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In a seminal paper, Aiyagari and McGrattan (1998) find that in a stan-
dard incomplete markets model with infinitely lived agents it is optimal
for the U.S. government to hold a large amount of public debt. Debt
is optimal because it induces a higher interest rate, which encourages
more household savings and better self-insurance. This paper revisits
their result in a life cycle model only to find that public debt’s insurance
enhancing mechanism is severely limited. While a higher interest rate
encourages higher average savings in both models, the benefits vary. In
a life cycle model, agents enter the economy with no savings but must
accumulate the higher level of savings throughout their lifetime, thereby
eliminating some of the benefits. In contrast, infinitely lived agents do
not accumulate savings over a lifetime and, thus, simply enjoy the benefit
of the higher average savings ex ante. Overall, we find that while optimal
debt is equal to 22% of output in the infinitely lived agent model, when
a life cycle is introduced it is optimal for the government to hold sav-
ings equal to 59% of output. Not accounting for life cycle features when
computing optimal policy reduces welfare by nearly one-half percent of
expected lifetime consumption.

Keywords: Government Debt; Life Cycle; Heterogeneous Agents; In-
complete Markets

JEL Codes: H6, E21, E6

∗Correspondence to Peterman: william.b.peterman@frb.gov. Correspondence to Sager:
sager.erick@bls.gov. The authors thank Chris Carroll, William Gale, Toshi Mukoyama,
Marcelo Pedroni and participants of the 2017 ASSA Meetings, GRIPS-KEIO Macroeconomics
Workshop, Quantitative Society for Pension Studies Summer Workshop, Annual Conference
of the National Tax Association, Spring 2016 Midwest Macro Meetings, and International
Conference on Computing in Economics and Finance for insightful comments and discus-
sions. The views expressed herein are those of the authors and not necessarily those of
the Federal Reserve Board of Governors, the Federal Reserve System, the Bureau of Labor
Statistics or the US Department of Labor.

1



1 Introduction

In the decades preceding the Great Recession, debt to GDP ratios in ad-
vanced economies averaged over 40 percent. Moreover, only three advanced
economies held a net level of public savings. Motivated by these basic facts,
this paper examines the optimality of public debt in the U.S. economy.

In their seminal work, Aiyagari and McGrattan (1998) find that it is opti-
mal for the government to hold a large amount of public debt, on the order
of magnitude of two-thirds the size of GDP. Their framework is the standard
incomplete markets model, in which infinitely lived households can only par-
tially insure against the realization of idiosyncratic labor productivity shocks.
Using this model, Aiyagari and McGrattan (1998) show that imperfect insur-
ance against ex post labor market outcomes admits a role for government
policy to improve upon the competitive equilibrium allocation. Higher gov-
ernment debt (or lower government savings) tends to crowd out the stock of
productive capital leading to a higher interest rate and lower wage. The rela-
tively higher interest rate encourages households to hold more wealth, which
in turn helps agents to better insure against labor earnings risk and avoid
binding liquidity constraints.

This paper examines whether public debt remains optimal in a life cycle
model. Given that introducing a life cycle can fundamentally alter house-
holds’ savings patterns, a life cycle may change both the effectiveness and
benefit of public debt in encouraging households to hold more wealth, thereby
changing optimal policy. In order to determine the effect of the life cycle, we
compute optimal policy in two model economies that are calibrated to be
consistent with post-war U.S. macroeconomic aggregates and microdata. The
first model is similar to that in Aiyagari and McGrattan (1998) and includes
infinitely lived agents. The second model includes life cycle features such as a
finite lifespan, mortality risk, an age-dependent wage profile, retirement and
a Social Security program. We find that the optimal policies are strikingly
different in the two models. In the infinitely lived agent model it is optimal
for the government to hold debt equal to 22 percent of output. In contrast, in
the life cycle model, we find that it is no longer optimal for the government
to hold debt. Instead, it is optimal for the government to hold public savings
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equal to 59 percent of output.
Not only does the optimal policy look quite different when one ignores

life cycle features, but the welfare consequences of ignoring them are eco-
nomically significant. In the life cycle model, we find that if a government
implemented the 22 percent debt-to-output policy that is optimal in the in-
finitely lived agent model, then life cycle agents would be worse off by nearly
0.5 percent of expected lifetime consumption. Overall, this paper demon-
strates that incorporating life cycle features fundamentally changes whether
it is optimal for the government to hold public savings or public debt.

The starkly different optimal policies can be explained, in large part, by
life cycle agents’ special progression through distinct phases over their life
times. Specifically, life cycle model agents begin their life with no savings and
enter an accumulation phase in which they accumulate a precautionary stock
of savings to insure against income shocks and finance their post-retirement
consumption. In middle life, agents may enter a stationary phase in which they
have accumulated a target level of assets, around which savings fluctuates.1

Finally, older agents enter a deaccumulation phase in which they spend down
their savings in anticipation of death. In the infinitely lived agent model,
agents do not experience an accumulation phase but instead experience a
perpetual stationary phase.

Using the life cycle model, we demonstrate that agents’ progression through
distinct lifetime phases is the underlying mechanism leading to a different
optimal policy. In particular, the benefit from public debt that induces more
household savings may vary between the two models. In the infinitely lived
agent model the steady state level of aggregate savings is higher and thus the
average agent has more ex ante wealth. In contrast, in the life cycle model,
agents enter the economy with no savings but must accumulate the higher
level of savings throughout their lifetime, thereby eliminating some of the
benefits. Therefore, the existence of the accumulation phase is the predom-
inant reason for the drastically different optimal policies between the two
models.
1In life cycle models where agents live for a short enough span, agents sometimes transition
directly from the accumulation phase to the deaccumulation phase skipping this stationary
phase. We generally find this to be the case in our baseline life cycle model.
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This paper is related to an established literature that uses the standard
incomplete market model with infinitely lived agents, originally developed
in Bewley (1986), İmrohoroğlu (1989), Huggett (1993) and Aiyagari (1994), to
study the optimal level of steady state government debt. In contrast to this
paper, previous work has almost exclusively studied infinitely lived agent
models and tends to find that public debt is optimal. Aiyagari and McGrat-
tan (1998) is the seminal contribution to the study of optimal debt in the
standard incomplete market model, on which this paper and others build.
Floden (2001) finds that increasing government debt can provide welfare ben-
efits if transfers are below optimal levels. Similarly, Dyrda and Pedroni (2016)
find that it is optimal for the government to hold debt. However they find
that when optimizing both taxes and debt at the same time leads to a smaller
level of optimal debt than previous studies. A notable exception is Röhrs and
Winter (2016), who find that when making a number of changes to Aiyagari
and McGrattan’s (1998) model, such as introducing a skewed wealth distribu-
tion that more closely matches the upper tail of the U.S. wealth distribution,
it is optimal for the government to save as opposed to hold debt. Relative to
these papers, we study optimal public debt and savings in a life cycle model
as opposed to an infinitely lived agent model, and find that including life
cycle features has large effects on optimal policy.2

This paper is also related to a literature that studies optimal capital tax-
ation. Seminal contributions of Judd (1985) and Chamley (1986) prove the
optimality of zero capital taxation in the long-run of a representative agent
growth model with complete markets. Later contributions in Aiyagari (1995)
and İmrohoroğlu (1998) studied an incomplete markets models and found
that a long-run optimal capital tax is positive in the presence of uninsurable
earnings shocks when borrowing constraints are sufficiently tight. Most per-
tinent to the present paper is the literature on optimal capital taxation in het-
erogeneous agent, life cycle economies with incomplete markets. In several
variants of this model, Garriga (2001), Erosa and Gervais (2002) and Conesa

2Using infinitely lived agent models, Desbonnet and Weitzenblum (2012), Açikgöz (2015),
Dyrda and Pedroni (2016), Röhrs and Winter (2016) find quantitatively large welfare costs of
transitioning between steady states after a change in public debt. We do not consider these
transitional costs and instead focus on steady state comparisons to more sharply highlight
the effect of the life cycle on optimal debt policy.
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et al. (2009) show that introducing a life cycle creates an additional motive for
positive capital taxation. In particular, a capital tax can distort savings in a
way that effectively mimics an optimal age-varying policy. While this paper
aligns itself most closely with these latter papers using life cycle models, we
focus on on optimal debt policy instead of capital taxation. Moreover, we
find that in the life cycle model it is optimal for the government to hold sav-
ings as opposed to debt, not to create age-variation in policy but because the
accumulation phase mitigates the welfare benefits from a higher interest rate.

Finally, our paper is related to Dávila, Hong, Krusell, and Ríos-Rull (2012),
whose work defines constrained efficiency in a standard incomplete markets
model with infinitely lived agents. Constrained efficient allocations must sat-
isfy individuals’ constraints but account for the effect of individual behavior
on market clearing prices. The authors show that if individual agents, who are
constrained by incomplete asset markets and borrowing constraints, were to
systematically deviate from individually optimal savings, consumption and
hours decisions, then equilibrium prices could be attained that improve so-
cial welfare. Therefore, the price system in the standard incomplete market
model does not efficiently allocate resources and competitive equilibria are
generically constrained inefficient. While this paper does not characterize
constrained efficient allocations, it focuses on the problem of a Ramsey plan-
ner (or government) that, because it understands the relationship between
public debt and factor prices, can implement a welfare improving allocation
that individual agents could not attain alone. Even though our paper restricts
the set of allocations that the planner can implement, both papers arrive at
a similar conclusion that under certain assumptions the current U.S. capital
stock is too low. Dávila, Hong, Krusell, and Ríos-Rull (2012) demonstrate
that more productive capital is constrained optimal after changing the id-
iosyncratic labor productivity process to induce more wealth inequality. In
comparison, this paper demonstrates that the optimal debt policy induces an
equilibrium with more productive capital when a life cycle is introduced.

The remainder of this paper is organized as follows. Section 2 illustrates
the underlying mechanisms by which optimal government policy interacts
with life cycle and infinitely lived agent model features. Section 3 describes
the life cycle and infinitely lived agent model environments and defines equi-
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librium. Section 4 presents the calibration strategy and Section 5 presents
quantitative results. Section 6 concludes.

2 Illustration of the Mechanisms

In this section, we illustrate the mechanisms that lead the government to an
optimal public debt or savings policy. We discuss why optimal government
policy may differ in the life cycle and infinitely lived agent models. Specifi-
cally, we highlight the distinct savings patterns induced by life cycle features
relative to the infinitely lived agent model. Finally, we discuss the main chan-
nels by which public debt or savings impacts individual behavior and how
the strength of these channels may vary between the two models.

