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1 Introduction

There is ample consensus that dynamics in the firms’ customer base -i.e. the set of customers

currently purchasing from a firm- are important determinants of performance, and that firms

act to influence its evolution (Foster et al. (2012)). The macroeconomic literature has sug-

gested customer markets as an important determinant of firms’ optimal pricing policy and a

natural example of real price rigidity (Blanchard (2009)). In this paper we study a model of

price setting with competition for customers and a sticky customer base. We characterize the

equilibrium of the model and estimate it using novel micro data. Using the estimated model,

we study the implications of customer markets for the pricing policy of firms. Our model

features dispersion in the price of homogenous goods and a shape of the distribution of prices

that is consistent with recent empirical evidence presented in Kaplan and Menzio (2014).

Finally, we embed our model of customer markets in an otherwise standard macro model

of nominal rigidities to study the propagation of nominal shocks. We find that the model

substantially amplifies the persistence of the response of output and prices to the nominal

shock, thus magnifying the size of its real effects.

We build on the seminal work on customer markets by Phelps and Winter (1970). In our

model, customer dynamics are the result of customers hunting for lower prices. Incentives

to hunt derive from price dispersion of otherwise homogeneous good supplied by a large

mass of firms characterized by heterogeneous productivity. Search frictions along the lines

of Burdett and Coles (1997) introduce stickiness in customer dynamics.1 Each customer is

matched to a particular firm at any point in time and draws a new search cost every period.

She has perfect information on the state of the economy as well as on the characteristics of

her supplier, and every period decides whether to search for a new supplier; if she does so, she

incurs in a cost and is randomly matched to a new firm. After observing the characteristics

of the new match, the customer decides if she wants to join the new firm or stay with the old

one. Finally the customer allocates her income between the good sold by the supplier she

is matched with and another good which is supplied in a centralized market and produced

by a perfectly competitive sector without customer markets. The two goods are substitutes,

giving rise to a downward sloping demand.

Each firm posts a price common to all customers without commitment every period, before

search decisions are taken. The current price affects both the current and future demand of

the firm. There are two channels through which the price affects demand. The first channel

is static and stems from the standard downward sloping demand of each customer. The

second channel is dynamic and concerns the effect of prices on customer dynamics. Inertia

1This approach is also used in the context of labor markets. See for instance Burdett and Mortensen
(1998), Coles (2001) and Coles and Mortensen (2013).
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in the customer base leads firms to consider customers as an asset. The firm faces a trade-off

between maximizing static profits per customer and expanding its customer bas. A decrease

in the price reduces current profits per-customer but persistently increase the future profits

through better retention and acquisition of customers.

We solve for the equilibrium prices in the sector with customer markets. As a result

of competition for customers, firms optimal markup over marginal cost is lower than would

otherwise be if the customer base were inelastic to prices. When productivity is persistent,

markups increase with firm productivity as more productive firms are associated to lower

expected prices in the future, and thus customers are less willing to leave their supplier. The

relatively less elastic customer base allows the firm to extract more surplus from their current

customers.

We complement our modeling effort with an empirical analysis. We exploit scanner data

from a major U.S. supermarket chain documenting purchases for a large sample of households

between 2004 and 2006. We focus on regular shoppers at the chain and study the extent to

which the occurrence of exits from the customer base is affected by variation in the price of

the (household specific) basket of consumption. Household level scanner data are particularly

well suited to study customer base dynamics. First, we observe a wealth of details on all the

shopping trips each household makes to the chain (list of goods purchased, prices, quantities,

etc...). More importantly, we can also infer the occurrence of exit from the customer base

which we proxy by prolonged spells without purchasing at the chain.

Estimating a linear probability model, we show that customer base dynamics are affected

by variation in the price: a one percent change in the price of the customer’s typical basket

of goods raises her likelihood of leaving the retailer by 0.2 percentage points. We control for

demographic characteristics of the household as well as for other variables influencing the

propensity of households to hunt for alternative suppliers (distance from the store, distance

from competitor stores, prices of competitors, etc..).

The data contains variation useful to identify the key parameters of the model. We target

the price elasticity of the customer base obtained in the exercise described above to estimate

the size of search costs in our model. Intuitively, the larger the search costs, the less elastic

the customer base is to a given variation in prices. We use data on store level prices to

infer the volatility and persistence of the idiosyncratic productivity process, exploiting the

relationship between equilibrium prices and productivity.

We quantitatively assess the relevance of customer markets for price dynamics by compar-

ing it to an identical economy where however the customer base is inelastic. The estimated

model delivers a leptokurtic distribution of prices featuring substantial mass of prices close

to the mean, and at the same time fat tails (kurtosis 8.2). The distribution of prices in the
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inelastic customer base model is also leptokurtic but with a much smaller kurtosis (2.9). The

presence of customer markets reduces dispersion of prices, as less productive firms charge

lower price than they would otherwise in an economy with inelastic customer base in or-

der to retain their customers, with the consequence that a large mass of prices concentrates

around a lower mean. At the same time, a non-negligible fraction of firms set prices relatively

far away from this mean. Part of them (very low productivity firms) charge a higher price

because, given the persistence of their status, they find much costly to retain customers and

settle for a price that is lower than the static profit maximization but still substantially above

the mean. Another set of firms (very high productivity firms) charge a price substantially

below the mean simply because they enjoy a productivity advantage which makes such lower

price optimal. The relatively high kurtosis of the distribution of prices is consistent with the

recent evidence by Kaplan and Menzio (2014). As a consequence of the smaller dispersion in

prices, dispersion in markups substantially increases in our model, as the estimated model

delivers a strong positive relationship between markup and idiosyncratic productivity (Petrin

and Warzynski (2012)).

Customer markets have been suggested in the literature as a natural source of real rigidi-

ties (Rotemberg and Woodford (1991), Blanchard (2009)), which are an important determi-

nant in the magnification of the real effects of nominal shocks (Chari et al. (2000), Gopinath

and Itskhoki (2011)). This paper develops and estimates a microfounded model of customer

markets, delivering a natural laboratory to assess the relevance of this type of real rigidity for

the propagation of nominal shocks. In order to address this question we introduce our model

of customer markets in a standard macro framework with nominal rigidities. We consider an

unexpected shock that permanently increases aggregate nominal spending and compare the

propagation with and without the presence of customer markets. We find that customer mar-

kets substantially magnify the real effects of nominal shocks: the cumulated impulse response

of output is four times larger with customer markets than without; persistence measured by

the half-life of output response also increases by a factor of three. This shows that customer

markets can substantially amplify the real effects of nominal shocks, hinting towards a larger

role for these shocks in explaining business cycle fluctuations.

Customer markets were first analyzed in the context of macroeconomics quantifiable mod-

els by Phelps and Winter (1970), and by Rotemberg and Woodford (1991), who modeled the

flow of customers as a function of the price posted by the firm. We provide a microfoundation

for these approaches by having customer dynamics arising endogenously by solving the game

between firms and customers. The literature on “deep habits” (Ravn et al. (2006), Nakamura

and Steinsson (2011)) represents an alternative way to generate persistence in demand by

introducing habits in consumption.
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Analyzing the implications of build-up of a customer base for pricing and markup, we

tie into a growing body of literature using models where the market share of the firm is

sluggish to study a number of issues such as pricing-to-market (Alessandria (2009), Drozd

and Nosal (2012)), firm investment (Gourio and Rudanko (2014)), firm dynamics (Luttmer

(2006), Dinlersoz and Yorukoglu (2012)), and advertising (Hall (2012)). We instead focus on

the influence of customer base concerns on firm price setting as in Bils (1989), Burdett and

Coles (1997), Menzio (2007) and Kleshchelski and Vincent (2009). We differ from them in

the specifics of the modeling approach and because we quantify the model using empirical

evidence directly documenting the comovement of customers and prices. Moreover, none of

these papers uses customer markets to study the implications for the distribution of prices

nor the propagation of aggregate shocks.

Our model delivers real price rigidities as in models of kinked demand (Kimball (1995)),

or in models of imperfect competition where the demand elasticity depends on the market

share (Atkeson and Burstein (2008)). A distinctive characteristic of our model is that it

introduces a dynamic element in the pricing decision, due to the stickiness of the customer

base.

We add to the literature using scanner data to document empirical regularities in pricing

and shopping behavior. A series of contributions (Aguiar and Hurst (2007), Coibion et al.

(2012), and Kaplan and Menzio (2013, 2014)) integrates store and customer scanner data

to show that intensity of search for lower prices depends on income and opportunity cost of

time. We instead focus on documenting how the decision to search is triggered by prices.

The rest of the paper is organized as follows. In Section 2 we lay out the model and

in Section 3 we characterize the equilibrium. Section 4 presents the data and descriptive

evidence of the relationship between customer dynamics and prices. In Section 5 we discuss

identification and estimation of the model, and use it to quantify the implications of the

model for price and customer dynamics. In Section 6 we perform a policy experiment and

document the role of customer markets for the propagation of nominal shocks. Section 7

concludes.

2 The model

The economy is populated by a measure one of firms producing an homogeneous good, and

a measure Γ of customers.

Customers. We use the index i to denote a customer. Let d(p) and v(p) denote the static

demand and customer surplus functions respectively which only depend on the current price
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p. We assume that: (i) d(p) is continuously differentiable with d′(p) < 0, limp→∞ d(p) = 0

and εd(p) ≡ −∂ ln d(p)/∂ ln p ≥ 1; and (ii) v(p) is continuously differentiable with v′(p) < 0,

v′′(p) ≤ 0 and limp→∞ v
′(p) = −∞, limp→0+ v

′(p) = 0. Assumption (i) states that the

demand function is decreasing in prices and it approaches zero as the price grows, while

assumption (ii) states that the surplus of the customer is decreasing and concave in the

price. In Appendix C we show that these properties are satisfied in models with CRRA

utility functions and CES demand. Each customer starts a period matched to a particular

firm, whose characteristics she observes perfectly. Customers are characterized by a random

search cost ψ measured in units of customer surplus. The search cost is drawn each period

from the same distribution with density g(ψ) on positive support, and associated cumulative

distribution function denoted by G(ψ). We restrict our attention to density functions that

are continuous on all the support. Upon payment of the search cost the customer draws

a random price quote from another firm, with the probability of drawing a particular firm

being proportional to its customer base.2 The customer can decide to accept the offer and

exit the customer customer base of her original firm, or decline and stay matched to the old

firm. We assume no recall in the sense that once the customer exits the customer base of the

firm she cannot go back to it unless she randomly draws it when searching. The customer

can search at most once per period.

Firms. We use the index j to denote a firm. The production technology is linear in the

unique production input, `, and depends on the firm specific productivity zj. That is,

yj = zj`j. We let the constant w > 0 denote the marginal cost of the input `, p denote the

price of the good, and π(p, z) ≡ d(p)(p − w/z) denote the profit per customer. We assume

that π(p, z) is single-peaked. We assume that productivity z is distributed according to a

conditional cumulative distribution function F (z′|z) with bounded support [z, z̄]. We also

assume that F (z′| zh) first order stochastically dominates F (z′| zl) for any zh > zl. The only

choice firms make is to to set prices.

Timing of events. A firm starts a period matched to the set of customers she had retained

at the end of the previous period (mj
t−1). The timing of events is the following: (i) produc-

tivity shocks are realized for all firms and each firm j posts a price pjt without commitment,

(ii) each customer draws her search cost ψit and observes the price pjt as well as the relevant

state of the firm she is matched with (i.e. zjt and mj
t−1), (iii) each customer decides whether

to search for a new firm or remain matched to her current one, (iv) if the customer decides to

search, she pays the search cost and draws a new supplier j′ with probability mj′

t−1/Γ. The

2This captures the idea that larger firms attract more customers (Rob and Fishman (2005)).
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customer perfectly observes not only the price but also productivity and customer base of the

prospective match and decides whether to exit the customer base of the current supplier to

join that of the new match or to stay with the current match. Finally, (v) customer surplus

v(pjt) and profits π(pjt , z
j
t ) are realized.

