
Measuring Precision of Statistical Inference on Partially

Identi�ed Parameters

Aleksey Tetenov1

April 14, 2009

1Collegio Carlo Alberto, aleksey.tetenov@carloalberto.org. I am grateful to Chuck Manski, Elie
Tamer, Luca Anderlini and Keisuke Hirano for their helpful comments. I have also bene�tted from
the opportunity to present this work at Collegio Carlo Alberto, LAMES 2008 and ICEEE 2009.
c 2009 by Aleksey Tetenov. Any opinions expressed here are those of the author and not those of the
Collegio Carlo Alberto.



Abstract

Planners of surveys and experiments that partially identify parameters of interest face trade

o¤s between using limited resources to reduce sampling error or to reduce the extent of partial

identi�cation. Researchers who previously attempted evaluating these trade o¤s used the length

of con�dence intervals for the identi�cation region to measure the precision of inference. I show

that other reasonable measures of statistical precision yield qualitatively di¤erent conclusions,

often implying higher value to reducing the extent of partial identi�cation. I consider three

alternative measures - maximum mean squared error, maximum mean absolute deviation, and

maximum regret (applicable when the purpose of estimation is binary treatment choice). I

analytically derive and compare estimation precision and tradeo¤s implied by these measures

in a simple statistical problem with normally distributed sample data and interval partial iden-

ti�cation.

JEL Classi�cation: C21, C44, C83.

Keywords: partial identi�cation, statistical treatment choice, mean absolute error, mean squared

error, minimax regret, survey planning



1 Introduction

It has become widely recognized that many types of statistical data only partially identify the

parameters of interest as simple as population means, meaning that the parameters cannot be

estimated with arbitrary precision simply by increasing the sample size. Statisticians designing

surveys and experiments which generate such data could use limited resources either to reduce

the extent of partial identi�cation or to reduce sampling error. The former can be accomplished,

for example, by putting more e¤ort into pursuing sampled population members who did not

respond to a survey. The latter by increasing sample size or improving measurement precision.

To inform these choices, it is useful to analytically derive the relative e¤ects of both margins of

planning on the precision of inference, which the planner could then compare to their relative

costs.

The problem was �rst considered in the Cochran-Mosteller-Tukey report on the Kinsey

study published in 1954. Concerned with nonrandom nonresponse to the study�s questions,

CMT advocated a conservative approach to inference that sets limits on population parameters

by allowing for any values of the variable in the part of the population that was not sampled

or refused to respond. A variety of applications of the same approach, now known as partial

identi�cation, has been developed by Manski (1995, 2007a) and other researchers. CMT cal-

culated for di¤erent sample sizes and refusal rates the relative e¤ects of reducing nonresponse

or increasing the sample size on the precision of inference about the population means. They

judged the precision of inference by the length of a 95% con�dence interval around the estimated

identi�cation region. The same measure of precision has been used to illustrate the e¤ects of

missing data on the precision of inference by Horowitz and Manski (1998) and McFadden (2006).

Length of a con�dence interval for the identi�cation region is not the only reasonable way

to measure the precision of inference on the parameter of interest. In this paper I consider

other measures of precision and show that they yield qualitatively di¤erent conclusions about

the relative merits of reducing sampling error and reducing the extent of partial identi�cation.

First, I consider the maximum mean squared error (MSE) of the point estimate around the true

value of the parameter, which has often been used by statisticians to measure the precision of

estimators of point identi�ed parameters. I also consider the maximum mean absolute deviation

(MAD) of the estimate around the true parameter value, a popular alternative to the squared

error.
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Another measure considered in this paper is the maximum regret of a statistical treatment

rule. It is applicable when the parameter of interest is the di¤erence in average returns of two

mutually exclusive policies or treatments for a population of interest and the goal of inference

is to decide which one should be used. Regret, then, is the average welfare loss incurred from

choosing an inferior treatment for the population based on the observed statistical data. In

recent years, econometricians started studying statistical treatment rules that minimize maxi-

mum regret both when the average treatment e¤ect of interest is point identi�ed (Manski 2004,

2005; Hirano and Porter 2008; Stoye 2007b; Schlag 2007; Manski and Tetenov 2007) and when

it is partially identi�ed (Manski 2007a, 2007b, 2008a, 2008b; Stoye 2007a, 2007c).