2.1 Life Cycle Phases

In order to highlight how the life cycle may impact optimal debt policy, it
will be useful to consider the following illustrative example. Suppose that
agents are born with zero wealth, work throughout their lifetimes and die
with certainty within a finite number of periods. Agents face idiosyncratic la-
bor productivity shocks and use assets to partially insure against the resulting
earnings risk.

For this hypothetical economy, Figure 1 depicts cross-sectional averages
for savings, hours and consumption decisions at each age. Figure 1 shows that
agents experience three different phases. Agents enter the economy without
any wealth and begin the accumulation phase, which is characterized by the
accumulation of wealth for precautionary motives.3 While accumulating a
stock of savings, agents tend to work more and consume less.

Once a cohort’s average wealth provides sufficient insurance against la-
bor productivity shocks, these agents have entered the stationary phase.4 This

3Since agents do not retire from supplying labor in this simplified economy, wealth accumu-
lation only provides self-insurance and does not finance post-retirement consumption.

4The stationary level of average savings is related to the "target savings level" in Carroll (1992,
1997). Given the primitives of the economy, an agent faces a tradeoff between consumption
levels and consumption smoothing. The agent targets a level of savings that provides suffi-
cient insurance while maximizing expected consumption.
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Figure 1: Illustrative example of life cycle phases. This graph depicts the cross-sectional
averages of consumption, savings and hours during the accumulation, stationary and deac-
cumulation phases.

phase is characterized by savings, hours and consumption that remain con-
stant in the aggregate. However, underlying constant aggregates are agents
who respond to shocks by choosing different allocations, thereby moving
about various states within a non-degenerate distribution over savings, hours
and consumption.

Finally, agents enter the deaccumulation phase as they approach the end
of their lives. In order to smooth consumption in the final periods of their
lives, agents attempt to deaccumulate assets so that they are not forced to
consume a large quantity immediately preceding death. Furthermore, with
few periods of life remaining, agents no longer want to hold as much savings
for precautionary reasons. Thus, the average level of savings and labor supply
decreases, while consumption increases slightly.

2.2 Welfare Channels and Life Cycle Features

We identify three main channels through which public debt policy affects
welfare: the direct effect, the insurance channel, and the inequality channel. We
heuristically characterize how these channels differ across life cycle and in-
finitely lived agent economies and lead to different optimal policies.
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Direct Effect: The direct effect is the partial equilibrium change in the produc-
tive capital stock, aggregate consumption and aggregate output with respect
to a change in public debt, when holding constant the aggregate labor sup-
ply and aggregate private savings. Mechanically, shifting from public debt
toward public savings creates more productive capital, thereby generating
more output and increasing aggregate consumption.5 Generally, increased
aggregate consumption improves welfare. Furthermore, absent any general
equilibrium effects, this mechanism should operate similarly in both the life
cycle and infinitely lived agent economies.

While this partial equilibrium channel is a direct effect of policy on ag-
gregate resources, the remaining two channels affect welfare through general
equilibrium effects, that is, by changing the distribution of resources and im-
pacting market clearing prices.

Insurance Channel: A government that holds more public debt mechani-
cally crowds out productive capital and induces a higher interest rate in asset
markets. The higher interest rate tends to accompany a higher level of aver-
age precautionary savings. All else equal, the higher level of precautionary
savings can improve welfare because agents are less likely to face binding
liquidity constraints and are, therefore, better insured against labor earnings
risk. We refer to this channel as the insurance channel.

The insurance channel’s benefit from public debt is fundamentally differ-
ent in the life cycle and infinitely lived agent models. Generally, if the govern-
ment holds more public debt, then the steady state level of aggregate savings
is higher. Infinitely lived agents exist in a perpetual stationary phase and, as
a result, higher steady state aggregate savings implies that the average agent
has more ex ante wealth. In contrast, life cycle model agents enter the econ-

5While aggregate output increases with capital and labor inputs, in general equilibrium,
aggregate consumption nor aggregate private savings need increase with aggregate output.
It could be the case that an increase in public savings increases the productive capital stock
while crowding out private savings. Furthermore, because we assume a constant returns to
scale production technology that exhibits decreasing marginal returns to capital, aggregate
consumption and aggregate private savings may decrease when the aggregate capital stock
is sufficiently large. However, in both models, our quantitative results show that within
the range of public savings that we study, (i) aggregate consumption is increasing in public
savings and (ii) the elasticity of private savings with respect to a unit increase in public
savings is less than one, so that public savings increases private savings.
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omy with zero wealth and immediately begin the accumulation phase.6 If the
government holds more public debt then, on average, agents may hold more
savings over their lifetime. However, agents must accumulate this wealth over
their lifetime, which mitigates the welfare benefit from the insurance channel
relative to the infinitely lived agent model. Overall, the benefit from the in-
surance channel tends to be larger in the infinitely lived agent model because
it lacks the mitigating effects of the accumulation phase.

Inequality Channel: When markets are incomplete and agents are risk averse,
ex post income inequality generates greater uncertainty over utility flows and
worsens ex ante welfare. Income inequality is composed of inequality in both
asset and labor income. Since changing public debt has opposite effects on
the wage and interest rate, debt policy can be used to reduce the spread in
lifetime total income across agents. For example, if labor income contributes
more to lifetime total income inequality then increasing public debt will lower
the wage and tend to decrease overall lifetime income inequality.7 Similarly,
lowering public debt decreases overall income inequality when asset income
contributes more to lifetime total income inequality.

As demonstrated in Dávila, Hong, Krusell, and Ríos-Rull (2012), the rel-
ative contribution of labor income and asset income to lifetime total income
inequality depends on agents’ lifespan. As agents live longer, lifetime labor
income inequality increases because there is a greater chance that agents re-
ceive a long string of either positive or negative labor productivity shocks.
However, asset income inequality will also develop because agents reduce
(increase) their wealth in response to a string of negative (positive) shocks.
Generally, as agents’ lifespan increases, asset income becomes a relatively
larger contributor to overall income inequality. Thus, in this case, the govern-
ment can reduce lifetime total income inequality by holding less public debt,

6If life cycle features were introduced in a dynastic model, instead of a life cycle model,
where old agents bequeath wealth to agents entering the economy, then the accumulation
phase may be more responsive to public policy. Consistent with Fuster, İmrohoroğlu, and
İmrohoroğlu (2008), the optimal policy differences with the infinitely lived agent model
could be smaller since agents would receive some initial wealth through bequests.

7The increase in public debt will also increase the interest rate and introduce more inequality
from interest income. However, this effect tends to be dominated by the lower of labor
income inequality.
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which lowers the interest rate and reduces asset income inequality.

3 Economic Environment

In this section, we present both the Life Cycle model and the Infinitely Lived
Agent model. Given that there are many common features across models, we
will first focus on the Life Cycle model in detail before providing an overview
of the Infinitely Lived Agent model.

3.1 Life Cycle Model

3.1.1 Production

Assume there exist a large number of firms that sells goods in perfectly com-
petitive product markets, purchase inputs from perfectly competitive factor
markets and each operate an identical constant returns to scale production
technology, Y = ZF(K, L). These assumptions on primitives admit a rep-
resentative firm. The representative firm chooses capital (K) and labor (L)
inputs in order to maximize profits, given an interest rate r, a wage rate w, a
level of total factor productivity Z and capital depreciation rate δ ∈ (0, 1).

3.1.2 Consumers

Demographics: Let time be discrete and let each model period represent a
year. Each period, the economy is inhabited by J overlapping generations
of individuals. We index agents’ model age by j = 1, . . . , J where J is each
agent’s exogenous terminal age of life. Before age J all living agents face
mortality risk. Conditional on living to age j, agents have a probability sj

of living to age j + 1, with a terminal age probability given by sJ = 0. Each
period a new cohort is born and the size of each successive newly born cohort
grows at a constant rate gn > 0.

Agents who die before age J may hold savings since mortality is uncer-
tain. These savings are treated as accidental bequests and are equally divided
across each living agent in the form of a lump-sum transfer, denoted Tr.
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Preferences: Agents rank lifetime paths of consumption and labor, denoted
{cj, hj}J

j=1, according to the following preferences:

E1

J

∑
j=1

βj−1sj

[
u(cj)− v(hj, ζ ′j)

]
where β is the time discount factor. Expectations are taken with respect to
the stochastic processes governing labor productivity. Furthermore, u(c) and
v(h) are instantaneous utility functions over consumption and labor hours,
respectively, satisfying standard conditions. Lastly, ζ ′j is a retirement decision
that is described immediately below.

Retirement: Agents choose their retirement age, which is denoted by Jret. A
retired agent may not sell labor hours and the decision is irreversible. Agents
endogenously determine retirement age in the interval j ∈ [

¯
Jret, J̄ret] and are

forced to retire after age J̄ret. Let ζ ′j ≡ 1(j < Jret) denote an indicator variable
that equals one when an agent chooses to continue working and zero upon
retirement.

Labor Earnings: Agents are endowed with one unit of time per period, which
they split between leisure and market labor. During each period of working
life, an agent’s labor earnings are wejhj, where w is the wage rate per efficiency
unit of labor, ej is the agent’s idiosyncratic labor productivity drawn at age j
and hj is the time the agent chooses to work at age j.

Following Kaplan (2012), we assume that labor productivity shocks can be
decomposed into four sources:

log(ej) = κ + θj + νj + εj

where (i) κ
iid∼ N (0, σ2

κ ) is an individual-specific fixed effect that is drawn at
birth, (ii) {θj}J

j=1 is an age-specific fixed effect, (iii) νj is a persistent shock

that follows an autoregressive process given by νj+1 = ρνj + ηj+1 with η
iid∼

N (0, σ2
ν ) and η1 = 0, and (iv) εj

iid∼ N (0, σ2
ε ) is a per-period transitory shock.

For notational compactness, we denote the relevant state as a vector ε j =

(κ, θj, νj, εj) that contains each element necessary for computing contempo-
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raneous labor earnings, ej ≡ e(ε j), and forming expectations about future
labor earnings. Denote the Markov process governing the process for ε by
πj(ε j+1|ε j) for each j = 1, . . . , J̄ret and for each ε j, ε j+1.

