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Abstract

This paper presents a complete, choice-based, axiomatic Bayesian decision theory.

It introduces a new choice set consisting of information-contingent plans for choosing

actions and bets and subjective expected utility model with effect-dependent utility

functions and action-dependent subjective probabilities which, in conjunction with the

updating of the probabilities using Bayes’ rule, gives rise to a unique prior and a set

of action-dependent posterior probabilities representing the decision maker’s prior and

posterior beliefs.
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1 Introduction

A choice-based theory of Bayesian decision making blends five key ideas. First, the pat-

terns revealed by choice are the sole evidence by which the underlying theoretical concepts

may be refuted.1 Second, the decision-maker’s evaluation of the objects of choice — payoffs

contingent on the realization of events — reflects his tastes as well as his beliefs regarding

the likelihoods of the relevant events. Third, the decision maker’s beliefs, both prior and

posterior, are measurable cognitive phenomena representable by probabilities. Forth, new

information affects the decision maker’s preferences, or choice behavior, through its effect on

the decision maker’s beliefs rather than his tastes. Fifth, the posterior probabilities repre-

senting the decision maker’s posterior beliefs are obtained by updating the prior probabilities

representing his prior beliefs using Bayes’ rule. By themselves these ideas do not imply that

Bayesian decision makers are expected utility maximizers.

In the wake of the seminal work of Savage (1954), it is commonplace to depict the alterna-

tives in the choice set as mappings from a state space, whose elements represent resolutions

of uncertainty, to a set of consequences. The objects of choice have the interpretation of

alternative courses of action and are referred to as acts. The two most commonly used spec-

ifications of the choice set in the literature are those of Savage (1954), in whose formulation

the set of states is infinite and the set of consequences arbitrary, and Anscombe and Au-

mann (1963), in whose formulation the set of states is finite and the set of consequences are

1This is an application of the revealed-preference methodology.
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lotteries with finite sets of arbitrary prizes.

The literature abounds with axiomatic theories specifying preference relations on these

choice sets whose representations involve unique subjective probabilities, interpreted as the

Bayesian prior.2 However, in all the models that invoke Savage’s analytical framework, the

uniqueness of the probabilities is due to the use of a convention maintaining that constant

acts are constant-utility acts. This convention lacks choice-theoretic meaning and, as a result,

is not refutable in the context of the revealed-preference methodology.

To grasp this claim, let S denote the set of states, C the set of consequences and F the

set of acts. Decision makers are characterized by their preference relations on F . In Savage’s

subjective expected utility theory, the structure of a preference relation, <, on F, depicted

axiomatically, allows its representation by an expected utility functional, that is, for all

f ∈ F ,

f 7→
Z
S

u (f(s)) dπ (s) , (1)

where u is a real-valued (utility) function defined on the consequences and π is a finitely

additive, nonatomic probability measure on S. Moreover, the utility function u is unique

up to positive linear transformation, and, given u, the subjective probability measure π is

unique.

The uniqueness of π, however, is predicated on the implicit assumption that constant

2Prominent among these theories are the expected utility models of Savage (1954), Anscombe and Aumann

(1963), and Wakker (1989), as well as the probability sophisticated choice models of Machina and Schmeidler

(1992, 1995).
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acts are constant utility acts (that is, the utility function is state-independent). As already

mentioned, this assumption is not implied by the axioms and is, therefore, devoid of be-

havioral content. In fact, there are infinitely many prior probability measures consistent

with a decision maker’s prior preferences. Put differently, even if a decision maker’s beliefs

constitute a psychological phenomenon quantifiable by a probability measure and his choice

behavior is consistent with the axiomatic structure of expected utility theory, the proposition

that the subjective probabilities ascribed to him by Savage’s model represent the decision

maker’s beliefs is untestable. To prove this assertion, let γ be a strictly positive, bounded,

real-valued function on S, and let γ̄ =
Z
S

γ (s) dπ (s) . Then the prior preference relation,

depicted by the representation (1), is also represented by

f 7→
Z
S

û (f(s), s) dπ̂ (s) , (2)

where û (·, s) = u (·) /γ (s) and π̂ is a finitely additive, nonatomic probability measure on S

defined by π̂ (E) =
Z
E

π (s) γ (s) ds/γ̄, for all E ∈ 2S.3

The fact that the uniqueness of the subjective probabilities in Savage’s theory, and in

other theories that invoke Savage’s (1954) analytical framework, is not a choice-based prop-

erty of the model means that these subjective probabilities do not constitute a behavioral

foundations of Bayesian statistics.

