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Abstract

We study the problem of a principal who relies on the reports of a monitor to pro-
vide incentives to an agent. We allow for collusion, so that the agent and monitor can
side-contract on what report to send. We show that the principal can benefit from cre-
ating endogenous asymmetric information between the agent and the monitor, thereby
making side-contracting more difficult. Specifically, it may be optimal to randomize
the incentives given to the monitor, and let the magnitude of her incentives serve as
her private information vis à vis the agent.

Plausible numerical computations in simple environments suggest that the poten-
tial efficiency gains from random incentives can be large. However, in general, the
optimality of random incentives will depend on patterns of pre-existing asymmetric
information: it is not always effective to add new sources of asymmetric informa-
tion. We solve for both the Bayesian and max-min optimal policies, as well as provide
an experiment-ready framework for prior-free policy evaluation. We show that even
though monitors’ reports do not provide a reliable measure of actual corruption, it is
possible to evaluate local policy changes using only unverified report data.
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1 Introduction

This paper explores the idea that the cost of collusion in organizations can be reduced by

introducing asymmetric information frictions between the colluding parties. We consider

a principal who relies on the reports of a monitor to provide incentives to an agent, and

allow the agent and the monitor to side-contract on what report to send. We show that the

principal can reduce the cost of incentive provision by randomizing the incentives given to

the monitor, and letting the magnitude of those incentives serve as the monitor’s private

information vis à vis the agent. The optimality of such random incentives depends on

patterns of pre-existing asymmetric information, but the efficiency gains are large in plausible

settings. We characterize the max-min and Bayesian optimal policies, as well as provide a

framework for prior-free policy evaluation.

We study a game between three players — a principal, an agent, and a monitor — in

which the agent takes a corruption decision c ∈ {0, 1}, where corruption c = 1 gives her a

private benefit at a cost to the principal. The behavior of the agent is not observed by the

principal, but is observed by the monitor, who sends a report m ∈ {0, 1}. We think of this

report as hard evidence permitting prosecution: report m = 1 triggers an exogenous judicial

process which imposes a cost k on corrupt agents; report m = 0 (which involves suppression

of evidence whenever c = 1) triggers no such punishment. Finally, although the principal

cannot observe the agent’s behavior, she can detect misreporting m 6= c with probability

q. The monitor is compensated according to a fixed wage w and is fired in the event that

the principal detects misreporting. The only policy control available to the principal are

the incentives for truth-telling she provides to the agent, captured by the product qw of the

likelihood of detection and possible lost wages.

We allow for collusion between the agent and the monitor at the reporting stage (i.e.

after the corruption decision is taken). In particular, the monitor can destroy evidence (i.e.

report message m = 0) against a corrupt agent in exchange for a bribe. We think of the
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destruction of evidence as happening in front of the agent, so that there is no moral-hazard

between the agent and the monitor, and collusion boils down to a bilateral trading problem.

Since we know from Myerson and Satterthwaite (1983) that asymmetric information may

prevent efficient trade, we study the extent to which the principal can reduce the cost of

incentive provision by creating endogenous asymmetric information between the agent and

the monitor.

Our model fits a broad class of environments in which an uninformed principal is con-

cerned about collusion between her monitor and the agents the monitor is supposed to

inform about. This includes many of the settings that have been brought up in the empirical

literature on corruption, for instance collusion between polluting firms and environmental

inspectors (Duflo et al., 2013), tax-evaders and customs officers (Fisman and Wei, 2004),

public works contractors and local officials (Olken, 2007), and so on. In these settings the

principal cannot efficiently monitor agents directly, but may realistically be able to detect

misreporting by scrutinizing accounts, performing random rechecks in person or obtaining

tips from informed parties (see Chassang and Padró i Miquel (2013) for work on endogenous

reporting). Alternatively, the principal may be able to detect misreporting if corruption has

delayed but observable consequences, such as environmental pollution, public infrastructure

failures, media scandals, and so on.

Our analysis emphasizes three sets of results. The first is that although deterministic

incentive schemes are efficient in the absence of collusion, they can become excessively expen-

sive once collusion is allowed. Efficient contracting between the agent and the monitor forces

the principal to raise the monitor’s wage to the point where the agent and the monitor’s joint

surplus from misreporting becomes negative. By using random incentives, the principal can

reduce the rents of a corrupt agent, which lowers the cost of incentive provision. We make

this point using a simple example without pre-existing asymmetric information. In this case,

the cost-savings from using random rather than deterministic incentives are large, reaching

50% under plausible parameter specifications.
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Our second set of results extends the analysis to environments with pre-existing asym-

metric information. In addition to the incentives provided by the principal, the monitor

experiences an exogenous privately observed idiosyncratic cost η ≥ 0 for accepting a bribe.

We show that the optimality of using random incentives depends on the convexity or con-

cavity of the c.d.f. Fη of idiosyncratic costs η, and characterize the Bayesian optimal wage

schedule. Recognizing that the principal may not have well-formed beliefs over the distri-

bution Fη, we also characterize the max-min optimal wage distribution, and show that it

coincides with that derived in environments with no pre-existing private information.

Finally, with implementation in mind, we study the possibility of policy evaluation using

reporting data from hypothetical randomized controlled experiments on a large population

of agent-monitor pairs. We first show that aggregate reports of corruption across different

incentive schemes do not allow for reliable policy evaluation. Indeed, reports of corruption

depend on both underlying corruption rates, and the monitors’ decision to report corruption

or not. As a result, it is possible that a new incentive scheme decreases aggregate reports

of corruption, while in fact increasing underlying corruption rates. Surprisingly, we are able

to show that it is possible to perform prior-free local policy evaluations using conditional

report data, i.e. average reports of corruption conditional on incentives. Somewhat counter-

intuitively, a local policy change improves on a reference incentive scheme if it is associated

with more reports of corruption.

This paper is most closely related to Chassang and Padró i Miquel (2013) who also

consider a game between a principal, an agent, and a monitor in which the agent and the

monitor may collude. Both papers explore the idea that collusion may be addressed by

exploiting informational frictions that make side-contracting difficult. This paper focuses on

asymmetric information while Chassang and Padró i Miquel (2013) focus on moral hazard.

They study a model in which reports are non-contractible, so that the monitor is subject to

moral hazard. The agent can incentivize her preferred report by committing to a retaliation

strategy which can depend on observables. Chassang and Padró i Miquel (2013) show that
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it is important for the principal to garble the information content of the monitor’s reports

to limit the effectiveness of incentive provision by the agent. In a spirit similar to our local

policy evaluation results, Chassang and Padró i Miquel (2013) also offer a framework for

prior-free inference from unverifiable reports.

On the applied side, this paper relates to and hopes to usefully complement the growing

empirical literature on corruption. We address two aspects of the problem which have been

emphasized in the literature, for instance in the recent survey by Olken and Pande (2012).1

The first is that the effectiveness of counter-corruption schemes may be very different over

the short-run and the long run: over time, agents will find ways to game the system and

undermine the monitoring structures in charge of evaluating them. We explicitly take into

account the possibility of collusion between agents and monitors and propose novel ways to

reduce the costs it imposes on organizations. A second difficulty brought up by Olken and

Pande (2012) is that reports of corruption do not provide a reliable measure of underlying

corruption. Because reports of corruption depend both on underlying corruption, and on

endogenous decisions from monitors to report this corruption or not, reported corruption

may decrease while actual corruption increases, and inversely. We address this by providing

a framework for prior-free policy evaluation which exploits our structural model to back-out

measures of underlying corruption using only reporting data. This connects our work to a

small set of papers on structural experiment design (see for instance Karlan and Zinman

(2009), Ashraf et al. (2010), Chassang et al. (2012), Chassang and Padró i Miquel (2013),

Berry et al. (2012)) that takes guidance from structural models to design experiments whose

outcome measures can be used to infer unobservable parameters of interest.

On the theory side, our work fits in the literature on collusion in mechanism design

developed by Tirole (1986) and Laffont and Martimort (1997, 2000).2 The main modelling

1For recent work on the measurement of corruption, see Bertrand et al. (2007), and Olken (2007). See
also the surveys by Banerjee et al. (2013) and Zitzewitz (2012).

2See also Baliga and Sjöström (1998), Felli and Villa-Boas (2000), Faure-Grimaud et al. (2003), Mookher-
jee and Tsumagari (2004), Che and Kim (2006) or Celik (2009).
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difference between much of this literature and our work is that we endogenize the difficulty

of contracting between the agent and the monitor, and do not assume that the incentive

structure is common-knowledge.3 We also emphasize a direct mechanism design approach

in which the policy instruments and information available to the principal are realistically

limited. Finally, we explore the question of robust inference which is new to this literature.

Other work has underlined the usefulness of random incentives for reasons unrelated

to collusion. In Becker and Stigler (1974) random checks are an optimal response to non-

convex monitoring costs. More recently, in work on police crackdowns, Eeckhout et al. (2010)

show that in the presence of budget constraints, it may be optimal to provide high powered

incentives to a fraction of a population of agents rather than weak incentives to the entire

population. In addition Myerson (1986) and more recently Rahman (2012) emphasize the

role of random messaging and random incentives in mechanisms, in particular in settings

where the principal needs to disentangle the behavior of different parties.4

Finally, our results on prior-free policy evaluation relate the paper to a growing applied

theory literature which studies contract design from the perspective of a principal who does

not necessarily have a single Bayesian prior over the environment, but rather entertains a set

of priors consistent with a few moment restrictions that she can impose based on subjective

assessments, or objective data. Examples include Hurwicz and Shapiro (1978), Hartline and

Roughgarden (2008), Chassang (2013), Frankel (2014), Chassang and Padró i Miquel (2013),

Madarász and Prat (2014), Prat (2014) or Brooks (2014).

The paper is organized as follows. Section 2 introduces our framework in the context of a

simple example with no pre-existing private information, and delineates the economic forces

3In related work, Baliga and Sjöström (1998) consider a setting in which the agent has no resources of her
own, so that any promised payment to the monitor must come from the wage she obtains from the principal.
Baliga and Sjöström (1998) show that by randomizing over the agents’ wages the principal undermines the
agent’s ability to commit to transfers.

Also related, although not in the context of collusion, Calzolari and Pavan (2006a,b) which show that a
monopolist may benefit from selling to different types of buyers with different probabilities to increase the
buyers’ ability to extract revenue on a secondary market.

4Lazear (2006), Strausz (2006), Jehiel (2012), Rahman and Obara (2010) and Ederer et al. (2013) also
emphasize the usefulness of random incentives in organizations.
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that make random incentives useful. Section 3 extends the analysis to environments with

pre-existing asymmetric information, shows that additional asymmetric information need

not always be optimal, and solves for both the max-min, and Bayesian optimal policies.

