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Abstract

We show that the optimal portfolio can be derived explicitly in a large class

of models with transitory and persistent transaction costs, multiple signals

predicting returns, multiple assets, general correlation structure, time-varying

volatility, and general dynamics. Our continuous-time model is shown to be

the limit of discrete-time models with endogenous transaction costs due to op-

timal dealer behavior. Depending on the dealers’ inventory dynamics, we show

that transitory transaction costs survive, respectively vanish, in the limit, cor-

responding to an optimal portfolio with bounded, respectively quadratic, vari-

ation. Finally, we provide equilibrium implications and illustrate the model’s

broader applicability to economics.
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A fundamental question in financial economics is how to choose an optimal portfo-

lio. Investors must consider the risks, correlations, expected returns, and transaction

costs of all their available assets and their portfolio choice is a dynamic problem for

several reasons. First, expected returns are driven by several economic factors that

vary over time, leading to variation in the optimal portfolio.1 Second, some return-

driving factors mean-revert more slowly than others, leading their information to be

relevant for longer. Third, transaction costs imply that an investor must consider the

portfolio’s optimality both currently and in the future. Fourth, investors face these

trade offs continually.

We provide a general and tractable framework to address these issues, deriving

a simple expression for the optimal portfolio choice in light of all these dynamic

considerations. Further, we show how the continuous-time solution obtains as the

limit of discrete-time models in which transaction costs are modeled endogenously.

Our explicit solution shows how persistent information is optimally given more weight,

and we derive implications for equilibrium expected returns. Finally, we provide

several additional applications of our framework to other issues in social science.

Our framework’s innovation is to consider a continuous-time model with quadratic

transaction costs and signals of varying persistence. The assumption that transaction

costs are quadratic in the number of securities traded is natural, since it is equivalent

to a linear price impact. This assumption approximates well real markets and makes

our framework highly tractable, allowing us to provide a closed-form optimal portfolio

choice with multiple assets, multiple return-predicting factors, stochastic volatility,

and general correlation structure. The tractability of our framework contrasts with

that of standard models in the literature. Indeed, standard models using proportional

transaction costs are complex and rely on numerical solutions even in the case of a

single asset with i.i.d. returns (i.e., no return predicting factors).2

1See, e.g, Campbell and Viceira (2002) and Cochrane (2011) and references therein.
2There is an extensive literature on proportional transaction costs following Constantinides

(1986). Davis and Norman (1990) provide a more formal analysis and Liu (2004) determines the
optimal trading strategy for an investor with constant absolute risk aversion (CARA) and many
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In discrete time quadratic costs have been shown to provide tractability, and we

rely in particular on Gârleanu and Pedersen (2013).3 In addition to introducing a

continuous-time model, our contributions are to (i) enrich the framework with returns

with stochastic volatility, time-varying risk aversion, and completely general factor

dynamics (Gârleanu and Pedersen (2013) assume constant return volatility, constant

risk aversion, and factors are restricted to be autoregressive AR(1) processes); (ii)

consider a micro foundation for trading costs; (iii) derive the connection between

discrete and continuous time, including the correct time-scaling of parameters; and

(iv) provide equilibrium implications of transaction costs and return predictability.

It is important to understand the connection between discrete and continuous

time as it has been questioned whether market impact costs apply in continuous time

or vanish in the limit. For instance, in the model of Cetin, Jarrow, Protter, and

Warachka (2006), transaction costs are irrelevant in continuous time. To see why

quadratic costs might be irrelevant in continuous time, consider what happens when

one splits a trade into two equal parts. The quadratic transaction cost of each part

of the trade is (1
2
)2 = 1

4
of the cost of the original trade, leading to a total cost that is

half (two times 1
4
) what it was before. This insight leads to two apparent conclusions,

the latter of which we wish to dispel: (i) Splitting orders up and trading gradually

over time is optimal, as is the case in our optimal strategy and in real-world electronic

markets. (ii) One can continue to halve one’s cost by splitting the trade up further,

so the cost goes to zero as trading approaches continuous time. We refute point (ii)

under certain conditions, as it relies on an implicit assumption that, when the trading

frequency increases, the parameter of the quadratic cost function remains unchanged.

This assumption does not hold in general when trading costs are micro-founded; in

independent securities with both fixed and proportional costs (without predictability). The assump-
tions of CARA and independence across securities imply that the optimal position for each security
is independent of the positions in the other securities.

3See also Heaton and Lucas (1996) and Grinold (2006) who also assume quadratic costs. Further,
Glasserman and Xu (2013) extend the model of Gârleanu and Pedersen (2013) to account for robust
optimization.
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this case, instead, the unchanging quantity is the transaction cost incurred per time

unit if trading a given number of shares per time unit.

We provide an economic foundation for quadratic transaction costs and show that

they do matter in continuous time, under natural conditions.4 This is important

for several reasons. First, most trading today occurs in electronic markets in which

traders can trade almost arbitrarily fast. Given such frequent trading in the real

world, it is important to understand the impact of transaction costs when time periods

become smaller, and the continuous-time limit. Second, if transaction costs did not

matter in continuous time, then it would follow either that the discrete-time models

rely heavily on the sufficient length of the time period or that transaction costs also

have a small effect in these models. Third, it is important to understand how models

of different period length are connected and how parameters should be scaled as a

function of the period length. Fourth, our continuous-time model is more tractable

than its discrete-time counterpart and the continuous-time framework opens the door

for further applications with all the usual benefits of continuous time. Our micro

foundation justifies the use of such a cost specification.

To provide an economic foundation for a continuous-time model with transaction

costs, we discretize the model and let transaction costs arise endogenously due to

dealers’ inventory considerations à la Grossman and Miller (1988).5 We consider

both persistent and transitory costs, corresponding to dealers who can lay off their

inventory gradually or in one shot. We show that the discrete-time persistent market-

impact costs converge to a continuous-time model with the same persistent market-

impact parameter and a resiliency parameter that depends on the length of the time

periods to the first order.

There are two ways to model the dependence of the transitory costs on the trading

frequency: (a) If dealers can always lay off their inventory in one time period, then

4We thus offer a justification for the specification employed in such studies as Carlin, Lobo, and
Viswanathan (2008) and Oehmke (2009).

5Inventory models with multiple correlated assets include Greenwood (2005) and Gârleanu, Ped-
ersen, and Poteshman (2009).
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shorter time periods imply that dealers need only hold inventories for a shorter time

and, in this case, transitory costs vanish in the limit. (b) If, instead, the time it

takes dealers to unload inventories does not go to zero even as the trading frequency

increases, then transitory costs survive in the limit. In this case, the limit transaction

costs are quadratic in the trading intensity, i.e., the number of shares traded per time

unit.

We show that both trading costs and the optimal portfolio converge to their

continuous-time counterparts as trading frequencies increase. In the case with van-

ishing transitory costs, the optimal continuous-time portfolio has quadratic variation.

With transitory costs, however, our optimal continuous-time strategy is smooth and

has a finite turnover. Our optimal strategy is qualitatively different from the strat-

egy with proportional or fixed transaction costs, which exhibits long periods of no

trading. Our strategy resembles the method used by many real-world traders in

electronic markets, namely to continually post limit orders close to the mid-quote.

