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Abstract

This paper studies the implications of information-processing limits on con-
sumption and savings behavior of households through time. It possesses a dynamic
model in which consumers rationally choose the size and scope of the information
they want to process about their �nancial possibilities. Their ability to process
information is constrained by Shannon channels. The model predicts that peo-
ple with higher degrees of risk aversion rationally choose higher information �ows
and have higher lifetime consumption. If they have limited access to information
�ows, risk averse agents prefer to allocate their attention in reducing the volatil-
ity of consumption in exchange for lower mean of consumption throughout their
life. Moreover, numerical results show that consumers with processing capacity
constraints have asymmetric responses to shocks, with negative shocks producing
more persistent e¤ects than positive ones. This asymmetry results into more sav-
ings. The �ndings suggest information-processing limits as an additional motive
for precautionary savings.
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Information is, we must steadily remember, a measure of one�s freedom of
choice in selecting a message. The greater this freedom of choice, and hence
the greater the information, the greater is the uncertainty that the message ac-
tually selected is some particular one. Thus greater freedom of choice, greater
uncertainty, greater information go hand in hand. (Claude Shannon, sic.)

1 Introduction

People face everyday an overwhelming amount of data. Imagine a consumer who wants
to choose optimal plans for consumption and savings through his lifetime. He must think
through the quality and quantity of his current consumption, his income possibilities, the
rate of returns on his investments, etc. Considering the amount of available information
to attend to, a simple task such as day-by-day shopping seems di¢ cult and perhaps
hopeless if optimality of the lifetime plan is the goal. Yet, people gather information and
make decisions every day reacting to shifts in their economic environment.

Macroeconomists have realized the need to incorporate in their models slow, smooth
low-frequency responses together with hump-shaped high frequency consumption behav-
ior in order to match observed data. This has led to a number of modelling strategies
that inject inertia into rational expectation framework by assuming costly acquisition
of information and/or delays in the di¤usion of information. While these devices have
managed to track observed patterns in some dimensions, in the majority of cases they do
not provide a rationale for the randomness they imply which remains exogenous to the
model.

What drives people to react to some events and not others? Is it possible to relate
inertial behavior in consumption and savings to people�s preferences?

My paper o¤ers a micro-founded explanation of the nature of inertia in consumption
and savings behaviors.

Following Rational Inattention Theory, (Sims, 2003, 2006) this paper contributes to
the consumption and savings literature by modelling expectations of consumers as the
endogenous choice of the scope of the information they want to gather. In my framework,
inertial responses to movements of economic environment are the outcome of consumers�
choice and their resulting expectations.

The core idea is simple. By taking explicitly into account limits in information-
processing of people in an otherwise standard dynamic optimization model, this paper
studies the amount of information individuals want to process on the basis of what they
can process and their preferences. Combining the standard objective of maximizing util-
ity subject to a budget constraint with information-processinig limits leads to a departure
from rational expectations. My paper shows how to model this formally in an intertem-
poral setting. Moreover and perhaps most importantly, it provides a framework to in-
vestigate the interaction of choices of information and degrees of risk aversion of people
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and their implications on consumption and savings throughout their life. The challenge
of solving general rational inattention models is that they involve in�nite dimensional
state spaces. I address this issue by discretizing the model. I derive the properties of
the discretized framework and I propose and implement a computational strategy for its
solution.

Several predictions emerge from the model. First I �nd that more risk averse indi-
viduals choose to delay consumption until they are better informed about their wealth.
This is expected: risk averse consumers react to uncertainty by processing more informa-
tion regarding low values of wealth and keep their consumption low until the uncertainty
is diminished. Second, the choice of information a¤ects the expectations the agent has
about his current and future wealth and this in turn leads to a more (less) conserva-
tive consumption behavior the higher (lower) is risk aversion. Moreover, if information
processing is costly for the consumer, he focusses his e¤ort more in reducing the volatility
of his lifetime consumption than increasing its mean.

Third, ceteris paribus, di¤erent combinations of risk aversion and information �ow
lead to di¤erent consumption/savings paths. Numerical comparative-static analysis be-
tween a benchmark model and one with a strict bound on information-processing reveals
that consumers save more the lower the information �ow they have access to. This is
suggestive of a precautionary motive for savings driven by information processing limits.

Fourth, I �nd that consumers with processing capacity constraints have asymmetric
responses to income �uctuations, with negative �uctuations producing more persistent
e¤ects than positive ones.

Furthermore, in a limited information processing economy stickiness in consumption is
persistent and path dependent. Comparing my framework with another one equivalent in
all respects but information-processing limits, a favorable temporary income shock makes
people modify their lifetime consumption more slowly and persistently with information-
processing limits than without. This model also predicts that a temporary adverse shock
makes risk averse agents reset their lifetime consumption immediately downward and the
e¤ect of this kind of shock dies out slower than the e¤ect of a positive shock. The intuition
for the path dependence result is that in my model consumers never see their wealth but
they have a prior on it. The endogenous noise created by the imperfect observation
due to information capacity constraints carries over for many periods, creating a path
dependence of consumption..

My results are observational distinct from previous literature on consumption and
information (e.g., Reis(2006)):in both my model and in previous models consumption
growth moves back towards its original path after a given number of periods, but in my
model it takes much longer. In my setting reversion of consumption to its pre-shock
pattern occurs after many more periods than in the literature. A risk averse agent that
receives a signal indicating an increase in wealth, may decide to wait and have more
information in future periods about the actual consistency of his wealth, push forward
consumption and in the meanwhile increase his savings to spread the windfall throughout
his lifetime. Likewise, a risk averse agent immediately decides to decrease his consump-
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tion when he processes information about a reduction in his �nancial possibilities to avoid
taking any chances on his wealth. He reverts back to his original consumption plan only
after collecting a sequence of information that points him towards a re-establishment of
his �nances.

Relative to the literature on consumption and imperfect information (e.g., Prishke
(1995)), in my models consumers select the scope of their signal about their wealth. In
particular I do not constrain signals to have any speci�c distribution -such as Gaussian, as
assumed by the literature- : the nature of the signal is the outcome of the optimal decision
of the consumer. Hence, the theoretical contribution of this paper is to provide the
analytical and computational tools necessary to apply Information Theory in a dynamic
context with optimal choice of ex-post uncertainty.

Sims (1998, 2003, 2006) pioneered the idea that individuals have limited capacity
for processing information. The applications of rational inattention have been limited
to either a linear quadratic framework where Gaussian uncertainty has been considered
(such as Sims 1998, 2003, Luo 2007, Mackowiak and Wiederholt 2007, Mondria, 2006,
Moscarini 2004) or a two-period consumption-saving problem (Sims 2006) where the
choice of optimal ex post uncertainty is analyzed for the case of log utility and two
CRRA utility speci�cations. The linear quadratic Gaussian (LQG) framework can be
seen as a particular instance of rational inattention in which the optimal distribution
chosen by the household turns out to be Gaussian.

Gaussianity has two main advantages. First, it allows an explicit analytical solution
for these kinds of model. One can show that the problem can be solved in two steps: �rst
the information gathering scheme is found and then, given the optimal information, the
consumption pro�le. The second insights of this approach is its immediate comparison
to rational expectation theory based on signal extraction. The solution derived from a
LQG rational inattention model is indeed observational equivalent to a signal extraction
problem. This is because just by looking at the behavior of rational inattentive consumers
it is impossible to tell apart an exogenously given Gaussian noise of the signal extraction
model from endogenous noise that comes from information processing ehich is optimally
chosen to be Gaussian.

The tractability of rational inattention LQG comes at the cost of restrictive assump-
tions on preferences and the nature of the signal. Constraining uncertainty of the in-
dividual to a quadratic loss / certainty equivalent setting does not take into account
the possibility that the agent is very uncertain about his economic environment: ceteris
paribus, more uncertainty generates second order e¤ects of information that have �rst
order impact on the decisions of the individuals. In this sense, rational inattention LQG
models are subjected to the same limits as models that use linear approximation of op-
timality conditions to study stochastic dynamic models.1 With little uncertainty about

1Since the work of Hall (1982), the assumption of certainty equivalnce has also been questioned in the
consumption savings literature with no information friction, starting from e.g. Blanchard and Mankiw
(1988).
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the economic environment, linear approximations of the optimality conditions provide a
fairly adequate description of the exact solution of the system. However, it seems rea-
sonable to think that individuals may choose not to spend all their time in tracking the
economy. This suggests that uncertainty at the individual level might actually be large,
undermining the accuracy of both linearized and rational inattention LQG models.

To assess the importance of information choices on people�expectations, it is crucial to
let consumers select their information from a wider set of distributions than includes but
it is not limited to Gaussian family. In this sense, my paper contributes to the literature
that models how people form their expectations and react to the economy. A necessarily
non-exhaustive list of papers that address the issue of modeling consumers�expectations
includes the absent-minded consumer model proposed by Ameriks, Caplin and Leahy
(2003), together with Mullainathan (2002) and Wilson (2005), whose models feature
imperfect recall of the agents. Mankiw and Reis (2002) develop a di¤erent model in which
information disseminates slowly. They assume that every period an exogenous fraction
of �rms obtain perfect information concerning all current and past disturbances, while
all other �rms continue to set prices based on old information. Reis (2006) shows that a
model with a �xed cost of obtaining perfect information can provide a microfoundation
for this kind of slow di¤usion of information. My model di¤ers from the literature on
inattentiveness in that I assume that information is freely available in each period but
the bounds on information processing given by the Shannon channel force consumers to
choose the scope of their information to the limit of their capacity. This di¤erence makes
my setting and the one of inattentiveness observationally distinct in describing consumers�
responses to shocks. inattentive consumers decide when to process all the information
-in the wording of my model, when to have full capacity- and process nothing in the
remaining periods while rational inattentive consumers always react to a probabilistic
environment by gathering some information. The latter implies that rational inattentive
consumers may take a very long time to revert back to their original path after a one-
time shock if the information they collect is not sharp enough to justify a change in the
after-shock behavior.

The paper is organized as follows. Section 2 lays down the theoretical basis of rational
inattention. The �rst part describes the economics of rational inattention and introduces
informally the concept of entropy and information applied to an economic model. The
second part focuses more on the mathematics of rational inattention, with particular
emphasis on the statistical properties of entropy and information. Section 3 formulates
the model. It states the problem of the consumer as a discrete stochastic dynamic
programming problem, while Section 4 derives the properties of the Bellman function.
Section 5 shows the optimality conditions. Section 6 provides the numerical methodology
used to solve the model, while Section 7 delivers its main predictions and results. Section
8 discusses some extensions and Section 9 concludes.

5



2 Foundations of Rational Inattention

The goal of this section is to introduce the technology I employ in my model and to
discuss its implications on households�optimizing behavior. This section is divided into
two parts. The �rst discusses how information theory can be used for modeling based
on optimizing behavior. It also illustrates how and to what extent the outcomes of the
resulting model depart from those postulated by a standard framework. Moreover, it
lays down an informal description of my model and hints to its predictions.

The second part establishes the mathematical apparatus upon which rational inatten-
tion stands. The mathematical foundation for communication has been formally stated
in the seminal work of Claude Shannon (1948).2 The rigorous application of information
and communication theories to economics and their guidelines as microeconomic foun-
dations for modeling based on optimizing behavior is due to Christopher A. Sims (1988,
1998, 2003, 2005, 2006)3.

The work of Shannon focussed on measuring the information content of a message
selected at one point from a source located in another point. His main contribution
is to de�ne a measure of the choice involved in the selection of the message and the
uncertainty regarding the outcome. This synthetic measure of how uncertain the deci-
sion maker still is, after choosing his message, goes by the name of entropy. Rational
inattention stems from Information theory and uses Shannon capacity as a technological
constraint to capture individuals� limits in processing information about the economy.
People attempt to reduce their uncertainty by selecting the focus of their attention, con-
strained by information-processing limits. The resulting behavior of the agents depends
on the choices of what to observe of the environment once the processing limits are
acknowledged.

2.1 The Economics of Rational Inattention

The kernel of rational inattention stands on a probabilistic argument. Consider a con-
sumer who wants to choose his lifetime consumption and saving plans but has limited
knowledge of his wealth. To �gure out precisely how wealth evolves, the consumer needs
to process an amount of information that is beyond his skill, time and, equally impor-
tantly, his interest. The household enters the world with a probability distribution over
his wealth that corresponds to his uncertainty about his �nancial possibilities. With
the aim of maximizing his lifetime utility, he goes through life by selecting information
necessary to sharpen his knowledge within the limits of his capacity.

The consumer chooses the size and scope of a signal about his wealth. Taking into
account that processing information costs e¤ort and utilities. Intuitively, he needs to give
up leisure time to monitor his wealth whether this is looking up his account on internet,

2Readers not interested in the mathematical details of information theory may skip Section 2.2.
3As early as 1988, the bulk of the idea of Rational Inattention can be found in C. Sims�comment of

L. Ball, N.G. Mankiw and D. Romer in the Brooking Papers on Economic Activity 1:1988.
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�guring out the expenditures, making sure his checks do not bounce. Hence, he faces a
trade o¤ between the precision of the signal he wants to achieve and the time and e¤orts
spent in processing the content of the signal. Moreover, no matter how precisely he wants
to track his wealth, he cannot process all the information available since that goes way
beyond his skills. After choosing the signal and understand its content, he shops and uses
his consumption to infer the state of his wealth for future purchases. Note that from the
above argument, it is clear that before processing information, consumption is a random
variable for the household and, once realized, observed consumption behavior is used to
reduce uncertainty in the following periods.

To make the discussion concrete, consider a person has a prior over the possible
realizations of wealth, W . De�ne such a prior by p (W ).4 The uncertainty that this
probability contains before the consumer processes any information is measured by its
entropy, �E[log(p(W ))], where E [:] denotes the expectation operator. Entropy is a
universal measure of uncertainty which can be de�ned for a density against any base
measure. The standard convention is to attribute zero entropy to the events for which
p = 0,5 and to use base 2 for the logarithms so that the resulting unit of information is
binary and called a bit.

In the terms of my model, the initial prior over wealth is passed through a channel
which represents the mechanism that processes information. At this point it is important
to introduce a distinction between capacity of the channel and channel itself. I refer to
capacity of a Shannon channel as the technological constraint on the maximum amount
of information that can be processed. I refer to the channel as the mental device of
processing information available and mapping it into real-life decisions. In my setting,
Shannon channel captures the way the human brain works under the limits of its capacity.

