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Abstract

This paper introduces the problem of a planner who wants to control a population of

heterogeneous agents subject to idiosyncratic shocks. This is equivalent to a deterministic

control problem in which the state variable is a distribution. We show how, in continuous

time, the problem can be broken down into a dynamic programming equation plus the law of

motion for the distribution, and provide a numerical algorithm to solve it. We particularize

this method to analyze constrained effi ciency. By comparing the planning solution with

the competitive equilibrium we obtain a criterion to check whether a market allocation is

constrained effi cient.
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1 Introduction

Optimal control is an essential tool in economics and finance. In optimal control, a planner deals

with the problem of finding a set of control variables for a given system such that a certain

optimality criterion is achieved. The state of the system is typically characterized by a finite

number of state variables.1 Some systems of interest are composed of a very large number of

agents; an economy, for example, is composed of millions of households and firms and a network

may contain thousands of nodes. In these cases, assuming a continuous distribution of state

variables seems to be a reasonable approximation to the real problem under consideration.

The aim of this paper is to introduce optimal control problems in which there is an infinite

number of ex-ante identical agents. The state of each of these agents is characterized by a finite set

of state variables. The evolution of the idiosyncratic state variables follows a controllable stochastic

process, that is, there exists a set of controls that allows the planner to modify the individual state

of each agent. The state variables are subject to some random disturbances. In addition there

are some aggregate states. In this problem, the aim of the planner is to maximize an optimality

criterion over the full distribution (across agents) of state variables.

We focus on the continuous time version of the problem. The key advantage of working in

continuous time, compared to discrete time, is that the evolution of the state distribution across

agents can be characterized by the Kolmogorov forward (KF) equation (also known as Fokker-

Planck equation). This is a partial differential equation (PDE) that describes the evolution of

the distribution given the controls. Despite the random evolution of each individual state, the

dynamics of the distribution are deterministic due to the Law of Large Numbers. Thanks to this,

the control of an infinite number of agents subject to idiosyncratic shocks can be expressed as

the deterministic problem of controlling a distribution that evolves according to the KF equation,

subject to the aggregate constraints. As we work with state distributions, we should employ

calculus of variations in order to solve the problem.

The main contribution of the paper is to present the necessary conditions for a solution to this

problem. These conditions are characterized by a system of two coupled PDEs: a Hamilton-Jacobi-

Bellman (HJB) equation and the KF equation that describes the evolution of the distribution of

agents. In addition, there is a number of equations that relate some nonlinear functions of the

aggregated variables to the state distribution. The role of the value function in individual stochastic

control is played here by the marginal social value, that is, the social value of an agent in a certain

state.

A particular case of interest is the analysis of constrained effi ciency in heterogeneous agents

economies. The constrained effi cient allocation is defined as the one of a social planner who

1See Bertsekas (2005, 2012) or Fleming and Soner (2006).
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maximizes a utilitarian social welfare function (SWF) subject to the same equilibrium budget

constraints and competitive price setting as the individual agents. The planner cannot complete

markets or use any transfers between agents. We employ the techniques developed here to com-

pare the solution of this problem with the case of a competitive equilibrium in which each agent

maximizes its own discounted utility subject to its state dynamics taking the aggregate conditions

and the dynamics of the other agents as given. Our results show that both cases yield a system of

two coupled PDEs, with the difference that the variable in the decentralized HJB is the individual

value function whereas in the social planning case it is the marginal social value. In addition,

in the planner’s HJB there is an extra term that accounts for the impact of the aggregate vari-

ables on the social value. When this extra term is zero, the competitive equilibrium yields the

constrained-effi cient allocation. Therefore, by checking whether this term is zero in the decentral-

ized economy we have a criterion to evaluate the constrained optimality of a heterogeneous-agent

model which does not require to solve the planner’s problem. If the term is not zero we show how

the constrained-ineffi cient stationary competitive allocation can be replicated by a planner with a

non-utilitarian SWF.

We introduce a numerical algorithm to solve optimal control problems with heterogeneous

agents. We build on the recent work of Achdou et al. (2014) on finite difference methods to

solve the coupled HJB and KF equations and present a relaxation algorithm that finds the value

function, distribution and optimal policies as well as the Lagrange multipliers of the aggregate

conditions. We illustrate it with a example: the computation of the constrained effi cient solution

in a continuous time version of the neoclassical growth model with uninsurable idiosyncratic shocks

as in Davila et al. (2012).2

Literature review. Our paper is related to the large literature studying general equilibrium
models with heterogeneous agents. Early contributions are Bewley (1986), Imrohoroğlu (1989),

Huggett (1993), and Aiyagari (1994). See Heathcote, Storesletten and Violante (2009) for a recent

survey. Some existing papers analyze heterogeneous agent models in continuous time. Examples

are Luttmer (2007), Alvarez and Shimer (2011) and Achdou et al. (2014). These models can be

seen as particular cases of mean field games (MFG). Introduced by Lasry and Lions (2007), MFG

equilibria are a generalization of Nash equilibria in stochastic differential games as the number of

players tend to infinite and agents only care about the distribution of other players’states. The

name is borrowed from the mean-field approximation in statistical physics, in which the effect

on any given individual of all the other individuals is approximated by a single averaged effect.

MFG are characterized by a HJB equation describing the value function of each player and a KF

equation describing the evolution of the state distribution. See, for example, Guéant, Lasry and

2Davila et al. (2012) compute their numerical results using a 3-state Markov chain whereas we provide a method
to compute it for any difussion. In particular we consider an Ornstein—Uhlenbeck process, which is the continuous-
time counterpart of an AR(1).
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Lions (2011) or Carmona, Delarue and Lachapelle (2013).

In particular, our paper is related to the case of mean field control. This is the optimal control

counterpart to MFG in which a planner should control a population of infinite agents character-

ized by a distribution evolving according to the KF equation. A recent survey may be found in

Bensoussan, Frehse and Yam (2013). In economics, according to our knowledge Lucas and Moll

(2013) were the first ones to employ mean field control techniques to obtain the optimal allocation

in a continuous time model with heterogeneous agents. However, their formulation does not allow

the possibility of including aggregate constraints, such as price equations, which are prevalent in

most economic problems. Our work builds on theirs by introducing both a general theory and a

computational algorithm in order to solve general problems in economics.

The structure of the paper is as follows. In section 2 we introduce an example as a motivation.

In section 3 we analyze the general case and present the main results. In section 4 we compare

the optimal control with the competitive equilibrium. In section 5 we introduce the numerical

algorithm. Finally, in section 6 we conclude.