The trading speed is the limit orders’ “fill rate,” which naturally depends on the

price-aggressiveness of the limit orders, i.e., on the cost that the trader is willing to

accept — just as in our model. Our strategy has several advantages in the real world

according to discussions with people who design trading systems: Trading continu-

ously minimizes the order sizes at each point in time and exploits the liquidity that is

available throughout the day/week/month, rather than submitting large infrequent

orders when limited liquidity may be available. Consistently, the empirical literature

generally finds transaction costs to be convex (e.g., Engle, Ferstenberg, and Rus-

sell (2008), Lillo, Farmer, and Mantegna (2003)), with some researchers estimating

quadratic trading costs (e.g., Breen, Hodrick, and Korajczyk (2002) and Kyle and

Obizhaeva (2011)), including for large orders (Kyle and Obizhaeva (2012)). Huber-

man and Stanzl (2004) show that the persistent price impact must be linear to rule

out arbitrage opportunities. Chacko, Jurek, and Stafford (2008) model transaction

costs as a monopolistic market-maker’s price of immediacy and find evidence of a
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market impact that increases with the square root of the order size, corresponding to

a total cost that increases with order size raised to power 3/2 (rather than quadratic).

Nevertheless, the main features of their model, namely transaction costs that are con-

vex and do not vanish in continuous time, are the very ingredients our theory and

micro foundation rely on.

We show that the optimal portfolio trades in the direction of an “aim portfolio,”

which is a weighted average of the current and future optimal portfolios in the ab-

sence of transaction costs, extending the findings of Gârleanu and Pedersen (2013) to

continuous time with more general factor dynamics. This optimal policy implies that

more persistent signals are weighted more heavily as they matter over a longer time

period. This anticipation of the future optimal portfolios is due to transaction costs,

which make the optimal portfolio “sticky.” Hence, this effect is only seen in a model

with both frictions and signals of varying persistence.

The tractability of our framework makes it a potentially powerful “workhorse” for

other applications involving transactions costs. As one such application, we embed

the continuous-time model in an equilibrium setting. Rational investors facing trans-

action costs trade with several groups of noise traders who provide a time-varying

excess supply or demand of assets. We show that, in order for the market to clear,

the investors must be offered return premia depending on the properties of the noise-

traders’ positions. In particular, the noise-trader positions that mean revert more

quickly generate larger alphas in equilibrium, as the rational investors must be com-

pensated for incurring higher transaction costs per time unit. Long-lived supply

fluctuations, on the other hand, give rise to smaller and more persistent alphas. This

can help explain the short-term return reversals documented by Lehman (1990) and

Lo and MacKinlay (1990), and their relation to transaction costs documented by

Nagel (2011).

Finally, our work relates to several strands of literature in addition to the research

cited above. One strand of literature studies equilibrium asset pricing with trading
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costs (Amihud and Mendelson (1986), Vayanos (1998), Vayanos and Vila (1999), Lo,

Mamaysky, and Wang (2004), Jang, Koo, Liu, and Loewenstein (2007), and Gârleanu

(2009)) and time-varying trading costs (Acharya and Pedersen (2005), Lynch and

Tan (2011)). Second, a strand of literature derives the optimal trade execution,

treating the asset and quantity to trade as given exogenously (see, e.g., Perold (1988),

Bertsimas and Lo (1998), Almgren and Chriss (2000), Obizhaeva and Wang (2006),

and Engle and Ferstenberg (2007)).

Finally, linear-quadratic models are widely used in social science (see Ljungqvist

and Sargent (2004), Hansen and Sargent (2014), and references therein). We con-

tribute to this broader literature in two ways. First, the general solution comes down

to algebraic matrix Riccati equations requiring numerical solutions, while we solve

our model explicitly, including the Riccati equations. Second, we consider how to act

optimality in light of frictions and several signals with varying mean-reversion rates

in the linear-quadratic framework. This leads to insights with broad implications

across social science as we discuss in the concluding section of the paper. For ex-

ample, a central bank may receive several signals about inflation (e.g., core inflation

versus headline inflation, or in several regions, or across several product markets)

and face costs of changing monetary policy. A politician may face varying signals

from several constituents and incur costs from political changes. A firm may receive

several signals about consumer preferences and face costs to adjusting its products.

The macro economy may face different signals about total factor productivity (TFP)

and capital adjustment costs. In each of these examples, our framework could be

used to see how to optimally weight the signals in light of their dynamics and costs.

Our model shows that the optimal policy moves gradually in the direction of an aim,

which incorporates an average of current and future expected signals, thus giving

must weight to persistent signals, and how the answer depends on the time horizon.

Specifically, the model shows explicitly how a firm should weight persistent consumer

trends, a central bank should weight core inflation over transitory inflation, and the
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macro capital adjustment should be based on persistent TFP shocks.

The rest of the paper is organized as follows. Section 1 lays out our continuous-

time framework and solves the model with transitory and persistent transaction costs.

Section 2 provides a discrete-time foundation for the model, providing endogenous

transaction costs and deriving the limit as the length of the time periods becomes

small. Section 3 shows how to extend the framework to accommodate time variation

in such quantities as volatility, risk aversion, or transaction costs, while Section 4

derives equilibrium implications of the framework. Section 5 concludes with broader

implications for social science. All proofs are in appendix.

1 Continuous-Time Model

We start by introducing our tractable continuous-time framework and illustrating its

solution. We first consider the case of purely transitory transaction costs, then in-

troduce persistent transaction costs, and finally consider the case of purely persistent

costs.

1.1 Purely Temporary Transaction Costs

An investor must choose an optimal portfolio among S risky securities and a risk-free

asset. The risky securities have prices p with dynamics

dpt =
(
rfpt +Bft

)
dt+ dut, (1)

Here, ft is a K × 1 vector which contains the factors that predict excess returns,

B is an S × K matrix of factor loadings, and u is an unpredictable “noise term,”

i.e., a martingale (e.g., a Brownian motion) with instantaneous variance-covariance

matrix vart(dut) = Σdt. (Section 3 considers a generalized model with time-varying
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volatility.) The return-predicting factors follow a general Markovian jump diffusion:

dft = µf (ft)dt+ σf (ft)dwt + dN f
t , (2)

where w is a Wiener process and N f a martingale which is a compensated jump

process. We impose on the dynamics of f conditions sufficient to ensure that it is

stationary. Occasionally, we also make use of the following assumption that specifies

the matrix Φ of mean-reversion rates for the factors.

Assumption A1. The drift of ft is given by µf (f) = −Φf .

The agent chooses his trading intensity τt ∈ RS, which determines the rate of

change6 of his position xt:

dxt = τtdt. (3)

The transaction cost TC per time unit of trading with intensity τt is

TC(τt) =
1

2
τ>t Λτt. (4)

Here, Λ is a symmetric positive-definite matrix measuring the level of trading costs.7

This quadratic transaction cost arises as a trade ∆xt shares moves the price by 1
2
Λ∆xt,

and this results in a total trading cost of ∆xt times the price move. This is a multi-

dimensional version of Kyle’s lambda. Most of our results hold with this general

6We only consider smooth portfolio policies here because discrete jumps in positions or quadratic
variation would be associated with infinite trading costs in this setting. Further, when we consider the
discrete-time foundation for temporary transaction costs in Section 2.2, we see that such non-smooth
strategies would have infinite transaction costs when the length of the trading periods approaches
zero. E.g., if the agent trades n shares over a time period of ∆t, then the cost according to (4) is∫∆t

0
TC( n

∆t )dt = 1
2Λ n2

∆t , which approaches infinity as ∆t approaches 0.
7The assumption that Λ is symmetric is without loss of generality. To see this, suppose that

TC(∆xt) = 1
2∆x>t Λ̂∆xt, where Λ̂ is not symmetric. Then, letting Λ be the symmetric part of Λ̂,

i.e., Λ = (Λ̂ + Λ̂>)/2, generates the same trading costs as Λ̂.
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transaction cost function, but some of the resulting expressions are simpler in the

following special case.