The following example might foster intuition on this argument. Consider an individual
who realizes his car needs re�ll. While driving to the gas station, he hears on the radio
that there has been an increase in the price of gasoline. That news placed while focussing
on another activities is likely to have no e¤ect on his quest for full thank�s worth of
gas. Upon signing his credit card receipts he realizes he has spent more than for his
previous re�ll. Given the information conveyed by the purchase of gasoline, �guring out
the incidence of that increase on his wealth requires the individual to think or, in the
wording of my model, using his channel -i.e., his brain-.

The output of this thought, or information �ow, is an update on individuals��nancial
possibilities given the credit card receipts.

More formally, the credit card receipt can be thought of as an error-ridden datum.
Before any information is processed, this datum is the random variable consumption of
gas, C, whose probability distribution conditional on the random variable wealth, W ,
is p(CjW ). Knowing how much he spent in gas and thinking about the incidence of
the expenditure on his wealth makes the consumer update his knowledge of his �nancial

4In this section, p(�) is used to denote a generic density function.
5Formally, given that s log (s) is a continuous function on s 2 [0;1), by l�Hopital Rule

lims!0 s log (s) = 0.
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possibility. The update is an application of Bayes�rule:

p(W jC) = p(W )p(CjW )R
p(w)p(Cjw) dw: (1)

The information �ow resulting from sending data through the brain of the consumer is
measured by the increase in knowledge before seeing what he was charged for a full thank
of gas and after thinking of what the expenditure implies on his wealth.

Even if the consumer decides to pay closer attention to the incidence of gas prices on
his overall expenditure, he cannot process all the information available as this would go
beyond his skills and time.

The average di¤erence in entropy before and after processing the information he
acquires over time is therefore bound by a �nite rate of transmission of information, say
�. In formulae:

E[ (log2(p(W jC))jC]� E

�
log2

�Z
p(cjW )p(c)dc

��
� �: (2)

The expression in (2) tells that the average reduction in uncertainty about his wealth
given the information he acquires through C is bounded by a maximum number of bits,
�.

Note that the LHS of (2) is necessarily positive. This is because averaging across all
the possible realizations of C sharpens the knowledge of the person about his wealth.
However, some realization of C might make the individual more uncertain about W .
An example would be if the person wrongly attributes the expenditure in gasoline to an
excessive usage of the car rather than an increase in price. He could then decide to pay
more attention to car mileage rather than prices of oil. But if the credit card bill of the
following months still displays consistent withdraws at the gas station, he might detect
that the increase in the expenditure is due to a price e¤ect rather than a quantity e¤ect
and decide to pay more attention to gas prices.

Note that it is not possible to retrieve perfect information on consumer�s wealth
only on the basis of the observation of the behavior towards consumption since this
knowledge would imply an in�nite processing capacity of the consumer in �nite time.
This is because had the mental processing e¤ort -i.e., the LHS in (2)- transmitted the
exact value of consumer�s wealth, the rate of information transmission would have been
in�nite. The intuitive reason is that the channel, or human brain, needs time and e¤ort
to map the information acquired into the understanding of one�s �nancial possibilities.

Moreover, note that constraining the mapping between W and C to represent �nite
information �ow as displayed by the technology in (2), naturally leads to a smooth
and delayed reactions of the agents to the shifts in the consistency of their �nancial
possibilities acquired through the observations of C.

In my example above, only after observing several gasoline purchases, the consumer
may decide to pay more attention to oil prices and perhaps modify his behavior (e.g.,

8



he might decide to use the car less). This shows how a person trades o¤ his interest to
the content of the message (e.g., news on the radio, the display of prices at the gasoline
station) and his current activities. Moreover, the example involves a slow and delayed
responsiveness of the behavior of the individual to the content of the message even though
such a delay involves potentially large costs.

Next, one may wonder how a consumer with information constraints di¤er behavior-
wise from one with full information and one with no information. To illustrate this point,
consider the following baby model of consumer�s choice.

Suppose the household has three wealth possibilities w 2 W � f2; 4; 6g and three con-
sumption possibilities c 2 C � f2; 4; 6g. Before any observation is made, the consumer
has the following prior on wealth, Pr (w = 2) = :5, Pr (w = 4) = :25, Pr (w = 6) = :25.
Moreover the consumer knows that he cannot borrow, c � w and, if his check bounces
he will have to pay a �ne in terms of consumption c = 0. The utility he derives from
consumption where utility is de�ned as u (c) � log (c). His payo¤ matrix is summarized
in Figure a.

cnw 2 4 6
2 0:7 0:7 0:7
4 �1 1:38 1:38
6 �1 �1 1:8

Figure a: Payo¤ Matrix with u(c)�log(c)

If uncertainty in the payo¤ can be reduced at no cost, the consumer would set c = 2
whenever he knows that w = 2, c = 4 whenever w = 5 and, �nally, c = 6 if w = 8.

In contrast, if there is no possibility of gathering information about wealth besides
the one provided by the prior, the consumer will avoid in�nite disutility by setting c = 2
whatever the wealth. The di¤erence in bits in the two policies is measured by the mutual
information between C and W . I measure the ex-ante uncertainty embedded in the
prior for w by evaluating its entropy in bits, i.e., H (W ) � �

X
w2W

p (w) � log2 (p (w)) =

0:5�log2
�
1
0:5

�
+0:25�log2

�
1
0:25

�
+0:25�log2

�
1
0:25

�
= 1:5 bits. Since observation of c provides

information on wealth, conditional on the knowledge of consumption uncertainty about
w is reduced by the amount H (W jC) �

X
w2W

X
c2C

p (c; w) log2 (p (wj c)). The mutual

information between C and W , i.e., the remaining uncertainty about the wealth after
observing consumption is the di¤erence between ex-ante uncertainty of W (H (W )) and
the knowledge ofW provided through C (H (W jC)). In formulae, the mutual information
or capacity of the channel amounts to:

MI (C;W ) � H (W )�H (W jC) =

=
X
w2W

X
c2C

p (c; w) log

�
p (c; w)

p (c) p (w)

�
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To see what this formula implies in the two cases proposed, consider �rst the situation
in which information can �ow at in�nite rate.

First notice that in this case ex-post uncertainty will be fully resolved. Moreover, note
that (p (wj c)) = 1; 8c 2 C; 8w 2 W since the consumer is setting positive probability
on one and only one value of consumption per value of wealth. This in turns implies
H (W jC) = 0. Thus the mutual information in this case will be MI (C;W ) = H (W ) :

On the other hand, if consumer has zero information �ow or, equivalently, if process-
ing information would be prohibitively hard for him, his optimal policy of setting c = 2
at all times makes consumption and wealth independent of each other. This implies

that H (W jC) =
X
w2W

 X
c2C

p (c) p (w) log2

�
p(c)p(w)
p(c)

�!
= H (W ). Hence, in this case

MI (C;W ) = 0 and no reduction in the uncertainty about wealth occurred by ob-
serving consumption. This makes intuitive sense. If a consumer decides to spend
the same amount in consumption regardless of his wealth level, his purchase will tell
him nothing about his �nancial possibilities. The expected utility in the �rst case is
EFullInfo (u (c)) = (log (2)) � (:5) + (log (4) + log (6)) � (:25) = 1:14 while in the second
case ENoInfo (u (c)) = 0:7. Now, assume that the consumer can allocate some e¤ort in
choosing size and scope of information about his wealth he wants to process, under the
limits imposed by his processing capacity. Note the occurrence of two elements equally
essential for the rational choice of the consumer. The �rst, limits in processing capac-
ity, is a technological constraint: the information �ow that his brain allows is bounded.
The second is the interest of the consumer captured by his utility function. A rational
consumer takes into account his limits and chooses the scope of information about his
wealth accordingly guided by his preferences, u (c).

Given the risk aversion of the consumer and since the consumer has always the option
to set c = 2 and use no capacity, with small but positive information �ow available he
will choose the distribution p (cjw) as dependent on w as his capacity allows him to.

Let �� be the maximum amount of information �ow that the consumer can process.
Let the probability matrix of the consumer be described by:

cnw P (w = 2) P (w = 5) P (w = 8)

P (c = 2) 0:5 p1 p2
P (c = 4) 0 :25� p1 p3
P (c = 6) 0 0 :25� p2 � p3

Figure b: Probability Matrix

where the zero on the South-West corner of the matrix encodes the no borrowing con-
straint c � w.

The program of the consumer amounts to:6

max
fp1;p2;p3g

E� (u (c))

6The explicit formulation takes up the form:
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s.t.
�� �MI (C;W ) :

Given �� = 0:3,7 the optimal policy sets p�1 = 0:125; p�2 = 0:125, p3 = 0:125. This

correspond to a mass distribution of Pr (C = c) :

8<:
0:75 if c = 2
0:25 if c = 4
0:0 if c = 6

, which leads to an

expected utility of E� (u (c)) = 0:87 and a mutual information of MI (C;W ) = �� = 0:3
bits . Hence, consumers who invest e¤ort in tracking their wealth using the channel are
better o¤ than in the no information case -higher expected utility- even though they
cannot do as well as in the constrained case.

Note that the result of trading o¤ information on the highest value for more precise
knowledge of lower value of wealth is driven by the choice of utility. For instance, if I had
chosen a consumer with the same bound of processing capacity but higher degree of risk
aversion, say one for which u (c) = c1�


1�
 with 
 = 5, he would have chosen a probability
Pr (C = 2) even higher than his log-utility counterpart. On the other hand, a consumer
with degree of risk aversion 
 = 0:3 would have shift probability mass from Pr (C = 2) to
Pr (C = 6). The intuition behind this result is that since the attention of the consumer
within the limits of Shannon capacity is allocated according to his utility, the degree of
risk aversion plays an important role in choosing the direction of this attention and, in
turns, the scope of the signal. A log-utility consumer wants to be well informed about
middle values of his wealth, whether an high risk aversion consumer selects a signal which
provides sharper information on the lower values of wealth, so that he can avoid �1
disutility. The opposite direction is taken by a risk averse agent characterized by 
 = 0:3.

max
fp1;p2;p3g

E� (u (c)) = (log (2)) � (:5 + p1 + p2) +

+ (log (4)) � (:25� p1 + p3) +
+ (log (6)) � (:25� p2 � p3)

s.t.

�� � MI (C;W ) =

= :5 log2

�
:5

:5 (:5 + p1 + p2)

�
+ :p1 log2

�
p1

:25 (:5 + p1 + p2)

�
+

+p2 log2

�
p2

:25 (:5 + p1 + p2)

�
+ (:25� p1) log2

�
(:25� p1)

:25 (:25� p1 + p3)

�
+

+(:25� p2 � p3) log2
�

(:25� p2 � p3)
:25 (:25� p2 � p3)

�
:

7Note that such a bound of information �ow is unrealistically low. However I decided to trade o¤
realism for simplicity in this example.
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2.2 The Mathematics of Rational Inattention.

This part addresses the mathematical foundations of rational inattention. The main
reference is the seminal work of Shannon (1948). Drawing from the Information Theory
literature, I provide an axiomatic characterization of entropy and mutual information
and show the main theoretical features of these two pivotal quantities that set the stage
for a rigorous basis of information theory.

Formally, the starting point is a set of possible events whose probabilities of occurrence
are p1; p2; : : : ; pn. Suppose for a moment that these probabilities are known but that is
all we know concerning which event will occur. The quantity H = �

P
i pi log pi is called

the entropy of the set of probabilities p1; : : : ; pn. If x is a chance variable, then H (x)
indicates its entropy; thus x is not an argument of a function but a label for a number,
to di¤erentiate it from H (y) say, the entropy of the chance variable y.

Quantities of the form H = �
P

i pi log pi play a central role in Information Theory
as measures of information, choice and uncertainty. The form of H will be recognized
as that of entropy as de�ned in certain formulations of statistical mechanics8 where pi is
the probability of a system being in cell i of its phase space.

The measure of howmuch choice is involved in the selection of the events isH (p1; p2; ::; pn)
and it has the following properties:

Axiom 1 H is continuous in the pi.

Axiom 2 If all the pi are equal, pi = 1
n
, then H should be a monotonic increasing function of

n. With equally likely events there is more choice, or uncertainty, when there are
more possible events.

Axiom 3 If a choice is broken down into two successive choices, the original H should be the
weighted sum of the individual values of H.

Theorem 2 of Shannon (1948) establishes the following results:

Theorem 1 The only H satisfying the three above assumptions is of the form:

H = �K
nX
i=1

pi log pi

where K is a positive constant that amounts for the choice of the unit measure.

8See, for example, R. C. Tolman, Principles of Statistical Mechanics, Oxford, Clarendon, 1938.
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Figure c: Entropy of two choices with probability p and q=1�p as function of p:

There are certain distinguished features that make entropy a suitable measure of uncer-
tainty.

Remark 1. . H = 0 if and only if all the pi but one are zero, this one having the value
unity. Thus only when we are certain of the outcome does H vanish. Otherwise H
is positive.

Remark 2. For a given n, H is a maximum and equal to log n when all the pi are equal
(i.e., 1

n
). This is also intuitively the most uncertain situation.

Remark 3. Suppose there are two random variables, X and Y ,

H(Y ) = �
X
x;y

p(x; y) log
X
x

p(x; y)

Moreover,
H(X; Y ) � H(X) +H(Y )

with equality only if the events are independent (i.e., p(x; y) = p(x)p(y)). This
means that the uncertainty of a joint event is less than or equal to the sum of the
individual uncertainties.

Remark 4. Any change toward equalization of the probabilities p1; p2; : : : ; pn increases
H. Thus if p1 < p2 an increase in p1, or a decrease in p2 that makes the two probabil-
ities more alike results into an increase inH. The intuition is trivial since equalizing
the probabilities of two events makes them indistinguishable and therefore increases
uncertainty on their occurrence. More generally, if we perform any �averaging�op-
eration on the pi of the form p0i =

P
j aijpj where

P
i aij =

P
j aij = 1, and all

aij � 0, then in general H increases9.