2 An example: constrained effi ciency in the neoclassical

growth model with uninsurable idiosyncratic shocks

We begin with an example. It is a continuous-time counterpart to the Aiyagari-Bewley-Huggett

economy described in Aiyagari (1994).

Workers. There is a continuum of mass unity of workers that are heterogeneous in their wealth
a and labor productivity z. The state of the economy is the joint distribution f(a, z). Workers

have standard preferences over utility flows from future consumption cjt discounted at rate ρ ≥ 0:

E

∫ ∞
t

e−ρ(s−t)u(cjt)ds, (1)

The function u is strictly increasing and strictly concave. A worker supplies zjt effi ciency units

of labor to the labor market and these get valued at wage w. A worker’s wealth evolves according

to

dajt =
[
wzjt + rajt − cjt

]
dt, (2)

where r is the interest rate. Workers also face a borrowing limit,

ajt ≥ ā (3)

where ā ≤ 0. Finally, a worker’s effi ciency units evolve stochastically over time on a bounded

interval [z
¯
, z̄] with z

¯
≥ 0, according to a stationary diffusion process that either stays in the interval
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by itself or is reflected at the boundaries:

dzjt = η(zjt )dt+ σz(z
j
t )dB

j
t ,

where Bj
t is a Brownian motion. We impose an additional restriction on the borrowing limit,

−ā ≤ wz
¯
/r, that is the borrowing limit is at least as tight as the “natural borrowing limit.”

In order to avoid the introduction of state constraints such as (3), we may modify the utility

function in order to introduce a penalty function ξ(a), such that

ξ(a) =

{
0, if at ≥ ā,

−∞, if at < ā,
.

Both problems are equivalent and the second one fits in the framework described below.3

The optimal value function results in

V̂ (a, z) = sup
c≥0

E

∫ ∞
t

e−ρ(s−t) [u(c) + ξ(a)] ds,

subject to the price vector Γ = [w, r]′ . The Hamilton-Jacobi-Bellman of this problem is

ρV̂ = sup
c∈A

u(c) + ξ(a) + (wz + ra− c) ∂V̂
∂a

+ η(z)
∂V̂

∂z
+
σ2
z(z)

2

∂2V̂

∂z2
. (4)

Firms. There is representative firm with a constant returns to scale production function

Y = F (K,L). The total amount of capital supplied in the economy equals the total amount of

wealth

K =

∫
af(a, z)dadz, (5)

and we normalize the total amount of labor supplied in the economy to one. Capital depreciates

at rate δ. Since factor markets are competitive, the wage and the interest rate are given by

r =
∂

∂K
F (K, 1)− δ, w =

∂

∂L
F (K, 1) . (6)

The stationary distribution of agents is given by the KF equation

0 = − ∂

∂a
[(wz + ra− c) f ]− ∂

∂z
[η(z)f ] +

1

2

∂2

∂z2

[
σ2
z(z)f

]
, (7)

3See Capuzzo-Dolcetta and Lions (1990).
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and the it should satisfy the normalization∫
f(a, z)dadz = 1.

We may define a stationary competitive equilibrium in this economy.

Definition 1 (Competitive equilibrium) A stationary competitive equilibrium is a vector of

prices Γ = [w, r]′, a value function V̂ (a, z), a consumption policy c(a, z) and a distribution f(a, z)

such that (i) given Γ and f , V̂ solves the HJB equation (4) and the optimal control is c(a, z); (ii)

given c and Γ, f solves the KF equation (7); and given c and f, the price vectors satisfy the price

equation (6).

Constrained-effi cient solution. We study the allocation of a benevolent social planner

subject to the same constraints as the individual agents in the competitive equilibrium. Namely,

market prices Γ still satisfy equations (6) and the aggregate distribution f(a, z) the KF equation

(7). The social planner chooses the consumption policy c(a, z) of every agent j ∈ [0, 1]. The planner

also chooses the vector of prices Γ given the constraints. The social planner chooses the controls

and the prices in order to maximize a discounted SWF W (u) that aggregates individuals’utilities

u(c) into a social utility:

W [f ] =

∫
ω(a, z) [u(c) + ξ(a)] f(a, z)dadz, (8)

where ω(a, z) are the Pareto weights. If ω(a, z) = 1 then we have a purely utilitarian SWF. Notice

that W is a functional as it maps a distribution function to a social welfare. The problem of the

social planner is to maximize

sup
w,r, c≥0

∫ ∞
t

∫
e−ρ(s−t)ω(a, z) [u(c) + ξ(a)] f(a, z)dadz (9)

subject to the KF equation (7) and to the price equations (6). Notice that this not a standard

optimal control problem as the state variable f(a, z) is a distribution and so it is the control c(a, z).

We devote the rest of the paper to develop a general theory for this kind of problems and we come

back to this example below.
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3 General approach

3.1 Statement of the problem

Agents’problem. We consider a continuous-time infinite-horizon economy. Let (Ω,F , {Ft} , P )

be a filtered probability space. There is a continuum of unit mass of agents indexed by j ∈ [0, 1] .

Let Bj
t is a n-dimensional Ft-Brownian motion. Let Xj

t denote the state of an agent j at time

t ∈ [0,∞). The state evolves according to a multidimensional Itô process of the form

dXj
t = b

(
Xj
t , µ(t,Xj

t ),Γt
)
dt+ σ

(
Xj
t

)
dBj

t , (10)

where Xj
t ∈ Rn. Γt is a p-dimensional vector, which we denote as the price vector.4 Here b (drift)

and σ (diffusion) are measurable functions b : Rn × Rm × Rp → Rn, b ∈ C1(Rn × Rm × Rp) and
σ : Rn → Rn, σ ∈ C2(Rn).5 All elements outside of the diagonal in σ

(
Xj
t

)
are zero.6 Notice that

all the agents are identical in their drift and diffusion coeffi cients but potentially differ in their

state and in the realization of the idiosyncratic Brownian motions. Notice too that only the drift

coeffi cient can be controlled.7

The policy µ : [0,∞) × Rn → Rm, m ∈ N, is a m−dimensional Ft- adapted Markov control.
The control µ(t, x) ∈ Rm is admissible if for any initial point (t, x) such that Xj

t = x the stochastic

differential equation (10) has a unique solution.8 We denote A as the space of all admissible

controls contained in the set of all Markov controls. The control strategy is the same for every

agent, but it depends on time and on the state of this particular agent.

Aggregate distribution and aggregate variables. Assume that the transition measure of
Xj
t has a density f(t, x;xj0) : [0,∞)× Rn → [0, 1], (f ∈ C2([0,∞)× Rn)), i.e., that

∀ϕ ∈ C2(Rn), E
[
ϕ(Xj

t )|Xj
0 = x0

]
=

∫
Rn
ϕ(x)f(t, x;xj0)dx.