Assumption A2. Transaction costs are proportional to the amount of risk: Λ = λΣ

for a scalar λ > 0.

This assumption is natural and, in fact, implied by the micro-foundation that we

provide in Section 2.2. To understand this, suppose that a dealer takes the other side

of the trade ∆xt, holds this position for a period of time dt, and “lays it off” at the

end of the period. Then the dealer’s risk is ∆x>t Σ∆xt dt and the trading cost is the

dealer’s compensation for risk, depending on the dealer’s risk aversion reflected by λ.

Section 2.2 further analyzes the conditions under which the compensation for risk is

strictly positive.

The investor chooses his optimal trading strategy to maximize the present value

of the future stream of expected excess returns, penalized for risk and trading costs:

max
(τs)s≥t

Et

∫ ∞
t

e−ρ(s−t)
(
x>s Bfs −

γ

2
x>s Σxs −

1

2
τ>s Λτs

)
ds. (5)

This objective function means that the investor has mean-variance preferences over

the change in his wealth Wt each time period. The objective can be shown to ap-

proximate a standard utility function or it can be viewed as that of an asset manager

who seeks a high Sharpe ratio. Also, this type of objective function is widely used in

macro-economics (see Hansen and Sargent (2014) and references therein).

We conjecture and verify that the value function is quadratic in x:

V (x, f) = −1

2
x>Axxx+ x>Ax(f) + A(f). (6)

We solve the model explicitly, as the following proposition states. It is helpful to

compare our result with the optimal portfolio under the classical no-friction assump-
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tion, for which we use the notation Markowitz as a reference to the classical findings

of Markowitz (1952):

Markowitz t = (γΣ)−1Bft. (7)

The Markowitz portfolio has an optimal trade-off between risk (Σ) and expected

excess return (Bft), leveraged to suit the agent’s risk aversion (γ). We show that

the optimal portfolio in light of transaction costs moves gradually towards an “aim

portfolio,” which incorporates current and future expected Markowitz portfolios.

Proposition 1 (i) There exists a unique optimal portfolio strategy.

(ii) The optimal portfolio xt tracks a moving “aim portfolio” M̄aim(ft) with a tracking

speed of M̄ rate. That is, the optimal trading intensity τt = dxt
dt

is

τt = M̄ rate
(
M̄aim(ft)− xt

)
, (8)

where the coefficient matrix M̄ rate is given by

M̄ rate = Λ−1Axx (9)

Axx = −ρ
2

Λ + Λ
1
2

(
γΛ−

1
2 ΣΛ−

1
2 +

ρ2

4
I

) 1
2

Λ
1
2 (10)

and the aim portfolio by

M̄aim(ft) = A−1
xxAx(ft), (11)

and Ax(f) satisfies a second-order ODE given in the Appendix.

(iii) The aim portfolio Maim(f) has the intuitive representation

Maim(f) = b

∫ ∞
0

e−bt E [Markowitzt|f0 = f ] dt (12)

with b = γA−1
xxΣ.
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(iv) Under Assumption A2, the solution simplifies: Axx = aΣ, b > 0 is a scalar, and

M̄ rate = a/λ =
1

2
(
√
ρ2 + 4γ/λ− ρ) (13)

M̄aim = γ−1Σ−1B (I + a/γΦ)−1 , (14)

where the last equation also requires Assumption A1, µ(f) = −Φf .

This proposition provides an intuitive method of portfolio choice. The optimal

portfolio can be written in a simple closed-form expression. In light of the litera-

ture on portfolio choice with proportional transaction costs (Constantinides (1986)),

which relies on numerical results even for a single asset with i.i.d. returns, our frame-

work offers remarkable tractability even with correlated multiple assets and multiple

signals.

It is intuitive that the optimal portfolio trades toward an aim portfolio, which is a

weighted average of future expected Markowitz portfolios. This means that persistent

signals are given more weight as they affect the Markowitz portfolio for a longer time

period. This result is seen most clearly in Equation (14). The aim portfolio is seen

to be almost of the same form as the Markowitz portfolio, expect that the signals

are scaled down by (I + a/γΦ)−1. Given that Φ contains the signals’ mean-reversion

rates, this means that quickly mean-reverting signals are scaled down more while

more persistent ones receive more weight. This dependence on the signals’ mean-

reversion rate is greater with larger transaction costs, that is, a/γ (which multiplies

the mean-reversion Φ) increases with λ.

The trading rate given in (13) is remarkably simple. Naturally, the trading rate

is decreasing in the transaction cost λ and increasing in risk aversion γ. Indeed, for

a patient agent with ρ ≈ 0, we see that the trading rate is approximately
√
γ/λ.

Example. To illustrate the optimal portfolio choice with frictions, we consider a

specific example. Figure 1 plots the evolution of the Markowitz portfolio in an econ-
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Figure 1: Optimal portfolio with one asset and temporary impact costs.

omy with a single asset, say an equity-market index. The agent must decide on his

equity allocation in light of his time-varying estimate of the equity premium while

being mindful of transaction costs. To do this, he constructs an aim portfolio as seen

in the figure. The aim portfolio is a more conservative version of the Markowitz port-

folio due to transaction costs and because the agent anticipates that the Markowitz

portfolio will mean-revert. Finally, the agent’s optimal portfolio, also plotted in Fig-

ure 1, smoothly moves toward the aim portfolio, thus saving on transaction costs

while capturing most of the benefits on the Markowtiz portfolio.

Interesting, we see that there are times when the optimal portfolio is below the

Markowitz portfolio and above the aim, such that the optimal strategy is selling (i.e.,

negative dx/dt = τ) even though the best risk-return trade-off is above. This selling

is motivated by the agent’s anticipation that the Markowitz portfolio will go down in

the future, and, to save on transaction costs, it is cheaper to start selling gradually

already now.
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Figure 2: Expected optimal portfolio with two assets.

While it may not be easy to see in the figure, the distance between the aim

portfolio and the Markowitz portfolio varies over time. This distance depends on

which signal is driving the current high Markowitz portfolio — a persistent signal

increases the aim portfolio more than a signal that will quickly mean-revert, while

the signal’s mean-reversion rates are irrelevant for Markowitz portfolio (and have not

been studied by the portfolio choice literature more broadly, with the exception of

Gârleanu and Pedersen (2013)).

Figure 2 illustrates the optimal portfolio choice with two assets. There are several

differences in this illustration. First, the horizonal axis is now the allocation to asset

one and the vertical axis the allocation to asset two. Second, rather than considering

how the optimal portfolio evolves over time as shocks hit the economy, we consider

its expected path.