Section 4 takes seriously the possibility of implementing random incentive schemes in the

field, and offers an experiment-ready framework for policy evaluation using only unverified

report data.

2 A Simple Example

2.1 Framework

Players, actions, and payoffs. We consider a game with three players: a principal, an

agent and a monitor. The agent takes a corruption decision c ∈ {0, 1} where corruption c = 1

gives the agent a benefit πA > 0, and comes at a cost πP < 0 to the principal. The agent’s

action is not directly observable to the principal, but is observed by a monitor who chooses

to make a report m ∈ {0, 1} to the principal. Report m = 1 triggers an exogenous judiciary

process that imposes an expected cost k > πA on corrupt agents and (for simplicity) a cost

equal to 0 on non-corrupt agents.

Reports by the monitor are scrutinized by the principal, so that false reports m 6= c are

detected with probability q ∈ (0, 1). The monitor is paid according to a fixed wage contract

with wage w, but gets fired in the event that the principal finds evidence of misreporting. The

monitor is protected by limited liability and cannot be punished beyond the loss of wages.

As part of a possible side-contract the agent can make transfers τ ≥ 0 to the monitor.

Altogether, expected payoffs uP , uA, and uM respectively accruing to the principal, the
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agent, and the monitor take the form:

uP = πP × c −γw × w − γq × q

uA = πA × c −k × c×m −τ

uM = w −q × w × 1m 6=c +τ,

where γw denotes the efficiency cost of raising wages and γq captures the principal’s cost of

attention. We assume for now that parameters πA, k, and q are known to the principal.

Note that the monitor’s incentives for truthful reporting are captured by the expected

loss from misreporting qw. For ease of exposition and consistency with the literature, we

think of the distribution of wages w as the principal’s policy variable. However, we want to

highlight that wages w and scrutiny q enter payoffs in symmetric ways, so that our analysis

applies without change if scrutiny q is the relevant policy instrument. As we discuss in

Section 5, when giving similar monitors different wages raises fairness concerns, scrutiny q

may be the more appropriate choice variable.

Timing and Commitment. Our analysis contrasts the effectiveness of incentive schemes

under collusion and no-collusion. The timing of actions is as follows:

1. the principal commits to a distribution of wages w with c.d.f. Fw, and draws a random

wage w for the monitor, which is observed by the monitor but not by the agent;

2. the agent makes a corruption decision c ∈ {0, 1};

3. under collusion, the agent makes the monitor a take-it-or-leave-it bribe offer τ in ex-

change for sending message m = 0, which the monitor accepts or rejects — we assume

perfect commitment so that whenever the monitor accepts the bribe, she does send

message m = 0; under no-collusion nothing occurs;

4. under no-collusion or, under collusion if there was no agreement in the previous stage,

the monitor sends the message m maximizing her final payoff.
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Note that we assume that at the collusion stage, if it occurs, the agent has all the bargaining

power. We consider more general bargaining structures in Section 3 and in Appendix A.

The following observation is useful.

Fact 1. Under collusion, the monitor will accept a bribe τ from a corrupt agent if and only

if τ > qw.5 In equilibrium, the agent never offers a bribe τ > πA.

Under no-collusion, or if the monitor rejects the agent’s offer, the monitor’s optimal

continuation strategy is to send truthful reports m = c.

It follows from Fact 1 that the expected payoff of a corrupt agent under collusion is

πA − k + maxτ (k − τ)prob(qw < τ).

We think of non-collusive and collusive environments as respectively capturing short-run

and long-run patterns of organizational behavior. In the short run, the agent may take the

monitors’ behavior as given, and not explore with bribery. In the long run however, as the

agent explores the different strategies available to her, she will learn that monitors respond

favorably to bribes.

2.2 The value of endogenous asymmetric information

Deterministic wages. We begin by computing the expected cost EFw [w] of keeping the

agent non-corrupt when the principal can use only deterministic wages.

Fact 2 (collusion and the cost of incentives). Assume that the principal uses only determin-

istic wages. Under no-collusion the principal can induce the agent to be non-corrupt at 0

cost.

Under collusion, the minimum cost of wages needed to induce the agent to be non-corrupt

is equal to πA
q

.

5By convention, we assume that the monitor rejects the agent’s offer whenever she is indifferent between
accepting and rejecting a bribe.
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While deterministic incentive schemes work well under no-collusion, their effectiveness is

significantly limited whenever collusion is a possibility. Note that this remains true if several

monitors are used and their messages are cross-checked in the spirit of Maskin (1999). As

we show in Appendix A, absent asymmetric information, the cost of bribing two monitors is

equal to the cost of bribing a single monitor with twice the incentives.

We now show that by randomizing wage w the principal reduces the efficiency of side-

contracting between the agent and the monitor, and hence reduces the cost of incentive

provision. We solve for the optimal wage distribution F bmk
w which will serve as a useful

benchmark in later sections.

Proposition 1 (optimal incentives under collusion). Under collusion it is optimal for the

principal to use random wages. The cost-minimizing wage distribution F bmk
w that induces the

agent not to be corrupt is described by

∀w ∈ [0, πA/q], F bmk
w (w) =

k − πA
k − qw

. (1)

The corresponding cost of wages W bmk(πA) ≡ EF bmk
w

[w] is

W bmk(πA) =
πA
q

[
1− k − πA

πA
log

(
1 +

πA
k − πA

)]
=
πA
q
× πA

k
− o

(
1

k

)
. (2)

The proof of Proposition 1 is instructive.

Proof. A wage distribution F induces the agent to be non-corrupt if and only if, for every

bribe offer τ ∈ [0, πA], πA − k + (k − τ)prob(τ > qw) ≤ 0, or equivalently, if and only if, for

every τ ∈ [0, πA], F
(
τ
q

)
≤ k−πA

k−τ . Using the change in variable w = τ
q
, we obtain that wage

distribution F induces the agent to be non-corrupt if and only if,

∀w ∈ [0, πA/q], F (w) ≤ k − πA
k − qw

. (3)

By first-order stochastic dominance, it follows that in order to minimize expected wages,
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the optimal distribution must satisfy (3) with equality. This implies that the optimal wage

distribution is described by (1). Expected cost expression (2) follows from integration and

straightforward computations. �

In this simple environment, the savings that can be obtained using random incentives are

large: the cost of incentives goes from πA
q

for deterministic mechanisms, to less that πA
q
πA
k

for the optimal random incentive scheme. For instance, if the penalty for corruption is twice

as high as the benefit of corruption, i.e. k ≥ 2πA, the principal would be able to save more

than 50% on the cost of wages by using random incentives.6

This is of course a particularly simple environment. To properly assess the usefulness

of random incentives we turn to a more general framework which allows for pre-existing

asymmetric information, and more general bargaining structures.

3 Optimal incentives with pre-existing asymmetric in-

formation

3.1 Framework

Our more general framework coincides with that of Section 2 but extends it in three impor-

tant ways:

• the agent’s benefit πA from corruption is now private information to the agent, dis-

tributed according to c.d.f. FπA ;

• the monitor now has a privately observed cost η ≥ 0 for accepting a bribe, distributed

according to c.d.f. Fη with density fη;

6Note that gains remain large even if we consider simpler schemes: for the optimal binary wage distribu-
tion, the share of costs saved using random incentives will be exactly equal to 1−πA/k. Indeed, the optimal
binary wage distribution puts probability 1− πA/k on w = 0 and probability πA/k on w = πA/q.
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• at the collusion stage, bargaining takes the form of probabilistic take-it-or-leave-it

offers; the agent is the proposer with probability λ while the monitor proposes with

probability 1− λ.7

Altogether, payoffs now take the form

uP = πP × c −γw × w − γq × q

uA = πA × c −k × c×m −τ

uM = w − [q × w + η]× 1m6=c +τ.

The only difference from payoffs given in Section 2 is that the monitor now experiences an

expected loss qw + η rather than just qw when accepting a bribe, where η is a positive

private cost of accepting bribes. There is asymmetric information over πA, and η, but we

maintain the assumption that parameters k, λ and q are known to the principal. We relax

this assumption further in Section 4.

It is useful to note that the following extension of Fact 1 holds.

Fact 3. If no agreement is reached at the collusion stage, the monitor’s optimal continuation

strategy is to send truthful reports m = c.8

If the monitor acts as a proposer at the collusion stage, she demands a bribe τ ≥ k when

the agent is corrupt, and a bribe τ = 0 when the agent is non-corrupt.

The agent accepts any offer τ ≤ k when she is corrupt and any offer τ = 0 when she is

not corrupt.

An immediate implication is that non-corrupt agents get a payoff equal to 0.

7See Appendix A for an extension to arbitrary bargaining mechanisms.
8Fact 3 relies on the assumption that the monitor cannot commit to sending false reports about a non-

corrupt agent. We allow for such commitment power in Appendix A and show that it does not affect our
main results.
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Optimal policies under budget constraints. Given a distribution of wages Fw, a cor-

rupt agent of type πA gets an expected payoff

UA(πA) = πA − k + λ max
τ∈[0,πA]

(k − τ)prob(qw + η < τ).

The agent will choose to be corrupt if and only if UA(πA) > 0. Note that UA(πA) is increasing

in πA, so that given a wage profile, agents follow a threshold strategy. Given a distribution

Fw, let us denote by πA(Fw) the highest non-corrupt type.

The principal’s optimization problem over wage distribution Fw can be decomposed as

follows: first, given a budget w0, find the distribution of wages Fw that maximizes threshold

πA(Fw) under budget constraint EFw [w] = w0 — this is the corruption-minimizing wage

schedule, given budget w0. The overall optimum can then be obtained by optimizing over

budget w0. We believe that this “fixed budget” version of the principal’s problem is par-

ticularly amenable to practical implementation and reflects the constraints that real-life

institutions frequently operate under. Field experimentation with random incentive schemes

seems more likely to happen if it takes as given existing monitoring budgets.

3.2 When is additional asymmetric information desirable?

Definition 1. We say that a wage profile with c.d.f. Fw is random if and only if the support

of Fw contains at least two elements.

Proposition 2 (ambiguous optimal policy). (i) Whenever Fη is strictly concave

over the range [0, k], the corruption-minimizing wage profile under any budget

w0 > 0 is random.

(ii) Whenever Fη is strictly convex over the range [0, k], the corruption-minimizing

wage profile under any budget w0 > 0 is deterministic.
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To get some intuition for this result, consider the agent’s payoff from taking action c = 1:

UA(πA) = πA − k + λ max
τ∈[0,πA]

(k − τ)prob(qw + η < τ)

= πA − k + λ max
τ∈[0,πA]

(k − τ)EFw [Fη(τ − qw)].