4This is the price vector in our example, although it may represent other variables in different problems.
5Ck(Q) is the set of all k-times continuously differentiable functions on Q.
6To ensure the existence of a solution of the stochastic differential equation (10), assume that

‖b(x, µ)‖ ≤ κ (1 + ‖x‖+ |µ|) , ‖∇Γb(x, µ)‖ + ‖∇xb(x, µ)‖ ≤ κ,
‖σ(x)‖ ≤ κ (1 + ‖x‖) , ‖∇xσ(x)‖ ≤ κ,

for all x ∈ Rn, some constant κ and µ ∈ Rm. Here ‖σ‖2 =
∑n

i,j=1 |σij |
2
. See Øksendal (2010) or Fleming and Soner

(2006).
7This is done for simplification, the results in this paper can be extended to the case of controlled diffusion.
8This is guarantee if ∀t <∞ :

E

∫ t

0

∥∥µ(s,Xi
s)
∥∥j ds <∞ for j ∈ N.

7



The initial distribution of Xj
t at time t = 0 is f(0, x) = f0(x).

In this case, the dynamics of the distribution of agents f(t, x) are given by the KF equation

∂f

∂t
= −

n∑
i=1

∂

∂xi
[bi (x, µ,Γ) f ] +

1

2

n∑
i=1

∂2

∂x2
i

[
σ2
ii(x)f

]
, (11)∫

Rn
f(t, x)dx = 1. (12)

The vector of aggregate variables is determined by a system of p equations:

Γk(t) = Gk

(∫
Rn
h(x, µ)f(t, x)dx

)
, k = 1, .., p. (13)

where Gk : R→ R, h : Rn × Rm → R, Gk ∈ C1 (R) , h ∈ C1 (Rn × Rm).

Optimal control. We now study the allocation of a planner who chooses a vector of control
variables µ(t,Xj

t ) to be applied to every agent j ∈ [0, 1] with state dynamics (10). The planner

also chooses the vector of prices Γt given the constraints (13). The planner chooses the controls

and the prices in order to maximize a discounted functional

W [f, µ] =

∫
Rn
g(x, µ)f(t, x)dx, (14)

where g ∈ C1 (Rn × Rm) is an increasing concave function.9 Notice that W is a functional that

maps from the space of densities and the space of controls into the real numbers.

In this case, instead of an optimal value function, we have an optimal value functional V [f ],

defined as

V [f(t, ·)] ≡ sup
Γ, µ∈A,

∫ ∞
t

∫
Rn
e−ρ(s−t)g(x, µ)f(t, x)dxds =

∫ ∞
t

e−ρ(s−t)W [f, µ∗] ds (15)

subject to the KF equation (11, 12) and to the price equations (13). The supremum is taken over

the family A of admissible controls and over the family of market prices. Notice that Γ appears

now as a control. We assume the transversality condition

lim
t↑∞

e−rtV [f(t, ·)] = 0. (16)

The constrained optimal control problem with heterogeneous agents is an extension of the

classical deterministic optimal control problem to an infinite dimensional setting, in which the

state is the whole distribution of individual states f(t, x). The key point is that the law of motion

9‖g(x, µ)‖ ≤ κ
(
1 + ‖x)‖k + ‖µ‖k

)
for a suitable constant κ.
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of this distribution is given by the KF equation.

Definition 2 (optimal control) An optimal control problem is an optimal value functional V [f(t, ·)],
a control function µ∗ = µ∗(t, x) ∈ A and a price vector Γ∗(t) such that the control and the prices

maximize (15) subject to the KF equation (11, 12) and the price equations (13).

3.2 A verification theorem

Marginal social value. The price equations (13)

Γ
∗

k(t) = Gk

(∫
Rn
h(x, µ∗)f(t, x)dx,

)
, k = 1, .., p,

can be expressed in functional form

G−1
k

(
Γ
∗

k(t)
)

= H[f(t, ·), µ∗], k = 1, .., p,

where

H[f(t, ·), µ∗] =

∫
Rn
h(x, µ∗)f(t, x)dx,

and G−1
k (Γ) is the inverse function of Gk.

If an optimal Markov control µ∗ = (µ∗1, ..., µ
∗
m) and an optimal price vector Γ∗(t) exist and

satisfy the price constraints (13), they should be an extremal of the functional Lagragian

L [f(t, ·), µ; Γ] =

∫ ∞
t

e−ρ(s−t)

{
W [f(s, ·), µ] +

p∑
k=1

λk(s)
(
H[f(s, ·), µ]−G−1

k (Γk(s))
)}

ds, (17)

where λk(t) : R+ → R are the Lagrange multipliers of the problem. Notice that in the case of opti-
mal controls and prices the Lagragian coincides with the optimal value function L [f(t, ·), µ∗; Γ∗] =

V [f(t, ·)] .
Assume that f(t, ·) ∈ L2 (Rn), that is, f 2 is Lebesgue-integrable inRn. This is a mild assumption

in most of the problems of interest. Notice that L [f(t, ·), µ; Γ] is a linear functional in f and µ.

Therefore we may apply the Riesz representation theorem and state that there exists a unique

function v(t, ·;µ,Γ) ∈ L2 (Rn) such that

L [f(t, ·), µ; Γ] = 〈v(t, ·;µ,Γ), f(t, ·)〉L2(Rn) =

∫
Rn
v(t, x;µ,Γ)f(t, x)dx.10 (18)

In the case of the optimal control and prices

V [f(t, ·)] = L [f(t, ·), µ∗; Γ∗] =

∫
Rn
v(t, x;µ∗,Γ∗)f(t, x)dx,
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that is, the optimal value functional can be expressed as average across agents of v(t, x) =

v(t, x;µ∗,Γ∗). Given (18), we can compute v(t, x) as

v(t, x) =
δV [f(t, ·)]
δf(t, x)

= sup
Γ, µ∈A,

δL [f(t, ·), µ; Γ]

δf(t, x)
, (19)

that is, v is the functional derivative of the Lagrangian with respect to the state distribution.

Lucas and Moll (2013) provide an economic interpretation of v(t, x) as the marginal social value at

time t of an agent in state x. Appendix A briefly introduces the concept of functional derivative.

Necessary conditions. Given (19), we provide necessary conditions to the problem.