I apply these measures of precision to the following partial identi�cation problem. Let the

real-valued parameter of interest � = �O + �U be the sum of a point identi�ed component �O

and a partially identi�ed component �U . For the point identi�ed component �O, the statistician

observes an unbiased normally distributed estimate with known standard error �. The partially

identi�ed component �U is only known to lie in a given bounded interval of length 2P . The prob-

lem is deliberately simpli�ed to demostrate in an analytically tractable setting the qualitative

di¤erences between the conclusions about the relative bene�ts of reducing sampling error vs.

narrowing the identi�cation region drawn based on alternative measures of precision. I derive

minimax estimators of � under maximum MSE and maximum MAD criteria and a minimax

regret statistical treatment rule under the maximum regret criterion. I show that for su¢ ciently

small values of �P , all of the considered measures of precision imply greater relative importance

of addressing the partial identi�caton problem than measuring the length of con�dence intervals

suggests. For maximum regret, the result is particularly strong. If the standard error � falls

below a certain proportion of the width of the identi�cation region 2P , then reducing it even

further does not reduce maximum regret. Thus, more precise inference for treatment choice

could be made only by reducing the width of the identi�cation region. The same e¤ect has been

shown by Stoye (2007c) in a problem of treatment choice based on random samples of binary

treatment outcomes with missing data.

The paper proceeds as follows. Section 2 describes the statistical problem and reviews the

results of measuring precision of inference by the length of con�dence intervals. In section 3,

I derive estimators of � that minimize maximum MSE and maximum MAD and evaluate the

e¤ect of changing the parameters of the problem on its minimax MSE and MAD. In section 4,

I consider the problem from a statistical treatment choice perspective, derive a minimax regret
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statistical treatment rule and evaluate the e¤ects of changing the parameters of the problem (�

and P ) on its minimax regret. Section 5 concludes and the appendix collects all proofs.

2 Statistical Setting and the Con�dence Interval Approach

I will consider the following partial identi�cation problem. The parameter of interest to the

statistician is

� = �O + �U :

�O 2 R is a point identi�ed (observable) component, for which the statistician could obtain an

unbiased normally distributed estimate X with standard error �:

X � N
�
�O; �

2
�
.

�U is a partially identi�ed (unobservable) component, which is only known to lie in a bounded

interval of length 2P :

�U 2 [�P; P ] .

The restriction that �U lies in a symmetric interval around zero is without loss of generality.

For example, � could be the di¤erence between average potential outcomes of two alternative

treatments on a population of interest. Suppose that �O is the average outcome of one treatment,

which is point identi�ed by experimental data generated by assigning that treatment to a random

sample of population members, while ��U is the average outcome of the second treatment, which

is known to lie within a given interval based on observational data.

Alternatively, �O could be the average di¤erence in potential outcomes of the two treatments

point identi�ed by an experiment that randomly assigned one of two treatments to members of

the population of interest, while ��U is the di¤erence between future costs of the two treatments

that the randomized experiment does not reveal.

In this setting, the pair (�; P ) describes the experimental design parameters. The main

question of this chapter is how do these design parameters a¤ect the precision of inference on �

that the statistician could carry out based on the results of the experiment (observation of X).

Formally, let the function

M (�; P ) � 0
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be a particular measure of maximum precision with which the statistician can carry out inference

on � based on the data from an experiment with design parameters (�; P ). Lower values of

M (�; P ) will correspond to more precise inference and M (�; P ) = 0 will correspond to perfect

precision (for example, M (0; 0) = 0). Let a di¤erentiable function b (�) � 0; b0 < 0 denote the

economic bene�t of inference with a given level of precision and let a di¤erentiable function

c (�; P ) ; c� < 0; cP < 0 denote the costs of conducting an experiment with design parameters �

and P . Then the statistical planning problem is to maximize the net bene�t of the experiment

max
�;P

[b (M (�; P ))� c (�; P )] .

If M is di¤erentiable with partial derivatives M� > 0 and MP > 0, a necessary condition for a

pair (��; P �) with �� > 0 and P � > 0 to be a solution to the planning problem is that

M� (�
�; P �)

MP (��; P �)
=
c� (�

�; P �)

cP (��; P �)
.

If these ratios are unequal, then it is possible to adjust � and P in a way that improves

precision without increasing costs. I will evaluate a few functions M (�; P ) based on di¤erent

criteria of precision and derive the M�
MP

ratios for them. Survey and experiment planners could

compare these ratios to the marginal cost ratio c�
cP
and see whether a a proposed allocation of

resources maximizes the precision of inference for a given budget. These conclusions could be

made without specifying the bene�t function b (�). Knowledge of b (�) is required, however, to

determine the optimal size of a survey or experiment�s budget.

First, let�s consider using the length of a 100 (1� �)% con�dence interval for the identi�ca-

tion interval as the measure of precision. In this model, the identi�cation set for the parameter

of interest � is

� 2 [�O � P; �O + P ] . (1)

Given that the random experimental outcome X is normally distributed with mean �O and

standard error �, the con�dence interval

�
X � P � ��1 (1� �=2)�;X + P +��1 (1� �=2)�

�
(2)

contains the identi�cation set (1) exactly with probability 1��. � denotes the standard normal

c.d.f., so for the conventional 95% con�dence intervals, for example, ��1 (1� �=2) � 1:96. The
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precision of inference from an experiment with parameters (�; P ), as measured by the length of

a 100 (1� �)% con�dence interval then equals

MCI(�) (�; P ) � 2��1 (1� �=2)� + 2P .