Equilibrium. A firm and its customers play an anonymous sequential game. We look

for a stationary Markov Perfect equilibrium where strategies are a function of the current

state. There are no aggregate shocks. Although the relevant state for the pricing decision

of the firm could in principle include both the stock of customers and the idiosyncratic

productivity, we conjecture and show the existence of an equilibrium where optimal prices

only depend on productivity, and we denote by P(z) the equilibrium pricing strategy of

the firm. The relevant state for the search decision of a customer includes the expectations

about the path of current and future prices of the firm she is matched to, as well as the

idiosyncratic search cost. Given the Markovian equilibrium we study, the current realization

of idiosyncratic productivity is a perfect statistic about the distribution of future prices. As

a result, the search strategy of the customer depends on the current price and productivity

of the firm she is matched to, and on her own search cost. We denote the search decision

as s(p, z, ψ) ∈ {0, 1}, where s = 1 means that the customer decides to search. Conditional

on searching, the exit decision depends on the continuation value associated to the firm the

customer starts matched to (the outside option), which is fully characterized by posted price

and productivity, as well as on productivity of the firm she has drawn upon the search, z′,

which fully characterizes the continuation value associated to the new firm. We denote the

exit decision as e(p, z, z′) ∈ {0, 1}, where e = 1 means that the customer decides to exit the

customer base of her original firm.

2.1 The problem of the customer

Consider a customer buying goods from firm j, and let V (p, z, ψ) denote the value function

for her of being matched to firm j -which has current productivity z and posted price p-

and that has drawn a search cost equal to ψ. We have that this value function solves the

following problem,

V (pjt , z
j
t , ψ

i
t) = max

{
V̄ (pjt , z

j
t ) , Ṽ (pjt , z

j
t )− ψit

}
, (1)

where V̄ (p, z) is the customer’s value if she does not search, and Ṽ (p, z) − ψ is the value if

she does search. Given the pricing function P(·) mapping future productivity into prices in
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the Markov equilibrium, the value in the case of not searching is given by

V̄ (pjt , z
j
t ) = v(pjt) + β

∫ ∞
0

∫ z̄

z

V (P(z′), z′, ψ′) dF (z′|zjt ) dG(ψ′) . (2)

The value when searching is given by

Ṽ (pjt , z
j
t ) =

∫
max

{
V̄ (pjt , z

j
t ) , x

}
dH(x) ,

where the customer takes expectations over all possible draws of potential new firms, each

of them providing a value V̄ ′ to the customer is she decides to join the new firm, and where

H(·) is the equilibrium cumulative distribution of continuation values from which the firm

draws a new potential match when searching. For instance, H(V̄ (pjt , z
j
t )) is the probability

of drawing a potential match offering a continuation value smaller or equal than the current

match.

The following lemma describes the customer’s optimal search and exit policy rules.

Lemma 1 The customer matched to a firm with productivity zjt charging price pjt : i) searches

if she draws a search cost ψt smaller than a threshold, i.e. ψt ≤ ψ̂(pjt , z
j
t ), where ψ̂(p, z) =∫∞

V̄ (p,z)

(
x− V̄ (p, z)

)
dH(x) ≥ 0; ii) conditional on searching, exits if she draws a new firm

promising a continuation value V̄ ′ larger than the current match, i.e. V̄ ′ ≥ V̄ (pjt , z
j
t ).

The proof of the lemma is in Appendix A.1. Given that search is costly, not all customers

currently matched to a given firm exercise the search option; only those with a low search

cost ψ do so. Notice the threshold ψ̂(p, z) depends on both the price of the firm, p, and its

productivity, z. The dependence on the price is straightforward, following from its effect on

the surplus v(p) that the customer can attain in the current period. The intuition behind the

dependence on the firm’s productivity is that, as searching is a costly activity, the decision of

which firm to patronize is a dynamic one, and involves comparing the value of remaining in

the customer base of the current firm with the value of searching. Because of the Markovian

structure of prices, customer’s expectation about future prices are completely determined by

the firm’s current productivity. firm.

The next lemma discusses some useful properties of the continuation value function

V̄ (p, z).

Lemma 2 The value function V̄ (p, z) (the threshold ψ̂(p, z)) is strictly decreasing (increas-

ing) in p. If V̂ (z) ≡ V̄ (P(z), z) is increasing in z, the value function V̄ (p, z) (the threshold

ψ̂(p, z)) is increasing (decreasing) in z.
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The proof of Lemma 2 is in Appendix A.2. An important implication of the lemma is that,

not only customers are more likely to search and exit from firms charging higher prices, but

also that they are more likely to do so from firms with lower productivity. This follows from

the dependence of the expected future path of prices on the firm’s current productivity as,

under the assumption that V̂ (z) is increasing in z, firms with lower productivity offer low

continuation value to customers.

2.2 The problem of the firm

In this section we describe the pricing problem of the firm. We start by discussing the

dynamics of the customer base as a function of price and productivity, given the optimal

search and exit strategy of the customers. Then we move to the setup and characterization

of the firm pricing strategy.

The customer base of a generic firm j at period t (mj
t) is the mass of customers buying

from firm j in period t. It evolves as follows

mj
t = mj

t−1 −m
j
t−1G

(
ψ̂(pjt , z

j
t )
)(

1−H(V̄ (pjt , z
j
t ))
)

︸ ︷︷ ︸
customers outflow

+
mj
t−1

Γ
Q
(
V̄ (pjt , z

j
t )
)

︸ ︷︷ ︸
customers inflow

, (3)

where mj
t−1 is the mass of old customers, G(ψ̂(pjt , z

j
t )) is the fraction of old customers search-

ing, a fraction 1−H(V̄ (pjt , z
j
t )) of which actually finds a better match and exits the customer

base of firm j. The ratio mj
t−1/Γ is the probability that searching customers in the whole

economy draw firm j as a potential match. The function Q(V̄ (pjt , z
j
t )) denotes the equilib-

rium mass of searching customers currently matched to a firm with continuation value smaller

than V̄ (pjt , z
j
t ). Therefore, the product of the two amounts to the mass of new customers

entering the customer base of firm j. We can express the dynamics in the customer base as

mj
t = mj

t−1 ∆(pjt , z
j
t ), where the function ∆(·) denotes the growth of the customer base and

is given by

∆(p, z) ≡ 1−G
(
ψ̂(p, z)

)(
1− H(V̄ (p, z))

)
+ 1

Γ
Q
(
V̄ (p, z)

)
. (4)

The assumption that the probability that a firm is proposed to a searching customer as her

new potential match is proportional to its customer base, coupled with linear production

technology, implies that the growth of a firm is independent of its size. This result is known

as Gibrat’s Law, and is consistent with existing empirical evidence on the distribution of

firms’ size (see Luttmer (2010)). The next lemma discusses the properties of the customer

base growth with respect to prices and productivity.
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Lemma 3 Let p̄(z) solve V̄ (p̄(z), z) = maxz {V̄ (P(z), z)}; ∆(p, z) is strictly decreasing in p

for all p > p̄(z), and constant for all p ≤ p̄(z). If V̂ (z) ≡ V̄ (P(z), z) is increasing in z, then

∆(p, z) is increasing in z.

The proof of Lemma 3 follows directly from Lemma 2. The growth of the customer base

is decreasing in the current price because a higher price reduces the current surplus and

therefore the value of staying matched to the firm. When the price is low enough that no

firm in the economy offers a higher value to the customer, the customer base is maximized ant

a further decrease in the price has no impact on the customer growth. If V̂ (z) is increasing in

z, the growth of the customer base increases with firm productivity, as a larger z is associated

to higher continuation value which increases the value of staying matched to the firm.

We next discuss the pricing problem of the firm. The firm pricing problem in recursive

form solves

W̃ (zjt ,m
j
t−1) = max

p
mj
t π(p, zjt ) + β

∫ z̄

z

W̃ (z′,mj
t) dF (z′| zt) ,

subject to equation (3), where W̃ (zjt ,m
j
t−1) denotes the firm value at the optimal price and

π(p, zjt ) = d(p) (p − w/zjt ) is profits per customer. We study equilibria where the pricing

decision of the firm only depends on productivity. Thus, we conjecture that in this equilibrium

the value function for a firm is homogeneous of degree one in m, i.e., W̃ (z,m) = m W̃ (z, 1) ≡
m W (z), where W (z) solves

W (z) = max
p

∆(p, z)

(
π(p, z) + β

∫ z̄

z

W (z′)dF (z′| z)

)
︸ ︷︷ ︸

present discounted value of a customer ≡ Π(p,z)

, (5)

where we used equation (3) and we dropped time and firm indexes to ease the notation.

We assume that the discount rate β is low enough so that the maximization operator in

equation (5) is a contraction, so that by the contraction mapping theorem we can conclude

that our conjecture about homogeneity of W̃ (z,m) is verified.

We can express the objective of the firm maximization problem as the product of two

terms. The first term is the growth in the customer base, ∆(p, z), which according to Lemma 3

is decreasing in the price for all p > p̄(z) and is maximized at any price p ≤ p̄(z). The second

term is the expected present discounted value to the firm of each customer, which we denote

by Π(p, z). The function Π(p, z) is maximized at the static profit maximizing price,

p∗(z) =
εd(p)

εd(p)− 1

w

z
. (6)
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It follows that setting a price above the static profit maximizing price is never optimal.

Moreover, if p̄(z) ≤ p∗(z), the optimal price will not be below p̄(z), because in that region

profit per customer decrease in the price but the customer base is unaffected, so that p̂(z) ∈
[p̄(z), p∗(z)]. If instead p̄(z) ≥ p∗(z), then the optimal price is the static profit maximizing

price, p̂(z) = p∗(z), as at this price both the customer base and the profit per customer are

maximized. The following proposition collects these results and provides necessary conditions

under which the optimal price can be characterized as the solution to the first order condition

and uses it to discuss the properties of optimal markups.

Proposition 1 Let p̄(z) solve V̄ (p̄(z), z) = maxz∈[z,z̄] {V̄ (P(z), z)}, and let p∗(z) be the price

that maximizes the static profit in equation (6). Denote by p̂(z) a price that solves the firm

problem in equation (5). If G(·) is differentiable for all ψ ∈ [0,∞), then p̂(z) ∈ [p̄(z), p∗(z))

if p̄(z) < p∗(z), and p̂(z) = p∗(z) otherwise. Moreover, if the distributions Q(·) and H(·) are

differentiable on all their supports, p̂(z) must solve the following first order condition,

∂Π(p, z)

∂p

p

Π(p, z)
=

p

∆(p, z)

∂∆(p, z)

∂p︸ ︷︷ ︸
customer growth elasticity ≡ εm(p,z)

≥ 0 , (7)

for each z.

A proof of the proposition can be found in Appendix A.3. The first order condition is not in

general sufficient for an optimum to the firm problem as the firm objective, and in particular

∆(p, z), is not in general a concave function of p. The first order condition is however sufficient

if the customer growth elasticity, εm(p, z), is non-decreasing in p for all p ≤ p∗(z), i.e. ∆(p, z)

is a concave function of p in the relevant region of prices. This is a useful property to know

because it will be satisfied at the parameter estimates in our empirical exercise.

The first order condition illustrates the trade-off the firm faces when setting the price in a

region where customer retention is a concern: if p̄(z) < p∗(z) the optimal price balances the

marginal benefit of an increase in price (more profit per customer) with the cost (decrease in

the customer base). From equation (7) we can obtain an expression for the optimal markup,

µ(p, z) ≡ p

w/z
=

εd(p)

εd(p)− 1 + εm(p, z)x(p, z)
. (8)

The terms εd(p) and εm(p, z) represent the price elasticities of quantity purchased (per-

customer) and of customer growth, respectively. An increase in price reduces total current

demand both because it reduces quantity per customer (intesinve margin effect) and because

it reduces the number of customers (extesinve margin effect). Moreover, the optimal markup
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solves a dynamic problem as a loss in customers has persistent consequences for future de-

mand due to the inertia in the customer base. This dynamic effect is captured by the term

x(p, z) ≡ Π(p, z)/(d(p) p) ≥ 0 which measures the firm present discounted value of a cus-

tomer scaled by the current revenues. It follows that active customer markets are associated

to strictly lower markup than the one that maximizes static profit, the lower, the larger the

product εm(p, z)x(p, z).

To clarify the importance of the dynamic effect on optimal markups, consider the following

thought experiment. Define the overall demand elasticity of an economy as the sum of its

quantity elasticity and its customer growth elasticity: εq(p, z) ≡ εd(p) + εm(p, z). Take two

firms characterized by the same productivity z and the same overall demand elasticity, but by

different combinations of εd(·) and εm(·). In particular, one firm has lower quantity elasticity

but higher customer growth elasticity than the other. Then the optimal markup for the

former is strictly lower than that for the latter.3

3 Equilibrium

In this section we define an equilibrium, discuss its existence, and characterize its general

properties. We start by defining the type of equilibrium we study.