Proposition 3 (Necessary conditions) Assume that a marginal social value v, an optimal ad-
missible Markov control µ∗ and an optimal price vector Γ∗ exist. Then, they satisfy

ρv = sup
µ∈A

g(x, µ) +

p∑
k=1

λk(t)h(x, µ) +
∂v

∂t
+

n∑
i=1

bi (x, µ,Γ
∗)
∂v

∂xi
+

n∑
i=1

σ2
ii(x)

2

∂2v

∂x2
i

, (20)

with λk(t) : [0,∞)→ R, k = 1, .., p :

λk(t) = −G′k
∫
Rn
v(t, y)

(
n∑
i=1

[
∂2bi (y, µ

∗,Γ∗)

∂Γk∂xi
f(t, y) +

m∑
j=1

∂2bi
∂Γk∂µj

∂µ∗j
∂xi

f +
∂bi
∂Γk

∂f

∂xi

])
dy. (21)

and G′k = G′k
(∫
Rn h(x, µ)f(t, x)dx

)
, together with the KF equation (11, 12), price equations (13)

and the transversality condition

lim
t↑∞

e−rtv(t, x) = 0. (22)

The proof can be found in the Appendix B. This proposition is the central result of the paper. It

provides a system formed by a HJB, a KF and a number of price equations which link the dynamics

of v(t, x), µ∗(t, x), Γ∗(t) and f(t, x). The coupled system is forward-backward in the sense that

the HJB equation for v is a function of the distribution f and it has boundary conditions at time

t ↑ ∞, whereas the KF is a function of the optimal controls µ and it has boundary conditions at
time t = 0.11

4 Competitive equilibrium and constrained optimality

In this section we compare the constrained solution of the problem with the competitive equilib-

rium.
11Notice that we do not impose that v should be differentiable. This is due to the fact that the result is general

enough to accommodate viscosity solutions as it will be described below.
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4.1 Competitive equilibrium

Imagine that, instead of a social planner, individual agents’in the problem above maximize their

discounted utility. The optimal value function V̂ (t, x) is defined as

V̂ (t, x) = sup
µ∈A

E

∫ ∞
t

e−ρ(s−t)u(Xj
s , µ)ds, (23)

subject to (10) and Xj
t = x, where utility u(x, µ) : Rn × Rm → R and ρ > 0 is a constant. We

assume that

lim
t↑∞

e−ρtV̂ (t, x) = 0. (24)

The solution to this problem is given by the HJB equation

ρV̂ =
∂V̂

∂t
+ sup

µ∈A
u(x, µ) +

n∑
i=1

bi (x, µ,Γ)
∂V̂

∂xi
+

n∑
i=1

σ2
ii(x)

2

∂2V̂

∂x2
i

. (25)

Its solution is the optimal value function V̂ (t, x) and the control strategy µ(t, x).

We may define a competitive equilibrium in this economy.

Definition 4 (Competitive equilibrium) A competitive equilibrium is a vector of prices Γt, a

value function V̂ (t, x), a control µ(t, x) and a distribution f(t, x) such that (i) given Γt and f(t, x),

V̂ (t, x) solves the HJB equation (25) and the optimal control is µ(t, x); (ii) given µ(t, x) and Γt,

f(t, x) solves the KF equation (11, 12); and given µ(t, x) and f(t, x), the price vectors satisfy the

price equation (13).

This definition of competitive equilibrium is the continuous-time counterpart to the standard re-

cursive competitive equilibrium in models with heterogeneous agents à la Aiyagari-Bewley-Huggett.

4.2 Constrained optimality of the competitive equilibrium

Imagine that a benevolent social planner chooses the controls and the prices in order to maximize a

discounted SWF, W, that aggregates individuals’utilities u(x, µ) into a social utility. We consider

the (symmetric) generalized utilitarian functional

W [f, µ] =

∫
Rn
ω(x)u(x, µ)f(t, x)dx, (26)

where ω(x) are the Pareto weights. If ω(x) = 1 then we have a purely utilitarian SWF. This is

just a particular case of the general approach described in the previous section, and therefore the

solution is given by Proposition 3 with g(x, µ) = ω(x)u(x, µ).
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Notice that the necessary conditions for a constrained social optimum are the same as for a

competitive equilibrium except that the individual HJB equation (25) and the individual optimal

policy functions V̂ (t, x) are now replaced by the planner’s HJB equation (20) and the marginal

social value v(t, x). However, both equations are equal except that in the individual HJB we have

the individual utility u(x, µ) and in the planner’s HJB we have instead the sum ω(x)u(x, µ) +∑p
k=1 λk(t)G

′
kh(x, µ). Therefore, it is trivial to prove the following corollary.

Corollary 5 (Constrained optimality of the competitive equilibrium) A competitive equi-
librium is constrained effi cient in the utilitarian sense (ω(x) = 1) if

p∑
k=1

λ̃k(t)h(x, µ) = 0, (27)

where λ̃k(t) are given by

λ̃k(t) = −G′k
∫
Rn
V̂ (t, y)

(
n∑
i=1

[
∂2bi (y, µ,Γ)

∂Γk∂xi
f +

m∑
j=1

∂2bi
∂Γk∂µj

∂µj
∂xi

f +
∂bi
∂Γk

∂f

∂xi

])
dy. (28)

Notice that in this case V̂ = v, that is, the marginal social value equals the individual value.

Therefore, it is enough to solve the competitive equilibrium and to compute (27) to check whether

it is constrained effi cient. It is not necessary to solve the social planner’s problem.

In the case that the competitive equilibrium is not constrained effi cient, we can provide, given

a non-zero utility, some information regarding the aggregate preferences implicit in the market

allocation.

Corollary 6 (Equivalent Pareto weights) Assume that ∀x, u(x, µ) 6= 0. Then any stationary

competitive equilibrium allocation can be replicated by a constrained social planner with Pareto

weights

ω(x) = 1−
∑p

k=1 λ̃kh(x, µ)

u(x, µ)
. (29)

This corollary states that, given a certain (stationary) market allocation, it is always possible

to obtain a SWF that would produce the same allocation. This Pareto weights summarize all the

social preferences and can be used to compare alternative market allocations. Of course if the

competitive equilibrium is constrained effi cient and (27) is satisfied then ω(x) = 1.

5 The example revisited

Given the results above we can compute the constrained effi cient solution to the Aiyagari-Bewley-

Huggett economy. We do not discuss issues related to the existence or uniqueness of the solution,

12



but we provide a numerical algorithm that can find a solution to the optimal control problem.

5.1 Overview

Given the notation introduced in section 3, x = [a, z]′ , Γ = [w, r]′ , µ(x) = c, b (x, µ,Γ) =

[(wz + ra− c) , η(z)]′ , σ (x) =

[
0 0

0 σz(z)

]
, h(x) = a, G1(·) = ∂

∂K
F (·, 1) − δ and G2(·) =

∂
∂L
F (·, 1) . The optimal value functional V [f (·)] is given by

V [f (·)] =

∫
v(a, z)f(a, z)dadz = sup

w,r; c∈A,

∫ ∞
t

∫
e−ρ(s−t) [u(c) + ξ(a)] f(a, z)dadz,

subject to (7) and (6).