We see that the Markowitz portfolio is expected to mean-revert along a concave

curve. The concavity reflects that the signal that currently predicts a high return
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of asset 2 is more persistent. The current aim portfolio lies in the convex hull of

the path of the expected future Markowitz portfolios. The optimal portfolio trades

in the direction of the aim and it is expected to eventually approach the Markowitz

portfolio. Intuitively, the initial trading process focuses on buying shares of asset two,

which is expected to have a high return over an extended time period.

1.2 Temporary and Persistent Transaction Costs

We modify the set-up above by adding persistent transaction costs. Specifically, the

agent transacts at price p̄t = pt +Dt, where the distortion Dt evolves according to

dDt = −RDt dt+ Cdxt = −RDt dt+ Cτt dt. (15)

where the scalar R is the price resiliency. The agent’s objective now becomes

max
(τs)s≥t

Et

∫ ∞
t

e−ρ(s−t)
(
x>s
(
Bfs − (rf +R)Ds + Cτs

)
− γ

2
x>s Σxs −

1

2
τ>s Λτs

)
ds.

(16)

This objective function is similar to the one from above, but it has some new terms

that multiply the position xs. Now the expected excess return of prices that include

persistent distortions, p̄s = ps + Ds, is given by the expected excess return of ps,

which is Bfs as before, plus the expected excess return of Ds, which is given by (15)

in excess of the risk-free rate rf . It might appear odd that the agent seems to benefit

from buying and pushing the price higher, but this benefit leads to a loss as the

distortion D decays.

It is no longer true in general that the objective (16) is concave in {τt}t, since the

gain from the immediate increase in the mark-to-market value of the portfolio may

exceed the loss from the (discounted) round-trip transaction costs . We therefore have

to restrict attention to parameter configurations for which the objective is, indeed,
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concave. The fact that such configurations — with C 6= 0 — exist is ensured by

Lemma 1, which provides sufficient conditions for concavity.

Lemma 1 The objective function (16) is concave in {τt}t if the persistent-impact

matrix C is symmetric positive definite and γ ≥ (ρ− rf )‖Σ− 1
2CΣ−

1
2‖.

The second condition roughly states that the price impact C is not too large relative

to the trader’s risk aversion γ; the condition is automatically satisfied if ρ ≤ rf .

We conjecture, as before, a value function that is quadratic in the endogenous

state variable (xt, Dt) and the factor ft. Specifically, we write

V (x,D, f) = −1

2
x>Axxx+ x>AxyD +

1

2
D>ADDD + x>Ax(f) +D>AD(f) + Aff (f).

(17)

Under an appropriate transversality condition, the value function exists and must

have this form. We are concentrating on the optimal trading strategy.

Proposition 2 (i) The optimal trading intensity has the form

τt = M̄ rate
(
M̄aim

f (ft) + M̄aim
D Dt − xt

)
(18)

for appropriate matrices M̄ rate and M̄aim
D and function M̄aim

f solving an ODE given

in the proof.

(ii) An equivalent representation of the portion of the aim due to f is

M̄aim
f (f) = N2

∫ ∞
0

e−N1tN3 E [Markowitzt|f0 = f ] dt (19)

for matrices Ni given explicitly in the appendix.

We see that the optimal portfolio choice continues to have the same intuitive char-

acteristics as in the model with only temporary impact costs. The optimal portfolio

trades toward an aim, which now depends both on the current signals and the current
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persistent price distortions. The current signals affect the aim through a combination

of their implied current and future Markowitz portfolios.

1.3 Purely Persistent Costs

The set-up is as above, but now we take Λ = 0. Under this assumption, it no

longer follows that xt has to be of the form dxt = τt dt for some τ . Indeed, with

purely persistent price-impact costs, the optimal portfolio policy can have jumps and

infinite quadratic variation (i.e., “wiggle” like a Brownian motion).

As before, D is the price distortion and it evolves as

dDt = −RDt dt+ Cdxt. (20)

We define the objective of the trader to be

Et

∫ ∞
t

e−ρ(s−t)
(
x>s
(
αs − (rf +R)Ds

)
− γ

2
x>s Σxs

)
ds (21)

+Et

∫ ∞
t

e−ρ(s−t)x>s−Cdxs +
1

2
Et

∫ ∞
t

e−ρ(s−t)d [x,Cx]s .

The terms in the first row of (21) are as before. Also, the first term in the second

row is as before, although here it is written more generally. Indeed, x>s−Cdxs =

x>s Cτsds when the portfolio is continuous and of bounded variation as it was above.

This term captures the mark-to-market profit on the old position due to the market

impact of the new trade, as before.

The last term is new. It records the instantaneous mark-to-market gain on the

just-purchased units dxs. Specifically, the new trade moves the price distortion by

Cdxs and we assume that the trade is executed at an average of the pre- and post-

trade prices, which leads to a mark-to-market profit of 1
2

times the price move. As

the price distortion eventually disappears, this short-term gain is more than reversed

later.8

8One could alternatively assume that the entire new trade is executed at the new price, thus
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Figure 3: Optimal portfolio with one asset and purely persistent.

A helpful observation in this case is that making a large trade ∆x over an in-

finitesimal time interval has an easily described impact on the value function. In fact,

the ability to liquidate one’s position instantaneously, and then take a new position,

at no cost relative to trading directly to the new position, implies

V (x,D, f) = V (0, D − Cx, f)− 1

2
x>Cx. (22)

We prove this intuitive conjecture by providing a verification argument for the optimal

control and value function that we propose.

Proposition 3 (i) A quadratic value function exists of the form (A.42) in the ap-

eliminating this term. However, such an assumption would imply that the objective function has
no solution since a trader would prefer arbitrarily fast, but continuous and of bounded variation,
trades rather than the solution that we derive. These strategies would be arbitrarily close to the
optimal strategy that we derive. Other alternative assumptions suffer from similar issues. Under
our assumption, a concavity result similar to Lemma 1 holds.
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pendix. The optimal portfolio is given by

xt = M̄0,fBft + M̄1,f (ft)− M̄D(D− − Cx−), (23)

where the matrices M̄0,f and M̄D are given in the Appendix in terms of solutions to

algebraic Riccati equations, and M1,f in terms of an appropriate ODE. (ii) It holds

that

M̄0,fBft + M̄1,f (f) = N̂0Markowitz0 + N̂2

∫ ∞
0

e−N̂1tN̂3 E [Markowitzt|f0 = f ] dt

(24)

for appropriate matrices N̂i given in the appendix.

We see that the optimal strategy is qualitatively different from the strategies that

we derived above. Indeed, with purely persistent costs, the optimal strategy is no

longer to trade toward an aim, but, rather, to choose a portfolio directly based on

the current signals. Further, while the optimal portfolio continues to depend on the

current and future expected Markowitz portfolios, the current one now has a distinct

impact as seen in Equation (24). These qualitative differences between the solutions

to Propositions 3, respectively Propositions 1 and 2, are immediately apparent in

continuous time, but harder to detect in discrete time, where they are given by the

same functional form, as seen in Proposition 4.

Example. Figure 3 illustrates this result graphically. We see that the optimal

portfolio has quadratic variation. It follows the Markowitz portfolio, but moderates

the position to economize on persistent transaction costs.
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2 Discrete-Time Foundation

In this section we consider the discrete-time foundation for our continuous-time model.

We first review how the model is solved in discrete time (Section 2.1), then show how

transaction costs arise as compensation to dealers (Section 2.2), and finally derive

this section’s main result, namely that the discrete-time solution approaches the ap-

propriate continuous-time solution as the length of time ∆t between trading dates

goes to zero (Section 2.3).