3This point was recognized by Drèze (1987); Schervish, Seidenfeldt, and Kadane (1990); Karni (1996,

2003); Karni and Schmeidler (1993); and Nau (1995). Note also that, even if a decision maker is Bayesian

(that is, updates his preferences using Bayes’ rule), neither his prior nor his posterior beliefs, as defined by

the representing probabilities, are unique.
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The popularity of Savage’s notion of subjective probabilities among economists and deci-

sion theorists is due, in part, to the elegance of the representation it affords, both in terms of

its mathematical formulation and the linguistic ease of describing its ingredients.4 However,

this elegance comes at a cost. To attain the separation of subjective probabilities from utili-

ties it is necessary to assume that the preference relation exhibits state independence, which

entails substantial loss of generality and limits the applicability of the model. For instance,

Anscombe and Aumann (1963) impose state-independence to decompose the terms of a sep-

arately additive representation into a product of utility and probability.5 The imposition of

substantive restrictions to attain mathematical elegance is inconsistent with good scholar-

ship. Furthermore, Karni (2008) gives an example involving the design of optimal insurance

in the presence of moral hazard, in which the insurer knows the insured’s prior preferences

and assumes, correctly, that the insured is Bayesian. The example shows that, failure to

ascribe to the insured his true prior probabilities and utilities may result in attributing to

him the wrong posterior preferences. In such case, when new information (for instance, a

study indicating a decline in the incidence of theft in the neighborhood in which the insured

resides) necessitates changing the terms of the insurance policy, the insurer may offer the

insured a policy that is individually rational and incentive incompatible. More generally,

in the presence of moral hazard, correct prediction of an agent’s changing behavior by the

4Quite often in the literature, the term subjective probability is used interchangeably with the term

beliefs. Yet, as just demonstarted, this usage is hardly justified if not outright misleading. It does, however,

serve the purpose of lending the theory intuitive meaning that readers apparently find compelling.
5The analogous axioms in Savage’s model are P3 and P4 (see Hill (2008)).
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application of Bayes rule requires that the agent be ascribed a prior that faithfully represent

his beliefs. A more meaningful notion of subjective probability, one that is a measurement

of subjective beliefs when these beliefs have structure that allows their representation by

probability measure, is developed in this paper.

Building on Karni (2006), this paper introduces a new analytical framework that in-

cludes actions, effects, bets, observations, and strategies. Actions are initiatives by which

decision makers believe they can affect the likely realization of effects. Effects are observable

realizations of eventualities on which decision makers can place bets, and which might also

be of direct concern to them. Bets are real-valued mapping on the set of effects. Obser-

vations correspond to information that the decision maker may receive before choosing his

action and bet. Strategies are maps from the set of observations to the set of action-bet

pairs. In this model, decision makers are characterized by preference relations on the set

of all strategies whose axiomatic structure lends the notion of constant utility bets choice-

theoretic meaning. In other words, unlike in models that use Savage’s analytical framework,

in this model constant utility bets leave their unique signature, or trace, in the pattern of

choice. Because the constant utility bets are identifiable, it possible to define a unique family

of action-dependent, joint subjective probability distributions on the product set of effects

and observations. Moreover, the prior probabilities are the unconditional marginal probabil-

ities on the set of effects and the posterior probabilities are the distributions on the effects

conditional on the observations. To my knowledge, this is the only complete choice-based

Bayesian decision theory available.
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The work which is closest to this paper is Karni (2006). In that paper, some of the

elements of the present analytical framework already appear. However, that work only

characterizes the notion of constant valuation bets involving compensating variations between

the direct utility cost associated with the actions and their impact on the probabilities of

the effects. Hence, constant valuation bets are not constant utility bets. Consequently, the

uniqueness of the probability, in that work, must rely on an arbitrary normalization of the

utility functions. The two ingredients of the present theory that make it possible to identify

the constant utility bets, namely, observations and strategies, are new. The significant of

this can hardly be overstated. It allows a choice-based definition of subjective probabilities

whose uniqueness does not rely on an arbitrary choice of a utility function, thus resolving

an, almost century old, issue first raised by Ramsey (1931).

The model presented here accommodates effect-dependent preferences, lending itself to

natural interpretations in the context of medical decision making and the analysis of life

insurance, health insurance, as well as standard portfolio and property insurance problems.

The fact that the probabilities are action dependent means that the model furnishes an

axiomatic foundation for the behavior of the principal and agent depicted in the parametrized

distribution formulation of agency theory introduced by Mirrlees (1974, 1976).

The pioneering attempt to extend the subjective expected utility model to include moral

hazard and state-dependent preferences is due to Drèze (1961,1987). Invoking the analytical

framework of Anscombe and Aumann (1963), he departed from their “reversal of order”

axiom, assuming instead that decision makers may strictly prefer knowing the outcome of

7



a lottery before the state of nature becomes known. According to Drèze, this suggests that

the decision maker believes that he can influence the probabilities of the states. How this

influence is produced is not made explicit. The representation entails the maximization of

subjective expected utility over a convex set of subjective probability measures.6

The next section introduces the theory and the main results. Concluding remarks appear

in section 3. The proof of the main representation theorem appears in section 4.

