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Abstract

A (Blackwell) experiment specifies the joint distribution of truth and the data generated by the
experiment. A signal specifies the joint distribution of truth, the data generated by the signal,
and the data generated by any other signal. Describing two experiments does not determine
their joint informational content; describing two signals does. Blackwell (1953) studied (equiva-
lent) comparisons of experiments; he characterized when one experiment is more valuable than
another regardless of the preferences of the agent. We study (various, non-equivalent) compar-
isons of signals. Among other comparisons, we characterize when one signal is more valuable
than another regardless of the preferences of the agent and regardless of what other information
the agent may have. We show this comparison is equivalent to a new condition, termed reveal-
or-refine, which says that for every piece of data that could be generated by the more valuable
signal, either that data reveals the truth, or it refines the data generated by the less valuable
signal.
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1 Introduction

Economic theory has long been concerned with comparing the value of information sources. Black-

well (1953), for instance, gives conditions under which one source is more valuable than another

source, regardless of preferences. Most prior work, however, considers the value of an information

source in isolation, in absence of other – potentially correlated – information sources. Concretely,

suppose we wish to judge whether a subscription to the New York Times (NYT ) is more valuable

than a subscription to the Washington Post (WP),1 regardless of the reader’s interests. Blackwell’s

analysis tells us how to make this judgment, namely by comparing the distributions of beliefs in-

duced by reading the NYT vs. the WP. However, a conclusion based on this procedure might be

mistaken if the reader already has an existing subscription to a newspaper. Most obviously, if the

reader already subscribes to the NYT, a subscription to the WP is likely more valuable than a

duplicate subscription to the NYT. More subtly, a subscription to a third newspaper such as the

Wall Street Journal (WSJ ) might flip the comparison and make the WP more valuable than the

NYT, either because the WSJ and the NYT report similarly, or because the content of the WP is

somehow complementary to the WSJ. Could there be a way to establish that the one newspaper is

more valuable than another, no matter what existing subscriptions the reader might have?

In this paper, we study the general version of this question. We derive comparisons of informa-

tion sources that are robust to the presence of pre-existing information. (These comparisons also

turn out to be robust to subsequent endogenous acquisition of additional information.)

Formally, Blackwell models an information source as an experiment : a collection of possible

outcomes and a conditional distribution of outcomes given the state. Blackwell’s foundational

result is that experiment A is more valuable than experiment B, regardless of the decision problem,

if and only if the distribution of beliefs induced by observing A is a mean-preserving spread of that

induced by observing B. Importantly, however, an experiment does not specify how observations

from one information source are correlated with observations from other sources. This suffices for

Blackwell’s purpose, since he implicitly assumes that the two experiments being compared are the

only information sources potentially available to the agent.2

1Throughout this paper we focus on the instrumental value of information sources, ignoring the possibility that
reading a newspaper might also provide entertainment (Ely et al., 2015).

2Blackwell’s result extends to situations where there might be other sources of information but only if those sources
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In order to capture the joint informational content of multiple sources, we follow Green and

Stokey (1978) in modeling an information source as a signal : a partition of an expanded state

space Ω×X that distinguishes payoff-relevant states (Ω) from those that govern the realization of

observations conditional on the state (X). A signal induces an experiment, but it also pins down

its correlation with other signals. In particular, the information generated by observing signals A

and B is given by the join of the partitions, denoted A ∨B.

We say that signal A Blackwell dominates signal B if the experiment induced by A is more

valuable than an experiment induced by B, regardless of agent’s preferences.3 We then introduce

the strong Blackwell order, defined as follows: signal A strongly Blackwell dominates signal B if for

every signal C, A∨C Blackwell dominates B∨C. In other words, we extend Blackwell’s agnosticism

about the agent’s preferences to agnosticism about what other information the agent might have.

Our first theorem characterizes the strong Blackwell order. Say that signal A reveals-or-refines

signal B if every signal realization of A either (i) occurs in only one state (and thus “reveals” the

state), or (ii) is a subset of some signal realization of B (and thus “refines”B, pinning down what

information is observed by B).4 We show that A strongly Blackwell dominates B if and only if A

reveals-or-refines B.

Once we are within the formalism which allows for combining sources of information, other

comparisons of signals become natural. Say that signal A is sufficient for signal B if the experiment

induced by A is the same as the experiment induced by A∨B. In other words, B does not contain

additional information about the state beyond that contained in A. Thus, for any agent with access

A, the marginal value of B is zero. As with strong Blackwell, we show how to determine whether

one signal is sufficient for another. Sufficiency turns out to be a distinct relation; it is implied by

strong Blackwell, and it implies Blackwell. We also illustrate that, perhaps surprisingly, sufficiency

is not transitive.

We also consider another comparison of information sources. Say that signal A martingale

are conditionally independent of the two experiments being compared. This reflects the fact that the Blackwell
comparison of experiments does not depend on prior beliefs.

3For most of our analysis, we treat the prior belief as fixed. As is well known, if one source of information Blackwell
dominates another for some (interior) prior, then it does so for all priors. We discuss this at greater length in Section
4.2.

4So, if Alice observes A and Bob observes B, either Alice’s first-order beliefs (about the state) or her second-order
beliefs (about Bob’s beliefs) are degenerate.
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dominates signal B if an agent who forms some posterior belief µ after observing B, thinks that

an agent who observes A will, in expectation, also hold belief µ. If B were much more informative

than A, there would no reason to think this; for example, observing B might reveal the state (and

thus result in a degenerate belief) while observing A might never reveal the state (and thus cannot

lead to a degenerate belief in expectation). We discuss at greater length in Section 4.2 the sense

in which the martingale relation captures a notion of being “more informative.” We also show that

sufficiency implies martingale which in turn implies Blackwell. As with sufficiency, the martingale

relation is not transitive.

Like the Blackwell comparison, the sufficiency and martingale relations implicitly presume that

the agent has no additional sources of information. Analogously to our strong Blackwell order,

it is possible to strengthen sufficiency, or martingale, or in fact any relation on signals, to reflect

robustness to other information. Given relation P on signals, let the strengthening of P, denoted

P, be defined as: APB if for any C, (A ∨ C)P (B ∨ C). Two properties of strengthening are worth

noting, namely monotonicity (if P implies P ′ then P implies P ′) and idempotence (P = P).

These two properties, coupled with our earlier observations, immediately yield the characteri-

zation of strong sufficiency and strong martingale. Since strong Blackwell implies sufficiency and

martingale, we have that strong Blackwell also implies strong sufficiency and strong martingale.

But since sufficiency and martingale imply Blackwell, strong sufficiency and strong martingale also

imply strong Blackwell. Thus, strong sufficiency, strong martingale, and strong Blackwell are all

equivalent (and characterized by reveal-or-refine). The overarching message is that reveal-or-refine

is a natural ranking of signals that is robust to the presence of additional information.

Our paper is most closely related to the literature on ordinal comparisons of the ex-ante value

of information sources, starting with Blackwell (1951).5 Much of the developments in this line of

research focus on ways to weaken the Blackwell order. Lehmann (1988), Persico (2000), and Athey

and Levin (2018) consider comparisons that apply to a subset of decision problems and/or a subset

of experiments. Moscarini and Smith (2002) and Mu et al. (2021b) compare the values of large

numbers of independent draws of different experiments.