One of the central issues in this section is how each parameter depends on ∆t.

For the statistical-distribution parameters, the dependence on ∆t is standard from

the literature on how to discretize a continuous-time model, of course. For instance,

the variance of a shock is linear in ∆t, and so on. The one parameter where the

literature does not offer guidance as to its dependence on ∆t is the transaction cost.

Further, how transaction costs depend on ∆t is crucially important for understand-

ing how one should optimally trade in modern markets where one can trade almost

arbitrarily frequently. Hence, while Section 2.2 is decidedly stylized, it should really

be viewed as a way to understand the economics of how transaction costs depend on

time frequencies.

2.1 Discrete-Time Model and Solution

We start by presenting a discretely-sampled version of the continuous-time model. Se-

curities are now traded at dates indexed by t ∈ {0, 1, 2, ...}, corresponding to calendar

times 0,∆t, 2∆t, . . ., where ∆t is the length of the time periods. The securities’ price

changes between times t and t+1 in excess of the risk-free return, pt+1− (1+rf∆t)pt,

are collected in an S × 1 vector rt+1. As before, excess returns can be predicted by

the factors ft:

rt+1 = Bft∆t+ ut+1, (25)
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where ut+1 is the unpredictable zero-mean noise term with variance vart(ut+1) = Σ∆t.

Naturally, the returns’ mean and variance scale linearly in time, ∆t. The return-

predicting factor ft is known to the investor at time t and it evolves according to

∆ft+1 = −Φft∆t+ εt+1, (26)

where ∆ft+1 = ft+1−ft is the change in the factors, Φ is the matrix of mean-reversion

coefficients, and εt+1 is the factor shock with variance vart(εt+1) = Ω∆t. (We note

that we have imposed Assumption A1 to simplify the dynamics of f , but this is just

for ease of exposition as our results extend more generally.)

An investor in the economy faces transaction costs. The transaction cost (TC)

associated with trading ∆xt = xt − xt−1 shares is given by

TC(∆xt) =
1

2
∆x>t Λ(∆t)∆xt, (27)

where Λ(∆t) is the matrix of transitory market impact costs. The literature does

not offer guidance for how Λ(∆t) depends on ∆t. To address this issue, Section 2.2

provides this dependence of transaction costs on ∆t in a model of endogenous dealer

behavior.

The investor’s objective is to choose the dynamic trading strategy (x0, x1, ...) to

maximize the present value of all future expected excess returns, penalized for risks

and trading costs:

max
x0,x1,...

E0

[∑
t

(1− ρ∆t)t+1
(
x>t rt+1 −

γ

2
x>t Σ∆txt

)
− (1− ρ∆t)t

2
∆x>t Λ∆xt

]
,

(28)

where the discount rate is ρ∆t with ρ ∈ (0, 1), and γ is the risk-aversion coefficient

(which naturally does not depend on ∆t).

Gârleanu and Pedersen (2013) solve this discrete-time model using dynamic pro-
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gramming, but we re-derive the solution here for completeness. The value function

V (xt−1, ft) measures the value of entering period t with a portfolio of xt−1 securities

and observing return-predicting factors ft. It solves the Bellman equation:

V (xt−1, ft) = max
xt

{
−1

2
∆x>t Λ(∆t)∆xt + (1− ρ∆t)

(
x>t Et[rt+1]− γ

2
x>t Σxt∆t+ Et[V (xt, ft+1)]

)}
.

(29)

The model has a unique solution and can be solved explicitly:

Proposition 4 (Discrete-Time Solution with Transitory Costs) The optimal

portfolio xt tracks an “aim portfolio,” Maim(∆t)ft, with trading rate M rate(∆t):

∆xt = M rate(∆t)
(
Maim(∆t)ft − xt−1

)
, (30)

where the coefficients are given by the value-function coefficients, made explicit in the

appendix:

M rate(∆t) = Λ(∆t)−1Axx(∆t) (31)

Maim(∆t) = Axx(∆t)
−1Axf (∆t). (32)

Transitory and persistent transaction costs.

We next study the more general case featuring both transitory and persistent transac-

tion costs. (In discrete time, there is no need to distinguish the case of pure persistent

costs — it provides a qualitatively different solution only in continuous time.) We

extend the model by letting the price be given by p̄t = pt + Dt and the investor

incur the cost associated with the persistent price distortion Dt in addition to the

temporary trading cost TC from before. Hence, the price p̄t is the sum of the price

pt without the persistent effect of the investor’s own trading (as before) and the new

term Dt, which captures the accumulated price distortion due to the investor’s (pre-
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vious) trades. Trading an amount ∆xt pushes prices by C∆xt such that the price

distortion becomes Dt + C∆xt, where C(∆t) is Kyle’s lambda for persistent price

moves. Further, the price distortion mean reverts at a speed (or “resiliency”) R(∆t).

Section 2.2 shows how C and R depend on ∆t. Given the persistent price impact and

resilience, the price distortion at the following date (t+ 1) is

Dt+1 = (I −R) (Dt + C∆xt) . (33)

The investor’s objective is as before, with a natural modification due to the price

distortion:

E0

[∑
t

(1− ρ∆t)t+1
(
x>t
[
Bft −

(
R + rf

)
(Dt + C∆xt)

]
∆t− γ

2
x>t Σxt∆t

)
+ (1− ρ∆t)t

(
−1

2
∆x>t Λ∆xt + x>t−1C∆xt +

1

2
∆x>t C∆xt

)]
. (34)

Let us explain the various new terms in this objective function. The first term is the

position xt times the expected excess return of the price p̄t = pt + Dt given inside

the inner square brackets. As before, the expected excess return of pt is Bft. The

expected excess return due to the post-trade price distortion is

Dt+1 − (1 + rf∆t)(Dt + C∆xt) = −(R + rf ) (Dt + C∆xt) ∆t. (35)

The second term is the penalty for taking risk as before. The three terms on the

second line of (34) are discounted at (1− ρ)t because these cash flows are incurred at

time t, not time t+ 1. The first of these is the temporary transaction cost as before.

The second reflects the mark-to-market gain from the old position xt−1 from the price

impact of the new trade, C∆xt. The last term reflects that the traded shares ∆xt

are assumed to be executed at the average price distortion, Dt + 1
2
C∆xt. Hence, the

traded shares ∆xt earn a mark-to-market gain of 1
2
∆x>t C∆xt as the price moves up

an additional 1
2
C∆xt.
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The value function is now quadratic in the extended state variable (xt−1, yt) ≡

(xt−1, ft, Dt):

V (x, y) = −1

2
x>Axxx+ x>Axyy +

1

2
y>Ayyy + A0.

As before, there exists a unique solution to the Bellman equation and the following

proposition characterizes the optimal portfolio strategy.

Proposition 5 (General Discrete-Time Solution) The optimal portfolio xt is

∆xt = M rate(∆t)
(
Maim(∆t)yt − xt−1

)
, (36)

which tracks an aim portfolio, Maim(∆t)yt, that depends on the return-predicting

factors and the price distortion, yt = (ft, Dt). The coefficient matrices M rate(∆t)

and Maim(∆t), which depend on the length ∆t of the time periods, are stated in the

appendix.