2 The Theory

2.1 The analytical framework

Let Θ be a finite set of effects, X a finite set of observations or signals, and A a connected

separable topological space whose elements are referred to as actions. Actions correspond

to initiatives (e.g., time and effort) that decision makers may take to influence the likely

realization of effects.

A bet is a real-valued mapping on Θ interpreted as monetary payoffs contingent on the

realization of the effects. Let B denote the set of all bets on Θ and assume that it is endowed

with the R|Θ| topology. Denote by (b−θr) the bet obtained from b ∈ B by replacing the θ

6The model in this paper differs from that of Drèze in several important respects, including the specifica-

tion of the means by which a decision maker thinks he may influence the likelihood of the alternative effects.

For more deatils see Karni (2006).
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coordinate of b (that is, b (θ)) with r. Effects are analogous to Savage’s (1954) states in the

sense that they resolve the uncertainty associated with the payoff of the bets. Unlike states,

however, the likely realization of effects may conceivably be affected by the decision maker’s

actions.7

Observations may be obtained before the choice of bets and actions, in which case they

affect these choices. For example, upon learning the result of a new study concerning the

effect of cholesterol level in blood on the likelihood of a heart attack, a decision maker may

adopt an exercise and diet regimen to reduce the risk of heart attack and, at the same

time, take out health insurance and life insurance policies. In this instance the new findings

correspond to observations, the diet and exercise regimens correspond to actions, the states

of health are effects, and the financial terms of an insurance policy constitute a bet on Θ.8

To model this “dynamic” aspect of the decision making process, I assume that a de-

cision maker formulates a strategy, or contingent plan, specifying the action-bet pairs to

be implemented contingent on the observations. Formally, denote by o the event “no new

information” and let X̄ = X ∪ {o}, then strategy is a function I : X̄ → A×B that has the

interpretation of a set of instructions specifying, for each x ∈ X̄, an action-bet pair to be

implemented if x is observed.9 Let I be the set of all strategies.
7It is sufficient, for my purpose, that the decision maker believes that he may affect the likely realization

of the effects by his choice of action.
8Clearly, the information afforded by the new observation is conditioned by the existing regimen. The

decision problem is how to modify the existing regimen in light of the new information.
9Alternatively stated, o is a non-informative observation (that is, anticipating the representaion below,
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A decision maker is characterized by a preference relation < on I. The strict preference

relation, Â, and the indifference relation, ∼, are the asymmetric and symmetric parts of <,

respectively. Denote by I−x (a, b) ∈ I the strategy in which the x coordinate of I is replaced

by (a, b) . An observation, x, is essential if I−x (a, b) Â I−x (a
0, b0) for some (a, b) , (a0, b0) ∈

A×B and I ∈ I. I assume throughout that all elements of X̄ are essential.

In the terminology of Savage (1954), X̄ may be interpreted as a set of states and contin-

gent plans as acts. However, because the decision maker’s beliefs about the likelihoods of the

effects depend on both the actions and the observations, the preferences on action-bet pairs

are inherently observation dependent. Thus applying Savage’s state-independent axioms, P3

and P4, to < on I, makes no sense.

To grasp the role of the various ingredients of the model and set the stage for the statement

of the axioms, it is useful, at this junction, to look ahead at the representation of < on

I. The representation involves an array of continuous, effect-dependent utility functions

{u (·, θ) : R→ R}θ∈Θ and a utility of actions function v : A → R unique up to common

positive linear transformation, and a unique family of action-dependent joint probability

measures, {π (·, · | a)}a∈A on X̄ ×Θ such that < on I is represented by

I 7→
X
x∈X̄

X
θ∈Θ

π
¡
x, θ | aI(x)

¢
u
¡
bI(x) (θ) , θ

¢
+ v

¡
aI(x)

¢
, (3)

where bI(x) and aI(x) are the bet and action assigned by the strategy I to the observation

x. Furthermore, for all x ∈ X̄, μ (x) :=
P

θ∈Θ π (x, θ | a) is independent of a. Hence the
the subjective probability distribution on the effects conditional on o is the same as that under the current

information).
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representation (3) may be written as

I 7→
X
x∈X̄

μ (x)

"X
θ∈Θ

π
¡
θ | x, aI(x)

¢
u
¡
bI(x) (θ) , θ

¢
+ v

¡
aI(x)

¢#
, (4)

where, for all x ∈ X, π (θ | x, a) = π (x, θ | a) /μ (x) is the posterior probability of θ con-

ditional on x and a, and for each a ∈ A, π (θ | o, a) = 1
1−μ(o)

P
x∈X π (x, θ | a) is the prior

probability of θ conditional a.10

In either representation the choice of strategy entails evaluation of the bets by their

expected utility. Actions enter this representation as a direct source of (dis)utility as well as

instrument by which the decision maker believes he may affect the likely realizations of the

effects.