The HJB equation of the planner (20) in this problem is

ρv = sup
c∈A

u(c) + ξ(a) + (λ1 + λ2) a+ (wz + ra− c) ∂v
∂a

+ η(z)
∂v

∂z
+
σ2
z(z)

2

∂2v

∂z2
, (30)

which is the same as the one of the individual problem (4) plus the term (λ1 + λ2) a.

In this case, the values of the modified Lagrange multipliers (28) are

λ1 = − ∂2

∂K2
F (K, 1)

∫
v(a, z)

(
f(a, z) + a

∂f

∂a

)
dadz. (31)

λ2 = − ∂2

∂K∂L
F (K, 1)

∫
v(a, z)z

∂f

∂a
dadz, (32)

where K is the aggregate capital given by (5). Notice that λ1 and λ2 play a similar role as the net

effect ∆ in Davila et al. (2012). If we define an auxiliary value functional

Ṽ [f (·) ; r, w] ≡ sup
c∈A

∫ ∞
t

∫
e−ρ(s−t) [u(c) + ξ(a)] f(a, z)dadz,

subject to (7), this is the value functional optimal with respect to individual consumption but

without considering the impact on prices. For the optimal prices r∗ and w∗ we have that

Ṽ [f (·) ; r∗, w∗] = V [f (·) ; r, w] .

13



Then, using the results in Appendix B, we have that

λ1 =
∂2

∂K2
F (K, 1)

∂Ṽ [f (·) ; r∗, w∗]

∂r
, (33)

λ2 =
∂2

∂K∂L
F (K, 1)

∂Ṽ [f (·) ; r∗, w∗]

∂w
, (34)

that is, the Lagrange multipliers reflect the marginal impact on aggregate welfare of changing the

prices. In the case of a state constraint such as (3), they may be different from zero.

5.2 Numerical solution

Here we provide a numerical algorithm to solve the model. The algorithm can easily be extended

to tackle the general family of problems. In order to compute the numerical solution to the optimal

control problem we employ a relaxation method. Given θ ∈ (0, 1), begin with an initial guess of

the aggregate capital K0 and the Lagrange multipliers λ0
1 = λ0

2 = 0, set n = m = 0.12 Then:

1. Compute rn = ∂
∂K
F (Kn, 1)− δ and wn = ∂

∂L
F (Kn, 1) .

2. Given rn and wn, solve the planner’s HJB equation (30) to obtain an estimate of the value

function vn and of the consumption cn.

3. Given cn, solve the KF equation (4) and compute the aggregate distribution fn.

4. Compute the aggregate capital stock K̂n =
∫
fndadz.

5. ComputeKn+1 = θKn+(1− θ) K̂n. IfKn+1 is close enough toKn, stop. If not set n := n+1

and go to step 1.

6. Compute the Lagrange multipliers λ̂
m

1 and λ̂
m

2 using (31) and (32).

7. Compute λm+1
i = θλmi + (1− θ) λ̂mi , i = 1, 2. If λm+1

1 and λm+1
2 are close enough to λm1 and

λm2 , stop. If not set m := m+ 1 and go to step 1.

In order to solve the HJB and the KF equations, we employ a finite difference method described

in Appendix C. It approximates the value function V (a, z) and the distribution f(a, z) on a finite

grid with steps∆a and∆z : a ∈ {a1, ..., aI} , z ∈ {z1, ..., zJ}.13 We use the notation Vi,j ≡ V (ai, zj),

12Do not confuse the use of n and m here as indexes with the state and control dimension in section 3.
13Notice that subindexes i and j have a different meaning here than in the previous sections.

14



fi,j ≡ f(ai, zj), i = 1, ..., I; j = 1, ..., J. In this case K̂ =
∑I

i=1

∑J
j=1 fi,j∆a∆z and

λ1 ≈ −
(

∂2

∂K2
F (K, 1)

) I∑
i=1

J∑
j=1

Vi,j

(
fi,j + ai

fi+1,j − fi,j
∆a

)
∆a∆z,

λ2 ≈ −
(

∂2

∂K∂L
F (K, 1)

) I∑
i=1

J∑
j=1

Vi,jzj
fi+1,j − fi,j

∆a
∆a∆z.

As discussed in Achdou et al. (2014), the appropriate solution concept of HJB equation with

state constraints is that of a “viscosity solution” (Crandall and Lions, 1983; Crandall, Ishii and

Lions, 1992). The proposed finite difference method converges to the unique viscosity solution of

this problem (Barles and Souganidis, 1991).

5.3 Results

Calibration. We employ a similar calibration to the one in Aiyagari (1994). We consider the year
as the unit of time. The utility function is CRRA u(c) = c1−φ

1−φ , with φ = 3. The discount rate ρ is set

to 0.04. The production function is Cobb-Douglas F (K,L) = ZKαL1−α, with Z = 1, α = 0.36.

The depreciation rate is δ = 0.08. The idiosyncratic productivity shock zt follows a reflected

Ornstein—Uhlenbeck process with unit mean:

dzt = η(zt)dt+ σz(zt)dBt = ε($ − z)dt+ σzdBt,

where ε = 0.5 and σz = 0.2. The bounded interval is [z
¯
, z̄] = [0.5, 1.5]. The parameter $ is set to

1 so that the mean of zt is also 1. The borrowing constrain ā is set to −1.

The simulation parameters are the following. The range for a is [−1, 30] and the number of

grid points is set to I = 100 and J = 40. The relaxation parameter θ is 0.99.

Constrained effi cient solution. We solve the constrained optimum of the model. Figure 1

displays the savings functions

s(a, z) = wz + ra− c(a, z),

as well as the state distribution f(a, z). The values of the main aggregate variables are shown in

Table 1. Aggregate capital is 5.27. The values of the Lagrange multipliers are λ1 = 1.7374 and

λ2 = 0.3007. Given equations (33) and (34), the fact that λ1 and λ2 are positive indicates that

an increase in wages or interest rates would be welfare improving, that is, both prices would be

higher in the unconstrained first best. The constrained ineffi ciency of the competitive equilibrium

and the higher prices in the first best allocation are in line with Davila et al. (2012).
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Figure 1: Savings policy and distribution of income and wealth: constrained optimum.