2.2 Foundation for Transaction-Cost Specifications

We next consider the economic foundation for the quadratic transaction cost, the

dependence on the trading frequency, and the limit as the trading frequency increases.

Transitory transaction costs.

To obtain a temporary price impact of trades endogenously, we consider an economy

populated by three types of investors: (i) the trader whose optimization problem

we study in the paper, referred throughout this section as “the trader,” (ii) “market

makers,” who act as intermediaries, and (iii) “end users,” on whom market makers

eventually unload their positions as described below.

The temporary price impact is due to the market makers’ inventories. We assume

that there are a mass-one continuum of market makers indexed by the set [0, h] and

they arrive for the first time at the market at a time equal to their index. The market
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operates only at discrete times ∆t apart,9 and the market makers trade at the first

trading opportunity. Once they trade — say, at time t — market makers must spend

h units of time gaining access to end users. At time t + h, therefore, they unload

their inventories at a price pt+h described below, and rejoin the market immediately

thereafter. It follows that at each market trading date there is always a mass ∆t
h

of

competing market makers that clear the market.

The price p, the competitive price of end users, follows an exogenous process and

corresponds to the fundamental price in the body of the paper. Market makers take

this price as given and trade a quantity q to maximize a quadratic utility:

max
q

{
Êt
[
q>(pt+h − erhp̂t)

]
− γM

2
V art

[
q>(pt+h − erhp̂t)

]}
, (37)

where p̂t is the market price at time t and r is the (continuously-compounded) risk-

free rate over the horizon. Ê denotes expectations under the probability measure

obtained from the market makers’ beliefs using their (normalized) marginal utilities

corresponding to q = 0 as Radon-Nikodym derivative. Consequently,

Êt
[
pt+h

]
= erhpt,

so that the maximization problem becomes

max
q

{
q(pt − p̂t)− e−rh

γM

2
V art

[
qpt+h

]}
. (38)

The price p̂ is set so as to satisfy the market-clearing condition

0 = ∆xt + q
∆t

h
. (39)

Combining the market clearing condition and the market marker’s optimality con-

dition, we get the following expression, where we also use that the variance of h-

periods-ahead prices (denoted Vh) can be easily calculated since p is exogenous and

9We make the simplifying assumption that h
∆t is an integer.
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Gaussian,10

p̂t = pt + e−rhγMVh
∆xt
∆t

h. (40)

Consequently, if the trader trades an amount ∆xt, he trades at the unit price of pt

and pays an additional transaction cost of

e−rhγM∆x>t Vh
∆xt
∆t

h,

which has the quadratic form posited in Section 2.1.

Two cases suggest themselves naturally when considering the choice for the holding

period h as a function of ∆t. In the first case, a decreasing ∆t is thought of as an

improvement in the trading technology or in the attention and market access of all

market participants, and therefore h decreases as ∆t does — in its simplest form,

h = ∆t, which yields a transaction cost of the order ∆t2. Generally, as long as h→ 0

as ∆t→ 0, the transaction costs also vanishes.

The second case is that of a constant h: the dealers need a fixed amount of time to

lay off a position regardless of the frequency with which our original traders access the

market. It follows, in this case, that the price impact does not vanish as ∆t becomes

small: in the continuous-time limit (∆t→ 0), the per-unit-of-time transaction cost is

proportional to

lim
∆t→0

∆x>t
∆t

Vhh
∆xt
∆t

= τ>Vhhτ, (41)

as assumed in Section 1.1. One can therefore interpret ∆t in this case as the frequency

with which the researcher observes the world, which does not impact (to the first

order) equilibrium quantities — in particular, flow trades and costs. We summarize

our results as follows:

10The resulting value is Vh = Σh + BNhΩN>h B>, where Nh =
∫ h

0

∫ h

u
e−Φ(t−u)dt du = Φ−1h −

Φ−2
(
I − e−Φh

)
if Φ is invertible. (Note that the first term, Σh, is of order h, while the second of

order h2.)
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Proposition 6 (Time Dependence of Transitory Transaction Costs)

(i) If dealers need a fixed amount of calendar time to lay off their inventory, then

the transitory market-impact parameter Λ(∆t) is of order 1/∆t , Λ(∆t) = Λ/∆t.

(ii) If dealers can lay off their inventory during each time period, then the transi-

tory market-impact parameter Λ(∆t) is of order ∆t, Λ(∆t) = Λ∆t.

Persistent transaction costs.

We model persistent price impact costs with a similar model, but with a different

specification of the market makers. Consider therefore the same model as in the

previous section, but suppose now that market makers do not hold their inventories

for a deterministic number h of time units, but rather manage to deplete them,

through trade with end users at price p, at a constant rate ψ. Thus, between two

trading dates with the trader, a market maker’s inventory evolves according to

∆It = −ψIt−1∆t+ qt, (42)

where, in equilibrium,

qt = ∆xt.

The market makers continue to maximize a quadratic objective:

max
{qs}s≥t

{
Êt
∑
s≥t

e−r(s−t)
(
ψI>s−1ps∆t− q>s p̂s −

γM

2
I>s−1V∆tIs−1

)}
, (43)

subject to (42) and expectations about q described below. Note that the market

maker’s objective depends (positively) on the expected cash flows ψI>s ps−1∆t− q>s p̂s
due to future trades with the end user and the trader, and negatively on the risk of

his inventory.

We assume that market makers cannot predict the trader’s order flow ∆x. More
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specifically, according to their probability distribution,

Ê [∆xt | Fs, s < t] = 0 (44)

Ê
[
(∆xt)

2 | Fs, s < t
]

= v. (45)

Moments of qs and Is follow immediately.

The first-order condition with respect to qt is

0 = Êt
∑
s≥t

e−r(s−t)
(
ψp>s − γMI>s−1

V∆t

∆t

)
∂Is−1

∂qt
∆t− p̂>t . (46)

Using the fact that ∂Is
∂qt

= (1− ψ∆t)s−t for s ≥ t, the first-order condition yields

p̂t = Êt
∑
s>t

e−r(s−t)(1− ψ∆t)s−t−1

(
ψps − γM

V∆t

∆t
Is−1

)
∆t. (47)

Using the facts that Êt[e
−r(s−t)ps] = pt and Êt[Is] = (1− ψ∆t)s−tIt, we obtain

p̂t = pt − κIIt (48)

for a constant matrix

κI =
∞∑
n=0

e−r(n+1)∆t(1− ψ∆t)2n∆tγM
V∆t

∆t
∆t. (49)

The price p̂t is only the price at the end of trading date t — the price at which the

last unit of the qt shares is traded. We assume that, during the trading date, orders

of infinitesimal size come to market sequentially and the market makers’ expectation

is that the remainder of date-t order flow aggregates to zero — thus, the order flow is

a martingale. It follows that the price paid for the kth percentile of the order flow qt

is pt− κI(It−1 + kqt). This mechanism ensures that round-trip trades over very short

intervals do not have transaction-cost implications.
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This price specification is the same as in Section 2.1, with Λ = 0 and Dt = −κIIt:

Dt+1 = −κIIt+1

= −κI (It − ψIt∆t+ ∆xt)

= Dt − κIψκ−1
I ∆tDt − κI∆xt

≡ (I −R(∆t)) (Dt + C∆xt) . (50)

We summarize the implications for the specification of the price impact faced by

the trader in the following.