Remark 5. Given two random variables X and Y as in 3, not necessarily independent,
for any particular value x that X can assume there is a conditional probability
px(y) that Y has the value y. This is given by

px(y) =
p(x; y)P
y p(x; y)

:

9The only case in which H remains unchanged is when the transformation results in just one permu-
tation of pj .
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The conditional entropy of Y , is then de�ned asHX(Y ) and amounts to the average
of the entropy of Y for each possible realization the random variable X, weighted
according to the probability of getting a particular realization x. In formulae,

HX(Y ) = �
X
x;y

p(x; y) log px(y):

This quantity measures the average amount of uncertainty in Y after knowing X.
Substituting the value of px(y) , delivers

HX(Y ) = �
X
x;y

p(x; y) log p(x; y) +
X
x;y

p(x; y) log
X
y

p(x; y)

= H(X; Y )�H(X)

or
H(X; Y ) = H(X) +HX(Y ):

This formula has a simple interpretation. The uncertainty (or entropy) of the joint
event X;Y is the uncertainty of X plus the uncertainty of Y after learning the realization
of X.

Remark 6. Combining the results in Axiom 3 and Axiom 5, it is possible to recover
H(X) +H(Y ) � H(X; Y ) = H(X) +HX(Y ):

This reads H(Y ) � HX(Y ) and implies that the uncertainty of Y is never increased
by knowledge of X. If the two random variables are independent, then the entropy will
remain unchanged.

To substantiate the interpretation of entropy as the rate of generating information, it
is necessary to linkH with the notion of a channel. A channel is simply the medium used
to transmit information from the source to the destination, and its capacity is de�ned
as the rate at which the channel transmits information. A discrete channel is a system
through which a sequence of choices from a �nite set of elementary symbols S1; : : : ; Sn
can be transmitted from one point to another. Each of the symbols Si is assumed to have
a certain duration in time ti seconds . It is not required that all possible sequences of
the Si be capable of transmission on the system; certain sequences only may be allowed.
These will be possible signals for the channel. Given a channel, one may be interested
in measuring its capacity of such a channel to transmit information. In general, with
di¤erent lengths of symbols and constraints on the allowed sequences, the capacity of the
channel is de�ned as:

De�nition 2 The capacity C of a discrete channel is given by

C = lim
T!1

logN(T )

T

where N(T ) is the number of allowed signals of duration T .
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To explain the argument in a very simple case, consider a telegraph where all symbols
are of the same duration, and any sequence of the 32 symbols is allowed . Each symbol
represents �ve bits of information. If the system transmits n symbols per second it is
natural to say that the channel has a capacity of 5n bits per second. This does not mean
that the teletype channel will always be transmitting information at this rate � this is
the maximum possible rate and whether or not the actual rate reaches this maximum
depends on the source of information which feeds the channel. The link between channel
capacity and entropy is illustrated by the following Theorem 9 of Shannon:

Theorem 3 Let a source have entropy H (bits per second) and a channel have a capacity
C (bits per second). Then it is possible to encode the output of the source in such a way

as to transmit at the average rate
C

H � " symbols per second over the channel where " is

arbitrarily small. It is not possible to transmit at an average rate greater than
C

H .

The intuition behind this result is that by selecting an appropriate coding scheme,
the entropy of the symbols on a channel achieves its maximum at the channel capacity.
Alternatively, channel capacity can be related to mutual information.

De�nition 4 The Mutual Information between two random variables X and Y
is de�ned as the average reduction in uncertainty of random variable X achieved upon
the knowledge of the random variable Y .

In formulae:
I (X;Y ) � H (X)� E (H (XjY )) ;

which says that the mutual information is the average reduction in uncertainty of X due
to the knowledge of Y or, symmetrically, it is the reduction of uncertainty of X due to
the knowledge of Y . Mutual information is invariant to transformation of X and Y ,
hence it depends only on their copula.

Intuitively, I(X;Y ) measures the amount of information that two random variables
have in common. The capacity of the channel is then alternatively de�ned by

C = max
p(Y )

(I(X;Y ))

where the maximum is with respect to all possible information sources used as input to
the channel (i.e., the probability distribution of Y , p(Y )). If the channel is noiseless,
E(Hy(x)) = E(H (X(jY ))) = 0. The de�nition is then equivalent to that already given
for a noiseless channel since the maximum entropy for the channel is its capacity..
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3 The Formal Set-up

3.1 The problem of the Representative Household

To understand the implications of limits to information processing, let me �rst focus on
the program of on household who can process in�nite amount of information about his
wealth.

Let (
;B) be the measurable space where 
 represents the sample set and B the
event set. States and actions are de�ned on (
;B). Let It be the ��algebra generated
by fct; wtg up to time t, i.e., It = � (ct; wt; ct�1; wt�1; :::; c0; w0). Then the collection
fItg1t=0 such that It � Is 8s � t is a �ltration. Let u (c) be the utility of the household
de�ned over a consumption good c: I assume that the utility belongs to the CRRA family.

In particular u (c) = c1�
t

1�
 with 
 the coe¢ cient of risk aversion. If the consumer process
information about his �nancial possibility, he can observe at each time t his wealth, wt.
The program in this case amounts to:

max
fctg1t=0

E0

( 1X
t=0

�t
��

c1�
t

1� 


������� I0
)

(3)

s.t.
wt+1 = R (wt � ct) + yt+1 (4)

ct � wt (5)

w0 given (6)

where � 2 [0; 1) is the discount factor and R = ��1 is the interest on savings (wt � ct).
The constraint (5) prevents the household from borrowing. I assume that yt 2 Y ��
y1; y2; ::; yN

	
follows a stationary Markov process with mean Et ((yt+1)j It) = �y:

Assume now that the consumer cannot process all the information available in the
economy to track precisely his wealth. At time zero, his uncertainty about the wealth is
summarized by a prior g (w0) which replaces (6) above.

The consumer can reduce uncertainty about the prior by choosing any joint distribu-
tion of consumption and wealth that he can process. That is, the consumer will rationally
choose any distribution that makes p (cjw) as dependent on w as his information process-
ing constraint will allow him to. When information cannot �ow at in�nite rate the choice
of the consumer is p (cjw) as opposite to the stream of consumption fctg1t=0 in (3). An-
other way of looking at this is that the consumer chooses a noisy signal on wealth where
the noise distribution-wise can assume any distribution selected by the consumer. Given
that the agent has a probability distribution over wealth, choosing this signal is akin to
choosing jointly p (c; w). The optimal choice of this distribution is the one that makes the
distribution of consumption conditional on wealth close to wealth under the limits im-
posed by Shannon capacity. Hence, the choice of consumption in my setting corresponds
to fc (It)g1t=0.
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Next, I turn to the information constraint. The reduction in uncertainty conveyed
by the signal depends on the attention allocated by the consumer to track his wealth.
Paying attention to reduce uncertainty requires the consumer to spend some time and
utility to process information. I model the arduous task of thinking by appending a
Shannon channel to the constraints set, and by assuming that the agent associates a cost
to his e¤ort in terms of utils. Limits in the capacity of the consumers are captured by
the fact that the reduction in uncertainty conveyed by the signal cannot be higher than
a given number, ��: The information �ow available to the consumer is described by:

�� � I (Ct;Wt) =

Z
p (ct; wt) log

�
p (ct; wt)

p (ct) g (wt)

�
dctdwt (7)

To describe the way individuals transit across states, de�ne the operatorEwt (Et (xt+1)j ct) �
x̂t+1; which combines the expectation in period t of a variable in period t + 1 with the
knowledge of consumption in period t, ct, and the remaining uncertainty over wealth.
Applying E to equation (4) leads to:

ŵt+1 = R (ŵt � ct) + by (8)

where, note thatby = Ewt (Et (yt+1)j ct)
� Ewt (Et ((yt+1)j It)j ct) + [Ewt (Et (yt+1)j ct)� Ewt (Et ((yt+1)j It)j ct)]

LIE
= �y + Ewt [(Et (yt+1)j ct)� (Et (yt+1)j ct)]

= �y:

To fully characterize the transition from the prior g (wt) to its posterior distribution,
I need to take into account how the choice in time t, p (wt; ct) a¤ects the distribution
of consumer�s belief after observing ct:Given the initial prior state g (w0), the successor
belief state, denoted by g0ct (wt+1) is determined by revising each state probability as
displayed by the expression:

g0
�
wt+1jct

�
=

Z
~T (wt+1;wt; ct) p (wtjct) dwt (9)

known as Bayesian conditioning. In (9), the function ~T is the transition function repre-
senting (8).

Note that the belief state itself is completely observable. Meanwhile, Bayesian condi-
tioning satis�es the Markov assumption by keeping a su¢ cient statistics that summarizes
all information needed for optimal control. Thus, (9) replaces (4) in the limited processing
world.

Combining all these ingredients, the program of the household under information
frictions amounts to

max
fp(wt;ct)g1t=0

E0

( 1X
t=0

�t
�
c1�
t

1� 


������ I0
)

(10)
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s.t.

�� � It (Ct;Wt) =

Z
p (ct; wt) log

�
p (ct; wt)

p (ct) g (wt)

�
dctdwt (11)

p (ct; wt) 2 D (w; c) (12)

g0
�
wt+1jct

�
=

Z
~T (wt+1;wt; ct) p (wtjct) dwt (13)

g (w0) given (14)

where D (w; c) �
�
(c; w) :

R
p (c; w) dcdw = 1; p (c; w) � 0;8 (c; w)

	
in (12) restricts the

choice of the agent to be drawn from the set of distributions. Note that this problem is a
well-posed mathematical problem with convex objective function and concave constraint
sets. What makes it an hard problem to solve is that both state and control variables
are in�nite dimensional. To make progress in solving it, I implement two simpli�cations:
a) I discretize the framework and b) I show that the resulting setting admits a recursive
formulation. Then I study the properties of the Bellman recursion and solve the problem.

3.2 Comparing the model with the literature

Before I turn to the solution, I want to compare my model with the literature of rational
inattention. In this digression, I write down the �rst order conditions specifying utility
functions for several degrees of risk aversion and levels of information �ows. The bench-
mark model is the standard consumption saving problem of a consumer who anticipated
perfectly his income, yt. Abstracting from borrowing constraints for now but assuming
only a No-Ponzi scheme, the problem of the agent amounts to

max
fct;wtg

E0

� 1P
t=0

�tu (ct)

�
(15)

subject to:
wt+1 = R (wt � ct) + yt+1 (16)

where u (ct) = ct � 1
2
c2t , � is the discount factor and and the �ow budget constraint

has a Gaussian i.i.d income process with mean �y and variance !2. Then the optimal
consumption delivers the well known result that consumption is a martingale process
and equals permanent income:

c�t = (1� �)wt + ��y

For the Gaussian income case with quadratic utility, Sims (2003) shows that the rational
inattention equivalent of the above problem amounts to

max
fct;Dtg

E0

� 1P
t=0

�tu (ct)

�
subject to (16),

wt+1jIt+1~Dt+1; wtjIt~Dt
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and given w0jI0~Gauss (ŵ0; �20) and

� = 1
2

�
log(R2�2t + !2)� log(�2t+1)

�
: :

Given the LQG speci�cation, Sims (2003) shows that the optimal distribution Dt is
Gaussian with mean ŵt = Et [wt] and variance �2t = vart (wt).

Note that I assume a constant borrowing constraint, i.e., ct < wt 8t and ct > 0.
Therefore, the conventional solution to the benchmark model is no longer correct, nor
Gaussianity of the optimal posterior distribution of consumption and wealth for the ra-
tional inattention version of the problem is preserved. The failure of both the martingale
solution for the in the standard model and Gaussianity in the optimal policy of its ratio-
nal inattention version is due to the break of the LQ framework implied by the inequality
in the borrowing constraint. In particular in a rational inattention setting, numerical
simulations reveal that preventing excessive borrowing forces to zero some regions of
the optimal joint distribution of consumption and wealth. Moreover, the support of the
distribution is truncated by the limit on ct.

4 Solution Methodology

4.1 Discretizing the Framework

Let me start by assuming that wealth and consumption are de�ned on compact sects.
In particular, admissible consumption pro�les belongs to 
c � fcmin; :::; cmaxg : Likewise,
wealth has support 
w � fwmin; :::; wmaxg. I identify by j the elements of set 
c and
by i the elements in 
w: I approximate the state of the problem, i.e., the distribution of
wealth by using the simplex:

De�nition The set � of all mappings g : 
w ! R ful�lling g (w) � 0 for all w 2 
w
and

P
w2
w

g (w) = 1 is called a simplex. Elements w of 
w are called vertices of

the simplex �, functions g are called points of �.

Let jSj be the dimension of the belief simplex which approximate the distribution g (w)

and let � �
(
g 2 RjSj : g (i) � 0 for all i

jSjP
i=1

g (i) = 1

)
denote the set of all probability

distribution on �. The initial condition for the problem is g (w0) :

The consumer enters each period choosing the joint distribution of consumption and
�nancial possibilities. Arguments exactly symmetrical to the ones of the previous section
lead to specify the control variable for the discretized set up as the probability mass
function Pr (w; c) where c 2 
c and w 2 
w. This choice of the control variable is also
constrained to be drawn from the set of distributions. Given g (w0) and Pr (ct; wt) and
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the observation of ct consumed in period t; the belief state is updated using Bayesian
conditioning:

g0cj (�) =
X
wt2
w

T (�;wt; ct) Pr (wtjct) (17)

where T (:) is a discrete counterpart of the transition function ~T (:). Note that ~T (:) is a
density function on the real line while T (:) is a density function on a discrete set with
counting measure. The term "(�)" stands for all the possible values that wt+1 can assume
in its support 
w given a pair (wt; ct).