Insurance: Agents have access to a single asset, a non-contingent one-period
bond denoted aj with a market determined rate of return of r. Agents may
take on a net debt position, in which case they are subject to a borrowing con-
straint that requires their debt position be bounded below by

¯
a ∈ R. Agents

are endowed with zero initial wealth, such that a1 = 0 for each agent.

3.1.3 Government Policy

The government (i) consumes an exogenous amount G, (ii) collects linear So-
cial Security taxes τss on all pre-tax labor income below an amount x̄, (iii)
distributes lump-sum Social Security payments bss to retired agents, (iv) dis-
tributes accidental bequests as lump-sum transfers Tr, and (v) collects income
taxes from each individual.

Social Security: The model’s Social Security system consists of taxes and pay-
ments. The social security payroll tax is given by τss with a per-period cap
denoted by x̄. We assume that half of the social security contributions are paid
by the employee and half by the employer. Therefore, the consumer pays a
payroll tax given by: (1/2) τss min{weh, x̄}. Social security payments are com-
puted using an averaged indexed monthly earnings (AIME) that summarizes
an agents lifetime labor earnings. Following Huggett and Parra (2010) and
Kitao (2014), the AIME is denoted by {xj}J

j=1 and is given by:

xj+1 =


1
j
(
min{wejhj, x̄}+ (j− 1)xj

)
for j ≤ 35

max
{

xj,
1
j
(
min{wejhj, x̄}+ (j− 1)xj

)}
for j ∈ (35, Jret)

xj for j ≥ Jret


The AIME is a state variable for determining future benefits. Benefits consists
of a base payment and an adjusted final payment. The base payment, denoted
by bss

base(xJret), is computed as a piecewise-linear function over the individual’s
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average labor earnings at retirement xJret :

bss
base(xJret) =


τr1 for xJret ∈ [0, bss

1 )

τr2 for xJret ∈ [bss
1 , bss

2 )

τr3 for xJret ∈ [bss
2 , bss

3 )


Lastly, the final payment requires an adjustment that penalizes early retire-
ment and credits delayed retirement. The adjustment is given by:

bss(xJret) =


(1− D1(Jnra − Jret))bss

base(xJret) for
¯
Jret ≤ Jret < Jnra

(1 + D2(Jret − Jnra))bss
base(xJret) for Jnra ≤ Jret ≤ J̄ret


where Di(·) are functions governing the benefits penalty or credit,

¯
Jret is the

earliest age agents can retire, Jnra is the “normal retirement age” and J̄ret is
the latest age an agent can retire.

Net Government Transfers: Taxable income is defined as labor income and
capital income net of social security contributions from an employer:

y(h, a, ε, ζ) ≡ ζwe(ε)h + r(a + Tr)− ζ
τss

2
min{we(ε)h, x̄}

The government taxes each individual’s taxable income according to an in-
creasing and concave function, Υ(y(h, a, e, ζ)).

Define the function T(·) as the government’s net transfers of income taxes,
social security payments and social security payroll taxes to working age
agents (if ζ = 1) and retired agents (if ζ = 0). Net transfers are given by:

T(h, a, ε, x, ζ) = (1− ζ)bss(x)− ζ
τss

2
min{we(ε)h, x̄} − Υ(y(h, a, ε, ζ))

Public Savings and Budget Balance: Each period, the government accumu-
lates savings, denoted B′, and collects asset income rB. The resulting govern-
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ment budget constraint is:

G + B′ − B = rB + Υy (1)

where Υy is aggregate revenues from income taxation and G is an unproduc-
tive level of government expenditures.8 The model’s Social Security system
is self-financing and therefore does not appear in the governmental budget
constraint.

3.1.4 Consumer’s Problem

The agent’s state variables consist of asset holdings a, labor productivity
shocks ε ≡ (κ, θ, ν, ε), Social Security contribution (AIME) variable x and
retirement status ζ. For age j ∈ {1, . . . , J}, the agent’s recursive problem is:

Vj(a, ε, x, ζ) = max
c,a′,h,ζ ′

[
u(c)− v(h, ζ ′)

]
+ βsj ∑

ε′
πj(ε

′|ε)Vj+1(a′, ε′, x′, ζ ′) (2)

s.t. c + a′ ≤ ζ ′we(ε)h + (1 + r)(a + Tr) + T(h, a, ε, x, ζ ′)

a′ ≥ a

ζ ′ ∈ {1(j <
¯
Jret), 1(j ≤ J̄ret) · ζ}

The indicator function 1(j <
¯
Jret) equals one when an agent is too young

to retire and equals zero thereafter. Additionally 1(j ≤ J̄ret) equals zero for
all ages after an agent must retire and equals one beforehand. Therefore the
agent’s recursive problem nests all three stages of life: working life, near-
retirement and retirement.9

8Two recent papers, Röhrs and Winter (2016) and Chaterjee, Gibson, and Rioja (2016) have
relaxed the standard Ramsey assumption that government expenditures are unproductive.
Both papers show that public savings is optimal with productive government expenditures,
intuitively because there is an additional benefit to aggregate output.

9During an agent’s working life (ages j <
¯
Jret) the agent’s choice set for retirement is ζ ′ ∈

{1, 1} and therefore the agent must continue working. Near retirement (ages
¯
Jret ≤ j ≤ J̄ret),

the agent’s choice set is ζ ′ ∈ {0, 1} and the agent may retire by choosing ζ ′ = 0. Lastly, if an
agent has retired either because he chose retirement at a previous date (ζ = 0) or because of
mandatory retirement (j > J̄ret), then the choice set is {0, 0} and ζ ′ = ζ = 0.
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3.1.5 Recursive Competitive Equilibrium

Agents are heterogeneous with respect to their age j ∈ J ≡ {1, . . . , J}, wealth
a ∈ A, labor productivity ε ∈ E, average lifetime earnings x ∈ X and retire-
ment status ζ ∈ R ≡ {0, 1}. Let S ≡ A× E× X× R be the state space and
B(S) be the Borel σ-algebra on S. Let M be the set of probability measures
on (S,B(S)). Then (S,B(S), λj) is a probability space in which λj(S) ∈ M is
a probability measure defined on subsets of the state space, S ∈ B(S), that
describes the distribution of individual states across age-j agents. Denote the
fraction of the population that is age j ∈ J by µj. For each set S ∈ B(S),
µjλj(S) is the fraction of age j ∈ J and type S ∈ S agents in the economy. We
can now define a recursive competitive equilibrium of the economy.

Definition (Equilibrium): Given a government policy (G, B, B′, Υ, τss, bss), a
stationary recursive competitive equilibrium is (i) an allocation for consumers
described by policy functions {cj, a′j, hj, ζ ′j}

J
j=1 and consumer value function

{Vj}J
j=1, (ii) an allocation for the representative firm (K, L), (iii) prices (w, r),

(iv) accidental bequests Tr, and (v) distributions over agents’ state vector at
each age {λj}J

j=1 that satisfy:

(1) Given prices, policies and accidental bequests, Vj(a, ε, x) solves the Bell-
man equation (2) with associated policy functions cj(a, ε, x, ζ), a′j(a, ε, x, ζ),
hj(a, ε, x, ζ) and ζ ′j(a, ε, x, ζ).

(2) Given prices (w, r), the representative firm’s allocation minimizes cost:
r = ZFK(K, L)− δ and w = ZFL(K, L)

(3) Accidental bequests, Tr, from agents who die at the end of this period are
distributed equally across next period’s living agents:

(1 + gn)Tr =
J

∑
j=1

(1− sj)µj

∫
a′j(a, ε, x, ζ)dλj(a, ε, x, ζ)

(4) Government policies satisfy budget balance in equation (1), where aggre-
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gate income tax revenue is given by:

Υy ≡
J

∑
j=1

µj

∫
Υ
(

y
(
hj(a, ε, x, ζ), a, ε, ζ ′j(a, ε, x, ζ)

))
dλj(a, ε, x, ζ)

(5) Social security is self-financing:

J

∑
j=1

µj

∫
ζ ′j(a, ε, x, ζ)τss min{we(ε)hj(a, ε, x, ζ), x̄}dλj(a, ε, x, ζ)

=
J

∑
j=1

µj

∫
(1− ζ ′j(a, ε, x, ζ))bss(x)dλj(a, ε, x, ζ) (3)

(6) Given policies and allocations, prices clear asset and labor markets:

K− B =
J

∑
j=1

µj

∫
a dλj(a, ε, x, ζ)

L =
J

∑
j=1

µj

∫
ζ ′j(a, ε, x, ζ)e(ε)hj(a, ε, x, ζ) dλj(a, ε, x, ζ)

and the allocation satisfies the resource constraint (guaranteed by Walras’
Law):

J

∑
j=1

µj

∫
cj(a, ε, x, ζ)dλj(a, ε, x, ζ) + G + K′ = ZF(K, L) + (1− δ)K

(7) Given consumer policy functions, distributions across age j agents {λj}J
j=1

are given recursively from the law of motion T∗j : M → M for all j ∈ J
such that T∗j is given by:

λj+1(A×E ×X ×R) = ∑
ζ∈{0,1}

∫
A×E×X

Qj ((a, ε, x, ζ),A× E ×X ×R) dλj

where S ≡ A× E ×X ×R ⊂ S, and Qj : S×B(S)→ [0, 1] is a transition
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function on (S,B(S)) that gives the probability that an age-j agent with
current state s ≡ (a, ε, x, ζ) transits to the set S ⊂ S at age j + 1. The
transition function is given by:

Qj ((a, ε, x, ζ),S) =

 sj · πj(E|ε)ζ if a′j(s) ∈ A, x′j(s) ∈ X , ζ ′j(s) ∈ R

0 otherwise


where agents that continue working and transition to set E choose ζ ′j(s) =
1, while agents that transition from working life to retirement choose
ζ ′j(s) = 0. For j = 1, the distribution λj reflects the invariant distribu-
tion πss(ε) of initial labor productivity over ε = (κ, θ1, 0, ε1).

(8) Aggregate capital, governmental debt, prices and the distribution over
consumers are stationary, such that K′ = K, B′ = B, w′ = w, r′ = r, and
λ′j = λj for all j ∈ J.