Another closely related literature focuses on the joint informational content of multiple infor-

5A smaller literature considers the ex-post value of information (Frankel and Kamenica (2019); Frankel and Kasy
(2022)).
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mation sources.6 Börgers et al. (2013) consider the question of when signals are complements or

substitutes. Gentzkow and Kamenica (2017a,b) consider the impact of competition when mul-

tiple senders provide potentially correlated signals in an attempt to influence a receiver. Liang

and Mu (2020) and Liang et al. (2022) consider acquisition of potentially complementary informa-

tion sources. Brooks et al. (2022) analyze the relationship between the comparison of information

sources conceptualized as experiments, according to the Blackwell order, and the comparison of

information sources conceptualized as signals, according to refinement, sufficiency, and martin-

gale.7 Specifically, they ask when a collection of Blackwell-ordered experiments can be induced by

a collection of refinement-, sufficiency-, or martingale-ordered signals.

2 Signals and experiments

There is a finite state space Ω and an interior prior µ0 ∈ ∆Ω. We denote a typical state by ω.

An experiment τ is a distribution of beliefs – i.e., an element of ∆∆Ω – that has finite support

and satisfies Eτ [µ] = µ0. (An alternative definition of an experiment is a map from Ω to distri-

butions over signal realizations, but as is common, we simply identify each experiment with the

distribution of beliefs it induces.) We write τ % τ ′ if τ is a mean-preserving spread of τ ′.

A signal π is a finite partition of Ω× [0, 1] s.t. π ⊂ S, where S is the set of non-empty Lebesgue-

measurable subsets of Ω × [0, 1] (Green and Stokey, 1978; Gentzkow and Kamenica, 2017a). An

element s ∈ S is a signal realization. The interpretation of this formalism is that a random variable

x, drawn uniformly from [0, 1], determines the signal realization conditional on the state. Thus, the

conditional probability of s given ω is pω(s) = λ ({x| (ω, x) ∈ s}) where λ (·) denotes the Lebesgue

measure. Observing signal realization s induces the posterior µs.
8

Given signal π, let s̃π be the associated S-valued random variable on Ω × [0, 1] induced by

π.9 Let µ̃π ≡ µs̃π denote the associated belief-valued random variable that reflects the posterior

6Just as additional sources of information can alter the value of a signal, additional sources of income can alter
the value of a monetary gamble. Mu et al. (2021a) explore how a decision maker’s preferences over monetary gambles
can depend on background risk, i.e., independent uncertainty over income.

7As we discuss in Section 4.2, the notion of martingale relation introduced in Brooks et al. (2022) is slightly
different from the one we study here.

8The posterior probability of ω given s is µωs ≡
pω(s)µω

0∑
ω′∈Ω p

ω′
(s)µω′

0

as long as the unconditional probability of s,∑
ω′∈Ω p

ω′
(s)µω

′
0 , is strictly positive. The specification of µs when s has zero probability is irrelevant for our results.

9Recall that an S-valued random variable on Ω × [0, 1] is simply a function from Ω × [0, 1] to S; s̃π maps each
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induced by observing the realization from π. Finally, let 〈π〉 denote the distribution of µ̃π, i.e., the

experiment induced by signal π. If 〈π〉 = 〈π′〉, we say that π and π′ are Blackwell equivalent and

write π ∼ π′.

We denote the set of all signals by Π. We say π refines π′ and write πRπ′ if every element

of π is a subset of some element of π′.10 If πRπ′, an agent who observes π has access to all the

information available to an agent who observes π′. The relation R is a partial order on Π and poset

(Π,R) is a lattice. We let ∨ denote the join, i.e., π ∨ π′ is the coarsest refinement of both π and

π′. Note that π ∨ π′ is the signal that is equivalent to observing both π and π′.

Given two relations on signals, P and P ′, we denote that P implies P ′ (i.e., πPπ′ ⇒ πP ′π′) by

P ⊆ P ′.11 If P implies P ′ but not vice versa, we have P ( P ′.

3 Strong Blackwell

3.1 Absence of other information

A decision problem D = (A, u) consists of a compact action set A and a continuous utility function

u : A × Ω → R. Let D denote the class of all decision problems. The value of an experiment τ in

problem D is given by Eµ̃∼τ [maxa∈A Eω∼µ̃u (a, ω)]; the value of signal π in problem D is the value

of the induced experiment 〈π〉.12 Blackwell’s Theorem (1953) establishes that τ is more valuable

than τ ′ for every D ∈ D if and only if τ % τ ′.

We are primarily interested in studying comparisons of signals, rather than experiments. We

say that signal π Blackwell dominates signal π′ and write πBπ′ if π has a weakly higher value than

π′ for every D ∈ D. Hence, πBπ′ if and only if 〈π〉 % 〈π′〉.

Note that B is a relation on signals, but it is not a partial order. While it is reflexive and

transitive, it is not antisymmetric: πBπ′ and π′Bπ implies that the two signals are Blackwell

equivalent (π ∼ π′) but does not imply that they are the same signal (π = π′).13 As we will see

down the line, some economically meaningful relations on signals will not even be transitive.

(ω, x) to the signal realization s ∈ S that contains (ω, x) in partition π.
10We then also say π′ coarsens π.
11Recall that a relation on Π is a subset of Π×Π, with πPπ′ denoting that (π, π′) ∈ P ⊆ Π×Π.
12One can of course subtract the payoff under the prior from the definition of this value, but since that is constant

it would not change any comparisons of experiments.
13The Blackwell order on experiments—that is, the mean-preserving spread order—is of course a partial order.
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Figure 1: Blackwell vs. Strong Blackwell

ω = L ω = R

π a b ab

π′ c d cd

π̂ e f e f

It holds that πBπ′, but it is not true that πBπ′ because π ∨ π̂ is strictly Blackwell

dominated by π′ ∨ π̂.

3.2 Robustness to additional information

In the previous subsection, the analyst who compares the value of two signals is completely agnostic

about the preferences of the agent but is implicitly dogmatic in her view that the signals whose value

is being considered will be the only information available to the agent. We now extend agnosticism

about preferences to agnosticism about what other information the agent has observed.

An extended decision problem D̂ = (A, u, π̂) consists of a compact action set A, a continuous

utility function u : A × Ω → R, and a signal π̂. The interpretation is that we are considering an

agent with action set A and utility function u who has observed signal π̂. Let D̂ denote the class

of all extended decision problems.

The value of a signal π in extended problem D̂ is given by Eµ̃∼〈π∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)]. We

say that signal π strongly Blackwell dominates signal π′, denoted πBπ′, if π has a higher value than

π′ for every D̂ ∈ D̂. We now describe some key properties of the strong Blackwell relation.

Remark 3.1. Strong Blackwell dominance implies but is not equivalent to Blackwell dominance,

i.e., B ( B. The fact that B ⊆ B follows from the observation that every extended decision problem

is also a decision problem – we simply set π̂ to be the trivial partition π.14 To see that B 6= B,

consider the three signals in Figure 1.

It is easy to see that πBπ′ since π is informative about the state and π′ is not. But, it is not

the case that πBπ′ since π∨ π̂ is only partially informative about the state while π′∨ π̂ fully reveals

the state.

Remark 3.2. There are two other natural ways we could ask whether the comparison of two signals

14The trivial partition is the one that contains a single signal realization.
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is influenced by the presence of additional information. First, we could ask whether π is necessarily

more valuable than π′ if the agent had observed some specific signal realization. This would be an

interim notion of more valuable, in contrast to the ex ante notion that is embodied in our definition.