Definition 1 Let V̂ (z) ≡ V̄ (P(z), z) and p∗(z) be given by equation (6). We study stationary

Markovian equilibria where V̂ (z) is non-decreasing in z, and for all z ∈ [z, z̄] the firm pricing

strategy lies in the compact set [p∗(z̄), p∗(z)]. A stationary equilibrium is

(i) a search and an exit strategy that solve the customer problem for given equilibrium

pricing strategy P(z), as defined in Lemma 1;

(ii) a firm pricing strategy p̂(z) that solves the firm’s problem in equation (5), given cus-

tomers’ strategies and equilibrium pricing policy P(z), and is such that p̂(z) = P(z) for

each z;

(iii) two distributions over the continuation values to the customers, H(x) and Q(x), that

solve H(x) = K(ẑ(x)) and Q(x) = Γ
∫ ẑ(x)

z
G(ψ̂(p̂(z), z)) dK(z) for each x ∈ [V̂ (z), V̂ (z̄)],

where ẑ(x) = max{z ∈ [z, z̄] : V̂ (z) ≤ x}, and K(z) solves

K(z) =

∫ z

z

∫ z̄

z

∆(p̂(x), x) dF (s|x) dK(x) ds , (9)

for each z ∈ [z, z̄] with boundary condition
∫ z̄
z
dK(x) = 1.

3More details are available in Appendix A.4.
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The requirement that the continuation value to customers is non-decreasing in productiv-

ity implies that customers rank of firms coincides with their productivity. This is a natural

outcome as more productive firms are better positioned to offer lower prices and therefore

higher values to customers. The requirement that p̂(z) ∈ [p∗(z̄), p∗(z)] excludes those equi-

libria where firms cut prices below the static profit maximizing price of the most productive

firm. Notice that Proposition 1 implies that p̂(z) ≤ p∗(z) for all z ∈ [z, z̄], so that we are

effectively restricting only the lower bound.

The next proposition states the existence of an equilibrium and characterizes its proper-

ties.

Proposition 2 Let productivity be i.i.d. with F (z′|z1) = F (z′|z2) continuous and differen-

tiable for any z′ and any pair (z1, z2) ∈ [z, z̄], and let G(ψ) be differentiable for all ψ ∈ [0,∞),

with G(·) differentiable and not degenerate at ψ = 0. There exists an equilibrium as described

in Definition 1 where p̂(z) satisfies equation (7), and

(i) p̂(z) is strictly decreasing in z, with p̂(z̄) = p∗(z̄) and p̂(z̄) < p̂(z) < p∗(z) for z < z̄,

implying that V̂ (z) is strictly increasing;

(ii) ψ̂(p̂(z), z) is strictly increasing in z, with ψ̂(p̂(z̄), z̄) = 0 and ψ̂(p̂(z), z) > 0 for z < z̄,

implying that ∆(p̂(z), z) is strictly increasing, with ∆(p̂(z̄), z̄) > 1 and ∆(p̂(z), z) < 1.

The proposition highlights the main properties of the equilibrium we study. The equi-

librium is characterized by price dispersion: more productive firms charge lower prices and,

therefore, offer higher continuation value to customers and grow faster. As shown in Proposi-

tion 1, the presence of customer markets reduces markups for each productivity level relatively

to the case where firms maximize static profits, i.e. p̂(z) < p∗(z) for all z < z̄. In equilibrium,

there is a positive mass of lower productivity firms that have a shrinking customer base, and

a positive mass of higher productivity firms that are expanding their customer base.

Notice that differentiability of the distribution of productivity F is needed to ensure

that H(·) and Q(·) are almost everywhere differentiable so that equation (7) is a necessary

condition for optimal prices. However, equation (7) is not necessary for the existence of an

equilibrium as described in Definition 1. Even when F is not differentiable and the first order

condition cannot be used to characterize the equilibrium, an equilibrium with the properties

of Proposition 2 exists where p̂(z) and ψ̂(p̂(z), z) are monotonic in z but not necessarily

strictly monotonic for all z. Monotonicity of optimal prices follows from an application of

Topkis theorem. In order to apply the theorem to the firm problem in equation (5) we

need to establish increasing differences of the firm objective ∆(p, z) Π(p, z) in (p,−z). Under
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the standard assumptions we stated on π(p, z) it is easy to show that Π(p, z) satisfies this

property. The customer base growth does not in general verifies the increasing difference

property. However, under the assumption of i.i.d. productivity ∆(p, z) is independent of z

which, together with Lemma 3, is sufficient to obtain the result. More details on the proof of

the proposition can be found in Appendix A.5. Finally, while the results of Proposition 2 refer

to the case of i.i.d. productivity shocks, numerical results in Section 5.2 show the properties

of Proposition 2 extend to the case of a persistent productivity process.

The next remark shows that our model nests two limiting cases that have been extensively

studied in the literature. First, if we let the search cost diverge to infinity, i.e. G(ψ) = 0

for all ψ < ∞, we obtain a model where customer base concerns are not present. Because

the customer base is unresponsive to prices, the firm problem reduces to the standard price

setting problem under monopolistic competition. In the second limiting case, we explore the

equilibrium under the assumption that firms share the same constant level of productivity,

i.e. F (z′|z) is degenerate at some productivity level z0 ∈ [z, z̄]. Under the type of Markovian

equilibrium we study, firms have to charge the same price when they have the same produc-

tivity. In this case the equilibrium price must be the price that maximizes static profits, a

result reminiscent of Diamond (1971).

Remark 1 Two limiting cases of the equilibrium stated in Definition 1:

(1) Suppose that G(ψ) = 0 for any arbitrarily large level of ψ. Then, in equilibrium: (i) the

optimal price maximizes static profits, p̂(z) = p∗(z) for all z, (ii) equilibrium markups

µ(p̂(z), z) are increasing in productivity, and (iii) there is no search in equilibrium.

Furthermore, the equilibrium is unique.

(2) Suppose that G(·) is differentiable and not degenerate at ψ = 0. Let the productivity

distribution be degenerate at some z = z0. Then, there is a unique Markovian equi-

librium where each firm charges the price that maximizes static monopoly profits, i.e.

p̂(z0) = p∗(z0).

A proof can be found in Appendix A.6.

4 Data

We complement the theoretical analysis with an empirical investigation that relies on cashier

register data from a large US supermarket chain. The empirical analysis has two purposes.

First, we document that changes in the price posted by the firm influence customers’decision

to exit the customer base and measure the size of this effect. Second, we use the data to
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estimate our model and quantify the importance of customer markets in shaping firm price

setting.

4.1 Data sources and variable construction

The data include purchases by households who carry a loyalty card of the chain. For every

trip made at the chain by a panel of households between June 2004 and June 2006, we

have information on the date of the trip, store visited and list of goods (identified by their

Universal Product Code, UPC) purchased, as well as quantity and price paid. This data are

particularly suitable to our focus as we are interested in the behavior of regular customers,

who typically carry a loyalty card. To be conservative, we keep in our data only households

who shop at the chain at least twice a month, so to remove occasional shoppers. Within this

sample, the average number of shopping trips at the chain is 157 shopping trips over the two

years; if those trips were uniformly distributed that would imply visiting a store of the chain

six times per month.

In the theoretical model we studied the behavior of customers buying from firms producing

a single homogeneous good. Our application documents the exit decisions of customers from

supermarket stores.4 In this context, customers buy bundles of goods and therefore we

assume that their behavior depends on the price of the basket of goods they typically buy at

the supermarket.5 While the multiproduct nature of the problem may have implications for

the pricing decision of the firm, we abstract from this issue and only focus on the resulting

price index of the customer basket which we use to measure the comovement between the

customer’s decision to exit the customer base and the price of her typical basket of goods

posted at the chain. To do so we need to construct two key variables: (i) an indicator signaling

when the household is exiting the chain’s customer base, and (ii) the price of the household

basket. Below we briefly describe the procedure followed to obtain them, the details are left

to Appendix B.

We consider every customer shopping at the retailer in a given week as belonging to the

chain’s customer base in that week. We assume that a household has exited the customer

base when she has not shopped at the chain for eight or more consecutive weeks and we

date the exit event to the last time the customer visited the chain. The eight-weeks window

is a conservative choice since households in our sample shop much more frequently than

4The choice of focusing on the customer base of the store rather than that of one of the branded product
it sells is data driven. With data from a single chain we cannot track the evolution of the customer base of
a single brand. In fact, if we observed customers stopping to buy a particular brand we can only infer she is
not buying it at our chain, but we cannot exclude she is not buying it elsewhere.

5Note that since customers baskets are in large majority composed of package goods, which are standard-
ized products, the assumption that the basket is a homogenous good is not unwarranted.

14



that. Regular customers are unlikely to experience a eight-weeks spell without shopping for

reasons other than having switched to another chain (e.g. consuming their inventory). In

fact, the average number of days elapsed between consecutive trips is close to four and the

99th percentile is 24 days, roughly half the length of the absence we require before inferring

that a household is buying its grocery at a competing chain.

We construct the price of the basket of grocery goods usually purchased by the households

in a fashion similar to Dubois and Jodar Rosell (2010). We identify the goods belonging to a

household’s basket using scanner data on items the household purchased over the two years

in the sample. The price of its basket in a particular week is then computed as the average

of the weekly prices of the goods included in the basket, weighted by their expenditure share

in the household budget. Since households differ in their choice of grocery products and in

the weight such goods have in their budget, the price of the basket is household specific. We

face the common problem that household scanner data only contain information on prices

and quantities of UPCs when they are actually purchased. Therefore we complement our

data with store level data on weekly revenues and quantities sold.6 This data allows us to to

construct weekly prices of each UPC in the sample. The construction of the price variable is

therefore analogous to that in Eichenbaum et al. (2011) and is subject to the same caveats.

4.2 Evidence on customer base dynamics

We estimate a linear probability model where the dependent variable is an indicator for

whether the household has left the customer base of the chain in a particular week. Our

regressor of interest is the logarithm of the price of the basket of grocery goods usually

purchased by the households at the chain (pretailer).

In Table 1, we report results of regressions of the following form,

Exitit = b0 + b1p
retailer
it +X ′ib2 + εit . (10)

In the regression we include year-week fixed effects to account for time-varying drivers of the

decision of exiting the customer base common across households and we control for observ-

able characteristics, such as age, income, and education, through inclusion of household’s

demographics matched from Census 2000. We add the number of competing grocery retail-

ers in the zipcode, as well as the distance (in miles) from the closest store of the chain and

that from the closest store of the competition to account for the fact that households living

closer to outlets of the chain and far away from alternative options will be less likely to leave

6The retailer changes the price of the UPCs at most once per week, hence we only need to construct
weekly prices to capture the entire time variation.
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the customer base of the chain. Finally, we include as regressors the logarithm of the price

of the basket in the first week in the sample and the standard deviation of price changes

for each household over the sample period. These are meant to control for differences in

the composition of the basket across shoppers. For example, some customers may purchase

product categories more prone to promotions than others and experience more intense price

fluctuations as a result.

Table 1: Effect of price on the probability of exiting the customer base

Exiting: Missing at least 8 consecutive weeks
(1) (2)

log(P retailer
i ) 0.20*** 0.23***

(0.074) (0.073)

log(P competitors
i ) 0.001

(0.001)

Observations 71,049 52,670

Notes: An observation is a household-week pair. The sample only includes households who prominently shop at stores for

which we have complete price data for all the UPCs they purchase. We exclude from the sample the top and bottom 1 % in

the distribution of the number of trips over the two years. Demographic controls rely on a subsample of households for which

information on the block-group of residence was provided and include as regressors ethnicity, family status, age, income,

education, and time spent commuting (all matched from Census 2000) as well as distance from the closest outlet of the

supermarket chain and distance from the closest competing supermarket (provided by the retailer). The logarithm of the price

of the household basket in the first week in the sample and the standard deviation of changes in the log-price of the household

basket over the sample period are included as a controls in all specifications. Week-year fixed effects are also always included.

Standard errors are in parenthesis. ***: Significant at 1% **: Significant at 5% *: Significant at 10%.

Table 1 reports the results of a regression whose dependent variable is an indicator that

takes value one if in that week the customer decides to leave the retailer, and zero otherwise.