If Fη is strictly convex over the support of τ − qw, the agent’s payoff from a random wage

schedule is larger than her payoff from a deterministic one with the same expectation. If

Fη is strictly concave over the support of τ − qw, the agent’s payoff from a random wage

schedule is smaller than her payoff from a deterministic one with the same expectation.

If Fw is neither concave nor convex over [0, k] we can still provide sufficient conditions

for random wage profiles to be optimal. Fix a deterministic wage w0 and denote by τ0 the

highest solution to a corrupt agent’s optimal bribe problem when the monitor is compensated

with a deterministic wage w0,

max
τ

(k − τ)prob(qw0 + η < τ).

Proposition 3 (sufficient condition for random incentives). Whenever τ0 ≤ k
2
, the corruption-

minimizing policy given budget w0 is random.

In words, if starting from a deterministic wage, the agent’s optimal bribe is less than half

the cost of prosecution, it is optimal to use random wages.

Because adding further asymmetric information does not necessarily improve incentive

provision, correct policy design will necessary depend on the restrictions, subjective or ob-

jective, that the principal can impose on the environment. We believe that specifying beliefs

is often difficult for principals, which makes practical design exercises difficult. We approach

this problem in three ways. First we characterize the max-min wage distribution and show

that it coincides with the benchmark wage distribution F bmk
w that is optimal in the simple
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environment of Section 2. Second, we solve for the optimal policy when the principal has

a Bayesian prior over the environment. Third, we show how to perform prior-free policy

evaluations using unverified report data.

3.3 Max-min optimal policy design

Take as given a budget w0. Recall that given a wage distribution Fw, a distribution of private

costs Fη, and bargaining power λ, we denote by πA(Fw) the highest value of benefit πA such

that the agent still chooses to be non-corrupt. This section treats environment Fη, λ as a

choice variable for nature, and we emphasize that threshold πA depends on Fη and λ by

using the notation πA(Fw, Fη, λ).

We ask what is the max-min corruption-minimizing wage distribution, i.e. the solution

to

max
Fw

s.t. EFw [w]=w0

min
Fη ,λ

πA(Fw, Fη, λ).

Denote by π0
A the highest non-corruption threshold affordable under budget w0, when

the cost of keeping an agent of type πA non-corrupt is given by the benchmark cost function

W bmk(·) defined in Proposition 1, i.e. let π0
A be the unique solution to W bmk(π0

A) = w0. The

following result holds.

Proposition 4 (max-min optimal incentives). The max-min optimal level of non-corruption

is

max
Fw

s.t. EFw [w]=w0

min
Fη ,λ

πA(Fw, Fη, λ) = π0
A.

It is attained by using the benchmark wage distribution defined in Section 2: F bmk
w (w) =

k−π0
A

k−qw .

The worse case environment is also that of Section 2, i.e. it sets Fη(0) = 1 and λ = 1.
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3.4 Bayesian optimal incentives

We now characterize optimal incentives in the case where Fη is concave over the range [0, k].

We know from Proposition 3 that the optimal policy uses random incentives. For simplicity

we also assume that [0, k] is included in the support of Fη.

To facilitate exposition, it is helpful to consider the dual problem of minimizing costs

given a target corruption threshold πA. For any budget w0 one can then compute the

highest threshold πA whose incentive cost is affordable under w0. Fix a target threshold πA

and a wage policy Fw. An agent of type πA chooses to remain non-corrupt if and only if, for

all possible bribes τ ∈ [0, πA],

πA − k + λ(k − τ)prob(η + qw < τ) ≤ 0 (4)

⇐⇒ prob(η + qw < τ) ≤ k − πA
λ(k − τ)

.

Define

m0 ≡ min
τ∈[0,πA]

k − πA
λ(k − τ)prob(η < τ)

(5)

and denote by τ0 the highest solution to (5). Note that agents with type πA such that m0 ≥ 1

choose to remain non-corrupt for any wage distribution.9 We focus on agents of type πA

such that m0 < 1.

Let τ ≡ πA−(1−λ)k
λ

and note that τ > τ0 for all πA such that m0 < 1.10 Denote by Φ the

operator over c.d.f.s F such that for all w ∈ [0,+∞),

Φ(F )(w) =


m0 if w ∈ [0, τ0

q
],

min
{

1, k−πA
fη(0)λ(k−qw)2

−
∫ qw

0

f ′η(η̂)

fη(0)
F
(
w − η̂

q

)
dη̂
}

if w ∈ ( τ0
q
, τ
q
),

1 if w ≥ τ
q
.

(6)

9Indeed, m0 ≥ 1 implies 0 ≥ πA−k+maxτ λ(k−τ)prob(η < τ) ≥ πA−k+maxτ λ(k−τ)prob(η+qw < τ).
10Indeed, m0 < 1 implies k−πA

λ(k−τ0) < 1⇐⇒ τ0 < τ .
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Proposition 5 (Bayes-optimal incentives). Assume that Fη is concave over the range [0, k].

The optimal wage distribution F ∗w satisfies the following properties:

(i) ∀w ∈ [0, τ0/q], F
∗
w(w) = m0;

(ii) over the range τ ∈ [τ0, k], incentive compatibility condition (4) holds with

equality for all τ such that F ∗w(τ/q) < 1;

(iii) F ∗w is the unique solution to fixed point equation F ∗w = Φ(F ∗w); furthermore,

Φ is a contraction mapping under the sup norm.

Point (ii) of Proposition 5 echoes Proposition 1. Incentive compatibility of non-corrupt

behavior at every τ ∈ [0, πA] implies a bound on the distribution of corruption costs η+ qw.

The intuition for point (i) comes from writing prob(η + qw < τ) = prob(η < τ)Fw(0) +

prob(η+ qw < τ |qw ∈ (0, τ))prob(qw ∈ (0, τ)). This implies that m0 is necessarily an upper

bound to Fw(0) and that whenever Fw(0) = m0, Fw can place no mass on (0, τ0/q).

4 Prior-free policy evaluation

Proposition 5 solved for the optimal wage profile for a class of well-behaved priors Fη under

which the optimal policy is random. We now show that even if the principal is unwilling

to specify a prior belief over the underlying environment, it is possible to perform prior-

free local policy evaluations provided the principal has access to appropriate experimental

data. Our inference results do not require the principal to know any of the parameters of

the environment, in particular, the cost k imposed by the judiciary on corrupt agents, the

likelihood q of detection, and bargaining power λ need not be known to the observer.

Given budget w0, consider two policies F 0
w, F 1

w such that EF 0
w
[w] = EF 1

w
[w] = w0. For any

ε ∈ [0, 1], denote by F ε
w the mixture

F ε
w ≡ (1− ε)F 0

w + εF 1
w.
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Imagine that policy F ε
w is implemented over an infinite population of exchangeable monitor

and agent pairs. Denote by mε ∈ {0, 1} equilibrium report from monitors, and by cε ∈ {0, 1}

the corruption decision of agents. For any statistic Z, we denote by ÊZ the population

average of Z.

Given a policy F ε
w, denote by Rε = Ê[mε] the proportion of monitors reporting corruption,

and by Cε = Ê[cε] the proportion of agents that are corrupt. Our first result clarifies that

starting from a deterministic wage, unconditional report data Rε is not a sufficient statistic

to evaluate whether a policy change increases or reduces underlying corruption.

Fact 4 (unreliable aggregate reports). Consider a default deterministic wage w0, and any

alternative random incentive scheme F 1
w such that EF 1

w
[w] = w0.

Regardless of whether R0 < R1 or R0 > R1, there exist specifications of k, FπA and Fη

such that C0 > C1, and specifications of k, FπA and Fη such that C0 < C1.

In words, the ordering of aggregate reports places no restrictions on the ordering of

underlying corruption. Indeed, reports of corruption depend on both underlying rates of

corruption, and the monitors’ decisions to report corruption or not. Hence, a scheme that

facilitates bribing the monitor may end up increasing actual corruption while decreasing

aggregate reports of corruption.

Still, we now show that using conditional report data it is possible to evaluate local policy

changes. A draw w from F ε
w can always be decomposed as a draw from a Bernoulli variable

X ∈ {0, 1} with prob(X = 1) = ε, followed by a draw of w according to FX
w . Define mean

reports conditional on X by Rε(X) ≡ Ê [mε|X].

Proposition 6 (prior-free policy evaluation). The impact of local policy changes on under-

lying corruption can be identified from observable conditional reports:

sgn

[
∂Cε

∂ε

]
= sgn [Rε(X = 0)−Rε(X = 1)] .11
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This implies that a small movement from F 0
w to F 1

w decreases corruption if and only if

there are more reports of corruption conditional on X = 1 (i.e. when the wage is drawn

according to F 1
w) than conditional of X = 0 (i.e. when the wage is drawn according to F 0

w).

An immediate corollary is that unverified report data from a single policy experiment lets

us identify optimal local policy changes. Take as given a distribution of wages with density

f 0
w . Denote by P the set of alternative policies f 1

w satisfying

supp f 1
w = supp f 0

w and Ef0w [w] = Ef1w [w].

For any such f 1
w, construct the mixture f εw = (1− ε)f 0

w + εf 1
w and define

∇f1w
C =

∂E[cε|f εw]

∂ε
∣∣ε=0

.

This measures the marginal change in corruption following a marginal move in the direction

of f 1
w.

Since, f 0
w and f 1

w have the same support it is possible to construct a random variable X

with values in {0, 1} coupled with wage w so that f 0
w(w|X = 1) = f 1

w(w). Indeed, simply

draw X conditional on w according to a distribution of the form

prob(X = 1|w) = λ
f 1
w(w)

f 0
w(w)

,

with λ small enough that prob(X = 1|w) ≤ 1 for all w. Denote by R0(f 1
w) ≡ Ef0w [m|X = 1]

average reports of corruption under the synthetic distribution of wages f 0
w(w|X = 1) =

f 1
w(w).

11The result continues to hold even if only some share of agents can update its play to equilibrium following
a change in policy.
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Corollary 1 (optimal local policy change). The optimal local policy change in P at f0 is

determined from report data alone:

arg min
f1w∈P

∇f1w
C = arg min

f1w∈P
R0 −R0(f 1

w).

This result is useful for several reasons. First it suggests a simple data-driven gradient

descent algorithm to find corruption-minimizing policies. Second, with field experiment in

minds, it suggests that one can propose a plausible alternative policy to a deterministic

default by using report data from a partial equilibrium pilot that merely randomizes wages

according to any full support distribution. This is reassuring since the space of policies is

infinite dimensional, which makes trial and error policy search difficult.

5 Discussion

5.1 Summary

We study incentive provision in a principal-agent-monitor model in which the agent and

monitor can collude on what message to send to the principal. We explore the idea that

since collusion is a side-contracting problem, it may be addressed by introducing asymmet-

ric information frictions that make contracting difficult. Indeed, by using random incentives

that serve as the monitor’s private information, the principal can decrease the rents that

the agent extracts from contracting with the monitor. This can result in significant cost

reductions over deterministic incentive schemes. In a benchmark environment with no pre-

existing information, random incentives reduce the cost of incentive provision by over 50%

for plausible parameter values.