Formally, we could require that Eµ̃∼〈π|s〉 [maxa∈A Eω∼µ̃u (a, ω)] ≥ Eµ̃∼〈π′|s〉 [maxa∈A Eω∼µ̃u (a, ω)] for

any triplet (A, u, s), where 〈π|s〉 denotes the distribution of posteriors induced by observing signal

π after having previously observed signal realization s.

Second, we could consider the possibility that the agent, after obtaining a signal whose value we

are interested in, could endogenously acquire additional costly information. Formally, we could re-

quire that maxπ̂∈Π Eµ̃∼〈π∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)]−c (π̂) ≥ maxπ̂∈Π Eµ̃∼〈π′∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)]−

c (π̂) for any triplet (A, u, c), where c : Π→ R denotes the cost of acquiring additional information.

It turns out, however, that both of these alternative notions are equivalent to our definition of

strong Blackwell dominance! We formalize and prove this claim in Appendix A.1.

Remark 3.3. Strong Blackwell dominance is transitive since Blackwell dominance is.

Our main result for this section is a characterization of strong Blackwell. This characterization

can be motivated by considering two sufficient conditions for strong Blackwell.

First, it is immediate that refinement implies strong Blackwell: πRπ′ implies that 〈π ∨ π̂〉 %

〈π′∨ π̂〉 for any π̂. Second, consider any signal π that always reveals the state. It is immediate that

πBπ′ for every π′: for any π̂, the join π ∨ π̂ also always reveals the state, and therefore Blackwell

dominates any other signal, including π′ ∨ π̂.

Of course, neither of these sufficient conditions is necessary. Indeed, π′ is strongly Blackwell

dominated by any refinement of π′, even if that refinement does not reveal the state, and π′ is

strongly Blackwell dominated by any signal that always reveals the state, even if that signal does

not refine π′. Moreover, it might be that πBπ′ even though π neither refines π′ nor always reveals the

state. The key insight is that if we consider elements of π one signal realization at a time, if it turns

out that every signal realization of π either pins down the state or pins down the signal realization

generated by π′ (or both), then π must be more valuable than π′ no matter what other information

is available. Moreover, this condition is not merely sufficient for πBπ′, it is also necessary.

Formally, say that π reveals-or-refines π′, denoted πOπ′, if for every s ∈ π either: (i) s reveals

the state (i.e., p (s|ω) > 0 for at most one ω), or (ii) s ⊆ s′ for some s′ ∈ π′. We then have the
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Figure 2: Reveal-or-refine

ω = L ω = R

π g h i ji
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Note that π reveals-or-refines π′, but it is not the case that π refines π′ or that π always

reveals the state.

following characterization.

Theorem 1. Signal π strongly Blackwell dominates signal π′ if and only if π reveals-or-refines π′.

To see why reveal-or-refine implies strong Blackwell, first fix any extended decision problem. In

order to show that π is more valuable than π′, it suffices to show that π is more valuable than π′

conditional on any signal realization s from π. If s reveals the state, nothing can be more valuable

than π. If s refines s′ ∈ π′, i.e., s ⊆ s′, then for any signal realization ŝ ∈ π̂, s∩ ŝ ⊆ s′ ∩ ŝ, and thus

π is more valuable than π′. To establish the converse, if π does not reveal-or-refine π′, we explicitly

construct π̂ such that π ∨ π̂ does not Blackwell dominate π′ ∨ π̂. Specifically, we build π̂ such that

π ∨ π̂ = π̂ while π′ ∨ π̂ yields all the information in π̂ but also sometimes reveals the state when π̂

does not. Note that this argument establishes a slightly stronger result than Theorem 1: if π does

not reveal-or-refine π′, then there is a π̂ such that π′∨ π̂ strictly Blackwell dominates π∨ π̂. Details

on how to construct π̂ are in the Appendix.

A key qualitative insight from Theorem 1 is that even though the definition of strong Blackwell

involves a universal quantification over all decision problems and all signals, the universal quanti-

fier can in fact be eliminated, and strong Blackwell is reduced to the much simpler reveal-or-refine

comparison, which only requires checking a condition for each of the (finitely many) signal realiza-

tions. Indeed, using our graphical representation of signals, it is straightforward to check whether

one signal reveals-or-refines another via “visual inspection.” For example, to compare π and π′ in

Figure 2, we consider each signal realization of π in turn. Realization g ∈ π both reveals the state

and refines realization k ∈ π′ (i.e., g ⊆ k); realization h reveals the state; realization i refines l;

finally, j reveals the state. Thus, π reveals-or-refines π′.
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4 Other relations on signals

Given our shift in focus from comparisons of experiments to comparisons of signals, other natural

comparisons besides the (strong or regular) Blackwell order arise.

4.1 Sufficiency

The Blackwell order is concerned with whether one source of information (e.g., the New York

Times) is more valuable than another (e.g., the Washington Post). Another meaningful question

is when one source of information might make another source of information moot. For example,

how could we tell whether a subscription to some newspaper is worthless given an agent’s existing

subscriptions?

Formally, we say that π is sufficient for π′, denoted πSπ′, if in any decision problem D ∈ D,

the value of signal π ∨ π′ is the same as value of signal π.

This notion of sufficiency appears in various economic applications. For instance, Holmström

(1979) shows that information about agent’s effort in a moral hazard problem is valuable if and

only if the observable output is not sufficient for that information.

Remark 4.1. Signal π is sufficient for signal π′ if and only if (π ∨ π′) ∼ π. If (π ∨ π′) ∼ π , then

the value of π ∨π′ is the same as value of π for any decision problem, so πSπ′. Conversely, if πSπ′,

then the fact that π alone yields as much value as π ∨ π′ implies that πB (π ∨ π′). Since we know

(π ∨ π′)Bπ, we have that (π ∨ π′) ∼ π.

Yet another equivalent formulation of sufficiency is in terms of the induced random variables:

πSπ′ ⇔ µ̃π∨π′ = µ̃π. In general, µ̃π = µ̃π′ ⇒ π∼ π′ but π ∼ π′ 6⇒ µ̃π = µ̃π′ . That said, we do have

that πSπ′ ⇔ π ∨ π′ ∼ π ⇔ µ̃π∨π′ = µ̃π. This equivalence follows from the more general result that

if π∗ refines π and π∗ ∼ π, then µ̃π∗ = µ̃π.

The formulation of sufficiency in terms of random variables provides a simple way to check

whether one signal is sufficient for another. To compare π and π′ in Figure 3, we consider each

signal realization of π ∨π′ in turn. Realization g = k∩ g ∈ π ∨π′ clearly leads to the same belief as

g ∈ π; realization k ∩m ∈ π ∨ π′ leads to the same belief as m ∈ π since Pr(k∩m|ω=L)
Pr(k∩m|ω=R) = Pr(m|ω=L)

Pr(m|ω=R) .

The same applies to l ∩m and m, and hence πSπ′.
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Figure 3: Checking for sufficiency

ω = L ω = R
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One can confirm that πSπ′ by comparing the likelihood ratios of each signal realization

in π to the likelihood ratios of the overlapping signal realizations in π ∨ π′.