3.2 Infinitely Lived Agent Model

The infinitely lived agent model differs from the life cycle model in three
ways. First, agents in the infinitely lived agent model have no mortality risk
(sj = 1 for all j ≥ 1) and lifetimes are infinite (J → ∞). Second, labor
productivity no longer has an age-dependent component (θj = θ̄ for all j ≥ 1).
Lastly, there is no retirement (

¯
Jret → ∞ such that ζ j = 1 for all j ≥ 1) and there

is no Social Security program (τss = 0 and bss(x) = 0 for all x).
Accordingly, we study a stationary recursive competitive equilibrium in

which the initial endowment of wealth and labor productivity shocks no
longer affects individual decisions and the distribution over wealth and la-
bor productivity is time invariant.

Definition (Equilibrium): Given a government policy (G, B, B′, Υ), a station-
ary recursive competitive equilibrium is (i) an allocation for consumers described
by policy functions (c, a′, h) and consumer value function V, (ii) an allocation
for the representative firm (K, L), (iii) prices (w, r), and (v) a distribution over
agents’ state vector λ that satisfy:
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(1) Given prices and policies, V(a, ε) solves the following Bellman equation:

V(a, ε) = max
c,a′,h

[
u(c)− v(h)

]
+ β ∑

ε′
π(ε′|ε)V(a′, ε′) (4)

s.t. c + a′ ≤ we(ε)h + (1 + r)a + Υ(y(h, a, ε))

a′ ≥ a

with associated policy functions c(a, ε), a′(a, ε) and h(a, ε).

(2) Given prices (w, r), the representative firm’s allocation minimizes cost.

(3) Government policies satisfy budget balance in equation (1), where aggre-
gate income tax revenue is given by:

Υy ≡
∫

Υ
(
y(h(a, ε), a, ε)

)
dλ(a, ε)

(4) Given policies and allocations, prices clear asset and labor markets:

K− B =
∫

a dλ(a, ε)

L =
∫

e(ε)h(a, ε) dλ(a, ε)

and the allocation satisfies the resource constraint (guaranteed by Walras’
Law): ∫

c(a, ε)dλ(a, ε) + G + K′ = ZF(K, L) + (1− δ)K

(5) Given consumer policy functions, the distribution over wealth and pro-
ductivity shocks is given recursively from the law of motion T∗ : M→ M
such that T∗ is given by:

λ′(A× E) =
∫

A×E
Qj ((a, ε),A× E) dλ

where S ≡ A× E ⊂ S, and Q : S× B(S) → [0, 1] is a transition function
on (S,B(S)) that gives the probability that an agent with current state
s ≡ (a, ε) transits to the set S ⊂ S in the next period. The transition
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function is given by:

Q ((a, ε),S) =

 π(E|ε) if a′(s) ∈ A,

0 otherwise


(6) Aggregate capital, governmental debt, prices and the distribution over

consumers are stationary, such that K′ = K, B′ = B, w′ = w, r′ = r, and
λ′ = λ.

3.3 Balanced Growth Path

Following Aiyagari and McGrattan (1998), we will further assume that total
factor productivity, Z, grows over time at rate gz > 0. In both the life cycle
model and infinitely lived agent model, we will study a balanced growth path
equilibrium in which all aggregate variables grow at the same rate as output.
Denote the growth rate of output as gy. Refer to Appendix A.1 for a formal
construction of the balanced growth path for this set of economies.

4 Calibration

In this section we calibrate the life cycle model and then discuss the parameter
values that are different in the infinitely lived agent model. Overall, one
subset of parameters are assigned values without needing to solve the model.
These parameters are generally the same in both models. The other subset of
parameters are estimated using a simulated method of moments procedure
that minimizes the distance between model generated moments and empirical
ones. We allow these parameters to vary across the models while matching
the same moments in the two models. Table 1 summarizes the target and
value for each parameter.

Demographics: Agents enter the economy at age 21 (or model age j = 1) and
exogenously die at age 100 (or model age J = 81). We set the conditional
survival probabilities {sj}J

j=1 according to Bell and Miller (2002) and impose
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sJ = 0. We set the population growth rate to gn = 0.011 to match annual
population growth in the US.

Production: Given that Y = ZF(K, L), the production function is assumed to
be Cobb-Douglas of the form F(K, L) = KαL1−α where α = 0.36 is the income
share accruing to capital. The depreciation rate is to δ = 0.0833 which allows
the model to match the empirically observed investment-to-output ratio.

Preferences: The utility function is is separable in the utility over consump-
tion and disutility over labor (including retirement):

u(c)− v(h, ζ ′) =
c1−σ

1− σ
−
(

χ1
h1+ 1

γ

1 + 1
γ

+ ζ ′χ2

)
.

Utility over consumption is a CRRA specification with a coefficient of relative
risk aversion σ = 2, which is consistent with Conesa et al. (2009) and Aiya-
gari and McGrattan (1998). Disutility over labor exhibits a constant intensive
margin Frisch elasticity. We choose γ = 0.5 such that the Frisch elasticity
consistent with the majority of the related literature as well as the estimates
in Kaplan (2012).

We calibrate the labor disutility parameter χ1 so that the cross sectional
average of hours is one third of the time endowment. Finally, χ2 is a fixed
utility cost of earning labor income before retirement. The fixed cost generates
an extensive margin decision through a non-convexity in the utility function.
We choose χ2 to match the empirical observation that seventy percent of the
population has retired by the normal retirement age.

Labor Productivity Process: We take the labor productivity process from the
estimates in Kaplan (2012) based on the estimates from the PSID data.10 The
10For details on estimation of this process, see Appendix E in Kaplan (2012). A well known

problem with a log-normal income process is that the model generated wealth inequality
does not match that in the data, primarily due to missing the fat upper tail of the distribu-
tion. However, Röhrs and Winter (2016) demonstrate that when the income process in an
infinitely lived agent model is altered to match the both the labor earnings and wealth dis-
tributions (quintiles and gini coefficients), the change in optimal policy is relatively small,
with approximately 30 percentage points due to changing the income process and the re-
maining 110 percentage points due to changing borrowing limits, taxes and invariant pa-
rameters (such as risk aversion, the Frisch elasticity, output growth rate and depreciation).

20



deterministic labor productivity profile, {θj} J̄ret
j=1, is (i) smoothed by fitting

a quadratic function in age, (ii) normalized such that the value equals unity
when an agent enters the economy, and (iii) extended to cover ages 21 through
70 which we define as the last period in which agents are assumed to be able
to participate in the labor activities ( J̄ret).11 The permanent, persistent, and
transitory idiosyncratic shocks to individual’s productivity are normally dis-
tributed with zero mean. The remaining parameters are also set in accordance
with the Kaplan’s (2012) estimates: ρ = 0.958, σ2

κ = 0.065, σ2
ν = 0.017 and

σ2
ε = 0.081.

Government: Consistent with Aiyagari and McGrattan (1998) we set govern-
ment debt equal to two-thirds of output. We set government consumption
equal to 15.5 percent of output consistent. This ratio corresponds to the aver-
age of government expenditures to GDP from 1998 through 2007.12

Income Taxation: The income tax function and parameter values are from
Gouveia and Strauss (1994). The functional form is:

Υ(y) = τ0

(
y−

(
y−τ1 + τ2

)− 1
τ1

)
The authors find that τ0 = 0.258 and τ1 = 0.768 closely match the U.S. tax
data. When calibrating the model we set τ2 such that the government budget
constraint is satisfied.

Social Security: We set the normal retirement age to 66. Consistent with the
minimum and maximum retirement ages in the U.S. Social Security system,
we set the interval in which agents can retire to the ages 62 and 70. The early
retirement penalty and later retirement credits are set in accordance with
the Social Security program. In particular, if agents retire up to three years
before the normal retirement age agents benefits are reduced by 6.7 percent
for each year they retire early. If they choose to retire four or five years before
the normal retirement age benefits are reduced by an additional 5 percent

11The estimates in Kaplan (2012) are available for ages 25-65.
12We exclude government expenditures on Social Security since they are explicitly included

in our model.
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Table 1: Calibration Targets and Parameters for Baseline Economy.

Description Parameter Value Target or Source
Demographics
Maximum Age J 81 (100) By Assumption
Min/Max Retirement Age

¯
Jret, J̄ret 43, 51 (62, 70) Social Security Program

Population Growth gn 1.1% Conesa et al (2009)
Survival Rate {sj}J

j=1 — Bell and Miller (2002)

Preferences and Borrowing
Coefficient of RRA σ 2.0 Kaplan (2012)
Frisch Elasticity γ 0.5 Kaplan (2012)
Coefficient of Labor Disutility χ1 55.3 Avg. Hours Worked = 1/3
Fixed Utility Cost of Labor χ2 1.038 70% retire by NRA
Discount Factor β 1.012 Capital/Output = 2.7
Borrowing Limit

¯
a 0 By Assumption

Technology
Capital Share α 0.36 NIPA
Capital Depreciation Rate δ 0.0833 Investment/Output = 0.255
Productivity Level Z 1 Normalization
Output Growth gy 1.85% NIPA

Labor Productivity
Persistent Shock, autocorrelation ρ 0.958 Kaplan (2012)
Persistent Shock, variance σ2

ν 0.017 Kaplan (2012)
Permanent Shock, variance σ2

κ 0.065 Kaplan (2012)
Transitory Shock, variance σ2

ε 0.081 Kaplan (2012)
Mean Earnings, Age Profile {θ} J̄ret

j=1 — Kaplan (2012)

Government Budget
Government Consumption G/Y 0.155 NIPA Average 1998-2007
Government Savings B/Y -0.667 NIPA Average 1998-2007
Marginal Income Tax τ0 0.258 Gouveia and Strauss (1994)
Income Tax Progressivity τ1 0.786 Gouveia and Strauss (1994)
Income Tax Progressivity τ2 4.541 Balanced Budget

Social Security
Payroll Tax τss 0.103 Social Security Program
SS Replacement Rates {τri}3

i=1 See Text Social Security Program
SS Replacement Bend Points {bss

i }3
i=1 See Text Social Security Program

SS Early Retirement Penalty {κi}3
i=1 See Text Social Security Program

for these years. If agents choose to delay retirement past normal retirement
age then their benefits are increased by 8 percent for each year they delay.
The marginal replacement rates in the progressive Social Security payment
schedule (τr1, τr2, τr3) are also set at their actual respective values of 0.9, 0.32
and 0.15. The bend points where the marginal replacement rates change (bss

1 ,

22



bss
2 , bss

3 ) and the maximum earnings (x̄) are set equal to the actual multiples
of mean earnings used in the U.S. Social Security system so that bss

1 , bss
2 and

bss
3 = x̄ occur at 0.21, 1.29 and 2.42 times average earnings in the economy.