Column (1), documents that a 1% increase in the weekly price of the customer-specific grocery

basket is associated with 0.2 percentage points increase in the probability that the customer

leaves the chain to patronize a rival firm.7 The coefficient on the price of the basket is

identified by UPC-chain specific shocks as those triggered, for example, by the expiration of

a contract between the chain and a manufacturer of a UPC. Furthermore, we also exploit

variation in our data from UPC-store specific shocks: within the chain, the price of a same

good moves differently in different stores. This can be due, for instance, to variation in

7Notice that since productivity does not enter the equation as a separate regressor, the coefficient b1
conflates two different effects of the price on the customer’s exit decision when interpreted through the lens
of our model. The first is static and stems from the impact of the price on the contemporaneous utility of the
customer. The second is dynamic and depends on information the price contains about future productivity
and continuation value of the customer.
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the cost of supplying the store due to logistics (e.g. distance from the warehouse) which

will hit differently goods with different intensity in delivery cost (e.g. refrigerated vs. non

refrigerated goods).

Endogeneity of prices to the exit decision of a customer is unlikely in this setting. First,

our approach differs from the standard discrete choice studies of demand. We are not model-

ing the household’s choice of the preferred retailer among a set of potential alternatives, but

rather the decision of whether to leave a given retailer or to stick with it. It implies that the

usual concern of price endogeneity driven by unobserved store characteristics is not relevant

in this context. Moreover, the customer reacts to his own specific basket price, whereas the

firm sets UPC prices common to all customers. Even if the retailer were to observe variables

predicting the exit from the customer base of specific households, it is unlikely that it can

react with targeted prices for them. In fact the basket of different households will partially

overlap making it impossible to fine tune the basket price faced by some households without

affecting the price of others.

The results in column (1) do not control for the pricing behavior of the competitors.

This may raise concerns on the precision of our estimate of the elasticity to price. Absent

information on the level of prices at competing stores, we cannot tell whether shifts in the

price of the basket at the chain are idiosyncratic or due to shocks common to all the other

retailers in the market. Only shock idiosyncratic to the chain should be expected to affect

the probability of leaving the chain. Aggregate cost shocks do not change the relative price

and, therefore, should not trigger exit from the customer base. Furthermore, our retailer

is a major player in the markets included in our sample and it is reasonable to assume

that the competition takes its prices into consideration when deciding on their own. This

possibly introduces correlation between price variations at the chain and price variations at

the alternative outlets the customer may visit. Disregarding the prices of the competitors

may therefore lead to biases in the magnitude and even the sign of the own-price elasticity.

In column (2) we address both of these concerns by directly controlling for the prices posted

by competitors of the chain using the IRI Marketing data set. This source includes weekly

UPC’s prices for 30 major product categories for a representative sample of chain stores

across 64 markets in the US.8 Using this data, we can compute the price of each UPC in the

Metropolitan Statistical Area of residence of a customer by averaging the price posted for the

item by all the chains sampled by IRI. Then, we construct the average market price of the

basket bought by the customer in the same fashion described for the price of the basket at

8A detailed description of the data can be found in Bronnenberg et al. (2008). All estimates and analyses
in this paper based on Information Resources Inc. data are by the authors and not by Information Resources
Inc.
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our chain.9 Even after controlling for the general level of prices, the coefficient on the price

of the basket at the chain stays negative and significant and nearly unaffected in magnitude,

suggesting that most of the variation in the index comes from chain, or UPC-chain, specific

shocks.

5 Estimation and quantitative analysis

In this section we discuss the procedure we follow to calibrate and solve the model. We

need to choose the discount factor β and the nominal wage w, as well as four functions: the

demand function, d(p), the surplus function v(p), the distribution of search costs G(ψ), and

the conditional distribution of productivity F (z′|z) for all z ∈ [z, z̄]. We next we discuss the

parametrization of the model in detail.

Discount factor. We assume that a period in the model corresponds to a week to mirror

the frequency of our data. We fix the firm discount rate is β = 0.995. In the set of pa-

rameters that we consider, this level of β ensures that the max-operator in equation (5) is a

contraction.10

Customer demand and surplus functions. We assume that customers derive utility

from consumption according to the function log(c), where c is a composite of two types

of goods defined as c =
(
d
θ−1
θ + n

θ−1
θ

) θ
θ−1

, with θ > 1.11 One (that we label d) is the good

supplied by the type of firms described in Section 2.2; the other good that we label (n) acts as

a numeraire and is sold in a centralized market. The sole purpose of good n is to microfound

a downward sloping demand d(p). The parameter θ is chosen so that the implied average

markup in absence of customer retention concern (Monopolistic economy) is about 10%, a

value in the range of those used in the macro literature. The customer budget constraint is

given by p d+ n = I, where I is the agent’s nominal income which we normalize to one.

Firms productivity process. We assume that the productivity follows a simple process of

the following form: log(zjt ) = log(zjt−1) with probability ρ, and log(zjt ) = σεjt with probability

9We define this variable average market price of the basket, rather than price of the basket at competitors
because it includes the price posted by our chain as well. In fact, chain identity is masked in the IRI data,
preventing us from excluding the prices of our retailer from the average.

10One can think of the effective discount rate faced by the firm as the product of the usual time preference
discount factor and a rescaling element which takes into account the time horizon of the decision maker, as
for instance the average tenure of CEOs in the retail food industry reported in Henderson et al. (2006). This
could also be modeled by a lower value of β.

11In Appendix C we show that moving from these assumptions we can derive a demand function (d(p))
and a customer surplus function (v(p)) consistent with the assumptions made in Section 2.
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1− ρ; where ε is i.i.d. and distributed according to a standardized normal. In the numerical

solution of the model we approximate the normal distribution on a finite grid, using the

procedure described in Tauchen (1986). Finally, we set the nominal wage equal to the price

of the numeraire good, so that w = 1. This is equivalent to assume that the numeraire

good n is produced by a competitive representative firm with linear production function and

unitary labor productivity.

Search cost distribution. We assume that the search cost is drawn from a Gamma

distribution with shape parameter ζ, and scale parameter λ. The Gamma distribution is

appealing because it is flexible and fits the assumptions we made over the G function in the

specification of the model. In particular, we focus on parameter values of ζ > 1, so that the

distribution of search costs is differentiable at ψ = 0; in our estimates, this restriction is not

binding.

5.1 Identification and estimation

We aim to estimate the persistence and volatility of the productivity process (ρ and σ), and

the scale and shape parameters of the search cost distribution (λ and ζ). Below we discuss

the intuition behind the source of identification for each one of them.

We estimate persistence and volatility by matching the autocorrelation and the volatility

of log-prices predicted by the model to the posted price measured using the store-level prices

provided by the IRI data. We construct the posted price of a store in a particular week is

the revenue weighted average of the prices of all the UPC in stock at the store. The data

implies an autocorrelation of log-prices equal to 0.7, and a volatility of 0.06.12

To identify the parameters of the search cost distribution we exploit the estimates of the

relationship between price and probability of exiting the customer base discussed in Section 4.

We identify the scale parameter λ by matching the average effect of log-prices on the exit

probability predicted by the model in equilibrium to its counterpart in the data measured

by the parameter b1 in equation (10). The model predicts that the ex-ante probability

(before drawing the search cost) of exiting the customer base of a firm charging p and with

productivity z is G̃(p, z) ≡ G(ψ̂(p, z))(1−H(V̄ (p, z))). In the region of parameters we study,

the marginal effect of prices on the probability of exiting, - i.e. E[∂G̃(p, z)/∂ log(p) |p=p̂(z)]- is

decreasing in the scale of the search cost, creating a mapping between the mean of the search

12These statistics are obtained from fitting an AR(1) process to the time series of prices separately for each
stores for which we have store level price data, log(pst ) = ρs log(pst−1) +σsεst . This step delivers 126 estimates
of the persistence parameters ρs and of the volatility of the residuals σs. We then take the median across
estimates for each store.
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cost and the average elasticity.13 We target the coefficient estimated in the specification of

column (2) in Table 1, i.e. b1 = 0.2.

The parameter ζ measures the inverse of the coefficient of variation of the search cost

distribution. In the model, higher dispersion of search costs (i.e. lower ζ) implies more mass

on the tails of the distribution of search costs. The latter is associated to larger variation in

the sensitivity of exit probability to price. In the data, we measure this variation by fitting a

spline to equation (10), allowing the price marginal effect on the probability of exit to vary

for different terciles of price levels. We find that the difference in the estimate dispersion of

b1 is 0.04, with higher prices commanding a higher value of b1 as predicted by the model.

The parameter ζ is estimated by matching this number to an equivalent statistic generated

by the model.14

We define Ω ≡ [ζ λ ρ σ]′ as the vector of parameters to be estimated, and denote by v(Ω)

the vector of the theoretical moments evaluated at Ω, and by vd their empirical counterparts.

Each iteration n of the estimation procedure unfolds according to the following steps:

1. Pick values for the parameters ρn, σn, λn, ζn,

2. Solve the model and obtain the vector v(Ωn),

3. Evaluate the objective function (vd − v(Ωn))′ (vd − v(Ωn)).

We select as estimates the parameter values that minimize the objective function.

Implementing step 2 requires solving a fixed point problem in equilibrium prices P(z) for

all z ∈ [z, z̄]. In particular, given our definition of equilibrium and the results of Proposition 2,

we look for equilibria where P(z) ∈ [p∗(z̄), p∗(z)] for each z, and P(z) is strictly decreasing

in z. In principle, our model could have multiple equilibria. However, numerically we always

converge to the same equilibrium. In Appendix D we provide more details on the numerical

solution of the model.

The estimates from this procedure are summarized in Table 2.

13Notice that ∂G̃(p, z)/∂p = −v′(p) [G′(ψ̂(p, z))(1−H(V̄ (p, z)))2 +G(ψ̂(p, z))H ′(V̄ (p, z))]. The parameter
λ directly affects G′ and G. In particular, for given equilibrium prices, an increase in λ is associated to a
decrease in G(·) for all ψ, and to a decrease in G′(·) for all ψ small enough given ζ > 1. Finally, notice that
we are targeting the persistence and volatility of the empirical price distribution, which are indeed fixed in
our analysis. This implies that ∂G̃(p, z)/∂p is decreasing in λ for values of ψ̂ small enough.

14In the model, we construct the equivalent statistic as follows: if z(1) is the first and z(2) the second tercile

of the estimated productivity distribution in the model, we compute E[∂G̃(p, z)/∂ log(p) | p=p̂(z), z≥z(2) ] −
E[∂G̃(p, z)/∂ log(p) | p=p̂(z), z≤z(1) ].
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Table 2: Parameter estimates

Value Target

Persistence of productivity innovations, ρ 0.7 Log-price autocorrelation: 0.7

Volatility of productivity innovations, σ 0.09 Log-price dispersion: 0.06

Distribution of cost, g(ψ) ∼ Gamma(ζ, λ)

Shape parameter, ζ 2 Dispersion in marginal effect: 0.04

Scale parameter, λ 0.3 Average marginal effect: 0.2

5.2 Quantitative analysis of the model

We use the estimates obtained in the previous section to illustrate the quantitative implica-

tions of the model on several objects of interest. We begin by reporting on the relationship

between customer base growth and pricing behavior with idiosyncratic productivity. We then

analyze how the presence of customer markets affects prices and markups dispersion.

The idea that firms are endowed with a set of customers that they try to preserve is at

the core of our model. In Figure 1 we display the annualized net growth rate of the customer

base as a function of the production cost (i.e. the inverse of productivity z). Production

cost influences dynamic in the customer base of a firm as it determines the price a firm can

charge in the current period and signals its future prices. This type of relationship has been

observed by Foster et al. (2012) who show that modeling the accumulation of the stock of

demand idiosyncratic to a firm as a function of its price history helps explaining differences

in growth between incumbent firms and new entrants.

Firms with low cost experience positive net growth of their customers base; whereas

high cost firms are net loosers of customers. Net customer base growth declines in cost at

an increasing pace: for firms in the right tail of the cost distribution it is very costly to

experience even a marginal increase in their production cost. However, these instances are

rare as the tails of the cost distribution are thin.

Figure 2 displays the equilibrium markups in our model (henceforth “Baseline economy”)

as a function of a firm’s cost. It also relates them to the benchmark of an “Inelastic customer

base economy”. The latter is obtained by letting search costs diverge to infinity so that

customers will never want to search for a new firm and will be tied to the firm they are

initially matched with. To make the comparison meaningfull, we fix θ so that the resulting

average total elasticity of demand (i.e.,
∫ z̄
z
εq(P̂(z), z)f(z)dz) is the same as in our Baseline
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Figure 1: Firm growth and productivity
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economy. It is worth noting that this alternative model is analogous to the standard model

of monopolistic competition widely used in the macroeconomics literature.

