g(θ) = 1 +
r

k
αξ lnxθ +

yd
k

(1− α)ξ
Λ

ρ+ Λ
(1− xθ), for θ > θ∗,

g(θ) = − r
k

(1− α)ξ lnxθ +
yd
k

(1− α)ξ
Λ

ρ+ Λ
(1− xθ), for θ < θ∗,

of (8.45) is decreasing in Λ.
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and define functions

g>(x) = 1 +
r

k
αξ lnx+

yd
k

(1− α)ξ
Λ

ρ+ Λ
(1− x), (8.48)

g<(x) = − r
k

(1− α)ξ lnx+
yd
k

(1− α)ξ
Λ

ρ+ Λ
(1− x). (8.49)

The interpretation is that g−1(g>(x)) gives the asset above θ∗ with liquidity x) (/ug−1(g<(x))

gives the asset below θ∗ with liquidity x.

Lemma 13. In the convex model, z1(Λ) is strictly increasing.

Proof. It is sufficient to show that the right-hand side of (8.40) is strictly decreasing in Λ. The

term that depends on Λ in the right-hand side of (8.40) can be rewritten as

−
ˆ 1

0

Λσθ
yu + yd + Λσθ

dθ = − ΛL

yu + yd + Λ
−
ˆ θ

θ̌

Λσθ
yu + yd + Λσθ

d(θ) (8.50)

which I show to be strictly increasing in Λ.

Claim 6. L is strictly increasing in Λ in the neighborhood of L < 1.

Proof. Using (8.48) and (8.49),

L = θ̌(x) + 1− θ̂(x) = 1 + g−1(g<(x))− g−1(g>(x)).

Suppose that Λ increases. Then both g<(x) and g>(x) increase by the same amount. Since g is

convex, and g<(x) ≤ g>(x), g−1(g<(x)) increases by a greater amount than g−1(g>(x)) and so,

L increases with the increase in Λ. q.e.d.

Claim 7. Λσθ is increasing in Λ

Proof. Since θ̌ is increasing in the nominator of Λσθ = ρ

(
yd(1−α) Λ

ρ+Λ
ξx−(g(θ)−g(θ̌))

yd(1−α) ρ
ρ+Λ

ξx+g(θ)−g(θ̌)

)
is in-

creasing in Λ, while the denominator is decreasing in Λ. Therefore, Λσθ is increasing in Λ.

q.e.d.

Notice from (8.38) that

g(θ) = min

{
g(θ̂), g(θ̌) +

yd
k

(1− α)ξ
Λ

ρ+ Λ
x

}
.

I now prove the lemma. There are two cases to consider. First, suppose that θ < θ̂. Then

the first term in (8.50) is decreasing in Λ by Claim 6, so it remains to prove that the second

term is decreasing. It can be written as

−
ˆ θ

θ̌

Λσθ
yu + yd + Λσθ

dθ =
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−
ˆ θ

θ̌

(1− α) Λ
ρ+Λξx−

k
yd

(g(θ)− g(θ̌))
yu+yd
ρ ((1− α) ρ

ρ+Λξx+ k
yd

(g(θ)− g(θ̌))) + (1− α) Λ
ρ+Λξx−

k
yd

(g(θ)− g(θ̌))
dθ =

−
ˆ ǧ+

yd
k

(1−α) Λ
ρ+Λ

ξx

ǧ

(1− α) Λ
ρ+Λξx−

k
yd

(g − ǧ)
yu+yd
ρ ((1− α) ρ

ρ+Λξx+ k
yd

(g − ǧ)) + (1− α) Λ
ρ+Λξx−

k
yd

(g − ǧ)

dg

g′(g−1(g))
=

ˆ 1

0

1− s

1 + yu+yd
Λ −

(
1− yu+yd

ρ

)
s

ds

ϕ(s)
(8.51)

where ǧ = g(θ̌), ϕ(s) = g′(g−1(ǧ + sydk (1 − α) Λ
ρ+Λξx)), and in the second equality I use the

change of variables g = g(θ), and in the third, s = g−ǧ
yd
k

(1−α) Λ
ρ+Λ

ξx
. Since (8.51) is increasing in

Λ and so, the second term in (8.50) is decreasing in Λ.