In the presence of pre-existing asymmetric information taking the form of idiosyncratic

costs for accepting bribes, introducing additional asymmetric information may or may not

be optimal. We provide sufficient conditions for random incentives to be optimal or not as
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a function of the concavity or convexity of the c.d.f. of idiosyncratic bribery costs. Further-

more, we are able to show that although aggregate reports of corruption do not provide a

reliable indicator of underlying corruption, it is possible to evaluate local policy changes on

the basis of unverified report data alone. This provides an experiment-ready framework to

test the effectiveness of random incentives in reducing corruption and collusion in organiza-

tions.

5.2 Extensions

Our framework obviously admits many plausible extensions. We briefly describe a few and

delineate the way our results extend in each case. Formal treatment of these extensions is

delayed to Appendix A.

Multiple monitors. Section 2 shows that the effectiveness of deterministic incentive

schemes may be undermined by the possibility of collusion. In this case endogenous asym-

metric information may significantly reduce the cost of incentive provision. This point is

robust to the introduction of multiple monitors. Indeed, while cross-checking the messages

of different monitors using mechanisms à la Maskin (1999) successfully reveals public infor-

mation in the absence of collusion (see Duflo et al. (2013) for a recent field implementation),

such mechanisms are fragile to the possibility of collusion: monitors can collude on what

message to send. In the example without pre-existing private information described in Ap-

pendix A the cost of bribing two monitors turns out to be no higher than the cost of bribing

a single monitor with twice the incentives. As a result, asymmetric information also emerges

as an effective strategy to reduce monitoring costs.12

Extortion. In the model of Sections 2 and 3, we assume that the monitor sends a subgame

perfect message following disagreement at the side-contracting stage. This implies that the

12Note that in the presence of endogenous or exogenous asymmetric information, there may indeed be
efficiency gains from using multiple monitors.
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monitor can never extract bribes from an agent which she observes to be non-corrupt. As

Olken and Pande (2012) highlight, this prediction is frequently invalidated: honest agents

are often extorted bribes by monitors. A variation of our baseline model naturally accounts

for this. Assume that when she has the bargaining power, the monitor is able to commit to

a message she would send in the event of a bargaining failure. Assume also and that even

non-corrupt monitors experience a cost when they are reported as corrupt. A monitor can

then extract rents from honest agents by committing to report the agent as corrupt unless a

bribe is paid. While this changes the agent’s incentives to be corrupt, we show in Appendix

A that our main results continue to hold in this setting: random incentives may reduce the

cost of incentive provision, and it is possible to perform local policy evaluation on the basis

of conditional report data only.

Dynamic incentives. The model of Sections 2 and 3 is static. Realistically however, wages

w may represent the present discounted value of future wages which the monitor stands to

lose, should she be fired. One potential difficulty with dynamic extensions to our framework

is that the continuation value of the monitor would depend on her ability to raise bribes from

agents, so that incentives for truth-telling would in fact depend on the rents obtained from

bribes. While it is reasonable to expect that our basic qualitative message would survive

in some form, it less obvious that our stronger results, and especially the prior-free policy

evaluation property described in Proposition 6 would extend. Remarkably, we are able to

show in Appendix A that whenever the monitor’s type η is persistent, Proposition 6 extends

as is.

5.3 Implementation

Because the cost-savings from random incentives are significant in plausible environments,

and because the fragility of counter-corruption schemes to collusion is increasingly recognized

as a first-order issue, we believe that the policy recommendation that emerges from our
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analysis is an attractive candidate for field implementation. We describe below how we

envision running such an exercise.

Wages versus scrutiny. Randomizing wages has distributional implications which stake-

holders may find unfair. However, as we noted in Section 2 the monitor’s incentives for

truth-telling are captured by her expected lost wages qw from misreporting. Although we

chose to focus on wages w as a policy instrument, our analysis would be unchanged if the

intensity of scrutiny q was the policy instrument of interest. Since changing q does not

affect the welfare of the monitor when she reports truthfully, it does not have the adverse

distributional consequences of random wages in equilibrium. For this reason, varying the

level of scrutiny imposed on monitors may be a more suitable policy instrument for practical

implementation. For instance, in public infrastructure projects where, as in Olken (2007),

local officials play the role of natural monitors, one may vary the probability with which the

project gets audited by an external, well compensated engineering firm.

Picking a candidate policy. Proposition 6 provides a framework for policy evaluation

using report data. One difficulty in setting up a field implementation of random incentive

schemes is to construct a plausible policy alternative to deterministic incentives. Distribu-

tions of wages are high dimensional objects and absent great luck, simple trial and error

seems unlikely to succeed. Fortunately, as we highlighted in Section 4, Corollary 1 provides

guidance on what alternative policy to choose using report data from any random incentive

trial, provided it has a sufficiently rich support: choose the distribution that maximizes re-

ports of corruption keeping average incentives constant. This implies that one can form a

plausible candidate policy using report data from a pilot intervention using any arbitrary

full support distribution of wages.

Continuous evaluation. Proposition 6 provides a framework for local policy evaluation.

Interestingly, it can be used for global policy evaluation provided the policy is phased in
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progressively, i.e. by progressively increasing the proportion of monitors placed under the

new incentive scheme, and recording report data as the policy is being implemented. Once

reports suggest that there are no longer any local improvements, phasing-in of the alternative

policy may be stopped.

Appendix

A Extensions

A.1 Collusion with Multiple Monitors

This extension illustrates how collusion can undermine the effectiveness of deterministic

incentive schemes even when the principal can use multiple monitors to cross-check their

reports. We consider a principal who hires two monitors, i = 1, 2, to check the agent. As in

the model of Section 2, the agent takes a corruption decision c ∈ {0, 1}, where c = 1 gives

the agent a benefit πA and comes at a cost πP < 0 to the principal. The agent’s action is not

observable to the principal, but is observed by both monitors. After observing the agent’s

action, each monitor i = 1, 2 sends a report mi ∈ {0, 1} to the principal. Report mi = 1 by

either monitor triggers an exogenous judiciary process that imposes an expected cost k > πA

on corrupt agents and (for simplicity) a cost of 0 on non-corrupt agents.

The principal detects false reports mi 6= c with probability q ∈ (0, 1). If both monitors

send the same report and the principal does not find evidence of misreporting, then both

monitors are paid their wage w. If both monitors send different reports and the principal

does not find evidence of misreporting, the monitor reporting m = 0 gets fired and the other

monitor gets her wage w. If the principal finds evidence that a report was false, the monitor

sending that report gets fired.

The timing of the game is as follows:
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1. the principal offers a fixed wage w to each monitor;

2. the agent makes a corruption decision c ∈ {0, 1};

3. under collusion, the agent sequentially makes take-it-or-leave-it bribe offers τ1 and τ2 to

monitors 1 and 2 in exchange for sending message mi = 0, which each monitor accepts

or rejects — we assume perfect commitment so that whenever a monitor accepts the

bribe, she does send message m = 0; under no-collusion nothing occurs;

4. under no-collusion or, under collusion if there was no agreement between the agent

and monitor i in the previous stage, monitor i sends message mi maximizing her final

payoff.

The following result generalizes Fact 2 to the current setting.

Fact A.1. Assume that the principal hires two monitors and uses deterministic wages. Under

no collusion the principal can induce the agent to be non-corrupt at 0 cost.

Under collusion, the minimum cost of wages needed to induce the agent to be non-corrupt

is equal to πA
q

.

Proof. Under no collusion, it is an equilibrium for both monitors to send a truthful report

for any wage w > 0. Under this equilibrium, the payoff that the agent gets when corrupt is

πA − k < 0, while her payoff when non-corrupt is 0.13

Consider next the case of collusion. Solving the game by backward induction, if a cor-

rupt agent successfully bribed the first monitor, then monitor 2 accepts a bribe τ2 if and

only τ2 > qw. If the first monitor expects that the agent will successfully bribe the second

monitor, she accepts a bribe τ1 if and only if τ1 > qw. The payoff of a corrupt agent who

bribes both monitors is πA − 2qw. The payoff of a non-corrupt agent is 0, so the agent will

be non-corrupt if and only if πA − 2qw ≤ 0, or w ≥ πA
2q

. Therefore, the minimum cost of

wages needed to induce the agent to be non-corrupt is πA
q

. �

13Note that, when q < 1
2 , there is also an equilibrium in which both monitors send message m = 1

regardless of the agent’s behavior or their wage.
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A.2 Arbitrary bargaining

The model in the main text simplifies the side-contracting stage by assuming take-it-or-leave-

it offers. This appendix extends the model by considering more general bargaining structures.

We study a model that in which the monitor and the agent can use any individually rational

and incentive compatible mechanism at the side-contracting stage, but that is otherwise

identical to the basic model in Section 2.

By the revelation principle, we can restrict attention to mechanisms under which the mon-

itor announces her private information (i.e., her wage) and this announcement determines

the bargaining outcome. Such a bargaining mechanism is characterized by two functions: (i)

P (w), the probability with which monitor and agent reach an agreement when the monitor’s

wage is w; and (ii) τ(w), the expected transfer from the agent to the monitor when the

monitor’s wage is w. The monitor commits to send message m = 0 if there is an agreement.

If there is no agreement, the monitor sends the message that maximizes her final payoff (i.e.,

she sends a truthful message).

Given a wage schedule F and a mechanism (P, τ), the agent’s expected payoff from being

corrupt is UA = πA−k+
∫

(P (w)k − τ(w)) dF (w). The individual rationality constraint of a

corrupt agent is UA ≥ πA−k, since a corrupt agent can guarantee πA−k by not participating

in the mechanism.

The payoff that a monitor with wage w who announces wage w′ gets under mechanism

(P, τ) when the agent is corrupt is ŨM(w,w′) = τ(w′) + (1 − P (w′)q)w. By incentive

compatibility, UM(w) ≡ ŨM(w,w) ≥ ŨM(w,w′) for all w′ 6= w. By individual rationality,

UM(w) ≥ w for all w, since a monitor with wage w obtains a payoff of w by not participating

in the mechanism and sending a truthful report.

Given a mechanism (P, τ) and a wage distribution F , the weighted sum of the agent’s

26



and monitor’s payoff when the monitor is corrupt is

(1− λ)

∫
UM(w)dF (w) + λUA, (7)

where the weight λ ∈ [0, 1] represents the monitor’s bargaining power. For every wage

schedule F and every λ ∈ [0, 1], let Γ(F, λ) be the set of incentive compatible and individually

rational bargaining mechanisms that maximize (7). We assume that, at the side-contracting

stage, the monitor and the agent use a bargaining mechanism in Γ(F, λ). Let ŨA(F, λ) be

the lowest utility that a corrupt agent gets under a bargaining mechanism in Γ(F, λ). The

agent has an incentive to be non-corrupt if ŨA(F, λ) ≤ 0.