Table 1. Comparison between the constrained optimum and the competitive equilibrium

Constrained optimum Competitive equilibrium

Aggregate capital 5.2740 5.7534

Output 1.8196 1.8775

Interest rate (%) 4.42 3.75

Capital-output ratio 2.8985 3.0644

Consumption 1.4002 1.4198

Competitive equilibrium. We also solve the competitive equilibrium of this economy. The

numerical procedure can be seen as a particular case of the one described above in which λ1 and

λ2 are set to zero. Figure 2 displays the results. Aggregate capital is 5.75, larger than in the

constrained optimum.

6 Conclusions

This paper introduces the problem of a planner who tries to control a population of heterogeneous

agents subject to idiosyncratic shocks in order to maximize an optimality criterion related to the

distribution of states across agents. If the problem is analyzed in continuous time, the KF equation

provides a deterministic law of motion of the entire distribution of state variables across agents.

The problem can thus be analyzed as a deterministic optimal control in which both the control and

the state are distributions. We provide necessary conditions by combining dynamic programming

with calculus of variations. If a solution to the problem exists and satisfies some differentiability
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Figure 2: Savings policy and distribution of income and wealth: competitive equilibrium.

conditions, we show how it should satisfy a system of PDEs including a generalization of the HJB

equation and a KF equation.

As an example, we employ this technique to analyze the welfare properties of heterogeneous-

agent models with idiosyncratic shocks. In particular, we analyze the constrained social optimum

in which a social planner maximizes a SWF subject to the same equilibrium budget constraints

and competitive price setting as the individual agents. We introduce two main results. First, we

provide a simple criterion to check whether a competitive equilibrium is constrained effi cient. The

criterion does not require the computation of the planner’s problem, it is just enough to have the

competitive equilibrium solution. Second, we consider the case in which an economy is constrained

ineffi cient and we show that, under some extra assumptions, any stationary competitive equilibrium

can be replicated by a constrained social planner.

Finally, we provide a numerical algorithm in order to find the solution to these kind of problems.

The algorithm is based on finite difference techniques in order to solve the HJB and KF equations

plus a relaxation algorithm. This methodology can be applied to a variety of problems in both

micro and macroeconomics.
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Appendix A: Functional Derivative

We introduce here the concept of functional derivative from the calculus of variations, see Gelfand

and Fomin (1991) or Sagan (1992).

Definition 7 Given a differentiable functional Φ[µ1, ..., µm], the functional derivative of Φ with

respect to µj : Rn → R is

δΦ

δµj(x)
≡ lim

ε→0

Φ[µ1, ..., µj(z) + εδ(z − x), ..., µm]− Φ[µ1, ..., µj, ..., µm]

ε
=

d

dε
Φ[µ1, ..., µj(z)+εδ(z−x), ..., µm],

where δ(x) is the Dirac delta.

Given the definition of a partial functional derivative, in the case of functionals of the form

Φ[µ1, ..., µm] =

∫
Rn
ϕ(x, µ1, ..., µm,

∂µ1

∂x1

, ...,
∂µ1

∂xn
, ...,

∂µm
∂x1

, ...,
∂µm
∂xn

)dx,

with ϕ an arbitrary function twicely differentiable, the functional derivative results in

δΦ

δµj
=

∂ϕ

∂µj
−

n∑
i=1

∂

∂xi

∂ϕ

∂
(
∂µj
∂xi

) . (35)

19



Furthermore, the functional derivative satisfies the chain rule. If G : R→ R is a real function,
G ∈ C1(R), then

δG(Φ)

δµj
= G′(Φ)

δΦ

δµj
, (36)

where G′(Φ) is the standard derivative of G.

Appendix B: Proof of Proposition 3

Proof. For any initial condition f(t0, x) such that t0 ∈ [0,∞), suppose that the admissible control

µ∗ ∈ A is a solution to the problem (15) for t0 ≤ t <∞, then

V [f(t0, ·)] =

∫ t

t0

e−ρ(s−t0)W [f(s, ·), µ∗] ds+ e−ρ(t−t0)V [f(t, ·)] , (37)

This is a particular case of lemma 7.1 in Flemming and Soner (2006) replacing the value function

by V [f(t0, ·)].
Taking derivatives with respect to time in equation (37):

ρV [f(t, ·)] = W [f(t, ·), µ∗] +
∂

∂t
V [f(t, ·)] = W [f(t, ·), µ∗] +

∫
Rn

δV [f ]

δf(t, y)

∂f(t, y)

∂t
dy (38)

= W [f(t, ·), µ∗] +

∫
Rn

δV [f ]

δf(t, y)

(
−

n∑
i=1

∂

∂xi
[bi (y, µ

∗,Γ∗) f ] +
1

2

n∑
i=1

∂2

∂x2
i

[
σ2
ii(y)f

])
dy.

Therefore, the optimal Markov control µ∗(t, ·) and the optimal prices Γ∗k(t) that maximize (38)

subject to the constraints (13), should be extremals of

W [f(t, ·), µ] +

p∑
k=1

λk(t)
{
H[f(t, ·), µ]−G−1

k (Γk(t))
}

(39)

+

∫
Rn
v(t, y)

(
−

n∑
i=1

∂

∂xi
[bi (y, µ,Γ) f ] +

1

2

n∑
i=1

∂2

∂x2
i

[
σ2
ii(y)f

])
dy,

where v(t, y) = δV [f ]
δf(t,y)

.

If µ∗ is an extremal of (39), all the functional derivatives of (39) with respect to µj, j = 1, ...,m,

should be zero:

δW

δµj(t, x)
+

p∑
k=1

λk(t)
δH

δµj(t, x)
+

δ

δµj(t, x)

∫
Rn
v(t, y)

(
−

n∑
i=1

∂

∂xi
(bif) +

1

2

n∑
i=1

∂2

∂x2
i

(
σ2
iif
))

dy = 0.
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Notice that

n∑
i=1

∂

∂xi
[bi (y, µ

∗,Γ∗) f ] =
n∑
i=1

[
∂bi
∂xi

f +
m∑
j=1

∂bi
∂µj

∂µ∗j
∂xi

f + bi
∂f

∂xi

]
,

therefore,

δ

δµj(t, x)

∫
Rn
v(t, y)

(
−

n∑
i=1

[
∂bi
∂xi

f +

m∑
j=1

∂bi
∂µj

∂µ∗j
∂xi

f + bi
∂f

∂xi

]
+

1

2

n∑
i=1

∂2

∂x2
i

[
σ2
ii(y)f

])
dy

= −
n∑
i=1

[
∂2bi
∂µj∂xi

vf +
m∑
k=1

∂2bi
∂µj∂µk

∂µ∗k
∂xi

vf +
∂bi
∂µj

∂f

∂xi
v

]
+

n∑
i=1

∂

∂xi

(
vf

∂bi
∂µj

)
=

n∑
i=1

∂bi
∂µj

∂v

∂xi
f,

where in the second line we have computed the functional derivative using (35). We obtain the set

of equations

∂g(x, u(x, µ∗))

∂µj
f(t, x)+

p∑
k=1

λk(t)G
′
k

∂h(x, µ∗)

∂µj
f(t, x)+

n∑
i=1

∂bi (x, µ
∗,Γ∗)

∂µj

∂v

∂xi
f(t, x) = 0, j = 1, ...,m.