Remark 4.2. Another equivalent definition of sufficiency is: for all s ∈ π and all s′ ∈ π′, Pr (s′|s, ω)

is independent of ω. This formulation echoes Blackwell’s (1953) notion of a garbling.15 But unlike

Blackwell, we have specified the underlying probability space, so we are not asking whether there

exists a garbling that transforms experiment 〈π〉 into 〈π′〉. Rather, we ask whether – given their

underlying correlation – the signal π′ adds information about the state given signal π. Relatedly, it

is worth noting that the following three conditions are equivalent: (i) πBπ′, (ii) ∃π∗ s.t. π ∼ π∗ and

π∗Rπ′, and (iii) ∃π∗ s.t. π ∼ π∗ and π∗Sπ′. The equivalence of (i) and (ii) is Theorem 1 in Green

and Stokey (1978).16 The equivalence of (i) and (iii) is closely related to a standard formulation of

Blackwell’s theorem.

Remark 4.3. B ( S ( B.

First, it is easy to see that B ⊆ S. If πBπ′ we know (π ∨ π̂)B (π′ ∨ π̂) for any π̂, including

π̂ = π; hence, πB (π ∨ π′). Since it’s always the case that (π ∨ π′)Bπ, we have π ∼ (π ∨ π′). Hence,

πBπ′ implies πSπ′.

Importantly, however, B 6= S. This can be seen in Figure 5 where πSSπ0 but ¬
(
πSBπ0

)
. The

fact that B 6= S has a substantive economic interpretation. Suppose we know that πBπ′ but are

not sure whether π remains more valuable than π′ in presence of some additional information π̂.

One might think that the “worst case” scenario would be if π̂ = π (e.g., in comparing the value of

NYT to the value of WP, we worry that the reader already has a subscription to the NYT ). This

scenario, however, only tells us, however, whether πSπ′, which is a weaker condition than πBπ′.
15This formulation also clarifies the relationship between our definition of sufficiency and the notion of a sufficient

statistic in the field of statistics. Given some data ~x, recall that a function t (~x) is a sufficient statistic for ω if
Pr (~x|t (~x) , ω) is independent of ω.

16It is stated and proved using the formalism in our paper by Gentzkow and Kamenica (2017a).
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Figure 4: Sufficiency is not transitive

ω = L ω = R
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πaSπb and πbSπc but ¬ (πaSπc).

Thus, π̂ = π is not the most stringent test-case for strong Blackwell dominance. Instead, a greater

concern is the possibility that π̂ is complementary to π′.

It is also easy to see that S ⊆ B since πSπ′ means the value of π in any decision problem is the

same as the value of π ∨ π′, which in turn must be weakly higher than the value of π′. Moreover,

Figure 5 establishes that S 6= B since πBBπ0 but ¬ (πBSπ0).

Remark 4.4. Sufficiency is not transitive. Consider Figure 4. Since πa ∨ πb = πa, πa is a fortiori

sufficient for πb. Since both πb and πb ∨ πc provide no information about the state, we have that

πb is sufficient for πc. Yet, πa is not sufficient for πc; πa on its own provides no information about

the state while πa ∨ πc fully reveals the state.

4.2 Martingale

A widely-used and basic observation in information economics is that “beliefs are a martingale.” If

an agent with some current belief µ0 observes additional data from some source of information, her

expected posterior belief must be µ0. This is a consequence of the Law of Iterated Expectations.

In the context of signals, one way to formulate this observation is to note that if π refines π′,

then it must be the case that E [µ̃π|s̃π′ ] = µ̃π′ . In other words, additional information cannot change

the beliefs on average.

In this paper, we take a novel perspective on the martingale property. Instead of treating it as

an implication of Bayesian updating, we consider it as a relation between sources of information.

When is it the case that, if I read the Washington Post, I think that in expectation, a reader of the

New York Times would hold the same belief that I do? If the Washington Post were much more

informative than the NYT, there would be no reason to think this: a reader of the WP might know
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the state of the world and yet expect the reader of the NYT to remain uninformed. By contrast, if

the NYT contains all the information that the WP does, then the WP reader would in fact think

that the expected belief of the NYT -reader is equal to her own. Thus, the martingale property

(E [µ̃π|s̃π′ ] = µ̃π′) tells us that π is in some sense “more informative” than π′. In this section, we

unpack what that means.

To formally define the martingale relation, we need to address a subtlety that was absent from

the considerations of the Blackwell and sufficiency relations. We fixed an interior prior µ0 at the

outset, but as is well known, the Blackwell comparison (and the sufficiency comparison by extension)

are prior independent. Thus, whether πBπ′ or whether πSπ′ does not depend on µ0.

By contrast, for a given π and π′, whether E [µ̃π|s̃π′ ] = µ̃π′ can depend on µ0. (An example of

this is given in Appendix A.4.)

Accordingly, we say π martingale dominates π′, denoted πMπ′, if E [µ̃π|s̃π′ ] = µ̃π′ holds for any

choice of µ0.

Remark 4.5. In prior work (Brooks et al., 2022), we introduced a similar relation, termed belief-

martingale, defined by E [µ̃π|µ̃π′ ] = µ̃π′ . To understand the distinction between the two relations,

it is helpful to introduce the idea of the belief-coarsening of a signal. Given any signal π, we let

the belief-coarsening of π, denoted C (π) be the signal that “pools together” any signal realizations

in π that induce the same belief. Formally, C (π) is the finest coarsening of π such that for any

s, s′ ∈ C (π), s 6= s′ ⇒ µs 6= µs′ . With this definition in hand, we have that π belief-martingale

dominates π′ if and only if π martingale dominates C (π′).17 Moreover, πMπ′ implies that π

belief-martingale dominates π′.

Remark 4.6. The notion of belief-coarsening also provides another way to characterize the martin-

gale relation. In particular, it turns out that πMπ′ if and only if C (π)Sπ′. It is easy to see that

C (π)Sπ′ implies πMπ′ because C (π)Sπ′ implies C (π)Mπ′ (because S ⊆ M) and C (π)Mπ′

implies πMπ′ (because µ̃C(π) = µ̃π). The other direction is more subtle, and we provide a detailed

argument in the Appendix. The equivalence of πMπ′ with C(π)Sπ′ is illustrated in Figure 5 in

17For another illustration of belief-coarsening, if π refines C (π′) that means than an agent who observes π knows
the first-order beliefs of an agent who observes π′. In Brooks et al. (2022), we discuss such “knowledge of first-
order beliefs” as an example a proper relation on signals, i.e., a relation that is implied by refinement and implies
belief-martingale.
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Section 5, taking π = πM and π′ = π0: πM martingale dominates π0 and πM is not sufficient for

π0, but C(πM) is sufficient for π0. More generally, the fact that πMπ′ ⇔ C (π)Sπ′ provides a

simple way to check whether one signal martingale dominates another.

Remark 4.7. S (M ( B.

To see that S ⊆M, suppose πSπ′. SinceR ⊆M, we know that (π ∨ π′)Mπ′, i.e., E [µ̃π∨π′ |s̃π′ ] =

µ̃π′ , which in turn implies E [µ̃π|s̃π′ ] = µ̃π′ since µ̃π∨π′ = µ̃π. Thus πMπ′. To see that M ⊆ B,

note that E [µ̃π|s̃π′ ] = µ̃π′ implies that the distribution of µ̃π is a mean-preserving spread of the

distribution of µ̃π′ . Another way to see that S ⊆ M ⊆ B is to note the following analogous

characterizations of these three relations (as shown in the Appendix).