The marginal e¤ects of changes in � and P (partial derivatives of MCI(�)) equal

MCI(�)
� = 2��1 (1� �=2) ;

and MCI(�)
P = 2.

The ratio of these marginal e¤ects equals

M
CI(�)
�

M
CI(�)
P

= ��1 (1� �=2) . (3)

Thus, if the length of conventional 95% con�dence intervals is used as a measure of precision,

then a reduction of the standard error � by " always brings the same improvement as a reduction

of the half-length P of the identi�cation interval by 1:96". Note that the evaluation of the relative

e¤ects of reducing the sampling error and the extent of partial identi�cation depends on the

chosen con�dence level 100 (1� �)%. Thus, using a 99% con�dence level instead of 95% would

imply a relatively higher value of reducing the standard error instead of reducing the extent of

partial identi�cation.

3 Minimax Mean Squared Error and Mean Absolute Deviation

Suppose, now, that instead of an interval the statistician is asked to provide a single point

estimate of �. Let the estimator �̂ (X) be a function mapping the observed experimental outcome

X into the estimate that the statistician provides upon observing X. There is a long tradition

in statistics of measuring the precision of point estimators by their expected loss

EXL
�
�̂ (X)� �

�
; (4)

where the expectation is taken with respect to the distribution of X for �xed values of �O and

�U . Expected loss di¤ers across values of �O and �U , its maximum value over the parameter
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space

sup
�O2R;

�U2[�P;P ]

EXL
�
�̂ (X)� (�O + �U )

�
(5)

is a conservative measure of the precision of estimator �̂ (X). If �̂ (X) is optimal in the sense of

minimizing (5), then its maximum expected loss could be used as a measure of precision of the

experiment

ML (�; P ) � sup
�O2R;

�U2[�P;P ]

EXL
�
�̂ (X)� (�O + �U )

�
.

Proposition 2 shows that a simple estimator �̂
�
(X) = X minimizes maximum expected

loss (5) for a broad class of symmetric convex loss functions. This class includes commonly

used.square loss L (t) = t2 and absolute loss L (t) = jtj, for which I derive additional speci�c

results afterwards. Formally, suppose that the loss function L : R! R+ satis�es the following

conditions:

Condition 1 a) L is symmetric (L (t) = L (�t)),

b) L is convex,

c) L (0) = 0,

d) L (t) > 0 for some t > 0,

e) L (t) � q � exp (rt) for all t � 0 and some constants q > 0; r > 0.

Then L is also continuous and non-decreasing on [0;+1).

Proposition 2 If loss function L satis�es Condition 1, �O 2 R, �U 2 [�P; P ], and X �

N
�
�O; �

2
�
, then the estimator �̂

�
(X) = X minimizes maximum expected loss (5), which for

� > 0 and P � 0 equals

ML (�; P ) =

Z +1

�1
L (t)

1

�
�

�
t� P
�

�
dt (6)

and for � = 0 and P � 0; ML (0; P ) = L (P ).

Both square and absolute loss functions satisfy Condition 1. For them, (6) and its partial

derivatives could be derived in closed form. In case of square loss L (t) = t2; the maximum

mean squared error

sup
�O;�U

EX
�
�̂
�
(X)� (�O + �U )

�2
(7)

6



of �̂
�
(X) = X equals

MMSE (�; P ) = �2 + P 2: (8)

The marginal e¤ects of changes in � and P on the maximum mean squared error equal

MMSE
� = 2�;

and MMSE
P = 2P .

The ratio of these marginal e¤ects equals

MMSE
�

MMSE
P

=
�

P
. (9)

This ratio shows that usingMMSE as a measure of precision yields qualitatively di¤erent conclu-

sions about the optimal choices of � and P than using MCI(�). Whenever �
P < �

�1 (1� �=2),

MMSE
�

MMSE
P

<
M
CI(�)
�

M
CI(�)
P

.

The maximum MSE measure of precision implies lower importance of further reducing standard

errors than does the length of con�dence interval measure. For the conventional 95% con�dence

intervals ��1 (:975) � 1:96. Thus, in evaluating any proposed experiment or survey in which the

standard error is going to be smaller than the length of the identi�cation interval (� < 1:96P )

a planner using the maximum MSE measure of precision would allocate more resources to

reducing the extent of partial identi�cation than a planner measuring precision by the length of

the con�dence interval. The di¤erence between the "marginal rates of substitution" produced

by the two methods could be particularly large when considering large sample surveys and

experiments in which the extent of partial identi�cation could greatly exceed sampling error.

For the absolute loss function L (t) = jtj, the maximum mean absolute deviation (MAD)

sup
�O;�U

EX
����̂ (X)� (�O + �U )��� (10)

of �̂
�
(X) = X equals

MMAD (�; P ) = 2��

�
P

�

�
+ 2P

�
�

�
P

�

�
� � (0)

�
. (11)
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The marginal e¤ects of changes in � and P on the maximum MAD equal

MMAD
� = 2�

�
P

�

�
; (12)

and MMAD
P = 2

�
�

�
P

�

�
� � (0)

�
:

The ratio of these marginal e¤ects equals

MMAD
� (�; P )

MMAD
P (�; P )

=
�
�
P
�

�
�
�
P
�

�
� � (0)

. (13)

This is a continuous decreasing function of P� , which goes to in�nity as
P
� ! 0 and to zero as

P
� !1.

