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Abstract

This paper incorporates a recent preference specification of expectations-based loss
aversion, which has been broadly applied in microeconomics, into a classic macro model
to offer a unified explanation for three empirical observations about life-cycle consump-
tion. First, loss aversion rationalizes excess smoothness and sensitivity, the empirical
observation that consumption responds to income shocks with a lag. Intuitively, such
lagged responses allow the agent to delay painful losses in consumption until his expec-
tations have adjusted. Second, the preferences generate a hump-shaped consumption
profile. Early in life, consumption is low due to a first-order precautionary-savings
motive. But, as uncertainty resolves over time, this motive becomes dominated by
time-inconsistent overconsumption that eventually leads to declining consumption to-
ward the end of life. Third, consumption drops at retirement. Prior to retirement,
the agent wants to overconsume his uncertain income before his expectations catch up.
Post retirement, however, income is no longer uncertain, so that overconsumption is
associated with a certain loss in future consumption. As an empirical contribution, I
structurally estimate the preference parameters using life-cycle consumption data. My
estimates match those obtained in experiments and other micro studies and generate
the degree of excess smoothness observed in macro consumption data.
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I Introduction

In the last thirty years, the consumption literature has debated numerous explanations for
three major empirical observations about life-cycle consumption: excess smoothness and sen-
sitivity in consumption, a hump-shaped consumption profile, and a drop in consumption at
retirement.1 This paper offers a unified explanation based on expectations-based reference-
dependent preferences, which have been developed by Koszegi and Rabin (2006, 2007, 2009)
to discipline and broadly apply the insights of prospect theory.2 The preferences formalize
the idea that changes in expectations about consumption generate instantaneous utility and
that losses in expectations about consumption hurt more than gains please. While these
preferences have been shown to explain evidence in various micro domains, this paper vali-
dates the preferences in a classic macro domain. My explanation for the three consumption
facts relies on intuitions that are reminiscent of the micro evidence that the preferences were
developed to explain and may provide new foundations for prominent ideas in the macro
consumption literature. Moreover, I show that the preferences generate new behavior and
welfare predictions. These welfare predictions are important, because whether or not con-
sumption, which represents two-thirds of GDP, should be excessively smooth matters for
labor market reforms and countercyclical policies.

I first explain the preferences in greater detail. In each period, the agent’s instantaneous
utility consists of two components. “Consumption utility” is determined by his level of con-
sumption and corresponds to the standard model of utility. “Gain-loss utility” is determined
by his expectations about consumption relative to his reference point and corresponds to a
prospect-theory model of utility. The agent’s reference point is determined by his previous
beliefs about both his present consumption and his entire stream of future consumption. The
agent experiences “contemporaneous” gain-loss utility when he compares his actual present
consumption with his probabilistic beliefs about present consumption. In this comparison,
he encounters a sensation of gain or loss relative to each consumption outcome that he had
previously expected. Additionally, the agent experiences “prospective” gain-loss utility when
he compares his updated beliefs about future consumption with his previous beliefs, encoun-
tering gain-loss utility over what he has learned about future consumption. Thus, gain-loss
utility can be interpreted as utility over good and bad “news” about consumption.

I analyze an agent with such “news-utility” preferences in a life-cycle consumption model.
The agent lives for a finite number of periods; at the beginning of each period, he observes
the realization of a permanent and a transitory income shock and then decides how much

1Refer to Attanasio and Weber (2010) for a comprehensive survey of the life-cycle consumption literature.
2Prospect theory (Kahneman and Tversky (1979)) states that people care about gains and losses relative

to a reference point, where small losses hurt more than small gains give pleasure, i.e., people are loss averse.
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to consume and save. I first assume that the agent’s consumption utility is an exponential
CARA function. This assumption produces a closed-form solution, which allows a precise
understanding of the intuitions behind the preferences’ implications. I then show that all of
the implications hold if I instead assume a power-utility CRRA function.3

As the first key implication, these preferences generate excess smoothness and sensitivity
in consumption, which refer to the empirical observations that consumption initially underre-
sponds to income shocks and then adjusts with a delay. This inherently related interpretation
of excess smoothness and sensitivity was put forward by Deaton (1986) and Campbell and
Deaton (1989), in response to the seminal paper by Flavin (1981).4 Such consumption re-
sponses are puzzling from the perspective of the standard model, in which consumption fully
adjusts immediately, but can be explained by expectations-based loss aversion. A simplified
intuition is that, in the event of an adverse income shock, unexpected losses in consumption
today are more painful than expected reductions in the future. Accordingly, the agent de-
lays unexpected losses in consumption until his expectations will have adjusted in the future.
Losses in present consumption are more painful than losses in future consumption because
losses in future consumption depend on future income shocks and are thus still uncertain.

Beyond resolving these puzzles, the preferences are consistent with another stylized fact,
namely a hump-shaped life-cycle consumption profile. A hump-shaped profile is character-
ized by increasing consumption at the beginning but decreasing consumption toward the end
of life. Empirical evidence for a hump-shaped consumption profile is provided by Fernandez-
Villaverde and Krueger (2007) and Gourinchas and Parker (2002). In my model, this hump
results from the interaction of two features of the preferences, a first-order precautionary-
savings motive and a beliefs-based time inconsistency. First, the preferences motivate pre-
cautionary savings because loss aversion makes fluctuations in consumption painful in ex-
pectation. These fluctuations hurt relatively less, however, higher on the concave utility
curve, which brings about an additional motive to save. This savings motive depends on
concavity and is a first-order consideration, as opposed to the precautionary-savings motive

3I assume a standard model environment, as proposed by Carroll (2001) and Gourinchas and Parker
(2002), but my results are robust to many alternative environmental assumptions such as liquidity constraints,
different income profiles, different savings devices, portfolio choice, endogenous labor supply, mortality risk,
an endogenous retirement date, different pension designs, and income and expenditure risk after retirement.

4I focus on this interpretation because my basic model features only contemporaneous income shocks. A
delayed response to last period’s permanent income shock can be interpreted as a response to expectedly high
income. The empirical evidence for consumption responses to expected income shocks is surveyed in Jappelli
and Pistaferri (2010). In a model that features contemporaneous shocks to future income, excess sensitivity
would be explained by news utility, if the contemporaneous shock to future income concerns income in the
next period. Other interpretations of excess sensitivity and the model’s explanatory power with regards to
them are reviewed in the next section. Recent empirical evidence for excess smoothness using micro data is
provided by Attanasio and Pavoni (2011).
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under standard preferences.5 Second, the preferences are subject to a beliefs-based time
inconsistency. The agent behaves inconsistently because he takes today’s expectations as
given when increasing today’s consumption, but takes tomorrow’s expectations into account
when increasing tomorrow’s consumption. However, when he will wake up tomorrow, he
will take tomorrow’s expectations as given and only consider the pleasure of increasing con-
sumption above expectations rather than increasing consumption and expectations. As a
result, the agent overconsumes relative to the optimal pre-committed consumption path that
maximizes his expected utility. To summarize, the precautionary-savings motive keeps con-
sumption low at the beginning of life. However, the need for precautionary savings decreases
when uncertainty resolves over time. At some point, precautionary savings are dominated
by the beliefs-based time inconsistency causing overconsumption. Such overconsumption in
mid-life will force the agent to choose a declining consumption path by the end of life.

Finally, the preferences predict a drop in consumption at retirement, a debated empir-
ical observation by Battistin et al. (2009) and Haider and Stephens (2007) among others.6

In a standard life-cycle model, income uncertainty is absent during retirement, eliminating
both the precautionary-savings motive and the beliefs-based time inconsistency. The in-
consistency is eliminated because the agent no longer allocates uncertain labor income but
allocates certain income. Certainty implies that time-inconsistent overconsumption today is
associated with a certain loss in future consumption. Because the certain loss hurts more
than overconsumption gives pleasure, the agent suddenly controls his time-inconsistent desire
to overconsume and his consumption drops at retirement. This result is robust to assuming
small uncertainty, for instance, inflation or pension risk, or discrete uncertainty, for instance,
health shocks.

Beyond these three implications, the preferences generate several new and testable pre-
dictions about consumption and savings. For instance, excess smoothness is increasing in the
agent’s horizon and prevalent for temporary shocks only if the agent does not face permanent
shocks additionally. Moreover, I draw potentially important welfare conclusions by looking
at the optimal pre-committed consumption path. Excess smoothness increases welfare and
is even more pronounced on the pre-committed path. In contrast, the hump-shaped con-
sumption profile and the drop in consumption at retirement decrease welfare and are absent

5In a first-order approximation of savings, the effect of uncertainty depends on the second derivative of
the utility function and the precautionary-savings motive does not go to zero when uncertainty becomes
small. This result was obtained by Koszegi and Rabin (2009) in a two-period, two-outcome model.

6A series of papers, e.g., Banks et al. (1998), Bernheim et al. (2001), Battistin et al. (2009), Haider and
Stephens (2007), Schwerdt (2005) find that consumption drops at retirement taking work-related expenses
into account, and my data display such a drop. Moreover, Ameriks et al. (2007) and Hurd and Rohwedder
(2003) provide evidence that the drop in consumption is anticipated. However, Aguiar and Hurst (2005) find
that the drop is absent when properly controlling for health shocks and home production.
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on the pre-committed path.
Other preferences or model frictions that have been put forward to explain the same

phenomena are reviewed in the next section. By way of providing alternative explanations,
this paper explores habit-formation, hyperbolic-discounting, temptation-disutility, and stan-
dard preferences. However, only news utility provides a unified explanation independent
of assumptions other explanations rely on, e.g., a power-utility function, hump-shaped in-
come profiles, liquidity constraints, preference shifters, or non-separabilities of consumption
and leisure. Nevertheless, this paper’s main contribution is that the explanation’s intuition
connects robust micro evidence on reference-dependent preferences to several compelling
concepts in the macro consumption literature. For instance, loss aversion is an experi-
mentally robust risk preference, which explains important behavioral phenomena such as
the endowment and disposition effects, as well as macro phenomena such as stock market
non-participation and the equity-premium puzzle.7 The explanation of the equity-premium
puzzle is nicely related to the explanation of the excess-smoothness puzzle: both rely on
loss aversion smoothing consumption relative to movements in asset prices or permanent
income.8 To explain the other life-cycle facts, the preferences intuitively unify precautionary
savings, which have been studied extensively in the standard consumption literature, and a
beliefs-based time inconsistency, which is reminiscent of hyperbolic discounting.

To quantitatively evaluate the model, I structurally estimate the preference parameters
using life-cycle consumption data. I follow the two-stage method-of-simulated-moments ap-
proach of Gourinchas and Parker (2002) and use pseudo-panel data from the Consumer
Expenditure Survey as provided by the NBER. I can identify all preference parameters be-
cause each parameter generates specific variation in consumption growth over the life-cycle. I
then compare my estimates to those found in the microeconomic literature by exploiting the
fact that all the preference parameters have narrow ranges determined by existing behavioral
evidence and common sense. I then show that my estimates are not only in line with the
micro literature and generate reasonable attitudes towards small and large wealth bets but
also match the empirical evidence for excess smoothness and sensitivity in aggregate data.9

7The endowment effect refers to the phenomenon that people become less willing to give up an item once
they own it. If the item is in people’s possession, foregoing it feels like a loss. The most famous study is
Kahneman et al. (1990), in which students are given a mug and then offered the chance to sell it. The authors
find that the payment that students’ ask for once they own the mug is twice the payment they are offering
to purchase it. More recently, Ericson and Fuster (2011) demonstrate that subjects’ expectations to keep
rather than possess an item accounts for the gap between the asking and purchase price. The disposition
effect (Odean (1998)) is an anomaly related to the tendency of investors to sell winners (stocks that have
gone up in value) but keep losers (stocks that have gone down in value) to avoid the realization of losses.

8Because consumption is too smooth relative to movements in asset prices, a high equity premium in the
canonical asset-pricing economy requires unreasonably high second-order risk aversion.

9I use NIPA consumption and income data following Ludvigson and Michaelides (2001).
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The paper is organized as follows. After a literature review, I explain the model environ-
ment, preferences, and equilibrium concept in Section III. Then, I derive the model’s main
predictions in closed form under the assumption of exponential utility in Section IV. After
briefly outlining the power-utility model, I then calibrate both models to assess whether the
quantitative predictions match the empirical evidence and structurally estimate the model’s
parameters in Section V. Section VI outlines several extensions. Section VII concludes.

II Literature Review

The static model of reference-dependent preferences, Koszegi and Rabin (2006, 2007), has
been used to explain experimental and other microeconomic evidence in many contexts.10 In
a fully dynamic and stochastic model, I obtain predictions that modify and extend the results
about consumption and savings obtained by Koszegi and Rabin (2009) in a two-period,
two-outcome model.11 In particular, I generalize the implications for precautionary savings
and time-inconsistent overconsumption and intuitively combine them to explain the hump-
shaped consumption profile and the drop in consumption at retirement. In contrast, the
excess-smoothness result is new. It is different from the result by Koszegi and Rabin (2009)
that the news-utility agent consumes windfall gains but delays windfall losses, which depend
on the windfall gains and losses coming as a surprise, i.e., an initially certain consumption

10Heidhues and Koszegi (2008, 2014), Herweg and Mierendorff (2012), and Rosato (2012) explore the
implications for consumer pricing, which are tested by Karle et al. (2011), Herweg et al. (2010) do so
for principal-agent contracts, and Eisenhuth (2012) does so for mechanism design. An incomplete list of
papers providing direct evidence for Koszegi and Rabin (2006, 2007) preferences is Sprenger (2010) on the
implications of stochastic reference points, Abeler et al. (2012) on labor supply, Gill and Prowse (2012)
on real-effort tournaments, Meng (2013) on the disposition effect, and Ericson and Fuster (2011) on the
endowment effect (not confirmed by Heffetz and List (2011)). Suggestive evidence is provided by Crawford
and Meng (2011) on labor supply, Pope and Schweitzer (2011) on golf players’ performance, and Sydnor
(2010) on deductible choice. Moreover, several of the conflicting papers on the endowment effect can be
reconciled with the notion of expectations determining the reference point. All of these papers consider
the static preferences, but as the dynamic preferences of Koszegi and Rabin (2009) are a straightforward
extension, the evidence is valid for the dynamic preferences. Moreover, the notion that agents are loss
averse with respect to news about future consumption is indirectly supported by all experiments, which use
monetary payoffs because these concern future consumption.

11Koszegi and Rabin (2009) develop the dynamic preferences from the static model of Koszegi and Ra-
bin (2006, 2007) by introducing contemporaneous and prospective gain-loss utility in the instantaneous
utility function. In so doing, the authors generalize the static “outcome-wise” gain-loss comparison to a
“percentile-wise” comparison. I generalize the static comparison slightly differently by assuming that the
agent experiences outcome-wise gain-loss utility only over uncertainty that has been realized. Because this
comparison preserves an outcome-wise structure and is a linear operator, it is considerably more tractable.
Moreover, because the psychological intuition of the separated comparison is also reasonable, I see this
modification as a minor contribution to exploring the preferences.
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path.12 It is similarly different from the result by Bowman et al. (1999) that the loss averse
agent delays losses only to remain at his deterministic reference point.13 In contrast, the
reference point is stochastic in my model because consumption is continuously distributed.
The stochastic reference point induces delayed consumption adjustments to both good and
bad income shocks because today’s reference point is more sensitive to today’s consumption
and savings plan than tomorrow’s reference point, which will adjust to today’s plan.

Excess smoothness in consumption cannot be generated by a time-separable utility func-
tion as made clear by Ludvigson and Michaelides (2001) among others. To obtain excess
smoothness, a predominant additional assumption is borrowing constraints as analyzed by
Deaton (1991) among others. However, this assumption faces two problems. Theoretically,
the agent expects these constraints and ensures that they are not binding for most income
realizations. Empirically, the implied asymmetry in excess smoothness could not ultimately
be confirmed. Borrowing constraints are binding more often in a model that features a time-
inconsistency problem, as analyzed by Angeletos et al. (2001) and Laibson et al. (2012). In
these models, sophisticated hyperbolic-discounting preferences imply that the agent restricts
his consumption opportunities with illiquid savings against which he can borrow only up
to some constraint.14 To the extent that his borrowing constraint binds or his liquid asset
holdings bunch at zero, his consumption is excessively smooth.15

By explaining excess smoothness and sensitivity with preferences, I resume a literature pi-
12This result carries over to environments characterized by discrete income uncertainty. To elaborate on

this result and relax the assumption concerning a period’s horizon, which constitutes a calibrational degree
of freedom in a model with first-order risk aversion, I outline a model extension that assumes that the agent
receives large income shocks every couple periods but merely discrete income shocks in in-between periods.
Discrete uncertainty allows the agent to make a credible plan to overconsume less, but implies that he will
consume entire small gains and delay entire small losses. There exists evidence that people consume small
windfall gains almost entirely (as surveyed in Jappelli and Pistaferri (2010)), which has been related to excess
sensitivity in consumption as the permanent income model would predict a marginal propensity to consume
out of transitory shocks that is close to zero.

13These models of loss aversion predict an asymmetric response. The empirical evidence on asymmetric
responses to income innovations, as would be predicted by liquidity constraints, is surveyed in Jappelli and
Pistaferri (2010) and mixed. For instance, Shea (1995) finds that consumption is more excessively sensitive
to expected income declines than increases, which is inconsistent with liquidity constraints or myopia but
consistent with loss aversion, but Krueger and Perri (2010) find the opposite result.

14Demand for commitment is also generated by temptation-disutility preferences, as specified in Gul and
Pesendorfer (2004) and analyzed by Bucciol (2012) in a life-cycle context.

15Laibson et al. (2012) and Laibson (1997) put forward an interpretation of excess sensitivity that focuses
on a high marginal propensity to consume out of transitory income shocks, as the permanent income model
would predict this propensity to consume to be close to zero. A high marginal propensity to consume
out of transitory income shocks is prevalent in this model if the agent’s time-inconsistent overconsumption
dominates precautionary savings or if the model is extended such that the agent has access to an illiquid
asset. In such a model, all preference specifications that feature a time-inconsistency problem, i.e., news
utility, hyperbolic discounting, or temptation disutility, will predict a high propensity to consume as the
agent makes wealth inaccessible to his overconsuming future selves using the illiquid asset.
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oneered by Caballero (1995), who assumes that agents consume near-rationally, and Fuhrer
(2000) and Michaelides (2002), who assume internal multiplicative habit formation. The
basic concept of news utility appears similar to habit formation. However, the life-cycle
implications are very different; most importantly, I confirm the conclusion of Michaelides
(2002) that habit formation generates excess smoothness at the cost of unreasonably high
wealth accumulation. Furthermore, Flavin and Nakagawa (2008) define a utility function
over two consumption goods, one representing non-durable consumption and one represent-
ing housing, which is characterized by adjustment costs. As the utility function depends
non-separably on the two goods, non-durable consumption is excessively smooth and sensi-
tive. A similar utility function is assumed by Chetty and Szeidl (2010), however, this function
is separable in the two goods, which implies that consumption is excessively smooth and sen-
sitive with respect to the durable good only. Moreover, Reis (2006) assumes that agents face
costs when processing information and thus optimally decide to update their consumption
plans sporadically, Tutoni (2010) assumes that consumers are rationally inattentive as in
Sims (2003), and Attanasio and Pavoni (2011) show that excessively smooth consumption
results from incomplete consumption insurance due to a moral hazard problem.

Several papers show that the standard and hyperbolic agents’ consumption profiles are
hump shaped under the assumption of power utility, sufficient impatience, and a hump-
shaped income profile, such as Carroll (1997), Gourinchas and Parker (2002), and Laibson
et al. (2012).16 Other papers that generate a hump-shaped consumption profile are Caliendo
and Huang (2008) with overconfidence, Attanasio (1999) with family size effects, Deaton
(1991) with borrowing constraints, Feigenbaum (2008) and Hansen and Imrohoroglu (2008)
with mortality risk, Bullard and Feigenbaum (2007) and Heckman (1974) with consumption-
leisure choice, and Fernandez-Villaverde and Krueger (2007) with consumer durables. Caliendo
and Huang (2007) and Park (2011) show that a hump-shaped profile can be generated by
assuming that the agent has a shorter planning horizon, i.e., five to twenty-six years, rather
than his true horizon. In partial equilibrium, matching the hump shape is trivial, as pref-
erence and environmental parameters are jointly calibrated; thus, Park (2011) shows that
short-term planning can generate the hump in a well-calibrated general-equilibrium model.17

Last, Caliendo and Huang (2011) show that a hump-shaped profile and an anticipated drop
in consumption can be generated by assuming implementation costs of saving.

16The hump-shaped profile constitutes a puzzle as the life-cycle profile of consumption must be monotonic if
utility is an additively separable function of consumption, discounting is geometric, and markets are complete.
Nevertheless, I argue that the news-utility hump is more robust to alternative assumptions about the discount
factor, interest rate, and income profile, and more in line with the empirical hump in consumption.

17A simple real-business-cycle model with expectations-based reference dependence generates realistic
moments with the preference parameters that I estimate in this paper as shown by Pagel (2012a).
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III The Life-Cycle Consumption Model

I first define a general life-cycle model environment to formally introduce the preferences
and equilibrium concepts.

III.1 The model environment

The agent lives for a total of T discrete periods indexed by t ∈ {1, ..., T}. At the beginning of
each period, a vector St ∼ FSt realizes that consists of random shocks, which are independent
of each other and over time. The realization of St is denoted st. The model’s exogenous
state variables are represented by the vector Zt, which evolves according to the following law
of motion

Zt = fZ(Zt−1, St). (1)

After observing st and Zt, the agent decides how much to consume, Ct.18 The model’s
endogenous state variable is cash-on-hand Xt+1 and is determined by the following budget
constraint

Xt+1 = fX(Xt − Ct, Zt, St+1). (2)

All of the model’s variables that are indexed by t realize in period t. Because the agent’s
preferences are defined over both outcomes and beliefs, I explicitly define his probabilistic
“beliefs” about each of the model’s period t variables from the perspective of any prior period
as follows.

Definition 1. Let It = {Xt, Zt, st} denote the agent’s information set in some period t ≤
t + τ . Then, the agent’s probabilistic beliefs about any model variable Vt+τ conditional on
period t information is denoted by F t

Vt+τ
(v) = Pr(Vt+τ < v|It), and F t+τ

Vt+τ
is degenerate.

Throughout the paper, I assume rational expectations, i.e., the agent’s beliefs about
any of the model’s variables equal the objective probabilities determined by the economic
environment.