• πSπ′ if and only if ∃π∗ s.t. C (π∗) = C (π), π∗Rπ, and π∗Rπ′. (We can take π∗ = π ∨ π′.)

• πMπ′ if and only if ∃π∗ s.t. C (π∗) = C (π) and π∗Rπ′.

• πBπ′ if and only if ∃π∗ s.t. π∗ ∼ π and π∗Rπ′ (as noted in Remark 4.2).18

To see that S 6= M 6= B, see Figure 5 in Section 5. In the figure, we see that πMMπ0 but

¬ (πMSπ0), and that πBBπ0 but ¬ (πBMπ0).

Remark 4.8. The martingale relation is not transitive. See example in Figure 7 in Appendix A.6.

5 Strengthening relations

So far, we discussed how to strengthen the Blackwell comparison to allow for the presence of

additional information, and we introduced two new relations on signals, sufficiency and martingale.

A natural question then, of course, is how to strengthen sufficiency or martingale, to make those

comparisons robust to the presence of additional information. To do so, we introduce a general

notion of strengthening: given any relation P on the set of signals Π, we define strong P, denoted

P, by πPπ′ if (π ∨ π̂)P (π′ ∨ π̂) for all π̂ ∈ Π.

Of course, we have already seen one important case of the strong version of a relation, the strong

Blackwell order B. It is easy to see that refinement is unaffected by strengthening, i.e., R = R:

18Since C (π∗) = C (π) implies that π∗ ∼ π, these characterizations make it clear that M⊆ B.
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if π refines π′ then π ∨ π̂ refines π′ ∨ π̂ for any π̂. We now describe three important properties of

strengthening.

Remark 5.1. Strengthening strengthens. For any P, we have P ⊆ P. If (π ∨ π̂)P (π′ ∨ π̂) for all π̂,

then π = (π ∨ π)P (π′ ∨ π) = π′.

Remark 5.2. Strengthening is idempotent. For any P, P = P. From the previous remark, P ⊆ P.

To show P ⊆ P, suppose πPπ′, i.e., (π ∨ π̂)P (π′ ∨ π̂) for all π̂ ∈ Π. Then, for any π̂, π̃ ∈ Π, we

have (π ∨ π̂ ∨ π∗)P (π′ ∨ π̂ ∨ π̃) since π̂ ∨ π̃ ∈ Π.

Remark 5.3. Strengthening is monotone. If P ⊆ P ′, then P ⊆ P ′. Suppose P ⊆ P ′ and πPπ′. For

any π̂, we have that (π ∨ π̂)P (π′ ∨ π̂), which in turn implies (π ∨ π̂)P ′ (π′ ∨ π̂). Since this holds

for all π̂, we have that πP ′π′.

With these properties in hand, it turns out to be very easy to characterize the strong versions

of both sufficiency and martingale relations.

Theorem 2. Suppose P is a relation on Π and B ⊆ P ⊆ B. Then, πPπ′ if and only if π reveals-or-

refines π′. Hence, B = S =M.

Proof. Suppose P is a relation on Π and B ⊆ P ⊆ B. That P ⊆ B follows from P ⊆ B by

monotonicity of strengthening. To show B ⊆ P, we first observe that B ⊆ P implies B ⊆ P (by

monotonicity) which in turn implies B ⊆ P (by idempotence). Since B ⊆ S ⊆ M ⊆ B, it follows

that B = S =M.

There are various ways to compare the usefulness of a source of information – sufficiency,

martingale, Blackwell. For any of these comparisons, we may wish to consider the strong version

of the comparison that is robust to the potential presence of additional information. Theorem 2

delivers a remarkable message, namely that, even though sufficiency, martingale, and Blackwell are

all distinct, their strong versions coincide! Moreover, the strong version of each of these comparisons

is a simple relation, reveal-or-refine, that is very easy to check and involves no quantifiers over

decision problems or signals.

Summarizing the relations that we have considered, we can order them as follows:

R = R ( S =M = B ( S (M ( B.
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Figure 5: Ranking the relations

ω = L ω = R

πR
g p q n pq

πO
g h i ji

πS
g m n m

πM
g r s n r s

πB
a b ab

π0
k l kl

This figure illustrates the ranking of the relations R ( O ( S ( M ( B,
where for each relation P, we have πPPπ0. To confirm the strictness of this
ranking, we see that πOOπ0 but ¬ (πORπ0); πSSπ0 but ¬ (πSOπ0); πMMπ0

but ¬ (πMSπ0); and πBBπ0 but ¬ (πBMπ0). The fact that ¬ (πBMπ0) follows
from the fact that C (πB) = πB is not sufficient for π0.

Figure 5 illustrates the strict comparisons, providing examples where signals are ranked by reveal-

or-refine but not refinement; sufficiency but not reveal-or-refine; martingale but not sufficiency; and

Blackwell but not martingale.

6 Conclusion

Experiments have long been considered the natural formalism for modeling information sources.

As we and others have argued, this formalism is incomplete, in that the definition of different

experiments does not specify how they interact with one another. In contrast, we model information

sources as signals, which provide a complete description of the joint distribution of data from one

information source and all others.

With this shift in focus from experiments to signals, a number of natural questions emerge. In

Brooks et al. (2022), we investigate the conditions under which a partial order on the information

content of experiments can be made consistent with an analogous ordering on signals. In the present

paper, we compare the value of signals with a focus on the robustness to potential presence of other

information. We also argue for the study of relations on signals beyond the familiar Blackwell

and refinement orders, including sufficiency and martingale. But many questions remain. What

other relations on signals may be useful and/or meaningful in economic applications? What are
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the decision- or game-theoretic foundations for the different relations? (Sufficiency, for example,

has a simple characterization that one signal not add value to another in any decision problem;

refinement may be relevant in games, when a player cares not only about the underlying state but

also about what other players know; we do not know of natural foundations for the martingale

relation.) What are economically reasonable ways to model the cost of acquiring signals? We leave

these issues for future work.
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A Appendix

A.1 Alternative formulations of strong Blackwell dominance

An interim decision problem D̂i = (A, u, s) consists of a compact action set A, a continuous utility

function u : A × Ω → R, and a signal realization s ∈ S. The interpretation is that we are

considering an agent with action set A and utility function u who has observed signal realization s.

Let D̂i denote the class of interim decision problems. Let 〈π|s〉 denote the distribution of posteriors

induced by observing signal π after having previously observed signal realization s: letting Pr (ŝ) ≡∑
ω∈Ω p

ω(ŝ)µω0 denote the unconditional probability of realization ŝ for any ŝ ∈ S, distribution

〈π|s〉 assigns probability
∑
{s′∈π:µs∩s′=µ}

Pr(s∩s′)
Pr(s) to each belief µ. The value of a signal π in an

interim decision problem D̂i is given by Eµ̃∼〈π|s〉 [maxa∈A Eω∼µ̃u (a, ω)]. We say π strongly Blackwell

dominates π′ in the interim sense and write πBiπ′ if π has a higher value than π′ for every D̂i ∈ D̂i.

A costly acquisition decision problem D̂k = (A, u, c) consists of a compact action set A, a

continuous utility function u : A × Ω → R, and a cost function c : Π → R. The interpretation

is that we are considering an agent with action set A and utility function u who can, in addition

to the signal whose value we are considering, acquire any additional signal π̂ at cost c (π̂).19 To

simplify notation, we impose that the trivial partition is free, i.e., c (π) = 0. Let D̂k denote the

class of costly acquisition decision problems. The value of signal π in a costly acquisition decision

problem is20

max
π̂∈Π

Eµ̃∼〈π∨π̂〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
− c (π̂) .