Similarly to the maximum MSE, for su¢ ciently large values of P� the maximum MAD mea-

sure of precision implies greater importance of reducing the scope of partial identi�cation than

does the con�dence interval measure. For conventional 95% con�dence intervals, calculations

show that M
MAD
�

MMAD
P

< M
CI(:05)
�

M
CI(:05)
P

whenever � < 2:11P . MAD and MSE measures yield similar conclu-

sions about the relative bene�ts of reducing � and P for small values of P� , since
�(P� )

�(P� )��(0)
� �

P

when P
� ! 0.

4 Minimax Regret Approach

The third measure of precision - minimax regret - is motivated by directly considering the

economic loss resulting from incorrect inference about � when � is the di¤erence in average

returns of two alternative policy decisions and the ultimate aim of inference about � is to

choose which policy to implement. For example, the policies may be two proposed cancer

therapies, with � measuring the average di¤erence in the welfare of cancer patients from a

target population net of the average di¤erence between the costs of these two therapies.

Let � = r2 � r1, where r1 is the average return from implementing the �rst policy and r2

the average return from implementing the second policy. Then the economic loss from choosing

the second policy when, in fact, r1 > r2 (� < 0) equals r1 � r2 = ��. The economic loss from

choosing to implement the �rst policy when, in fact, r1 < r2 (� > 0) equals r2 � r1 = �. The

method by which the decision maker chooses which policy to implement based on experimental

data X could be summarized by a statistical treatment rule � (X), which is a function mapping

feasible realizations of X 2 R into the [0; 1] interval. �
�
�X
�
= 0 if the decision maker implements
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the �rst policy when outcome �X is observed, �
�
�X
�
= 1 if she implements the second policy.

�
�
�X
�
could takes values between 0 and 1 if the decision maker could implement either policy

with some probability upon observing outcome �X.

The regret of statistical treatment rule � is the average (over the probability distribution of

outcome X) economic loss incurred by the decision maker using �. It is a function of �O and

�U , and in this problem equals

R (�; (�O; �U )) �

8><>: � � [1� E�O� (X)] if � > 0,

�� � E�O� (X) if � � 0,
(14)

where E�O� (X) denotes the average value of � (X) given that X � N
�
�O; �

2
�
. When � > 0,

the �rst policy is inferior and [1� E�O� (X)] is the probability with which the decision maker

would mistakenly choose it based on observation of the random experimental outcome X. When

� < 0, the second policy is inferior and E�O� (X) is the probability of choosing it.

Minimizing maximum regret was a criterion suggested by Savage (1951) as a clari�cation of

Wald�s minimax principle (1950). For a more detailed discussion on applying minimax regret

criterion to statistical treatment choice problems see Manski (2004, 2007a, Chapter 11).

To measure the precision of inference by the maximum regret of a statistical treatment

rule we �rst ought to �nd statistical treatment rules that minimize maximum regret for given

experimental parameters (�; P ). Proposition 3 derives such rules and their maximum regret.

Proposition 3 a) For � > 2P � � (0), the unique minimax regret statistical treatment rule is

�M(�;P )(X) � 1 jX > 0j . (15)

Its maximum regret equals

sup
�O2R;

�U2[�P;P ]

R
�
�M(�;P ); (�O; �U )

�
= max

h>0

�
h�

�
P � h
�

��
>
P

2
,

which is a strictly increasing function of � for any given P .

b) For � � 2P � � (0), statistical treatment rules

�M(�;P ) (X) �

8><>:
1 jX > 0j if � = 2P � � (0) ,

�

�h
(2P � � (0))2 � �2

i�1=2
X

�
if � < 2P � � (0) ,

(16)
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minimize maximum regret, which equals P
2 .

Two features of Proposition 3 are qualitatively similar to results obtained by Stoye (2007c),

who studied minimax regret statistical treatment rules based on binary outcome data from

an experiment with randomized treatment assignment in which the outcomes are missing with

some probability.

First, when the extent of partial identi�cation (in Stoye�s problem, the maximum feasible

proportion of missing outcomes) is below some threshold relative to the sampling error, the

minimax regret statistical treatment rule is the same as it would be with point identi�cation.

In Proposition 3.2 (part a) the same result holds, the minimax regret statistical treatment rule

(15) is identical for all values of P � �
2�(0) , including the point identi�ed case P = 0.

The second qualitative similarity is that maximum regret of the minimax regret statistical

treatment rule becomes constant with respect to the sampling error once the sampling error falls

below some threshold relative to the extent of partial identi�cation. Thus, reducing the sampling

error below that threshold (reducing � in this chapter, increasing sample size in Stoye�s) could

not further reduce minimax regret.