III.2 Expectations-based reference-dependent preferences

Having outlined the model environment, I now introduce the agent’s preferences. To facilitate
the exposition, I first explain the static model of expectations-based reference dependence,

18Throughout most of the paper, I consider a standard life-cycle environment in which the agent’s stochastic
labor income is Yt = fY (Pt−1, S

p
t , S

T
t ), which depends on his permanent income Pt−1, a permanent shock

SPt ∼ FSPt , and a transitory shock STt ∼ FSTt . He decides how much to consume Ct and how much
to save in a risk-free asset that pays a net return r such that his cash-on-hand Xt+1 is determined by
Xt+1 = (Xt − Ct)(1 + r) + Yt+1.
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as specified in Koszegi and Rabin (2006, 2007), and then introduce the dynamic model of
Koszegi and Rabin (2009).

The static preferences. The agent’s utility function consists of two components. First,
he experiences consumption utility u(c), which corresponds to the standard model of utility
and is solely determined by consumption c. Second, he experiences gain-loss utility µ(u(c)−
u(r)). The gain-loss utility function µ(·) corresponds to the prospect-theory model of utility
determined by consumption c relative to the reference point r. µ(·) is piecewise linear with
slope η and a coefficient of loss aversion λ, i.e., µ(x) = ηx for x > 0 and µ(x) = ηλx for x ≤ 0.
The parameter η > 0 weights the gain-loss utility component relative to the consumption
utility component and λ > 1 implies that losses are weighed more heavily than gains, i.e.,
the agent is loss averse. Koszegi and Rabin (2006, 2007) allow for stochastic consumption,
distributed according to Fc(c), and a stochastic reference point, distributed according to
Fr(r). Then, the agent experiences gain-loss utility by evaluating each possible outcome
relative to all other possible outcomes

ˆ ∞
−∞

(η

ˆ c

−∞
(u(c)− u(r))dFr(r) + ηλ

ˆ ∞
c

(u(c)− u(r))dFr(r))dFc(c). (3)

Additionally, the authors make the central assumption that the distribution of the reference
point Fr equals the agent’s fully probabilistic rational beliefs about consumption c.

The dynamic preferences. In the dynamic model of Koszegi and Rabin (2009), the util-
ity function consists of consumption utility, contemporaneous gain-loss utility about current
consumption, and prospective gain-loss utility about the entire stream of future consumption.
Thus, total instantaneous utility in period t is given by

Ut = u(Ct) + n(Ct, F
t−1
Ct

) + γ
∞∑
τ=1

βτnnn(F t,t−1
Ct+τ

). (4)

The first term on the right-hand side of equation (4), u(Ct), corresponds to consumption
utility in period t. Before turning to the subsequent terms in equation (4), which consider
consumption and beliefs, I define an “admissible consumption function”. This function allows
me to explicitly describe the probabilistic structure of the agent’s beliefs about any of the
model’s variables at any future date. Because the agent fully updates his beliefs in each
period and because the shocks are independent over time, I consider a stationary function
that depends only on this period’s cash-on-hand Xt, the vector of exogenous state variables
Zt, the realization of the vector of shocks st, and calendar time t.

10



Definition 2. The consumption function in any period t is admissible if it can be writ-
ten as a function Ct = gt(Xt, Zt, st) that is strictly increasing in the realization of each
shock ∂gt(Xt,Zt,st)

∂st
> 0. Repeated substitution of the law of motion, equation (1), and

the budget constraint, equation (2), allows me to rewrite Ct+τ = gt+τ (Xt+τ , Zt+τ , St+τ ) =

htt+τ (Xt, Zt, st, St+1, ..., St+τ ).

I now return to the two remaining terms on the right-hand side of equation (4). The first
term, n(Ct, F

t−1
Ct

), corresponds to gain-loss utility over contemporaneous consumption; here,
the agent compares his present consumption Ct with his beliefs F t−1

Ct
. According to Definition

1, the agent’s beliefs F t−1
Ct

correspond to the conditional distribution of consumption in period
t given the information available in period t− 1. The agent experiences gain-loss utility over
“news” about contemporaneous consumption as follows

n(Ct, F
t−1
Ct

) = η

ˆ Ct

−∞
(u(Ct)− u(c))dF t−1

Ct
(c) + ηλ

ˆ ∞
Ct

(u(Ct)− u(c))dF t−1
Ct

(c) (5)

where Ct and F t−1
Ct

(c) are explicitly described via the admissible consumption function, i.e.,
Ct = gt(Xt, Zt, st) = ht−1

t (Xt−1, Zt−1, st−1, st) and F t−1
Ct

(c) = Pr(ht−1
t (Xt−1, Zt−1, st−1, St) < c).

The third term in equation (4), γ
∑∞

τ=1 β
τnnn(F t,t−1

Ct+τ
), corresponds to gain-loss utility, ex-

perienced in period t, over the entire stream of future consumption. Prospective gain-loss
utility about period t + τ consumption depends on F t−1

Ct+τ
, the agent’s beliefs he entered

the period with, and on F t
Ct+τ

, the agent’s updated beliefs about consumption in period
t + τ . Again the probabilistic structure of these beliefs can be explicitly described via the
admissible consumption function, i.e., htt+τ (Xt, Zt, st, St+1, ..., St+τ ). Importantly, the prior
and updated beliefs about Ct+τ , F t−1

Ct+τ
and F t

Ct+τ
, are not independent distribution functions

because future shocks St+1, ..., St+τ are contained in both. Thus, there exists a joint dis-
tribution, which I denote by F t,t−1

Ct+τ
6= F t

Ct+τ
F t−1
Ct+τ

.19 Because the agent compares his newly
formed beliefs with his prior beliefs, he experiences gain-loss utility over “news” about future

19I calculate prospective gain-loss utility nnn(F t,t−1Ct+τ
) by generalizing the “outcome-wise” comparison, speci-

fied in Koszegi and Rabin (2006, 2007) and reported in equation (15), to account for the potential dependence
of Fr and Fc, i.e.,

nnn(Fc,r) =

ˆ ∞
−∞

ˆ ∞
−∞

µ(u(c)− u(r))dFc,r(c, r). (6)

If Fr and Fc are independent, equation (6) reduces to equation (15). However, if Fr and Fc are non-
independent, equation (6) and equation (15) yield different values. Suppose that Fr and Fc are perfectly
correlated, as though no update in information occurs. Equation (15) would yield a negative value because
the agent experiences gain-loss disutility over his previously expected uncertainty, which seems unrealistic.
In contrast, equation (6) would yield zero because the agent considers the dependence of prior and up-
dated beliefs, which captures future uncertainty, thereby separating uncertainty that has been realized from
uncertainty that has not been realized. Thus, I call this gain-loss formulation the separated comparison.
Koszegi and Rabin (2009) generalize the outcome-wise comparison to a “percentile-wise” ordered comparison.
The separated and ordered comparisons are equivalent for contemporaneous gain-loss utility. However, for
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consumption as follows

nnn(F t,t−1
Ct+τ

) =

ˆ ∞
−∞

(η

ˆ c

−∞
(u(c)− u(r)) + ηλ

ˆ ∞
c

(u(c)− u(r)))dF t,t−1
Ct+τ

(c, r) (7)

with F t,t−1
Ct+.τ

(c, r) given by F t,t−1
Ct+τ

(c, r) = Pr(htt+τ (Xt−1, Zt−1, st−1, st, St+1, ..., St+τ ) < c,

ht−1
t+τ (Xt−1, Zt−1, st−1, St, St+1, ..., St+τ ) < r).
The agent exponentially discounts prospective gain-loss utility by β ∈ [0, 1]. Moreover,

he discounts prospective gain-loss utility relative to contemporaneous gain-loss utility by a
factor γ ∈ [0, 1]. Thus, he puts the weight γβτ < 1 on prospective gain-loss utility regarding
consumption in period t+τ . Because both contemporaneous and prospective gain-loss utility
are experienced over news, the preferences can be referred to as “news utility”.

III.3 The model solution

The news-utility agent’s lifetime utility in each period t = {1, ..., T} is

u(Ct) + n(Ct, F
t−1
Ct

) + γ
T−t∑
τ=1

βτnnn(F t,t−1
Ct+τ

) + Et[
T−t∑
τ=1

βτUt+τ ], (8)

where β ∈ [0, 1), u(·) is a HARA20 utility function, η ∈ [0,∞), λ ∈ [1,∞), and γ ∈ [0, 1].
I also consider hyperbolic-discounting or βδ−preferences, as developed by Laibson (1997);
the βδ−agent’s lifetime utility is given by u(Cb

t ) + bEt[
∑T−t

τ=1 β
τu(Cb

t+τ )] where b ∈ [0, 1] is
the hyperbolic-discount factor. Needless to say, standard preferences, as analyzed by Carroll
(2001), Gourinchas and Parker (2002), or Deaton (1991), are a special case of the above
models for either η = 0 or b = 1. I now define two equilibrium concepts: the monotone-
personal equilibrium and monotone-pre-committed equilibrium.

The monotone-personal equilibrium. I define the model’s “monotone-personal” equi-
librium in the spirit of the preferred-personal equilibrium solution concept, as defined by
Koszegi and Rabin (2009), but within the outlined environment and admissible consump-
tion function as follows.

Definition 3. The family of admissible consumption functions Ct = gt(Xt, Zt, st) is a
monotone-personal equilibrium for the news-utility agent if, in any contingency, Ct = gt(Xt, Zt, st)

prospective gain-loss utility, they are qualitatively similar but quantitatively slightly different. As a linear
operator, the separated comparison is more tractable. Moreover, it simplifies the equilibrium-finding process
because it preserves the outcome-wise nature of contemporaneous gain-loss utility.

20A utility function u(c) exhibits hyperbolic absolute risk aversion (HARA) if the risk tolerance −u
′′(c)
u′(c) is

a linear function of c.
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maximizes (8) subject to (2) and (1) under the assumption that all future consumption cor-
responds to Ct+τ = gt+τ (Xt+τ , Zt+τ , st+τ ). In each period t, the agent takes his beliefs about
consumption {F t−1

Ct+τ
}T−tτ=0 as given in the maximization problem.

The monotone-personal equilibrium can be obtained by simple backward induction; thus,
it is time consistent in the sense that beliefs map into correct behavior and vice versa. In
other words, I derive the equilibrium consumption function under the premise that the
agent enters period t, takes his beliefs as given, optimizes over consumption, and rationally
expects to behave in this manner in the future. If I obtain a consumption function by
backward induction that is admissible, then the monote-personal equilibrium corresponds
to the preferred-personal equilibrium as defined by Koszegi and Rabin (2009). For the
hyperbolic-discounting agent, the monotone-personal equilibrium corresponds to the solution
of Laibson (1997).

The monotone-pre-committed equilibrium. The monotone-personal equilibrium max-
imizes the agent’s utility in each period t when he takes his beliefs as given. However, if the
agent could pre-commit to his consumption in each possible contingency, he would choose
a different consumption path. I define this path as the model’s “monotone-pre-committed”
equilibrium in the spirit of the choice-acclimating equilibrium concept, as defined by Koszegi
and Rabin (2007), but within the outlined environment and admissible consumption function
as follows.

Definition 4. The family of admissible consumption functions, Ct = gt(Xt, Zt, st) for each
period t, is a monotone-pre-committed equilibrium for the news-utility agent, if, in any
contingency, Ct = gt(Xt, Zt, st) maximizes (8) subject to (2) and (1) under the assumption
that all future consumption corresponds to Ct+τ = gt+τ (Xt+τ , Zt+τ , st+τ ). In each period t,
the agent’s maximization problem determines both his beliefs {F t−1

Ct+τ
}T−tτ=0 and consumption

{Ct+τ}T−tτ=0.

I derive the equilibrium consumption function under the premise that the agent can
pre-commit to an optimal, history-dependent consumption path for each possible future
contingency and thus jointly optimizes over consumption and beliefs. This equilibrium is
not time consistent because the agent would deviate if he were to take his beliefs as given
and optimize over consumption alone.

Equilibrium existence and uniqueness. I demonstrate the existence and uniqueness
of the monotone-personal and monotone-pre-committed equilibria for special environments,
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such as exponential utility and permanent and transitory normal shocks, under one param-
eter condition. The condition is that FSt must be sufficiently dispersed such that the equi-
librium consumption functions fall into the class of admissible consumption functions.21 For
the monotone-pre-committed equilibrium, an additional parameter constraint η(λ−1) < 1 is
required to ensure global concavity of the agent’s maximization problem. For other environ-
ments, such as power utility and permanent and transitory log-normal shocks, simulations
using numerical backward induction suggest that the monotone-personal and monotone-pre-
committed equilibria exist and are unique for most reasonable calibrations.22

IV Theoretical Predictions about Consumption

In the following, I explain the closed-form solution of the exponential-utility model in de-
tail to illustrate the model’s predictions formally and intuitively. After briefly outlining the
model’s monotone-personal equilibrium in Proposition 1, I flesh out the second-to-last pe-
riod’s decision problem to explain the model’s theoretical predictions. Proposition 2 and
Corollary 1 formalize excess smoothness and sensitivity in consumption. Lemma 1 discusses
how the precautionary-savings motive competes with the prospective gain-loss discount fac-
tor; the net of these forces leads to a hump-shaped consumption profile, which is formalized
in Proposition 3. Proposition 4 determines consumption during retirement, and Proposi-
tion 5 characterizes when consumption drops at retirement. After these main predictions, I
discuss several more subtle consumption implications and new comparative statics. Finally,
Proposition 6 characterizes the implications of the monotone-pre-committed equilibrium.

I begin by briefly explaining the model’s environment and stating the equilibrium con-
sumption function to convey a general impression of the model’s solution. The agent’s
utility function is exponential u(C) = −1

θ
e−θC , where θ ∈ (0,∞). His additive income

process Yt = Pt−1 + sPt + sTt is characterized by a permanent SPt ∼ N(µPt, σ
2
Pt) and transi-

tory STt ∼ N(µTt, σ
2
Tt) normal shocks, and his permanent income is Pt = Pt−1 + sPt+1. His

21Moreover, in Section IV.4 and Appendix B.4, I argue that the model’s equilibrium is not affected qual-
itatively or quantitatively, if this condition does not hold. If the consumption function is decreasing over
some range, the agent would simply chose a flat function over this range and the admissible consumption
function requirement would be weakly satisfied.

22Carroll (2011) and Harris and Laibson (2002) demonstrate the existence and uniqueness of equilibria
for the standard and sophisticated hyperbolic-discounting agent in similar environments. In these mod-
els, the equilibrium consumption functions fall in the class of admissible consumption functions. For the
standard agent, the monotone-personal equilibrium corresponds to the pre-committed equilibrium. For the
sophisticated hyperbolic-discounting agent, the monotone-personal equilibrium does not correspond to the
monotone-pre-committed equilibrium, which instead corresponds to the standard agent’s equilibrium.
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end-of-period asset holdings are denoted At = Xt−Ct and his budget constraint is given by

Xt+1 = (Xt − Ct)(1 + r) + Yt+1 ⇒ At+1 = AtR + Yt+1 − Ct+1. (9)

In Appendix B.2.1, I show that the agent’s optimal consumption function is

Ct = (1− a(T − t))(1 + r)At−1 + Pt−1 + sPt + (1− a(T − t))sTt − a(T − t)Λt. (10)

His consumption depends on his assets, income, horizon, and interest rate; the latter two are
captured in the annuitization factor a(T − t) =

∑T−t−1
j=0 (1+r)j∑T−t
j=0 (1+r)j

. Moreover,

Λt =
1

θ
log(

1− a(T − t)
a(T − t)

ψt + γQt(ηF (sPt + (1− a(T − t))sTt ) + ηλ(1− F (sPt + (1− a(T − t))sTt ))

1 + ηF (sPt + (1− a(T − t))sTt ) + ηλ(1− F (sPt + (1− a(T − t))sTt ))
),

(11)
where F (·) = FSPt +(1−a(T−t))STt (·) and ψt and Qt are constant. Thus, Λt varies with the
shock realizations but is independent of permanent income or assets. The standard and
hyperbolic-discounting agents’ monotone-personal equilibria have the same structure except
that Λs

t and Λb
t only vary with the agent’s horizon.

Proposition 1. There exists a unique monotone-personal equilibrium in the finite-horizon
exponential-utility model if

√
σ2
Pt + (1− a(i))2σ2

Tt ≥ σ∗t for all t ∈ {1, ..., T}.

This proposition’s proof and the proofs of the following propositions can be found in
Appendix B.4. All of the following propositions are derived within this model environment
and hold in any monotone-personal equilibrium if one exists.

IV.1 Excess smoothness and sensitivity in consumption

Excess smoothness and sensitivity in consumption are two robust empirical observations,
which emerged from tests of the permanent income hypothesis. The permanent income hy-
pothesis postulates that the marginal propensity to consume out of permanent income shocks
is one and that future consumption growth is not predictable using past variables. However,
numerous studies find that the marginal propensity to consume is less than one because
consumption underresponds to permanent income shocks; thus, consumption is excessively
smooth according to Deaton (1986). Moreover, numerous studies find that past changes in
income have predictive power for future consumption growth because consumption adjusts
with a delay; thus, consumption is excessively sensitive according to Flavin (1985). Camp-
bell and Deaton (1989) explain how these observations are intrinsically related; consumption
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underresponds to permanent income shocks and thus adjusts with a delay. In this spirit, I
define excess smoothness and sensitivity for the exponential-utility model as follows.

Definition 5. Consumption is excessively smooth if ∂Ct
∂sPt

< 1 everywhere and excessively

sensitive if ∂∆Ct+1

∂sPt
> 0 everywhere.

This definition has an empirical analogue: an ordinary least squares (OLS) regression of
period t+ 1 consumption growth on the realization of the permanent shock in periods t+ 1

and t; for the two OLS coefficients β1 and β2, the above definition implies that consumption is
excessively smooth if β1 = ∂Ct

∂sPt
|sPt =µPt

< 1 and excessively sensitive if β2 = ∂∆Ct+1

∂sPt
|sPt =µPt

> 0.

Proposition 2. The news-utility agent’s consumption is excessively smooth and sensitive.

I briefly present a simplified intuition for this result to then explain the agent’s first-order
condition in greater detail and provide the full intuition.23 The agent’s marginal gain-loss
utility today is more sensitive to his savings than his marginal gain-loss utility tomorrow, as
his reference point today is invariable while his reference point tomorrow will have adjusted
to his savings plan today. As a result, in the event of an adverse shock, the agent prefers to
delay the reduction in consumption until his reference point has decreased. Additionally, in
the event of a good shock, the agent prefers to delay the increase in consumption until his
reference point has increased.

To explain this result in greater detail, I flesh out the agent’s decision-making problem
in the second-to-last period assuming that transitory shocks are absent, AT−2 = PT−2 = 0,
and the permanent income shock is independent and identically distributed (i.i.d.) normal
SPT−1, S

P
T ∼ FP = N(µP , σP ). In period T −1, the agent chooses how much to consume CT−1

and save sPT−1 − CT−1. His optimal consumption growth is given by

∆CT = sPT +
1

θ
log((1 + r)

ψT−1 + γQT−1(ηFP (sPT−1) + ηλ(1− FP (sPT−1)))

1 + ηFP (sPT−1) + ηλ(1− FP (sPT−1))
). (12)

I explain each component of the fraction in equation (12) in detail. The denominator is
marginal consumption and contemporaneous gain-loss utility in period T − 1; the latter
consists of two terms. First, the agent compares his actual consumption to all consumption
outcomes that would have been less favorable and experiences a gain weighted by η, i.e.,
η
´ CT−1

−∞ (u(CT−1) − u(c))F T−1
CT

(c). Second, the agent compares his actual consumption to
all outcomes that would have been more favorable and experiences a loss weighted by ηλ,
i.e., ηλ

´∞
CT−1

(u(CT−1) − u(c))F T−2
CT−1

(c). Because the agent takes his beliefs as given in the

23This result can be generalized to a HARA utility function, arbitrary horizons, and arbitrary income
uncertainty.
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monotone-personal equilibrium, his marginal consumption and marginal contemporaneous
gain-loss utility equals

u′(CT−1) + u′(CT−1)(ηF T−2
CT−1

(CT−1) + ηλ(1− F T−2
CT−1

(CT−1)))). (13)

This expression can be simplified by replacing F T−2
CT−1

(CT−1) with FP (sPT−1) because any ad-
missible consumption function is increasing in the shock realization.

The second term of the numerator in equation (12) is marginal prospective gain-loss
utility over future consumption CT = (sPT−1 − CT−1)(1 + r) + sPT−1 + SPT . I denote the
expected marginal utility of the last period’s income shock QT−1 = βET−1[u′(SPT )].24 As the
agent’s admissible consumption is increasing in the shock realization and he takes his beliefs
as given, his marginal prospective gain-loss utility corresponds to the same weighted sum of
FP (sPT−1)

(1 + r)u′((sPT−1 − CT−1)(1 + r) + sPT−1)γQT−1(ηFP (sPT−1) + ηλ(1− FP (sPT−1))). (14)

The first term of the numerator in equation (12) is marginal future consumption and gain-loss
utility. I denote the expected marginal consumption and gain-loss utility of the last period’s
income shock ψT−1, which equals QT−1 plus βET−1[η(λ−1)

´∞
SPT

(u′(SPT )−u′(s))dFP (s)]. Con-
sequently, marginal expected consumption and gain-loss utility are given by (1+r)u′((sPT−1−
CT−1)(1 + r) + sPT−1)ψT−1.

The fraction in equation (12) is increasing in sPT−1 for any γ iff ψT−1 > QT−1. The
difference between ψT−1 and QT−1 corresponds to expected marginal gain-loss utility that
is constant because the future reference point adjusts to today’s savings plan. Thus, a
positive share of tomorrow’s marginal utility is inelastic to today’s savings, which implies
that tomorrow’s marginal utility is less sensitive to changes in savings than today’s marginal
utility. Today’s marginal contemporaneous and prospective gain-loss utility is relatively high
or low in the event of an adverse or positive shock. In contrast, expected marginal gain-loss
utility is constant because tomorrow’s reference point will have adjusted to today’s plan.
Thus, the agent will consume relatively more in the event of an adverse shock and relatively
less in the event of a positive shock. According to Definition 5, consumption is excessively
smooth ∂CT−1

∂sPT−1
< 1 and excessively sensitive ∂∆CT

∂sPT−1
> 0.

In contrast, the standard agent’s consumption growth is ∆Cs
T = sPT + 1

θ
log((1 + r)QT−1),

and the hyperbolic-discounting agent’s consumption growth is ∆Cb
T = sPT + 1

θ
log((1 +

r)bQT−1). Thus, the consumption of these agents is neither excessively smooth nor ex-
24Exponential utility implies that u′(∗+ ·) = u′(∗)u′(·) and thus works well with additive risk.
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Figure I: Exponential-utility consumption functions of news-utility
and standard agents.

cessively sensitive.
To illustrate the quantitative implications of excess smoothness and sensitivity, I run the

linear regression of consumption growth on income

∆Ct+1 = α + β1∆Yt+1 + β2∆Yt + εt+1.