Markups are strictly decreasing in production cost in both economies. In fact, in both

models the intensive elasticity of demand, εd(p), is increasing in p, giving rise to a negative

co-movement between markups and production cost.15 Since equilibrium prices are mono-

tonically increasing in production cost, it follows that firms with higher production cost face

higher elasticity of demand, so that optimal markups are decreasing in production cost.

However, the presence of customer base concerns causes markups to decrease more steeply

in the Baseline economy. With a positive extensive margin elasticity, increases in price lead

to the loss of customers on top of contraction in the quantity sold to retained customers. This

results in an extra incentive to compress prices, which is stronger the higher the extensive

margin elasticity faced by the firm and causes the average markup to be lower in the Baseline

15With CES preferences the demand of good i depends on the relative price pi/P . With a finite number of
goods in the basket of the customer, an increase in pi, also increases the price of the basket, P , thus reducing
the overall increase in pi/P and effect on demand. The effect on P is larger, the higher the weight of good i
in the basket, that is the lower the price pi and the higher its demand. Therefore, the elasticity of demand
εd(p) increases in p.
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than in the inelastic customer base economy (15% vs. 21%). In fact, highly productive firms

deliver such high a value to their customers that they will never want to leave them; as

a result those firms can act as if they were in the inelastic customer base economy. Less

productive firms, instead face an actual risk of losing customers if they decide to charge

higher prices; therefore the have to set markups lower than those they would choose in

absence of an elastic customer base. This implies that our model delivers markups that

are pro-cyclical with respect to productivity shocks; firms gaining production efficiency can

set higher markups. The average elasticity of markups to productivity shocks generate by

our model is 0.74, which is consistent with the empirical evidence provided by Petrin and

Warzynski (2012) using firm level data. In the inelastic customer base economy, the average

elasticity of markups to productivity is only 0.21.

Figure 2: Markup and productivity
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A direct consequence of the presence of a sticky customer base is a substantial increase

in the dispersion of markups and a reduction in that of prices with respect to the inelastic

customer base economy, as illustrated in Figure 3. The standard deviation of markups rises

from 1.5% to 5.6%; the standard deviation of prices shrink from 6% to 2%. The two features

are obviously related. The presence of dynamic concerns leads the firms to reduce their
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Figure 3: The distributions of markups and prices
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markups exactly to avoid changing their price. Therefore, changes in cost process result

contractions and expansions of markups and contribute much less to the volatility of the

posted prices.

It is interesting to notice that the distributions of markups in the baseline economy has

positive, though tiny, mass on negative markups. As we have seen, firms with very high

production cost can experience severe customer losses. Therefore, they are willing make

temporary negative profits in order to keep customers around and charge higher markups

when the production cost mean reverts.16 In the inelastic customer base economy negative

markups cannot occur, as a firm can always decide not to produce without any real impact

on future demand.

On top of providing insights when compared to that arising from a model without cus-

tomer concerns, the distribution of log-prices in the baseline economy displays some inter-

esting features of its own. The price distribution generate by the model is leptokurtic. In

particular the kurtosis of the price distribution in the baseline economy is much higher than

that arising in the inelastic customer base scenario (8.2 vs 2.9) and matches closely the

statistic documented by Kaplan and Menzio (2014) for the price distribution of homoge-

neous packaged goods. The presence of customer markets reduces dispersion of prices, as less

16Note that despite the temporary negative profits, the value of these firms is strictly positive.
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productive firms charge lower price than they would otherwise in an economy with inelastic

customer base in order to retain their customers, with the consequence that a large mass

of prices concentrates around a lower mean. At the same time, a non-negligible fraction of

firms set prices relatively far away from this mean. Part of them (very low productivity firms)

charge a higher price because, given the persistence of their status, they find much costly to

retain customers and settle for a price that is lower than the static profit maximization but

still substantially above the mean. Another set of firms (very high productivity firms) charge

a price substantially below the mean simply because they enjoy a productivity advantage

which makes such lower price optimal.

6 Customer markets and propagation of nominal shocks

The macroeconomic literature has highlighted the role of real rigidities in increasing the

persistence of inflation and output response to aggregate nominal shocks (see, for instance,

Chari et al. (2000), Klenow and Willis (2006), or Gopinath and Itskhoki (2011)). A number

of studies, such as Rotemberg and Woodford (1991), or Blanchard (2009), have pointed to

customer markets as a natural source of real rigidities, not least due to the observation that

firms do behave consistently with the idea that they perceive customers as assets. This calls

for an assessment of the effect that this type of real rigidity can have on the propagation

of nominal shocks and we are uniquely well positioned to provide it. First, we extend the

early work of Phelps and Winter (1970) by allowing for the dynamics of customers to be

endogenously determined, and therefore to respond to shocks. This is important because

customer dynamics affects both the extensive demand elasticity and the relative value of a

customer in different ways, something that could not be simply picked up using a model

that posts a reduced-form equation for this margin. Furthermore, we exploit micro data to

discipline our exercise and ground our quantification of the impact of customer dynamics on

markups dynamics.

A nominal shock is represented in our economy as an unexpected, permanent innovation

in the price of the numeraire good q. We consider the economy in its steady state at t = t0

and hit it with an unforeseen increase in q so that qt0 jumps from a steady state value of 1

to the new value of 1 + δ. We study the transition of the economy to the new steady state.

In order to consider the general equilibrium effects of the nominal shock on wages, income

and stochastic discount factors, we need to implement a series of extensions to our model.

In particular, we introduce perfectly competitive labor markets through a representative

household, as well as allow for dynamics in the aggregate state. These extensions are standard

and details are given in Appendix E.

25



In our standard environment nominal shocks would not have any effect on real variables

(consumption, labor, search decisions, etc.). It is well known that, in absence of nominal

rigidities, firms would completely pass-through the increase in nominal marginal cost, with

no effect on their demand and customer base.17 Therefore, we need a simple and tractable way

to introduce nominal rigidities in our model if we want to use it to study the propagation

of nominal shocks. To do so, we assume that firms are not perfectly informed about the

realization of the aggregate shocks. At each point in time, each firm has a probability

α ∈ (0, 1] to become aware that the nominal shock has occurred. We set α = 0.1, implying

that on average it takes roughly a quarter for a firm to realize that the shock has realized.18

This information friction causes that, even though all firms are allowed to adjust the price in

every period, a fraction of them will behave as the aggregate shock did not occur, meaning

that their price will not respond to it. We can interpret the friction in the spirit of the

rational inattentiveness literature that developed after the work of Mankiw and Reis (2002),

where firms review infrequently the aggregate state. For simplicity, and as it is typically

assumed in this literature, we assume that customers are perfectly informed.19

Figure 4 plots the response of aggregate output to a nominal shocks of size δ = 5% in our

baseline economy with customer markets as well as in an alternative economy with inelastic

customer base. The response of output is sizable, and is magnified by the presence customer

markets: the cumulated output response (i.e. the area under the impulse response) is 3.75

times larger in our baseline economy than in the economy with inelastic customer base. The

half life of the output response is 33 weeks in our baseline model, against 10 weeks in the

alternative economy.

In order to understand the causes behind the magnification effect induced by customer

markets, we study the response of markups for firms active in the locally produced good d,

which is where customer markets matter. In the competitive sector (good n) markups are

constant and equal to zero. Figure 5 shows that markups decline more on impact and recover

much more slowly in our baseline economy than in the alternative scenario where customer

markets are absent. The lower markups stimulate demand resulting in a boost for aggregate

output and employment.

There are in turn two reasons explaining why markups are persistently below their steady

17Perfectly competitive labor markets, together with a perfectly competitive sector producing good n imply
that the equilibrium wage is wt = qt, and thus moves one for one with the numeraire.

18Cross-country evidence from survey data places the frequency of information acquisition by firms between
2 and 4 times per year. See Fabiani et al. (2007) for a review.

19An alternative specification could be one where firms adjust prices infrequency with a Calvo type lottery.
While it would not alter the qualitative conclusions of the experiment of this section, that environment would
however change the steady state pricing problem of the firm substantially, as it would also affect the response
of prices to idiosyncratic shocks.
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Figure 4: The response of aggregate output to a 5% nominal shock
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The vertical axis refers to % deviations from the steady state of aggregate output after a 5% permanent
increase in q. The blue solid line refers to our baseline model with at parameter values estimated in Section 5.
The red dashed line refers to the model without customer markets, i.e. the same parameter estimates but
λ→∞.

state value in our baseline economy. The first one is mechanical: it takes time for firms

to become informed about the realization of the aggregate shock. Firms unaware of the

shock realization cannot react to it. A second reason arises from competition for customers.

Customer markets introduce a strong element of strategic complementarity in price setting.

Firms that learned about the nominal shock should react raising their price; however, they

know that a fraction of their competitors will not do so because they are not aware of this

event. The result is that, on average, even informed firms will have to respond only partially

in order to avoid losing customers.

In the economy with inelastic customer base only the first effect operates. The optimal

markup of each firm is unresponsive to the aggregate shock, as in standard CES economies

firms fully pass-through the increase in nominal marginal cost. The only reason average

markup does not immediately adjust is that some firms have not yet learned about the

nominal shocks and, therefore, have not raised their markup by a factor of δ. In contrast, in

27



Figure 5: The response of average markup to a 5% nominal shock
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The vertical axis refers to % deviations from the steady state of average markup in the sector facing customer
retention concerns (good d), after a 5% permanent increase in q. The blue solid line refers to our baseline
model with at parameter values estimated in Section 5. The red dashed line refers to the model without
customer markets, i.e. the same average total elasticity, but with λ→∞.

our economy the optimal markup of each firm is not constant in response to the aggregate

shock. As a consequence of competition for customers, firms that have the chance to respond

to the aggregate shock are on average worsening their position with respect to the ones that

do not (which keep their price at sub-optimally low level). Therefore they will not want to

fully pass-through the increase in nominal marginal cost, amplifying the persistence of the

response to the shock.

Finally, notice that the response of output (average markup) to the nominal shock in

our baseline economy with customer markets displays substantial persistence. This occurs

because the strength of the strategic complementarity effect increases in the first few weeks

after the nominal shock, thus pushing towards lower markups. Figure 6 shows the source

of the transitory strengthening of the strategic complementarity after the nominal shock:

the equilibrium mass of customers searching for a new match increases on impact and keep

growing until peaking after about a quarter, before reverting to steady state. A larger mass
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Figure 6: Impulse response of searching customers
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The figure plots the response of the mass of customers searching for a new firm in % deviation from the
steady state.

of searching customers derives from the larger benefit from search due to the presence of a

fraction of firms unaware of the shock, which are keeping prices lower than steady state. The

hump-shaped response of the mass of searching customers is due to two competing forces.

First notice that the benefit from search is on average higher for customers matched to aware

than unaware firms. As time goes by two things happen. On the one side, more firms

become aware of the shock and react to it, so that the pool of unaware firms reduces and

the probability of drawing an unaware firm goes down. This reduces on average the benefit

from search of a customer matched to aware firms. For given mass of customers matched to

aware firms, this effect pushes towards a reduction in the mass of searching customers. On

the other side, the mass of customers matched to aware firms increase mechanically because

a fraction α of unaware firms become aware every period. Given that customers of aware

firms search on average more than customers of unaware firms, this effect pushes towards an

increase in the total mass of customers searching.
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7 Conclusions

The customer base is an important determinant of firm performance. Introducing customer

base consideration into standard models can improve our understanding of firm pricing be-

havior. We setup and estimate a model where firms face sticky customer base and use it to

explore the implications of this feature for the distribution of equilibrium prices.

We use scanner data on households’ purchases at a U.S. supermarket chain to provide

direct evidence that customers do respond to variation in the price of their consumption

basket. We also exploit the data to estimate the key parameters of the model and provide

a quantification of the effect of customer retention concerns on firm pricing. We use the

estimated model to gauge the role of customer markets in the propagation of nominal shocks,

showing that they can greatly amplifying the real effects of nominal shocks.
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A Proofs

A.1 Proof of Lemma 1

Customer’s decisions are sequential: first she decides if to incur in the search cost ψ and then,

conditional on searching, she decides between staying and exiting depending on the draw of

the new potential firm. We solve the customer’s problem backwards, and thus determine

first her optimal exit rule, conditional on searching. The exit strategy of the customer is

e(z, p, z′) = 1 if V̄ (p, z) ≤ V̄ (P(z′), z′), and e(z, p, z′) = 0 otherwise. If V̂ (z) is increasing

in z, then V̄ (p, z) is also increasing in z. As a result, the exit strategy takes the form of a

trigger, ẑ, such that the customer exits if draws a firm with productivity z′ ≥ ẑ, where the

threshold solves V̂ (ẑ) = V̄ (p, z). Consider now the search decision of a customer who draws

a search cost ψ. Because the value function in the case of searching is decreasing in ψ and

the value function in the case of not searching does not depend on ψ, the search strategy

takes the form of a trigger, ψ̂, such that the customer searches if ψ < ψ̂. The search strategy

of the customer is s(z, p, ψ) = 1 if V̄ (p, z) ≤ Ṽ (p, z)− ψ, and s(z, p, ψ) = 0 otherwise.