Since this second result could appear counterintuitive, it deserves further explanation. Let

q (�; �O) � E�O� (X)

denote the average probability (with respect to the distribution of X) with which the decision

maker using statistical treatment � will choose the second policy. Then for a given value of P , P2

is the lower bound on maximum regret attainable by any statistical treatment rule for any value

of �. This could be seen by considering maximum regret over the subset f�O = 0; �U 2 [�P; P ]g

sup
�O2R;

�U2[�P;P ]

R (�; (�O; �U )) � max
�U2[�P;P ]

R (�; (0; �U )) = max (P � q (�; 0) ; P � (1� q (�; 0))) �
P

2
.

In order to attain this lower bound, the statistical treatment rule � must satisfy q (�; 0) = 1
2 .

For values ��O 6= 0, however, there is a range of values of q
�
�; ��O

�
for which

max
�U2[�P;P ]

R
�
�;
�
��O; �U

��
� P

2
.
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Figure 1: Bounds on q (�; �O) that guarantee attaining the lower bound on maximum regret
(P=2).

This range is given by the inequalities

q (�; �O) � 1� P
2(P+�O)

for �O � �P
2 ,

q (�; �O) � P
2(P��O) for �O � P

2 .
(17)

As shown in Proposition 3, for � � 2P � � (0), it is possible to construct statistical treatment

rules that satisfy these inequalities for all �O 2 R. Figure 1 displays in bold lines the bounds (17)

and shows that the function q
�
�M(�;P ); �O

�
= �

�
�O

2P ��(0)

�
, which is identical for all minimax

regret rules de�ned by (16), �ts within these bounds.

Statistical treatment rules derived in part b of Proposition 3 may not be the only ones

that minimize maximum regret, but deriving one class of minimax regret rules is su¢ cient to

make conclusions about the minimum value of maximum regret, and thus about the precision

of inference from the data for treatment choice.

If the planner chooses minimax regret to measure inferential precision, then the precision of

inference generated by an experiment with parameters (�; P ) is

MMMR (�; P ) =

8><>:
max
h>0

�
h�
�
P�h
�

�	
if � > 2P � � (0) ,

P
2 if � � 2P � � (0) ,
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This measure of precision could yield drastically di¤erent conclusions about the relative bene�ts

of reducing the extent of partial identi�cation and reducing sampling error than con�dence

interval, maximum MSE, and maximum MAD approaches, since for �
P � 2� (0) � 0:8

MMMR
� = 0,

MMMR
P =

1

2
,

implying that reducing the extent of partial identi�cation is not only relatively more important

than reducing sampling error, it is the only way to reduce minimax regret and improve the

inferential precision of experimental or survey data for treatment choice.

5 Conclusion

In this paper, I considered alternative measures of inferential precision for partially identi�ed

parameteres in addition to the length of 95% con�dence interval, which is the primary measure

previously considered by other researchers. These measures yield qualitatively di¤erent conclu-

sions about the relative merits of reducing sampling error and reducing the extent of partial

identi�cation in the data. Both the maximum mean squared error, the maximum mean absolute

deviation, and minimax regret (applicable when inference is carried out on the average treat-

ment e¤ect with the goal of choosing the best treatment) emphasize greater value of reducing

the extent of partial identi�cation compared to the con�dence interval measure if the sampling

error is relatively small compared to the width of the identi�cation interval.

The statistical problem with a normal sampling distribution considered in the paper is simple

in comparison to many practical problems. However, it is su¢ ciently rich to capture some of

the main features of partial identi�cation problems and to concisely illustrate how choosing

di¤erent criteria for measuring the precision of inference qualitatively impacts the conclusions

about the relative value of reducing the extent of partial identi�cation and reducing sampling

error. The results could serve both as a rough practical approximation for partial identi�cation

problems with similar structure and as a useful indicator of potential �ndings for future research

that considers more complex practical partial identi�cation problems.
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6 Appendix: Proofs

The proof of Proposition 2 will use the following theorem (e.g., Berger 1985, p. 350), in which

r (�n) �
R
R (�n; �) @�n (�) denotes the Bayes risk of a Bayes decision rule �n = argmin

�

R
R (�; �) @�n (�)

under the prior distribution �n.

Theorem 4 If f�ng is a sequence of proper prior distributions on the parameter space � and

for all � 2 �

R (��; �) � lim
n!1

r (�n) <1

then the decision rule �� is minimax.

Proof of Proposition 2

To show that �̂
�
(X) = X is a minimax expected loss estimator of � = �O+�U , I will consider

a sequence f�kg of proper prior distributions on the parameters (�O; �U ), such that �O and �U

are independent under each �k, �O is distributed N
�
0; k2

�
, while �U has an equal probability

of being equal to �P :

�k (�O) = N
�
0; k2

�
,

�k (�U ) = :5 � I [j�U j = P ] ,

�O ? �U .