Second, suppose that θ = θ̂. Then the second term in (8.51) can be written as

−
ˆ θ̂

θ̌

Λσθ
yu + yd + Λσθ

dθ =

−
ˆ θ̂

θ̌

(1− α) Λ
ρ+Λξx−

k
yd

(g(θ)− g(θ̌))
yu+yd
ρ (1− α) ρ

ρ+Λξx+ k
yd

(g(θ)− g(θ̌)) + (1− α) Λ
ρ+Λξx−

k
yd

(g(θ)− g(θ̌))
dθ =

−
ˆ ǧ+1+ rξ

k
lnx

ǧ

(1− α) Λ
ρ+Λξx−

k
yd

(g − ǧ)
yu+yd
ρ ((1− α) ρ

ρ+Λξx+ k
yd

(g − ǧ)) + (1− α) Λ
ρ+Λξx−

k
yd

(g − ǧ)

dg

g′(g−1(g))
=

−
ˆ 1+ rξ

k
lnx

0

(1− α) Λ
ρ+Λξx−

k
yd
s(

1 + yu+yd
ρ

)
(1− α) ρ

ρ+Λξx−
(

1− yu+yd
ρ

)
k
yd
s)

ds

g′(g−1(s))
(8.52)

where I use the change of variables g = g(θ) in the second inequality, the change of variables

s = g − ǧ in the third inequality. Expression (8.52) is again decreasing in Λ and so, the second

term in (8.50) is decreasing in Λ.

8.5 Analysis of the Multi-class Model

Proof of Theorem 3. Under the assumption of the theorem, equilibrium quantities (Λ1, z1) and

(Λ2, z2) are determined by the unique solution to the system (8.40)-(8.41) with a = a1 and

a = a2, respectively. The equations (8.40)-(8.41) are continuous in parameters and so, solutions

(Λ1, z1) and (Λ2, z2) vary continuously with a1 and a2. Moreover, an increase in a leads to an

increase in the right-hand side of (8.40), and so to a decrease in z. Denote by z(a) the equilibrium

threshold given that the mass of agents is a. Then a1 is determined by z(a1) = z(a− a1) which

has a unique solution.

Before proving Proposition 3, I first prove the following lemma giving the additional com-
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parative statics for the model with endogenous bargaining.

Lemma 14. If p = (k, a) is such that in the unique equilibrium, ΘI 6= φ, then in some neigh-

borhood of p, x is decreasing in k and a. If p = (k, a) is such that in the unique equilibrium,

L = 1 and condition (8.46) holds as a strict inequality, then in some neighborhood of p, Λb is

decreasing in a.

Proof. I first formulate equilibrium conditions in terms of (Λ, x),Λ = ξrλyd
kρ

(
1
x − 1 + lnx

)
− (yu + yd),

lnx = −k(yu+yd+Λ)
rξydΛ

(
yu(a− 1)− (yu + yd)

Λ
λ − h(Λ)

)
.

Denote the solution to the first equation in the system by Λ = γ(x), and the solution to the

second equation by Λ = ζ(x). Observe that γ is a decreasing function and ζ is an increasing

function. An increase in k leads to a downward shift of γ and an upward shift of ζ and so, to a

decrease in x. At the same time, an increase in a leads to an increase in ζ and so, to a decrease

in x.

Now suppose that L = 1 and condition (8.46) holds as a strict inequality. Then equilibrium

Λ is given by (8.45) with L = 1, and so Λ is increasing in a in some neighborhood of p. From

(3.2), Λb is decreasing in a in this neighborhood of p

Proof of Proposition 3. It follows from (5.1) that

α
r + yu
r

ξx1 = V 1
bu(φ) = V 2

bu(φ) = α
r + yu
r

Λ2
b

ρ+ Λ2
b

ξ

and so,

x1 =
Λ2
b

ρ+ Λ2
b

and analogous condition holds for equilibrium after the shock. By Lemma 14, a decrease in a2

leads to an increase in Λ2
b . Since k̃i > ki, it follows that ã1 ≤ a1 and ã2 ≥ a2. Indeed, otherwise

ã1 < a1 and ã2 < a2, which by Lemma 14 implies x̃1 < x1 and Λ̃2
b > Λ2

b which contradicts the

fact that the market is in equilibrium after the shock (x̃1 =
Λ̃2
b

ρ+Λ̃2
b

). Therefore, by Proposition 1,

L̃1 ≤ L1 and Λ̃1
b ≥ Λ1

b .
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