A.2 Proof of Lemma 2

The proof of Lemma 2 follows from the assumption of v(p) being strictly decreasing in p

so that V̄ (p, z) is decreasing in p; the threshold ẑ(p, z) is increasing in z because of the

assumptions that V̂ (z) is increasing in z and the productivity process assumed to exhibit

persistence, so that V̄ (p, z) increases with z. Moreover, the assumption that V̂ (z) is increasing

in z also implies that p̄(z) is increasing in z. Notice that ψ̂(p,z)
∂p

= −v′(p) + ∂Ṽ (p,z)
∂p
≥ 0 by the

definition of Ṽ (p, z) and v(p) being decreasing in p. Also, we have that

∂ψ̂(p, z)

∂z
= −∂V̄ (p, z)

∂z
(1−H(V (p, z))) ≤ 0 ,

as V̄ (p, z) is increasing in z if V̂ (z) is increasing in z and the productivity process exhibits

persistence.

A.3 Proof of Proposition 1

Let p̄(z) be the level of price at which no customer searches. Then p̄(z) satisfies V̄ (p̄(z), z) =

maxz∈[z,z̄] {V̄ (P(z), z)}. First, given the definition of p∗(z) and the fact that ∆(p, z) is strictly

decreasing in p for all p > p̄(z), and constant otherwise, it immediately follows that p̂(z) ∈
[p̄(z), p∗(z)] if p̄(z) < p∗(z), and p̂(z) = p∗(z) otherwise. Next, we show that p̂(z) < p∗(z) if

p̄(z) < p∗(z). The results follows because at p = p̂(z) W (p, z) is strictly decreasing in p as by
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definition of p̄(z), and assumptions about G, ∆(p, z) is strictly decreasing in p at p = p̂(z),

so that p = p̂(z) cannot be a maximum.

We next prove necessity of equation (7) for an optimum. The latter follows immediately

from the assumption of G and H differentiable, as V̄ (p, z) is continuously differentiable in p

given v(p) is so, and Q(x) = Γ
∫ x

G
(∫∞

s
(u− x)dH(u)

)
dH(u) is continuously differentiable

in p. Thus, ∆(p, z) is continuously differentiable in p. Finally, Π(p, z) is continuously dif-

ferentiable in p because d(p) has been assumed to be continuously differentiable. Thus, the

objective of the firm problem is continuously differentiable in p, and the first order condition

is necessary and sufficient.

Finally, we provide an expression for the extensive margin elasticity:

εm(p, z) = − v′(p) p

∆(p, z)

[
G′(ψ̂(p, z))

(
1−H(V̄ (p, z))

)2
+ 2G(ψ̂(p, z))H ′(V̄ (p, z))

]
.

If εm(p, z) is non-decreasing in p then the first order condition is also sufficient for an optimum.

The term outside the square brackets is indeed increasing in p. The terms inside the square

brackets are all increasing in p, but G′ and H ′ about which may or may not be increasing in

p. Thus a sufficient condition for εm(p, z) to be non-decreasing in p for some range of p is

that G′′ > 0 and H ′′ < 0 at that range of p.

A.4 Proof of the thought experiment in Section 2.2

We show that µ(p, z) is increasing in εq(p, z). Notice that equation (8) can be rewritten as

µ(p, z) =
εq(p, z) + εm(p, z)x̃(p, z)

εq(p, z)− 1 + εm(p, z)x̃(p, z)
,

where x̃(p, z) ≡ Π(p, z)/π(p, z). From the equation above we obtain

∂µ(p, z)

∂εm(p, z)
=

x̃(p, z)

εq(p, z)− 1 + εm(p, z)x̃(p, z)
(1− µ(p, z)).

A direct implication of nonnegative prices is that εq(p, z) − 1 + εm(p, z)x̃(p, z) ≥ 0, so that

sign [∂µ(p, z)/∂εm(p, z)] = sign[(x̃(p, z))(1−µ(p, z))]. There are two cases two consider. The

first one is when π(p, z) > 0, which occurs if and only if µ(p, z) > 1. It implies x̃(p, z) > 0

and, therefore, ∂µ(p, z)/∂εm(p, z) < 0. The second case is when π(p, z) < 0, which occurs

if and only if µ(p, z) < 1. It implies x̃(p, z) < 0 and, therefore, x̃(p, z) < 0. As a result,

∂µ(p, z)/∂εm(p, z) < 0.
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A.5 Proof of Proposition 2

Monotonicity of prices. We first show that optimal prices p̂(z) are non-increasing in z.

Given, that productivity is i.i.d. and we look for equilibria where p̂(z) ≥ p∗(z̄), we have that

p̄(z) = p∗(z̄) for each z. From Proposition 1 we know that, for a given z, the optimal price

p̂(z) belongs to the set [p∗(z̄), p∗(z)]. Over this set, the objective function of the firm,

W (p, z) = ∆(p, z) (π(p, z) + β constant) , (11)

is supermodular in (p,−z). Notice that the expected future profits of the firm do not depend

on current productivity as future productivity, and therefore profits, is independent from it.

Similarly, ∆(p, z) do not depend on z as the expected future value to the customer does not

depend on the productivity of the current match as future productivity is independent from

it. We abuse notation and replace ∆(p, z) by ∆(p). To show that W (p, z) is supermodular

in (p,−z) consider two generic prices p1, p2 with p2 > p1 > 0 and productivities z1, z2 ∈ [z, z̄]

with −z2 > −z1. We have that W (p2, z2)−W (p1, z2) ≤ W (p2, z1)−W (p1, z1) if and only if

∆(p2)d(p2)(p2−w/z2)−∆(p1)d(p1)(p1−w/z2) ≤ ∆(p2)d(p2)(p2−w/z1)−∆(p1)d(p1)(p1−w/z1),

which, using ∆(p2)d(p2) < ∆(p1)d(p1) as d(p) is strictly decreasing and ∆(p) is non-increasing,

is indeed satisfied if and only if z2 < z1. Thus, W (p, z) is supermodular in (p,−z). By ap-

plication of the Topkis Theorem we readily obtain that p̂(z) is non-increasing in z.

Existence of equilibrium. Next we prove existence of an equilibrium. The fixed point problem

is a mapping from candidate function of equilibrium prices, P(z), to firm’s optimal pricing

strategy, p̂(z), where an equilibrium is one where p̂(z) = P(z) for each z. Given that W (p, z)

is continuously differentiable in p, the operator that maps P(·) into p̂(·) is given by the first

order condition in equation (7). Moreover, notice that W (p, z) in equation (11) is continuous

in (p, z). By the theorem of maximum p̂(z) is upper hemi-continuos and W (p̂(z), z) is con-

tinuos in z. Given that p̂(z) is non-increasing in z it follows that p̂(z) has a countably many

discontinuity points. We proceed as follows. Let P̂(z) be the set of prices that maximize the

firm problem. Whenever a discontinuity arises at some z̃ (so that P̂(z̃) is not a singleton) we

modify the optimal pricing rule of the firm and consider the convex hull of the P̂(z̃) as the

set of possible prices chosen by the firm with productivity z̃. The constructed mapping from

z to P̂(z) is then upper-hemicontinous, compact and convex valued. We then apply Kaku-

tani fixed point theorem to this operator and obtain a fixed point. Finally, notice that since

the convexification procedure described above has to be applied only a countable number of

times, the convexified prices have measure zero with respect to the density of the z. Hence,
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they do not affect the fixed point.

Necessity of the first order condition. We show that Q and H are almost everywhere differen-

tiable, so that Proposition 1 implies that equation (7) is necessary for an optimum. We guess

that p̂(z) is strictly decreasing and almost everywhere differentiable. It immediately follows

that V̂ (z) is strictly increasing in z and almost everywhere differentiable. Then, given the as-

sumption that F is differentiable, we have that K is differentiable. From H(x) = K(V̂ −1(x))

it follows that H is also almost everywhere differentiable. Given that G and H are differen-

tiable, so is Q. Then the first order condition in equation (7) is necessary for an optimum,

which indeed implies that p̂(z) is strictly increasing and differentiable in z in any neighbor of

the first order condition. Finally, given that p̂(z) has a countably many discontinuity points,

it has countably many points where it is not differentiable, and the first order condition does

not apply at those points, but applies everywhere else. These points have measure zero with

respect to the density of the z and therefore p̂(z) is almost everywhere differentiable.

Points (i)-(iv). We first prove part (i). We already proved that p̂(z) is non-increasing in

z. The proof that p̂(z) is strictly decreasing in z for some region of z is by contradiction.

Suppose that p̂(z) is everywhere constant in z at some p̃. Then p̄(z) = p̃ for all z. If

p̃ > p∗(z̄), then p̃ would not be optimal for firm with productivity z̄ which would choose a

lower price. If p̃ = p∗(z̄), then continuous differentiability of G together with H = G = Q = 0

at the conjectures constant equilibrium price, imply that the first order condition is locally

necessary for an optimum, and a firm with productivity z < z̄ would have an incentive to

deviate according to equation (7), and set a strictly higher price than p̃. Finally, the result

that p̂(z) < p∗(z) for all z < z̄ and that p̂(z̄) = p∗(z̄) follows from applying Proposition 1,

and using that p̂(z) ≥ p̂(z̄) and p̄(z) = p̂(z̄) for all z.

We next prove part (ii); monotonicity of prices, v′(p) < 0, i.i.d. productivity, and appli-

cation of the contraction mapping theorem ensure that V̂ (z) = V̄ (p̂(z), z) is increasing in z,

strictly so on some interval of productivities. Given p̂(z) ≥ p̂(z̄), then V̄ (p̂(z), z) ≤ V̄ (p̂(z̄), z̄).

We now prove part (iii); ψ̂(p, z) ≥ 0 immediately follows its definition. Lemma 2 together

with point (i) readily imply that ψ̂(p, z) > 0 for some interval of z;

Finally, part (iv) follows immediately from application of Lemma 3 which ensures that

∆(p, z) is strictly decreasing in p, which coupled with point (i), and the fact that productivity

is i.i.d., implies that ∆(p̂(z), z) is increasing in z, strictly so for some range of productivity.

Because of price dispersion, some customers are searching in the economy, and because

p̂(z̄) ≤ p̂(z) for all z (strictly so for some z) we have that ∆(p̂(z̄), z̄) > 1. Similarly, given

prices are monotonic, p̂(z) ≥ p̂(z) for all z (strictly so for some z) we have that ∆(p̂(z), z) < 1

for some z.
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A.6 Proof of Remark 1

Part (1) of the remark follows since, given that the search cost diverges, firms do not face

customer base concerns and therefore find it optimal to charge the price that maximizes

static profits. Formally, when G(ψ) = 0 for all ψ → ∞, we have that p̄(z) → ∞, so that

p∗(z) ≤ p̄(z) for all z. Then, p̂(z) = p∗(z).

We next provide a proof of the part (2) of the remark. In a Markovian equilibrium

where each firm has the some constant productivity z0, every firm has to choose the same

price. We prove that this price must be p∗(z0). We first show that p̂(z0) = p∗(z0) can be

an equilibrium. Conjecture that firms choose p̂(z0) = p∗(z0), implying that in equilibrium

p̄(z0) = p̂(z0) = p∗(z0). A direct application of Proposition 1 then indeed implies that firms

would choose p̂(z0) = p∗(z0), validating the conjecture.

We next show that p̂(z0) = p∗(z0) is the unique equilibrium. Consider two cases. First, the

case where p̂(z0) > p∗(z0). In equilibrium this would imply p̄(z0) = p̂(z0) > p∗(z0). However,

Proposition 1 implies that firms should deviate and choose p̂(z0) = p∗(z0) if p̄(z0) > p∗(z0).

Therefore, p̂(z0) > p∗(z0) cannot happen in equilibrium.