Since X � N
�
�O; �

2
�
, the posterior distributions of �O and �U conditional on observing X are

�k (�OjX) = N
�
ckX; ck�

2
�
;

and �k (�U jX) = :5 � I [j�U j = P ] ,

where ck = k2

k2+�2
; lim
k!1

ck = 1. Since the loss function L is convex and symmetric, �̂k (X) = ckX

is the Bayes estimator of � that minimizes the posterior risk

Z
L
�
�̂k (X)� (�O + �U )

�
d�k (�O; �U jX) .

13



Given the posterior distribution �k (�OjX) ; the random variable y = ckX��O has a N
�
0; ck�

2
�

distribution. The posterior risk of �̂k (X), then, equals

Z
L (ckX � (�O + �U )) d�k (�O; �U jX) =

=

Z �
1

2
L (ckX � �O � P ) +

1

2
L (ckX � �O + P )

�
d�k (�OjX) =

=

Z �
1

2
L (y � P ) + 1

2
L (y + P )

�
d�k (yjX) =

Z
L (y + P ) d�k (yjX) =

=

Z +1

�1
L (y + P )

1
p
ck�

�

�
y

p
ck�

�
dy =

Z +1

�1
L (z)

1
p
ck�

�

�
z � P
p
ck�

�
dz

The second equality holds because L and �k (yjX) are symmetric. Condition 1(e) guarantees

that this and other improper integrals in this proof are well de�ned. The posterior risk is

constant for all possible values of X, thus the Bayes risk with prior �k is also equal

r (�k) =

Z +1

�1
L (z)

1
p
ck�

�

�
z � P
p
ck�

�
dz.

The functions L (z) 1p
ck�
�
�
z�Pp
ck�

�
converge pointwise to L (z) 1��

�
z�P
�

�
as k ! 1. Due to

Condition 1(e), Lebesgue dominated convergence theorem applies and

lim
k!1

r (�k) =

Z +1

�1
L (z)

1

�
�

�
z � P
�

�
dz.

The risk of �̂
�
equals

R
�
�̂
�
; (�O; �U )

�
= EXL (X � (�O + �U ))

=

Z +1

�1
L (x� �O � �U )

1

�
�

�
x� �O
�

�
dx

=

Z +1

�1
L (z)

1

�
�

�
z + �U
�

�
dz:

It is maximized for j�U j = P , thus

R
�
�̂
�
; (�O; �U )

�
�
Z +1

�1
L (z)

1

�
�

�
z � P
�

�
dz = lim

k!1
r (�k) ,

thus Theorem 4 applies and �̂
�
(X) = X is a minimax estimator of � = �O + �U under loss

function L with maximum expected loss equal to
R +1
�1 L (z) 1��

�
z�P
�

�
dz. �

Proof of Equation 8

14



MMSE (�; P ) =

Z +1

�1
t2
1

�
�

�
t� P
�

�
dt =

Z +1

�1
(s� + P )2 � (s) ds = �2 + P 2;

since
R
s� (s) ds = 0 and

R
s2� (s) ds = 1 are the mean and variance of the standard normal

distribution.

Proof of Equation 11 Since �0 (z) = �z� (z),
R b
a z� (z) @z = � (a)� � (b).

MMAD (�; P ) =

Z +1

�1
jtj 1
�
�

�
t� P
�

�
dt =

Z +1

�1
js� + P j� (s) ds =

=

Z +1

�P
�

(s� + P )� (s) ds�
Z �P

�

�1
(s� + P )� (s) ds =

= ��

�
P

�

�
+ P�

�
P

�

�
+ ��

�
P

�

�
� P�

�
�P
�

�
=

= 2��

�
P

�

�
+ P

�
�

�
P

�

�
� �

�
�P
�

��
=

= 2��

�
P

�

�
+ 2P

�
�

�
P

�

�
� � (0)

�
.

Proof of Proposition 3(a)

Let (�O; �U ) 2 �;� = R� [�P; P ]. The proof of part a relies on a well known result (e.g.,

Berger 1985, p. 350) that if �� is a proper prior distribution on �, the decision rule �� is Bayes

with respect to ��, and for all (�O; �U ) 2 �

R (��; (�O; �U )) �
Z
R (�; (�O; �U )) @�

� (�O; �U ) ,

then the decision rule �� is minimax. This result applies as well when R denotes regret, then

�� is a minimax-regret rule.

Decision rule

��(X) � 1 jX > 0j

is Bayes with respect to any symmetric two-point prior distribution � with � (��O; �
�
U ) = :5 and

� (���O;���U ) = :5, if ��O > 0 and ��O + ��U > 0.

When � > 0, for a given value of �O, regret R (��; (�O; �U )) = (�O + �U ) � [1� E�O�� (X)] is

largest at �U = P , since the �rst term is increasing in �U and the second term is positive and

doesn�t depend on �U . Since E�O�
� (X) = 1��

�
� �O

�

�
, maximum regret of �� over � > 0 then

15



equals (with the substitution h = �O + P )

max
�O;�U2�;
�O+�U>0

R (��; (�O; �U )) = max
�O>�P

�
(�O + P ) � �

�
��O
�

��
= max

h>0

�
h�

�
P � h
�

��
.