For the news-utility model, I obtain β1 ≈ 0.22 and β2 ≈ 0.18 and a marginal propensity
to consume out of permanent shocks of approximately 71%.25 In contrast, for the standard
model the marginal propensity is one.26

For illustration, Figure I displays the news-utility and standard agents’ consumption
functions for realizations within two standard deviations of each shock, while the other is
held constant. The flatter part of the news-utility consumption function generates excess
smoothness and sensitivity.

25I retain the normal income process outlined in Section IV assuming that permanent and transitory shocks
are i.i.d., i.e., Yt = Pt−1 + sPt + sTt ∼ N(Pt−1 + µP + µT , σ

2
P + σ2

T ). I choose the environment parameters so
as to roughly generate the volatility of the log-normal income process that is typically used in the life-cycle
consumption literature. I choose the agent’s horizon T , his retirement period R, his initial wealth A0 and
P0, and the interest rate r in accordance with the life-cycle literature. Additionally, I choose the preference
parameters in line with the microeconomic literature and experimental evidence, which is explained in detail
in Section V.3. The parameters are µP = 0, σP = 5%, µT = 0, σT = 7%, β = 0.978, r = 2%, θ = 2, η = 1,
λ = 2, γ = 0.75, A0 = 0, and P0 = 0.1.

26Running the regression

∆Ct+1 = α+ β1(sPt+1 − µP ) + β2∆(sPt − µP ) + εt+1

yields βs1 ≈ 1 and βs2 ≈ 0 in the standard model and β1 ≈ 0.71 and β2 ≈ 0.31 in the news-utility model.
The transitory shock introduces a spurious negative correlation between ∆Ct+1 and ∆Yt because ∆Yt+1 =
sPt+1 + sTt+1 − sTt and ∆Yt = sPt + sTt − sTt−1.
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IV.2 The hump-shaped consumption profile

Fernandez-Villaverde and Krueger (2007), among others, show that lifetime consumption
profiles are hump-shaped, even when controlling for cohort, family size, number of earners,
and time effects.27 In the following, I demonstrate that the preferences generate a hump-
shaped consumption profile as a result of the net of two competing features – an additional
first-order precautionary-savings motive and the agent’s discount factor on prospective gain-
loss utility γ.

Precautionary savings and prospective news discounting. Income uncertainty has
a first-order effect on savings in the news-utility model. This “first-order precautionary-
savings motive” is added to the precautionary savings motive of the standard agent, which
is a second-order motive.28 This result is highlighted by Koszegi and Rabin (2009) in a
two-period, two-outcome model.

Definition 6. There exists a first-order precautionary-savings motive iff ∂(sPT−1−CT−1)

∂σP
|σP=0 > 0.

However, the agent wishes to increase his consumption and decrease his savings if he
discounts prospective gain-loss utility relative to contemporaneous gain-loss utility, i.e., γ <
1. This discounting is reminiscent of βδ−preferences. The following lemma formalizes these
two opposing forces.29

Lemma 1.
1. Precautionary savings: News utility introduces a first-order precautionary-savings motive.
2. Implications for consumption growth: There exists a γ̄s < 1, implicitly determined by
∆CT = ∆Cs

T , such that, iff γ̄s < γ, the news-utility agent’s consumption growth in period T
is higher than the standard agent’s consumption growth for any realization of sPT−1 and sPT ,
and ∂γ̄s

∂σP
< 0.

The intuition for the first part of the lemma is as follows. The agent anticipates being
exposed to gain-loss fluctuations in period T , which are painful in expectation because losses
hurt more than gains give pleasure. Additionally, the painfulness of these fluctuations is pro-
portional to marginal consumption utility, which is lower higher on the utility curve. Thus,
the agent has an additional incentive to increase savings. The intuition for the second part

27Moreover, Fernandez-Villaverde and Krueger (2007) find suggestive evidence that non-separability be-
tween consumption and leisure, which was promoted by Attanasio (1999) and previous papers, cannot explain
more than 20% of the hump in consumption.

28Refer to Gollier (2001).
29This result and those following can be generalized to any HARA utility function, arbitrary horizons, and

labor income uncertainty.
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of the lemma is straightforward. If γ < 1, the agent is more concerned about contempo-
raneous than prospective gain-loss utility; thus, he wishes to increase his consumption and
decrease his savings. Consequently, the presence of news utility might increase or decrease
consumption relative to the standard model depending on the net of two parameters σP > 0

and γ < 1.
In the following, I develop a more formal intuition for the standard and additional

precautionary-savings motive and demonstrate that the assumption ψT−1 > QT−1, which
I made previously, always holds. As shown above, the marginal value of savings is (1 +

r)u′((sPT−1 − CT−1)(1 + r) + sPT−1)ψT−1, where ψT−1 equals the shock’s expected marginal
consumption plus expected marginal gain-loss utility

βET−1[u′(SPT )] + βET−1[η(λ− 1)

ˆ ∞
SPT

(u′(SPT )− u′(s))dFP (s)]. (15)

The integral in equation (15) reflects the expected marginal utility of all gains and losses,
which partly cancel, such that only the overweighted component of the losses remains, i.e.,
η(λ− 1)(·). The key point is that this integral is always positive if u′′ < 0 and thus captures
the additional precautionary-savings motive, implies that ψT−1 > QT−1, and is increasing in
η, λ, and σP . Because ∂(sPT−1−CT−1)

∂σP
|σP=0 > 0, this motive is first order, as the news-utility

agent is first-order risk averse. In contrast, the standard precautionary-savings motive is
captured by QT−1 = βET−1[u′(SPT )], which is larger than βu′(ET−1[ST ]) if u′′′ > 0, according
to Jensen’s inequality. This standard precautionary-savings motive is second order, i.e.,
∂(sPT−1−CT−1)

∂σP
|σP=0 = 0, as the standard agent is second-order risk averse.30

The resulting hump-shaped consumption profile. The two competing news-utility
features – the additional precautionary-savings motive and γ < 1 – make it likely that the
life-cycle consumption profile is hump shaped.

Definition 7. I say that the agent’s consumption profile is hump shaped if consumption is
increasing at the beginning of his life ∆C1 > 0 and decreasing ∆CT < 0 at the end of his
life.

Proposition 3. Suppose σPt = σP for all t and T is large; then, there exists a σP in [σP , σP ]

such that, if γ < 1, log((1 + r)β) ∈ [− M,M], and M is small, the news-utility agent’s lifetime
30As shown by Benartzi and Thaler (1995) and Barberis et al. (2001), first-order risk aversion resolves the

equity premium puzzle, which highlights that agents must have implausibly high second-order risk aversion
to reconcile the historical equity premium because aggregate consumption is smooth compared with asset
prices. The excess-smoothness puzzle highlights that aggregate consumption is too smooth compared to labor
income, and again, first-order instead of second-order risk aversion is a necessary ingredient for resolving the
puzzle.
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Figure II: Exponential-utility life-cycle profiles of news-utility and
standard agents.

consumption path is hump shaped.

The basic intuition is illustrated in Lemma 1. The relative strengths of the additional
precautionary-savings motive and γ < 1 determine whether the presence of gain-loss utility
increases or decreases the news-utility agent’s consumption relative to the standard model.
When the agent’s horizon increases, the precautionary-savings motive accumulates because
uncertainty accumulates. Accordingly, at the beginning of life, the presence of gain-loss
utility is likely to reduce consumption and increase consumption growth unless γ is small.
Toward the end of life, however, the additional precautionary-savings motive is relatively
small, and γ < 1 is likely to decrease consumption growth. More formally, the two conditions
∆Ct+1 ≶ 0 reduce to Λt ≶ 0 as T − t becomes large or T − t becomes small. The sign of Λt

is determined by the relative values of ψt
Qt
> 1 and γ < 1. As T − t increases, ψt

Qt
increases

such that γ < 1 loses relative importance and Λt is more likely to be positive. In contrast,
ψT−1

QT−1
is small such that γ < 1 is likely to cause ΛT−1 to be negative.

Figure II displays the news-utility and standard agents’ life-cycle consumption profiles.31

The figure displays the average consumption profile of 300 identical agents who encounter
different realizations of sPt and sTt and the consumption profile if sPt = 0 and sPt = 0 for
all t. As can be observed from the figure, the news-utility agent’s consumption profile is
hump shaped. This hump is very robust to different parameter choices, which I discuss in
Section V.3. In contrast, the standard agent’s profile is V-shaped, which demonstrates that
exponential utility and a random-walk income process do not promote the desired hump.
Moreover, the figure displays the hump in the presence of a retirement period, which I explain
next.

31I use the same calibration as in the quantitative exercise in Section IV.1.
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IV.3 News-utility consumption during and at retirement

IV.3.1 News-utility consumption during retirement

I now add a retirement period at the end of life. I assume that in periods t ∈ {T −R, T}, the
agent earns his permanent income without uncertainty. I first formalize a general prediction
of the news-utility agent’s consumption during retirement, in which I generalize a result
obtained by Koszegi and Rabin (2009) in a two-period model.32

Proposition 4. If uncertainty is absent, both the monotone-personal equilibrium and monotone-
pre-committed equilibrium of the news-utility agent correspond to the standard agent’s equi-
libria iff γ ≥ 1

λ
. Iff γ < 1

λ
then the monotone-pre-committed equilibrium of the news-utility

agent corresponds to the standard agent’s equilibrium and the monotone-personal equilibrium
of the news-utility agent corresponds to a βδ−agent’s monotone-personal equilibrium with the
hyperbolic-discount factor given by b = 1+γηλ

1+η
.

The news-utility agent is likely to follow the standard agent’s path if uncertainty is ab-
sent. The basic intuition is that the agent associates a certain loss in future consumption,
which is very painful, with an increase in present consumption. Thus, unless the agent dis-
counts prospective gain-loss utility significantly, he follows the utility-maximizing standard
agent’s path. More formally, suppose that the agent allocates his deterministic cash-on-
hand between consumption today CT−1 and tomorrow CT . Under rational expectations, he
cannot fool himself; hence, he cannot experience actual gain-loss utility in equilibrium in a
deterministic model. Accordingly, his expected-utility maximization problem corresponds to
the standard agent’s maximization problem, and his monotone-pre-committed equilibrium
thus corresponds to the standard agent’s problem determined by u′(CT−1) = β(1+ r)u′(CT ).
Suppose that the agent’s beliefs about consumption in both periods correspond to this pre-
committed equilibrium path. Taking his beliefs as given, the agent will deviate if the gain
from consuming more today exceeds the discounted loss from consuming less tomorrow, i.e.,

u′(CT−1)(1 + η) > β(1 + r)u′(CT )(1 + γηλ).

Thus, he follows the standard agent’s path iff γ ≥ 1
λ
because the pain of the certain loss in

future consumption is greater than the pleasure gained from present consumption. However,
if γ < 1

λ
, the agent chooses a consumption path that just meets the consistency constraint

and behaves as a βδ− or hyperbolic-discounting agent with hyperbolic discount factor b =
1+γηλ

1+η
< 1.

32This result can be generalized to a HARA utility function.
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IV.3.2 News-utility consumption at retirement

During retirement, the implications of the agent’s prospective gain-loss discount factor γ are
simple: it needs to be sufficiently low to overcome the certain loss in future consumption.
I now examine the pre-retirement period to derive two additional implications of γ < 1.
The first concerns a drop in consumption at retirement, and the second shows how excess
sensitivity in consumption arises in the absence of future uncertainty.

The drop in consumption at retirement. The empirical evidence on the prevalence
of a drop in consumption at retirement is debated. While a series of papers (see Attanasio
and Weber (2010) for a survey) have found that consumption drops at retirement, Aguiar
and Hurst (2005) cannot confirm this finding when controlling for the sudden reduction of
work-related expenses, the substitution of home production for market-purchased goods and
services, and health shocks. In my data, I find such a drop in consumption at retirement
even for non-work-related expenditures. Moreover, I consider the evidence provided by
Schwerdt (2005) compelling because the author explicitly controls for home production and
focuses on German retirees, who receive large state-provided pensions, which require little
self organization, and for whom health is a complement to consumption thanks to proper
insurance coverage. Moreover, Ameriks et al. (2007) and Hurd and Rohwedder (2003) provide
evidence that the drop in consumption is anticipated. I first define a drop in consumption
as follows.

Definition 8. There occurs a drop in consumption at retirement if consumption growth
at retirement ∆CT−R is negative and smaller than consumption growth after retirement
∆CT−R+1.

As an example, if γ ≥ 1
λ
, the news-utility agent’s post-retirement consumption growth

equals that of the standard agent’s, i.e., 1
θ
log(β(1 + r)) ≈ 0, whereas consumption growth at

retirement is 1
θ
log(β(1 + r)) + 1

θ
gs with gs ∈ {log(1+γηλ

1+ηλ
), log(1+γη

1+η
)} < 0 for the news-utility

agent and remains zero for the standard agent.33

Proposition 5. If γ < 1, log((1 + r)β) ∈ [− M,M], and M is small, the news-utility agent’s
monotone-personal consumption path is characterized by a drop at retirement.

After the beginning of retirement the agent is less inclined to overconsume than before.
The basic intuition for overconsumption in the pre-retirement period is that the agent allo-
cates house money, i.e., labor income that he was not certain that he would receive, and thus

33This and the following results can be generalized to a HARA utility function, arbitrary horizons, and
arbitrary income uncertainty.
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wants to consume before his expectations catch up iff γ < 1. During retirement, the agent
associates a certain loss in future consumption with a surprise in present consumption. In
contrast, in the pre-retirement period, the agent finds the loss in future consumption merely
as painful as a slightly less favorable realization of his labor income, i.e., the agent trades
off being somewhere in the gain domain today versus being somewhere in the gain domain
tomorrow instead of a sure gain today with a sure loss tomorrow. The agent’s first-order
condition in period T − 1 absent uncertainty in period T is given by

u′(CT−1) = β(1 + r)u′(CT )
1 + γ(ηFP (sPT−1) + ηλ(1− FP (sPT−1)))

1 + ηFP (sPT−1) + ηλ(1− FP (sPT−1))
. (16)

In equation (16), it can immediately be seen that iff γ = 1, contemporaneous and prospective
marginal gain-loss utility cancel. However, iff γ < 1, the agent reduces the weight on future
utility relative to present utility by a factor between 1+γηλ

1+ηλ
and 1+γη

1+η
< 1. During retirement,

the news-utility agent follows the standard agent’s consumption path if γ is sufficiently high
and a βδ−agent’s consumption path with discount factor b = 1+γηλ

1+η
otherwise. Because

1+γη
1+η

< min{1+γηλ
1+η

, 1} iff γ < 1, the agent’s factor that reduces the weight on future utility
is necessarily lower in the pre-retirement period than after retirement, which implies that
consumption drops at retirement.34 The other agents’ consumption paths do not exhibit a
drop in consumption at retirement. Quantitatively, Figure II displays a substantial drop in
consumption at retirement.

The assumption of no uncertainty during retirement is made in all standard life-cycle
consumption models, as these abstract from portfolio choice; thus, the drop in consumption
at retirement is a necessary artifact of news-utility preferences in the standard environment.
However, the drop is robust to three alternative assumptions: small income uncertainty
during retirement, due to inflation risk for instance, potentially large discrete consumption
uncertainty, due to health shocks for instance, or mortality risk.35 Furthermore, if I were to

34What happens if uncertainty in the pre-retirement period becomes small? The drop in consumption
depends on the support of uncertainty. First, suppose the agent expects a continuous shock, the variance of
which becomes small. So long as a monotone-personal equilibrium exists, there occurs a drop at retirement.
However, if the variance of the shock becomes very small, the agent will follow a flat consumption path
at some point. Nevertheless, the agent will not be able to follow his deterministic consumption path, but
reduces the weight on future marginal value by a factor in the range of { 1+γη1+η ,

1+γηλ
1+η }. Thus, if

1
λ ≤ γ ≤ 1,

there occurs a drop for good realizations, and if γ < 1
λ , there occurs a drop for all realizations. Second,

suppose the agent expects a shock with some probability. If the probability of a shock occurring becomes
small, the agent’s consumption in the pre-retirement period approaches his deterministic consumption path;
this eliminates the drop because the agent’s first-order condition is no longer subject to a change in the
weighting of future versus present marginal value.

35The drop in consumption is due to the fact that the agent overconsumes before retirement but consumes
efficiently after retirement. If income uncertainty is very small, the agent is able to credibly plan a flat
consumption level independent of the realization of his income shock because the benefits of smoothing
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observe a consumption path that is much flatter during retirement than before retirement
and interpret this observation from the perspective of the standard model, I may conclude
that the agent does not decumulate assets sufficiently rapidly after retirement compared to
his pre-retirement asset decumulation. Such a lack of asset decumulation during retirement
constitutes another life-cycle consumption puzzle that is observed by Hurd (1989), Disney
(1996), and Bucciol (2012) and explained by the model.36

Excess sensitivity in the pre-retirement period. In the following, I outline an addi-
tional result regarding excess sensitivity in the pre-retirement period.37 This result is related
to Proposition 7 in Koszegi and Rabin (2009), in which the authors find that if 1

λ
< γ < 1,

then the news-utility agent might entirely consume small gains but entirely delay small losses
when he is surprised by them.38

Corollary 1. Iff γ < 1, the news-utility agent’s monotone-personal equilibrium consumption
is excessively smooth and sensitive in the pre-retirement period.

The basic intuition is that the agent can effectively reduce his sense of loss by delaying the
cut in consumption. Iff γ < 1, the agent cares more about contemporaneous than prospective
gain-loss utility and thus overconsumes in the presence of uncertainty, as explained above.
Moreover, he overconsumes even more when experiencing a relatively bad realization because
losses are overweighted. Because the agent overconsumes relatively more in the event of a bad

consumption perfectly do not warrant the decrease in expected utility from experiencing gain-loss utility.
In such a small-uncertainty situation, the agent is able to commit to a flat consumption level that induces
less overconsumption after retirement than before retirement such that consumption drops. I formally
explain this result about overconsumption in Section IV.4. Moreover, discrete uncertainty after retirement
induces less overconsumption than before retirement for the same reason that no uncertainty causes less
overconsumption. If uncertainty is discrete, overconsumption is associated with a discrete gain in present
consumption and a discrete loss in future consumption. Because the discrete loss hurts more than the discrete
gain, the agent may credibly plan a consumption level that induces less overconsumption than the baseline
continuous-outcome equilibrium. Finally, mortality risk does not affect the result because the agent would
not experience gain-loss utility relative to being dead.

36This puzzle can also be explained by bequest motives (Hurd (1989)) and large medical expenditures
shocks (Nardi et al. (2011)).

37This result can be generalized to a HARA utility function, arbitrary horizons, and arbitrary income
uncertainty.

38In this example, the agent’s consumption is excessively smooth and sensitive for surprise losses, but the
opposite is true for surprise gains. In the same setup, the agent’s consumption would also be excessively
smooth and sensitive, according to Definition 5, for gains if they are sufficiently large and thus not entirely
consumed or if they are expected. The agent might entirely consume an unexpected gain because it brings
about a change in the weighting of future versus present marginal value in the agent’s first-order condition.
More formally, absent uncertainty, the agent follows the standard agent’s path, as 1

λ < γ, whereas in the
event of a surprise gain, he puts a weight of 1+γηλ

1+η < 1 on future consumption. Thus, if the gain is small, the
change in the weight the agent places on future marginal consumption utility induces the agent to consume
the entire gain.
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shock and relatively less in the event of a good shock, he delays his adjustment to consump-
tion. Mathematically, the agent behaves like a βδ−agent, weighting future consumption by
a factor of b ∈ {1+γηλ

1+ηλ
, 1+γη

1+η
}. Thus, the agent’s weight on future consumption is particularly

low when the income realization is relatively bad, i.e., FP (sPT−1) ≈ 0. In turn, variation in

FP (sPT−1) leads to variation in ∆CT = 1
θ
log(β(1+r))+ 1

θ
log(

1+γ(ηFP (sPT−1)+ηλ(1−FP (sPT−1)))

1+ηFP (sPT−1)+ηλ(1−FP (sPT−1))
) and

consumption is excessively smooth and sensitive because an increase in the permanent shock
increases the fraction determining ∆CT . Moreover, for any given η and λ consumption is
more excessively smooth and sensitive if γ is low.

IV.4 New predictions about news-utility consumption

In the following, I highlight several additional news-utility predictions for consumption that
are new and testable comparative statics. I first explain the agent’s consumption function,
equation (10), in detail to highlight some subtle predictions about how the marginal propen-
sity to consume varies with the realization of the permanent and transitory shocks and the
agent’s horizon. To explain the consumption function, I assume that T − t is large such
that a(T − t) ≈ 1

1+r
. Then, in each period t, the agent consumes the interest payments

of his last period’s asset holdings rAt−1, his entire permanent income Pt−1 + sPt , and the
per-period value of his temporary shock r

1+r
sTt . Λt captures the agent’s patience compared

to the market, his precautionary savings, and his marginal gain-loss utility. In the event of a
negative shock, Λt is low and the agent consumes more out of his end-of-period asset holdings
and thus spreads the consumption adjustment to his entire future. Λt varies more with the
permanent shock than with the transitory shock because marginal gain-loss utility varies
with F t−1

Ct
(Ct), which varies little with the transitory shock as the agent only consumes the

per-period value of the transitory shock r
1+r

sTt and r
1+r

is small. This observation constitutes
the first novel prediction of the news-utility model: consumption is more excessively sensitive
for permanent than for transitory shocks in an environment with permanent shocks. This
prediction can be seen in Figure I. In an environment with transitory shocks alone, however,
news-utility consumption is excessively sensitive with respect to transitory shocks.

A second prediction is that the degree of excess smoothness and sensitivity is decreasing
in income uncertainty σP . If σP is small, the agent’s beliefs change more rapidly relative to
the change in the realization of the shock; hence, the consumption function is more flat for
realizations around µP . A third prediction is that any bell-shaped shock distribution induces
bounded variation in Λt and thus the agent’s excess sensitivity. If the agent is affected by a
tail realization, the actual value of the low-probability shock matters less because neighboring
states have very low probability; thus, the variation in Λt is bounded. A fourth prediction
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is that consumption is more excessively smooth when the agent’s horizon increases for two
reasons: first the marginal propensity to consume out of permanent shocks declines when the
precautionary-savings motive accumulates and second a(T−t) is increasing in T−t. However,
consumption is relatively less excessively sensitive when the agent’s horizon increases because
excess smoothness is proportional to a(T − t) while excess sensitivity is not.