Next, conjecture that p̂(z0) < p∗(z0). In equilibrium this would imply p̄(z0) = p̂(z0) <

p∗(z0). We want to show that p̂(z0) = p̄(z0) cannot be optimal for the firm. From equation (4)

we now that in equilibrium the change in customer base triggered by an arbitrarily small

increase in the price is approximately zero because no customer searches (ψ̂(p̄(z0), z0) = 0)

and G′(0) = 0 by assumption. Moreover, in this equilibrium Q = 0 and is insensitive to

prices as no other customer leaves other firms in the economy, while H is bounded. On the

other side, the increase in the price has a strictly positive effect on profits per customer as

p̂(z0) < p∗(z0). Therefore, this deviation is optimal for the firm and p̂(z0) < p∗(z0) cannot be

an equilibrium.

B Data sources and variables construction

B.1 Data sources

The empirical evidence presented in Section 4 is based on two data sources provided by a

large supermarket chain that operates over 1500 stores across the US. We exploit information

on weekly store revenues and quantities between January 2004 and December 2006 for a panel

of over 200 stores located in 10 different states. For each good (identified by its UPC) carried

by the stores in those weeks, the data report total amount grossed and quantity sold.

In addition to store level data, we have information on grocery purchases at the chain

between June 2004 and June 2006 for a panel of over 11,000 households. For each grocery
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trip made by a household, we observe date and store where the trip occurred, the collection of

all the UPC’s purchased with quantity and price paid. The data include information on the

presence and size of price discounts but do not generally report redemption of manufacturer

coupons. The geographical dispersion of the households mirrors that of the store data: our

customers live in some 1,500 different zipcodes across 10 states. Data are recorded through

usage of the loyalty card; the retailer is able to link loyalty cards belonging to different memebr

of the family to a single household identifier. Purchases made without using the card are not

recorded. However, the chain ensures that the loyalty card has a high penetration by keeping

to a minimum the effort needed to register for one. Furthermore, nearly all promotional

discount are tied to ownership of a loyalty card, which provides a strong incentive to use it.

Another potential drawback of the data is that we only follow households when purchasing at

stores of a single, albeit large, supermarket chain. Other data sources on the same industry,

like the Nielsen Homescan database, rely on households themselves scanning the barcodes

of the items purchased once they return home after a trip and can therefore track them

shopping at a plurality of competing firms. On the other hand, cash register data contain

significantly less measurement error than databases relying on home scanning (Einav et al.

(2010)).

B.2 Variables construction

Exit from customer base. The dependent variable in the regression presented in equa-

tion (10) is an indicator for whether a customer is exiting the customer base of the chain.

With data on grocery purchases at a single retail chain it is hard to definitively assess whether

a household has abandoned the retailer to shop elsewhere or it is simply not purchasing gro-

cery in a particular week, for instance because it is just consuming its inventory. In fact, we

observe households when they buy grocery at the chain but do not have any information on

their shopping at competing grocers. To circumvent this problem, we focus on a subsample

of households who shop frequently at the chain. For them we can plausibly assume that

sudden long spells without trips represent instances in which the household has left the chain

and is fulfilling grocery needs shopping at one of its competitors. Operationally, we select

households who made at least 48 trips at the chain over the two years spanned in the sample,

implying that they would shop on average twice per month at the chain. When such house-

holds do not visit any supermarket store of the chain over at least eight consecutive weeks,

we assume that the customer is shopping elsewhere. The Exit dummy is constructed so that

it takes value of one in correspondence to the last visit at the chain before a spell of eight or

more weeks without shopping there. Table 3 summarizes shopping behavior for households

in our sample. It is immediate to notice that a 8-weeks spell without purchase is unusual,
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as customers tend to show up frequently at the stores. This strengthens our confidence that

customer missing for such a long period have indeed switched to a different retailer.

Table 3: Descriptive statistics on customer shopping behavior

Mean Std.dev. 25th pctile 75th pctile

Number of trips 157 141 65 208

Days elapsed between consecutive trips 4.1 7.4 1 5

Frequency of exits 0.004 0.065

Items in the basket 289.5 172.4

Composition of the household basket and basket price. The household scanner data

deliver information on all the UPC’s a household has bought through the sample span. We

assume that all of them are part of the household basket and, therefore, the household

should care about all of those prices. Some of the items in the household’s basket are

bought regularly, however; whereas others are purchased less frequently. We take this into

account when constructing the price of the basket by weighting the price of each item by its

expenditure share in the household budget. The price of household i ’s basket in week t is

computed as:

pit =
∑
u∈U i

wiuput, wiu =

∑
tEiut∑

u∈U i
∑

tEiut

where U i is the set of all the UPC’s (u) purchased by household i during the sample

period, put is the price of a given UPC u in week t and the wiu’s are a set of household-UPC

specific weights.

We choose to calculate the weights using the total expenditure in the UPC by the house-

hold over the two years in the sample. This can lead to some inaccuracy in identifying the

goods the customer cares for at a given point in time. For example, if a customer bough

only Coke during the first year and only Pepsi during the second year of data, our procedure

would have us give equal weight to the price of Coke and Pepsi throughout the sample period.

If we used a shorter time interval, for example using the expenditure share in the month, we

would correctly recognize that she only cares about Coke in the first twelve months and only

about Pepsi in the final twelve months. However, weights computed on short time intervals

are more prone to bias induced by pricing. For example, a two-weeks promotion of a par-
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ticular UPC may induce the customer to buy it just because of the temporary convenience;

this would give the UPC a high weight in the month. The effect of promotion is instead

smoothed when we compute weights using expenditure over the entire sample period. Table

Table 4 reports descriptive statistics on the change in price of the basket.

Our definition of the household basket implies that it is possible that a household does

not purchase every week each UPC included in its basket. This raises a practical problem

since the household level scanner data report information on the price paid conditional on a

certain item having been bought by the customer. Therefore, if we do not observe at least

one household in our sample buying a given item in a store in a week, we would not be able

to infer the price of the item in that store-week we would be unable to construct the basket

price for that week. The issue can be solved using the store level data which allow us to

calculate unit value prices every week for every item in stock in a given store, whether or not

that particular UPC was bought by one of the households in our data. Unit value prices are

computed using data on revenues and quantities sold as

UV Pstu =
TRstu

Qstu

,

where TR represent total revenues and Q the total number of units sold of good u in week t

in store s.

As explained in Eichenbaum et al. (2011) this only allows to recover an average price for

goods that were on promotion. In fact the same good will be sold to loyalty card carrying

customers at the promotional price and at full price to customers who not have or use a

loyalty card. Without information on the fraction of these two types of customers it is not

possible to recover the two prices separately. Furthermore, since prices are constructed based

on information on sales, missing values can originate even in this case if no unit of a specific

item is sold in a given store in a week. This is, however, an unfrequent circumstance and

involves only rarely purchased UPC’s, which are unlikely to represent important shares of

the basket for any of the households in the sample. For the analysis, we only retain UPC’s

with at most two non consecutive missing price observations and impute price for the missing

observation interpolating the prices of the contiguous weeks.

It is important to notice that the retail chain sets different prices for the same UPC in

different geographic areas, called “price areas”. The retailer supplied store level information

for 270 stores, ensuring that we have data for at least one store for each price area. In order

to use unit value prices calculated from store level data to compute the price of the basket

of a specific household, we need to determine to which price area the store(s) at which she

regularly shop belong. This information is not supplied by the retailer that kept the exact
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definition of the price areas confidential. A possible solution is to infer in which price areas

the store(s) visited by a household are located by comparing the prices contained in the

household panel with those in the store data. In principle the household data should give

information on enough UPC prices in a given week to identify the price area representative

store whose pricing they are matching. However, even though two stores belonging in the

same price area should have the same prices, they may not have the same unit value prices if

the share of shoppers using the loyalty card differs in the two stores. Therefore, we choose to

restrict our analysis to the set of customers shopping predominantly in one of the 270 stores

for which the chain provided complete store level data. Since the 270 representative stores are

not selected following any particular criterion, the resulting subsample of households should

not subject to any type of selection. However, this choice is costly in terms of sample size:

only 1,336 households shop at one of the 270 stores for which we have data; by far the biggest

loss of observation imposed by our data cleaning procedures.

Table 4: Descriptive statistics on basket price changes

Mean Std.dev.

∆p -0.0001 0.043
|∆p| 0.029 0.031
%|∆p| > 1% 73.5
%|∆p| > 5% 16.8
%|∆p| > 10% 4.1

C Parametrization of customer demand and utility

In this section we propose a microfounded model that can give rise to the assumptions we

made on the paper regarding customer’s demand d(p) and surplus v(p). We also check

whether the profit function is single-peaked, i.e. whether p∗(z) exists and it is unique.

We consider a setup where customers derive utility from the consumption of K > 1

different varieties, the consumption of each variety described by ck. The different vari-

eties are aggregated to produce aggregate consumption C by using a CES aggregator, C ≡(∑K
k=1 c

θ−1
θ

k

) θ
θ−1

, θ > 1. Finally, customers derive utility from the consumption level C by

u(C) = C1−γ/(1 − γ), where γ > 1. Notice that, through the lens of our model, we can

interpret d(pk) ≡ ck(pk) and v(pk) ≡ u(C(pk)), where pk denotes the price of variety k.
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Given that customers are not allowed to save, the problem they face is a static one. Each

period the customer maximizes

max
{ck}Kk=1

u(C) subject to
K∑
k=1

pkck = I .

Operating with the first order conditions provide that the demand for variety k is given by

ck(pk) = I
P

(
pk
P

)−θ
, where P ≡

(∑K
k=1 p

1−θ
k

) 1
1−θ

is a price level that solves P C = I.

We start by evaluating the properties of demand, ck(pk), continued by the evaluation

of the indirect utility function u(C(pk)). We then evaluate the properties of the demand

elasticity, and we finish the section by evaluating the properties of firm’s profits.

It proves useful to characterize the derivative of P with respect to pk, which we label

by the function b(pk). Notice that b(pk) ≡ ∂P/∂pk =
(
P
pk

)θ
, so that b(pk) > 0, with

b′(pk) = θ b(pk)
P

(
b(pk)− b(pk)

1
θ

)
. Moreover, in a symmetric equilibrium, where pk = p for all

k, b(p) = K
θ

1−θ and b′(p) = θ
Kp

(
K

θ
1−θ −K

1
1−θ

)
.

Demand, ck(pk). This is analogous, through the lens of the model, to evaluate d(p). It

is immediate to see, from the expression for ck(pk), that the demand for variety k converges

to zero as its price diverges to infinity. That is, limpk→∞ ck(pk) = 0. We now show that, in

a symmetric equilibrium, when the number of varieties is large, the demand for variety k is

decreasing and convex in its price. It is straightforward to compute the following derivatives,

∂ck(pk)

∂pk
=

ck(pk)

P

(
b(pk)(θ − 1)− θb(pk)

1
θ

)
,

∂2ck(pk)

∂p2
k

=
1

ck(pk)

(
∂ck(pk)

∂pk

)2

− ∂ck(pk)

∂pk

b(pk)

P
+
ck(pk)

P
b′(pk)

(
θ − 1− b(pk)

1−θ
θ

)
,

which, in a symmetric equilibrium, reduce to

∂ck(p)

∂pk
=

ck(p)

p

(
θ − 1

K
− θ
)
,

∂2ck(p)

∂p2
k

=
1

ck(p)

(
∂ck(p)

∂pk

)2

− ∂ck(p)

∂pk

1

Kp
+ θ

ck(p)

p2

(
1

K
− 1

)(
θ − 1

K
− 1

)
,

where we also used that, in a symmetric equilibrium, P = K
1

1−θ p. Notice that, in the

symmetric equilibrium, if K is large, we have that ∂ck(p)
∂pk

< 0 and ∂2ck(p)

∂p2k
> 0, consistent with

the demand function d(p) being decreasing and convex in p. Moreover, because ck(pk) and

the price index P are twice continuously differentiable in prices and number of varieties K,

the result also applies more generally away from the symmetric equilibrium.
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Indirect utility function, u(C(pk)). This is analogous, through the lens of the model, to

evaluate v(p). Using the definition of ck(pk) together with P C = I, we can obtain the

following expressions,

∂C(pk)

∂pk
= −ck(pk)

P
,

∂2C(pk)

∂p2
k

= −
[
∂ck(pk)

∂pk

1

P
− ck(pk)

P 2
b(pk)

]
.