The following result generalizes Proposition 1 to this setting.

Proposition A.1. Suppose that, at the collusion stage, the monitor and the agent use an

incentive compatible and individually rational mechanism that maximizes (7).

(i) If λ ∈ (1/2, 1], the cost minimizing wage distribution F gen
w that induces the

agent not to be corrupt is described by

∀w ∈ [0, πA/q], F gen
w (w) =

(
k − πA
k − qw

) 2λ−1
λ

. (8)

(ii) If λ ∈ [0, 1/2], the cost minimizing wage distribution F gen
w that induces the

agent not to be corrupt has F gen
w (0) = 1.

Proof. By standard arguments, any incentive compatible mechanism (P, τ) must satisfy:

(i) P (w) is decreasing, and (ii) U ′M(w) = 1 − qP (w). This last condition and the mon-

itor’s individual rationality constraint (i.e., UM(w) ≥ w for all w) imply that UM(w) =∫ w
w
qP (w̃)dw̃+w+ c for some constant c ≥ 0 (where w is the highest wage in the support of

F ). Since UM(w) = τ(w) + (1− qP (w))w, τ(w) = P (w)qw+
∫ w
w
qP (w̃)dw̃+ c. The weighted
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sum of payoffs when the agent is corrupt is

(1− λ)

∫ w

w

UM(w)dF (w) + λUA

=

∫ w

w

[(1− λ)(τ(w) + (1− qP (w))w) + λ(P (w)k − τ(w))] dF (w) + λ(πA − k)

=

∫ w

w

[P (w)λ (k − qw) + (1− λ)w] dF (w) + λ(πA − k) + (1− 2λ)

(∫ w

w

qP (w)F (w)dw + c

)
.

(9)

We use the following lemma.

Lemma A.1. For all λ ∈ (1/2, 1], the mechanism (P, τ) that maximizes (9) has: (i) P (w) =

1 if w < w∗ and P (w) = 0 if w > w∗ for some w∗, and (ii) τ(w) = P (w)qw +
∫ w
w
qP (w̃)dw̃.

Proof. We first show that the mechanism that maximize (9) is such that P (w) only takes

values 0 or 1. Suppose by contradiction that there exists an interval V such that P (w) ∈ (0, 1)

for all w ∈ V , and let H ≡
∫
V
λ(k− qw)dF (w) + (1− 2λ)

∫
V
qF (w)dw. If H ≥ 0, increasing

P (w) over this interval (subject to the constraint that P is decreasing) makes (9) larger. If

H < 0, decreasing P (w) over this interval (subject to the constraint that P is decreasing)

also makes (9) larger. Such improvements are exhausted when P (w) only takes values 0 and

1. Since P (·) is decreasing, when P (·) only takes values 0 or 1 there must exist a wage w∗

such that P (w) = 1 if w < w∗ and P (w) = 0 if w > w∗. Finally, (9) is maximized by setting

c = 0 when λ ∈ (1/2, 1], so τ(w) = P (w)qw +
∫ w
w
qP (w̃)dw̃. �

We now conclude the proof of Proposition A.1, begining with point (i). Fix λ ∈ (1/2, 1]

and let (P, τ) be the mechanism that maximizes (9). By Lemma A.1, P (w) = 1 if w < w∗

and P (w) = 0 if w > w∗ for some w∗ and c = 0. Under this mechanism (9) becomes

λ

[
F (w∗)k −

∫ w∗

0

qwdF (w) + πA − k
]

+ (1− λ)

∫
wdF (w) + (1− 2λ)

∫ w∗

0

qF (w)dw.
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Since (P, τ) maximizes the weighted sum of payoffs, for all ŵ 6= w∗ it must be that

λ

[
F (w∗)k −

∫ w∗

0

qwdF (w)

]
+ (1− 2λ)

∫ w∗

0

qF (w)dw

≥ λ

[
F (ŵ)k −

∫ ŵ

0

qwdF (w)

]
+ (1− 2λ)

∫ ŵ

0

qF (w)dw. (10)

Otherwise, if (10) did not hold for some ŵ 6= w∗, the weighted sum of payoffs would be

strictly larger under mechanism (P̂ , τ̂) with P̂ (w) = 1 if w < ŵ and P̂ (w) = 0 if w > ŵ.

Consider next the principal’s problem, who chooses a wage schedule F to minimize ex-

pected wage payments subject to the constraint that the agent has an incentive to be non-

corrupt. By first order stochastic dominance, it is cheaper for the principal to choose a

wage schedule F such that (10) holds with equality for all ŵ such that F (ŵ) < 1; that is,

under the optimal wage schedule F the right-hand side of (10) is constant for all ŵ such that

F (ŵ) < 1. Differentiating the right-hand side of (10) with respect to ŵ,

F ′(ŵ)λ[k − qŵ] + qF (ŵ)(1− 2λ) = 0. (11)

The solution to the differential equation (11) is F (w) = C
(

1
k−qw

) 2λ−1
λ

for some constant C.

We now determine the value of the constant C. For any ŵ in the support of F , let (Pŵ, τŵ)

be the mechanism with Pŵ(w) = 1{w≤ŵ} and τŵ(w) = Pŵ(w)qw+
∫ w
w
qPŵ(w̃)dw̃ = 1{w≤ŵ}qŵ.

Since (10) holds with equality for all ŵ under the optimal distribution, all such mechanisms

maximize (9); that is, all such mechanisms are in Γ(F, λ). Recall that ŨA(F, λ) is the

lowest utility that the agent gets under a mechanism in Γ(F, λ), and that the agent has

an incentive to be non-corrupt only if ŨA(F, λ) ≤ 0. The agent’s utility under mechanism

(Pŵ, τŵ) is u(ŵ) = F (ŵ)(k − qŵ) + πA − k. Note that u′(ŵ) = F ′(ŵ)(k − qŵ) − qF (ŵ) =

qF (ŵ)[2λ−1
λ
− 1] ≤ 0, where the second equality follows since F satisfies (11). Therefore,

the lowest utility that the agent gets under a mechanism in Γ(F, λ) is ŨA(F, λ) = u(w) =

k − qw + πA − k = πA − qw, where w is the highest wage in the support of F ; i.e., w is
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such that F (w) = C
(

1
k−qw

) 2λ−1
λ

= 1. The agent does not have an incentive to corrupt if

ŨA(F, λ) = u(w) ≤ 0, or w ≥ πA
q

. To minimize expected wages it is optimal to set w = πA
q

.

This implies C = (k − πA)
2λ−1
λ , so the optimal distribution is (8).

We now turn to point (ii). When λ ≤ 1/2, the mechanism (P, τ) that maximizes (9) must

make the constant c as large as possible, subject the agent’s IR constraint; that is, subject

to πA−k+
∫

[P (w)k−τ(w)]dF (w) ≥ πA−k. Recall that τ(w) = P (w)qw+
∫ w
w
qP (w̃)dw̃+c.

The maximum is achieved by choosing c such that
∫

[P (w)k − τ(w)]dF (w) = 0. Therefore,

for λ ≤ 1/2 the agent’s payoff from being corrupt under a mechanism that maximizes (9) is

πA− k < 0, regardless of the wage schedule. This implies that the agent has an incentive to

be non-corrupt even when F has all its mass at w = 0. �

A.3 Extortion

This section shows how our results extend to settings in which the monitor can extort a

non-corrupt agent by committing to send a false report. The framework we consider is

essentially the same as in Section 3. The only difference is that a monitor who makes an

offer at the side-contracting stage can commit to sending a false report if the agent rejects her

proposal. A report m = 1 triggers an exogenous judiciary process that imposes an expected

cost k > πA on corrupt agents and an expected cost k0 ∈ (0, k] on non-corrupt agents.

Fact A.2. If the monitor acts as proposer when the agent is non-corrupt, she demands a

bribe τ = k0 if her type is η < k0, and she demands no bribe (i.e., she demands τ = 0) if her

type is η ≥ k0. A non-corrupt agent accepts any offer τ ≤ k0.

Proof. Suppose the monitor makes an offer τ to a non-corrupt agent and commits to send-

ing a false message if her proposal is rejected. In this case, it is optimal for a non-corrupt

agent to accept the offer if and only if τ ≤ k0: her payoff from accepting such an offer is −τ ,

while her payoff from rejecting the offer is −k0. The monitor’s payoff from making an offer
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τ ∈ (0, k0] is τ −η, while her payoff from not demanding a bribe is 0. A type η monitor finds

it optimal to make an offer τ = k0 if only if η < k0. �

Fact A.3. If the monitor acts as a proposer at the collusion stage, she demands a bribe

τ ≥ k when the agent is corrupt. A corrupt agent accepts any offer τ ≤ k.

Proof. The proof of Fact A.3 is identical to the proof of Fact 3. �

Fact A.2 implies that the payoff of a non-corrupt agent is −(1−λ)k0Fη(k0), while Fact A.3

implies that the payoff of a corrupt agent of type πA is πA−k+λmaxτ (k−τ)prob(qw+η < τ).

Therefore, when the monitor can commit to sending a false report, an agent of type πA will

take action c = 0 if only if

πA − (k − (1− λ)k0Fη(k0)) + λ max
τ∈[0,k]

(k − τ)prob(qw + η < τ) ≤ 0.

From the principal’s perspective, the possibility of extortion by the monitor reduces the

effective punishment cost that a corrupt agent incurs when the monitor sends report m = 1

down to k − (1 − λ)k0Fη(k0). With this modification all the results in Sections 3 and 4

continue to hold when the monitor can commit to sending a false message.

A.4 Dynamic incentives

The model in the main text assumes that the principal provides incentives to monitors by

paying them a wage of zero if there is evidence that the monitor misreported. This appendix

extends our analysis to settings in which the principal hires the monitor for multiple periods

and in which a monitor who is found misreporting is fired and losses her continuation value

of employment. The goal of this section is to show that, in this setting, we can still identify

the impact of local policy changes using data from unverified reports.
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Consider a principal who needs to repeatedly audit a population of agents. The princi-

pal hires a population of monitors to check the agents at each of infinitely many periods.

Monitors are randomly matched with agents at each period. At time t = 0 the principal

commits to a distribution of wages Fw and draws a wage w for each monitor from this distri-

bution. This wage is observed by the monitor and not by the agents. Each monitor’s wage

is persistent: the monitor receives a constant wage at every period at which she is employed.