We set the payroll tax rate, τss such that the program’s budget is balanced.
In our baseline model the payroll tax rate is 10.3 percent, roughly equivalent
with the statutory rate.13

Infinitely Lived Agent Model: The infinitely lived agent model does not have
a age-dependent wage profile. For comparability across models, we replace
the age-dependent wage profile with the population-weighted average of θj’s,

such that θ̄ = ∑ J̄ret
j=1(µj/ ∑ J̄ret

j=1 µj)θj ≈ 1.86.14 In the absence of a retirement de-
cision, we set χ2 = 0. Lastly, we recalibrate the parameters (β, χ) to the same
targets as in the life cycle model and choose τ2 to balance the government’s
budget.

5 Quantitative Effects of the Life Cycle on Optimal
Policy

Having described how we use external data to discipline the models’ struc-
tural parameters, we use the calibrated model to measure optimal policy
across the life cycle and infinitely lived agent models. Then we perform a
series of counterfactual experiments to highlight the mechanisms that gener-
ate differences in optimal policy across the models.

13Although the payroll tax rate in the U.S. economy is slightly higher than our calibrated
value, the OASDI program includes additional features outside of the retirement benefits.

14When calibrating the stochastic process for idiosyncratic productivity shocks, we use the
same process in the both the life cycle and infinitely lived agent models. Using the same
underlying process will imply that cross-sectional wealth inequality will be different across
the two models. One reason is that the life cycle model will have additional cross-sectional
inequality due to the humped shaped savings profiles, which induces the accumulation,
stationary, and deaccumulation phases. We view these difference in inequality as a funda-
mental difference between the two models and, therefore, choose not to specially alter the
infinitely lived agent model to match a higher level of cross-sectional inequality.
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5.1 Optimal Public Policy

The government maximizes social welfare by choosing a budget feasible level
of public savings, B, subject to allocations being a stationary recursive compet-
itive equilibrium. We consider an ex-ante Utilitarian social welfare criterion
that evaluates the expected lifetime utility of an agent that has yet to enter the
steady state economy.15 For the life cycle model, the government’s welfare
maximization problem is:

SJ(V1, λ1) ≡ max
B

{ ∫
V1(a, ε, x, ζ; B) dλ1(a, ε, x, ζ; B) s.t. (1), (3)

}
where the value function V1(·; B), distribution function λ1(·; B) and policy
functions embedded in equations (1) and (3) are determined in competitive
equilibrium and depend on the government’s choice of public savings. Fur-
thermore, B′ = B in steady state. Since the distribution of taxable income and
tax revenues depend on public savings, we adjust the Social Security payroll
tax rate τss to ensure that Social Security is self-financing and, furthermore,
adjust the income tax parameter τ0 to ensure that the government budget is
balanced.16

For the infinitely lived agent model, the government’s welfare maximiza-
tion problem is:

S∞(V, λ) ≡ max
B

{ ∫
V(a, ε; B) dλ(a, ε; B) s.t. G = rB + Υy(τ0, B)

}
The infinitely lived agent model government’s welfare maximization problem
is nearly identical to that of the life cycle model’s, except that the value func-
tion and distribution function do not depend on age and there is no Social
Security program, so that equation (3) does not define the feasible set.

15Our analysis focuses on welfare across steady states. This analysis omits the transitional
costs between steady states which can be large. See Domeij and Heathcote (2004), Fehr and
Kindermann (2015) and Dyrda and Pedroni (2016).

16We choose to use τ0 to balance the government budget instead of the other income taxa-
tion parameters (τ1, τ2) so that the average income tax rate is used to clear the budget, as
opposed to changing in the progressivity of the income tax policy. The average tax rate is
the closest analogue to the flat tax that Aiyagari and McGrattan (1998) use to balance the
government’s budget in their model.
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We find that the two models generate starkly different optimal policies,
which are reported in Table 2. In the infinitely lived agent model, the govern-
ment optimally holds debt equal to 22 percent of output.17 In the life cycle
model, on the other hand, the government optimally holds savings equal to
59 percent of output. Thus, including life cycle features causes optimal policy
to switch from public debt to savings, with an 80 percentage point swing in
optimal policy.

Table 2: Prices and Aggregates Across Models

Life Cycle Infinitely Lived
Base. Opt. % ∆ Base. Opt. % ∆

Public Savings/Output -0.67 0.59 189.0 -0.67 -0.22 67.5
Private Savings/Output 3.37 2.42 -28.2 3.35 2.96 -11.7
Capital/Output 2.70 3.01 11.5 2.70 2.74 1.9
Output 0.93 1.01 8.6 1.16 1.17 1.5
Labor 0.53 0.54 2.2 0.66 0.67 0.4
Interest Rate 5.0% 3.6% -1.4 5.0% 4.8% -0.2
Wage 1.12 1.19 6.3 1.12 1.13 1.0

5.2 Welfare Decomposition

While the infinitely lived agent model prescribes that the government hold
public debt, the life cycle model’s optimal policy prescribes holding public
savings. What is the welfare loss from incorrectly implementing a public debt
policy?

We quantify the welfare consequence of ignoring life cycle features and,
as a consequence, adopting a public debt instead of a public savings policy.
To do so, suppose that the government implements the optimal debt policy
from an infinitely lived agent economy when the true economy is a life cycle
economy. We then measure the welfare loss from implementing a suboptimal

17This is generally consistent with Aiyagari and McGrattan’s (1998) optimal policy. This pa-
per assumes a different stochastic process governing labor productivity, a different utility
function, non-linear income taxation and different parameter values. A quantitative de-
composition of these model differences are available upon request.
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debt policy using consumption equivalent variation (CEV). CEV is the percent
of lifetime consumption that an agent would be willing to pay, ex ante, in
order to live in an economy with an optimal public savings policy instead of
a suboptimal public debt policy.

Table 3 reports the consumption equivalent variation. We find that an 80
percentage point difference in fiscal policy corresponds to a welfare loss of
0.42 percent of expected lifetime consumption. The welfare loss is economi-
cally significant, demonstrating that ignoring life cycle features when deter-
mining optimal debt policy will have nontrivial welfare effects. The same 80
percentage point change to government policy in the infinitely lived agent
model leads to much smaller welfare effects. In particular, an infinitely lived
agent would only sacrifice 0.04 percent of lifetime consumption in order to
live in the economy in which the government holds optimal debt instead of
59 percent of output in public savings.

Table 3: Welfare Decompositions

(% Change) Life Cycle Infinitely Lived

Overall CEV 0.42 -0.04
Level (∆l) 0.92 -0.70

Consumption (∆Cl) 1.36 0.90
Hours (∆Hl) -0.43 -1.58

Distribution (∆d) -0.50 0.66
Consumption (∆Cd) 0.08 -0.20
Hours (∆Hd) -0.58 0.86

The Life Cycle Model welfare decomposition compares al-
locations under a -22% public debt-to-output and the opti-
mal 59% public savings-to-output ratio. The Infinitely Lived
Agent Model welfare decomposition compares allocations
under the optimal -22% public debt-to-output and a 59%
public savings-to-output ratio. The Level and Distribution
decompositions are given by 100((1+ ∆Cl )(1+ ∆Hl )− 1) and
100((1 + ∆Cd)(1 + ∆Hd)− 1).

The welfare gains from implementing optimal policy reflect the govern-
ment’s desire to improve the aggregate resources available to agents and the
allocation of those resources across agents. In order to characterize these wel-
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fare effects, we decompose the consumption equivalent variation (denoted
∆CEV) into a level effect (∆l) and a distribution effect (∆d) as follows:18

(1 + ∆CEV) = [(1 + ∆Cl)(1 + ∆Hl)︸ ︷︷ ︸
≡(1+∆l)

] · [(1 + ∆Cd)(1 + ∆Hd)︸ ︷︷ ︸
≡(1+∆d)

].

The level effect measures the average agent’s change in welfare as a result
of changes in aggregate consumption (∆Cl) and aggregate hours (∆Hl). The
level effect captures the welfare change for a fictitious "representative agent,"
absent distributional concerns of policy. On the other hand, the distribution
effect measures the remaining change in welfare that results from a change in
the distribution of consumption (∆Cd) and hours (∆Hd) across agents.19

Adopting public savings has differential welfare effects across the two
models. Table 3 reports that the 0.42 percent welfare improvement from
adopting public savings in the life cycle model can be decomposed into a 0.92
percent increase from the level effect and a partially offsetting 0.50 percent
decrease from the distribution effect. The opposite holds for adopting public
savings in the infinitely lived agent model, where the 0.04 percent welfare loss
corresponds to a 0.70 percent decrease in the level effect and 0.66 percent in-
crease from the distribution effect. These differences in level and distribution
effects reflect the varying welfare impact of competing mechanisms across
models.

The level effect reflects a difference in the efficacy of the insurance channel
across models. To see this, first note that adopting public savings induces a
higher wage and a lower interest rate. The higher wage encourages additional
labor hours, which increases the resources available for agents’ consumption
(as seen in Figure 2 for the life cycle model) but worsens total disutility from

18More generally, we follow Floden (2001) in characterizing four components of the CEV: a
level effect (∆L), an insurance effect (∆I), a redistribution effect (∆R) and a labor hours
effect (∆H). We combine the insurance and redistribution effects to form the “distribution
effect”. Appendix A.2 formally derives the decomposition.

19Note that the life cycle model only assumes initial heterogeneity with respect to the perma-
nent and transitory components of labor productivity, but not initial wealth heterogeneity.
While allowing for heterogeneity in the initial wealth distribution could generate a larger
distribution effect in welfare changes, the PSID and SCF document low levels and relatively
small dispersion in individuals’ wealth upon entering the labor market.
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hours worked. However, Table 3 reports that the percent change in utility
from increased aggregate consumption is higher in the life cycle model (1.36)
than in the infinitely lived agent model (0.90), despite a larger percent in-
crease in labor disutility in the latter. To account for the relatively smaller
consumption increase in the infinitely lived agent model, recall that the lower
interest rate discourages private savings in each model. In the infinitely lived
agent model, however, the policy also reduces ex ante average wealth. This is
because, by the nature of living infinite lifespans, aggregate savings is equiva-
lent to ex ante wealth. Therefore, the lower interest rate worsens an infinitely
lived agent’s ex ante self-insurance and a larger fraction of the population
must sacrifice consumption due to binding liquidity constraints.20 In con-
trast, the lower interest rate has no effect on initial allocations in the life cycle
model because initial wealth is zero and does not respond to prices.21 We
provide quantitative evidence for this mechanism in Section 5.3.1.
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Figure 2: Solid lines are cross-sectional averages for consumption, savings, and hours by
age in the life cycle economy under its optimal public savings policy. The dashed lines
are cross-sectional averages for the suboptimal debt policy from the infinintely lived agent
economy.