We say π strongly Blackwell dominates π′ under costly information acquisition and write πBkπ′ if

π has a higher value than π′ for every D̂k ∈ D̂k.

These two alternative notions are equivalent to strong Blackwell:

Proposition 1. B = Bi = Bk.

Proof. Suppose πBπ′. Consider some interim decision problem (A, u, s). Let π̂ be a signal that

19We could also consider the possibility that the agent chooses what additional costly information to acquire only
after she observes the realization of the signal whose value we are considering. Once again, this notion would be
equivalent to the strong Blackwell order.

20We assume the maximum exists. Alternatively, we could replace max with sup, but then establishing the
equivalence below would require a slightly more involved argument.
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consists of s and, for each state, a signal realization (disjoint with s) that reveals that state,

i.e., π̂ = {s} ∪ {(ω, x) | (ω, x) /∈ s}ω∈Ω . Since πBπ′, we know Eµ̃∼〈π∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)] ≥

Eµ̃∼〈π′∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)] , i.e.,

∑
ŝ∈π̂

Pr (ŝ)Eµ̃∼〈π|ŝ〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
≥
∑
ŝ∈π̂

Pr (ŝ)Eµ̃∼〈π′|ŝ〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
.

For any ŝ ∈ π̂ with ŝ 6= s, we have Eµ̃∼〈π|ŝ〉 [maxa∈A Eω∼µ̃u (a, ω)] = Eµ̃∼〈π′|ŝ〉 [maxa∈A Eω∼µ̃u (a, ω)]

since ŝ fully reveals the state. Thus, we must have

Eµ̃∼〈π|s〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
≥ Eµ̃∼〈π′|s〉

[
max
a∈A

Eω∼µ̃u (a, ω)

]
.

Since the choice of (A, u, s) was arbitrary, we conclude πBiπ′. Thus, B ⊆ Bi.

Suppose πBiπ′. Consider some extended decision problem (A, u, π̂). We have that

Eµ̃∼〈π∨π̂〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
− Eµ̃∼〈π′∨π̂〉

[
max
a∈A

Eω∼µ̃u (a, ω)

]
=∑

ŝ∈π̂
Pr (ŝ)Eµ̃∼〈π|ŝ〉

[
max
a∈A

Eω∼µ̃u (a, ω)

]
−
∑
ŝ∈π̂

Pr (ŝ)Eµ̃∼〈π′|ŝ〉
[
max
a∈A

Eω∼µ̃u (a, ω)

]
=

∑
ŝ∈π̂

Pr (ŝ)

(
Eµ̃∼〈π|ŝ〉

[
max
a∈A

Eω∼µ̃u (a, ω)

]
− Eµ̃∼〈π′|ŝ〉

[
max
a∈A

Eω∼µ̃u (a, ω)

])
.

Since πBiπ′, we know Eµ̃∼〈π|ŝ〉 [maxa∈A Eω∼µ̃u (a, ω)]−Eµ̃∼〈π′|ŝ〉 [maxa∈A Eω∼µ̃u (a, ω)] ≥ 0 for each

ŝ and thus Eµ̃∼〈π∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)] ≥ Eµ̃∼〈π′∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)] . Since the choice of

(A, u, π̂) was arbitrary, we conclude πBπ′. Thus, Bi ⊆ B.

Suppose πBπ′. Suppose the value of π′ on some costly acquisition decision problem (A, u, c)

is v. Let π∗ be a signal that the agent acquires in addition to π′ in the problem (A, u, c), i.e.,

π∗ ∈ arg maxπ̂∈Π Eµ̃∼〈π′∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)] − c (π̂). It must be the case that the value of

π′ in the extended decision problem (A, u, π∗) is at least v + c (π∗). Therefore, since πBπ′, the

value of π in (A, u, π∗) is at least v + c (π∗). Finally, this implies that the value of π in the costly

acquisition decision problem (A, u, c) is at least v since maxπ̂∈Π Eµ̃∼〈π∨π̂〉 [maxa∈A Eω∼µ̃u (a, ω)] −

c (π̂) ≥ Eµ̃∼〈π∨π∗〉 [maxa∈A Eω∼µ̃u (a, ω)]− c (π∗). Thus, B ⊆ Bk.
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Suppose πBkπ′. Consider some extended decision problem (A, u, π̂). Let

K = max
ω

(
max
a∈A

u (a, ω)−min
a∈A

u (a, ω)

)
.

Clearly, the value of any signal (relative to π) in the decision problem (A, u) is less than K. Let

c∗ : Π→ R be as follows: c∗ (π̂) = c∗ (π) = 0 and c∗ (π) = K for all π /∈ {π̂, π }. Then, the value of

any signal in the extended decision problem (A, u, π̂) must be the same as the value of that signal

in the costly acquisition decision problem (A, u, c∗) . Since πBkπ′, we know that π is more valuable

than π′ in (A, u, c∗); thus π is more valuable than π′ in (A, u, π̂). Since the choice of (A, u, π̂) was

arbitrary, we conclude πBπ′. Thus, Bk ⊆ B.

A.2 Proof of Theorem 1

We already provided a proof in the text that πOπ implies πBπ′. To establish the other direction,

suppose ¬ (πOπ′). We seek to show that ¬
(
πBπ′

)
, i.e., there exists π̂ such that ¬ (π ∨ π̂Bπ′ ∨ π̂).

Let s ∈ π be a signal realization that does not reveal the state and there is no s′ ∈ π′ such

that s ⊆ s′. There must be distinct states ω1 and ω2 and distinct signal realizations s′1, s
′
2 ∈ π′

such that p (s ∩ s′1|ω1) > 0 and p (s ∩ s′2|ω2) > 0. Let E be the event (s ∩ s′1 ∩ ({ω1} × [0, 1])) ∪

(s ∩ s′2 ∩ ({ω2} × [0, 1])). Let Ec denote the complement of E in Ω× [0, 1]. Let π′′ = {E,Ec}. Let

π̂ = π ∨ π′′.

Note that π ∨ π̂ = π ∨ π′′ so π ∨ π̂ reveals: (i) everything that π reveals, and (ii) whether (ω, x)

is in E or not. By contrast, π′ ∨ π̂ = π′ ∨π∨π′′, so π′ ∨ π̂ reveals: (i) everything that π reveals, (ii)

whether (ω, x) is in E or not, and (iii) if (ω, x) ∈ E, whether ω is ω1 or ω2. Hence, π′ ∨ π̂ Blackwell

dominates π ∨ π̂.

A.3 Characterization of martingale relation

In Remark 4.6, we referred to the following observation, which we now state formally:

Proposition 2. πMπ′ if and only if C(π)Sπ′.