Next I turn to the processing constraint. Given the setting, limits in information
capacity information need to be de�ned in terms of the discrete mutual information
between state and actions . The maximum reduction in uncertainty lies in:

�� � It (Ct;Wt) � H (Wt)�H (WtjCt) (18)

=
X
wt2
w

X
ct2
c

Pr (ct; wt)

�
log

Pr (ct; wt)

p (ct) g (wt)

�

The interpretation of (18) is akin to its continuous counterpart. The capacity of the
agents to process information is constrained by a number, ��, which denotes the upper
bound on the rate of information �ow between the random variables C andW 10 in time t.
In (18), H (Wt) is the entropy of the random variableWt. The entropy ofW is a succinct
representation of the amount of uncertainty embedded in the variable. Formally, the
entropy is a functional of the distribution of W which does not depend on the actual
values taken by the random variables but only on the probabilities. If W � g (W ),
then its entropy is de�ned as H (Wt) = �

P
wt2
w

g (wt) log (g (wt)), where the logarithm

is taken in base 2 so that the unit of measure of the entropy is bits. Upon knowledge
of Ct; H (Wt)�H (WtjCt) accounts for the uncertainty remaining in Wt after observing
Ct. Thus, the mutual information It (Wt; Ct) can be interpreted as the (average) amount
of uncertainty in Wt resolved per period by the observation of Ct. The capacity of the
channel that allows information from Ct to �ow into the knowledge of Wt constrains the
maximum reduction in uncertainty captured by It (Wt; Ct). From this argument, it is
clear that such a reduction, cannot occur at a rate grater than ��. Finally, the objective
function (10) in the discrete world amounts to

max
fp(wt;ct)g1t=0

E0

( 1X
t=0

�t

" X
wt2
w

X
ct2
w

�
c1�
t

1� 


�
Pr (ct; wt)

#����� I0
)
: (19)

4.2 Recursive Formulation

The purpose of this section is to show that the discrete dynamic programming problem
has a solution and to recast it into a Bellman recursion. To show that a solution exists,
10Recall from the argument in Secton 2.1 that both W and C are random variables before the

household has acquired and processed any information.
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�rst note that the set of constraints for the problem is a compact-valued concave corre-
spondence. Second, I need to show that the state space is compact. Compactness comes
from the assumption of CRRA utility function and the fact that the belief space has a
bounded support in [0; 1] . Compact domain of the state and the fact that Bayesian
Conditioning for the update preserves the Markovianity of the belief state ensures that
the transition Q : (
w � Y � B ! [0; 1]) and (17) has the Feller property. Then the con-
ditions for applying the Theorem of the Maximum in Stockey et al. (1989) are ful�lled
which guarantees the existence of a solution. In the next section I will provide su¢ cient
conditions to guarantee uniqness.

Casting the problem of the consumer in a recursive Bellman equation formulation,
the full discrete-time Markov program amounts to:

V (g (wt)) = max
Pr(ct;wt)

26664
X
wt2
w

 X
ct2
c

u (ct) Pr (ct; wt)

!
+

+�
P

wt2
w

X
ct2
c

V
�
g0
cjt
(wt+1)

�
Pr (ct; wt)

37775 (20)

subject to:

�� � It (Ct;Wt) =
X
wt2
w

X
ct2
c

Pr (ct; wt)

�
log

Pr (ct; wt)

p (ct) g (wt)

�
(21)

g0cj (�) =
X
wt2
w

T (�;wt; ct) Pr (wtjct) (22)

X
ct2
c

Pr (ct; wt) = g (wt) (23)

1 � Pr (ct; wt) � 0 8 (ct; wt) 2 B; 8t (24)

where B � f(ct; wt) : wt � ct; 8ct 2 
c;8wt 2 
w, 8tg :

The Bellman equation in (20) takes up as argument the marginal distribution of wealth
g (wt) and uses as control variable the joint distribution of wealth and consumption,
Pr (ct; wt). The latter links the behavior of the agent with respect to consumption (c),
on one hand, and income (w) on the other, hence specifying the actions over time. The
�rst term on the right hand side of (20) is the utility function u (:) which is assumed
to be of the CRRA family with coe¢ cient of risk aversion 
 > 0. The second term,P
wt2
w

X
ct2
c

V
�
g0
cjt
(wt+1)

�
Pr (ct; wt), represents the expected continuation value of being

in state g (:) discounted by the factor � 2 (0; 1). The expectation is taken with respect to
the endogenously chosen distribution Pr (ct; wt). I have discussed at lenght the relations
in (21)-(24) earlier. Moreover, I appended the equation in (23) which constraints the
choice of the distribution to be consistent with the initial prior g (wt) : Before turning
to the optimality conditions that characterize the solution to the problem (20)-(24), I
will �rst analyze the main properties of the Bellman recursion (20) and derive conditions
under which is a contraction mapping and show that the mapping is isotone.
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4.3 Properties of the Bellman Recursion

De�nitions. To prove that the value function is a contraction and isotonic map-
ping, I shall introduce the relevant de�nitions. Let me restrict attention to choices of
probability distributions that satisfy the constraints (21)-(24).To make the notation more
compact, let p � Pr (cjjwi), 8cj 2 
c, 8wi 2 
w and let � be the set that contains (21)-
(24).

D1. A control probability distribution p � Pr (ci; wj) is feasible for the problem (20)-
(24) if p 2 �: Let jW j be the cardinality of 
w and let

G �

8<:g 2 RjW j : g (wi) � 0; 8i;
jW jX
i=1

g (wi) = 1

9=;
denote the set of all probability distributions on 
w. An optimal policy has a value
function that satis�es the Bellman optimality equation in (20):

V � (g) = max
p2�

"X
w2
w

 X
c2
c

u (c) p (cjw)
!
g (w) + �

X
w2
w

X
c2
c

(V � (g0c (�))) p (cjw) g (w)
#

(25)
The Bellman optimality equation can be expressed in value function mapping form.
Let V be the set of all bounded real-valued functions V on G and let h : G �
w �
(
w � 
c)� V ! R be de�ned as follows:

h (g; p; V ) =
X
w2
w

 X
c2
c

u (c) p (cjw)
!
g (w) + �

X
w2
w

X
c2
c

(V (g0c (�))) p (cjw) g (w) :

De�ne the value function mapping H : V ! V as (HV ) (g) = maxp2� h (g; p; V ).

D2. A value function V dominates another value function U if V (g) � U (g) for all
g 2 G:

D3. A mapping H is isotone if V , U 2 V and V � U imply HV � HU:

D4. A supremum norm of two value functions V , U 2 V over G is de�ned as

jjV � U jj = max
g2G

jV (g)� U (g)j

D5. A mapping H is a contraction under the supremum norm if for all V , U 2 V,

jjHV �HU jj � � jjV � U jj

holds for some 0 � � < 1:
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Next, I prove that the value function recursion is an isotonic contraction. From these
results, it follows that this recursion converges to a single �xed point corresponding to
the optimal value function V �.

These theoretical results establish that in principle there is no barrier in de�ning value
iteration algorithms for the Bellman recursion under rational inattention. All the proofs
are in appendix A.

Uniqueness of the solution to which the value function converges to requires concavity
of the constraints and convexity of the objective function. It is immediate to see that all
the constraints but (18) are actually linear in p (c; w) and g (w). For (18), the concavity
of p (c; w) is guaranteed by Theorem (16.1.6) of Thomas and Cover (1991). Concavity of
g (w) is the result of the following:

Lemma 1. For a given p (cjw) ; the expression (18) is concave in g (w).

Proof. See Appendix B.

Next, I need to prove convexity of the value function and the fact that the value
iteration is contraction mapping.

Proposition 1. For the discrete Rational Inattention Consumption Saving value recur-
sion H and two given functions V and U , it holds that

jjHV �HU jj � � jjV � U jj ;

with 0 � � < 1 and jj:jj the supreme norm. That is, the value recursion H is a
contraction mapping.

Proposition 1 can be explained as follows. The space of value functions de�nes a
vector space and the contraction property ensures that the space is complete. Therefore,
the space of value functions together with the supreme norm form a Banach space and
the Banach �xed-point theorem ensures (a) the existence of a single �xed point and (b)
that the value recursion always converges to this �xed point (see Theorem 6 of Alvarez
and Stockey, 1998 and Theorem 6.2.3 of Puterman, 1994).

Corollary For the discrete Rational Inattention Consumption Saving value recursion H
and two given functions V and U , it holds that

V � U =) HV � HU

that is the value recursion H is an isotonic mapping.

The isotonic property of the value recursion ensures that the value iteration converges
monotonically.
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5 Optimality Conditions

In this section I incorporate explicitly the constraint on information processing and derive
the Euler Equations that characterize its solution.

The main feature of this section is to relate the link between the output of the channel
-consumption- with the capacity chosen by the agent. In deriving the optimality con-
ditions, I incorporate the consistency assumption (23) in the main diagonal of the joint
distribution to be chosen, Pr t (cj; wi). Note that such a restriction is WLOG.

5.1 First Order Conditions

To evaluate the derivative of the Bellman equation with respect to a generic distrib-
ution Pr (ck1 ; wk2), de�ne the di¤erential operator �kv (l) � v (lk1) � v (lk2) and � as
the shadow cost of processing information: Then, the optimal control for the program
(20)-(24) amounts to:

@p� (ck1 ; wk2) :

�ku (c) + ��kV (g
0
c (:)) = p� (ck1 ; wk2)

�
��ku

0 (c) �p� (wk2jck1)� ��kV
0
p� (g

0
c (:))

�
(26)

This expression states that the optimal distribution depends on the weighted di¤er-
ence of two consumption pro�les, ck1 and ck2 where the weights are given by current and
future discounted utilities. Note that the di¤erential of the marginal utility of current
consumption is also weighted by the conditional optimal distribution of consumption and
wealth.

The interpretation of (26) is that the consumer allocates probabilities by trading-o¤
current and future. utilities levels between two consumption pro�les, feasible given his
prior on wealth, with the corresponding intertemporal di¤erence in marginal utilities. To
illustrate the argument, suppose a consumer believes that his wealth is wk2 with high
probability. Suppose for simplicity that wk2 allows him to spend ck1 or ck2. The decision
of shifting probability from p (ck2 ; wk2) to p (ck1 ; wk2) depends on four variables. First,
the current di¤erence in utility levels, �ku (c) which tells the immediate satisfaction of
consuming ck1 rather than ck2. However, consuming more today has a cost in future
consumption and wealth levels tomorrow, ��kV (g

0
c (:)). This is not the end of the story.

Optimal allocation of probabilities requires trading o¤ not only intertemporal levels of
utility but also marginal intertemporal utilities where now the current marginal utility
of consumption is weighted by the e¤ort required to process information today.

To explore this relation further, I evaluate the derivative of the continuation value for
a given optimal p� (ck1 ; wk2), that is �kV

0
p� (g

0
c (:)). To this end, de�ne the ratio between

di¤erential in utilities (current and discounted future) and di¤erential in marginal current
utility as 	� � �ku(c(�))+��kV (g

0
c(:))

��[u0(ck1 (�))�u0(ck2 (�))]
. Also, let �� be the ratio 	� when current level of

utilities are equalized and future di¤erential utilities are constant, i.e., �ku (c) = 0 and
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�kV (g
0
c (:)) = 1 or, �

� � �

��[u0(ck1 (�))�u0(ck2 (�))]
. Then, an application of Chain rule and

point-wise di¤erentiation leads to

p� (ck1 ; wk2) = � (k1; k2) p
� (ck1) (27)

where

� (k1; k2) � �1 (	�; p� (ck1 ; wk2))��2
�
��; g0ck1

(�) ; p� (ck1 ; wk2)
�
��3
�
��; g0ck2

(�) ; p� (ck1 ; wk2)
�

The details of the derivation of (43) are in Appendix C. Here I focus on the expla-
nation for the terms � (k1; k2) which characterize the optimal solution of the conditional
distribution p� (wk2jck1) :

The �rst term �1 (	
�; p� (ck1 ; wk2)) � e

0B@ 	�

p�(ck1 ;wk2)

1CA
states that the optimal choice

of the distribution balances di¤erentials between current and future levels of utilities
between high (k2) and low (k1) values of consumption. In case of log utility, the term
exp (	�) is a likelihood ratio between utilities in the two states of the word (k1 and k2) and
the interpretation is that the higher is the value of the state of the world k2 with respect
to k1 as measured by the utility of consumption, the lower is the optimal p� (ck1 ; wk2).
This matches the intuition since the consumer would like to place more probability on
the occurrence of k2 the wider the di¤erence between ck1 and ck2. A perhaps more
interesting intertemporal relation is captured by the terms �2 and �3, both of which
display the occurrence of the update distribution g0cki (�), i = 1; 2. To disentangle the
contribution of each argument of �2 and �3, I combine the derivative of the control with
the envelope condition. Let �01 be the term �1 led one period and de�ne the di¤erential
between transition from one particular state to another and transition from one particular

state to all the possible states as ~�Tj � T
�
�;wk2 ; ckj

�
�
�P

i

T (�;wi; ck1) p�
�
wijckj

��
for

j = 1; 2. Evaluating the derivative with respect to the state almost surely reveals that

�2 � exp

�
��� �01

p(ck1)
~�T1

�
while �3 � exp

�
��� �01

p(ck2)
~�T2

�
. The terms �2 and �3

reveal that in setting the optimal distribution p� (ck1 ; wk2) consumers take into account
not only di¤erential between levels and marginal utilities but also how the choice of the
distribution shrinks or widens the spectrum of states that are reachable after observing
the realized consumption pro�le.

An interesting special case that admits a close form solution is when the agent is
risk neutral. Consider the framework in Section (3.2) and let utility take up the form
u (c) = ct, then in the region of admissible solution ct < wt, the optimal probability
distribution makes c independent on w. To see this, it is easy to check that in the two
period case with no discounting, the utility function reduces to u (c) = w, which implies
cjw / U (wmin; wmax). That is, since all the uncertainty is driven by w, the consumer
does not bother processing information beyond the knowledge of where the limit of c = w
lies. In other word, the constraint on information �ow does not bind. With continuation
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value, exploiting risk neutrality, the optimal policy function amounts to:

p� (wk2jck1) =
e

 
[(ck1�ck2)+��k �V (g

0
c(:))]

�

!
P
j

~�Tj
(28)

The solution uncovers some important properties of the interplay between risk neutrality
and information �ow. First of all, households with linear utility do not spend extra
consumption units in sharpening their knowledge of wealth. This is due to the fact that
since the consumer is risk neutral and, at the margin, costs and bene�ts of information
�ows are equalized amongst periods, there is no necessity to gather more information
than the boundaries of current consumption possibilities. In each period, the presence of
information processing constraint forces the consumer to allocate some utils to learn just
enough to prevent violating the non-borrowing constraint. Once those limits are �gured
out, consumption pro�les in the region c < w are independent on the value of wealth.

Another special case that admits close form soluition when consumers are risk averse
and have information-processing limits is the 3 � points distribution illustrated in Ap-
pendix D.