2.2 Axioms and additive representation of < on I

The first axiom is standard:

(A.1) (Weak order) < is a complete and transitive binary relation.

A topology on I is needed to define continuity of the preference relation <. Recall that

I = (A×B)X̄ and let I be endowed with the product topology.11

10Describing π (· | o, a) as the prior distribution is appropriate because conditioning on o is means that

not information is obtained before a decision is taken.
11That is, the topology on I is the product topology on the Cartesian product (A×B)

|X̄|
.
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(A.2) (Continuity) For all I ∈ I, the sets {I 0 ∈ I | I 0 < I} and {I 0 ∈ I | I < I 0} are

closed.

The next axiom, coordinate independence, is analogous to but weaker than Savage’s

(1954) sure thing principle.12

(A.3) (Coordinate independence) For all x ∈ X̄, I, I 0 ∈ I, and (a, b) , (a0, b0) ∈ A×B,

I−x (a, b) < I 0−x (a, b) if and only if I−x (a
0, b0) < I 0−x (a

0, b0) .

An array of real-valued functions (vs)s∈S is said to be a jointly cardinal additive represen-

tation for a binary relation º on a product set D = Πs∈SDs if, for all d, d0 ∈ D, d º d0 if and

only if
P

s∈S vs (ds) ≥
P

s∈S vs (d
0
s) , and the class of all functions that constitute an additive

representation of º consists of those arrays of functions, (v̂s)s∈S , for which v̂s = ηvs + ζs,

η > 0 for all s ∈ S. The representation is continuous if the functions vs, s ∈ S are continuous.

The following theorem is an application of Theorem III.4.1 in Wakker (1989):13

Theorem 1 Let I be endowed with the product topology and | X̄ |≥ 3. Then a preference

relation < on I satisfies (A.1)—(A.3) if and only if there exist an array of real-valued func-

tions {w (·, ·, x) | x ∈ X̄} on A × B that constitute a jointly cardinal, continuous, additive

representation for < .

12See Wakker (1989) for details.
13To simplify the exposition I state the theorem for the case in which X̄ contains at least three essential

coordinates. Additive representation when there are only two essential coordinates requires the imposition

of the hexagon condition (see Wakker [1989] theorem III.4.1).
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2.3 Independent betting preferences

For every given x ∈ X̄, denote by <x the induced preference relation on A× B defined by

(a, b) <x (a0, b0) if and only if I−x (a, b) < I−x (a
0, b0) . The induced strict preference relation,

denoted by Âx, and the induced indifference relation, denoted by∼x, are the asymmetric and

symmetric parts of <x, respectively.14 The induced preference relation <o is referred to as

the prior preference relation; the preference relations <x, x ∈ X, are the posterior preference

relations. For each a ∈ A the preference relation <x induces a conditional preference relation

onB defined as follows: for all b, b0 ∈ B, b <x
a b

0 if and only if (a, b) <x (a, b0) . The asymmetric

and symmetric part of <x
a are denoted by Âx

a and ∼x
a, respectively.

An effect, θ, is said to be nonnull given the observation-action pair (x, a) if (b−θr) Âx
a

(b−θr
0) , for some b ∈ B and r, r0 ∈ R; it is null given the observation-action pair (x, a)

otherwise. Given a preference relation, <, denote by Θ (a, x) the subset of effects that are

nonnull given the observation-action pair (x, a). Assume that Θ (a, o) = Θ, for all a ∈ A.

Two effects, θ and θ0, are said to be elementarily linked if there are actions a, a0 ∈ A and

observations x, x0 ∈ X̄ such that θ, θ0 ∈ Θ (a, x)∩Θ (a0, x0) . Two effects are said to be linked

if there exists a sequence of effects θ = θ0, ..., θn = θ0 such that θj and θj+1 are elementarily

linked, j = 0, ..., n− 1. The set of effects, Θ, is linked if every pair of its elements is linked.

The next axiom requires that the “intensity of preferences” for monetary payoffs contin-

gent on any given effect be independent of the action and the observation:

14For preference relations satisfaying (A.1) - (A.3), these relation are well-defined.
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(A.4) (Independent betting preferences) For all (a, x) , (a0, x0) ∈ A×X̄, b, b0, b00, b000 ∈ B,

θ ∈ Θ (a, x)∩Θ (a0, x0) , and r, r0, r00, r000 ∈ R, if (b−θr) <x
a

¡
b0−θr

0¢ , ¡b0−θr00¢ <x
a (b−θr

000) ,

and
¡
b00−θr

0¢ <x0
a0
¡
b000−θr

¢
then

¡
b00−θr

00¢ <x0
a0
¡
b000−θr

000¢ .
To grasp the meaning of independent betting preferences, think of the preferences (b−θ, r) <x

a¡
b0−θ, r

0¢ and ¡b0−θ, r00¢ <x
a (b−θ, r

000) as indicating that given the action a, the observation x,

and the effect θ, the intensity of the preferences of r00 over r000 is sufficiently larger than that

of r over r0 as to reverse the preference ordering of the effect-contingent payoffs b−θ and b0−θ.