Monitors have a persistent cost η from accepting a bribe, where η is distributed according

to Fη. Within each period the structure of the game is the same as that in Section 3; the

only difference is that a monitor who is found misreporting receives her current period wage

w but losses her continuation value from employment.

Let W (w, η) be the value function from maintaining employment of a monitor with wage

w and type η, and normalize the monitor’s value of unemployment to zero. The net benefit

that a monitor with wage w and type η gets from accepting bribe τ from a corrupt agent is

(1− δ)(τ − η)− qδW (w, η), where δ < 1 is the discount factor. This implies the following.

Fact A.4. A monitor with wage w and type η accepts an offer τ at the collusion stage if and

only if τ > η + q δ
1−δW (w, η).

The next observation is the counterpart of Fact 3 to the current setting.

Fact A.5. If no agreement is reached at the collusion stage, the monitor’s optimal continu-

ation strategy is to send truthful reports m = c.

If the monitor acts as a proposer at the collusion stage, she demands a bribe τ ≥ k when

the agent is corrupt, and a bribe τ = 0 when the agent is non-corrupt.

The agent accepts any offer τ ≤ k when she is corrupt and any offer τ = 0 when she is

not corrupt.

The payoff of a non-corrupt agent is 0. Moreover, by Facts A.4 and A.5 the payoff of a
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corrupt agent of type πA is

UπA = πA − k + λ max
τ∈[0,k]

(k − τ)prob

(
q

δ

1− δ
W (w, η) + η < τ

)
.

We allow different agents to derive a different benefit πA from being corrupt, and assume

that the distribution of corruption benefits πA is constant across periods. As in Section 4,

let C = Ê[c] be the proportion of agents who are corrupt.

Lemma A.2. Let τ ∗ ≤ k be the offer that corrupt agents make. A monitor with type η and

wage w accepts offer τ ∗ from a corrupt agent if and only if η < η(τ ∗, w, C), where

η(τ, w, C) ≡ τ(1− δ + δq(1− λ)C)− qδw − qδ(1− λ)kC

1− δ
.

Proof. Consider a monitor with wage w and type η who is indifferent between accepting

and rejecting an offer τ ∗ ≤ k by a corrupt agent. The value function of this monitor is

W (w, η) = (1− δ)w + δW (w, η) + (1− λ)C ((1− δ)(k − η)− qδW (w, η))⇒

W (w, η) =
(1− δ)(w + (1− λ)(k − η)C)

1− δ + δq(1− λ)C
. (12)

The last term in the first expression is the payoff that the monitor gets when she is proposer

against a corrupt agent.14 Since this monitor is indifferent between accepting offer τ ∗ or

rejecting it, (1 − δ)(τ ∗ − η) = qδW (w, η), which by equation (12) implies η = η(τ ∗, w, C).

Monitors with wage w and type η such that η < η(τ ∗, w, C) find it optimal to accept τ ∗, and

monitors with wage w and type η such that η > η(τ ∗, w, C) find it optimal to reject τ ∗. �

We now show how Proposition 6 extends to this setting. Fix a budget w0 and consider

two policies F 0
w, F 1

w such that EF 0
w
[w] = EF 1

w
[w] = w0. Define F ε

w as the mixture F ε
w ≡

14Since this monitor is indifferent between accepting or rejecting offer τ∗ ≤ k, she finds it (at least weakly)
optimal to ask for a bribe k when making offers against a corrupt agent.
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(1− ε)F 0
w + εF 1

w. As in Section 4, we imagine a draw w from F ε
w as first drawing a Bernoulli

variable X ∈ {0, 1} with prob(X = 1) = ε, followed by drawing w according to FX
w . Denote

by mε ∈ {0, 1} the equilibrium report from monitors and by cε ∈ {0, 1} the corruption

decision of agents under policy F ε
w. Recall that Rε(X) = Ê [mε|X] are the mean reports

conditional on X and that Cε = Ê [cε] is the proportion of agents who are corrupt under

policy F ε
w.

Proposition A.2. The impact of local policy changes on underlying corruption can be iden-

tified from observable conditional reports:

sgn

[
∂Cε

∂ε

]
= sgn [Rε(X = 0)−Rε(X = 1)] .

Proof. Let τε be the optimal offer by a corrupt agent under policy F ε
w. By Lemma A.2, the

probability that a monitor accepts this offer is prob
(
qδW (w,η)

1−δ + η < τε

)
= prob

(
η < η(τε, w, C)

)
=

EFw [Fη(η(τε, w, C))]. The payoff of a corrupt agent with type πA under policy F ε
w is

U ε
πA

= πA − k + λ(k − τε)
[
(1− ε)EF 0

w

[
Fη(η(τε, w, Cε))

]
+ εEF 1

w

[
Fη(η(τε, w, Cε))

]]
.

By the Envelope Theorem,

∂U ε
πA

∂ε
= (k − τε)

[
EF 1

w

[
Fη(η(τε, w, Cε))

]
− EF 0

w

[
Fη(η(τε, w, Cε))

]]
+(k − τε)EF εw

[
fη(η(τε, w, Cε))×

∂η(τε, w, Cε)

∂Cε

∂Cε

∂ε

]
.

The equation above can be written as

∂U ε
πA

∂ε
− (k−τε)EF εw

[
fη(η(τε, w, Cε))×

∂η(τε, w, Cε)

∂Cε

∂Cε

∂ε

]
= (k − τε)

[
EF 1

w

[
Fη(η(τε, w, Cε))

]
− EF 0

w

[
Fη(η(τε, w, Cε))

]]
(13)
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Note that ∂η(τε,w,Cε)

∂Cε
= (τε−k)δq(1−λ)

1−δ ≤ 0. Since sgn
[
∂UεπA
∂ε

]
= sgn

[
∂C

ε

∂ε

]
, the sign of the ex-

pression in the left-hand side of (13) is equal to sgn
[
∂C

ε

∂ε

]
. The proposition follows since

sgn
[
EF 1

w

[
Fη(η(τ, w, Cε))

]
− EF 0

w

[
Fη(η(τ, w, Cε))

]]
= sgn [Rε(X = 0)−Rε(X = 1)]. �

B Proofs

B.1 Proofs for Section 2

Proof of Fact 1. Under collusion, the monitor’s payoff from accepting an offer τ from a

corrupt agent is τ + (1− q)w. Her payoff from rejecting the offer from a corrupt agent and

sending message m = 1 is w. The monitor accepts the offer if and only if τ > qw.

Under no-collusion, or if the monitor rejects the agent’s offer, the monitor’s payoff from

sending message m = c is w. Her payoff from sending a false message m 6= c is (1− q)w, so

the monitor has an incentive to send a truthful report for any wage w ≥ 0.

Note that the expected payoff that a corrupt agent gets under collusion is πA − k +

maxτ (k−τ)prob(qw < τ), while her payoff from not being corrupt is 0. If the agent expects to

make a bribe offer τ > πA, her payoff from being corrupt is πA−k+(k−τ)prob(qw < τ) < 0,

so she would strictly prefer to be non-corrupt. �

Proof of Fact 2. By Fact 1, given any wage w, under no-collusion the monitor’s optimal

strategy is to send a truthful report. The agent’s payoff from action c = 1 is then πA−k < 0

and her payoff from action c = 0 is 0. Thus, under no-collusion the principal can induce the

agent to be non-corrupt at zero cost.

Consider next a setting with collusion. By Fact 1, the monitor accepts a bribe τ from

a corrupt agent if and only if τ > qw. The agent’s payoff from taking c = 1 is therefore

πA −min{k, qw}, while her payoff from action c = 0 is 0. It follows that the principal can
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induce the agent to take action c = 0 by setting a deterministic wage w = πA
q

. �

B.2 Proofs for Section 3

Proof of Fact 3. If there is no agreement at the collusion stage the monitor’s payoff from

sending message m = c is w. Her payoff from sending message m 6= c is (1 − q)w, so the

monitor has an incentive to send a truthful report.

Consider next a monitor who acts as proposer at the collusion stage when the agent is

corrupt. Note that a corrupt agent accepts any offer τ ≤ k: her payoff from accepting such

an offer is πA − τ , while her payoff from rejecting the offer is πA − k. The monitor’s payoff

from making an offer τ ≤ k is then τ + (1− q)w − η, while her payoff from making an offer

τ > k is w. A monitor with wage w and type η such that η < k − qw finds it optimal to

make an offer τ = k, and a monitor with wage w and type η such that η ≥ k − qw finds it

optimal to make offer τ > k.

Finally, when the agent is non-corrupt, it is optimal for the monitor to send a truthful

message m = 0 if there is no agreement at the collusion stage. Therefore, a non-corrupt

agent is not willing to pay a bribe higher than 0 at the collusion stage. In this case, a

monitor who acts as proposer demands a bribe τ = 0 and sends a truthful message. �

Proof of Proposition 2. The agent’s payoff from taking action c = 1 is

UA(πA) = πA − k + λ max
τ∈[0,πA]

(k − τ)prob(qw + η < τ)

= πA − k + λ max
τ∈[0,πA]

(k − τ)EFw [Fη(τ − qw)].

Consider first the case in which Fη is strictly concave [0, k]. Let τ0 be the highest solution to

the optimal bribe problem under a deterministic wage w0 (i.e., maxτ (k− τ)Fη(τ − qw0)) and
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note that τ0 > qw0. Let Fw be a random wage distribution with EFw [w] = w0 and support

[w0−γ, w0+γ], with γ > 0 small enough such that τ0 > q(w0+γ). Let F ε
w = (1−ε)1w=w0+εFw;

i.e., policy F ε
w is the mixture between a deterministic wage w0 and policy Fw. Since Fη is

strictly concave over [0, k], EF εw [Fη(τ − qw)] < Fη(τ − qw0) for all τ close to τ0. For each

ε ∈ [0, 1], let τε be the highest solution to maxτ (k − τ)EF εw [Fη(τ − qw)]. Since τε is close to

τ0 for ε small, it follows that for ε small the expected payoff that an agent gets from being

corrupt under policy F ε
w is strictly smaller than under the deterministic wage w0.

Consider next the case in which Fη is strictly convex over [0, k]. Note that for any ran-

dom wage distribution Fw with EFw [w] = w0, Fη(·) is convex over the support of τ − qw

for all τ ∈ [0, πA]. Therefore, in this case the agent’s payoff from being corrupt under any

random wage distribution with mean w0 is larger than under the deterministic policy w0. �

Proof of Proposition 3. For ∆ > 0, consider the random wage w̃ε defined by

w̃ε =

 w0 − ε with proba ∆
∆+ε

w0 + ∆ with proba ε
∆+ε

.

The expected payoff of a corrupt agent under random wage w̃ε is

UA(πA|w̃ε) = πA − k + λmax
τ

(k − τ)probw̃ε(qw + η < τ).