6 Numerical Technique and its Predictions

I solve the discrete dynamic rational inattention consumption-saving model is to trans-
form the underlying partially observable Markov decision process into an equivalent, fully
observable, Markov decision process with a state space that consists of all probability
distributions over the core states of the model (i.e., wealth) and solve it using dynamic
programming.

For a model with n cores states, w1; ::; wn, the transformed state space is the (n� 1)-
dimensional simplex, or belief simplex. Expressed in plain terms, a belief simplex is a
point, a line segment, a triangle or a tethraedon in a single, two, three or four-dimensional
space, respectively. Formally, a belief simplex is de�ned as the convex hull11 of belief
states from an a¢ nely independent12 set B. The points of B are the vertices of the belief
simplex. The convex hull formed by any subset of B is a face of the belief simplex. To
address the issue of dimensionality in the state space of my model, I use a grid-based
approximation approach. The idea of a grid based approach is to use a �nite grid to
discretize the continuous state space which is uncountably in�nite. The implementation
amounts to: I place a �nite grid over the simplex point, I compute the values for points
in the grid, and I use interpolation to evaluate all other points in the simplex.

In the following subsections I will �x some de�nitions, describe the techniques in
details and discuss the results.
11A convex hull of a set of points is de�ned as the closure of the set under convex combination.
12A set of belief states fgig, 1 � i � jSj is called a¢ nely independent when the vectors

�
gi � gjSj

	
are

linearly independent for 1 � i � jSj.
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6.1 Belief Simplex and Dynamic Programming

As mentioned previously, if I were to model wealth as the state of a Markov system
directly accessible to the consumer, previous history of the process would be irrelevant
to its optimal control. However, since the consumer does not know or cannot completely
observe wealth, he may require all the past information about the system to behave
optimally. The most general approach is to keep track of the entire history of his previous
consumption purchases up to time t, denoted Ht = fg0; c1; ::; ct�1g. For any given initial
state probability distribution g0, the number of possible histories is (jCj)t with C denoting
the set of consumption behavior up to time t. This number goes to in�nity as the
decision horizon approaches in�nity, which makes this method of representing the history
useless for in�nite-horizon problems. To overcome this issue, Astrom (1965) proposed an
information state approach. The latter is based upon the idea that all the information
needed to act optimally can be summarized by a vector of probabilities over the system,
called belief state. Let g (w) denote the probability that the wealth is in state w 2 
w
where 
w is assumed to be a �nite set. Probability distributions such as g (w) de�ned
on �nite sets can be looked up as simplex. The following de�nitions provide the formal
basis for the construction of the grid for the simplex of the state.

Recall that jSj is the dimension of the belief simplex which approximates the distribu-

tion g (w) andG �
(
g 2 RjSj : g (i) � 0 for all i

jSjP
i=1

g (i) = 1

)
is the set of all probability

distribution on the simplex.

The discretization of the core states and the belief states amount to an equi-spaced
grid with n = 6; 7; 8 values for w ranging from 1 to n i.e., w 2 
w � fw1; ::; wng
and jSj � 8; 9 and 10 distinct values for the marginal pdf g (w) in the interval I� �
[0; 1]. Hence, the simplex result into a 1296x6 matrix for (n; jSj) = (f6g ; f10g), 3003x7
matrix for (n; jSj) = (f7g ; f9g) and, �nally 11364x8 matrix for (n; jSj) = (f8g ; f10g).
Given the initial belief simplex, its successor belief states can be determined by using
Bayesian conditioning at each multidimensional point of the simplex and amounts to the
expression:

g0c (�) =
X
i

X
j

T (�;wi; cj) Pr (wijcj) = Pr (�jc) : (29)

Next, let me turn to the action space. Imposing the constraint that consumption cannot
exceed wealth in each period, that is ct < wt, 8t, I perform the discretization of the
behavior space in a fashion similar to the core states, that is an equi-spaced grid where c =
1
3
w. As a result, the behavior space is the compact set 
c � fc1; ::; cng =

�
1
3
w1; ::;

1
3
wn
	
.

Let core states and behavior states be sorted in descending order. Then, given the
symmetry in the dimensionality of core space and behavior space and the constraint c <
w, the the joint distribution of consumption and wealth for a given multidimensional point
on the grid of the simplex is a square matrix with rows correspond to levels of consumption
and summing the matrix per row returns the marginal distribution of consumption, p (c).
Likewise, the columns of the matrix correspond to levels of wealth. Evaluating the sum
per columns of the matrix amounts to the marginal pdf of wealth, g (w). Let V be the
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set of all bounded real-valued function V on G. Then the Bellman optimality equation
of the household amounts to:

V (g (W )) = max
Pr (cj ;wi)

( P
i

P
j u (cj) Pr (cj; wi)+

+�
nP

i

P
j V
�
g0cj (�)

�
Pr (cj; wi)

o )
s.t

� = I (C;W ) =
X
i

X
j

Pr (cj; wi) log

�
Pr (cj; wi)

p (cj) g (wi)

�

Without loss of generality, I place the restriction that the columns of the matrix
Pr (cj; wi) need to sum to the marginal pdf of wealth in the main diagonal. Moreover,
since some of the values of the marginal g (w) per simplex-point are exactly zero given the
de�nition of the envelope for the simplex, I constrain the choices of the joint distributions
corresponding to those values to be zero. This handling of the zeros makes the parameter
vector being optimized over have di¤erent lengths for di¤erent rows of the simplex . Hence
the degrees of freedom in the choice of the control variables for simplex points vary from
a minimum of 0 to a maximum of n�(n�1)

2
.13 Once the belief simplex is set up, I initialize

the joint probability distribution of consumption and wealth per belief point and solve
the program of the household by backward induction iterating on the value function
V (g (W )). I evaluate the value function that takes as argument the updated distribution

of the wealth in (29), i.e., V
�
g0cj (�)

�
using linear interpolation.

A linear interpolant approximates the exact non linear value function in (20) with a
piece-wise linear function. The following propositions illustrate this point.

Proposition 2. If the utility is CRRA and if Pr (cj; wi) satisfying (21)-(24), then the
optimal n� step value function Vn (g) de�ned over G can be expressed as:

Vn (g) = max
f�ingi

X
i

�n (wi) g (wi)

where the �� vectors, � : 
w ! R, are jW j �dimensional hyperplanes.

Intuitively, each �n�vector corresponds to a plan and the action associated with a
given �n�vector is the optimal action for planning horizon n for all priors that have such
13To illustrate this point, two example in which the 0-degree of freedom and the n�(n�1)

2 -degree of
freedom occur are as follows. Suppose for simplicity that n = 3: Then, if a simplex point has realization

g � f1; 0; 0g the joint pdf of consumption and wealth turns out to be p (c; w) =

24 1 0 0
0 0
0

35 leaving
zero degrees of freedom. If, instead, e.g., g �

�
1
3 ;

1
3 ;

1
3

	
, the consumers has to choose 3�(2)

2 = 3 points on
the joint distribution, fp1; p2; p3g placed as:

p (c; w) =

24 1
3 p1 p2

1
3 p3

1
3

35 :
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a function as the maximizing one. With the above de�nition, the value function amounts
to:

Vn (g) = max
f�ingi



�in; g

�
;

and thus the proposition holds.

Using the above proposition and the fact that the set of all consumption pro�les
P � fc < w : p (c) > 0g is discrete, it is possible to show directly the convex properties
for the Value Function. For �xed �in�vectors, h�in; gi operator is linear in the belief space
. Therefore the convex property is given by the fact that Vn is de�ned as the maximum
of a set of convex (linear) functions and, thus, obtains a convex function as a result.
The optimal value function, V �, is the limit for n!1 and, since all the Vn are convex
function, so is V �.

Proposition 3. Assuming CRRA utility function and under the conditions of Proposi-
tion 1, let V0 be an initial value function that is piecewise linear and convex. Then
the ith value function obtained after a �nite number of update steps for a Rational
Inattention Consumption-Saving problem is also �nite, piecewise linear and convex
(PCWL).

To implement numerical the optimization of the value function at each point of the
simplex, I use a via gradient-based search methods using Chris Sims�s csminwel and
iterate on the value function up to convergence.

Finally, I draw from the optimal policy function -i.e., ergodic posterior joint distribu-
tion of consumption and wealth, p� (c; w) - and generate time series path of consumption,
wealth and expected wealth evaluated by combing the core states with the posterior dis-
tribution of wealth which results from the optimization. Moreover I use the joint posterior
p� (c; w) to draw the time path of Information Flow (��t �

P
i

P
j p

�
t (cj; wi) log

�
p�t (cj ;wi)

p�t (cj)g
�
t (wi)

�
).

A pseudocode that implements the procedure is in Appendix E.

7 Results

In this section, by varying the shadow cost of information �ow and utility speci�-
cations, I investigate the dynamic interplay of information �ows and degrees of risk
aversion. In particular, I study three di¤erent models where each model is character-
ized by a given processing e¤ort, �; and di¤erent degrees of risk aversion, 
; where

 = (f7g ; f5g ; f3g ; f0g ; f0:5g ; f0:3g).

The patterns that emerge are the following.

Result 1. Restricted Support The optimal policy function for the information-constrained
consumer places low weight, even zero, on low values of consumption for high values
of wealth. This e¤ect is more pronounced the higher the information �ow.
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Figure 1a illustrates this point by comparing optimal policy function for two individ-
uals with Log Utility and di¤erent information costs (� = 0:2 and � = 7). Both policy
functions are drawn from a prior on wealth whose entropy is H (W ) = 1:75.

The consumer with high information �ow (� = 0:2) allocates probability to avoid
consuming too little for any given wealth. The more constrained agent (� = 7) has less
informative signals and uses as little information as it takes to �gure out the limits of his
budget constraint.
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Figure 1a

Figure 1b shows how consumers with a CRRA utility speci�cation with 
 = 5 as
coe¢ cient of risk aversion allocates their capacity when the cost is � = 0:2 and � = 2
respectively.
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CRRA; 
=5
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Figure 1b

To compare the implications of di¤erent information processing costs on several utility
functions, consider �gures 2a-3d.

Figure 1c and 1d displays the conditonal distribution p (cjw) when utility is loga-
rithmic and H (W ) = 2:50. Consider Figure 2a. When � = 0:2, the distribution of
consumption for a given value of wealth is centered around the deterministic optimal
value of consumption c ' (1��)

R
w + ��y.
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Log Utility; �=0:2
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Figure 1c

Figure 1c shows what happens when information is costly. The probability distribu-
tion of consumption conditional on wealth is uniform over a range of c for given values
of wealth. In particular, since information �ows at a very low rate, any value of wealth
reveals a much more disperse distribution of consumption for a � = 7-type than a � = 0:2-
type.
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Log Utility; �=7
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Figure 1d

Figures 1e-1f display the conditional distribution of wealth given consumption p (wjc)
for � = 0:2 and � = 7 respectively. Low signals (c) for the less information-constrained
agent (� = :2) are much more informative about lower values of wealth. High signals for
this type are weakly more informative about high values of wealth. The highest signal is
equally informative for the two �0s. This is because once consumption is at its highest,
the optimal policy for both the types is to shift all probability onto the lowest possible
value of wealth that supports such consumption and the highest possible value of wealth
which garantees sustaining such a consumption in the future.
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Log Utility; �=0:2
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Figure 1e
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Log Utility; �=7
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Figure 1f

Figure 1g and 1h display the optimal policy function with CRRA utility speci�cation
with coe¢ cient of risk aversion 
 = 5 and � = 0:2 and � = 2 repsectively. The initial
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prior is the same as before. Figure 2c and 2d show the conditional p (wjc).
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Figure 1g
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CRRA Utility; 
=5
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Figure 1h

Figure 1i and 1j plots the corresponding p (cjw) for the risk averse consumer.
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CRRA Utility; 
=5
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Figure 1i
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CRRA Utility; 
=5
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Result 2. Information Flow and Risk Aversion In the discrete Rational Inatten-
tion Consumption-Saving model, the lower the optimal information �ow, the lower
is consumption. Moreover, when the cost of using the channel increases, more risk
averse consumers pay more attention to decreasing the volatility of consumption
rather than to increasing its mean.

The results are documented in Tables 1a-1c. The intuition goes as follows. If process-
ing information is relatively easy, i.e., information �ow is large, then a risk averse con-
sumer would spend his capacity in having both higher mean and lower variance of con-
sumption throughout his life. However, when information processing becomes costly, the
consumer would trade o¤ information about the mean of the consumption for a reduction
in its volatility.

The second result comes from evaluating the relation of the value function in steady
state with the expected value of wealth.

Result 3. Optimal Value and Expected Wealth In the discrete Rational Inatten-
tion Consumption-Saving model, the �xed-point solution of the value function, V � (g� (w)) ;
is positively related with the expected wealth, E� (w) �

P
iwig

� (wi) evaluated under
the ergodic distribution of the posterior for wealth. Moreover:
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1. For a given degree of risk aversion, 
, the dispersion between V � (g� (w)) and
E (g� (w)) is higher the lower is the information �ow.

2. For a given information �ow, the lower the degree of risk aversion, the steeper the
correlation between V � (g� (w)) and E� (w).

The scatter plots in Figures 3a-3b illustrate the proposition. While it is expected
that the �xed point solution of the value function covaries positively with the expected
value of wealth, the numerical regularities expressed in (1.) and, especially, in (2.) are
less obvious.

The result in (1.) says that for a given degree of risk aversion, an agent that can
process information inexpensively (high �t) will attribute an higher value of having a
signal g (w) than an individual who �nds costly to process information since that signal
conveys more information. On the other extreme, consumers who have high cost of
processing information have less informative signals about wealth. This in turn implies
that the optimal value function de�ned on the distribution g� (w) when information �ow
is low is more concentrated around lower (expected) wealth capturing the remaining
ex-post uncertainty after processing information.

The message of (2) is more subtle. As the numerical simulations show, for a given
cost of processing information, a more risk adverse consumer (say, one for which 
 = 2)
will place low probability on having high wealth than an individual whose degree of risk
aversion is 
 = :5. The reason is that since when the degree of risk aversion is high,
utility goes to minus in�nity whenever consumption is close to zero. Thus, a consumer
with 
 = 2 would like to acquire more information or, for �xed �, be more prudent in
his expenditures whenever he fears that his wealth is low.