The axiom requires that these intensities not be contradicted when the action is a0 instead

of a and the observation is x0 instead of x.

The idea may be easier to grasp by considering a specific instance in which (b−θ, r) ∼x
a¡

b0−θ, r
0¢, (b−θr00) ∼x

a

¡
b0−θr

000¢ and ¡b00−θr0¢ ∼x0
a0
¡
b000−θr

¢
. The first pair of indifferences indicates

that, given a and x, the difference in the payoffs b and b0 contingent on the effects other than

θ measures the intensity of preferences between the payoffs r and r0 and between r00 and

r000, contingent on θ. The indifference
¡
b00−θr

0¢ ∼x0
a0
¡
b000−θr

¢
then indicates that given another

action-observation pair, a0 and x0, the intensity of preferences between the payoffs r and r0

contingent on θ is measured by the difference in the payoffs the bets b00 and b000 contingent on

the effects other than θ. The axiom requires that, in this case, the difference in the payoffs

b00 and b000 contingent on the effects other than θ is also a measure of the intensity of the

payoffs r00 and r000 contingent on θ. Thus the intensity of preferences between two payoffs

given θ is independent of the actions and the observations.
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2.4 Belief consistency

To link the decision maker’s prior and posterior probabilities, the next axiom asserts that

for every a ∈ A and θ ∈ Θ, the prior probability of θ given a is the sum over X of the joint

probability distribution on X ×Θ conditional on θ and a (that is, the prior is the marginal

probability on Θ).

Let I−o (a, b) denote the strategy that assigns the action-bet pair (a, b) to every observa-

tion other than o (that is, I−o (a, b) is a strategy such that I (x) = (a, b) for all x ∈ X).

(A.5) (Belief consistency) For every a ∈ A, I ∈ I and b, b0 ∈ B, I−o (a, b) ∼ I−o (a, b
0)

if and only if I−o (a, b) ∼ I−o (a, b0) .

The interpretation of axiom (A.5) is as follows. The decision maker is indifferent between

two strategies that agree on X and, in the event that no new information becomes available,

call for the implementation of the alternative action-bet pairs (a, b) or (a, b0) if and only if he

is indifferent between two strategies that agree on o and call for the implementation of the

same action-bet pairs (a, b) or (a, b0) regardless of the observation. Put differently, given any

action, the preferences on bets conditional on there being no new information is the same

as that when new information may not be used to select the bet. Hence, in and of itself,

information is worthless.
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2.5 Constant utility bets

Constant utility bets are bets whose payoffs offset the direct impact of the effects. Formally

Definition 2 A bet b̄ ∈ B is a constant utility bet according to < if, for all I, I 0, I 00, I 000 ∈

I, a, a0, a00, a000 ∈ A and x, x0 ∈ X̄, I−x
¡
a, b̄
¢
∼ I 0−x

¡
a0, b̄

¢
, I−x

¡
a00, b̄

¢
∼ I 0−x

¡
a000, b̄

¢
and

I 00−x0
¡
a, b̄
¢
∼ I 000−x0

¡
a0, b̄

¢
imply I 00−x0

¡
a00, b̄

¢
∼ I 000−x0

¡
a000, b̄

¢
and ∩(x,a)∈X×A{b ∈ B | b ∼x

a b̄} =

{b̄}.

To render the definition meaningful it is assumed that, given b̄, for all a, a0, a00, a000 ∈ A

and x, x0 ∈ X̄ there are I, I 0, I 00, I 000 ∈ I such that the indifferences I−x
¡
a, b̄
¢
∼ I 0−x

¡
a0, b̄

¢
,

I−x
¡
a00, b̄

¢
∼ I 0−x

¡
a000, b̄

¢
and I 00−x0

¡
a, b̄
¢
∼ I 000−x0

¡
a0, b̄

¢
hold.

As in the interpretation of axiom (A.4), to understand the definition of constant utility

bets it is useful to think of the preferences I−x
¡
a, b̄
¢
∼ I 0−x

¡
a0, b̄

¢
and I−x

¡
a00, b̄

¢
∼ I 0−x

¡
a000, b̄

¢
as indicating that, given b̄ and x, the preferential difference between the substrategies I−x and

I 0−x measure the intensity of preference of a over a
0 and that of a00 over a000. The indifference

I 00−x0
¡
a, b̄
¢
∼ I 000−x0

¡
a0, b̄

¢
implies that, given b̄, and another observation x0, the preferential

difference between the substrategies I 00−x0 and I 000−x0 is another measure the intensity of pref-

erence of a over a0. Then it must be true that it also measure the intensity of preference of

a00 over a000.