Finally, the distribution effect corresponds to the inequality channel in
both models. Yet, a higher wage has different effects on inequality in the

20Relative to Floden (2001), the effect of policy on insurance is usually defined as a distribu-
tion effect. However, in order to compare model outcomes, we measure it as an average
effect on consumption an hours that is captured by the level effect.

21The lower interest rate may decreases average savings across the lifetime, however it does
not have as large of a welfare effect since it does not change the initial distribution.
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life cycle and infinitely lived agent models. In the life cycle model, since la-
bor earnings contribute more to total income inequality than asset income
does, a higher wage exacerbates existing lifetime total income inequality. In
the infinitely lived agent model, the opposite holds true: since asset income
contributes more to total income inequality, a higher wage alleviates exist-
ing lifetime total income inequality. Accordingly, the negative distribution
effect in the life cycle model reflects greater income inequality while the pos-
itive distribution effect in the infinitely lived agent model reflects lower in-
come inequality. We provide quantitative evidence for this mechanism in
Section 5.3.2.

5.3 Life Cycle Features

There are three main differences between the life cycle and infinitely lived
agent models: (i) agents in the life cycle model experience an accumulation
phase while agents in the infinitely lived agent model experience a perpetual
stationary phase, (ii) age-dependent features in the life cycle model, such as
mortality risk, an age-dependent wage profile, retirement and Social Security,
do not exist in the infinitely lived agent model and (iii) the lifespan is dif-
ferent in the two models. We begin by demonstrating that the introduction
of the accumulation phase in the life cycle model can more than explain the
differences in optimal policies between the two models. Then we systemati-
cally decompose the effects of each of the three model differences on optimal
policy.

5.3.1 The Accumulation Phase

This section quantifies the importance of the accumulation phase for explain-
ing the difference in optimal policies between the life cycle and infinitely
lived agent models. We do this by constructing an approximation to the in-
finitely lived agent economy that features an accumulation phase. Relative
to the infinitely lived agent model, the counterfactual model mainly differs
from the infinitely lived agent model in that agents are endowed with zero
wealth. In order to activate the accumulation phase we assume agents have
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finite lifespans. However, we assume that agents die at the end of J = 1000
periods, a sufficiently large terminal age to mimic the infinitely lived agent
model. Therefore, by construction, the fundamental difference between the
counterfactual model and the infinitely lived agent model is the accumula-
tion phase.22

Using the calibrated counterfactual model, we conduct a computational
experiment to isolate the impact of the accumulation phase on optimal policy.
Suppose that the government chooses policy according to an alternative social
welfare criterion that places less weight on the flow of utility during youth
than does the ex ante Utilitarian welfare criterion. In particular, suppose that
the alternative social welfare criterion only incorporates the expected present
value of utility after a given age j∗ > 1, and ignores the flow of utility from
ages 1 to j∗ − 1. Government policy, therefore, maximizes agents’ expected
utility as of age j∗, subject to allocations being determined in competitive
equilibrium:

S̃(Vj∗ , λj∗) ≡ max
B

{ ∫
Vj∗(a, ε; B) dλj∗(a, ε; B) s.t. G = rB + Υy(τ0, B)

}
.

Figure 3 plots the optimal policy under this alternative welfare criterion as
a function of the percent of the lifetime that threshold age, j∗, represents. We
observe that optimal policy monotonically decreases from the public savings
to output ratio of 2.35 when all of the lifetime is considered, to an optimal
debt policy when the social welfare function ignores at least 5.2 percent of
agents’ early lifetime. Across models, higher public debt (lower public sav-
ings) crowds out the productive capital stock and leads to a higher interest
rate. The higher interest rate encourages agents to save, which improves self
insurance. When the age threshold is small, the government includes agents’
utility during the accumulation phase in its welfare maximization calcula-
tion. As a result, agents’ welfare improvement from accumulating more pre-
cautionary savings is offset by the utility cost of accumulating that savings.

22Neither the infinitely lived nor the counterfactual model feature any age-dependent fea-
tures (e.g., no mortality risk, no age-dependent wage profile, no retirement and no Social
Security). In order to make quantitative comparisons across models, the counterfactual
model’s parameters are recalibrated to match all relevant the targets described in Section 4.
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However, when the age threshold is large, the government ignores the flow of
utility for agents in the accumulation phase and there is only a large welfare
improvement from agents living with more self insurance. The right panel
of Figure 3 shows that ignoring at least 5.2 percent of agents’ early lifetime
corresponds to ignoring at least 69 percent of the accumulation phase.

The experiment shows that the existence of an accumulation phase is cru-
cial to the optimality of public savings. Without the accumulation phase, the
benefits of the insurance channel strengthen and lead to the optimality of
public debt. In contrast, when the accumulation phase is incorporated, the
benefits from the insurance channel are smaller and public savings is optimal.
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-100
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Figure 3: The left panel graphs the optimal public savings to output ratio (y-axis) associated
with ignoring a given percent of early life utility flows (x-axis). The percent of "Lifetime
Ignored" is measured as 100 · (j∗/J), using the given value of j∗ and J = 1000. The right panel
graphs the percent of accumulation that is eliminated under the optimal policy associated
with ignoring a given percent of early life utility flows. The percent of eliminated wealth
accumulation is defined as the average private savings of j∗-age agents relative to the peak
average savings and converted to a percent, given a particular optimal public savings policy.
The vertical dashed line demarcates the percent of early lifetime utility ignored at which
optimal policy switches from public savings to debt.
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Table 4: Optimal Public Savings-to-Output Ratios

Counterfactuals
Life No Age Features Long Lifespan Infinitely

Cycle (81 periods) (401 periods) Lived

0.59 2.00 2.48 -0.22

5.3.2 Decomposing the Effects of Life Cycle Features

Apart from the accumulation phase, there are two remaining differences be-
tween the life cycle and infinitely lived agent models: lifespan and age-
dependent features (e.g., mortality risk, age-dependent wage profile, retire-
ment and Social Security). Next, we quantify the effect of each of these dif-
ferences on optimal policy. Unlike removing the accumulation phase, we find
that removing lifespan and age-dependent features shifts optimal policy to-
wards more public savings.

In order to characterize the individual effects of these differences on opti-
mal policy between the life cycle and infinitely lived agent models, we con-
struct two counterfactual economies. The first is the "No Age-Dependent
Features" economy, which is a version of the life cycle model that excludes
all age-dependent features (e.g., no mortality risk, no age-dependent wage
profile, no retirement and no Social Security) while maintaining the lifespan
of J = 81 periods. The second is the "Long Life" economy, which removes
age-dependent model features and also extends agents’ lifetime to J = 401
periods.23

Table 4 reports optimal policies in the benchmark life cycle, infinitely lived,
and counterfactual models. First, comparing the baseline life cycle model and
"No Age-Dependent Features" economy isolates the effect of age-dependent
features, which leads to an increase in the working lifetime due to the removal
of retirement and mortality. We find that the optimal savings-to-output shifts
from 59 to 200 percent. Comparing the "No Age-Dependent Features" and
"Long Life" counterfactual economies isolates the effect of further increasing

23In order to make quantitative comparisons across models, each counterfactual model’s pa-
rameters are recalibrated to match all relevant the targets described in Section 4.
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Table 5: Income Composition and Inequality

Counterfactuals
Life No Age Features Long Lifespan

Cycle (81 periods) (401 periods)

(a) Asset Income Inequality in Baseline Calibration

Coefficient of Variation 0.33 0.34 0.49
Gini Coefficient 0.19 0.20 0.28

(b) Lifetime Total Income Inequality

Coefficient of Variation
Baseline 0.36 0.32 0.31
Optimal 0.35 0.30 0.27
% Change -1.8% -7.1% -13.8%

Gini Coefficient
Baseline 0.20 0.18 0.17
Optimal 0.19 0.16 0.15
% Change -2.0% -6.9% -12.0%

agents’ working lifetime and lifespan. This effect additionally increases the
optimal savings-to-output from 200 to 248 percent. Finally, comparing the
"Long Life" economy with the infinitely lived agent model highlights the ef-
fect of the accumulation phase on optimal policy, which switches optimal
policy from savings to debt-to-output of 22 percent.

Removing age-dependent features and extending agents’ lifespan gener-
ates increases in optimal public savings by lengthening the span of life that
agents spend working. In the life cycle model, there is a tendency for wealth
inequality to increase with an extension of agents’ expected working lifespan
and, in turn, this generates a greater amount of inequality in lifetime asset
income. Table 5(a) reports that, indeed, measures of lifetime asset income in-
equality (the Gini coefficient and the coefficient of variation), increase under
the baseline calibration when these two features are removed.24 Likewise, un-
24To construct inequality measures, we use lifetime asset income as a share of lifetime total
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Figure 4: Cumulative Distribution Function for Wealth. Solid lines represent
the baseline economy and dashed lines represent economies with optimal
policy.

der the baseline policy, the cumulative distribution functions for wealth across
all agents (see Figure 4) demonstrate that wealth becomes more unequal when
either of these features are removed. In contrast, Table 5(b) demonstrates
that lifetime total income inequality tends to decrease. Therefore, interest
income becomes a larger source of overall income inequality when both age-
dependent features are removed and the lifespan is extended.

Because of risk aversion, agents dislike inequality and thus policy has a
role to improve welfare by reducing this income inequality. In the life cy-
cle and counterfactual models, moving from public debt to public savings
increases the wage and decreases the interest rate. This increases lifetime in-
come inequality from savings and decreases lifetime income inequality from
labor earnings. Thus, optimal policy must weigh this trade-off. Asset income
contributes more to lifetime total income inequality when age-dependent fea-
tures are removed and lifespan is extended. Accordingly, shifting toward a
higher level of public savings will reduce lifetime total income inequality. The

income: ∑J
j=1 sj

(
1

1+r

)j−1
raj /

(
∑J

j=1 sj

(
1

1+r

)j−1
wejhj + ∑J

j=1 sj

(
1

1+r

)j−1
raj

)
. For the No

Age-Dependent Features and Long Lifespan counterfactual models, there is no mortality
risk so that sj = 1 for all j = 1, . . . , J.
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change in the wealth distribution in Figure 4 and the total lifetime income in-
equality measures in Table 5(b) demonstrate that, in fact, adopting an optimal
public savings policy reduces both lifetime asset income and total income in-
equality. Thus, overall, eliminating age-dependent features and extending the
lifespan both cause an increase in the optimal level of public savings due to
the inequality channel.