In the following, I explain how the second prediction can be taken to the extreme: the
consumption function may be completely flat if σp is small.39 To formally discuss this re-
sult about flat consumption, I return to the two-period, one-shock model. Suppose that
the absolute level of the shock increases; then, holding CT−1 constant, the marginal value
of savings declines and the agent’s first-order condition implies that consumption should
increase. However, FP (sPT−1) also increases, and marginal gain-loss utility is lower, such that
the agent’s optimal consumption should decrease. Suppose that sPT−1 increases marginally
but FP (sPT−1) increases sharply, which could occur if FP is a very narrow distribution. In this
case, the lower marginal gain-loss utility that decreases consumption dominates such that the
first-order condition predicts decreasing consumption over some range in the neighborhood
of the expected value µP where FP increases most sharply if FP is bell shaped. However, a
decreasing consumption function cannot be an equilibrium because the agent would unnec-
essarily experience gain-loss utility over the decreasing part of consumption, which decreases
expected utility unnecessarily. In the decreasing-consumption function region, the agent
could choose a flat consumption function instead. In such a situation, he does not respond
to shocks at all, i.e., his consumption is perfectly excessively smooth and sensitive, which
resembles liquidity constraints or adjustment costs to consumption. Moreover, the agent
may choose a credible consumption plan with a flat section, which induces less overcon-
sumption than the original plan. Suppose the agent chooses a flat consumption level for
realizations of sPT−1 in s and s. Then, s is chosen where the original consumption function
just stops decreasing, which corresponds to the lowest possible level of the flat section of
consumption CT−1, which I explicitly describe in Appendix 1. Moreover, in Appendix 1, I
show that the agent’s consistency constraint for not increasing consumption beyond CT−1

for any sPT−1 ∈ [s, s] always holds. Thus, I can conclude that flat consumption results in less
overconsumption than the baseline equilibrium.

39This prediction about flat consumption is also highlighted by Heidhues and Koszegi (2008).
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IV.5 Comparison to the agent’s pre-committed equilibrium and

welfare implications

In order to assess the preferences’ welfare implications, I briefly explain the consumption
implications of the monotone-pre-committed equilibrium that maximizes expected utility
by jointly optimizing over consumption and beliefs. The pre-committed equilibrium is not
credible without an appropriate commitment device because the agent overconsumes once
he wakes up and takes his beliefs as given. I call this overconsumption phenomenon beliefs-
based present bias because the agent prefers to enjoy the pleasant surprise of increasing
consumption above expectations today instead of increasing both his consumption and ex-
pectations tomorrow.40 Empirically, there is abundant laboratory and field evidence for
time-inconsistent overconsumption, preference reversals, and demand for commitment de-
vices.41 Theoretically, the hyperbolic-discounting model of Laibson et al. (2012) is very
successful in explaining life-cycle consumption. In the next proposition, I formalize how the
consumption implications differ in the monotone-pre-committed equilibrium if one exists.
Then, I explain beliefs-based present bias in detail and show how it differs from hyperbolic
discounting.

Proposition 6. Comparison to the monotone-pre-committed equilibrium.
1. If σPt > 0 for any t, then the monotone-pre-committed consumption path does not corre-
spond to the monotone-personal equilibrium consumption path.
2. The news-utility agent’s monotone-pre-committed consumption is excessively smooth and
sensitive.
3. News-utility preferences introduce a first-order precautionary-savings motive in the monotone-
pre-committed equilibrium, monotone-pre-committed consumption is lower Cc

T−1 < CT−1, and
the gap increases in the event of good income realizations ∂(CcT−1−CT−1)

∂sPT−1
> 0.

5. The news-utility agent’s monotone-pre-committed consumption path is not necessarily
characterized by a hump-shaped consumption profile and consumption does not drop at re-
tirement.

Suppose that the agent can pre-commit to an optimal, history-dependent consumption
path for each possible future contingency. Then, the agent’s marginal gain-loss utility is
no longer solely composed of the sensation of increasing consumption in one particular
contingency; additionally, the agent considers that he will experience fewer sensations of

40Koszegi and Rabin (2009) argue in Proposition 6 that the agent overconsumes relative to the optimal
pre-committed path in the presence of uncertainty.

41See, e.g., DellaVigna (2009), Frederick et al. (2002), or Angeletos et al. (2001) for a survey of the theory
and empirical evidence.
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gains and more feelings of loss in all other contingencies. Thus, marginal gain-loss util-
ity has a second component, −u′(CT−1)(η(1 − F t−1

Ct
(Ct)) + ηλF t−1

Ct
(Ct)), which is negative

such that the pre-committed agent consumes less. Moreover, this negative component dom-
inates if the realization is above the median, i.e., F t−1

Ct
(Ct) > 0.5. Thus, in the event of

good income realizations, pre-committed marginal gain-loss utility is negative. In contrast,
non-pre-committed marginal gain-loss utility is always positive because the agent enjoys the
sensation of increasing consumption in any contingency. Therefore, the degree of present
bias is reference dependent and less strong in the event of bad income realizations, when
increasing consumption is the optimal response even on the pre-committed path. Moreover,
this negative component implies additional variation in marginal gain-loss utility such that
pre-committed consumption is more excessively smooth and sensitive.

The analysis of the pre-committed equilibrium allows me to draw potentially impor-
tant welfare conclusions. The result that excess smoothness is an optimal response and
even more pronounced on the pre-committed path stands in contrast to the welfare implica-
tions of liquidity constraints, the potentially most popular alternative explanation for excess
smoothness. In contrast, the result that the life-cycle consumption profile is not necessarily
hump shaped and that consumption does not drop at retirement in the pre-committed equi-
librium appears to be in line with alternative explanations such as hyperbolic discounting
and illiquid savings as proposed by Laibson et al. (2012), inattention as proposed by Reis
(2006), incomplete consumption insurance as proposed by Attanasio and Pavoni (2011), an
incomplete planning horizon as proposed by Park (2011), or overconfidence as proposed by
Caliendo and Huang (2008).

Beyond the observation that the news-utility agent is unable to follow his expected-utility
maximizing path, the news-utility implications for welfare and the costs of business cycle
fluctuations differ from those of the standard model. In Section IV, I demonstrate that
income uncertainty has a first-order effect on savings and thus welfare in the news-utility
model; i.e., the news-utility agent dislikes fluctuations in consumption much more than the
standard agent. In the spirit of Lucas (1978), I compute the share λW of initial wealth A1

that the agent would be willing to give up for a risk-free consumption path. In the power-
utility model for the calibration given in Table I, I obtain a share of approximately 47.83%

for the news-utility agent, whereas the standard agent’s share is 8.65%.
Beliefs-based present bias is both conceptually different from hyperbolic-discounting pref-

erences and observationally distinguishable. The four main differences are the following.
First, news utility introduces an additional precautionary-savings motive that is absent in
the hyperbolic-discounting model. Second, because of this precautionary-savings motive the
news-utility agent does not have a universal desire to pre-commit himself to the standard
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agent’s consumption path, in contrast to hyperbolic-discounting preferences. Third, news
utility predicts that the agent’s degree of present bias is reference dependent and lower in
bad times; hence, he behaves better in bad times. Fourth, the news-utility agent’s degree of
present bias depends on the uncertainty he faces. In the absence of uncertainty, the agent’s
present bias is absent so long as γ > 1

λ
. In the presence of small or discrete uncertainty, the

agent’s degree of present bias is less than in the presence of large and dispersed uncertainty,
as shown in Section IV.4.

V Quantitative Predictions about Consumption

In the following, I assess whether the model’s quantitative predictions match the empirical
evidence. Because it is commonly argued that exponential utility is unrealistic, I present the
numerical implications of a power-utility model, i.e., u(C) = C1−θ

1−θ , to demonstrate that all
of the predictions hold in model environments that are commonly assumed in the life-cycle
consumption literature.42 In Section V.1, I first outline the power-utility model. In Section
V.2, I structurally estimate the power-utility model’s parameters. In Section V.3, I compare
my estimates with those in the microeconomic literature and explain each in detail.

V.1 The power-utility model

The income processes and model environment. I follow Carroll (1997) and Gour-
inchas and Parker (2002), who specify income Yt to be log-normal and characterized by a
deterministic permanent income growth Gt, permanent shocks, and transitory shocks, which
allow for a low probability of unemployment or illness

Yt = PtN
T
t = Pt−1GtN

P
t N

T
t

NT
t =

{
es
T
t with probability 1− p and sTt ∼ N(µT , σ

2
T )

0 with probability p

}
NP
t = es

P
t sPt ∼ N(µP , σ

2
P ).

The life-cycle literature suggests fairly tight ranges for the parameters of the log-normal
income process, which are approximately µT = µP = 0, σT = σP = 0.1, and p = 0.01. Gt

typically implies a hump-shaped income profile. Nevertheless, I initially assume that Gt = 1

for all t to highlight the model’s predictions in an environment that does not simply generate
a hump-shaped consumption profile via a hump-shaped income profile. In addition to the

42The power-utility model cannot be solved analytically, but it can be solved by numerical backward
induction, as shown by Gourinchas and Parker (2002) or Carroll (2001), among others. The numerical
solution is illustrated in greater depth in Appendix B.5.4.
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standard and hyperbolic agents, I display results for internal, multiplicative habit-formation
preferences, as assumed in Michaelides (2002), and temptation-disutility preferences, as de-
veloped by Gul and Pesendorfer (2004), following the specification of Bucciol (2012). The
utility specifications can be found in Appendix B.1. For the habit-formation agent, I roughly
follow Michaelides (2002) and choose h = 0.45, which matches the excess-smoothness ev-
idence. The tempted agent’s additional preference parameter τ = λtd

1+λtd
= 0.1 is chosen

according to the estimates of Bucciol (2012).43

Comparison of life-cycle consumption profiles. Figure III contrasts the five agents’
consumption paths with the average CEX consumption and income data, which I explain in
Section V.2. The habit-formation agent’s consumption profile is shown only in part because
he engages in extremely high wealth accumulation due to his high effective risk aversion,
even if I choose a lower value for h than the one that fits the excess-sensitivity evidence.44

Hyperbolic-discounting preferences tilt the consumption profile upward at the beginning and
downward at the end of life. Temptation disutility causes severe overconsumption at the be-
ginning of life, which then dies out when alternative consumption opportunities diminish. All
of the preference specifications except habit formation generate a hump-shaped consumption
profile. The consumption path of all agents is increasing at the beginning of life because
power utility renders them unwilling to borrow; however, all agents are sufficiently impatient
such that consumption eventually decreases.45 Nevertheless, at first glance, the news-utility
agent’s hump looks more similar to the empirical consumption profile with slowly increasing
consumption at the beginning of life and decreasing consumption shortly before retirement.

Moreover, Figure III shows a substantial drop in consumption at retirement for both
the news-utility consumption profile and the CEX consumption data. Thus, I conclude
that the news-utility agent’s lifetime consumption profile looks very similar to the average
consumption profile from the CEX data, which I explain in greater detail in the next section.

43For the news-utility parameters, I use the same calibration as in the quantitative exercise in Section
IV.1.

44This result about wealth accumulation confirms a finding by Michaelides (2002).
45Because power utility eliminates the possibility of negative or zero consumption and because of the small

possibility of zero income in all future periods, the agents will never find it optimal to borrow. Moreover,
power utility implies prudence such that all agents have a standard precautionary-savings motive. However,
this motive is rather weak because the standard agent’s consumption begins to decrease rather early in
life. Moreover, in a model with only transitory shocks and no zero-income state, the precautionary savings
motive is so weak that the standard agent’s consumption is flat throughout. Attanasio (1999) criticizes this
weak motive as lacking realism. In contrast, even if permanent shocks and unemployment are absent, the
news-utility model generates a hump-shaped consumption profile.
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Figure III: Power-utility life-cycle profiles and CEX consumption
and income data.

V.2 Structural estimation

Method of simulated moments procedure. I structurally estimate the news-utility pa-
rameters using a methods-of-simulated-moments procedure following Gourinchas and Parker
(2002), Laibson et al. (2012), and Bucciol (2012). The procedure has two stages. In the first
stage, I estimate the structural parameters governing the environment Ξ = (µP , σP , µT , σT , p, G, r, a0, R, T )

using standard techniques and obtain results perfectly in line with the literature. Given the
first-stage estimates Ξ̂ and their associated variances Ω̂Ξ, in the second stage, I estimate the
preference parameters θθθ = (η, λ, γ, β, θ) by matching the simulated and empirical average
life-cycle consumption profiles. The empirical life-cycle consumption profile is the average
consumption at each age a ∈ [1, T ] across all household observations i. More precisely, it
is lnC̄a = 1

na

∑na
i=1 ln(C̄i,a) with ln(C̄i,a) being the household i’s log consumption at age

a of which na are observed. The theoretical population analogue to lnC̄a is denoted by
lnCa(θ,Ξ) and the simulated approximation is denoted by lnĈa(θθθ,Ξ). Moreover, I define
g(θθθ,Ξ) = lnCa(θθθ,Ξ)− lnC̄a and

ĝ(θθθ,Ξ) = lnĈa(θθθ,Ξ)− lnC̄a.

In turn, if θθθ0 and Ξ0 are the true parameter vectors, the procedure’s moment conditions
imply that E[g(θ0,Ξ0)] = E[lnCa(θ,Ξ)− lnC̄a] = 0. In turn, let W denote a positive definite
weighting matrix then

q(θθθ,Ξ) = ĝ(θθθ,Ξ)W−1ĝ(θθθ,Ξ)′

is the weighted sum of squared deviations of the simulated from their corresponding empirical
moments. I assume that W is a robust weighting matrix rather than the optimal weighting
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matrix to avoid small-sample bias. More precisely, I assume that W corresponds to the
inverse of the variance-covariance matrix of each point of lnC̄a, which I denote by Ω−1

g

and consistently estimate from the sample data. Taking Ξ̂ as given, I minimize q(θθθ, Ξ̂)

with respect to θθθ to obtain θ̂θθ the consistent estimator of θθθ that is asymptotically normally
distributed with standard errors

Ωθ = (G
′

θWGθ)
−1G

′

θW [Ωg + Ωs
g +GΞΩΞG

′

Ξ]WGθ(G
′

θWGθ)
−1.

Here, Gθ and GΞ denote the derivatives of the moment functions ∂g(θθθ0,Ξ0)
∂θθθ

and ∂g(θθθ0,Ξ0)
∂Ξ

, Ωg

denotes the variance-covariance matrix of the second-stage moments as above that corre-
sponds to E[g(θθθ0,Ξ0)g(θθθ0,Ξ0)′], and Ωs

g = na
ns

Ωg denotes the sample correction with ns being
the number of simulated observations at each age a. As Ωg, I can estimate ΩΞ directly and
consistently from sample data. For the minimization, I employ a Nelder-Mead algorithm.
For the standard errors, I numerically estimate the gradient of the moment function at its
optimum. If I omit the first-stage correction and simulation correction the expression be-
comes Ωθ = (G

′

θΩ
−1
g Gθ)

−1. Finally, I can test for overidentification by comparing ĝ(θ̂, Ξ̂) to
a chi-squared distribution with T − 5 degrees of freedom.

Data. I use data from the Consumer Expenditure Survey (CEX) for the years 1980 to 2002
as provided by the NBER.46 The CEX is conducted by the Bureau of Labor Statistics and
surveys a large sample of the US population to collect data on consumption expenditures, de-
mographics, income, and assets. As suggested by Harris and Sabelhaus (2001), consumption
expenditures consists of food, tobacco, alcohol, amusement, clothing, personal care, housing,
house operations such as furniture and housesupplies, personal business, transportation such
as autos and gas, recreational activities such as books and recreational sports, and charity
expenditures; alternatively, I could consider non-durable consumption only. Income consists
of wages, business income, farm income, rents, dividends, interest, pension, social security,
supplemental security, unemployment benefits, worker’s compensation, public assistance,
foodstamps, and scholarships. The data is deflated to 1984 dollars.

Because the CEX does not survey households consecutively, I generate a pseudo panel
that averages each household’s consumption and income at each age. I only consider non-
student households that meet the BLS complete income reporter requirement and complete
all four quarterly interviews. Furthermore, I only consider households that are older than

46This data set extraction effort is initiated by John Sabelhaus and continued by Ed Harris, both of the
Congressional Budget Office. The data set links the four quarterly interviews for each respondent household
and collapses all the spending, income, and wealth categories into a consistent set of categories across all
years under consideration.
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25 years; that are retired after age 68, the average retirement age in the US according to the
OECD; and that are younger than 78, the average life expectancy in the US according to
the UN list.

To control for cohort, family size, and time effects, I employ average cohort techniques
(see, e.g., Verbeek (2007), Attanasio (1998), and Deaton (1985)). More precisely, as I lack
access to the micro consumption data for each household i at each age a, I pool all observa-
tions and estimate log(Ci,a) = ξ0 + αa + γc + fs +X

′
i,aβ

ia + εi,a. Here, ξ0 is a constant, αa is
a full set of age dummies, γc is a full set of cohort dummies, and fs is a full set of family size
and number of earners dummies. Essentially, these sets of dummies allow me to consider the
sample means of my repeated cross-section C∗c,a = E[log(Ci,a)|c, a] and X∗c,a = E[X∗i,a|c, a] for
each cohort c at age a. Using the sample means brings about an errors-in-variables problem,
which, however, does not appear to make a difference in practice as the sample size of each
cohort-age cell is large. Because age αa and cohort γc effects are not separately identifiable
from time effects, I proxy time effects by including the regional unemployment rate as an
additional variable in X∗i,a beyond a dummy for retirement following Gourinchas and Parker
(2002). As an alternative to a full set of dummies, I use fifth-order polynomials in order to
obtain a smooth consumption profile. After running the pooled regression, I back out the
consumption data uncontaminated by cohort, time, family size, and number of earners effects
and construct the average empirical life-cycle profile by averaging the data across households
at each age. The same exercise is done for income. Figure III displays the average empirical
income and average empirical consumption profiles.

Identification. Theoretically, the functional form of Λt, or the agent’s first-order condition
in the power-utility model, imply that news utility introduces such specific variation in
consumption growth that all preference parameters are identified in the finite-horizon model,
i.e., η, λ, γ, β, and θ, because the Jacobian has full rank.47 Roughly speaking, the shape of
the consumption profile identifies β and θ. Because consumption tracks income too closely
and peaks too early in the standard model, η > 0 and λ > 1 can be identified. Finally, the
drop in consumption at retirement identifies γ < 1. More precisely, I am interested in β,
θ, η, λ, γ. As explained in Appendix B.5.4, the agent’s consumption is determined by the

following first-order condition u′(cT−i) =
Ψ
′
T−i+γΦ

′
T−i(ηF

T−i−1
cT−i (cT−i)+ηλ(1−FT−i−1

cT−i (cT−i)))

1+ηFT−i−1
aT−i (aT−i)+ηλ(1−FT−i−1

aT−i (aT−i))
of which

I observe the inverse and log average of all households. Φ
′
T−i represents future marginal

consumption utility, as in the standard model, and is determined by β and θ, which can be
47Numerically, I confirm this result in a Monte Carlo simulation and estimation exercise. Moreover,

because previous studies cannot separately identify η and λ, I confirm that I obtain similar estimates when
I assume η = 1 and only estimate the other parameters.
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separately identified in a finite-horizon model. Ψ
′
T−i represents future marginal consumption

and news utility and is thus determined by something akin of η(λ − 1). ηF T−i−1
aT−i

(aT−i) +

ηλ(1−F T−i−1
aT−i

(aT−i)) and ηF T−i−1
cT−i

(cT−i)+ηλ(1−F T−i−1
cT−i

(cT−i)) represents the weighted sum
of the cumulative distribution function of savings, aT−i, and consumption, cT−i, of which
merely the average determined by η0.5(1+λ) is observed. Thus, I have two equations in two
unknowns and can separately identify η and λ. Finally, γ enters the first-order condition
distinctly from all other parameters.

Structural estimation results. I employ a two-stage method-of-simulated-moments pro-
cedure. In the first stage, I estimate all of the structural parameters governing the environ-
ment µ̂P , σ̂P , µ̂T , σ̂T , p̂, Ĝ, r̂, â0, R̂, and T̂ , i.e., µ̂P = −0.002, µ̂T = −0.0031, σ̂P = 0.18,
σ̂T = 0.16, and p̂ = 0.0031, which are in accordance with the literature. The mean of
Moody’s municipal bond index is r = 3.1%. Moreover, because 25 is chosen as the beginning
of life by Gourinchas and Parker (2002), I choose R̂ = 11 and T̂ = 54 in accordance with the
average retirement age in the US according to the OECD and the average life expectancy in
the US according to the UN list. At age 25, I estimate the mean ratio of liquid wealth to
income as 0.0096 under the assumption that P0 = 1.

I estimate the preference parameters β, θ, η, λ, and γ and obtain θ̂ = 0.79, β̂ = 0.97, η̂ =

1.1, λ̂ = 2.4, and γ̂ = 0.53. I display all first- and second-stage structural parameter estimates
as well as their standard errors in Table I.48 The second-stage standard errors are adjusted for
first-stage uncertainty and the sampling correction; while the former increases the standard
errors considerably the latter has very little effect as noted by Laibson et al. (2012). The
preference parameters are estimated very tightly, and I cannot reject the overidentification
test, which is a surprisingly positive result given the number of moments T and the number
of parameters, which is only five. In contrast, for the standard model, the standard errors
are considerably larger and I reject the overidentification test, as do Gourinchas and Parker
(2002). Finally, I obtain suggestive evidence for one of the new comparative statics generated
by news utility; the excess-smoothness ratio in the CEX data increases from 0.68 at age 25
to 0.82 at the start of retirement.49

48Alternatively, I use a more complex set of moments to estimate the preference parameters, namely the
degree of excess smoothness in consumption, the extent of the drop in consumption at retirement, and four
other points of the life-cycle consumption profile. The resulting estimates and their standard errors are
quantitatively very similar to the original ones.

49For comparison, Figure IV in Appendix A displays the consumption and income data of Gourinchas and
Parker (2002) as well as the authors’ fitted consumption profile (i.e. the standard model) and the fitted
consumption of the news-utility model using the authors’ baseline estimation results, which are displayed in
Table IV in Appendix A, as well as η = 1 , λ = 2 , and γ = 0.85 for the news-utility model. As noted by
Gourinchas and Parker (2002), the standard agent’s consumption peaks somewhat too early and increases
too steeply with income growth. News utility causes consumption to peak later and to increase less steeply at
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Table I:
First-Stage Parameter Estimation Results

µ̂P σ̂P µ̂T σ̂T p̂ Ĝt r̂ P0
Â0

P̂0
R̂ T̂

estimate 0 0.19 0 0.15 0.0031 eYt+1−Yt 3.1% 1 0.0096 11 54
standard error (0.004) (0.006) (0.001) (Ω̂Ĝ) (0.003) (0.005)

Second-Stage Parameter Estimation Results
news-utility model standard model

β̂ θ̂ η̂ λ̂ γ̂ β̂ θ̂
estimate 0.97 0.77 0.97 2.33 0.59 0.9 2.01

standard error (0.001) (0.011) (0.068) (0.018) (0.021) (0.029) (0.091)
χ(·) 43.3 101.2

The overidentification test’s critical value at 5% is 67.5.