The maximum is attained at

��O = argmax
h>0

�
h�

�
P � h
�

��
� P .

When � < 0, regret R (��; (�O; �U )) = � (�O + �U ) � E�O�� (X) is maximized at �U = �P

for a given �O, and equals (with the substitution h = � (�O � P ))

max
�O;�U2�;
�O+�U<0

R (��; (�O; �U )) = max
�O<P

�
� (�O � P ) � �

�
�O
�

��
= max

h>0

�
h�

�
P � h
�

��
.

Let�s di¤erentiate h�
�
P�h
�

�
with respect to h

@

@h

�
h�

�
P � h
�

��
= �

�
P � h
�

�
� h

�
�

�
P � h
�

�
= �

�
P � h
�

�"
1� h

�

�
�
P�h
�

�
�
�
P�h
�

�# .
At h = 0, @

@h

�
h�
�
P�h
�

��
= �

�
P
�

�
> 0. The function �(y)

�(y) > 0 is strictly decreasing with

lim
y!�1

�(y)
�(y) = +1, thus

h
�

�(P�h� )
�(P�h� )

is strictly increasing in h over h > 0 and lim
h!1

�
1� h

�

�(P�h� )
�(P�h� )

�
=

�1. It follows that @
@h

�
h�
�
P�h
�

��
changes sign once over h > 0 from positive to negative at

h� given by h�

�

�
�
P�h�
�

�
�(P�h

�
� )

= 1, thus h�
�
P�h
�

�
attains its maximum over h > 0 at h�.

When � > 2P � � (0), h� > P . To see this, evaluate @
@h

�
h�
�
P�h
�

��
at h = P :

@

@h

�
h�

�
P � h
�

������
h=P

= �(0)� P
�
� (0) =

1

2
� P � � (0)

�
> 0.

Thus @
@h

�
h�
�
P�h
�

��
changes sign at h� > P . Since h� > P , maximum regret is attained at

(��O; P ) and (���O;�P ), where ��O = h� � P > 0.

Maximum regret of �� exceeds P2 because
@
@h

�
h�
�
P�h
�

��
> 0 for P � h < h�, therefore

max
h>0

�
h�

�
P � h
�

��
= h��

�
P � h�
�

�
> P�

�
P � P
�

�
=
P

2
.
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Since �� is a Bayes rule with respect to prior �� with �� (��O; P ) = :5 and �
� (���O;�P ) = :5

and Z
R (��; (�O; �U )) @�

� (�O; �U ) = R (�
�; (��O; P )) = max

�O2R;
�U2[�P;P ]

R (��; (�O; �U )) ,

�� minimizes maximum regret. Furthermore, since �� is a unique Bayes rule up to randomization

at X = 0, which does not a¤ect R (�; (�O; �U )) for any values of (�O; �U ), it is admissible.

To verify that minimax regret max
h>0

�
h�
�
P�h
�

��
is a decreasing function of � for a given P

and � > 2P � � (0), observe that since h� > P ,

max
h>0

�
h�

�
P � h
�

��
= max

h>P

�
h�

�
P � h
�

��
.

For any h > P , h�
�
P�h
�

�
is strictly decreasing in � and has a unique maximum over h > P for

a given �, thus max
h>P

�
h�
�
P�h
�

��
is strictly decreasing in �. �

Proof of Proposition 3(b)

First, I will show that any rule � for which q (�; �O) = E�O� (X) lies within the bounds (17)

has maximum regret of P2 . The lower bound

q (�; �O) � 1� P
2(P+�O)

for �O � �P
2 ,

guarantees that R (�; (�O; �U )) � P
2 over � > 0. Since R (�; (�O; �U )) is increasing in �U when

� > 0,

max
�O;�U2�;
�O+�U>0

R (�; (�O; �U )) = max
�O>�P

R (�; (�O; P )) = max
�O>�P

[(�O + P ) � [1� q (�; �O)]] .

For �O � �P
2 , if q (�; �O) � 1�

P
2(P+�O)

� 0, then

(�O + P ) � [1� q (�; �O)] � (�O + P ) �
P

2 (P + �O)
=
P

2
.

For �O 2
�
�P;�P

2

�
,

(�O + P ) � [1� q (�; �O)] � �O + P �
P

2
.
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The proof for the upper bound, which ensures that R (�; (�O; �U )) � P
2 for � < 0, is analogous.

Both the lower and the upper bound are equal to 1
2 at �O = 0, thus q (�; 0) =

1
2 and

max
�O;�U2�

R (�; (�O; �U )) � max
�U2[�P;P ]

R (�; (0; �U )) =
P

2
.

Thus the maximum regret of � equals P2 if q (�; �O) satis�es inequalities (17).