Finally, the primary difference between the Long Life counterfactual model
and the infinitely lived agent model is the existence of an accumulation phase.
Despite their other common features (e.g., no age-dependent features, and
long or infinite lifetimes), the infinitely lived agent model features a starkly
different optimal policy of public debt as opposed to public savings. As Sec-
tion 2 explained, the existence of an accumulation phase mitigates the efficacy
of the insurance channel while extending agents’ working lifetime further en-
forces the inequality channel. Thus, when comparing the life cycle and the
infinitely lived agent models, the existence of age-dependent features and a
shorter lifespan drive optimal policy toward public debt while the existence
of the accumulation phase drives optimal policy toward public savings. Over-
all, we find that the effects of the accumulation phase dominate the effects of
other life cycle model features on optimal policy, thereby ultimately resulting
in the optimality of public savings.

6 Conclusion

This paper measured the optimal quantity of public debt in a variant of the
incomplete markets model that allows for an explicit life cycle. We find that
it is optimal for the government to hold savings equal to 59% of output when
life cycle features are included. In contrast, we find that it is optimal for the
government to hold debt equal to 22% of output when these life cycle features
are excluded. Furthermore, there are economically significant welfare con-
sequences from not accounting for life cycle features when determining the
optimal policy. We find that if a government implemented the infinitely lived
agent model’s optimal 22% debt-to-output policy in the life cycle model, then
life cycle agents would be worse off by nearly one-half percent of expected
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lifetime consumption.
The substantial difference in optimal policies across the two models is

primarily due to differences in the effectiveness and benefit of public debt
encouraging agents to hold precautionary savings. Generally, higher govern-
ment debt (or decreasing government savings) tends to crowd out the stock
of productive capital, and leads to a higher interest rate which encourages
agents to hold more savings. However, this channel is significantly less bene-
ficial in the life cycle model relative to the infinitely lived agent model. This
is because, agents in the infinitely lived agent model do not experience an
accumulation phase but instead experience a perpetual stationary phase in
which agents have accumulated a target level of assets, around which savings
fluctuates. If the government holds more public debt, then the steady state
level of aggregate savings is larger and the average agent has more wealth ex
ante. In contrast, life cycle agents enter the economy with zero wealth and im-
mediately begin an accumulation phase, in which agents accumulate wealth
for precautionary reasons and to finance post-retirement consumption. Thus,
although changes in the interest rate may increase the level of savings in the
stationary phase for life cycle agents, these agents’ initial wealth will not re-
spond to policy and agents still need to accumulate this wealth during the
first phase of their lifetimes. Ultimately, this significantly reduces the benefit
of government debt in the life cycle model.

When using quantitative models to answer economic questions, economists
are constantly faced with a trade-off between tractability and realism. Our
results demonstrate that when examining the welfare consequences of public
debt or savings, it is not without loss of generality to utilize the more tractable
infinitely lived agent model instead of a life cycle model.
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İmrohoroğlu, S. (1998): “A Quantitative Analysis of Capital Income Taxa-
tion,” International Economic Review, 39, 307–328.

Judd, K. (1985): “Redistributive Taxation in a Simple Perfect Foresight
Model,” Journal of Public Economics, 28, 59–83.

Kaplan, G. (2012): “Inequality and the life cycle,” Quantitative Economics, 3,
471–525.

Kitao, S. (2014): “Sustainable Social Security: Four Options,” Review of Eco-
nomic Dynamics, 17, 756–779.

Röhrs, S. and C. Winter (2016): “Reducing Government Debt in the Pres-
ence of Inequality,” Unpublished.

38



A Appendix

A.1 Construction of the Balanced Growth Path

We construct the Balanced Growth Path in multiple parts. First we construct
the Balanced Growth Path using aggregates from the models. Then, we con-
struct the Balanced Growth Path using individual agents’ allocations. The
last two sections develop the Balanced Growth Path for any features unique
to the infinitely lived agent or life cycle models.

A.1.1 Aggregate Conditions

Balanced Growth Path: A Balanced Growth Path (BGP) is a sequence

{Ct, At, Yt, Kt, Lt, Bt, Gt}∞
t=0

such that (i) for all t = 0, 1, . . . Ct, At, Yt, Kt, Bt, Gt grow at a constant rate g,

Yt+1

Yt
=

Ct+1

Ct
=

At+1

At
=

Kt+1

Kt
=

Bt+1

Bt
=

Gt+1

Gt
= 1 + g

(ii) per capita variables all grow at the same constant rate gw:

Yt+1/Nt+1

Yt/Nt
=

Ct+1/Nt+1

Ct/Nt
=

At+1/Nt+1

At/Nt
=

Kt+1/Nt+1

Kt/Nt
=

Bt+1/Nt+1

Bt/Nt
=

Gt+1/Nt+1

Gt/Nt
= 1+ gw

and (iii) hours worked per capita are constant:

Lt+1

Nt+1
=

Lt

Nt
=

L0

N0

Denote time 0 variables without a time subscript, for example L ≡ L0.

Growth Rates: Let all growth derive from TFP gz > 0 and population gn > 0
growth. Then on a balanced growth path we assume:

Zt = (1 + gz)
tZ

Nt = (1 + gn)
tN
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where z and N are steady state values. Then, growth in labor is:

Lt+1

Lt
=

Lt+1/Nt+1

Lt/((1 + gn)Nt)
= 1 + gn

In steady state Y = ZKαL1−α. Let output growth be given by g > 0. Therefore
the production function gives:

Yt = ZtKα
t L1−α

t =⇒ (1 + g) = (1 + gz)
1

1−α (1 + gn)

Lastly, from parts (ii) and (iii) of the Balanced Growth Path definition, we
can solve for the growth of per capita variables:

Yt+1/Nt+1

Yt/Nt
=

Zt+1

Zt

(
Kt+1/Nt+1

Kt/Nt

)α (Lt+1/Nt+1

Lt/Nt

)1−α

=⇒ (1 + gw) = (1 + gz)
1

1−α

Prices: From Euler’s theorem we know:

Yt = αYt + (1− α)Yt = (rt + δ)Kt + wtLt

Accordingly, the wage and interest rate depend on the capital-labor ratio.
Growth in the capital-labor ratio is:

Kt+1/Lt+1

Kt/Lt
= (1 + gz)

1
1−α = 1 + gw

Therefore, the growth rate for the wage is:

wt+1

wt
=

Zt+1

Zt
·
(

Kt+1/Lt+1

Kt/Lt

)α

= 1 + gw

and the growth rate for the interest rate is:

rt+1 + δ

rt + δ
=

Zt+1

Zt
·
(

Kt+1/Lt+1

Kt/Lt

)α−1

= 1

Therefore wages grow while interest rates do not.
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Equilibrium Conditions: The detrended asset market clearing condition is:

Kt = At + Bt =⇒ K = A− B

The detrended resource constraint is:

Ct + Kt+1 + Gt = Yt + (1− δ)Kt =⇒ C + (g + δ)K + G = Y

and the detrended government budget constraint is:

Gt + rBt = Tt + Bt+1 − Bt =⇒ G + (r− g)B = T

A.1.2 Individual Conditions

Preferences: We assume that labor disutility has a time-dependent compo-
nent. Specifically, we assume labor disutility grows at the same rate as the
utility over consumption, such that vt+1(h) = (1 + gw)1−σvt(h). Therefore,
total utility is:

Ut(ct, ht) = u(ct)− vt(ht) =
[
(1 + gw)

1−σ
]t
(u(c)− v(h)) .

Social Security: In order for the AIME to grow at the same rate as the wage,
we assume a cost of living adjustment (COLA) on Social Security taxes and
payments. For social security taxes, the cap on eligible income grows at the
rate of wage growth, x̄t = (1+ gw)t x̄. Furthermore, base payment bend points
bss

i,t = (1 + gw)tbss
i and base payment values τr,i,t = (1 + gw)tτr,i for i = 1, 2, 3.

Tax Function: On a Balanced Growth Path, (ct, a′t+1, at) and ỹt must all grow
at the same rate as the wage. Furthermore, the tax function must grow at the
same rate as the wage. Recalling the tax function, Υt(ỹt), τ2 must grow at the
same rate as ỹ−τ1

t . Rewrite as:

Υt(ỹt) = τ0

(
(1 + gw)

tỹ−
(
[(1 + gw)

t]−τ1 ỹ−τ1 + [(1 + gw)
t]−τ1τ2

)− 1
τ1

)
= (1 + gw)

t Υ(ỹ)

41



Individual Budget Constraint: An agent’s time t budget constraint is:

ct + a′t+1 ≤ wtεtht + (1 + rt)at − Tt(·)

c + (1 + gw)a′ ≤ wεh + (1 + r)a− T(·)

where {c, a′, a, h, w, r, ε} are stationary variables. Given that the tax function
Υ(ỹ) grows at rate gw, so will the transfer function T(h, a, ε) in the infinitely
lived agent model. Furthermore, given that the Social Security program
{x̄, bss

i , τr,i} grows at rate gw, so will the transfer T(h, a, ε, x, ζ ′) function in
the life cycle model.

A.1.3 Life Cycle Model

Individual Problem: On the balanced growth path of the life cycle model,
the stationary dynamic program is:

Vj(a, ε, x, ζ) = max
c,a′,h,ζ ′

[
u(c)− ζ ′v(h)

]
+ [βsj(1 + gw)

1−σ]∑
ε′

πj(ε
′|ε)Vj+1(a′, ε′, x′, ζ ′)

s.t. c + (1 + gw)a′ ≤ ζ ′we(ε)h + (1 + r)(a + Tr) + T(h, a, ε, x, ζ ′)

a′ ≥ a

ζ ′ ∈ {1(j <
¯
Jret), 1(j ≤ J̄ret) · ζ}

Distributions: For j-th cohort at time t, the measure over (a, ε, x, ζ) is given
by:

λj,t(at, ε, xt, ζ) = λj,t−1

(
at

1 + gw
, ε,

xt

1 + gw
, ζ

)
(1 + gn)

= λj,t−m

(
at

(1 + gw)m , ε,
xt

(1 + gw)m , ζ

)
(1 + gn)

m ∀ m ≤ t

= λj(a, ε, x, ζ)Nt−j+1.
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Therefore, λj(a, ε, x, ζ) is a stationary distribution over age j agents that inte-
grates to one.