Next, let me turn to the time series properties of consumption and wealth. Analyzing
the scatter plots in 5a-5h leads to the following:

Result 4. Time Path of Consumption. In the discrete Rational Inattention Consumption-
Saving Model, consumption over time displays:

1. an hump-shaped responses to �uctuations in expected wealth. Moreover the lower
the information �ow, the more responses of consumption to �uctuation of wealth
are delayed and noisy.

2. an asymmetric response to shocks. Consumers reacts faster and sharper to signals
about low wealth while signals about high wealth are absorbed slower over time.

Figures 11a-11b illustrate the result via impulse response function. The pictures dis-
play the di¤erence in consumption between two household with the same characteristics
but wealth level. One household has a very low wealth while the other has higher wealth.
They have the same policy function and the same information �ow. Figure 11a depicts the
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di¤erence in consumption when the two households has log-utility and information costs
of � = 0:2 and � = 1: Such di¤erence is evaluated as an average of 20000 Monte Carlo
draws. The picture desplays that the di¤erence in consumption has an hump-shaped
and delayed acknowledgement that the wealth is low. Figure 11b shows the result for
the same exercise when the utility belongs to the CRRA family with coe¢ cient of risk
aversion 
 = 5:

Risk averse agents would rather push forward consumption in times in which they
are processing information about wealth. Therefore, processing information in a given
period requires a loss in consumption for that period .

Agents who have low processing capacities would rather select a �at consumption
pro�le than to spending utils of consumption for tracking wealth. This is due to the fact
that the information they gather provides them with an imperfect signal of wealth. Thus,
low-� type consumers smooth consumption over their life time by saving a �xed amount
each period unless their signals on high wealth is sharp enough to justify a change in
their behavior.

The more risk averse consumers are, the less responsive to information is their con-
sumption path. This pattern of consumption behavior matches what we observe in macro
data on consumption and documented in the literature as excess smoothness. Further-
more, the discrete rational inattention consumption-saving model provides a rationale for
excess sensitivity in response to news on wealth.14 High-� type consumers react to signals
about changes in wealth by modifying their consumption. The lower their risk aversion,
the more keen these types of agents are to adjust their consumption in accordance to the
signals on wealth they process. The histograms of consumption across di¤erent types
of risk averse individuals under di¤erent limits of information processing is displayed in
Figures 4a-4b.

8 Computational Complexity and Extensions

The main computational challenge in solving dynamic rational inattention problems is
that they require evaluating every one of an uncountably in�nite number of belief states
and control distributions. The proposed algorithm based on the approximation of the
value function results into an exponential growth of number of dimensions as I increase
the precision of the approximation of states and control distribution and the number
of belief points representing the states in the grid. While it is not tractable for all but
trivial problems to �nd exact solutions for these models, it is worth investigating more
sophisticated approximation methods that may work in these cases.

14Excess sensitivity (Flavin, 1981) of consumption refers to the empirical evidence that aggregate
consumption reacts with delays to anticipated changes in income while excess smoothness (Deaton, 1987)
documents that aggregate consumption reacts less than one-to-one to unanticipated income changes.
There is no univoque explanation in economic theory for these two features of U.S. data on aggregate
consumption.
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One suitable extension of the methodology I propose is a grid-based approximation
with �xed- and variable- resolution regular grids. Design of a grid-approximation strategy
requires addressing two main questions. The �rst pertains the trade-o¤between time and
quality that the interpolation method provides. The second question amounts to asking
what belief states should be included in the grid. Every grid must contain the corner
points of the belief simplex to ensure that a convex combination for the approximation
of the value function can be found. There are di¤erent strategies for adding other points
to the grid based on the way in which grids are generated. The methodologies split
into two subclasses: �xed-grid and variable-grid methods. Fixed grids are generally
constructed only once in a regular pattern; whereas variable grids are revised during
calculations to achieve better approximation schemes. Each type of grid has its strengths
and weaknesses.

The advantage of regular grid is that it allows an elegant and e¢ cient method of
interpolation based on Freudenthal triangulation. Lovejoy (1991). The disavantages of a
�xed-resolution grid is that increasing the resolution of the value function approximation
in one region of the belief simplex requires increasing its resolution everywhere. This
causes an exponential explosion in the size of the grid and makes this approach intractable
for all but small-sized problems. Lovejoy (1991) also suggested a variable-resolution
generalization of his method where the mesh is adjusted as the algorithm progresses to
add where it is most needed and subtract where it is least needed. However Lovejoy
did not developed this extension. Other have explored the use of non-regular grids
that allow grid points to be placed everywhere in the belief simplex. Although a non-
regular grid avoids the exponential explosion of a �xed-resolution regular grid, its serious
drawback is that it relies on methods of interpolation more complex and less e¢ cient
than triangulation.

Although the complexity of interpolation of regular grid does not depend on the
size of the grid, the complexity of value iteration in both regular and not regular grid
does. Values for grid belief states are computed using value iteration. For a grid-based
upper-bound function, the complexity of the value iteration is O

�
jGj jCj jG0j jSj2 lg lgM

�
where jGj is the number of grid points, jCj jG0j is the number of successor belief states
of each grid point, jSj2 is the worst-case complexity of computing successor belief states
by Bayesian conditioning and lg lgM re�ects the added complexity of interpolation with
M the number of subintervals that each edge of the state simplex is divided up into
(resolution of the grid). Since both success belief states and coordinates used for the
interpolation can be cached for re-use the complexity of each subsequent iteration of
value iteration in a variable-resolution grid is O (jGj jCj jG0j jSj).

If a variable-resolution regular grid is not re�ned during value iteration, then each
iteration uses the same grid belief states and coordinates for interpolation. In non-
regular grids, the coordinates for interpolation are re-computed each iteration. Since the
complexity of interpolation in non regular grids depend on jGj, the complexity of each
iteration of value iteration is quadratic in jGj. This underscores the advantage of using
a regular grid.
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In addition to limiting the complexity of interpolation, it is helpful to limit the factor
jGj jCj jG0j, which is the number of times interpolation (and other calculations involved
in computing a backup) are performed in each iteration of value iteration. The trivial
way to limit this factor is to limit the size of the grid. This adjusts a trade-o¤ between
quality of approximation and grid size, and a variable-resolution grid lets us space the
point of the grid to achieve the best possible approximation for a given grid size. This
procedure needs to be extended to the controls too to limit jCj jG0j. It is possible to
reduce the size of the latter by ignoring some observations and the evaluate the successor
belief states on a coarser set of probability controls. However, this impairs the quality of
the approximation even though it can be regarded as an opportunity to adjust a time-
quality trade-o¤. This trade-o¤ can be adjusted by only considering the most probable
observation or by only considering observation when the Mutual Information is above
some threshold15. However, if only the successor belief states of control probability are
considered in grid-based interpolation, the resulting approximation may no longer be
an upper bound since information provided in some region of the joint pdf p� (c; w) is
ignored.

Finally, it is worth mentioning a rich set of algorithms drawn from Arti�cial Intel-
ligence that algorithms perform point-based value iteration. The idea is to identify a
coarse set of belief points, say B. At each value backup stage, the algorithms improve
the value of all points in B by only updating the value and its gradient of a (randomly
selected) subset of points. In each backup stage, given a value function Vn, the next
step value function Vn+1 improves the value of all the point in B. The algorithm keeps
iterating until some convergence criterion is met. Although point-based value iteration
could be a promising avenue to explore in future work on rational inattention, as of now
it has been experiencing mixed results in terms of time-quality in the experiments run so
far. Furthermore, since the framework in the AI literature deals with in�nite state space
but �nite and extremely limited control space, the mapping between that and rational
inattention model is not immediate nor likely to be useful in the immediate future.

9 Conclusions

This paper applies rational inattention to a dynamic model of consumption and savings.
Consumers rationally choose the nature of the signal they want to acquire subject to the
limits of their information processing capacity. The dynamic interaction of degree of risk
aversion and endogenous choice of information �ow enhances precautionary savings.

Numerical analyses show that for a given degree of risk aversion, the lower the infor-
mation �ow, the �atter consumption path. The model further predicts that for a given
information �ow, the more risk averse the consumer is, the more he would like to acquire
information on his wealth to reduce volatility on consumption rather than increasing his
lifetime consumption average.

15Note the analogy of this methodology with that of the Reverse water-�lling and Nyquist-Shannon
Theorem for independent Gaussian. random variables. See Thomas and Cover (1991).
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The model predicts that consumers with processing capacity constraints have asym-
metric responses to shocks, with negative shocks producing more persistent e¤ects than
positive ones. This asymmetry is novel to the literature of consumption and savings and
it implies that, in my model, consumption displays excess smoothness with respect to
positive income shocks and excess sensitivity when the shock is averse.

The �rst priority for future research includes extending the dimensionality of the
discretization by improving on the grid proposed. An approach that seems promising for
optimizing the discretization which might help in facing the curse of dimensionality is to
use a variable resolution grid instead of a �xed resolution one. Another approach would
be to use point-based value iteration which minimizes the simplex points over which
the value function is computed. The second priority would be to enrich the model by
allowing more general income processes and augmenting choice space of the household
with labor. Moreover, it will be interesting given this extended setting to study the
(strategic) interactions of consumers characterized by di¤erent degrees of risk aversion
and information �ow. This will make my model the demand side of a DSGE model
where risk averse consumers have limited information capacity and producers have higher
processing capacity then their costumers and compete strategically. Given this setting,
it would be interesting to explore the role of a fully informed Central Bank in driving
the expectations of the private sectors via information conveyed by its policy.

There is still a long way to go to solve this latter problem but my paper suggests that
this road, although challenging, is worth (rational) attention.

10 Appendix A

10.1 Proof of Proposition 1.

The Bellman Recursion in the discrete Rational Inattention Consumption-
Saving Model is a Contraction Mapping.

Proof. The H mapping displays:

HV (g) = max
p
HpV (g) ;

with

HpV (g) =

"X
w2
w

 X
c2
c

u (c) p (cjw)
!
g (w) + �

X
w2
w

X
c2
c

(V (g0c (�))) p (cjw) g (w)
#
:

Suppose that jjHV �HU jj is the maximum at point g. Let p1 denote the optimal control
for HV under g and p2 the optimal one for HU

HV (g) = Hp1V (g) ;

HU (g) = Hp2U (g) :
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Then it holds
jjHV (g)�HU (g)jj = Hp1V (g)�Hp2U (g) :

Suppose WLOG that HV (g) � HU (g) : Since p1 maximizes HV at g , I get

Hp2V (g) � Hp1V (g) :

Hence,

jjHV �HU jj =
jjHV (g)�HU (g)jj =
Hp1V (g)�Hp2U (g) �
Hp2V (g)�Hp2U (g) =

�
X
w2
w

X
c2
c

[(V p2 (g0c (�)))� (Up2 (g0c (�)))] p2g (w) �

�
X
w2
w

X
c2
c

(jjV � U jj) p2g (w) �

� jjV � U jj :
Recalling that 0 � � < 1 completes the proof.

10.2 Proof of Corollary.

The Bellman Recursion in the discrete Rational Inattention Consumption-
Saving Model is an Isotonic Mapping.

Proof. Let p1 denote the optimal control for HV under g and p2 the optimal one for
HU

HV (g) = Hp1V (g) ;

HU (g) = Hp2U (g) :

By de�nition,
Hp1U (g) � Hp2U (g) :

From a given g, it is possible to compute g0c (�)jp1 for an arbitrary c and then the following
will hold

V � U =)
8g (w) ; c;

V
�
g0c (�)jp1

�
� U

�
g0c (�)jp1

�
=)X

c2
c

V
�
g0c (�)jp1

�
� p1g �

X
c2
c

U
�
g0c (�)jp1

�
� p1g =)
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X
w2
w

 X
c2
c

u (c) p1

!
g (w) + �

X
c2
c

V
�
g0c (�)jp1

�
� p1g

�
X
w2
w

 X
c2
c

u (c) p1

!
=)

Hp1V (g) � Hp1U (g) =)
Hp1V (g) � Hp2U (g) =)
HV (g) � HU (g) =)

HV � HU:

Note that g was chosen arbitrarily and, from it, g0c (�)jp1 completes the argument that the
value function is isotone.

10.3 Proof of Proposition 2.

The Optimal Value Function in the discrete Rational Inattention Consumption-
Saving Model is Piecewise Linear and Convex (PCWL).

Proof. The proof is done via induction. I assume that all the operations are well-
de�ned in their corresponding spaces. For planning horizon n = 0, I have only to take
into account the immediate expected rewards and thus I have that:

V0 (g) = max
p2�

"X
w2
w

 X
c2
c

u (c) p

!
g (w)

#
(30)

and therefore if I de�ne the vectors

�
�i0 (w)

	
i
�
 X
c2
c

u (c) p

!
p2�

(31)

I have the desired
V0 (g) = max

f�i0(w)gi



�i0; g

�
(32)

where h:; :i denotes the inner product h�i0; gi �
X
w2
w

�i0 (w) ; g (w).For the general case,

using equation (25):

Vn (g) = max
p2�

26664
X
w2
w

 X
c2
c

u (c) p (cjw)
!
g (w)+

+�
X
w2
w

X
c2
c

(Vn�1 (g
0
c (�)c)) p (cjw) g (w)

37775 (33)
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by the induction hypothesis

Vn�1 (g (�)jc) = max
f�in�1gi



�in�1; g

0
c (�)
�

(34)

Plugging into the above equation (22) and by de�nition of h:; :i ,

Vn�1 (g
0
c (�)) = max

f�in�1gi

X
w02
w

�in�1 (w
0)

 X
w2
w

X
c2
c

T (�;w; c) Pr (w; c)
Pr (c)

!
(35)

With the above:

Vn (g) = max
p2�

266664
X
w2
w

 X
c2
c

u (c) p

!
g (w)+

+�maxf�in�1gi
X
w02
w

�in�1 (w
0)

 X
w2
w

 X
c2
c

T (�;w;c)
Pr(c)

� p
!
g (w)

!
377775

= max
p2�

"
hu (c) � p; g (w)i+ �

X
c2
c

1

Pr (c)
max
f�in�1gi

* X
w02
w

�in�1 (w
0)T (�;w; c) � p; g

+#
(36)

At this point, it is possible to de�ne

�jp;c (w) =
X
w02
w

�in�1 (w
0)T (� : w; c) � p: (37)

Note that these hyperplanes are independent on the prior g for which I am computing
Vn: Thus, the value function amounts to

Vn (g) = max
p2�

"
hu (c) � p; gi+ �

X
c2
c

1

Pr (c)
max
f�jp;cg

j



�jp;c; g

�#
; (38)

and de�ne:
�p;c;g = arg max

f�jp;cg
j



�jp;c; g

�
: (39)

Note that �p;c;g is a subset of �jp;c and using this subset results into

Vn (g) = max
p2�

"
hu (c) � p; gi+ �

X
c2
c

1

Pr (c)
h�p;c;g; gi

#

= max
p2�

*
u (c) �+�

X
c2
c

1

Pr (c)
�p;c;g; g

+
: (40)

Now �
�in
	
i
=
[
8g

(
u (c) � p+ �

X
c2
c

1

Pr (c)
�p;c;g

)
p2�

(41)

is a �nite set of linear function parametrized in the action set.
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10.4 Proof of Proposition 3.