The requirement that ∩(x,a)∈X×A{b ∈ B | b ∼x
a b̄} = {b̄} implicitly asserts that actions and

observations affect the probabilities of the effects, and that these actions and observations are
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sufficiently rich so that b̄ is well-defined. It is worth emphasizing that the axiomatic structure

does not rule out that the decision maker believes that his choice of action does not affect

the likelihoods of the effects. However, the uniqueness part of definition 2, by excluding the

existence of distinct bets constant utility bets belonging to the same equivalence classes, for

all (a, x) ∈ A × X, implies that, not only does the decision maker believe in his ability to

affect the likely realization of the effects by his choice of action, but also that these likelihoods

depend on the observations.

To understand why this implies that b̄ is a constant utility bet recall that, in general,

actions affect decision makers in two ways: directly through their utility cost and indirectly

by altering the probabilities of the effects. Moreover, only the indirect impact depends on

the observations. The definition requires that, given b̄, the intensity of the preferences over

the actions be observation-independent. This means that the indirect influence of the actions

is neutralized, which can happen only if the utility associated with b̄ is invariable across the

effects.

Let Bcu (<) be a subset of all constant utility bets according to < . In general, this set

may be empty. This is the case if the range of the utility of the monetary payoffs across

effects do not overlap. Here I am concerned with the case in which Bcu (<) is nonempty. The

set Bcu (<) is said to be inclusive if for every (x, a) ∈ X ×A and b ∈ B there is b̄ ∈ Bcu (<)

such that b ∼x
a b̄.

15

15Inclusiveness of Bcu (<) simplifies the exposition. For existence and uniqueness of the probabilities in

the main result below it is enough that for every given x and a, Bcu (<) contains at least two bets.
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The next axiom requires that the trade-offs between the actions and the substrategies

that figure in definition 2 are independent of the constant utility bets.

(A.6) (Trade-off independence) For all I, I 0 ∈ I, x ∈ X̄, a, a0 ∈ A and b̄, b̄0 ∈ Bcu (<) ,

I−x
¡
a, b̄
¢
< I 0−x

¡
a0, b̄

¢
if and only if I−x

¡
a, b̄0

¢
< I 0−x

¡
a0, b̄0

¢
.

Finally, it is also required that the direct effect (that is, cost) of actions, measured by

the preferential difference between b̄ and b̄0 in Bcu (<) , be independent of the observation.

(A.7) (Conditional monotonicity) For all b̄, b̄0 ∈ Bcu (<) , x, x0 ∈ X̄, and a, a0 ∈ A,¡
a, b̄
¢
<x
¡
a0, b̄0

¢
if and only if

¡
a, b̄
¢
<x0

¡
a0, b̄0

¢
.

2.6 The main representation theorem

The next theorem asserts the existence of subjective expected utility representation of the

preference relation < on I, and characterizes the uniqueness properties of its constituent

utilities and the probabilities. For each I ∈ I let
¡
aI(x), bI(x)

¢
denote the action-bet pair

corresponding to the x coordinate of I — that is, I (x) =
¡
aI(x), bI(x)

¢
.

Theorem 3 Let < be a preference relation on I and suppose that Bcu (<) is inclusive, then:

(a) The following two conditions are equivalent:

(a.i) < satisfies (A.1)—(A.7)
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(a.ii) there exist continuous, real-valued functions {u (·, θ) | θ ∈ Θ} on R and v ∈ RA,

and a family, {π (·, · | a) | a ∈ A}, of joint probability measures on X̄ ×Θ such that < on I

is represented by

I 7→
X
x∈X̄

μ (x)

"X
θ∈Θ

π
¡
θ | x, aI(x)

¢
u
¡
bI(x) (θ) , θ

¢
+ v

¡
aI(x)

¢#
, (5)

where μ (x) =
P

θ∈Θ π (x, θ | a) for all x ∈ X̄ is independent of a, π (θ | x, a) = π (x, θ | a) /μ (x)

for all (x, a) ∈ X × A, π (θ | o, a) = 1
1−μ(o)

P
x∈X π (x, θ | a) for all a ∈ A, and, for every

b̄ ∈ Bcu (<) , u
¡
b̄ (θ) , θ

¢
= u

¡
b̄
¢
, for all θ ∈ Θ.

(b) If {û (·, θ) | θ ∈ Θ}, v̂ ∈ RA and {π̂ (·, · | a) | a ∈ A} is another set of utilities and

a family of joint probability measures representing < in the sense of (5), then π̂ (·, · | a) =

π (·, · | a) for every a ∈ A and there are numbers m > 0 and k, k0 such that û (·, θ) =

mû (·, θ) + k , θ ∈ Θ and v̂ = mv + k0.