Second, I will show that the function

q� (�O) � �
�

�O
2P � � (0)

�

lies within the bounds (17). The proof will verify this for �O � 0, it is analogous for �O < 0.

When �O = 0, q� (0) = � (0) = 1
2 , which coincides with both bounds. q

� (�O) satis�es the

upper bound because for �O 2
�
0; P2

�
�

�
�O

2P � � (0)

�
� 1

2
+

�O
2P � � (0) � � (0) =

P + �O
2P

� P

2 (P � �O)
.

The �rst inequality follows from using � (0) as an upper bound on the derivative of �. The

second one follows from (P + �O) (P � �O) = P 2 � �2O � P 2.

The proof that q� (�O) � 1 � P
2(P+�O)

for all �O � 0 is split into two cases, �O 2 [0; P ] and

�O � P .

Case 1. For �O 2 [0; P ], I will prove that q� (�O) increases faster than the lower bound, which

guarantees that q� (�O) � 1 � P
2(P+�O)

, since both are equal at �O = 0. It will be su¢ cient to

consider P = 1, to simplify notation, and thus �O 2 [0; 1]. For P = 1, q� (�O) = �
�

�O
2�(0)

�
,

� (y) = 1p
2�
exp

�
�1
2y
2
�
, with 2� (0) =

q
2
� , thus

@

@�O
q� (�O) =

1

2� (0)
�

�
�O
2� (0)

�
=

r
�

2
� 1p
2�
exp

 
�1
2

�r
�

2
�O

�2!
=
1

2
exp

�
��
4
�2O

�
.

Since the function e (y) is convex with e (0) = 1 and e (1) < 3, e (y) � 1 + 2y for y 2 [0; 1],

therefore e (y) � 1
1�2y for y 2 [�1; 0]. Since

�
4 < 1 and �

2
O < 1,

1

2
exp

�
��
4
�2O

�
� 1

2
� 1

1 + �
2 �
2
O

=
1

2 + ��2O
.
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For � 2 [0; 1], ��O < 4, thus ��2O � 4�O and 2 + ��2O � 2 + 4�O + 2�2O = 2 (1 + �O)
2, therefore

1
2+��2O

� 1
2(1+�O)

2 , and

@

@�O
q� (�O) �

1

2 + ��2O
� 1

2 (1 + �O)
2 =

@

@�O

�
1� 1

2 (1 + �O)

�
.

Case 2. For �O � P , I will also use P = 1 to simpify notation, so the aim is to prove that

q� (�O) = �
�

�O
2�(0)

�
� 1� 1

2(1+�O)
. For y > 0, 1� � (y) < �(y)

y , which implies

q� (�O) = �

�
�O
2� (0)

�
> 1� 2� (0)

�O
�

�
�O
2� (0)

�
= 1� 1

��O
exp

�
��
4
�2O

�
.

For y � 0, e (y) � 1 + y, thus for y � 0, e (y) � 1
1�y . Using this inequality yields

q� (�O) > 1�
1

��O
� 1

1 + �
4 �
2
O

= 1� 1

��O +
�2

4 �
3
O

> 1� 1

2 (1 + �O)

where the last inequality follows from observation that �2

4 > 2, and for �O � 1, ��O > 2 and

�3O � �O.

Since q� (�O) satis�es the inequalities (17), any statistical treatment rule with q (�; �O) =

q� (�O) has maximum regret of P2 . It remains to show that this holds for statistical treatment

rules (16) de�ned in part b of Proposition 3.

For � = 2P � � (0), �M(�;P ) (X) = 1 jX > 0j, thus q
�
�M(�;P ); �O

�
= �

�
�O

2P ��(0)

�
= q� (�O)

and the rule minimizes maximum regret, which equals P2 .

For � < 2P �� (0), it is simplest to derive �M(�;P ) (X) using the following construction1. Let

�0 = 2P � � (0). De�ne an auxiliary random variable

Y � N
�
0; �20 � �2

�
,

independent of the observed outcome X � N
�
�O; �

2
�
. Then X + Y � N

�
�O; �

2
0

�
. De�ne the

statistical treatment rule ��M(�;P ) (X;Y ) as

��M(�;P ) (X;Y ) � 1 jX + Y > 0j ,
1This proof technique is similar to Schlag�s (2007) binomial average, in that both algebraically simplify the

problem by adding some noise to the observed outcomes.
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then clearly

q
�
��(�;P ); �O

�
= �

�
�O

2P � � (0)

�
= q� (�O) .

Integrating ��M(�;P ) (X;Y ) with respect to the distribution of Y yields

�M(�;P ) (X) � E (1 jX + Y > 0j) = 1� �
�
�
�
�20 � �2

��1=2
X
�
= �

��
�20 � �2

��1=2
X
�
,

which thus satis�es q
�
�M(�;P ); �O

�
= q� (�O) by construction and.minimizes maximum regret,

which equals P2 . �
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