Proof. The �rst task is to prove that f�ingi sets are discrete for all n. The proof proceeds
via induction. Assuming CRRA utility and since the optimal policy belongs to �, it is
straightforward to see that through (31), the set of vectors f�i0gi,�

�i0
	
i
�
 X
w2
w

 X
c2
c

c1�


1� 

p (cjw)

!
g (w)

!
p2�

is discrete. For the general case, observe that for discrete controls and assuming M =����jn�1	��, the sets ��jp;c	 are discrete, for a given action p and consumption c, I can only
generate �jp;c�vectors. Now, �xing p it is possible to select one of theM �jp;c�vectors for
each one of the observed consumption c and, thus, f�jngi is a discrete set. The previous
proposition, shows the value function to be convex. The piecewise-linear component of
the properties comes from the fact that f�jngi set is of �nite cardinality. It follows that
Vn is de�ned as a �nite set of linear functions.

11 Appendix B

11.1 Concavity of Mutual information in the Belief State.

For a given p (cjw),Mutual Information is concave in g (w)

Proof. Let Z be the binary random variable with P (Z = 0) = � and let W = W1 if
Z = 0 and W = W2 if Z = 1. Consider

I (W;Z;C) = I (W ;C) + I (Z;CjW )
= I (W ;CjZ) + I (Z;C)

Condition on W , C and Z are independent, I (C;ZjW ) = 0: Thus,

I (W ;C) � I (W ;CjZ)
= � (I (W ;CjZ = 0)) + (1� �) (I (W ;CjZ = 1))
= � (I (W1;C)) + (1� �) (I (W2;C))

Q.E.D.

12 Appendix C

12.1 Optimality Conditions

Derivative with Respect to Controls In the main text, I state that the optimal
control amounts to :
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@p� (ck1 ; wk2) :

�ku (c (�)) + ��kV (g
0
c (:)) = p� (ck1 ; wk2) (���ku

0 (c (�)) + ��kVp� (g
0
c (:))) (42)

which can be rewritten, opening up the operator �k as:

'�(ck1 ;ck2)
= Pr (ck1 ; wk2)

0@ �(ck1 ;ck2 ;�) ln Pr (ck1 ; wk2)Pr (ck1)
+ �

24@V 0
�
g0ck1

(�)
�

@ Pr (ck1 ; wk2)
�
@V 0

�
g0ck2

(�)
�

@ Pr (ck1 ; wk2)
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where

� '�
(ck1 ;ck2)

� �
h
u (ck1 (�))� u (ck2 (�)) + �

�
V
�
g0ck1

(�)
�
� V

�
g0ck2

(�)
��i

, and

�  �(ck1 ;ck2 ;�)
� �� [u0 (ck1 (�))� u0 (ck2 (�))] :

Note that by Chain rule
@V 0

�
g0ckj

(�)
�

@ Pr(ckj ;wk2)
=

@V 0
�
g0ckj

(�)
�

@

�
g0ckj

(�)
� @

�
g0ckj

(�)
�

@ Pr(ckj ;wk2)
, for j = 1; 2: Plug (26) in

the second term of the above expression and evaluating pointwise the derivatives delivers

In cj = ck1 ;

=)
@g

�
�jck1

�
@ Pr(ck1 ;wk2)

=
@

"
1

p(ck1)

 P
i

T(�;wi;ck1)Pr(wi;ck1)
!#

@ Pr(ck1 ;wk2)
=

1

p (ck1)

0BB@T (�;wk2 ; ck1)�
�P

i

T (�;wi; ck1) Pr (wi; ck1)
�

p (ck1)

1CCA
De�ne 	� �

'�

(ck1 ;ck2)
 �

(ck1 ;ck2)
and �� � �

 �

(ck1 ;ck2 ;�)
; and to get rid of cumbersome nota-

tion, let (k1; k2) �
�
	�;��; g0ck1

(�) ; g0ck2 (�) ;Pr (ck1 ; wk2) ;
�
: Then the �rst order

conditions result into

Pr (ck1 ; wk2) = � (k1; k2) Pr (ck1) (43)

where

� (k1; k2) � �1 (	�;Pr (ck1 ; wk2))��2
�
��; g0ck1

(�) ;Pr (ck1 ; wk2)
�
��3
�
��; g0ck2

(�) ;Pr (ck1 ; wk2)
�

while
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� �1 (	�;Pr (ck1 ; wk2)) � e

0B@	� 1

Pr(ck1 ;wk2)

1CA
;
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�
��; g0ck1

(�) ;Pr (ck1 ; wk2)
�
� e
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� �3 (k1; k2) � e

0BBB@�� @V
�
g0ck2

(�)
�

@

�
g0ck2

(�)
� 1

p(ck2)

0BBB@T(�;wk2 ;ck2)�
0@P

i

T(�;wi;ck1)Pr(wi;ck2)
1A

p(ck2)

1CCCA
1CCCA
:

Derivative with Respect to States To derive the envelope condition with respect
to a generic state g (wk) for k = 1; 2; 3, let me start by placing the restrictions on the
marginal distribution of wealth in the main diagonal of the joint distribution Pr (c; w).
The derivative then amounts to:

@ Pr t(cj ;wk)

@g(wk)
=

@ Pr t(cj)

@g(wk)
=

8<:
1 f(j = k) \ (j 6= max l 2 
c)g
�1 fj = max l 2 
cg
0 o/whise

:

Let lmax denote the maximum indicator l belonging to 
c: Then the derivative of the
state g (wk) displays:
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Pr(clmax ;wk)
p(clmax )g(wk)

�
u0
�
clmax (�)

�
Pr
�
clmax ; wk

��
+

+�
P

j

"
@V

�
g0ckj

(�)
�

@

�
g0ckj

(�)
�
 
@

�
g0ckj

(�)
�

@g(wk)

!
Pr (cj; wk)

#
:

Combining �rst order conditions and envelopes condition after some algebra amount
to the result in (43).

13 Appendix D

13.1 Analytical Results for a three-point distribution

In this section I will specialize the optimality conditions derived above for a three point
distribution. The goal is to fully characterize the solution for this particular case and
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explore its insights.16

Let me assume the wealth to be a random variable that takes up values in w 2

w � fw1; w2; w3g with distribution g (wi) = Pr (w = wi) described by:

W wl wm wh

g (wi) g1 g2 1� g1 � g2

The equation describing the evolution of the wealth is displayed by the budget constraint

wt+1 = R (wt � ct) + Yt

where I denote by Yt the exogenous stochastic income process earned by the household
and by R > 0 the (constant) interest rate on savings, (wt � ct). Like wealth, before
processing information consumption, ct; is a random variable. It takes up a discrete
number of values in the event space 
c � fc1; c2; c3g. The joint distribution of wealth
and consumption, Pr t (cj; wi), amounts to:

Pr t (cj; wi)

CnW w1 w2 w3

c1 x1 x2 x3
c2 0 x4 x5
c3 0 0 x6

where the zeros in the SW end of the matrix encodes the feasibility constraint wi (t) �
cj (t) 8i 2 
w; j 2 
c and 8t � 0. The additional restrictions to the above matrix are
the ones commanded by the marginal on wealth. That is:

x1 = g1

x2 + x4 = g2

x3 + x5 + x6 = 1� g1 � g2

Without loss of generality, I place the marginal distribution of wealth in the main diagonal
of Pr t (cj; wi) and I impose the restrictions above together with the condition that the
resulting matrix describes a proper distribution. The joint distribution of wealth and
consumption amounts to:

Pr (cj; wi) :

CnW w1 w2 w3

c1 g1 p1 p2
c2 0 g2 � p1 p3
c3 0 0 1� (g1 + g2)� (p2 + p3)

(44)

16Three-point distribution is indeed a special case of the more general N points distribution since two
of the states in the event space 
w are absorbing states. This, in turn, sets to zero several dimensions of
the problem and allows for a close form solution of the optimal policies. Although the solution for this
particular case does not have a straightforward generalization, it provides useful insights on the optimal
choice for the joint probability distribution of wealth and consumption and its relation with the prior
distribution of wealth -g (w)- and the utility of the consumer.
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The resulting marginal distribution of consumption that endogenously depends on the
choices of pi�s, i = 1; 2; 3; displays:

Pr (C = cj) =

8<:
c1 w.p g1 + p1 + p2
c2 w.p g2 � p1 + p3
c3 w.p 1� (g1 + g2)� (p2 + p3)

:

Once the consumer chooses pi�s and observes the realized consumption ct, he updates
the marginal distribution of wealth. The latter, g0

�
�jcj
�
, is obtained combining the

joint distribution of wealth and consumption and the transition probability function. In
formulae, the updated marginal on wealth amounts to:

g0
�
�jcj
�
=
P
i

T (�;wi; cj) Pr (wijcj) : (45)

The speci�cation of T (�;wi; cj) adopted in the analytical derivation of the discrete prob-
ability distribution as well as in the numerical simulation can be explained as follows.
The transition probability function is meant to approximate the expected value of next
period wealth:

EW 0 = R (wt � ct) + �Y : (46)

The approximation is necessary since (46) cannot hold exactly at the boundaries of the
support of the wealth, 
w. In the above equation, R is the interest rates assumed to be a
given number while �Y is the mean of the stochastic income process, Yt. Suppose we have a
three point distribution. AssumeWLOG that the values wi 2 
w are equally spaced. For
a given (wi; cj) pair, the distribution of next period wealth is concentrated on three w0i val-
ues closest to R (wi � cj)+ �Y , which will be denoted by !1; !2; !3 with respective proba-
bilities �1; �2; �3. The mean of the distribution is ��1 (!2 � !1)+�3 (!3 � !2)+!2. Let �
be the distance between the values of wi: Then the mean becomes �! � �� (�3 � �1)+!2.
The variance of the distribution is then �2! � �2 (�3 � �1) � (�! � !2)

2. Since �2 is an
exact function of �1 and �3, the equations for mean and variance of the process consti-
tutes two equations in two unknowns. With the additional restriction that all the �i�s
are positive and sum to one, it is not possible to guarantee the existence of a solution for
R (wi � cj) + �Y close to the boundaries of the support of the distribution of wealth. To
make sure that there is always a solution for �! 2 (min (w) + :5�;max (w)� :5�), and
the solution is continuous at points where �! =

(wi+wi+1)
2

, one has to choose �2! = :25�2.

Euler Equations. Making use of the marginal distribution of wealth described above
and making use of (45) together with the speci�cations of T (�;wi; cj) and Pr (wi; cj), I
can explicitly evaluate g0

�
�jcj
�
point-wise. To illustrate this point, using the numerical

values of T (�;wi; cj) above, the derivatives point-wise are as follows.

In cj = c1;

g0
�
�jc1
�
=

1

(g1 + p1 + p2)
(T (�;w1; c1) g1 + T (�;w2; c1) p1 + T (�;w3; c1) p2)
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In cj = c2

g0
�
�jc2
�
=

1

(g2 � p1 + p3)
(T (�;w2; c2) (g2 � p1) + T (�;w3; c2) p3)

In cj = c3
g0
�
�jc3
�
= T (�;w3; c3)

Then, the �rst order conditions and envelope conditions amount to

@p1 : �
u (c1)� u (c2) + �

�
V 0 �g0c2 (�)�� V 0 �g0c2 (�)���

= p1

0@ � ([u0 (c1 � ��)� u0 (c2 � ��)]) ln
�

p1
(g1+p1+p2)

�
+

+
@V 0(g0c1 (�))
@g0c1 (�)

@g0c1 (�)
@p1

� @V 0(g0c2 (�))
@g0c2 (�)

@g0c2 (�)
@p1

1A

Note that
@g0cj (�)
@pj

= 0 for j 2 f1; 2; 3g.17 This result is not driven by the speci�ca-
tion chosen for the transition function T (�;wi; cj) but it is a feature of the three point
distribution. Indeed, since two of the three values of wealth are at the boundaries of

w, the absorbing states w1 and w3 place tight restrictions on the continuation value
V 0
�
g0cj (�)

�
through the transition function and, as a result, the update for the marginal

g0cj (�) according to (45). That is, the marginal probability on wealth g
0
cj
(�) in this case

tends to its ergodic value �gcj (�). It follows that V 0 ��gcj (�)� a:s:�! �V � ��gcj (�)� which is a
constant since the functional argument is. This is what makes the 3-point distribution
tractable.