Proposition 7 (Time Dependence of Persistent Transaction Costs) The re-

siliency parameter R is of order ∆t, R(∆t) = R∆t. The persistent market impact C

does not depend on ∆t.

Transitory and persistent transaction costs.

The two types of price impact can obtain simultaneously in this model so that we

can have both kinds of transaction costs and consider their separate convergence to

continuous time using Propositions 6–7. To see this, consider for instance an economy

with the trader and two kinds of market makers. The trader transacts with the first

group of market makers. After a period of length h, these market makers clear their

inventories with a second group of market makers, who specialize in locating end users

and trading with them. This second group of market makers deplete their inventories

only gradually (at a constant rate as above), giving rise to a persistent impact. The

trader must compensate both groups of market makers for the risk taken, resulting

in the two price-impact components.

Discussion of Transaction Cost Foundation.

We have seen how transaction costs depend on the trading intervals, which is im-

portant for several reasons as discussed in the introduction. We note that our micro

foundation is based on a completely standard model of market makers in the spirit
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of the large literature that follows Grossman and Miller (1988). The central ingre-

dients in this framework are as follows. First, market makers are competitive. In

the real world, liquidity provision is indeed a competitive business with numerous

firms participate, including a number of investment banks, market making firms like

Getco LLC, Citadel, and many others. A second assumption is that market makers

intermediate between end users who are not always available in the market. Again,

this is a standard assumption (it is almost the definition of intermediation). A third

important assumption is that market makers are risk averse and therefore focus on

their inventory. This behavior is well documented in the literature, and we follow

the inventory-based models by abstracting from adverse-selection issues. Regarding

the specific form of risk aversion, we assume that market makers have mean-variance

preferences. This assumption simplifies the analysis, but is not essential, as we are

concerned with the dependence of transaction costs on ∆t and our results continue to

hold, for instance, under standard constant-absolute-risk-aversion preferences paired

with normal shocks.

In summary, our micro foundation of transaction costs is based on realistic assump-

tions that are standard in the literature. What we add is to derive its implications

for the dependence of transaction costs on the length of the trading intervals. Having

characterized this dependence, we next show how the continuous-time model can be

seen as a limit of its discrete-time counterparts, one of the main results of the paper.

2.3 Convergence as Length of Time Periods Vanishes

We now show that the continuous-time model and its solution are the limit of their

discrete-time analogues. Our micro foundation for transaction costs highlights that

there are two important cases that lead to different continuous-time limits, as seen in

Proposition 6.

Proposition 8 (i) Suppose that dealers need a fixed amount of calendar time to lay

off their inventory, so that Λ(∆t) = Λ/∆t. Consider any continuous-time strategy xt
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and the discretely sampled counterparts x
(∆t)
t with time periods of length ∆t. Then,

as ∆t → 0, the objective (34) in the general discrete-time model with transitory

and persistent transaction costs tends to the continuous-time objective (16) for any

strategy xt satisfying dxt = τtdt. For all other strategies the limit objective equals

negative infinity.

Furthermore, the optimal discrete-time trading strategy tends to the continuous-

time solution from Proposition 2. In particular, the continuous-time matrix coef-

ficients M̄ rate and M̄ speed are the limits of the discrete-time coefficients M rate and

M speed as follows:

lim
∆t→0

M rate(∆t)

∆t
= M̄ rate (51)

lim
∆t→0

Maim(∆t) = M̄aim. (52)

(ii) Suppose that dealers can lay off their inventory each time period so that

Λ(∆t) = Λ∆t. Then, for any continuous-time strategy xt, the objective (34) eval-

uated at the discretely-sampled x
(∆t)
t tends to the continuous-time objective (21) of

the continuous-time model with purely persistent costs. The optimal discrete-time

trading strategy converges to the continuous-time strategy described in Proposition 3.

The proposition establishes that, for small ∆t, the discrete-time model is funda-

mentally the same as one of the two continuous-time models introduced in Section 1.2,

respectively Section 1.3. A key observation is that the limit model, and consequently

the qualitative properties of the optimal strategy, are different depending on the be-

havior of the function Λ(∆t) as ∆t vanishes, and thus on the nature of the liquidity

provision by the intermediaries. Specifically, if intermediaries hold their risky inven-

tories over periods of time of fixed length as ∆t goes to zero, then the model with

transitory costs and smooth optimal trading obtains in the limit. On the other hand,

if holding periods shrink towards zero with ∆t, then there are no transitory costs in

the limit and the optimal trading has non-zero quadratic variation.
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Figure 4: Convergence of discrete time to continuous time.

Example. This convergence result in illustrated in Figure 4. The figure plots the

optimal position in discrete time when ∆t = 1 and ∆t = 0.25 and in continuous time.

The parameters are chosen consistently under the assumption of a fixed calendar time

to lay off inventory. Also, the outcome of the random shocks are chosen consistently

in the sense that the discrete-time models use the discretized versions of the shocks

to the return-predicting signals ft. Figure 4 illustrates how discrete-time trading

corresponds to a step-function for the portfolio. As the trading frequency increases,

the step function becomes smoother and, in the limit, converges to the continuous-

time solution as shown.

3 Time-Varying Volatility or Risk Aversion

Much of the tractability of the framework is preserved if one lets the risk aversion,

transaction costs, or return variance vary over time. Specifically, the results derived

above continue to hold, except that the value-function coefficients are functions of
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the time-varying parameter.11 We illustrate this statement in the simplest setting

in which the price impact is purely transitory and Assumptions A1–A2 hold. The

novel assumption is that, rather than having a constant variance-covariance matrix for

shocks u to returns, we now consider the case of time-varying volatility. Specifically,

let vart(dut) = vtΣ̄ where the positive process vt evolves according to

dvt = µv(vt)dt+ σv(vt)dwt. (53)

Here, wt is a (one-dimensional) Wiener process, possibly correlated with ε and u.

We conjecture the value function to be quadratic in (x, f), but with coefficients

that depend on v:

V (x, f, v) = −1

2
x>Axx(v)x+ x>Axf (v)f +

1

2
f>Aff (v)f + A0(v). (54)

The HJB equation provides (second-order) differential equations for the coefficient

functions — in particular, Axx and Axf , which determine the trading strategy. The

following proposition provides some intuitive properties of the optimal portfolio policy

in the empirically relevant case of a mean-reverting volatility.

Proposition 9 (Stochastic volatility) Suppose that the drift µv( · ) of vt is a de-

creasing function which crosses zero on the support of v. Then there exists a cut-off

value v̂ such that (i) the trading rate satisfies M rate(v) ≥M rate(v̂) ≥M rate(v′) when-

ever v ≤ v̂ ≤ v′; and (ii) for vt ≤ v̂, M rate(vt) is higher than it would be if v was

constant and equal to vt for s ≥ t, and conversely for vt ≥ v̂.

The proposition shows how the volatility mean reversion impacts the trading strat-

egy. In particular, if vt is low enough, so that it is expected to increase, then the

trading intensity is higher than if v were to stay constant: the higher utility cost

due to increased future volatility is mitigated by trading more currently, before the

11We continue to assume a Markovian structure.
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trading cost increases along with the volatilty.

We also note that, under Assumption A2, letting vart(dut) be proportional to vt

and letting Λt and γt be proportional to vt are isomorphic. The results also hold if

Λt = λΣ is constant (this is the same as letting only γ depend on v), as is intuitive.