Although the joint probability distributions π (·, · | a) , a ∈ A depend on the actions, the

distribution μ is independent of a. This is consistent with the formulation of the decision

problem according to which the choice of actions is contingent on the observations. In

other words, if new information in the form of an observation becomes available, it precedes

the choice of action. Consequently, the dependence of the joint probability distributions

π (·, · | a) on a captures solely the decision maker’s beliefs about his ability to influence the

likelihood of the effects by his choice of action.16

16If an action-effect pair are already “in effect” when new information arrives, they constitute a default

course of action. In such instance, the interpretation of the decision at hand is possible choice of new action
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The key to obtaining the uniqueness of the joint probability distributions π (·, · | a) , a ∈ A

is the existence and uniqueness of constant utility bets. The definition of these bets requires,

in turn, that the decision maker perceives the likelihoods of the effects to depends on both his

actions and the observations. It is worth underscoring that, neither actions nor observations

can be dispense with and still obtain a choice-based definition of if constant utility bets.

Unlike the subjective probability in the theory of Savage (1954) (and in all other theories

that invoke Savage’s analytical framework) whose uniqueness is predicated on an arbitrary

specification of the utility function, the uniqueness of the probabilities in this theory is

entirely choice based. In particular, the theory of this paper is immune to the critique of

Savage’s theory in the introduction (that is, it does not allow the multiplication of the joint

probabilities by positive numbers and dividing the utility functions by the same numbers

and renormalizing to obtain an equivalent representation).

and bet. For example, a modification of a diet regimen coupled with a possible change of life insurance

policy.
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3 Concluding Remarks

3.1 Effect-independent preferences and effect-independent utility

functions

The choice-based Bayesian decision theory presented in this paper includes, as a special case,

effect-independent preferences. In particular, following Karni (2006), effect independent

preferences is captured by the following axiom:

(A.8) Effect-independent betting preferences For all x ∈ X̄, a ∈ A, b, b0, b00, b000 ∈ B,

θ, θ0 ∈ Θ, and r, r0, r00r000 ∈ R, if (b0−θ, r) <x
a (a, (b−θ, r

0)), (b−θ, r00) <x
a (b

0
−θ, r

000), and

(b00−θ0 , r
0) <x

a (b
000
−θ0 , r) then (b

00
−θ0 , r

00) <x
a (b

000
−θ0 , r

000).

The interpretation of this axiom is analogous to that of action-independent betting pref-

erences. The preferences (b0−θ, r
0) <x

a (b−θ, r) and (b−θ, r
00) <x

a (b
0
−θ, r

000) indicate that, for

every given (a, x), the “intensity” of the preference for r00 over r000 given the effect θ is suffi-

ciently greater than that of r over r0 as to reverse the order of preference between the payoffs

b0−θ and b−θ. Effect independence requires that these intensities not be contradicted by the

preferences between the same payoffs given any other effect θ.

Adding axiom (A.8) to the hypothesis of Theorem 3 implies that the utility function

that figures in the representation takes the form u (b (θ) , θ) = t (θ)u (b (θ)) + s (θ) , where

t (θ) > 0. In other words, even if the preference relation exhibits effect-independence over
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bets, the utility function may still display effect dependence, in the form of the additive and

multiplicative coefficient. Thus, effects may impact the decision maker’s well-being without

necessarily affecting his risk preferences.

Let Bc be the subset of constant bets (that is, trivial bets with the same payoff regardless

of the effect that obtains). If the set of constant utility bets coincides with the set of

constant bets (that is, Bc = Bcu (<)), then the utility function is effect independent (that

is, u (b (θ) , θ) = u (b (θ)) for all θ ∈ Θ). The implicit assumption that the set of constant

utility bets coincides with the set of constant bets is the convention invoked by the standard

subjective utility models. Unlike in those models, however, in the theory of this paper, this

assumption is a testable hypothesis.

3.2 Conditional preferences and dynamic consistency

The specification of the decision problem implies that, before the decision maker chooses an

action-bet pair, either no informative signal arrives (that is, the observation is o) or new

informative signal arrives in the form of an observation x ∈ X. One way or another, given

the information at his disposal, the decision maker must choose among action-bet pairs.

Let
³
<̂x
´
x∈X̄

be binary relations on A × B depicting the decision maker’s choice behavior

conditional on observing x. I refer to
³
<̂x
´
x∈X̄

by the name ex-post preference relations.

Dynamic consistency requires that at each x ∈ X̄, the decision maker implements his

plan of action envisioned for that contingency by the original strategy. Formally,
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Definition 4 A preference relation < on I is dynamically consistent with the ex-post pref-

erence relations
³
<̂x
´
x∈X̄

on A × B if the posterior preference relations (<x)x∈X̄ satisfy

<x= <̂x
for all x ∈ X̄.