As mentioned earlier, it is straightforward to observe that C(π)Sπ′ implies that πMπ′. Here,

we provide the proof of the other direction, that πMπ′ implies C(π)Sπ′.
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We begin with some notation. Let µu ∈ ∆(Ω) indicate the uniform prior over states. Let

∆o(Ω) indicate the interior of the set of beliefs. Let N = |Ω| . For a signal realization s, let p(s) be

the vector of probabilities of the signal realization s, i.e., p (s) = (pω (s))ω∈Ω. Denote its relative

likelihood vector as l(s) ≡ p(s)/
∑

ω p
ω(s). The relative likelihood vector is exactly the induced

posterior from observing s under the uniform prior µu, and for future reference, we observe that

l (s) ·µu = 1/N . Notice that, fixing an interior prior µ0 ∈ ∆o(Ω), the posterior belief after observing

s is generated by a one-to-one mapping from l(s) into ∆(Ω). Hence, C (π) pools together all of the

realizations s ∈ π that have identical relative likelihood vectors l(s).

Now suppose that C(π) is not sufficient for π′. We seek to show that π does not martingale

dominate π′.

Because ¬ (C(π)Sπ′), there exist s ∈ π′ and s ∈ C(π) that have a non-trivial intersection (i.e.,

pω(s ∩ s) > 0 for some ω) and l(s) 6= l(s ∩ s), since l(s) 6= l(s ∩ s) implies that posterior beliefs

are different after observing s versus s and s. Fix this element s ∈ π′. Denumerate the elements of

C(π) that non-trivially intersect s as {si}i∈Q, and for each i ∈ Q define si = si ∩ s. Observe that

for i 6= j in Q, we have that l(si) 6= l(sj), because any two signal realizations in C(π) have different

relative likelihood vectors. Note that there is some i ∈ Q for which l(si) 6= l(si); let Q′ ⊆ Q be the

(non-empty) set of indices i at which l(si) 6= l(si).

Claim 1. If there exists µ0 ∈ ∆o(Ω) such that

∑
ω

∑
i∈Q

pω(si)

∑
ω′ µ

ω′
0 p

ω′(si)∑
ω′ µ

ω′
0 p

ω′(si)

 6= ∑
ω

pω(s) (1)

then ¬ (πMπ′).

To prove the claim, first observe that C (π)Mπ′ if and only if for all s ∈ C (π), s ∈ π′, we have

E
[
µ̃C(π)|s

]
= µs, i.e., for all ω:

∑
i∈Q

∑
ω′

µω
′

0 p
ω′ (s)∑

ω′′ µ
ω′′
0 pω′′ (s)︸ ︷︷ ︸

=µω′s =Pr(ω′|s)

pω
′
(si)

pω′ (s)︸ ︷︷ ︸
=Pr(si|s,ω′)

µω0 p
ω (si)∑

ω′′ µ
ω′′
0 pω′′ (si)︸ ︷︷ ︸
=µωsi

− µω0 p
ω (s)∑

ω′′ µ
ω′′
0 pω′′ (s)

= 0

⇐⇒ µω0∑
ω′′ µ

ω′′
0 pω′′ (s)

∑
i∈Q

pω (si)

∑
ω′ µ

ω′
0 p

ω′ (si)∑
ω′′ µ

ω′′
0 pω′′ (si)

− pω (s)

 = 0.
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This expression holds for all µ0 ∈ ∆o (Ω) if and only if the term in parentheses is zero for all ω.

Summing across ω gives the result.

Importantly, the RHS of (1) does not depend on µ0. So we can guarantee that there exists an

interior prior µ0 at which the two sides are not equal as long as the LHS is not constant in µ0.

Rewriting sums as dot products and simplifying further, we get the following implication.

Claim 2. Let Hi(µ) : [0, 1]N → R be defined as

Hi(µ) ≡

(∑
ω

pω(si)

)
µ · l(si)
µ · l(si)

. (2)

Let H(µ) ≡
∑

i∈Q′ Hi(µ). If H(µ) is non-constant over the domain µ ∈ ∆o(Ω), then ¬ (πMπ′).21

We can consider two exhaustive and mutually exclusive cases.

Case 1: Q′ is a singleton, which can be written as Q′ = {i′}; and l(si′) = µu. In this case,

µ · l(si′) = 1/N for all µ ∈ ∆o(Ω), and hence H(µ) = N (
∑

ω p
ω(si′))µ · l(si′). Moreover, because

l(si′) 6= l(si′) = µu, it also holds that µ · l(si′) is linear and non-constant in µ. Hence, H(µ) is

non-constant over the domain µ ∈ ∆o(Ω).

Case 2: There exists some i ∈ Q′ such that l(si) 6= µu. We will find a direction d∗ ∈ RN with∑
ω d

ω
∗ = 0 such that H(µu + δd∗) is nonconstant in δ in the neighborhood of δ = 0, which will

complete the proof.

Let

î ∈ arg max
{i∈Q′|l(si)6=l(si)}

‖l(si)− µu‖ (3)

where ‖ · ‖ denotes the Euclidean norm, and set d = µu − l(sî). From the definition of î, and the

21The function Hi(µ) may be undefined at points µ that lead to a 0 denominator, but Hi (and therefore H) is
defined everywhere on ∆o(Ω).
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fact that µ · µu = l (s) · µu = 1/N for all s and µ ∈ ∆ (Ω), we have

(µu + δd) · l(si) = µu · l (si) + δ
(
µu − l

(
sî
))
· l (si)

= 1/N − δ(l(sî)− µu) · (l(si)− µu)

≥ 1/N − δ‖l(sî)− µu‖‖l(si)− µu‖

≥ 1/N − δ‖l(sî)− µu‖
2

= (µu + δd) · l(sî).

(Note that the inequality is strict if i 6= î, because then l(si) 6= l(sî).) Now take δ∗ to be the unique

δ such that this last expression is equal to zero, i.e., δ∗ ≡ 1/(N‖l(si)− µu‖2), and for all i 6= î, we

have that (µu + δ∗d) · l(si) > 0.

If in addition we have

(µu + δ∗(µu − l(sî))) · l(sî) 6= 0,

then take d∗ = d. Otherwise, let d′ be the projection of l(sî)− µu onto the null space of l(sî)− µu,

and note that d′ 6= 0 because l(sî) 6= l(sî) (per (3)). Hence, for ε sufficiently small,

(µu + δ∗(d+ εd′)) · l(si) > 0 ∀i 6= î;

(µu + δ∗(d+ εd′)) · l(sî) 6= 0;

(µu + δ∗(d+ εd′)) · l(sî) = 0.

We then set d∗ = d+ εd′.22

Again using the fact that µu ·µ = 1/N for any µ with
∑

ω µ = 1, we have that for all δ ∈ [0, δ∗)

and for all i, (µu + δd∗) · l(si) > 0. Hence, H(µu + δd∗) is finite for all δ ∈ [0, δ∗), since the

denominators of 2 are nonzero for every i ∈ Q′; and because at δ∗ the numerator at î is non-zero,

the denominator at î is zero, and the denominators at i 6= î are all non-zero, we have that

lim
δ↗δ∗

H(µu + δd∗) = ±∞.

22Note that µu + δ∗d∗ need not be a probability vector in ∆(Ω); the sum of components is 1, but it may have
negative components. The rest of the proof shows that H is non-constant on the restricted domain of ∆o(Ω).
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Figure 6: The martingale property can depend on priors
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At prior µ0 on Pr(ω = R), it holds that µa = µ0

3−2µ0
; µb = 3µ0

2µ0+1 ; µe = µ0; and

µf = µ0. Moreover, E [µ̃π|e] = µ0µa + (1 − µ0)µb =
µ0(8µ

2
0−14µ0+9)

−4µ2
0+4µ0+3

and E [µ̃π|f ] =

1
2µa + 1

2µb = µ0(5−2µ0)
−4µ2

0+4µ0+3
. It is easy to verify that E [µ̃π|e] = µe and E [µ̃π|f ] = µf if

µ0 = 1/2, and that these equalities do not hold at any other interior prior µ0 ∈ (0, 1).