Notice that, because ∂C(pk)
∂pk

< 0, we also have that ∂u(C(pk))
∂pk

< 0. The second derivative of the

indirect utility function with respect to pk can be written as

∂2u(C)

∂p2
k

= −C−γ−1

(
∂C

∂pk

)2
γ − C

∂C
∂pk

∂2C
∂p2k
∂C
∂pk


= −C−γ−1

(
∂C

∂pk

)2 [
γ − θ

(
1− b(pk)

1−θ
θ

)
+ 2
]

so that ∂2u(C)

∂p2k
≤ 0 if γ−θ

(
1− b(pk)

1−θ
θ

)
+2 ≥ 0. For example, in the symmetric equilibrium,

the required condition can be rewritten as γ−θ (1−K) ≥ −2, which is satisfied, for example,

for any K ≥ 2.

Intensive margin demand elasticity, εd(pk). Using the definition of ck(pk) and price index

P provide that the intensive margin demand elasticity of variety k is given by

εd(pk) = −∂ ln ck(pk)

∂ ln pk
= θ − (θ − 1)

ck(pk)pk
I

,

where ck(pk)pk =

(∑K
i=1

(
pi
pk

)1−θ
)−1

. Notice that, because θ > 1 and 0 < ck(pk)pk < I, we

have that εd(pk) > 1. Also notice that, in a symmetric equilibrium, as K diverges to infinity

we get that εd(pk) = θ, so that when there are infinite many varieties the demand elasticity

is constant. Moreover, notice that

∂εd(pk)

∂pk
= (θ − 1)2 1

pk

(
K∑
i=1

(
pi
pk

)1−θ
)−1

1−

(
K∑
i=1

(
pi
pk

)1−θ
)−1

 ,

which in a symmetric equilibrium is equal to (1/p)(θ − 1)2(1− 1/K)/K > 0.

Profits, π(pk, z). We now explore the existence of a unique solution that maximizes the

profit function of the firm. This involves proving two different things. First, that there exists

a unique solution to ∂π(pk, z)/∂pk = 0. Second, that this solution is a maximum (i.e. that

the profit function is strictly concave).
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The first derivative of the profit function with respect to the price reads,

∂π(pk, z)

∂pk
= ck(pk)

[
1− εd(pk)

(
1− w/z

pk

)]
,

where a solution to ∂π(pk,z)
∂pk

= 0 exists and it is unique if pk
w/z

= εd(pk)
εd(pk)−1

has a unique solution.

Let h1(pk) ≡ pk
w/z

and h2(pk) ≡ εd(pk)
εd(pk)−1

. Notice that h1(pk) is continuous, strictly increasing,

with h1(0) = 0 and limpk→∞ h1(pk) =∞. Also, because εd(pk) is continuous and increasing,

h2(pk) is continuous, decreasing, with limpk→∞ h2(pk) = θ/(θ − 1). It the follows that, for

any number of varieties K, there exists a unique price solving ∂π(pk,z)
∂pk

= 0.

We now show that this unique price maximizes the firm’s profits. To this end, we show

that in a symmetric equilibrium, for large K, the profit function evaluated at this price

is concave. Then, because all objects are well behaved with respect to K and prices (i.e.

they are twice continuous differentiable), concavity also applies more generally away of the

symmetric equilibrium.

The second derivative of the profit function with respect to pk reads,

∂2π(pk, z)

∂p2
k

= −ck(pk)
pk

[
εd(pk)

(
1− εd(pk)

(
1− w/z

pk

))
+ pk

∂εd(pk)

∂pk
(1− w/z

pk
) + εd(pk)

w/z

pk

]
.

Notice that, in a symmetric equilibrium, ck, p, εd(p), and ∂εd(p)
∂pk

are continuous in K. We will

use this fact to prove that for large K the profit function is concave at the price maximizing

static profits. Notice that, in a symmetric equilibrium, when K diverges to infinity the second

derivative reduces to

lim
K→∞

∂2π(p, z)

∂p2
k

= −ck(p)
p

[
θ

(
1− θ

(
1− w/z

p

))
+ θ

w/z

p

]
,

because limK→∞ εd(pk) = θ and limK→∞
∂εd(p)
∂pk

= 0. Moreover, the markup p/(w/z) can be

obtained from equalizing the first derivative to zero. The markup in this case is θ/(θ − 1)

and, as previously discussed, it is unique. Therefore,

lim
K→∞

∂2π(p, z)

∂p2
k

= −ck(p)
p

(θ − 1) < 0 ,

so that when there are infinite many varieties, under the symmetric equilibrium the profit

function has a unique maximizer, and it equalized the first derivative of the profit function

to zero. Moreover, because ck(p), p, εd(pk), and ∂εd(p)
∂pk

are continuous in K, it is also the case

that, in a symmetric equilibrium, ∂2π(p,z)

∂p2k
< 0 for large K. In the end, we concluded that

if there is a large number of varieties, the profit function is concave, and ∂π(p, z)/∂p = 0
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characterizes its maximizer.

D Numerical solution of the model

First, we set parameters. A first group of parameters is constant throughout the numerical

exercises. These include β, w, q and I. We consider a grid of values for each of the other

parameters, i.e. λ, ζ, θ, ρ and σ.

We next describe how we solve for the equilibrium of the model for a given combination

of parameters. We start by discretizing the AR(1) process for productivity to a Markov

chain featuring K = 25 different productivity values. We then conjecture an equilibrium

function P(z). Given our definition of equilibrium and the results of Proposition 2, we look

for equilibria where P(z) ∈ [p∗(z̄), p∗(z)] for each z, and P(z) is strictly decreasing in z. Our

initial guess for P(z) is given by p∗(z) for all z. We tried other guesses and we found that

the algorithm converges to the same equilibrium. Given the guess for P(z), we can compute

the continuation value of each customer as a function of the current price and productivity,

i.e. V̄ (p, z), and solve for the optimal search and exit thresholds as described in Lemma 1.

Given P(z) and the customers’ search and exit thresholds we can solve for the distributions

of customers Q(·) and H(·) as defined in Definition 1. Notice that the latter also amounts to

solve for a fixed point in the space of functions. Here, standard arguments for the existence

of a solution to invariant distribution for Markov chains apply. Therefore, the assumption

that F (z′|z) > 0 and ∆(p̂(z), z) > 0 ensure the existence of a unique K(z) that solves

equation (9). Finally, given Q(·), H(·), P(z) and V̄ (p, z), we solve the firm problem and the

obtain optimal firm prices given by the function p̂(z). We use p̂(z) to update our conjecture

about equilibrium prices P(z), and iterate this procedure until convergence to a fixed point

where P(z) = p̂(z) for all z ∈ [z, z̄].

E The model with aggregate shocks

In this appendix we provide some details on the model we use to evaluate aggregate shocks.

We start by describing the household preferences. We assume that the household is divided

into a mass Γ of shoppers/customers, and a representative worker. The preferences of the

household are given by

Et

[∫ Γ

0

Vt(p
i
t, z

i
t, ψ

i
t) di− Jt

]
, (12)

where Vt(p
i
t, z

i
t, ψ

i
t) is defined as in equation (1) and is the value function that solves the

customer problem in Section 2.1, while Jt ≡ φ
∑∞

T=t β
T−t`T with φ > 0 denotes the disutility
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from the sequence of labor `T . The aggregate state for the household includes the distribution

of prices, the distribution of customers over the different firms and the level of income, the

wage, and their law of motion. Given that here we allow for aggregate shocks, we have to

allow for the possibility that the aggregate state varies over time. Therefore, we index such

dynamics in the aggregate state through the time subscript t for the value function.

The worker chooses the path of `t that maximize household preferences in equation (12).

The search problem of each customer is as described in Section 2.1. As for the consumption

decision, each customer allocates her income across consumption of the good sold in the local

market, the demand of which we denote by d, and another supplied in a centralized market

by a perfectly competitive firms, the demand of which we denote by k, to solve the following

problem

vt(pt) = max
d, n

(
d
θ−1
θ + n

θ−1
θ

) θ
θ−1

(1−γ)

1− γ
(13)

s.t. pt d+ qt n ≤ It, (14)

where θ > 1 and It ≡ (wt `t + Dt)/Γ is nominal income, which the customer takes as given.

Nominal income depends on the household labor income (wt`t) and dividends from firms

ownership (Dt). The first order condition to the problem in equations (13)-(14) gives a

standard downward sloping demand function for variety d, which we denote by the function

dt(pt) = It
p−θt

p1−θ
t + q1−θ

t

. (15)

Without loss of generality we use the price qt as the numeraire of the economy. From the first

order conditions for the household problem, we obtain that the stochastic discount factor is

given by β Λt+1/Λt, where Λt+s =
∫ Γ

0

(
cit+s

)−γ
/P i

t+s di is the household marginal increase in

utility with respect to nominal income, with cit+s denoting customer i’s consumption basket

in period t+ s, and P i
t+s = ((pit+s)

1−θ + (qt+s)
1−θ)

1
1−θ the associated price.

The production technology of the perfectly competitively sold good (good k) is linear

in labor, so that its supply is given by ynt = Zt `
n
t , where Zt is aggregate productivity, and

`nt is labor demand by this firm. The production technology of the other good (good d)

is also linear in labor, so that its supply is given by yjt = Zt z
j
t `

j
t , where Zt is aggregate

productivity, and `nt is labor demand by this firm, where j indexes one particular producer.

Perfect competition in the market for variety k and in the labor market implies that workers

are paid a wage equal to the marginal productivity of labor so that wt = qt Zt. Equilibrium

in the labor markets requires `t = `nt +
∫ 1

0
`jt dj.

47



There are two exogenous driving processes in our economy, namely aggregate produc-

tivity Z and the numeraire q. We consider an economy in steady state at period t0 where

expectations are such that Zt = 1 and qt = 1 for all t ≥ t0. Notice that in this case the

economy coincides with the economy described in Section 2.

E.1 The response to aggregate productivity shock

We consider the economy in its steady state at t = t0, i.e. Zt0 = qt0 = 1, in absence of

any foreseen aggregate shock; we then hit the economy with a one time unforeseen shock to

firms’ productivity and study the convergence of the economy back to its initial steady state.

The aggregate productivity shock takes the form of a one time unforeseen parallel shift to

firms productivities so that aggregate productivity jumps from Zt0 = 1 to Zt0 = 1.05. After

the aggregate shock hits at t = t0, Zt decays exponentially for all t > t0, i.e. log(Zt) =

ρ log(Zt−1). Notice that,as long as the shock lasts, the household experiences an increase in

current income.

The left panel of Figure 7 evaluates the impulse response of average markups. Start

by noting that the aggregate shock does not affect markups in the inelastic customer base

economy, while it has an effect, albeit small, in the model with customer markets: Average

markups are procyclical, with an initial response of almost 0.3%.

Figure 7: Aggregate productivity shock and markups
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Understanding the response of markups to aggregate shocks with customer markets, re-

quires understanding how the extensive margin elasticity, εm(·), and the relative value of a

customer, x(·), respond to the shock. This is important because, as shown in equation (8),

equilibrium markups depend on the product of these two objects. With this in mind, the

right panel of Figure 7 plots the impulse response of the average extensive margin elasticity

and relative value of a customer. As the plot shows, both forces play in opposite directions.

A fall in the relative value of a customer motivates firms to increase markups. However, an

increase in the extensive margin elasticity motivates firms to decrease markups. We now turn

into understanding how the aggregate productivity shock creates these two opposing effects.

The shock implies that, on impact, household wealth increases, and then slowly returns to its

steady state value. On the one hand, because consumption is a normal good, this translates

into an initial increase in consumption, which also slowly fades aways with the shock. This

affects the firms discount factor, Rt+1|t, as this one depends on the ratio of the customers

marginal utilities derived from consumption. Because customers are risk averse, the interest

rate falls if the consumption profile is decreasing. On impact, consumption increases, so that

the interest rate increases, so that firms value less future income streams. As a result, the

relative value of a customer, x(·), decreases; this motivates firms to charge higher markups.

Later, as consumption falls, the interest rate decreases, and the value of a customer returns

to its steady state value. On the other hand, the fact that the increase in wealth is transitory

motivates customers to increase their interest on searching for cheaper stores. As a result, the

extensive margin elasticity increases, on impact, slowly returning to its steady state value as

the shock fades away. This effect motivates firms to decrease their markups. Overall, what

we have is that there are two forces that go in opposite directions. The first force moti-

vates firms to increase current markups: Because the relative value of a customer falls, firms

want to disinvest on its customer base. The second force motivates firms to decrease current

markups: Because of the transitory nature of the increase in household wealth, customers are

more active on searching for cheaper stores, which makes the extensive margin of demand

more elastic.
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