V.3 Discussion of the estimated preference parameters

I now show that my estimates are perfectly in line with the micro literature, generate rea-
sonable attitudes towards small and large wealth bets, and match the empirical evidence for
excess smoothness and sensitivity in aggregate data.

Comparison to the microeconomic and experimental literature. I refer to the
literature for the standard preference parameter estimates β ≈ 1 and θ ≈ 1 but discuss
the news-utility parameter estimates, i.e., η, λ, and γ, in greater detail. In particular, I
demonstrate that my estimates are consistent with existing micro evidence on risk and time
preferences. In Table III in Appendix A, I illustrate the risk preferences over gambles with
various stakes of the news-utility, standard, and habit-formation agents. In particular, I
calculate the required gain G for a range of losses L to make each agent indifferent between
accepting or rejecting a 50-50 win G or lose L gamble at a wealth level of 300,000 in the
spirit of Rabin (2001) and Chetty and Szeidl (2007).50

First, I want to demonstrate that my estimates match risk attitudes towards bets re-
garding immediate consumption, which are determined solely by η and λ because it can be
reasonably assumed that utility over immediate consumption is linear. In Table III, it can
be seen that the news-utility agent’s contemporaneous gain-loss utility generates reasonable

the beginning of life. In the paper Gourinchas and Parker (2002) display the average empirical consumption
profile for the average empirical household size profile, whereas I display the profile for a single household,
which emphasizes the differences and thus facilitates the comparison.

50In a canonical asset-pricing model, Pagel (2012b) demonstrates that news-utility preferences constitute
an additional step towards resolving the equity-premium puzzle, as they match the historical level and the
variation of the equity premium while simultaneously implying plausible attitudes towards small and large
wealth bets.
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attitudes towards small and large gambles over immediate consumption. Moreover, η ≈ 1

and λ ≈ 2.5 are consistent with the laboratory evidence on loss aversion over immediate
consumption, i.e., the endowment effect literature.51 In contrast, since I assume linear util-
ity over immediate consumption, the standard and habit-formation agents are risk neutral.
Second, I elicit the agents’ risk attitudes by assuming that each of them is presented the
gamble after all consumption in the current period has taken place. The news-utility agent
will only experience prospective gain-loss utility over the gamble’s outcome, which is de-
termined by γ. Empirical estimates for the quasi-hyperbolic parameter β in the βδ−model
typically range between 0.7 and 0.8 (e.g., Laibson et al. (2012)). Thus, the experimental and
field evidence on peoples’ attitudes towards intertemporal consumption trade-offs dictates a
choice of b = γ ≈ 0.7 when β ≈ 1, which is roughly in line with my estimate. In Table III,
it can be seen that the news-utility agent’s risk attitudes take reasonable values for small,
medium, and large stakes. The habit-formation agent is risk neutral for small and medium
stakes and somewhat more risk averse for large stakes than the standard agent, who only
exhibits reasonable risk attitudes for very large stakes.

Excess smoothness and excess sensitivity in aggregate data. I now go on to demon-
strate that my estimates are not only consistent with those found in the micro literature but
generate the degree of excess smoothness found in macro data. I simulate 200 consumption
and income data points of 1000 individuals to then aggregate their consumption and income
and run the regression

∆log(C̄t+1) = α + β1∆log(Ȳt+1) + β2∆log(Ȳt) + εt+1

following Campbell and Deaton (1989).52 The results are displayed in Table II. In the news-
utility model, I obtain a coefficient β2 ≈ 0.27 and the excess smoothness ratio, i.e., σ(∆log(C̄t))

σ(∆log(Ȳt))

51For illustration, I borrow a concrete example from Kahneman et al. (1990), in which the authors dis-
tribute a good (mugs or pens) to half of their subjects and ask those who received the good about their
willingness to accept (WTA) and those who did not receive it about their willingness to pay (WTP) if
they traded the good. The median WTA is $5.25, whereas the median WTP is $2.75. Accordingly, I infer
(1 + η)u(mug) = (1 + ηλ)2.25 and (1 + ηλ)u(mug) = (1 + η)5.25, which implies that λ ≈ 3 when η ≈ 1. I
obtain a similar result for the pen experiment. Unfortunately, thus far, I can only jointly identify η and λ. If
the news-utility agent were only to exhibit gain-loss utility, I would obtain ηλ2.25 ≈ 5.25 and η2.25 ≈ 2.25,
i.e., λ ≈ 2.3 and η ≈ 1 both identified. Alternatively, if I assume that the market price for mugs (or pens),
which is $6 in the experiment (or $3.75), equals (1 + η)u(mug) (or (1 + η)u(pen)), then I can estimate
η = 0.74 and λ = 2.03 for the mug experiment and η = 1.09 and λ = 2.1 for the pen experiment. These
latter assumptions are reasonable given the induced-market experiments of Kahneman et al. (1990). η ≈ 1
and λ ≈ 2.5 thus appear to be reasonable estimates that are typically used in the literature concerning the
static preferences.

52I simulate data for each individual at normalized wealth level A0

P0
= 1 and date t = 50. The regression

results are similar for different wealth levels and time horizons.
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Table II:
Excess-Smoothness and Sensitivity Regression Results
Model news-utility habit standard hyperbolic tempted

β1 β2 βh1 βh2 βs1 βs2 βb1 βb2 βtd1 βtd2
coefficient 0.67 0.27 0.69 0.38 0.93 0.01 0.94 0.01 1.01 -0.01
t-statistic 86.7 34.2 141 76.3 187 1.32 205 1.33 135 -1.76
e-s ratio 0.74 0.80 0.95 0.96 1.04

Aggregate regression results of 1000 individuals with N = 200 simulated data points.

as defined in Deaton (1986), is 0.74, whereas in the standard model, I obtain βs2 ≈ 0.01

and 0.95.53 Regressing consumption growth on lagged labor income growth in aggregate
data, I obtain an OLS estimate for β2 of approximately 0.23 and an excess-smoothness
ratio of approximately 0.68.54 Unsurprisingly, temptation disutility does not generate excess
smoothness and sensitivity, while habit formation does. However, habit formation appears
to generate too little excess smoothness and too much excess sensitivity and has unrealistic
implications for the life-cycle consumption profile, which I explored in the previous section.
I conclude that the estimates obtained from CEX consumption data simultaneously match
the degree of excess smoothness and sensitivity found in aggregate data.

VI Extensions

In the following, I briefly outline four extensions of the basic life-cycle model that I have
developed separately.

Extensions. As a first extension, I introduce both illiquid savings and credit-card borrow-
ing to demonstrate that the beliefs-based time inconsistency generates simultaneous demand
for illiquid retirement savings and excessive credit-card borrowing. I assume that the agent
can borrow against his illiquid savings up to his natural borrowing constraint, which is de-
termined by the discounted value of his accumulated illiquid savings.55 I again find that only
the news-utility model is able to robustly generate the collection of life-cycle consumption

53All consumption adjustment takes place after a single period because the agent’s preferences are char-
acterized by full belief updating. However, the variation in consumption adjusts via end-of-period asset
holdings and is thereby spread out over the entire future. Empirically, Fuhrer (2000) and Reis (2006) find
that consumption peaks one year after the shock and that the consumption response dies out briefly after
the first year.

54I follow Ludvigson and Michaelides (2001) and use NIPA deflated total, nondurable, or services con-
sumption and total disposable labor income for the years 1947 to 2011.

55I call this borrowing constraint natural, following Carroll (2001), because power utility and the possibility
of zero income in all future periods induce the agent to never want to borrow beyond this constraint.
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facts. My findings differ from those of Laibson et al. (2012) because I do not assume the ex-
istence of non-natural borrowing constraints. Absent such constraints, only those hyperbolic
agents at the margin of zero liquid asset holdings would delay consumption adjustments to
shocks or tolerate a drop in consumption at retirement. In a model with illiquid savings,
any agent with a time-inconsistency problem, i.e., the news-utility, hyperbolic, or tempted
agent, will use illiquid savings to make wealth unavailable in the future and thus reduce
future consumption. This unavailability of wealth implies that the future agent will exhibit
a high marginal propensity to consume out of permanent as well as transitory income shocks.
In contrast, the marginal propensity to consume out of transitory income shocks is close to
zero in a model without illiquid savings or absent a time-inconsistency problem. Thus, a
high marginal propensity to consume out of transitory income shocks can be interpreted as
excess sensitivity in consumption rather than a delayed response to income shocks (Laibson
(1997) and Laibson et al. (2012) among others).

As a second extension, I let the agent endogenously determine his work hours in response
to fluctuations in wages. In the event of an adverse shock, he can maintain high consumption
by working more instead of consuming his savings. Thus, if the agent’s labor supply is
relatively elastic, his consumption becomes more excessively smooth and less excessively
sensitive.

As a third extension, I allow the agent to invest in a risky asset in addition to his risk-free
asset. I obtain four main implications for portfolio choice. First, the agent chooses a low
portfolio share or does not participate in the stock market, as he is first-order risk averse
even in the presence of labor income.56 Second, his optimal portfolio share decreases in
the return realization. In the event of a good return realization, the agent chooses a lower
portfolio share to realize the good news about future consumption and play safe. Third, the
agent exhibits a time-inconsistency for risk. Taking his beliefs as given, the agent is inclined
to opt for a higher portfolio share to enjoy the prospect of high future consumption, as he
resides on a low-risk path. Fourth, the agent can diversify across time because the expected
loss of his investment increases with the square root of his investment horizon whereas his
expected return increases linearly. All of these predictions smooth the agent’s risky asset

56The result about first-order risk aversion in the presence of background risk stands in contrast to earlier
analyzes, such as Barberis et al. (2006) and Koszegi and Rabin (2007, 2009). Barberis et al. (2006) consider
utility specifications that exhibit first-order risk aversion at one point. Background risk takes the agent
away from this point and he becomes second-order risk averse with respect to additional risk. However, the
reference point is stochastic in this paper’s model, so that it exhibits first-order risk aversion over the entire
support of background risk. Koszegi and Rabin (2007, 2009) consider situations in which background risk
is large and utility potentially linear and find that, in the limit, the agent becomes second-order risk averse.
However, labor income risk is not large relative to stock market risk in a life-cycle portfolio framework and
the agent’s utility function is unlikely to be linear in a model that is calibrated to realistic labor income and
stock-market risk at an annual horizon.
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holdings relative to the standard model. Thus, I obtain a novel prediction of stickiness in
portfolio choice, which has been observed in household portfolio data by Calvet et al. (2009)
or Brunnermeier and Nagel (2008).

As a fourth extension, I assume that the agent receives a large income shocks every couple
periods but is subject to merely discrete or small income uncertainty in in-between periods.
As I have shown in Section IV.4, in the presence of sufficiently small income uncertainty, the
agent will choose a flat consumption level independent of the realization of the income shock.
And whenever he is able to discretize his consumption, he overconsumes less than in periods
in which he is subject to large income uncertainty that makes flat consumption non-credible.
This model extension allows to relax an important calibrational degree of freedom associated
with the preferences, that is, the period’s length. Moreover, in a setting with merely discrete
uncertainty, I reobtain a result first emphasized by Koszegi and Rabin (2009): the agent
may consume entire small windfall gains but delay entire small windfall losses.

VII Conclusion

This paper demonstrates that expectations-based reference-dependent preferences can not
only explain micro evidence, such as the endowment effect or cab-driver labor supply, but
also offer a unified explanation for major life-cycle consumption facts. Excess smoothness
and sensitivity in consumption, two widely analyzed macro consumption puzzles, are ex-
plained by loss aversion, a robust risk preference analyzed in experimental research and a
popular explanation for the equity premium puzzle. Intuitively, the agent wants to allow his
expectations-based reference point to decrease or increase prior to adjusting consumption.
Moreover, a hump-shaped consumption profile and a drop in consumption at retirement are
explained by the interplay of news-utility risk and time preferences. A hump-shaped con-
sumption profile results from the net of two preference features. The news-utility agent’s
consumption path is steeper at the beginning of life because loss aversion generates an
additional precautionary-savings motive, which accumulates more rapidly than the stan-
dard precautionary-savings motive in the agent’s horizon. However, the news-utility agent’s
consumption path declines toward the end of life because the expectations-based reference
point introduces a time-inconsistency problem: expected utility is higher in an optimal pre-
committed equilibrium in which the agent simultaneously optimizes over consumption and
beliefs. The pre-committed equilibrium is non-credible, however, because the agent over-
consumes once he wakes up and takes his beliefs as given. Once the agent retires, however,
time-inconsistent overconsumption is associated with a certain loss in future consumption.
Thus, the agent is suddenly able to behave himself, and his consumption drops at retirement.
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I explore the intuition for the model’s results in depth by solving an exponential-utility model
in closed form. Moreover, assuming power-utility as standard in the literature, I structurally
estimate the preference parameters and obtain estimates that are in line with the existing
micro evidence and generate the degree of excess smoothness found in aggregate data.

In the future, I wish to further explore expectations-based reference dependence as a
potential micro foundation for behavioral biases that have been widely documented. For
instance, all of my life-cycle results support the notion that fluctuations in beliefs about
consumption are painful. If people have some discretion in choosing how much information
to gather, they might choose to “stick their head into the sand” occasionally to avoid fluc-
tuations in beliefs that are painful on average; i.e., people are rationally inattentive. For
instance, a long-term investor might choose to not check on his portfolio, particularly when
he suspects that it might have decreased in value; this behavior has been termed the Ostrich
effect. Similarly, a CEO might choose to not evaluate a project when he suspects that it is
performing poorly. An outsider, who acquires all information he does not have a stake in,
will perceive the investor’s or CEO’s behavior as overconfident and extrapolative because
their expectations are based on an overly favorable and outdated information set whenever
they have received adverse but only incomplete information.
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A More Figures and Tables

Table III:
Risk Attitudes over Small and Large Wealth Bets

standard news-utility habit-formation
Loss (L) contemp. prospective

10 10 15 22 10
200 200 300 435 200
1000 1000 1500 2166 1000
5000 5000 7500 10719 5000
50000 50291 75000 105487 52502
100000 100406 150000 2066770 112040

For each loss L, the table’s entries show the required gain G to make each agent indifferent
between accepting and rejecting a 50-50 gamble win G or lose L at a wealth level of 300,000 and a

permanent income of 100,000 (power-utility model).

Table IV:
Baseline Estimation Results of Gourinchas and Parker (2002)

µn σn µu σu p r β θ γ0 γ1 P0 A0 T

0
√

0.044 0
√

0.0212 0.00302 0.0344 0.9598 0.514 0.0701 0.071 1 0.3 40

Figure IV: Consumption and income profiles and the fitted model’s
consumption from Gourinchas and Parker (2002).

The news-utility consumption follows the same specification except for the choice of
news-utility parameters η = 1, λ = 2, and γ = 0.85.
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B Derivations and Proofs

B.1 Summary of utility functions under consideration

I briefly summarize the lifetime utility of all preference specifications that I consider. I
define the “news-utility” agent’s lifetime utility in each period t = {0, ..., T} as

u(Ct) + n(Ct, F
t−1
Ct

) + γ
T−t∑
τ=1

βτnnn(F t,t−1
Ct+τ

) + Et[
T−t∑
τ=1

βτUt+τ ]

with β ∈ [0, 1], u(·) a HARA57 utility function, η ∈ (0,∞), λ ∈ (1,∞), and γ ∈ [0, 1].
Additionally, I first consider standard preferences as analyzed by Carroll (2001), Gourinchas
and Parker (2002), and Deaton (1991), among many others. The “standard” agent’s lifetime
utility is given by

u(Cs
t ) + Et[

T−t∑
τ=1

βτu(Cs
t+τ )].

Second, I consider internal, multiplicative habit-formation preferences as assumed in Michaelides
(2002). The “habit-forming” agent’s lifetime utility is given by

u(Ch
t )− hu(Ch

t−1) + Et[
T−t∑
τ=1

βτ (u(Ch
t+τ )− hu(Ch

t+τ−1))]

with h ∈ [0, 1].
Third, I consider βδ− or hyperbolic-discounting preferences as developed by Laibson

(1997). The “βδ−” or “hyperbolic-discounting” agent’s lifetime utility is given by

u(Cb
t ) + bEt[

T−t∑
τ=1

βτu(Cb
t+τ )]

with b ∈ [0, 1] corresponding to the βδ−agent’s β.
Fourth, I consider temptation-disutility preferences as developed by Gul and Pesendorfer

(2004) following the specification of Bucciol (2012). The “tempted” agent’s lifetime utility is
given by

u(Ctd
t )− λtd(u(C̃td

t )− u(Ctd
t )) + Et[

T−t∑
τ=1

βτ (u(Ctd
t+τ )− λtd(u(C̃td

t+τ )− u(Ctd
t+τ )))]

with C̃td
t being the most tempting alternative consumption level and λtd ∈ [0,∞).

57A utility function u(c) is said to exhibit hyperbolic absolute risk aversion (HARA) if the level of risk
tolerance, −u

′′(c)
u′(c) is a linear function of c.
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B.2 Derivation of the exponential-utility model

B.2.1 The finite-horizon model

A simple derivation of the second-to-last period can be found in the text. The exponential-
utility model can be solved through backward induction. In the following, I outline the
model’s solution for period T − i in which the agent chooses how much to consume CT−i and
how much to invest in the risk-free asset AT−i. I guess and verify the model’s consumption
function

CT−i =
(1 + r)i

f(i)
(1 + r)AT−i−1 + PT−i−1 + sPT−i + (1− f(i− 1)

f(i)
)sTT−i −

f(i− 1)

f(i)
ΛT−i

with

ΛT−i =
1

θ
log(

(1 + r)i

f(i− 1)

ψT−i + γQT−i(ηF (sPT−i + (1+r)i

f(i)
sTT−i) + ηλ(1− F (sPT−i + (1+r)i

f(i)
sTT−i))

1 + ηF (sPT−i + (1− f(i−1)
f(i)

)sTT−i) + ηλ(1− F (sPT−i + (1− f(i−1)
f(i)

)sTT−i))
).

and f(i) =
∑i

j=0(1 + r)j = (1 + r)i
1+r−( 1

1+r
)i

r
(in the text a(i) = f(i−1)

f(i)
). Then, the budget

constraint AT−i = (1 + r)AT−i−1 + YT−i − CT−i determines end-of-period asset holdings

AT−i =
f(i− 1)

f(i)
(1 + r)AT−i−1 +

f(i− 1)

f(i)
sTT−i +

f(i− 1)

f(i)
ΛT−i.

ΛT−i is a function independent of AT−i−1 and PT−i−1 but dependent on sPT−i and sTT−i. In
the last period the agent consumes everything such that ΛT = 0. As a first step to verify
the solution guess, I sum up the expectation of the discounted consumption function utilities
from period T − i to T

βET−i−1[
i∑

τ=0

βτu(CT−i+τ )] = u(PT−i−1 +
(1 + r)i

f(i)
(1 + r)AT−i−1)QT−i−1

= −1

θ
exp{−θ(PT−i−1 +

(1 + r)i

f(i)
(1 + r)AT−i−1)}QT−i−1,

with QT−i−1 given by

QT−i−1 = βET−i−1[exp{−θ(sPT−i+(1−f(i− 1)

f(i)
)sTT−i−

f(i− 1)

f(i)
ΛT−i)}+exp{−θ(sPT−i+

(1 + r)i

f(i)
sTT−i+

(1 + r)i

f(i)
ΛT−i)}QT−i]

QT−i−1 is a constant if ΛT−i depends only on sPT−i and sTT−i. To derive the above sum,
I simply plug in the asset-holding function into each future consumption function. For
instance, CT−i+1 is given by

CT−i+1 =
(1 + r)i−1

f(i− 1)
(1 + r)AT−i + PT−i + sPT−i+1 + (1− f(i− 2)

f(i− 1)
)sTT−i+1 −

f(i− 2)

f(i− 1)
ΛT−i+1
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=
(1 + r)i

f(i)
(1+r)AT−i−1+

(1 + r)i

f(i)
sTT−i+

(1 + r)i

f(i)
ΛT−i+PT−i−1+sPT−i+s

P
T−i+1+(1−f(i− 2)

f(i− 1)
)sTT−i+1−

f(i− 2)

f(i− 1)
ΛT−i+1.

The consumption function and it’s sum allows me to write down the agent’s continuation
utility in period T − i− 1 as follows

u(PT−i−1+
(1 + r)i

f(i)
(1+r)AT−i−1)ψT−i−1 = −1

θ
exp{−θ(PT−i−1+

(1 + r)i

f(i)
(1+r)AT−i−1)}ψT−i−1

with ψT−i−1 given by

ψT−i−1 = βET−i−1[exp{−θ(sPT−i+(1−f(i− 1)

f(i)
)sTT−i−

f(i− 1)

f(i)
ΛT−i)}+ω(exp{−θ(sPT−i+(1−f(i− 1)

f(i)
)sTT−i−

f(i− 1)

f(i)
ΛT−i)})

+γQT−iω(exp{−θ(sPT−i+
(1 + r)i

f(i)
sTT−i+

(1 + r)i

f(i)
ΛT−i)})+exp{−θ(sPT−i+

(1 + r)i

f(i)
sTT−i+

(1 + r)i

f(i)
ΛT−i)}]ψT−i

and ω(x) for any random variable X ∼ FX , where the realization is denoted by x, is

ω(x) = η

ˆ x

−∞
(x− y)dFX(y) + ηλ

ˆ ∞
x

(x− y)dFX(y).

The above expression for ψT−i−1 can be easily inferred from the agent’s utility function. The
first component in ψT−i−1 corresponds to the expectation of consumption utility in period
T − i, the second to contemporaneous gain-loss in period T − i, the third to prospective
gain-loss in period T − i that depends on the sum of future consumption utilities QT−i, and
the last to the agent’s continuation value. Moreover, for any random variable Y ∼ FY = FX
note thatˆ ∞
−∞

ω(g(x))dFX(x) =

ˆ ∞
−∞
{η
ˆ x

−∞
(g(x)− g(y))︸ ︷︷ ︸
<0 if g′(·)<0

dFY (y)+ηλ

ˆ ∞
x

(g(x)− g(y))︸ ︷︷ ︸
>0 if g′(·)<0

dFY (y)}dFX(x) > 0

ˆ ∞
−∞
{η
ˆ x

−∞
(g(x)− g(y))︸ ︷︷ ︸
<0 if g′(·)<0

dFY (y)+η

ˆ ∞
x

(g(x)− g(y))︸ ︷︷ ︸
>0 if g′(·)<0

dFY (y)+η(λ−1)

ˆ ∞
x

(g(x)− g(y))︸ ︷︷ ︸
>0 if g′(·)<0

dFY (y)}dFX(x) > 0

=

ˆ ∞
−∞
{η(λ− 1)

ˆ ∞
x

(g(x)− g(y))︸ ︷︷ ︸
>0 if g′(·)<0

dFY (y)}dFX(x) > 0

if λ > 1, η > 0, and g′(·) < 0. The above consideration implies that ψT−i−1 > QT−i−1

necessarily if θ > 0 such that u(·) is concave. Now, I turn to the agent’s maximization
problem in period T − i, which is given by

u(CT−i) + n(CT−i, F
T−i−1
CT−i

) + γ

i∑
τ=1

βτnnn(F T−i,T−i−1
CT−i+τ

) + u(PT−i +
(1 + r)i−1

f(i− 1)
AT−i)ψT−i.