(40)

If Γ∗(t) is a maximum of (39), all the partial derivatives of (39) with respect to Γk, k = 1, ...,m,

should be zero:

−λk(t)
G′k

+
∂

∂Γk

∫
Rn
v(t, y)

(
−

n∑
i=1

[
∂bi
∂xi

f +
m∑
j=1

∂bi
∂µj

∂µ∗j
∂xi

f + bi
∂f

∂xi

])
dy

= −λk(t)
G′k

+

∫
Rn
v(t, y)

(
−

n∑
i=1

[
∂2bi

∂Γk∂xi
f +

m∑
j=1

∂2bi
∂Γk∂µj

∂µ∗j
∂xi

f +
∂bi
∂Γk

∂f

∂xi

])
dy = 0,

where we have appplied the inverse function theorem and G′k = G′k
(∫
Rn h(x, µ)f(t, x)dx

)
. There-

fore the value of the Lagrange multipliers is

λk(t) = −G′k
∫
Rn
v(t, y)

(
n∑
i=1

[
∂2bi (y, µ

∗,Γ∗)

∂Γk∂xi
f +

m∑
j=1

∂2bi (y, µ
∗,Γ∗)

∂Γk∂µj

∂µj
∂xi

f +
∂bi (y, µ

∗,Γ∗)

∂Γk

∂f

∂xi

])
dy.

We also compute the functional derivative with respect to f in equation (39) noticing that

µ∗ = µ[f ] and Γ∗ = Γ[f ], that is, the optimal controls and the price vector depend on the state
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distribution:

δW [f, µ∗]

δf(t, x)
+

p∑
k=1

λk(s)
δH [f, µ∗]

δf(t, x)

+
δ

δf(t, x)

∫
Rn

δV [f ]

δf(t, y)

(
−

n∑
i=1

∂

∂xi
[bi (y, µ

∗,Γ∗) f ] +
1

2

n∑
i=1

∂2

∂x2
i

[
σ2
ii(y)f

])
dy = 0,

where we have applied the envelope condition.

Notice that

1

2

n∑
i=1

∂2

∂x2
i

[
σ2
ii(y)f

]
=

n∑
i=1

∂

∂xi

[
σii
∂σii
∂xi

f +
σ2
ii

2

∂f

∂xi

]

=
n∑
i=1

[(
∂σii
∂xi

)2

f + σii
∂2σii
∂x2

i

f + 2σii(x)
∂σii
∂xi

∂f

∂xi
+
σ2
ii

2

∂2f

∂x2
i

]
,

then,

δ

δf(t, x)

∫
Rn

δV [f ]

δf(t, y)

(
−

n∑
i=1

∂

∂xi
[bi (y, µ

∗,Γ∗) f ] +
1

2

n∑
i=1

∂2

∂x2
i

[
σ2
ii(y)f

])
dy

=

∫
Rn

δ2V [f ]

δf(t, x)δf(t, y)

∂f

∂t
dy +

n∑
i=1

[
− ∂bi
∂xi
−

m∑
j=1

∂bi
∂µj

∂µ∗j
∂xi

+

(
∂σii
∂xi

)2

+ σii(x)
∂2σii
∂x2

i

]
v

−
n∑
i=1

∂

∂xi

(
−biv + 2σii

∂σii
∂xi

v

)
+

n∑
i=1

∂2

∂x2
i

(
2σii

∂σii
∂xi

σ2
ii

2
v

)
=

∫
Rn

δ2V [f ]

δf(t, x)δf(t, y)

∂f

∂t
dy +

n∑
i=1

bi
∂v

∂xi
+

n∑
i=1

σ2
ii

2

∂2v

∂x2
i

.

where, from the first to the second and third lines we have computed the functional derivative

using (35).14

Finally, taking into account that

∂v(t, x)

∂t
=

∂

∂t

δV [f ]

δf(t, x)
=

∫
Rn

δ2V [f ]

δf(t, y)δf(t, x)

∂f(t, y)

∂t
dy

=

∫
Rn

δ2V [f ]

δf(t, x)δf(t, y)

∂f(t, y)

∂t
dy,

14In this case, as there are also second order derivatives of the distribution, we obtain an extra term in (35) of
the form +

∑n
i=1

∂2

∂x2i

∂ϕ

∂

(
∂2µj

∂x2
i

) .
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we obtain the equation

g(x, µ∗) +

p∑
k=1

λk(t)h(x, µ∗) +
∂v(t, x)

∂t
+

n∑
i=1

bi (x, µ
∗,Γ∗)

∂v(t, x)

∂xi
+

n∑
i=1

σ2
ii(x)

2

∂2v(t, x)

∂x2
i

= ρv(t, x).

(41)

Combining (41) and (40) we obtain (20).

Regarding the transversality condition, suppose that t ↑ ∞. In this case, using (16) and taking
functional derivatives with respect to f we obtain (22).

Appendix C: Description of the numerical algorithm

Step 1: Solution to the Hamilton-Jacobi-Bellman equation

The HJB equation is solved by a finite difference scheme following Achdou et al. (2014). It

approximates the value function V (a, z) on a finite grid with steps ∆a and ∆z : a ∈ {a1, ..., aI} ,
z ∈ {z1, ..., zJ}.15 We use the notation Vi,j ≡ V (ai, zj), i = 1, ..., I; j = 1, ..., J. The derivative of

V with respect to a can be approximated with either a forward or a backward approximation:

∂V (ai, zj)

∂a
≈ ∂a,FVi,j ≡

Vi+1,j − Vi,j
∆a

, (42)

∂V (ai, zj)

∂a
≈ ∂a,BVi,j ≡

Vi,j − Vi−1,j

∆a
, (43)

where the decision between one approximation or the other depends on the sign of the savings

function si,j = wzj + rai − ci,j through an “upwind scheme”described below. The derivatives of
V with respect to z are approximated using a forward approximation

∂V (ai, zj)

∂z
≈ ∂zVi,j ≡

Vi,j+1 − Vi,j
∆z

, (44)

∂2V (ai, zj)

∂z2
≈ ∂zzVi,j ≡

Vi,j+1 + Vi,j−1 − 2Vi,j

(∆z)2 . (45)

The HJB equation (4)

ρV = u(c) + (wz + ra− c) ∂V
∂a

+ η(z)
∂V

∂z
+
σ2
z(z)

2

∂2V

∂z2
,

where

c = (u′)
−1

(
∂V

∂a
),

15Notice that subindexes i and j have a different meaning here than in the main text.
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is approximated by an upwind scheme

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u(cni,j) + ∂a,FV
n+1
i,j sni,j,F1sni,j,F>0 + ∂a,BV

n+1
i,j sni,j,B1sni,j,B<0

+η(zj)∂zV
n+1
i,j +

σ2
z(zj)

2
∂zzV

n+1
i,j ,

where

sni,j,F = wzj + rai − (u′)
−1

(∂a,FV
n
i,j),

sni,j,B = wzj + rai − (u′)
−1

(∂a,BV
n
i,j).