For the general case, the �rst order condition with respect to the �rst control amounts
to:

@p1 : �
u (c1 (�))� u (c2 (�)) + �

�
�V (�gc1 (�))� �V (�gc2 (�))

��
= p1

�
� ([u0 (c1 (�))� u0 (c2 (�))]) ln

�
p1

(g1 + p1 + p2)

��
(47)

17To see this, plug (45) in
@g0cj

(�)
@pj

for j 2 f1; 2g and evaluating pointwise the derivatives delivers
@g0
�
�jc1
�
:

1

(g1 + p1 + p2)
2

24 0:81p2 � 0:15g1
� (0:56p2 � 0:15g1)

�0:25p2

35 = 0
@g0
�
�jc2
�
:

p3

(g2 � p1 + p3)2

24 �0:15
0:15
0

35 = 0
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Similarly, for the second control

@p2 : �
u (c1 (�))� u (c3 (�)) + �

�
�V (�gc1 (�))� �V (�gc3 (�))

��
= p2

�
� ([u0 (c1 (�))� u0 (c3 (�))]) ln

�
p2

(g1 + p1 + p2)

��
(48)

And �nally:

@p3 : �
u (c2 (�))� u (c3 (�)) + �

�
�V (�gc2 (�))� �V (�gc3 (�))

��
= p3

�
� (u0 (c2 (�))� u0 (c3 (�))) ln

�
p3

(g2 � p1 + p3)

��
(49)

Using the result that the value function converges to V � when the utility function be-
longs to the family of absolute risk aversion (CARA), I assume the utility takes up the
speci�cation:

u (cj (�)) =

8><>:
� e

�
(cj(�))



for 
 > 0

log (cj (�)) for lim
!0

�
� e

�
(cj(�))



�
where 
 is the coe¢ cient of absolute risk aversion and j 2 
c � fc1; c2; c3g. Moreover,
by proposition 1, the value function is PCWL, that is:

�V
�
�gcj (�)

�
= arg max

f�0jgj

D
�0j; �g

0
cj
(�)
E

where
�
�0j
	
j
are a set of vectors each of them generated for a particular observation of

previous values of consumption cj and h:; :i denotes the inner product
D
�0j; �g

0
cj
(�)
E
�X

w02
w

�0j (w
0)T (� : w; cj) � p (cjjw). To get a close form solution, I need to represent the

probability distribution of the prior. One of the possibilities is to use a particle based
representation. The latter is performed by using N random samples, or particles, at
points wi and with weights $i. The prior is then

gt (w) =
NP
i=1

$i
~� (w � wi)

where ~� (w � wi) = Dirac (w � wi) is the Dirac delta function with center in zero. A
particle-based representation can approximate arbitrary probability distributions (with
an in�nite number of particles in the extreme case), it can accommodate nonlinear tran-
sition models without the need of linearizing the model, and it allows several quantities of
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interest to be computed e¢ ciently. In particular, the expected value in the belief update
equation becomes:

�g0
�
�jcj
�
= Pr (cjj�)

NP
i=1

$iT (�;wi; cj)

The central issue in the particle �lter approach is how to obtain a set of particles to
approximate �g0

�
�jcj
�
from the set of particles approximating g (w). The usual Sampling

Importance Re-sampling (SIR) approach (Dellaert et al., 1999; Isard and Blake, 1998)
samples particles using the motion model T (�;wi; cj), then it assigns a new weights in
order to make all particles weights equal. The trouble with the SIR approach is that it
requires many particles to converge when the likelihood Pr (cjj�) is too peaked or when
there is a small overlap between prior and posterior likelihood. he main problem with
SIR is that it requires many particles to converge when the likelihood is too peaked or
when there is only a small overlap between the prior and the likelihood. In the auxiliary
particle �lter, the sampling problem is address by inserting the likelihood inside the
mixture

�g0
�
�jcj
�
/

NX
i=1

$i Pr (cjj�)T (�;wi; cj) :

The state (�) used to de�ne the likelihood Pr (cjj�) is not observed when the particles are
resampled and this calls for the following approximation

�g0
�
�jcj
�
/

NX
i=1

$i Pr
�
cjj�i!

�
T (�;wi; cj)

with �i! any likely value associated with the i
th component of the transition densityT (�;wi; cj),

e.g., its mean. In this case, we have that �i! = wi + �(cj) : Then, �g0
�
�jcj
�
can be re-

garded as a mixture of N transition components T (�;wi; cj) with weights $i Pr (cjj�i!) :
Therefore, sampling a new particle w0j to approximate �g

0
�
�jcj
�
can be carried out by

selecting one of the N components, say im, with probability $i � Pr (cjj�i!) and then
sampling w0i from the corresponding component T (�;wim ; cj) : Sampling is performed in
the intersection of the prior and the likelihood and, consequently, particles with larger
prior and larger likelihood (even if this likelihood is small in absolute value) are more
likely to be used. After the set of states for the new particles is obtained using the above
procedure, it is necessary to de�ne the weights. This is done using

$0
m /

Pr (cjjw0m)
Pr (cjj�im! )

:

Using the sample-based belief representation the averaging operator h:; :i can be com-
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puted in close form as:

h�; �g0i =
X
w2
w

"X
k

$k� (wjwk;�k)
#"X

l

$0
l
~� (w � wl)

#

=
X
k

$k

X
w2
w

 
� (wjwk;�k)

"X
l

$l
~� (w � wl)

#!
=
X
k

$k

X
l

$l� (wljwk;�k)

=
X
k;l

$k$l� (wljwk;�k) :

where � (:) is the distribution of the r.v. W 0 that use the speci�cation of the transition
function above, i.e., mean �! � �� (�3 � �1) + !2 and variance �2! � �2 (�3 � �1) �
(�! � !2)

2 with � the (constant) distance between the values of wi.

Representing priors in this fashion allows an explicit evaluation of the di¤erences in the
value functions in the �rst order conditions, since V 0

�
�g0cj (�)

�
= argmaxf�0jgj

D
�0j; �g

0
cj
(�)
E
=X

k;l

~$0
k ~$

0
l� (wljwk;�k), where ~$0

k �
�
Pr(cj jw0k)
Pr(cj j�k!)

�
; ~$0

l �
�
Pr(cj jw0l)
Pr(cj j�l!)

�
: Since the result of

the argmax is just one of the member of the set
�
�0j
	
j
and all the elements involved in

the de�nition of �0j function in �(p) are a �nite set of linear function parametrized in the
action set, so is the �nal result.

Let a prime" 0 " denote the variables led one period ahead, algebraic manipulation
delivers the following optimal control functions:

p�1 (~g; �) =
g1 ( 1 � ���1)

�g1 (LambertW (�1)x12 � LambertW (�11)x11) + 2g1 ( 1 � ��v1)
; (50)

p�2 (~g; �) =
g1 ( 2 � ���2)

�g1 (LambertW (�2)x21 � LambertW (�2)x22) + 2 2g1 ( 2 � ���3)
; (51)

p�3 (~g) =
 3 � ��v3

�x3 LambertW (�3)
(52)

where

�  1 �
�
e�
(c2���)e�
(c1���)




�
;  2 �

�
e�
(c3���)e�
(c1���)




�
; 3 �

�
e�
(c3���)e�
(c2���)




�
;

� �1 � g2 ( 
0
3) + (g2 � g1) ( 

0
2 �  03) ;
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� �2 � g2 ( 
0
1) + (g2 � g1) ( 

0
1 �  02) ;

� �3 � (1� g2 � g1) ( 
0
2) + (g2 � g1) ( 

0
3 �  01)

� �1 �
( 1���v1) 1
�g1(e
(c2�c1))

; ; x11 � e�
(c1���); x12 � e�
(c2���);

� �21 �
( 2���v2) 2
�g1(e
(c3�c1))

; x21 � e�
(c1���); x22 � e�
(c3���) and

� �3 �
 3���v3

�g2(e
(c3�c2))
; x3 � e
(c3�c2):

and LambertW (:) is the LambertW function that satis�es LambertW (x) eLambertW(x) =
x18. The argument of the LambertW is always positive for the �rst order conditions
derived, implying that for each of the optimal policies the function returns a real solu-
tion amongst other complex roots, which is unique and positive. Since @ LambertW(x)

@x
=

LambertW(x)
x(1+LambertW(x))

it is possible to calculate the derivatives of the above expression with
respect to f�; g1; g2g. However, the sign of the derivatives with respect to those variables
is indeterminate. The rational behind this result is quite simple. Consider the joint
probability distribution Pr (ci; wj) . The overall e¤ect of an increase in this probabil-
ity results from the interplay of several factors. In general, if � is low -or, equivalently,
the capacity of the channel, ��, in (21) is high-, a risk averse consumer will try to re-
duce the o¤ diagonal term of the joint as much as possible. That is, he would set
p1 = Pr (c1; w2) ; p2 = Pr (c1; w3) and p3 = Pr (c3; w2) as low as its capacity allows him
to sharpen his knowledge of the state. On the opposite extreme, for very high value of
the cost associated to information processing, �, p1 and p2 will be higher, the higher the
prior g1 = g (w1) with respect to g2 = g (w2) and g3 = g (w3). This is due to the fact
that when the capacity of the channel is low -or, equivalently, the e¤ort of processing
information is high-, the �rst order conditions indicate that it is optimal for the con-
sumer to shift probabilities towards the higher belief state. The intuition is that when
it is costly to process information, the household cannot reduce the uncertainty about
his wealth. If the individual is risk adverse as implied by the CRRA utility function, in
each period, he would rather specialize in the consumption associated to the higher prior

18Formally, the LambertW function is the inverse of the function f : C ! C given by f (x) � xex:
Hence LambertW (x) is the complex function that satis�es

LambertW (x) eLambertW(x) = x

for all x 2 C:. In practice the de�nition of LambertW requires a branch cut, which is usually taken
along the negative real axis. LambertW (x) function is sometimes also called product log function.
This function allows to solve the functional equation

g (x)
g(x)

= x

given that
g (x) = eLambertW(ln(x)):

See Corless, Gonnet, Hare, Je rey and Knuth (1996).
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than attempt to consume a di¤erent quantity and running out of wealth in the following
periods. This intuition leads to an optimal policy of the consumer that commands high
probability to one particular consumption pro�le and set the remaining probabilities as
low as possible. To illustrate this, consider a consumer who has a high value of � and
a prior on w1 higher than the other priors. If he cannot sharpen his knowledge of the
wealth due to prohibitively information processing e¤ort, he will optimize its dynamic
problem by placing very high probability on Pr (c1) = g1 + p1 + p2, i.e., increase p1 and
p2 and decrease p3. Likewise, if g2 is higher than the other priors and � is high -� is low-,
optimality commands to decrease both p1 and p2 and increase p3.

14 Appendix E.

Pseudocode

Let � be the shadow cost associated to �t = It (Ct;Wt). De�ne a Model as a pair (
; �).
For a given speci�cation :

� Step 1: Build the simplex. equi-spaced grid to approximate each g (wt)-simplex point.

� Step 2: For each simplex point, de�ne p (ct; wt). and Initialize with V
�
g0cj (�)

�
= 0:

� Step 3: For each simplex point, �nd p� (c; w) s.t.

V0 (g (wt))jp�(ct;wt) = max
� P
wt2
w

P
ct2
c

�
c1�
t

1�


�
p� (ct; wt)� � [It (Ct;Wt)]

�
:

� Step 4: For each simplex point, compute g0cj (�) =
P

wt2
w T (�;wt; ct) p
� (wtjct). Inter-

polate V0 (g (wt)) with g0cj (�).

� Step 5: Optimize using csminwel and iterate on the value function up to convergence.

Obs. Convergence and Computation Time vary with the speci�cation (
; �).

! 9-45 iterations each taking 5min-40min

� Step 6. For each model (
; �), draw from the ergodic p� (c; w) a sample (ct; wt) and
simulate the time series of consumption, wealth, expected wealth and information �ow
by averaging over 1000 draws.

� Step 7. Generate histograms of consumption and impulse response function of consump-
tion to temporary positive and negative shocks to income.
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15 Tables and Figure

Baseline Model

VariablesnValues
� 0.963
R 1.03
E (C) 1.3333
std (C) 0.7201
E (W ) 4
std (W ) 2.1602
wgrid 
w � f1; 2::; 7g
cgrid 
c � 1

3

w

g (w)grid �g(w) � f3003x7g
Table 1
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Optimal Value and Expected Wealth

15.1 Full Information Case: � = 0

CRRA 
 = 7 CRRA 
 = 5 Log Utility CRRA 
 = :5 CRRA 
 = :3
E (C) 1.0000 1.0476 1.1429 1.2381 1.2857
std (C) 0.1925 0.2300 0.2623 0.3171 0.3563
Ex:Skewness 0.0008 -0.1342 -0.85991 -0.6660 -0.5954
Ex:Kurtosis 3.5000 2.3900 2.3639 2.7687 2.3594

Table 1a

15.2 Model 1: � = 0:2

CRRA 
 = 5 CRRA 
 = 3 Log Utility CRRA 
 = :5
E (C) 1.0130 1.0143 1.0156 1.0161
std (C) 0.0505 0.0503 0.0509 0.0514
Ex:Skewness -0.0282 -0.0743 -0.0855 -0.0743
Ex:Kurtosis 2.9227 3.0506 3.0126 2.9689
� 0.1630 0.1626 0.1626 0.1625

Table 1b
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Optimal Value and Expected Wealth
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Figures 2a-2b: Dispersion of V � (g (wi)) and E� (g (wi))

Time Series Results
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Figures 3a-3b:Consumption (C) and Information Flow (�) Path.
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15.2.1 Histogram of Consumption
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Figures 4a: Consumption Path for several Utility Speci�cations.
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15.2.2 Dispersion of Consumption and Expected Wealth Path

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

2

3

4

5

6

7

Consumption Path

E
xp

ec
te

d 
W

ea
lth

 P
at

h

CRRA 
=5

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

Consumption Path

E
xp

ec
te

d 
W

ea
lth

 P
at

h

Log Utility

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

Consumption Path

E
xp

ec
te

d 
W

ea
lth

 P
at

h

CRRA 
=0:5

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

Consumption Path

E
xp

ec
te

d 
W

ea
lth

 P
at

h

CRRA 
=3

Figures 5a-5d: Scatter of Consumption Path and Expected Wealth Path:
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15.3 Model 2 � = 1

CRRA 
 = 7 CRRA 
 = 5 CRRA 
 = 3 Log Utility CRRA 
 = :3
E (C) 1.0213 1.0156 1.0148 1.0143 1.0138
std (C) 0.0515 0.0503 0.0513 0.0513 0.0513
Ex:Skewness -0.1086 -0.0855 0.0183 0.0254 0.0109
Ex:Kurtosis 3.1786 3.0126 2.8750 2.9549 2.9337
� 0.1729 0.1625 0.1622 0.1619 0.1612

Table 1c

Time Series Results
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Figures 3c-3d:Consumption (C) and Information Flow (�) Path.
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15.3.1 Dispersion of Consumption and Expected Wealth Paths
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Figures 5e-5h: Scatter of Consumption Path and Expected Wealth Path:
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Histograms Log Utility: s1

Histogram for s1: several temporary shocks.
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Figure 10a: Histogram of IRFs of consumption for di¤erent information �ows
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Histograms Log Utility: s4

Histogram for s4: several temporary shocks.
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Figure 10b: Histogram of IRFs of consumption for di¤erent information �ows
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Impulse Response Functions
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