I want to find the agent’s first-order condition. I begin by explaining the first derivative of
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contemporaneous gain-loss utility n(CT−i, F
T−i−1
CT−i

). The agent takes his beliefs about period
T − i consumption F T−i−1

CT−i
as given such that

∂n(CT−i, F
T−i−1
CT−i

)

∂CT−i
=
∂(η
´ CT−i
−∞ (u(CT−i)− u(c))dF T−i−1

CT−i
(c)) + ηλ

´∞
CT−i

(u(CT−i)− u(c))dF T−i−1
CT−i

(c))

∂CT−i

= u′(CT−i)(ηF
T−i−1
CT−i

(CT−i)+ηλ(1−F T−i−1
CT−i

(CT−i))) = u′(CT−i)(ηF (sPT−i+
(1 + r)i

f(i)
sTT−i)+ηλ(1−F (sPT−i+

(1 + r)i

f(i)
sTT−i)))

the last step results from the guessed consumption function and the assumption that ad-
missible consumption functions are increasing in both shocks. Here, I abuse notation some-
what by writing F (·) = F

SPT−i+
(1+r)i

f(i)
STT−i

(·). The first derivative of the agent’s prospective

gain-loss utility
∑i

τ=1 β
τnnn(F T−i,T−i−1

CT−i+τ
) over the entire stream of future consumption utilities

u(PT−i+
(1+r)i

f(i−1)
AT−i)QT−i can be inferred in a similar manner. Recall that QT−i is a constant

under the guessed consumption function; thus, the agent only experiences gain-loss utility
over the realized uncertainty in period T − i, i.e.,

∂
∑∞

τ=1 β
τnnn(F T−i−1,T−i

CT−i+τ
)

∂AT−i
=
∞∑
τ=1

βτ
∂

∂AT−i

ˆ ∞
−∞

ˆ ∞
−∞

µ(u(c)− u(r))dF T−i−1,T−i
CT−i+τ

(c, r)

=
∂

∂AT−i

ˆ ∞
−∞

µ(u(PT−i +
(1 + r)i

f(i− 1)
AT−i)QT−i − u(x)QT−i)dF

T−i−1

PT−i+
(1+r)i

f(i−1)
AT−i

(x)

=
(1 + r)i

f(i− 1)
exp{−θ(PT−i+

(1 + r)i

f(i− 1)
AT−i)}QT−i(ηF (sPT−i+

(1 + r)i

f(i)
sTT−i)+ηλ(1−F (sPT−i+

(1 + r)i

f(i)
sTT−i)))

and again, F (sPT−i + (1+r)i

f(i)
sTT−i) results from the solution guess for AT−i times (1+r)i

f(i−1)
and

the fact that future consumption is increasing in both shocks. The derivative of the agent’s
continuation utility with respect to AT−i is simply given by

(1 + r)i

f(i− 1)
exp{−θ (1 + r)i

f(i− 1)
AT−i}ψT−i.

In turn, in any period T − i the news-utility agent’s first-order condition (normalized by
PT−i) is given by

exp{−θ((1 + r)AT−i−1 + sTT−i − AT−i)︸ ︷︷ ︸
=−θ(CT−i−PT−i) budget constraint

}(1+ηF (sPT−i+
(1 + r)i

f(i)
sTT−i)+ηλ(1−F (sPT−i+

(1 + r)i

f(i)
sTT−i)))

=
(1 + r)i

f(i− 1)
exp{−θ (1 + r)i

f(i− 1)
AT−i}(ψT−i+γQT−i(ηF (sPT−i+

(1 + r)i

f(i)
sTT−i)+ηλ(1−F (sPT−i+

(1 + r)i

f(i)
sTT−i))).

The first-order condition can be rewritten to obtain the optimal consumption and end-of-
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period asset holdings functions and the function ΛT−i

ΛT−i =
1

θ
log(

(1 + r)i

f(i− 1)

ψT−i + γQT−i(ηF (sPT−i + (1+r)i

f(i)
sTT−i) + ηλ(1− F (sPT−i + (1+r)i

f(i)
sTT−i))

1 + ηF (sPT−i + (1− f(i−1)
f(i)

)sTT−i) + ηλ(1− F (sPT−i + (1− f(i−1)
f(i)

)sTT−i))
)

and the guessed consumption function can be verified.
B.2.2 The infinite-horizon model

Suppose σPt = σP and σTt = σT for all t and T, i → ∞. I use a simple guess and verify
procedure to find the infinite-horizon recursive equilibrium; alternatively, the solution can
be obtained by simple backward induction taking T and i to infinity. The infinite-horizon
model consumption and asset-holding functions are given by

Ct = Yt+rAt−1−
1

1 + r
sTt −Λt = Pt−1+sPt +rAt−1+

r

1 + r
sTt −Λt and At = At−1+

1

1 + r
sTt +Λt.

The first-order condition normalized by Pt is given by

exp{−θ(1 + r)At−1 − θsTt + θAt}(1 + ηF (sPt +
r

1 + r
sTt ) + ηλ(1− F (sPt +

r

1 + r
sTt )))

= rexp{−θrAt}(ψ + γQ(ηF (sPt +
r

1 + r
sTt ) + ηλ(1− F (sPt +

r

1 + r
sTt ))).

Solving for optimal end-of-period asset holdings yields

At = At−1 +
1

1 + r
sTt +

1

θ(1 + r)
log(r

ψ + γQ(ηF (sPt + r
1+r

sTt ) + ηλ(1− F (sPt + r
1+r

sTt )))

1 + ηF (sPt + r
1+r

sTt ) + ηλ(1− F (sPt + r
1+r

sTt ))
)︸ ︷︷ ︸

=Λt

.

Consumption is then determined by the budget constraint

Ct = Yt + rAt−1 −
1

1 + r
sTt − Λt = Pt−1 + sPt + rAt−1 +

r

1 + r
sTt − Λt.

Q and ψ are constant in an i.i.d. environment and given by

Q =
βEt[exp{−θ(sPt+1 + r

1+r
sTt+1 − Λt+1)}]

1− βEt[exp{−θ(sPt+1 + r
1+r

sTt+1 + rΛt+1)}]

ψ =
βEt[exp{−θ(sPt+1 + r

1+rs
T
t+1 − Λt+1)}+ ω(exp{−θ(sPt+1 + r

1+rs
T
t+1 − Λt+1)}) + γQω(exp{−θ(sPt+1 + r

1+rs
T
t+1 + rΛt+1)})]

1− βEt[exp{−θ(sPt+1 + r
1+rs

T
t+1 + rΛt+1)}]

.

B.2.3 The optimal pre-committed equilibrium

Suppose the agent has the ability to pick an optimal history-dependent consumption path
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for each possible future contingency in period zero when he does not experience any gain-
loss utility. Thus, in period zero the agent chooses optimal consumption in period t in each
possible contingency jointly with his beliefs, which of course coincide with the agent’s optimal
state-contingent plan. For instance, consider the joint optimization over consumption and
beliefs for C(Y ∗) when income Y ∗ has been realized

∂

∂C(Y ∗)
{
ˆ ˆ

µ(u(C(Y ))− u(C(Y ′)))dFY (Y ′)dFY (Y )}

=
∂

∂C(Y ∗)

ˆ
η

ˆ Y

−∞
{(u(C(Y ))−u(C(Y ′)))dFY (Y ′)+ηλ

ˆ ∞
Y

(u(C(Y ))−u(C(Y ′)))dFY (Y ′)}dFY (Y )

= u′(C(Y ∗))(ηFY (Y ∗) + ηλ(1− FY (Y ∗)))− u′(C(Y ∗))(η(1− FY (Y ∗)) + ηλFY (Y ∗))

= u′(C(Y ∗))η(λ− 1)(1− 2FY (Y ∗)) with η(λ− 1)(1− 2FY (Y ∗)) > 0 for FY (Y ∗) < 0.5.

Consider the difference to the term in the initial first-order condition u′(Ct)(ηF
t−1
Ct

(Ct) +
ηλ(1−F t−1

Ct
(Ct))): when choosing the pre-committed plan the additional utility of increasing

consumption a little bit is no longer only made up of the additional step in the probability
distribution; instead the two additional negative terms consider that in all other states of
the world the agent experiences less gain feelings and more loss feelings because of increasing
consumption in that contingency. The equation says that the marginal utility of state Y ∗
will be increased by news utility if the realization is below the median. For realizations above
the median the marginal utility will be decreased and the agent will consume relatively less.

Unfortunately there is a problem arising in the pre-commitment optimization problem
that has been absent in the non-pre-committed one: When beliefs are taken as given the
agent optimizes over two concave functions consumption utility and the first part of gain-loss
utility, accordingly the first-order condition pins down a maximum. In contrast, when the
agent chooses his beliefs simultaneously to his consumption additionally the second convex
part of gain-loss utility is optimized over. The additional part determining marginal utility
−u′(Ct)(η(1 − F t−1

Ct
(Ct))) + ηλF t−1

Ct
(Ct))) is largest for particular good income realizations,

since increasing consumption in these states implies additional loss feelings in almost all other
states of the world. It can be easily shown that the sufficient condition of the optimization
problem holds if the parameters satisfy following simple condition: η(λ−1)(2F t−1

Ct
(Ct)−1) <

1. Accordingly, for η(λ − 1) < 1, which is true for a range of commonly used parameter
combinations, the first-order condition pins down the optimum.

From the above consideration it can be easily inferred that the optimal pre-committed
consumption function in the exponential-utility model is thus given by

Λc
T−i =

1

θ
log(

(1 + r)i

f(i− 1)

ψcT−i + γQc
T−iη(λ− 1)(1− 2F (sPT−i + (1+r)i

f(i)
sTT−i))

1 + η(λ− 1)(1− 2F (sPT−i + (1+r)i

f(i)
sTT−i))

)

with

QcT−i−1 = ET−i−1[βexp{−θ(sPT−i+(1−f(i− 1)

f(i)
)sTT−i−

f(i− 1)

f(i)
ΛcT−i)}+βexp{−θ(sPT−i+

(1 + r)i

f(i)
sTT−i+

(1 + r)i

f(i)
ΛcT−i)}QcT−i]
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and

ψcT−i−1 = βET−i−1[exp{−θ(sPT−i+(1−f(i− 1)

f(i)
)sTT−i−

f(i− 1)

f(i)
ΛcT−i)}+ω(exp(−θ(sPT−i+(1−f(i− 1)

f(i)
)sTT−i−

f(i− 1)

f(i)
ΛcT−i)})

+γQcT−iω(exp{−θ(sPT−i+
(1 + r)i

f(i)
sTT−i+

(1 + r)i

f(i)
ΛcT−i)})+

1

θ
exp{−θ(sPT−i+

(1 + r)i

f(i)
sTT−i+

(1 + r)i

f(i)
ΛcT−i)}ψcT−i.

B.3 The other agent’s exponential-utility consumption functions

By the same arguments as for the derivation of the news-utility model, the “standard”
agent’s consumption function in period T − i is

AsT−i =
f(i− 1)

f(i)
(1 + r)AsT−i−1 +

f(i− 1)

f(i)
sTT−i +

f(i− 1)

f(i)
Λs
T−i

Cs
T−i =

(1 + r)i

f(i)
(1 + r)AsT−i−1 + PT−i−1 + sPT−i + (1− f(i− 1)

f(i)
)sTT−i −

f(i− 1)

f(i)
Λs
T−i

Λs
T−i =

1

θ
log(

(1 + r)i

f(i− 1)
Qs
T−i)

QsT−i−1 = βET−i−1[exp{−θ(sPT−i+(1−f(i− 1)

f(i)
)sTT−i−

f(i− 1)

f(i)
ΛsT−i)}+βexp{−θ(sPT−i+

(1 + r)i

f(i)
sTT−i+

(1 + r)i

f(i)
ΛsT−i)}QsT−i].

In the infinite-horizon equilibrium Qs = ψs in an i.i.d. environment with σPt = σP and
σTt = σT for all t

Ast = Ast−1 +
1

1 + r
sTt +

1

θ(1 + r)
log(rψs)︸ ︷︷ ︸

=Λs

ψs = Qs =
βEt[exp{−θ(sPt+1 + r

1+r
sTt+1 − Λs)}]

1− βEt[exp{−θ(sPt+1 + r
1+r

sTt+1 + rΛs)}]

Cs
t = Yt + rAst−1 −

1

1 + r
sTt − Λs = Pt + sPt + rAst−1 +

r

1 + r
sTt − Λs.

The “tempted” agent’s maximization problem is given by

maxCtdt {u(Ctd
t )− λtd(u(C̃td

t )− u(Ctd
t )) + Et[

T−t∑
τ=1

βτ (u(Ctd
t+τ )− λtd(u(C̃td

t+τ )− u(Ctd
t+τ )))]}

with C̃td
t+τ being the most tempting alternative. In period T as the agent cannot die in debt

the most tempting alternative is C̃td
T = X td

T but the agent will consume XT anyway thus
temptation disutility is zero and Qtd

T−1 = Qs
T−1. In period T − 1 the agent’s consumption is

then given by

AtdT−1 =
1 + r

2 + r
AtdT−2 +

1

2 + r
sTT−1 +

1

2 + r
Λtd
T−1
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Ctd
T−1 =

1 + r

2 + r
(1 + r)AtdT−2 + PT−2 + sPT−1 +

1 + r

2 + r
sTT−1 −

1

2 + r
Λtd
T−1

with Λtd
T−1 =

1

θ
log((1 + r)

1

1 + λtd
Qtd
T−1) and Qtd

T−1 = βET−1[exp{−θ(sPT + sTT )}].

What’s the agent’s most tempting alternative in period T − 1? The value of cash-on-hand is
X td
T−1 but the most tempting alternative is C̃td

T →∞ as consumption could be negative in the
last period CT → −∞, which would yield limCtdT →−∞

u(Ctd
T ) = limCtdT →−∞

− 1
θ
e−θC

td
T → −∞.

Accordingly, Qtd
T−2 enters limC̃tdT →−∞

u′(C̃td
T ) = limC̃tdT →−∞

e−θC̃
td
T → 0

Qtd
T−2 = βET−2[exp{−θ(sPT−1+

1 + r

2 + r
sTT−1−

1

2 + r
Λtd
T−1)}−λtd(exp{−θ(sPT−1+

1 + r

2 + r
sTT−1−

1

2 + r
Λtd
T−1)}

− exp{θ1 + r

2 + r
(1 + r)AtdT−2 − θC̃td

T }︸ ︷︷ ︸
→0

) + exp{−θ(sPT−1 +
1 + r

2 + r
sTT−1 +

1 + r

2 + r
Λtd
T−1)}Qtd

T−1]

QtdT−2 = ET−2[βexp{−θ(sPT−1+
1 + r

2 + r
sTT−1−

1

2 + r
ΛtdT−1)}(1−λtd)+βexp{−θ(sPT−1+

1 + r

2 + r
sTT−1+

1 + r

2 + r
ΛtdT−1)}QtdT−1].

And in period T − i

AtdT−i =
f(i− 1)

f(i)
(1 + r)AtdT−i−1 +

f(i− 1)

f(i)
sTT−i +

f(i− 1)

f(i)
Λtd
T−i

Ctd
T−i =

(1 + r)i

f(i)
(1 + r)AtdT−i−1 + PT−i−1 + sPT−1 + (1− f(i− 1)

f(i)
)sTT−i −

f(i− 1)

f(i)
Λtd
T−i

Λtd
T−i =

1

θ
log(

(1 + r)i

f(i− 1)

1

1 + λtd
Qtd
T−i)

QtdT−i−1 = βET−i−1[exp{−θ(sPT−1+(1−f(i− 1)

f(i)
)sTT−i−

f(i− 1)

f(i)
ΛtdT−i)}(1−λtd)+βexp{−θ(sPT−1+

(1 + r)i

f(i)
sTT−i+

(1 + r)i

f(i)
ΛtdT−i)}QtdT−i].

And for T →∞
Atdt = Atdt−1 +

1

1 + r
nt +

1

θ(1 + r)
log(r

1

1 + λtd
Qtd)︸ ︷︷ ︸

=Λtd

Ctd
t = Yt + rAtdt−1 −

1

1 + r
nt − Λtd = Pt−1 + sPt + rAtdt−1 +

r

1 + r
sTt − Λtd

Qtd =
βEt[exp{−θ(sPt+1 + r

1+r
sTt+1 − Λtd)}(1− λtd)]

1− βEt[exp{−θ(sPt+1 + r
1+r

sTt+1 + rΛtd)}]
.

The “hyperbolic-discounting” agent’s consumption in period T − i is

AbT−i =
f(i− 1)

f(i)
(1 + r)AbT−i−1 +

f(i− 1)

f(i)
sTT−i +

f(i− 1)

f(i)
Λb
T−i
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Cb
T−i =

(1 + r)i

f(i)
(1 + r)AbT−i−1 + PT−i−1 + sPT−i + (1− f(i− 1)

f(i)
)sTT−i −

f(i− 1)

f(i)
Λb
T−i

Λb
T−i =

1

θ
log(

(1 + r)i

f(i− 1)
bQb

T−i)

QbT−i−1 = βET−i−1[exp{−θ(sPT−i+(1−f(i− 1)

f(i)
)sTT−i−

f(i− 1)

f(i)
ΛbT−i)}+βexp{−θ(sPT−i+

(1 + r)i

f(i)
sTT−i+

(1 + r)i

f(i)
ΛbT−i)}QbT−i].

and for T →∞
Abt = Abt−1 +

1

1 + r
sTt +

1

θ(1 + r)
log(rbQb)︸ ︷︷ ︸

=Λb

Cb
t = Yt + rAbt−1 −

1

1 + r
sTt − Λb = Pt−1 + sPt + rAbt−1 +

r

1 + r
sTt − Λb

Qb =
βEt[exp{−θ(sPt+1 + r

1+r
sTt+1 − Λb)}]

1− βEt[exp{−θ(sPt+1 + r
1+r

sTt+1 + rΛb)}]
.

B.4 Proofs of Section IV:

B.4.1 Proof of Proposition 1

If the consumption function derived in Section B.2.1 belongs to the class of admissible
consumption functions then the equilibrium exists and is unique as the equilibrium solution
is obtained by maximizing the agent’s objective function, which is globally concave, and
there is a finite period that uniquely determines the equilibrium. Please refer to Section
B.2.1 for the derivation of the consumption function. σ∗t is implicitly defined by the two
admissible consumption function restrictions ∂CT−i

∂sPT−i
> 0 and ∂CT−i

∂sTT−i
> 0 as

CT−i =
(1 + r)i

f(i)
(1 + r)AT−i−1 + PT−i−1 + sPT−i + (1− a(i))sTT−i − a(i)ΛT−i

the restrictions are equivalent to ∂a(i)ΛT−i
∂sPT−i

< 1 and ∂a(i)ΛT−i
∂sTT−i

< 1 − a(i) as ∂ΛT−i
∂sPT−i

, ∂ΛT−i
∂sTT−i

> 0

(since ψT−i > γQT−i (for any concave utility function which I have shown in Section B.2)).
Recall that a(i) = 1− (1+r)i

f(i)
= f(i−1)

f(i)
. Then, σ∗T−i is implicitly defined by the two restrictions

∂a(i)ΛT−i

∂sPT−i
=

a(i)

θ(1−a(i)
a(i)

)

(ψT−i−γQT−i)ηf
SP
T−i+

(1+r)i

f(i)
ST
T−i

(sPT−i+
(1+r)i

f(i)
sTT−i)(λ−1)

1+ηF (sPT−i+
(1+r)i

f(i)
sTT−i)+ηλ(1−F (sPT−i+

(1+r)i

f(i)
sTT−i))

ψT−i + γQT−i(ηF (sPT−i + (1+r)i

f(i)
sTT−i) + ηλ(1− F (sPT−i + (1+r)i

f(i)
sTT−i)))

< 1
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and

∂a(i)ΛT−i

∂sTT−i
=

a(i)

θ(1−a(i)
a(i)

)

(ψT−i−γQT−i)ηf
SP
T−i+

(1+r)i

f(i)
ST
T−i

(sPT−i+
(1+r)i

f(i)
sTT−i)(λ−1)

1+ηF (sPT−i+
(1+r)i

f(i)
sTT−i)+ηλ(1−F (sPT−i+

(1+r)i

f(i)
sTT−i))

ψT−i + γQT−i(ηF (sPT−i + (1+r)i

f(i)
sTT−i) + ηλ(1− F (sPT−i + (1+r)i

f(i)
sTT−i)))

< 1−a(i).

Here, the normal pdf of any random variably X is denoted by fX . Increasing σPt and
σTt unambiguously decreases f

SPT−i+
(1+r)i

f(i)
STT−i

(sPT−i + (1+r)i

f(i)
sTT−i) and thereby ∂a(i)ΛT−i

∂sPT−i
and

∂a(i)ΛT−i
∂sTT−i

. Thus, there exists a condition σ2
Pt + ( (1+r)i

f(i)
)2σ2

Tt ≥ σ∗t for all t which ensures that
an admissible consumption function exists that uniquely determines the equilibrium (given
the admissible consumption functions in each future period until the final period) because
the optimization problem is globally concave.

If uncertainty is small then the consumption function may be decreasing over some range,
i.e., ∂CT−i

∂sPT−i
< 0 or ∂CT−i

∂sTT−i
< 0. I now show that the agent would pick a consumption func-

tion that is instead of decreasing flat and thus weakly increasing in the shock realizations,
i.e., ∂CT−i

∂sPT−i
≥ 0 or ∂CT−i

∂sTT−i
≥ 0. To discuss this result in a simple framework, I return to the

two-period, one-shock model. Suppose that the absolute level of the shock increases; then,
holding CT−1 constant, the marginal value of savings declines and the agent’s first-order
condition implies that consumption should increase. However, FP (sPT−1) also increases, and
marginal gain-loss utility is lower, such that the agent’s optimal consumption should de-
crease. Suppose that sPT−1 increases marginally but FP (sPT−1) increases sharply, which could
occur if FP is a very narrow distribution. In this case, the lower marginal gain-loss utility
that decreases consumption dominates such that the first-order condition predicts decreas-
ing consumption over some range in the neighborhood of the expected value µP where FP
increases most sharply if FP is bell shaped. However, a decreasing consumption function
cannot be an equilibrium because the agent would unnecessarily experience gain-loss util-
ity over the decreasing part of consumption, which decreases expected utility unnecessarily.
In the decreasing-consumption function region, the agent could choose a flat consumption
function instead. In the following I show that the agent may choose a credible consumption
plan with a flat section. Suppose the agent chooses a flat consumption level for realizations
of sPT−1 in s and s. Then, s is chosen where the original consumption function just stops
decreasing, which corresponds to the lowest possible level of the flat section of consumption
CT−1. In that is then determined by

u′(CT−1) = (1 + r)u′((s− CT−1)(1 + r) + s)
ψT−1 + γQT−1(ηFP (s) + ηλ(1− FP (s)))

1 + ηFP (s) + ηλ(1− FP (s))
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in which case s is determined by

u′(CT−1) = (1 + r)u′((s− CT−1)(1 + r) + s)
ψT−1 + γQT−1(ηFP (s) + ηλ(1− FP (s)))

1 + ηFP (s) + ηλ(1− FP (s))
.