Finally, note that H(µu + δd∗) is a rational function of δ (and therefore analytic in δ), is defined

for all δ ∈ [0, δ∗], and only has a singularity at δ = δ∗. Thus, H must be non-constant in δ on every

open set in the interval [0, δ∗], and in particular, it is non-constant in the neighborhood of δ = 0.

A.4 Martingale property can depend on priors

We define the martingale relationM as follows: πMπ′ if E [µ̃π|s̃π′ ] = µ̃π′ holds for all priors µ0. In

this section, we note that there are signals for which E [µ̃π|s̃π′ ] = µ̃π′ holds at some interior priors

but not others. See Figure 6 for an example. Hence, the for-all quantifier was important.

In Figure 6, π is informative about the state, while π′ is informative about how informative π is.

In particular, signal π realizes either a, indicating a higher chance that ω = L and yielding µa < µ0

(with beliefs in [0, 1] denoting the probability of ω = R); or b, indicating a higher chance that ω = R

and yielding µb > µ0. When e ∈ π′ is realized, π is in fact perfectly informative: a ∈ π implies

that ω = L for sure, and b ∈ π implies ω = R. And when f ∈ π′ is realized, π is uninformative: a

and b both have the same conditional likelihood across states. Since π′ is uninformative about the

state itself, though, the posterior after observing either realization from π′ is always equal to the

prior: µe = µf = µ0. But the expectation of µ̃π (the posterior of π) given either realization of π′ is

equal to the prior only when beliefs are degenerate, or when the prior is uniform at µ0 = 1/2. This

is easiest to see by considering E[µ̃π|f ]. Conditional on f ∈ π′, the signal π realizes a and b with

equal probability, independently of the prior; but the posterior beliefs µa and µb are not equally

distant from the prior. For instance, at priors µ0 ∈ (0, 1/2), it holds that µb − µ0 > µ0 − µa.

Given that this martingale property can depend on the prior, we see that there is an alternative

26



“martingale relation”on signals that we could have defined. Define the existence-martingale relation,

denoted M∃, as follows: πM∃π′ if there exists an interior prior µ0 at which E [µ̃π|s̃π′ ] = µ̃π′ . It

is easy to see that M (M∃: the fact that M⊆M∃ follows immediately from definitions (for-all

implies there-exists), and M 6= M∃ follows from the example in Figure 6. Moreover, it turns out

that M∃ ( B. The fact that M∃ ⊆ B can be seen by noting that if πM∃π′, then for an interior

prior µ0 at which E [µ̃π|s̃π′ ] = µ̃π′ , it holds that 〈π〉 is a mean-preserving spread of 〈π′〉; and if the

posteriors of π are a mean-preserving spread of those of π′ at any one interior prior, then they are

a mean-preserving spread at all priors, i.e., πBπ′. The fact that M∃ 6= B can be established by

observing that, in Figure 5, πBBπ0, but, as can be directly calculated, ¬(πBM∃π0).23 Hence, we can

expand our summary of the ranking of the relations toR = R ( S =M = B ( S (M (M∃ ( B.

A.5 An alternative characterization of S,M,B

Remark 4.7 stated the following characterizations of S, M, and B.

1. πSπ′ if and only if ∃π∗ s.t. C (π∗) = C (π), π∗Rπ, and π∗Rπ′. (We can take π∗ = π ∨ π′.)

2. πMπ′ if and only if ∃π∗ s.t. C (π∗) = C (π) and π∗Rπ′.

3. πBπ′ if and only if ∃π∗ s.t. π∗ ∼ π and π∗Rπ′.

Part 3 had already been presented in Remark 4.2.

To see the only if direction of Part 1, first suppose that πSπ′, and let π∗ = π ∨ π′. We see that

C(π∗) = C(π ∨ π′) = C(π), with the second equality following from the fact that πSπ′ ⇔ µ̃π∨π′ =

µ̃π. And by construction, π∗Rπ and π∗Rπ′. Next, consider the if direction. Suppose that ∃π∗ s.t.

C (π∗) = C (π), π∗Rπ, and π∗Rπ′. The latter two properties imply that π∗R (π ∨ π′). Therefore,

C(π∗)BC(π ∨ π′)BC(π). This fact, coupled with C(π) = C(π∗) implies that C (π∗) ∼ C(π ∨ π′) ∼

C(π). Finally, C(π ∨ π′) ∼ C(π) implies that πSπ′.

Part 2 follows from Part 1 combined with the observation (Remark 4.6, Proposition 2) that

πMπ′ if and only if C(π)Sπ′. First, we suppose that πMπ′, and show that ∃π∗ s.t. C (π∗) = C (π)

23Writing all beliefs in terms of Pr(ω = R), we have µk = µ0·1/3
µ0·1/3+(1−µ0)·2/3 at k ∈ π0, along with µa =

µ0·1/4
µ0·1/4+(1−µ0)·3/4 and µb = µ0·3/4

µ0·3/4+(1−µ0)·1/4 at a and b in πB. Conditional on realization k ∈ π0, the expected

belief at πB is given by E[µ̃πB |k] = (1 − µk)µa + µk(µa · 3/4 + µb · 1/4). The martingale property at prior µ0 holds

only if E[µ̃πB |k]− µk = 0, but the LHS simplifies to − µ0(1−µ0)

6+5µ0−12µ2
0+4µ3

0
, which has no zeroes for µ0 ∈ (0, 1).
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Figure 7: Martingale is not transitive
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π1Mπ2 and π2Mπ3 but ¬(π1Mπ3).

and π∗Rπ′. This holds because πMπ′ implies C(π)Sπ′, which implies by Part 1 that there exists π∗

(including π∗ = π ∨ π′) satisfying these conditions. Next, we suppose that ∃π∗ s.t. C (π∗) = C (π)

and π∗Rπ′, and show that πMπ′. Take such a π∗, and observe that it satisfies π∗RC(π∗) and

C(π∗) = C(π), and hence π∗RC(π). Because π∗ by definition also satisfies C(π∗) = C(C(π)) (since

C(C(π)) = C(π)) and π∗Rπ′, Part 1 implies that C(π)Sπ′, which then implies πMπ′.

A.6 Martingale dominance is not transitive

Consider Figure 7. We see that π1Mπ2 because π1Rπ2; and π2Mπ3 because π2Sπ3, which may

not be immediately obvious.24 However, it is not the case that π1Mπ3: with a prior of µ0 = 1/2

probability on ω = R, we have that µa = 1/4 while E[µ̃π1 |a] = 2
3 · 0 + 1

3 ·
1
2 = 1

6 .

24To see that π2Sπ3, or in other words that π2 ∨ π3 induces the same beliefs as π2, observe that π2 = {u, v} while
π2∨π3 = {a ∩ v = a, b ∩ v, b ∩ u = u}. So it suffices to show that the likelihood ratios of (and thus the beliefs at) a and
of b∩v match that of v, which indeed they do: Pr(v|L)/Pr(v|R) = Pr(b∩v|L)/Pr(b∩v|R) = Pr(a|L)/Pr(a|R) = 3.
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