Aggregation: Aggregate consumption in the life cycle model is constructed
as follows. Define the relative size of cohorts as µ1 = 1 and:

µj+1 =
Nt−j

Nt
·

j

∏
i=1

si = (1 + gn)
−j

j

∏
i=1

si =
sjµj

1 + gn
∀ j = 1, . . . , J − 1

Let Cj,t be aggregate consumption per age-j agent, which is derived from the
age-j agent’s allocation:

Cj,t =
∫
(1 + gw)

tcj(a, ε, x, ζ)dλj = (1 + gw)
t
∫

cj(a, ε, x, ζ)dλj = (1 + gw)
tCj

where Cj is the stationary aggregate consumption per age-j agent. Accord-
ingly, aggregate consumption is:

Ct = Nt

(
C1,t + s1(1 + gn)

−1C2,t + · · ·+
(

J−1

∏
i=1

si

)
(1 + gn)

−(J−1)CJ,t

)

= (1 + gw)
tNt

J

∑
j=1

µjCj

= (1 + g)tC

where C is the stationary level of aggregate consumption and where we have
normalized N = 1.

We can similarly construct the remaining aggregates {A, K, Y, B, G} on the
balanced growth path. Notably, however, labor per capita does not grow.
Aggregate labor per capita is constructed as:

Lt = Nt

J

∑
j=1

µjLj =⇒ L =
Lt

Nt
=

J

∑
j=1

µj

∫
ζ ′j(a, ε, x, ζ)εhj(a, ε, x, ζ)dλj

which is the sum over ages of aggregate labor per age-j agent.
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A.1.4 Infinitely Lived Agent Model

In order to isolate the effects on optimal policy due to fundamental differ-
ences in the life cycle and infinitely lived agent models, and not due to differ-
ences in balanced growth path constructs, we want sources of output growth
(e.g. TFP and population growth) to be consistent across models. Thus, we
incorporate population growth into the infinitely lived agent model. To be
consistent with the life cycle model, we construct a balanced growth path
in which the infinitely lived agent model’s income and wealth distributions
grow homothetically. Our representation of this growth concept is consis-
tent with a dynastic model in which population growth arises from agents
producing offspring and valuing the utility of their offspring.

To elaborate in more detail, two additional assumptions admit a balanced
growth path with population growth. First, agents exogenously reproduce at
rate gn and next period’s offspring are identical to each other. Second, the par-
ent values each offspring identically, and furthermore values each offspring
as much as they value their self. Formally, if the parent has continuation
value βE[v(a′, ε′)], then the parent values all its offspring with total value of
gnβE[v(a′, ε′)].

These two assumptions imply two features. First, each offspring is iden-
tical to its parent. That is, if the parent’s state vector is (a′, ε′) next period,
then so is each offspring’s state vector. As a result, the value function of
each offspring upon birth is v(a′, ε′). Second, since the parent values each
offspring equal to its own continuation value, it is optimal for the parent to
save save (1 + gn)a′ in total. The portion gna′ is bequeathed to offspring, and
the portion a′ is kept for next period.

Individual Problem: On the balanced growth path of the Infinitely Lived
Agent Model, the stationary dynamic program is then:

v(a, ε) = max
c,a′,h

U(c, h) + [β(1 + gw)
1−σ](1 + gn)∑

ε′
π(ε′|ε)v(a′, ε′)

s.t.
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c + (1 + gn)(1 + gw)a′ ≤ wεh + (1 + r)a− T(y)

where y ≡ wεh + ra and optimality conditions are given by:

χv(h) = u′(c)wε(1− T′(y))

u′(c) = β(1 + gw)
−σ(1 + r)∑

ε′
π(ε′|ε)u′(c′)(1− T′(y′)).

Notice that the optimality conditions do not change relative to a world with-
out population growth. However, the cost of savings has increased since
agents bequeath wealth to offspring.

Distribution: The distribution evolves according to:

λt+1(at+1, εt+1) = ∑
εt

π(εt+1|εt)
∫

A
1
[
a′t+1(at, εt) = at+1

]
λt(at, εt)dat

The stationary distribution λ(a, ε) has measure 1 over A× E but the mass of
agents grows at rate gn:

λt(at, ε) = λt−1

(
at

1 + gw
, ε

)
(1 + gn)

= λt−s

(
at

(1 + gw)s , ε

)
(1 + gn)

s ∀ s ≤ t

= λ(a, ε)Nt

Therefore, applying the transformation above and normalizing by Nt+1 yields:

λ(a′, ε′) = ∑
ε

π(ε′|ε)
∫

A
1
[
a′(a, ε) = a′

] λ(a, ε)

1 + gn
da

Aggregation: To construct aggregate consumption, wealth, savings and labor,
multiply individual allocations by the size of the population (Nt) and sum
using the stationary distribution λ. For example, aggregate consumption is:

Ct = Nt

∫
(1 + gw)

tc(a, ε)dλ = (1 + g)t
∫

c(a, ε)dλ = (1 + g)tC
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We can similarly construct the remaining aggregates {A, K, Y, B, G} on the
balanced growth path. Notably, however, aggregate labor per capita does not
grow:

Lt

Nt
=
∫

εh(a, ε)dλ

where again N0 = 1 by normalization.

A.2 Welfare Decomposition

Proposition 1: If preferences are additively separable in utility over consumption,
u(c), and disutility over hours, v(h), then welfare changes can be decomposed as:

(1 + ∆CEV) = [(1 + ∆Cl)(1 + ∆Hl)︸ ︷︷ ︸
≡(1+∆l)

] · [(1 + ∆Cd)(1 + ∆Hd)︸ ︷︷ ︸
≡(1+∆d)

].

Proof: Consider two economies, i ∈ {1, 2}. Define ex ante welfare in economy

i ∈ {1, 2} as:

Si = Si
c + Si

h ≡
∫

E0

[
J

∑
j=1

βj−1sju
(

ci
j

)]
dλi

1 +
∫

E0

[
J

∑
j=1

βj−1sjζ
i
jv
(

hi
j

)]
dλi

1.

Denote the Consumption Equivalent Variation (CEV) by ∆CEV , which is de-
fined as the percent of expected lifetime consumption that an agent inhabiting
economy i = 1 would pay ex ante in order to inhabit economy i = 2:

(1 + ∆CEV)
1−σS1

c + S1
h = S2.

Furthermore, define an individual’s certainty equivalent consumption as the
level c̄(a, ε, x, ζ) such that the individual is indifferent between consuming
c̄(a, ε, x, ζ) at every age with certainty and consuming according to policy
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function {cj(a, ε, x, ζ)}J
j=1 with uncertainty. That is, c̄(a, ε, x, ζ) is defined by:

Si
c ≡

∫
E0

[
J

∑
j=1

βj−1sju
(

ci
j

)]
dλi

1 =

(
J

∑
j=1

βj−1sj

) ∫
u
(

c̄i(a1, ε1, x1, ζ1)
)

dλi
1

which implies the definition of aggregate certainty equivalent consumption:

C̄i ≡
∫

c̄i
1(a1, ε1, x1, ζ1)dλi

1

Therefore, if agents only consume their certainty equivalent consumption al-
location, then they only face ex ante risk in their consumption. Following Flo-
den (2001), define the redistribution effect by a comparison between consuming
an individual and aggregate certainty equivalent consumption allocation:

∫
E0

[
J

∑
j=1

βj−1sju
(
(1−ωi

R)C̄
i
)]

dλi
1 =

(
J

∑
j=1

βj−1sj

) ∫
u
(

c̄i(a1, ε1, x1, ζ1)
)

dλi
1

which implies:

1−ωi
R =

(Si
c/ ∑J

j=1 βj−1sj)
1

1−σ

C̄i and 1 + ∆CR ≡
1−ω2

R
1−ω1

R
=

(S2
c /S1

c )
1

1−σ

C̄2/C̄1 .

Likewise, define the uncertainty effect as a comparison between consuming at
each age, the aggregate consumption allocation:

Ci =
J

∑
j=1

µj

∫
ci

j(a, ε, x, ζ)dλi
j

and the aggregate certainty equivalent consumption, C̄i. Then:

∫
E0

[
J

∑
j=1

βj−1sju
(
(1−ωi

I)C
i
)]

dλi
1 =

(
J

∑
j=1

βj−1sj

) ∫
u
(

C̄i
)

dλi
1

which implies:

1−ωi
I =

C̄i

Ci and 1 + ∆CI =
1−ω2

I
1−ω1

I

47



Lastly, define the labor disutility effect ∆H as the percent of lifetime consump-
tion that an individual would pay to change their hours allocation:

(1 + ∆H)
1−σS2

c = S2
c + (S2

h − S1
h)

Proceeding from the definition of the CEV, we can decompose welfare as
follows:

(1 + ∆CEV) = (1 + ∆Cl) · (1 + ∆CI ) · (1 + ∆CR) · (1 + ∆H)(
S2 − S1

h
S1

c

) 1
1−σ

= (C2/C1) · C̄2/C̄1

C2/C1 · (S2
c /S1

c )
1

1−σ

C̄2/C̄1 ·
(
(S2 − S1

h)/S1
c
) 1

1−σ

(S2
c /S1

c )
1

1−σ

Canceling terms on the right hand side of the expression readily shows a
decomposition holds as desired. In the text, we combine (1 + ∆CI )(1 + ∆CR)

as an amalgam term, (1 + ∆Cd), consistent with Conesa et al. (2009), to form
the consumption distribution effect.

Decomposing the labor disutility effect into level and distribution effects
follows similar reasoning. Define the hours level effect (1 + ∆Hl) as the labor
disutility that an agent would be willing to accept in order to work H2 hours
each period instead of H1 hours, which implies that (1 + ∆Hl) = H2/H1. Fi-
nally, define the hours distribution effect as the residual of the labor disutility
effect after accounting for the hours level effect:

(1 + ∆Hd) =

(
(S2 − S1

h)/S2
c
) 1

1−σ

H2/H1 .

Therefore the decomposition gives (1 + ∆H) = (1 + ∆Hl)(1 + ∆Hd). �
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