The agent’s consistency constraint for not increasing consumption beyond CT−1 for any
sPT−1 ∈ [s, s] is given by

u′(CT−1) < (1+r)u′((sPT−1−CT−1)(1+r)+sPT−1)
ψT−1 + γQT−1(ηFP (sPT−1) + ηλ(1− FP (sPT−1)))

1 + ηFP (s) + ηλ(1− FP (s))

and always holds as can be easily inferred. This result can be easily generalized to any
horizon, thus, if the consumption function is decreasing over some range, the agent can
credibly replace the decreasing part with a flat section as described above.
B.4.2 Proof of Proposition 2

Please refer to the derivation of the exponential-utility model Section B.2 for a detailed
derivation of ΛT−i. According to Definition 5 consumption is excessively smooth if ∂Ct

∂sPt
< 1

and excessively sensitive if ∂∆Ct+1

∂sPt
> 0. Consumption growth is

∆CT−i = sPT−i + (1− a(i))sTT−i − a(i)ΛT−i + ΛT−i−1

so that ∂CT−i
∂sPT−i

< 1 iff ∂ΛT−i
∂sPT−i

> 0 and ∂∆CT−i
∂sPT−i−1

> 0 iff ∂ΛT−i−1

∂sPT−i−1
> 0. Since ψT−i > γQT−i (for

any concave utility function which I have shown in Section B.2) it can be easily seen that
∂ΛT−i
∂sPT−i

> 0, i.e.

∂ΛT−i

∂sPT−i
=

1

θ(1−a(i)
a(i)

)

(ψT−i−γQT−i)ηf
SP
T−i+

(1+r)i

f(i)
ST
T−i

(sPT−i+
(1+r)i

f(i)
sTT−i)(λ−1)

1+ηF (sPT−i+
(1+r)i

f(i)
sTT−i)+ηλ(1−F (sPT−i+

(1+r)i

f(i)
sTT−i))

ψT−i + γQT−i(ηF (sPT−i + (1+r)i

f(i)
sTT−i) + ηλ(1− F (sPT−i + (1+r)i

f(i)
sTT−i)))

> 0.

The same holds true for the infinite-horizon model

∆Ct = sPt +
r

1 + r
sTt − Λt + (1 + r)Λt−1

as Λt is increasing in the permanent shock

∂Λt

∂sPt
=

1

θ(1 + r)r

(ψ−γQ)ηf
SPt + r

1+r S
T
t

(sPt + r
1+r

sTt )(λ−1)

1+ηF (sPt + r
1+r

sTt )+ηλ(1−F (sPt + r
1+r

sTt ))

ψ + γQ(ηF (sPt + r
1+r

sTt ) + ηλ(1− F (sPt + r
1+r

sTt )))
> 0.

Accordingly, ∂Λt
∂sPt

> 0 as ψ > γQ. Thus, if sPt ↑ then Λt ↑ and the shock induced change
in consumption is less than one and the period t shock induced change in one-period ahead
consumption ∆Ct+1 is larger than zero.
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The difference to the standard, tempted, and quasi-hyperbolic discounting agents is that
∂Λs,t,bt

∂sPt
= 0 for all t such that consumption is neither excessively sensitive nor excessively

smooth.
B.4.3 Proof of Lemma 1

I start with the first part of the lemma, the precautionary-savings motive. In the second-
to-last period of the simple model outlined in the text, the first-order condition is given
by

u′(CT−1) + u′(CT−1)(ηFP (sPT−1) + ηλ(1− FP (sPT−1))))

= (1 + r)u′((sPT−1 − CT−1)(1 + r) + sPT−1)γ βET−1[u′(SPT )]︸ ︷︷ ︸
QT−1

(ηFP (sPT−1) + ηλ(1− FP (sPT−1)))

+(1+r)u′((sPT−1−CT−1)(1+r)+sPT−1) βET−1[u′(SPT ) + η(λ− 1)

ˆ ∞
SPT

(u′(SPT )− u′(y))dFP (y)]︸ ︷︷ ︸
ψT−1

.

From Section B.2 I know that ψT−1 > QT−1 because for any two random variables X ∼ FX
and Y ∼ FY with FX = FY in equilibrium

ˆ ∞
−∞
{η
ˆ x

−∞
(g(x)− g(y))︸ ︷︷ ︸
<0 if g′(·)<0

dFY (y) + ηλ

ˆ ∞
x

(g(x)− g(y))︸ ︷︷ ︸
>0 if g′(·)<0

dFY (y)}dFX(x) > 0

if λ > 1, η > 0, and g′(·) < 0. Thus, βET−1[η(λ − 1)
´∞
SPT

(u′(SPT ) − u′(y))dFP (y)] > 0 if
u′′(·) > 0 the agent is risk averse or u(·) is concave. Moreover, it can be easily seen that
∂βET−1[η(λ−1)

´∞
SP
T

(u′(SPT )−u′(y))dFP (y)]

∂η
> 0 and

∂βET−1[η(λ−1)
´∞
SP
T

(u′(SPT )−u′(y))dFP (y)]

∂λ
> 0. Then, for

any value of savings AT−1 = sPT−1 − CT−1 the right hand side of the first-order condition
is increased by the presence of expected gain-loss disutility if σP > 0 whereas if σP = 0
then ψT−1 = QT−1. The increase of the agent’s marginal value of savings by the presence
of expected gain-loss disutility depends on σP > 0, but does not go to zero as σP → 0 so
that the additional precautionary savings motive is first-order ∂(sPT−1−CT−1)

∂σP
|σP=0 > 0 as can

be easily shown for any normally distribution random variable X ∼ FX = N(µ, σ2)

ET−1[η(λ− 1)

ˆ ∞
X

(u′(X)− u′(y))dFX(y)]

= e−θµ
ˆ ∞
−∞

(η

ˆ z

−∞
(e−θσz−e−θσε)dF01(ε)+ηλ

ˆ ∞
z

(e−θσz−e−θσε)dF01(ε))dF01(z) with z, ε ∼ F01 = N(0, 1)

= e−θµη(λ− 1)

ˆ ∞
z

(e−θσz − e−θσε)dF01(ε))dF01(z)

= e−θµη(λ− 1)

ˆ ∞
−∞
{(1− F01(z))e−θσz − e

1
2
θ2σ2

F01(−θσ − z)}dF01(z)
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∂(·)
∂σ
|σ=0 = e−θµη(λ−1)

ˆ ∞
−∞
{−θz(1−F01(z))e−θσz−θσe

1
2
θ2σ2

F01(−θσ−z)+θe
1
2
θ2σ2

F01(−θσ−z)}dF01(z)|σ=0

= e−θµθη(λ− 1)

ˆ ∞
−∞
{−z + zF01(z) + F01(−z)}dF01(z) ≈ e−θµθη(λ− 1)0.7832 > 0.

Thus, news-utility introduces a first-order precautionary-savings motive.
In the second part of the lemma the implications for consumption can be immediately seen

by comparing the agents’ first-order conditions. The standard agent’s first-order condition
in period T − 1 is given by

u′(CT−1) = Ru′((sPT−1 − CT−1)R + sPT−1)QT−1.

The difference to the news-utility model can be seen easily: First, ψT−1

QT−1
> 1 implies that

ψT−1

QT−1
+ γ(ηFP (sPT−1) + ηλ(1− FP (sPT−1)))

1 + ηFP (sPT−1) + ηλ(1− FP (sPT−1))
> 1

for γ high enough such that the news-utility agent consumes less than the standard agent if
he does not discount prospective gain-loss utility very highly. Moreover, as ψT−1

QT−1
is increasing

in σP the threshold value for γ, i.e., γ̄, in each comparison is decreasing in σP .
B.4.4 Proof of Proposition 3

The agent optimally chooses consumption and asset holdings in periods T−i = 1, ..., T for
any horizon T . I defined a hump-shaped consumption profile as characterized by increasing
consumption and asset holdings in the beginning of life C1 < C2 and decreasing consumption
in the end of life CT < CT−1 (note that, I derive the thresholds σP and σP for sPt = 0 and
sTt = 0 in all periods, since ΛT−i is skewed this is not exactly the average consumption path
but the difference is minor). The first characteristic requires C1 < C2 which implies that

(1 + r)T−1

f(T − 1)
(1 + r)A0 + P0 −

f(T − 2)

f(T − 1)
Λ1 <

(1 + r)T−2

f(T − 2)
(1 + r)A1 + P0 −

f(T − 3)

f(T − 2)
Λ2

so that Λ1 >
f(T−3)
f(T−2)

Λ2 and since f(T−3)
f(T−2)

< 1 this holds always if Λ1 > 0 as T becomes large
since in the limit Λ1 = Λ2. Recall that if λ > 1 and η > 0 then ψT−i > QT−i, ψT−i > ψT−i+1

and QT−i > QT−i+1 and ψT−i − QT−i > ψT−i+1 − QT−i+1 for all i and ψT−i
QT−i

approaches it’s
limit ψ

Q
as i and T become large. σP is then implicitly defined by the requirement Λ1 > 0

which is equivalent to

(1 + r)T−1

f(T − 2)

ψ1 + γQ1η
1
2
(1 + λ)

1 + η 1
2
(1 + λ)

=
r

1− ( 1
1+r

)T−1

ψ1 + γQ1η
1
2
(1 + λ)

1 + η 1
2
(1 + λ)

> 1.

Accordingly, if ψ1

Q1
(which is determined by expected marginal gain-loss utility) is large enough

relative to γ the agent chooses an increasing consumption path. For T → ∞ the condition
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boils down to

r
ψ + γQη 1

2
(1 + λ)

1 + η 1
2
(1 + λ)

> 1⇒ r(ψ + γQη
1

2
(1 + λ)) > 1 + η

1

2
(1 + λ)

for which a sufficient condition is γQ > 1
r
.

The second characteristic requires CT < CT−1 which implies that

(1 + r)AT−1 <
1 + r

2 + r
(1 + r)AT−2 −

1

2 + r
ΛT−1

and is equivalent to ΛT−1 < 0. Thus, σP is implicitly defined by ΛT−1 < 0

1

θ
log((1 + r)

ψT−1 + γQT−1η
1
2
(1 + λ)

1 + η 1
2
(1 + λ)

) < 0⇒ (1 + r)
ψT−1 + γQT−1η

1
2
(1 + λ)

1 + η 1
2
(1 + λ)

< 1.

Note that, because β(1 + r) ≈ 1 the standard agent will choose an almost flat consumption
path such that (1 + r)QT−1 ≈ 1. Thus, the news-utility agent chooses a mean falling
consumption path in the end of life as long as ψT−1

QT−1
is not too large or γ is not too close to

one.
B.4.5 Proof of Proposition 4

In the deterministic setting, sPt = sTt = 0 for all t such that the news-utility agent will
not experience actual news utility in a subgame-perfect equilibrium because he cannot fool
himself and thus ψt = Qt for all t. Thus, the expected-utility maximizing path corresponds to
the standard agent’s one which is determined in any period T − i by the following first-order
condition

exp{−θ(1 + r)AT−i−1 + θAT−i} =
(1 + r)i

f(i− 1)
exp{−θ (1 + r)i

f(i− 1)
AT−i}Qs

T−i.

If the agent believes he follows the above path then the consistency constraint (increasing
consumption is not preferred) has to hold

exp{−θ(1 + r)AT−i−1 + θAT−i}(1 + η) <
(1 + r)i

f(i− 1)
exp{−θ (1 + r)i

f(i− 1)
AT−i}Qs

T−i(1 + γηλ).

Thus, if η < γηλ⇒ γ > 1
λ
the agent follows the expected-utility maximizing path. Whereas

for γ ≤ 1
λ
news-utility consumption is characterized by equality of the consistency constraint,

because the agent will choose the lowest consumption level that just satisfies it. Then,
the first-order condition becomes equivalent to a βδ−agent’s first-order condition with b =
1+γηλ

1+η
< 1.

In the infinite-horizon model, a simple perturbation argument gives the following consis-
tency constraint

exp(−θ(1 + r)At−1 + θAt)(1 + η) < rexp(−θrAt)Q(1 + γηλ),
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because ψ = Q. However, if γ > 1
λ
the news-utility agent finds it optimal to follow the

expected-utility-maximizing standard agent’s path

exp(−θ(1 + r)At−1 + θAt) = rexp(−θrAt)Qs ⇒ At = At−1 + Λs ⇒ Ct = rAt−1 + Yt − Λs

Λs =
1

θ(1 + r)
log(rQs) with Qs =

βexp(−θ(−Λs))

1− βexp(−θrΛs)
.

Whereas for γ ≤ 1
λ
news-utility consumption will choose the lowest consumption level that

just satisfies his consistency constraint. Then, the first-order condition becomes equivalent
to a βδ−agent’s first-order condition with b = 1+γηλ

1+η
< 1.

B.4.6 Proof of Proposition 5

I say that the news-utility agent’s consumption path features a drop in consumption
at retirement, if the change in consumption at retirement is negative and smaller than it
is after the start of retirement, i.e., ∆CT−R is negative and smaller than ∆CT−R+1. In
general, after the start of retirement the news-utility agent’s consumption growth follows
the standard model or the hyperbolic-discounting model. Thus, the news-utility agent’s
implied hyperbolic-discount factor after retirement is bR ∈ {1+γηλ

1+η
, 1}, which is larger than

the news-utility agent’s implied hyperbolic-discount factor at retirement. In the at-retirement
period the weight on future marginal value versus current marginal consumption is between
{1+γηλ

1+ηλ
, 1+γη

1+η
} and since 1+γηλ

1+ηλ
< 1+γη

1+η
< 1+γηλ

1+η
< 1 the hyperbolic-discount factor implied by

at-retirement consumption growth is necessarily lower than the hyperbolic-discount factor
implied by post-retirement consumption growth. Thus, consumption growth at retirement
will necessarily be less than consumption growth after retirement. Moreover, if consumption
growth after retirement is approximately zero, because log((1+r)β) ∈ [− M,M] with M small
then consumption growth at retirement will be negative.

Let me formalize the agent’s consumption growth at and after retirement. After re-
tirement the news-utility agent’s consumption growth is ∆CT−R+1 = CT−R+1 − CT−R =
−a(R− 1)ΛT−R+1 + ΛT−R and will correspond to a hyperbolic-discounting agent’s consump-
tion with b ∈ {1+ηγλ

1+η
, 1} such that the agent’s continuation utilities in period T − R and

T −R + 1 (which determine ΛT−R and ΛT−R+1) correspond to

QT−R = ψT−R = Qb
T−R and QT−R+1 = ψT−R+1 = Qb

T−R+1

such that

ΛT−R =
1

θ
log(

(1 + r)R

f(R− 1)
bQb

T−R) and ΛT−R+1 =
1

θ
log(

(1 + r)R−1

f(R− 2)
bQb

T−R+1)

thus if log((1 + r)β) ∈ [− M,M] with M small then consumption growth after retirement
will be approximately zero (if b = 1 and the news-utility agent follows the standard agent’s
path) or negative if b < 1 (if the news-utility agent follows a hyperbolic-discounting path
but log((1 + r)β) ≈ 0)). Consumption growth at retirement is ∆CT−R = CT−R −CT−R−1 =
−a(R)ΛT−R + ΛT−R−1. ΛT−R will correspond to a hyperbolic-discounting agent’s value with
b ∈ {1+ηγλ

1+η
, 1} as above. But, ΛT−R−1 will correspond to a hyperbolic-discounting agent’s

63



value with b ∈ {1+γηλ
1+ηλ

, 1+γη
1+η
} and it can be easily seen that 1+γηλ

1+ηλ
< 1+γη

1+η
< 1+γηλ

1+η
< 1. Thus,

from above

ΛT−R =
1

θ
log(

(1 + r)R

f(R− 1)
bQb

T−R)

and if the news-utility agent would continue this hyperbolic path implied by the past retire-
ment b ∈ {1+ηγλ

1+η
, 1} then

Λb
T−R−1 =

1

θ
log(

(1 + r)R+1

f(R)
bQb

T−R−1)

whereas in fact his ΛT−R−1 is given by

ΛT−R−1 =
1

θ
log(

(1 + r)R+1

f(R)

ψT−R−1 + γQT−R−1(ηF (sPT−R−1 + (1+r)R+1

f(R+1) s
T
T−R−1) + ηλ(1− F (sPT−R−1 + (1+r)R+1

f(R+1) s
T
T−R−1))

1 + ηF (sPT−R−1 + (1+r)R+1

f(R+1) s
T
T−R−1) + ηλ(1− F (sPT−R−1 + (1+r)R+1

f(R+1) s
T
T−R−1))

)

with ψT−R−1 = QT−R−1 = Qb
T−R−1 because there is no uncertainty from period T − R on.

As can be easily seen iff γ < 1 then ΛT−R−1 < Λb
T−R−1 because

Qb
T−R−1 + γQb

T−R−1(ηF (sPT−R−1 + (1+r)R+1

f(R+1)
sTT−R−1) + ηλ(1− F (sPT−R−1 + (1+r)R+1

f(R+1)
sTT−R−1))

1 + ηF (sPT−R−1 + (1+r)R+1

f(R+1)
sTT−R−1) + ηλ(1− F (sPT−R−1 + (1+r)R+1

f(R+1)
sTT−R−1))

< Qb
T−R−1

for instance, if F (·) = 0.5 then 1+γ 1
2
η(1+λ)

1+ 1
2
η(1+λ)

< 1 iff γ < 1. Thus, news-utility consumption
growth is smaller at retirement than after retirement. Moreover, it is negative because it
is either approximately zero after retirement (if bR = 1) or negative after retirement (if
bR = 1+γηλ

1+η
< 1).

B.4.7 Proof of Corollary 1

After retirement the news-utility agent’s consumption from period T − R on will corre-
spond to a hyperbolic-discounting agent’s consumption with b ∈ {1+ηγλ

1+η
, 1} such that the

agent’s continuation utilities correspond to

QT−R−1 = ψT−R−1 = Qb
T−R−1

thus ΛT−R−1 is given by

ΛT−R−1 =
1

θ
log(

(1 + r)R+1

f(R)

ψT−R−1 + γQT−R−1(ηF (sPT−R−1 + (1+r)R+1

f(R+1) s
T
T−R−1) + ηλ(1− F (sPT−R−1 + (1+r)R+1

f(R+1) s
T
T−R−1))

1 + ηF (sPT−R−1 + (1+r)R+1

f(R+1) s
T
T−R−1) + ηλ(1− F (sPT−R−1 + (1+r)R+1

f(R+1) s
T
T−R−1))

)

as can be easily seen iff γ < 1 then ∂ΛT−R−1

∂sPT−R−1
> 0 and consumption is excessively smooth and

sensitive in the pre-retirement period.
B.4.8 Proofs of the new predictions about consumption (Section IV.4)

The new predictions can be easily inferred from the above considerations.
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1. Consumption is more excessively sensitive for permanent than for transitory shocks
in an environment with permanent shocks. In an environment with transitory shocks
only, however, news-utility consumption is excessively sensitive with respect to tran-
sitory shocks. Λt varies more with the permanent shock than with the transitory
shock, because the agent is consuming only the per-period value r

1+r
sTt of the period

t transitory shock, such that F t−1
Ct

(Ct) varies little with sTt . However, in the absence
of permanent shocks Λt would vary with FSTT−i(s

T
T−i) which fully determines F t−1

Ct
(Ct)

even though consumption itself will increase only by the per-period value r
1+r

sTt of
the transitory shock. Thus, consumption is excessively sensitive for transitory shocks
when permanent shocks are absent. With permanent shocks, however, consumption is
excessively sensitive for transitory shocks only when the horizon is very short or the
permanent shock has very little variance such that the transitory shock actually moves
F
SPT−i+

(1+r)i

f(i)
STT−i

(sPT−i + (1+r)i

f(i)
sTT−i) despite the fact that it is discounted by (1+r)i

f(i)
.

2. The degree of excess smoothness and sensitivity is decreasing in the amount of economic
uncertainty σP . If σP is small, the agent’s beliefs change more quickly relative to
the change in the realization of the shock; hence, the consumption function is more
flat for realizations around µP . The consumption function CT−i is less increasing in
the realizations of the shocks sPT−i + (1+r)i

f(i)
sTT−i if

∂ΛT−i
∂sPT−i

is relatively high. As can be

seen easily, ∂ΛT−i
∂sPT−i

is increasing in f
SPT−i+

(1+r)i

f(i)
STT−i

(sPT−i + (1+r)i

f(i)
sTT−i) which is high if

f
SPT−i+

(1+r)i

f(i)
STT−i

is very high at sPT−i = µP which happens if f
SPT−i+

(1+r)i

f(i)
STT−i

is a very

narrow distribution, i.e., σP is small.

3. Any bell-shaped shock distribution induces the variation in ΛT−i and thereby the
amount of excess sensitivity to be bounded. If the agent is hit by an extreme shock, the
actual value of the low probability realization matters less because neighboring states
have very low probability. The expression ηF (sPT−i + (1+r)i

f(i)
sTT−i) + ηλ(1 − F (sPT−i +

(1+r)i

f(i)
sTT−i)) is bounded if the two shocks’ distributions are bell shaped. Thus, the

variation in ΛT−i is bounded.