4 Equilibrium Implications

In this section we study the restrictions placed on a security’s return properties by the

market equilibrium. More specifically, we consider a situation in which an investor

facing transaction costs absorbs a residual supply specified exogenously and analyze

the relationship implied between the characteristics of the supply dynamics and the

excess return.

For simplicity, we consider a model set in continuous time, as detailed in Sec-

tion 1.1, featuring one security in which L ≥ 1 groups of (exogenously given) noise

traders hold positions zlt (net of the aggregate supply) given by

dzlt = κ
(
f lt − zlt

)
dt (55)

df lt = −ψlf ltdt+ dεlt. (56)

The only other investors in the economy are the investors considered in Section 1.1,

facing transaction costs given by Λ = λσ2.

Defining zt =
∑

l z
l
t to be the aggregate noise-trader holding and f ≡ (f 1, ..., fL, z),

we conjecture that the latter investors’ inference problem is as studied in Section 1.1,

with B is to be determined. We verify the conjecture and find B as part of Proposition

10 below.

In this simple context, an equilibrium is defined as a price process and market-

clearing asset holdings that are optimal for all agents given the price process. Since

the noise traders’ positions are optimal by assumption as specified by (55)–(56), the

restriction imposed by equilibrium is that the dynamics of the price are such that,
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for all t,

xt = −zt (57)

dxt = −dzt. (58)

The equilibrium implications for the excess return are as follows.

Proposition 10 The market is in equilibrium if x0 = −z0 and the security’s expected

excess return is given by

1

dt
Et[dpt − rfpt dt] =

L∑
l=1

λσ2κ(ψl + ρ+ κ)(−f lt) + σ2(ρλκ+ λκ2 − γ)zt. (59)

The coefficients λσ2κ(ψk + ρ + κ) are positive and increase in the mean-reversion

parameters ψk and κ and in the trading costs λσ2. In other words, noise trader selling

(fkt < 0) increases expected excess returns, and especially so if its mean reversion is

faster and if the trading cost is larger.

Naturally, noise-trader selling increases the expected excess return, while noise-

trader buying lowers it, since the arbitrageurs need to be compensated to take the

other side of the trade. Interestingly, the effect is larger when trading costs are

larger and for noise-trader shocks with faster mean reversion because such shocks are

associated with larger trading costs for the arbitrageurs.

5 Conclusion and Broader Implications

This paper provides a general framework for optimal portfolio choice with frictions

and multiple time-varying signals about expected returns. While the framework is

very general, allowing rich dynamics for returns and signals, it is nevertheless highly

tractable. Indeed, the optimal portfolio is derived as an intuitive closed-form expres-

sion.
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The optimal portfolio strategy trades gradually toward an aim portfolio that de-

pends on current on future expected optimal optimal portfolios in the absence of

transaction costs. Hence, financial frictions imply that signals’ dynamics are impor-

tant, in particular their persistence over time. Intuitively, a signal is given more

weight if it is more persistent, since a longer-lasting effect should be incorporated

more in light of frictions.

We show how our continuous-time model is approached by discrete-time mod-

els of vanishing time-period length if the model parameters are scaled appropriately.

The key innovation in this respect is to determine the correct time-scaling of the

transaction-cost parameter. We provide an economic foundation for this time-scaling

of transaction costs, and show that the convergence happens naturally in this eco-

nomic setting. Further, we derive implications for equilibrium expected returns, show-

ing why high-frequency movements in expected returns are larger than low-frequency

movements, as documented empirically. Finally, as we elaborate below, the model’s

tractability makes it a powerful tool with many potential applications in other areas

of economics and, indeed, even more broadly.

General dynamic models. Before outlining a few specific applications, we

note that many dynamic models in the social sciences are special cases of the linear-

quadratic framework or can be approximated well by this framework as discussed by

Hansen and Sargent (2014) and references therein. By incorporating frictions and

multiple signals with varying mean-reversion rates into the linear-quadratic frame-

work, our model shows, at a high level, how the optimal policy moves gradually

toward an aim that overweights persistent information. Our solution is explicit and

makes it particularly easy to link the crucial input parameters, such as persistences

and adjustment costs, to the output. Further, our model shows how the answer

is robust to the frequency of policy changes when the policy parameters are scaled

appropriately depending on the time horizon.

Macroeconomics. Many macroeconomic models rely on the linear-quadratic
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framework (see, e.g., Ljungqvist and Sargent (2004)). As an illustration, consider

an economy with different signals about total factor productivity (TFP) and capital

adjustment costs. In this case, our model can be applied to show how to gradually

adjust the capital stock towards an aim that overweights persistent signals about

TFP shocks.

Monetary policy. The linear-quadratic framework has also been employed ex-

tensively in models of monetary economics (Benigno and Woodford (2003)). Our

model can be recast as describing a central bank receiving multiple signals about

inflation pressures, e.g., across regions, and facing adjustment costs (capturing what

is often termed “policy inertia”). In this case, our results mean that monetary policy

should move gradually towards an aim that optimally weights the different signals.

This can help explain why central banks focus on core inflation rather than headline

inflation, which includes such transitory shock as oil price changes. As another exam-

ple, a highly persistent signal of deflationary pressures in southern Europe should be

weighted more heavily than a transitory signal of inflation in (an equal-sized region

of) Germany.

Political economy. As another potential application, the model could describe

a political party receiving different signals from various constituents. In this case,

our model’s insight shows how the party should move its politics gradually toward an

aim that optimally incorporates all signals, giving more weight to persistent political

trends and less to shorter-lived fads. Let us sketch how to capture this in our model,

as this framework may be less standard in political economics. A political party must

choose its views xt on each of several issues, e.g., x1
t is the view on economic policy,

x2
t is the view on social issues, and so on. The party receives signals ft about the

views of different constituents, which can be aggregated to a vector of average views

about all the issues, Gft. The policy maker faces quadratic costs of deviating from
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the current average view:

(xt −Gft)′Σ(xt −Gft) = −x′tBft + x′tΣxt + f ′tG
′ΣGft,

where B = −2ΣG. The first two terms correspond to our objective function and the

last can be ignored as it is independent of the choice xt. Further, the party faces

quadratic costs of changing its views (the cost of “flip-flopping”), making the model

a specific case of our framework.

Microeconomic model of product design. Consider a monopolistic firm,

which must choose the design xt of its product, where x1
t could be the color, x2

t the

marketing expense, etc. Customers’ preferences for different products change over

time such that the firm faces the following demand curve:

Demand(price;xt, ft) = x′tHft · price−s.

Here, s > 1 is the price elasticity, H is a matrix with positive elements, and ft is a

positive process capturing how consumers value each product attribute. Renting a

machine that can produce the good with design xt costs 1/2x′tΣxt and the marginal

production cost is c. Given a product design, the profit is derived from the optimal

price setting:

x′tBft := x′tHft ·max
price

price−s · (price− c).

With a quadratic cost of changing the product design, we see that this model is special

case of our general framework. Hence, our results show that the product design should

be adjusted towards a combination of the signals of consumer tastes that gives higher

weight to the more persistent trends.

In summary, the model presents a highly tractable framework that gives rise to

several insights concerning optimal trading in financial markets, and it can be applied
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to other dynamic problems featuring frictions and signals of varying persistence.
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