Moving all variables with n+ 1 superscripts to the left hand side and those with n superscripts to

the right hand side:

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u(cni,j) + V n+1
i−1,j%i,j + V n+1

i,j βi,j + V n+1
i+1,jγi,j + V n+1

i,j−1χj + V n+1
i,j+1ςj, (46)

where

cni,j = (u′)
−1

(∂a,FV
n
i,j1sni,j,F>0 + ∂a,BV

n
i,j1sni,j,B<0 + u′(wzj + rai)1sni,j,F<0,sni,j,B>0), (47)

%i,j = −
sni,j,B1sni,j,B<0

∆a
,

βi,j = −
sni,j,F1sni,j,F>0

∆a
+
sni,j,B1sni,j,B<0

∆a
− η(zj)

∆z
− σ2

z(zj)

(∆z)2 ,

γi,j =
sni,j,F1sni,j,F>0

∆a
,

χj =
σ2
z(zj)

2 (∆z)2 ,

ςj =
σ2
z(zj)

2 (∆z)2 +
η(zj)

∆z
.

The state constraint (3) a ≥ ā is enforced by setting sni,j,B = 0.16 Similarly, snI,j,F = 0. Therefore,

the values V n+1
0,j and V n+1

I+1,j are never used. At the boundaries in the j dimension, equation (46)

16This is equivalent to the penalty function approach discussed in the main text.
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becomes

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u(cni,1) + V n+1
i−1,j%i,1 + V n+1

i,1

(
βi,1 + χ1

)
+ V n+1

i+1,1γi,1 + V n+1
i,2 ς1,

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u(cni,J) + V n+1
i−1,J%i,J + V n+1

i,J

(
βi,J + ςJ

)
+ V n+1

i+1,Jγi,J + V n+1
i,J−1χJ .

Equation (46) is a system of I×J linear equations which can be written in matrix notation as:

Vn+1 −Vn

∆
+ ρVn+1 = un +AnVn+1,

where the matrix An and the vectors Vn+1 and un are defined by:

An =



β1,1 + χ1 γ1,1 0 · · · 0 ς1 0 0 · · · 0

%2,1 β2,1 + χ1 γ2,1 0 · · · 0 ς1 0 · · · 0

0 %3,1 β3,1 + χ1 γ3,1 0 · · · 0 ς1 · · · 0
...

. . . . . . . . . . . . 0 0 0 · · · 0

0 0 0 %I,1 βI,1 + χ1 γI,1 0 0 · · · 0

0 0 · · · 0 %1,2 β1,2 γ1,2 0 · · · 0

0 0 · · · 0 0 %2,2 β2,2 γ2,2 · · · 0
...

. . . . . . . . . . . . . . . . . . . . . . . . 0

0 0 0 0 · · · 0 0 %I−1,J βI−1,J + ςJ γI−1,J

0 0 0 0 · · · 0 0 0 %I,J βI,I + ςJ



,

Vn+1 =



V n+1
1,1

V n+1
2,1
...

V n+1
1,2

V n+1
2,2
...

V n+1
I−1,J

V n+1
I,J


, un =



u(cn1,1)

u(cn2,1)
...

u(cn1,2)

u(cn2,2)
...

u(cnI−1,J)

u(cnI,J)


.

The system can in turn be written as

BnVn+1 = dn, (48)

where Bn=
(

1
∆

+ ρ
)
I−An and dn = un + Vn

∆
. I is the identity matrix.
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The algorithm to solve the HJB equation runs as follows. Begin with an initial guess V 0
i,j =

u(rai + wzj)/ρ, set n = 0. Then:

1. Compute ∂a,FV n
i,j, ∂a,BV

n
i,j, ∂zV

n
i,j and ∂zzV

n
i,j using (42)-(45).

2. Compute cni,j using (47).

3. Find V n+1
i,j solving the linear sustem of equations (48).

4. If V n+1
i,j is close enought to V n

i,j, stop. If not set n := n+ 1 and go to step 1.

Step 2: Solution to the Kolmogorov Forward equation

The KF equation is also solved using an upwind finite difference scheme. The equation (7) in this

case is

0 = − ∂

∂a
[(wz + ra− c) f ]− ∂

∂z
[η(z)f ] +

1

2

∂2

∂z2

[
σ2
z(z)f

]
, (49)∫

f(a, z)dadz = 1. (50)

This case is simpler than the previous one, as the problem is linear in f , so no iterative procedure

is needed.

We use the notation fi,j ≡ f(ai, zj). The system can be now expressed as

0 = −
fi,js

n
i,j,F − fi−1,js

n
i−1,j,F

∆a
1sni,j,F>0 −

fi+1,js
n
i+,j,B − fi,jsni,j,B

∆a
1sni,j,B<0

−fi,jη(zj)− fi,j−1η(zj−1)

∆z
+
fi,j+1σ

2
z(zj+1) + fi,j−1σ

2
z(zj−1)− 2fi,jσ

2
z(zj)

2 (∆z)2 ,

or equivalently

fi−1,jγi,j + fi+1,j%i,j + fi,jβi,j + fi,j+1χj + fi,j−1ςj = 0, (51)

then (51) is also a system of I × J linear equations which can be written in matrix notation as:

ATf = 0, (52)

where AT is the transpose of A = limn→∞A
n. In order to impose the normalization constraint

(50) we fix one value of fi,j equal to 0.1 by replacing the corresponding entry of the zero vector in

(52) by 0.1 and the corresponding row of B by a row of zeros everywhere except for a one in the
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diagonal. We solve the system (52) and obtain a solution f̂ . Then we renormalize as

fi,j =
f̂i,j∑I

i=1

∑J
j=1 f̂i,j∆a∆z

.
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