By the Envelope Theorem,

∂UA(πA|w̃ε)
∂ε

∣∣ε=0
= (k−τ0)

[
− 1

∆
prob(qw0 + η < τ0) +

1

∆
prob(q[w0 + ∆] + η < τ0) + qfη(τ0 − qw0)

]
.

Bribe τ0, which solves maxτ (k − τ)prob(qw0 + η < τ), must be interior and therefore
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satisfies the first order condition

(k − τ0)fη(τ0 − qw0)− prob(qw0 + η < τ0) = 0⇒ fη(τ0 − qw0) =
prob(qw0 + η < τ0)

k − τ0

.

Setting ∆ ≡ τ0/q − w0, we obtain that

∂UA(πA|w̃ε)
∂ε

∣∣ε=0
= q(k − τ0)prob(qw0 + η < τ0)

[
− 1

τ0 − qw0

+
1

k − τ0

]
< 0

where we used the fact that τ0 ≤ 1
2
k ⇒ k − τ0 > τ0 − qw0.

Hence for ε small enough, using random wage distribution w̃ε reduces corruption com-

pared to deterministic wage w0. �

Proof of Proposition 4. The payoff that an agent gets from being corrupt is UA(πA) =

πA − k + λmaxτ∈[0,πA](k − τ)prob(qw + η < τ). For any wage schedule Fw, this payoff

is maximized when λ = 1 and when Fη is such that Fη(0) = 1; that is, the worse case

environment for the principal is that of Section 2.

By Proposition 1, in the worse case environment the cost minimizing distribution that

induces an agent with private benefit πA to take action c = 0 is F bmk
w = k−πA

k−qw . When the

principal has a budget constraint w0, the optimal wage schedule under the worse case envi-

ronment is F bmk
w =

k−π0
A

k−qw , where π0
A is such that W bmk(π0

A) = w0. �

We now turn to the proof of Proposition 5, and begin with a few preliminary lemmas. It

is useful to note that, for any wage schedule Fw, prob(η+ qw < τ) =
∫ τ
q

0 Fη(τ −wq)dFw(w).

The incentive constraint (4) can then be written as: for all τ ∈ [0, πA],

∫ τ
q

0

Fη(τ − wq)dFw(w) ≤ k − πA
λ(k − τ)

. (14)

Note that, for an agent with type πA and for any wage distribution Fw, (14) is satisfied for
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all τ ≥ τ = πA−(1−λ)k
λ

. Therefore, a principal who wants to incentivize agents with type

π′A ≤ πA to be non-corrupt will never find it optimal to pay wages larger than τ
q
. Based on

this observation, when looking for the optimal distribution we can focus on c.d.f.s Fw such

that Fw(τ/q) = 1.

Lemma B.1. Suppose Fη is concave over [0, k]. If the distribution Fw satisfies (14) for all

τ ∈ [0, τ ] and Fw(0) < m0, there exists a distribution F̃w which also satisfies (14) for all τ

such that EF̃w [w] < EFw [w].

Proof of Lemma B.1. Let Fw be a wage schedule that satisfies (14) for all τ ∈ [0, τ ]

with Fw(0) < m0. Suppose first that Fw is such that (14) is satisfied with slack for all

τ ∈ [0, τ ]. Let F̃w be a distribution such that F̃w(0) = Fw(0) + γ for some γ > 0, and

such that dF̃w(w) = dFw(w) for all w ∈ (0, w̃) (where w̃ = inf{w : F̃w(w) = 1}). Clearly,

EF̃w [w] < EFw [w]. Moreover, since (14) is satisfied with slack for all τ under Fw, by choosing

γ small we can guarantee that (14) is satisfied for all τ under F̃w.

Suppose next that Fw is such that (14) binds for some offer τ . Let τ̂ be the lowest τ at

which (14) binds, so that prob(η + qw < τ̂) = k−πA
λ(k−τ̂)

. Since Fw(0) < m0, it must be that

Fw( τ̂
q
) > Fw(0): if Fw( τ̂

q
) = Fw(0), then prob(η + qw < τ̂) = Fw(0)Fη(τ̂) = k−πA

λ(k−τ̂)
, which

would imply that Fw(0) = k−πA
Fη(τ̂)λ(k−τ̂)

≥ m0 (recall that m0 is given by (5)).

We construct an alternative wage distribution F̂w as follows. Fix γ < Fw( τ̂
q
) − Fw(0)

and let F̂w be such that: (i) F̂w(0) = Fw(0) + γ, (ii) dF̂w(w) = 0 for all w ∈ (0, τ̂
q
), (iii)

dF̂w(w) = dFw(w) for all w ∈ ( τ̂
q
, τ
q
) and (iv) dF̂w( τ

q
) = 1 − F̂w( τ

q

−
). Note that F̂w is a

transformation of Fw that shifts some of the mass that Fw has in (0, τ̂
q
] to 0 and the rest to

τ
q
. By choosing γ small we can guarantee that (14) is satisfied for all τ ∈ [0, τ̂ ] under F̂w.

We now show that (14) is also satisfied for all τ > τ̂ under F̂w. Note first that for all
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τ ≥ τ̂

∂

∂τ

(∫ τ
q

0

Fη(τ − wq)dFw(w)

)
=

∫ τ
q

0

fη(τ − wq)dFw(w) >

∫ τ
q

0

fη(τ − wq)dF̂w(w) =
∂

∂τ

(∫ τ
q

0

Fη(τ − wq)dF̂w(w)

)
,

where the strict inequality follows since F̂w puts more mass at 0 and less mass over [0, τ̂
q
]

than Fw and since fη is decreasing. Note that k−πA
λ(k−τ̂)

=
∫ τ̂
q

0 Fη(τ̂ − wq)dFw(w) ≥
∫ τ̂
q

0 Fη(τ̂ −

wq)dF̂w(w), where the equality follows since (14) binds at τ̂ under Fw and the inequality

follows since (14) is satisfied at τ̂ under F̂w. Since (14) is satisfied for all τ under Fw, it

follows that k−πA
λ(k−τ)

≥
∫ τ
q

0 Fη(τ − wq)dFw(w) >
∫ τ
q

0 Fη(τ − wq)dF̂w(w) for all τ ∈ (τ̂ , τ); that

is, (14) is satisfied with slack for all τ ∈ (τ̂ , τ) under F̂w.

For each ε > 0, let F̃ε be the wage schedule such that dF̃ε(w) = dF̂w(w) for all w /∈

{ τ−ε
q
, τ
q
} and such that dF̃ε(

τ−ε
q

) = dF̂w( τ−ε
q

) +dF̂w( τ
q
); i.e., F̃ε puts all the mass that F̂w has

on τ
q

at τ−ε
q

. Note that, for all τ ≤ τ − ε,
∫ τ
q

0 Fη(τ − wq)dF̃ε(w) =
∫ τ
q

0 Fη(τ − wq)dF̂w(w) ≤
k−πA
λ(k−τ)

; that is, for all ε > 0, (14) is satisfied for all τ ≤ τ − ε under F̃ε.

Note further that, for all τ ∈ (τ − ε, τ),
∫ τ
q

0 Fη(τ −wq)dF̃ε(w) =
∫ τ
q

0 Fη(τ −wq)dF̂w(w) +

Fη(τ − (τ − ε))dF̂w( τ
q
) is continuous and increasing in ε. Since (14) holds with slack for

all τ ∈ (τ̂ , τ) under F̂w, for ε small enough (14) also holds under wage schedule F̃ε. Let

ε ≡ sup{ε : (14) holds for all τ ∈ [0, τ ] under F̃ε} and let F̃w = F̃ε. Note that there must

exist τ ′ > τ − ε such that (14) holds with equality at τ ′ under F̃w; i.e., such that

k − πA
λ(k − τ ′)

=

∫ τ ′
q

0

Fη(τ
′ − wq)dF̃w(w) ≥

∫ τ ′
q

0

Fη(τ
′ − wq)dFw(w), (15)

where the inequality follows since (14) holds for all τ under Fw.

We now use (15) to show that EF̃w [w] < EFw [w]. The distribution F̃w is a transformation

of Fw that shifts some of the mass that Fw has on [0, τ̂
q
] to 0 and some mass up to τ−ε

q
. Since
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Fη is strictly concave, (15) implies that EF̃w [w] < EFw [w]; otherwise, if EF̃w [w] ≥ EFw [w]

then Fw would second-order stochastically dominate F̃w and so (15) would not hold. �

Lemma B.2. Suppose Fw is such that Fw(0) = m0. If (14) is satisfied for all τ under Fw,

then it must be that Fw(w) = m0 for all w ∈ [0, τ0
q

].

Proof of Lemma B.2. Suppose by contradiction that Fw( τ0
q

) > Fw(0) = m0. Note then

that
∫ τ0

q

0 Fη(τ0−wq)dFw(w) > m0Fη(τ0) = k−πA
λ(k−τ0)

, and so (14) does not hold at τ = τ0. �

Lemma B.3. Suppose Fη is concave over [0, k]. Let Fw be a distribution with Fw(w) = m0

for all w ∈ [0, τ0
q

] that satisfies (14) for all τ . If Fw is such that (14) doesn’t hold with

equality for all τ ∈ [τ0, τ ] such that Fw( τ
q
) < 1, there exists a distribution F̃w which also

satisfies (14) for all τ such that EF̃w [w] < EFw [w].

Proof of Lemma B.3. Suppose that there is an interval (τ1, τ2) such that (14) is satisfied

with slack for all τ ∈ (τ1, τ2) under Fw, with τ1 ≥ τ0 and Fw( τ
q
) < 1 for all τ ∈ (τ1, τ2). There

are two possibilities: (i) (14) does not bind for all τ > τ1, or (ii) (14) binds at some τ̂ ≥ τ2.

Consider first case (i) and let w = inf{w : Fw(w) = 1} be the highest wage in the support

of Fw. Fix γ > 0 and let F̃w be a wage distribution with F̃ (w) = Fw(w) for all w < w − γ,

and F̃ (w− γ) = 1. Clearly, EF̃w [w] < EFw [w]. Since (14) is satisfied with slack for all τ > τ1

under policy Fw, for γ small enough (14) is also satisfied for all τ under F̃w.

Consider next case (ii). Without loss of generality, assume that (14) binds at τ2. Fix

γ > 0 and τ̂ ∈ (τ1, τ2) such that γ(τ̂ − τ1) < Fw( τ2
q

)−Fw( τ1
q

). Let F̂w be a wage distribution

such that: (i) F̂w( τ
q
) = Fw( τ

q
) for all τ ≤ τ1, (ii) F̂w( τ

q
) = Fw( τ

q
) +γ(τ − τ1) for all τ ∈ (τ1, τ̂),

dF̂w( τ
q
) = 0 for all τ ∈ [τ̂ , τ2), (iii) dF̂w( τ

q
) = dFw( τ

q
) for all τ ∈ [τ2, τ), and (iv) dF̂w( τ

q
) =

1 − F̂w( τ
q

−
). Note that F̂w is a transformation of Fw that shifts some of the mass that Fw

has over [ τ1
q
, τ2
q

] to [ τ1
q
, τ̂
q
] and shifts the rest of this mass to τ

q
. Since (14) is slack over (τ1, τ2)
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under Fw, there exists γ and τ̂ ∈ (τ1, τ2) such that (14) is satisfied for all (τ1, τ2] under F̂w.