4. Consumption is more excessively sensitive and excessively smooth when the agent’s
horizon increases, because the marginal propensity to consume out of permanent shocks
declines when the additional precautionary-savings motive accumulates. ψT−i

QT−i
is in-

creasing in i and approaches a constant ψ
Q

when T → ∞ and i → ∞. Then, the
variation in ΛT−i is increasing in i. And since consumption growth ∆CT−i is deter-
mined by −a(i)ΛT−i + ΛT−i−1 on average the larger variation in ΛT−i translates into a
higher coefficient in the OLS regression. This can be seen by looking at ∂ΛT−i

∂sPT−i
, i.e.,

∂a(i)ΛT−i

∂sPT−i
=

a(i)

θ(1−a(i)
a(i)

)

(ψT−i−QT−i)ηf
SP
T−i+

(1+r)i

f(i)
ST
T−i

(sPT−i+
(1+r)i

f(i)
sTT−i)(λ−1)

1+ηF (sPT−i+
(1+r)i

f(i)
sTT−i)+ηλ(1−F (sPT−i+

(1+r)i

f(i)
sTT−i))

ψT−i +QT−iγ(ηF (sPT−i + (1+r)i

f(i)
sTT−i) + ηλ(1− F (sPT−i + (1+r)i

f(i)
sTT−i)))

> 0.
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As a(i) = f(i−1)
f(i)

is increasing in i because f(i) =
∑i

j=0(1 + r)j and thus (a(i))2

1−a(i)
is in-

creasing in i and approaching a constant and ψT−i
QT−i

is increasing in i and approaching

a constant it can be easily seen that ∂a(i)ΛT−i
∂sPT−i

is increasing in i which means that con-
sumption becomes more excessively smooth as the agent’s horizon increases. Moreover,
as a(i)

1−a(i)
is increasing in i too ∂ΛT−i

∂sPT−i
is increasing in i which means that consumption

becomes more excessively sensitive as the agent’s horizon increases.

B.4.9 Proof of Proposition 6

In the following, I assume that the following parameter condition (which ensures that the
agent’s maximization problem is globally concave) holds η(λ − 1) < 1. All of the following
proofs are direct applications of the prior proofs for the monotone-personal equilibrium just
using Λc

T−i instead of ΛT−i. Thus, I make the exposition somewhat shorter.

1. The personal and pre-committed consumption functions are different in each period as
can be seen in Section B.2. But, if there’s no uncertainty and γ > 1

λ
then the personal

and pre-committed consumption functions both correspond to the standard agent’s
consumption function as shown in the proof of Proposition 4.

2. Please refer to the derivation of the exponential-utility pre-committed model in Sec-
tion B.2 for a detailed derivation of Λc

T−i. According to Definition 5 consumption is
excessively smooth if ∂Cct+1

∂sPt+1
< 1 and excessively sensitive if ∂∆Cct+1

∂sPt
> 0. Consumption

growth is
∆Cc

T−i = sPT−i + (1− a(i))sTT−i − a(i)Λc
T−i + Λc

T−i−1

so that ∂CcT−i
∂sPT−i

< 1 iff ∂ΛcT−i
∂sPT−i

> 0 and ∂∆CcT−i
∂sPT−i−1

> 0 iff ∂ΛcT−i−1

∂sPT−i−1
> 0. Since ψcT−i > γQc

T−i it

can be easily seen that ∂ΛcT−i
∂sPT−i

> 0, i.e.

∂Λc
T−i

∂sPT−i
=

1

θ(1−a(i)
a(i)

)

(ψT−i−γQT−i)η(λ−1)2f
SP
T−i+

(1+r)i

f(i)
ST
T−i

(sPT−i+
(1+r)i

f(i)
sTT−i)

1+η(λ−1)(1−2F (sPT−i+
(1+r)i

f(i)
sTT−i))

ψcT−i + γQc
T−iη(λ− 1)(1− 2F (sPT−i + (1+r)i

f(i)
sTT−i))

> 0.

Thus, optimal pre-committed consumption is excessively smooth and sensitive.

3. The first-order condition of the second-to-last period in the exemplified model of the
text is

u′(Cc
T−1) = (1+r)u′((sPT−1−Cc

T−1)(1+r)+sPT−1)
ψT−1 + γQT−1η(λ− 1)(1− 2FP (sPT−1))

1 + η(λ− 1)(1− 2FP (sPT−1)))
.

By the exact same argument as above ψT−1 > QT−1 such that news utility introduces
a first-order precautionary-savings motive in the pre-committed equilibrium. Compare
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the above first-order condition with the one for personal-monotone consumption CT−1,
i.e.,

u′(CT−1) = (1+r)u′((sPT−1−CT−1)(1+r)+sPT−1)
ψT−1 + γQT−1(ηFP (sPT−1) + ηλ(1− FP (sPT−1)))

1 + ηFP (sPT−1) + ηλ(1− FP (sPT−1))))
.

Because ηFP (sPT−1) + ηλ(1 − FP (sPT−1)) > η(λ − 1)(1 − 2FP (sPT−1)) for all sPT−1 and
ψT−1 > γQT−1 monotone personal consumption is higher CT−1 > Cc

T−1 than pre-
committed consumption. Moreover, the difference ηFP (sPT−1) + ηλ(1 − FP (sPT−1)) −
η(λ − 1)(1 − 2FP (sPT−1)) = η(1 − FP (sPT−1)) + ηλFP (sPT−1) is increasing in sPT−1 such
that the difference in consumption CT−1 − Cc

T−1 is increasing in sPT−1.

4. Consider the pre-committed first-order conditions before and after retirement. After
retirement the news-utility agent’s consumption from period T −R on will correspond
to the standard agent’s one, i.e.,

QT−R−1 = ψT−R−1 = Qs
T−R−1

thus ΛT−R−1 is given by

ΛT−R−1 =
1

θ
log(

(1 + r)R+1

f(R)

ψT−R−1 + γQT−R−1η(λ− 1)(1− 2F (sPT−R−1 + (1+r)R+1

f(R+1)
sTT−R−1))

1 + η(λ− 1)(1− F (sPT−R−1 + (1+r)R+1

f(R+1)
sTT−R−1))

)

it can be easily seen that

∂ΛT−R−1

∂γ
< 0 only if F (sPT−R−1 +

(1 + r)R+1

f(R + 1)
sTT−R−1)) < 0.5.

Thus, γ < 1 does not necessarily increase or decrease ΛT−R−1 and thereby consumption
growth at retirement is not necessarily negative and smaller than consumption growth
after retirement. There is no systematic underweighting of marginal utility before or
after retirement and there does not occur a drop in consumption at retirement for
γ < 1. The same argument that γ < 1 does not necessarily lead to a reduction in
consumption growth even in the end of life when ψT−i and QT−i are small implies that
the pre-committed consumption path is not necessarily hump shaped.

B.5 Derivation of the power-utility model

In the following, I outline the numerical derivation of the model with a power-utility
specification u(Ct) =

C1−θ
t

1−θ . I start with the standard model to then explain the news-utility
model in detail.
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B.5.1 The standard model

The standard agent’s maximization problem in any period T − i is

max{u(CT−i) +
i∑

τ=1

βτET−i[u(CT−i+τ )]}

subject to Xt = (Xt−1 − Ct−1)R + Yt and Yt = Pt−1Gte
sPt es

T
t = Pte

sTt .

The maximization problem can be normalized by P 1−θ
T−i and then becomes in normalized

terms (Xt = Ptxt for instance)

max{u(cT−i) +
i∑

τ=1

βτET−i[
τ∏
j=1

(GT−i+je
sPT−i+j)1−θu(cT−i+τ )]}

subject to xt = (xt−1 − ct−1)
R

Gtes
P
t

+ yt and yt = es
T
t .

The model can be solved by numerical backward induction as done by Gourinchas and Parker
(2002) and Carroll (2001). The standard agent’s first-order condition is

u′(cT−i) = Φ
′

T−i = βRET−i[
∂cT−i+τ
∂xT−i+1

(GT−i+1e
sPT−i+1)−θu′(cT−i+τ )+(1− ∂cT−i+1

∂xT−i+1

)(GT−i+1e
sPT−i+1)−θΦ

′

T−i−1]

with his continuation value

Φ
′

T−i−1 = βRET−i−1[
∂cT−i
∂xT−i

(GT−ie
SPT−i)−θu′(cT−i) + (1− ∂cT−i

∂xT−i
)(GT−ie

SPT−i)−θΦ
′

T−i]

where it can be easily noted that

PT−iΦ
′

T−i = ET−i[
∂XT−i+1

∂AT−i

∂
∑i

τ=1 β
τu(CT−i+τ )

∂XT−i+1

] = ET−i[
∂XT−i+1

∂AT−i
(
∂βu(CT−i+τ )

∂XT−i+1

+
∂
∑i

τ=1 β
τ+1u(CT−i+1+τ )

∂XT−i+1

)]

= ET−i[
∂XT−i+1

∂AT−i

∂βu(CT−i+τ )

∂XT−i+1

+
∂XT−i+1

∂AT−i

∂XT−i+2

∂XT−i+1

∂XT−i+1

∂XT−i+2

∂
∑i

τ=1 β
τ+1u(CT−i+1+τ )

∂XT−i+1

]

= ET−i[
∂XT−i+1

∂AT−i

∂βu(CT−i+τ )

∂XT−i+1

+
∂XT−i+1

∂AT−i

∂XT−i+2

∂XT−i+1

∂
∑i

τ=1 β
τ+1u(CT−i+1+τ )

∂XT−i+2

]

= βRET−i[
∂u(CT−i+τ )

∂XT−i+1

+
∂XT−i+2

∂XT−i+1

∂
∑i

τ=1 β
τu(CT−i+1+τ )

∂XT−i+2

]

= βRET−i[
∂u(CT−i+τ )

∂XT−i+1

+
∂AT−i+1

∂XT−i+1

ET−i+1[
∂XT−i+2

∂AT−i+1

∂
∑i

τ=1 β
τu(CT−i+1+τ )

∂XT−i+2

]︸ ︷︷ ︸
PT−i+1Φ

′
T−i−1

]
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= βRET−i[
∂u(CT−i+τ )

∂XT−i+1

+
∂(XT−i+1 − CT−i+1)

∂XT−i+1

PT−i+1Φ′T−i−1] = βRET−i[
∂u(CT−i+τ )

∂XT−i+1

+(1− ∂CT−i+1

∂XT−i+1

)PT−i+1Φ
′

T−i−1].

Φ
′
T−i is a function of savings aT−i thus I can solve for each optimal consumption level c∗T−i on

a grid of savings aT−i as c∗T−i = (Φ
′
T−i−1)−

1
θ = (fΦ

′
(aT−i))

− 1
θ to then find each optimal level

of consumption for each value of the normalized cash-on-hand grid xT−i by interpolation.
This endogenous-grid method has been developed by Carroll (2001). Alternatively, I could
use the Euler equation instead of the agent’s continuation value but this solution illustrates
the upcoming solution of the news-utility model of which it is a simple case.
B.5.2 The monotone-personal and pre-committed equilibrium in the second-

to-last period

Before starting with the fully-fledged problem, I outline the second-to-last period for
the case of power utility. In the second-to-last period the agent allocates his cash-on-hand
XT−1 between contemporaneous consumption CT−1 and future consumption CT , knowing
that in the last period he will consume whatever he saved in addition to last period’s income
shock CT = XT = (XT−1 − CT−1)R + YT . According to the monotone-personal equilibrium
solution concept, in period T − 1 the agent takes the beliefs about contemporaneous and
future consumption he entered the period with {F T−2

CT−1
, F T−2

CT
} as given and maximizes

u(CT−1) + n(CT−1, F
T−2
CT−1

) + γβnnn(F T−1,T−2
CT

) + βET−1[u(CT ) + n(CT , F
T−1
CT

)]

which can be rewritten as

u(CT−1) + η

ˆ CT−1

−∞
(u(CT−1)− u(c))F T−2

CT−1
(c) + ηλ

ˆ ∞
CT−1

(u(CT−1)− u(c))F T−2
CT−1

(c)

+γβ

ˆ ∞
−∞

ˆ ∞
−∞

(u(c)−u(r))F T−1,T−2
CT

(c, r)+βET−1[u(CT )+η(λ−1)

ˆ ∞
CT

(u(CT )−u(c))F T−1
CT

(c)].

To gain intuition for the model’s predictions, I explain the derivation of the first-order
condition

u′(CT−1)(1+ηF T−2
CT−1

(CT−1)+ηλ(1−F T−2
CT−1

(CT−1))) = γβRET−1[u′(CT )](ηF T−2
AT−1

(AT−1)+ηλ(1−F T−2
AT−1

(AT−1))))

+βRET−1[u′(CT ) + η(λ− 1)

ˆ ∞
CT

(u′(CT )− u′(c))F T−1
CT

(c)].

The first two terms in the first-order condition represent marginal consumption utility and
gain-loss utility over contemporaneous consumption in period T − 1. As the agent takes his
beliefs {F T−2

CT−1
, F T−2

CT
} as given in the optimization, I apply Leibniz’s rule for differentiation

under the integral sign. This results in marginal gain-loss utility being the sum of states that
would have promised less consumption F T−2

CT−1
(CT−1), weighted by η, or more consumption

1− F T−2
CT−1

(CT−1), weighted by ηλ,

∂n(CT−1, F
T−2
CT−1

)

∂CT−1

= u′(CT−1)(ηF T−2
CT−1

(CT−1) + ηλ(1− F T−2
CT−1

(CT−1))).
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Note that, if contemporaneous consumption is increasing in the realization of cash-on-hand
then I can simplify F T−2

CT−1
(CT−1) = F T−2

XT−1
(XT−1). Returning to the maximization problem

the third term represents prospective gain-loss utility over future consumption CT experi-
enced in T − 1. As before, marginal gain-loss utility is given by the weighted sum of states
u′(CT )(ηF T−2

AT−1
(AT−1)+ηλ(1−F T−2

AT−1
(AT−1))). Note that F T−2

CT
(c) is defined as the probability

Pr(CT < c|IT−2). Applying a logic similar to the law of iterated expectation

Pr(CT < c|IT−2) = Pr(AT−1R + YT < c|IT−2) = Pr(AT−1 <
c− YT
R
|IT−2)

thus if savings are increasing in the realization of cash-on-hand then I can simplify F T−2
AT−1

(AT−1) =

F T−2
XT−1

(XT−1).
The last term in the maximization problem represents consumption and gain-loss utility

over future consumption CT in the last period T , i.e., the first derivative of the agent’s
continuation value with respect to consumption or the marginal value of savings. Expected
marginal gain-loss utility η(λ − 1)

´∞
CT

(u′(CT ) − u′(c))F T−1
CT

(c) is positive for any concave
utility function such that

Ψ
′

T−1 = βRET−1[u′(CT )+η(λ−1)

ˆ ∞
CT

(u′(CT )−u′(c))F T−1
CT

(c)] > βRET−1[u′(CT )] = Φ
′

T−1.

As expected marginal gain-loss disutility is positive, increasing in σY , absent if σY = 0,
and increases the marginal value of savings, I say that news-utility introduces an “additional
precautionary-savings motive”. The first-order condition can now be rewritten as

u′(CT−1) =
Ψ
′
T−1 + γΦ

′
T−1(ηF T−2

XT−1
(XT−1) + ηλ(1− F T−2

XT−1
(XT−1)))

1 + ηF T−2
XT−1

(XT−1) + ηλ(1− F T−2
XT−1

(XT−1))
.

Beyond the additional precautionary-savings motive Ψ
′
T−1 > Φ

′
T−1 implies that an increase

in F T−2
XT−1

(XT−1) decreases

Ψ
′
T−1

Φ
′
T−1

+ γ(ηF T−2
XT−1

(XT−1) + ηλ(1− F T−2
XT−1

(XT−1)))

1 + ηF T−2
XT−1

(XT−1) + ηλ(1− F T−2
XT−1

(XT−1))
,

i.e., the terms in the first-order condition vary with the income realization XT−1 so that
consumption is excessively smooth and sensitive.
B.5.3 The monotone-pre-committed equilibrium in the second-to-last-period

The first-order condition for pre-committed consumption in period T − 1 is

u′(Cc
T−1) =

Ψ
′
T−1 + γΦ

′
T−1η(λ− 1)(1− 2F T−2

XT−1
(XT−1))

1 + η(λ− 1)(1− 2F T−2
XT−1

(XT−1))

by the same arguments as in the exponential-utility model derivation of the pre-committed
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equilibrium.
B.5.4 The monotone-personal equilibrium path in all prior periods

The news-utility agent’s maximization problem in any period T − i is given by

u(CT−i) + n(CT−i, F
T−i−1
CT−i

) + γ
i∑

τ=1

βτnnn(F T−i,T−i−1
CT−i+τ

) +
i∑

τ=1

βτET−i[U(CT−i+τ )]

again, the maximization problem can be normalized by P 1−θ
T−i as all terms are proportional to

consumption utility u(·). In normalized terms, the news-utility agent’s first-order condition
in any period T − i is given by

u′(cT−i) =
Ψ
′
T−i + γΦ

′
T−i(ηF

T−i−1
cT−i

(cT−i) + ηλ(1− F T−i−1
cT−i

(cT−i)))

1 + ηF T−i−1
aT−i

(aT−i) + ηλ(1− F T−i−1
aT−i

(aT−i))

I solve for each optimal value of c∗T−i for a grid of savings aT−i, as Ψ
′
T−i and Φ

′
T−i are

functions of aT−i until I find a fixed point of c∗T−i, aT−i, F T−i−1
aT−i

(aT−i), and F T−i−1
cT−i

(cT−i).
The latter two can be inferred from the observation that each cT−i + aT−i = xT−i has a
certain probability given the value of savings aT−i−1 I am currently iterating on. However,
this probability varies with the realization of permanent income es

P
T−i thus I cannot fully

normalize the problem but have to find the right consumption grid for each value of es
P
T−i

rather than just one. The first-order condition can be slightly modified as follows

u′(es
P
T−icT−i) =

es
P
T−iΨ

′
T−i + γes

P
T−iΦ

′
T−i(ηF

T−i−1
cT−i

(cT−i) + ηλ(1− F T−i−1
cT−i

(cT−i)))

1 + ηF T−i−1
aT−i

(aT−i) + ηλ(1− F T−i−1
aT−i

(aT−i))

to find each corresponding grid value. Note that, the resulting two-dimensional grid for cT−i
will be the normalized grid for each realization of sTt and sPt , because I multiply both sides
of the first-order conditions with es

P
T−i . Thus, the agent’s consumption utility continuation

value is

Φ
′

T−i−1 = βRET−i−1[
∂cT−i
∂xT−i

(GT−ie
SPT−i)−θu′(cT−i) + (1− ∂cT−i

∂xT−i
)(GT−ie

SPT−i)−θΦ
′

T−i].

The agent’s news-utility continuation value is given by

P−θT−i−1Ψ
′

T−i−1 = βRET−i−1[
dCT−i
dXT−i

u′(CT−i)+η(λ−1)

ˆ

CT−i<C
T−i−1
T−i

(
dCT−i
dXT−i

u′(CT−i)−x)dF T−i−1
dCT−i
dXT−i

u′(CT−i)
(x)

+γη(λ− 1)

ˆ

CT−i<C
T−i−1
T−i

(
dAT−i
dXT−i

P−θT−iΦ
′

T−i − x)dF T−i−1
dAT−i
dXT−i

P−θT−iΦ
′
T−i

(x) + (1− dCT−i
dXT−i

)P−θT−iΨ
′

T−i]
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(here,
´

CT−i<C
T−i−1
T−i

means the integral over the loss domain) or in normalized terms

Ψ
′

T−i−1 = βRET−i−1[
dcT−i
dxT−i

u′(cT−i)(GT−ie
sPT−i)−θ

+η(λ− 1)

ˆ

CT−i<C
T−i−1
T−i

(
dcT−i
dxT−i

u′(cT−i)(GT−ie
SPT−i)−θ − x)dF T−i−1

dcT−i
dxT−i

u′(cT−i)(GT−ie
SP
T−i )−θ

(x)

+γη(λ−1)

ˆ

CT−i<C
T−i−1
T−i

(
daT−i
dxT−i

Φ
′

T−i(GT−ie
SPT−i)−θ−x)dF T−i−1

daT−i
dxT−i

Φ
′
T−i(GT−ie

SP
T−i )−θ

(x)+(1− dcT−i
dxT−i

)(GT−ie
SPT−i)−θΨ

′

T−i].

B.5.5 Risk attitudes over small and large stakes

First, I suppose the agent is offered a gamble about immediate consumption in period
t after that period’s uncertainty has resolved and that period’s original consumption has
taken place. I assume that utility over immediate consumption is linear. Then, the agent is
indifferent between accepting or rejecting a 50-50 win G or lose L gamble if0.5G − 0.5L +
0.5ηG−0.5ηλL = 0. Second, I suppose the agent is offered a monetary gamble or wealth bet
that concerns future consumption. Suppose T → ∞. I assume that his initial wealth level
is At = 100, 000 and Pt = 300, 000. Let fΨ(A) and fΦ(A) be the agent’s continuation value
as a function of the agent’s savings At. Then, the agent is indifferent between accepting or
rejecting a 50-50 win G or lose L gamble if

0.5η(fΦ(At+G)−fΦ(At))+0.5ηλ(fΦ(At−L)−fΦ(At))+0.5fΨ(At+G)+0.5fΨ(At−L) = fΨ(At−L).

B.6 Habit formation

Consider an agent with internal, multiplicative habit formation preferences u(Ct, Ht) =
(
Ct
Hht

)1−θ

1−θ with Ht = Ht−1 + ϑ(Ct−1−Ht−1) and ϑ ∈ [0, 1] (Michaelides (2002)). Assume ϑ = 1
such that Ht = Ct−1. For illustration, in the second-to-last period his maximization problem
is

u(CT−1, HT−1)+βET−1[u(R(XT−1−CT−1)+YT , HT )] =
(CT−1

Hh
T−1

)1−θ

1− θ
+βET−1[

1

1− θ
(
R(XT−1 − CT−1) + YT

Hh
T

)1−θ]

which can be normalized by P (1−θ)(1−h)
T (then CT = PT cT for instance) and the maximization

problem becomes

P
(1−θ)(1−h)
T−1 ( cT−1

hhT−1
)1−θ

1− θ
+βP

(1−θ)(1−h)
T−1 ET−1[

1

1− θ
(GT e

sPT )(1−θ)(1−h)(
(xT−1 − cT−1) R

GT e
sP
T

+ yT

hhT
)1−θ]

72



which results in the following first-order condition

c−θT−1 = h−θh+h
T−1 βET−1[(GT e

sPT )−θ(1−h)(
cT
hhT

)−θ(R +
cT
hT
h)] = Φ

′

T−1

with Φ
′
T−1 being a function of savings xT−1−cT−1 and habit hT . The first-order condition can

be solved very robustly by iterating on a grid of savings aT−1 assuming c∗T−1 = (Φ
′
T−1)−

1
θ =

(fΦ′(aT−1, hT ))−
1
θ and hT = c∗T−1

1

GT e
sP
T

until a fixed point of consumption and habit has
been found. The normalized habit-forming agent’s first-order condition in any period T − i
is given by

c−θT−i = h−θh+h
T−i Φ

′

T−i = h−θh+h
T−i βET−i[(GT−i+1e

SPT−i+1)−θ(1−h)(
cT−i+1

hhT−i+1

)−θ(R
dcT−i+1

dxT−i+1

+
cT−i+1

hT−i+1

h)

+(1− dcT−i+1

dxT−i+1

)(GT−i+1e
SPT−i+1)−θ(1−h)Φ

′

T−1].
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