Moreover, since F̂w(w) = Fw(w) for all w ≤ τ1
q

, (14) is satisfied for all τ ≤ τ1 under F̂w.

We now show that (14) also holds for all τ > τ2 under F̂w. Note first that for all τ ≥ τ2

∂

∂τ

(∫ τ
q

0

Fη(τ − wq)dFw(w)

)
=

∫ τ
q

0

fη(τ − wq)dFw(w) >

∫ τ
q

0

fη(τ − wq)dF̂w(w) =
∂

∂τ

(∫ τ
q

0

Fη(τ − wq)dF̂w(w)

)
,

where the strict inequality follows since F̂w puts more mass on [ τ1
q
, τ̂
q
] but less mass over

[ τ1
q
, τ2
q

] than Fw and since fη is decreasing. Note that k−πA
λ(k−τ2)

=
∫ τ2

q

0 Fη(τ2 − wq)dFw(w) ≥∫ τ2
q

0 Fη(τ2 − wq)dF̂w(w), where the equality follows since (14) binds at τ2 under Fw and the

inequality follows since (14) is satisfied at τ2 under F̂w. Since (14) is satisfied for all τ under

Fw, it follows that k−πA
λ(k−τ)

≥
∫ τ
q

0 Fη(τ −wq)dFw(w) >
∫ τ
q

0 Fη(τ −wq)dF̂w(w) for all τ ∈ (τ2, τ);

that is, (14) is satisfied with slack for all τ ∈ (τ2, τ) under F̂w.

The rest of the proof uses the same arguments as the proof of Lemma B.1. For each

ε > 0, let F̃ε be such that dF̃ε(w) = dF̂w(w) for all w /∈ { τ−ε
q
, τ
q
} and such that dF̃ε(

τ−ε
q

) =

dF̂w( τ−ε
q

)+dF̂w( τ
q
). Note that

∫ τ
q

0 Fη(τ−wq)dF̃ε(w) =
∫ τ
q

0 Fη(τ−wq)dF̂w(w) for all τ ≤ τ−ε.

Therefore, for all ε > 0, (14) holds for all τ ≤ τ − ε under F̃ε.

Let ε ≡ sup{ε : (14) holds for all τ ∈ [0, τ ] under F̃ε} and let F̃w = F̃ε. Since
∫ τ
q

0 Fη(τ −

wq)dF̃ε(w) is continuous and increasing in ε for all τ > τ − ε, there must exist τ ′ > τ − ε

such that (14) holds with equality at τ ′ under F̃w; that is, such that

k − πA
λ(k − τ ′)

=

∫ τ ′
q

0

Fη(τ
′ − wq)dF̃w(w) ≥

∫ τ ′
q

0

Fη(τ
′ − wq)dFw(w), (16)

where the inequality follows since (14) holds for all τ under Fw. The distribution F̃w is a

transformation of Fw that shifts some of the mass that Fw has on [ τ1
q
, τ2
q

] to [ τ1
q
, τ
′

q
] and the

rest to τ−ε
q

. Since Fη is strictly concave, (16) implies that EF̃w [w] < EFw [w]; otherwise, if
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EF̃w [w] ≥ EFw [w] then Fw would second-order stochastically dominate F̃w and (16) would

not hold. �

Proof of Proposition 5. Let F ∗w be the optimal wage distribution. By Lemmas B.1 and

B.2, F ∗w(w) = m0 for all w ∈ [0, τ0
q

]. By Lemma B.3, under F ∗w the constraint (4) holds with

equality for all τ ∈ [τ0, τ ] such that F ∗w( τ
q
) < 1; that is, for all τ in this range

H(τ) ≡ k − πA
λ(k − τ)

−
∫ τ

q

0

Fη(τ − ŵq)dF ∗w(ŵ) =
k − πA
λ(k − τ)

− q
∫ τ

q

0

fη(τ − ŵq)F ∗w(ŵ)dŵ = 0.

Therefore, for all τ ∈ [τ0, τ ] such that F ∗w( τ
q
) < 1,

H ′(τ) =
k − πA
λ(k − τ)2

− fη(0)F ∗w

(
τ

q

)
− q

∫ τ
q

0

f ′η(τ − qŵ)F ∗w(ŵ)dŵ = 0.

Using the change of variable w = τ
q
, for all w ∈ [ τ0

q
, τ
q
] such that F ∗w(w) < 1,

F ∗w(w) =
1

fη(0)

(
k − πA

λ(k − qw)2
− q

∫ w

0

f ′η(qw − qŵ)F ∗w(ŵ)dŵ

)
=

1

fη(0)

(
k − πA

λ(k − qw)2
−
∫ qw

0

f ′η(η̂)F ∗w

(
w − η̂

q

)
dη

)
.

It follows that the optimal distribution F ∗w is the solution to F ∗w = Φ(F ∗w), where Φ(·) is

defined in (6).

Let F,G be two cdfs and let ‖ · ‖ denote the sup norm. Note that, for all w /∈ ( τ0
q
, τ
q
),
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|Φ(F )(w)− Φ(G)(w)| = 0. On the other hand, for all w ∈ ( τ0
q
, τ
q
),

|Φ(F )(w)− Φ(G)(w)| ≤
∣∣∣∣ −1

fη(0)

∫ qw

0

f ′η(η)

(
F

(
w − η

q

)
−G

(
w − η

q

))
dη

∣∣∣∣
≤ ‖F −G‖

∣∣∣∣ −1

fη(0)

∫ qw

0

f ′η(η)dη

∣∣∣∣
= ‖F −G‖fη(0)− fη(qw)

fη(0)

≤ ‖F −G‖fη(0)− fη(τ)

fη(0)
,

where the last inequality follows since fη is decreasing. Note that τ = πA−(1−λ)k
λ

< k.

Since fη(·) is strictly positive for all w ∈ [0, k], d ≡ fη(0)−fη(τ)

fη(0)
< 1. It follows that

‖Φ(F )− Φ(G)‖ ≤ d‖F −G‖, so Φ is a contraction mapping of modulus d < 1. �

B.3 Proofs for Section 4

Proof of Fact 4. The proof is by example. We proceed case by case and assume throughout

that λ = 1. Denote by w and w the maximum and minimum values in the support of F 1
w.

Note that w0 ∈ (w,w).

We first show that R0 < R1 can be consistent with C0 < C1. Consider the case where

k = qw0 , FπA is a mass point at k − ε with ε > 0, and Fη a mass point at 0. For any ε > 0,

R0 = C0 = 0. For ε > 0 small enough F 1
w(w0− ε) > 0, which implies that for ε small enough,

max
τ

(k − τ)probF 1
w
(qw < τ) > ε.

Hence for ε > 0 small enough, C1 = 1. Furthermore, for ε > 0 small enough, F 1
w(w0 + ε) < 1,

which implies that R1 > 0 since the agent never offers a bribe τ ≥ k = qw0.

Let us show that R0 < R1 can be consistent with C0 > C1. Set FπA with full support
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over [0, k], and

η =

 η with proba p

0 with proba 1− p

with both η ≤ ε and p ≤ ε. For k large enough and ε > 0 small enough, it is immediate that

max
τ

(k − τ)probF 1
w
(qw + η < τ) < max

τ
(k − τ)prob(qw0 + η < τ)

since as k grows large, it is optimal for the agent to offer bribes respectively converging to

w and w0, and w > w0. This implies that C0 > C1. Let us now show that we can set η and

p so that R0 < R1. A necessary and sufficient condition to obtain R0 = 0

k − qw0 − η > (k − qw0)(1− p) ⇐⇒ k − qw0 >
η

p
. (17)

This condition expresses that it is optimal for the agent to offer a bribe τ = qw0 + η rather

than τ = qw0. Similarly, under F 1
w. a sufficient condition to ensure that R1 > 0 is that the

agent prefer offering a bribe τ = qw over bribe τ = qw + η. A sufficient condition for this is

that

k − qw − η < (k − qw)(1− p) ⇐⇒ k − qw <
η

p
. (18)

Since w > w0, it is immediate that for any ε, one can find values p, η < ε, such that conditions

(17) and (18) hold simultaneously. For such values, R1 > R0 = 0, which yields the desired

result.

We now show that R0 > R1 can be consistent with C0 > C1. Set

η =

 η with proba p

0 with proba 1− p
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with both η ≤ ε and p ≤ ε. For k large enough and ε > 0 small enough, we have that

max
τ

(k − τ)probF 1
w
(qw + η < τ) < max

τ
(k − τ)prob(qw0 + η < τ).

Set FπA as a point mass at a value πA such that

πA − k + max
τ

(k − τ)probF 1
w
(qw + η < τ) < 0 < πA − k + max

τ
(k − τ)prob(qw0 + η < τ)

for all ε small enough. This implies that C0 = 1 > C1 = 0. In turn we obtain that R1 = 0.

Finally, by choosing p and η such that (17) does not hold, one can ensure that R0 > 0.

Finally, we show that R0 > R1 can be consistent with C0 < C1. Set η = 0, k = qw0− 1
2
ε

and

πA =

 k + ε with proba p

k with proba 1− p.

It is immediate that C0 = p and R0 = p. Furthermore, since maxτ (k−τ)probF 1
w
(qw+η < τ)

is strictly positive and bounded away from 0 for ε small enough, it follows that for ε small

enough C1 = 1 and R1 < 1. For p large enough, R0 > R1. This concludes the proof. �

Proof of Proposition 6. Under wage schedule F ε
w, the agent’s payoff from action c = 1 is

U ε
A(πA) = πA − k + λmax

τ
(k − τ)

[
(1− ε)probF 0

w
(qw + η < τ) + εprobF 1

w
(qw + η < τ)

]
.

Let τε be the offer that maximizes this expression. By the Envelope Theorem,

∂U ε
A(πA)

∂ε
= (k − τε)

[
probF 1

w
(qw + η < τ)− probF 0

w
(qw + η < τ)

]
.

Proposition 6 follows since sgn
[
∂Cε
∂ε

]
= sgn

[
∂UεA(πA)

∂ε

]
and since sgn [probF 1

w
(qw + η <

τ)− probF 0
w
(qw + η < τ)] = sgn [Rε(X = 0)−Rε(X = 1)]. �
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