The following is an immediate implication of Theorem 3.

Corollary 5 Let < be preference relation on I satisfying (A.1)—(A.7) and suppose that

Bcu (<) is inclusive. Then < is dynamically consistent with the ex-post preference relations³
<̂x
´
x∈X̄

on A×B if and only if, for all x ∈ X̄, <̂x
is represented by

(a, b) 7→
X
θ∈Θ

π (θ | x, a)u (b (θ) , θ) + v (a) , (6)

where {u (·, θ) | θ ∈ Θ} and {π (· | x, a) | x ∈ X̄, a ∈ A} are the utility functions and

conditional subjective probabilities that appear in the representation (5).

For every a ∈ A the subjective action-contingent prior on Θ is π (· | o, a) and the sub-

jective action-contingent posteriors on Θ are π (· | x, a) , x ∈ X. The subjective action-

dependent prior is the marginal distribution on Θ induced by the distribution on X × Θ,

and the subjective action-dependent posteriors are obtained from the action-contingent joint

distribution on X ×Θ by conditioning on the observation.

4 Proof of Theorem 3

For expository convenience, I write Bcu instead of Bcu (<) .
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(a) (a.i) ⇒ (a.ii) . Suppose that < on I satisfies (A.1)—(A.7) and Bcu is inclusive. By

Theorem 1, < is represented by

I 7→
X
x∈X̄

w
¡
aI(x), bI(x), x

¢
. (7)

where w (., ., x) , x ∈ X̄ are jointly cardinal, continuous, real-valued functions.

Since < satisfies (A.4), Lemmas 4 and 5 in Karni (2006) applied to <x, x ∈ X̄, and

Theorem III.4.1 in Wakker (1989) imply that for every (a, x) ∈ A × X̄ such that Θ (a, x)

contains at least two effects, there exist array of functions {v(a,x) (·; θ) : R→ R | θ ∈ Θ}

that constitute a jointly cardinal, continuous additive representation of <x
a on B. Moreover,

by the proof of Lemma 6 in Karni (2006), < satisfies (A.1)—(A.4) if and only if, for every

(a, x) , (a0, x0) ∈ A× X̄ such that Θ (a, x) ∩Θ (a0, x0) 6= ∅ and θ ∈ Θ (a, x) ∩Θ (a0, x0) , there

exist β((a0,x0),(a,x),θ) > 0 and α((a0,x0),(a,x),θ) satisfying v(a0,x0) (·, θ) = β((a0,x0),(a,x),θ)v(a,x) (·, θ) +

α((a0,x0),(a,x),θ).
17

Fix â ∈ A and define u (·, θ) = v(â,o) (·, θ) , λ (a, x; θ) = β((a,x),(â,o),θ) and α (a, x, θ) =

α((a,x),(â,o),θ) for all a ∈ A, x ∈ X̄, and θ ∈ Θ. For every given (a, x) ∈ A × X̄, w (a, b, x)

represents <x
a on B. Hence

w (a, b, x) = H

ÃX
θ∈Θ

(λ (a, x, θ)u (b (θ) ; θ) + α (a, x, θ)) , a, x

!
, (8)

where H is a continuous, increasing function.

Consider next the restriction of < to (A×Bcu)X̄ .

17By definition, for all (a, x) and θ, β((a,x),(a,x),θ) = 1 and α((a,x),(a,x),θ) = 0.
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Lemma 6 There exist a function U : A × Bcu → R, ξ ∈ R|X̄|++ and ζ ∈ R|X̄| such that, for

all
¡
a, b̄, x

¢
∈ A×Bcu × X̄,

w
¡
a, b̄, x

¢
= ξ (x)U

¡
b̄, a
¢
+ ζ (x) . (9)

Proof: Let I, I 0, I 00, I 000 ∈ I, a, a0, a00, a000 ∈ A and b̄ be as in definition 2. Then, for all

x, x0 ∈ X̄, I−x
¡
a, b̄
¢
∼ I 0−x

¡
a0, b̄

¢
, I−x

¡
a00, b̄

¢
∼ I 0−x

¡
a000, b̄

¢
, I 00−x0

¡
a, b̄
¢
∼ I 000−x0

¡
a0, b̄

¢
and

I 00−x0
¡
a00, b̄

¢
∼ I 000−x0

¡
a000, b̄

¢
. By the representation (7), I−x

¡
a, b̄
¢
∼ I 0−x

¡
a0, b̄

¢
implies that

X
y∈X̄−{x}

w
¡
aI(y), bI(y), y

¢
+ w

¡
a, b̄, x

¢
=

X
y∈X̄−{x}

w
¡
aI0(y), bI0(y), y

¢
+ w

¡
a0, b̄, x

¢
. (10)

Similarly, I−x
¡
a00, b̄

¢
∼ I 0−x

¡
a000, b̄

¢
implies that

X
y∈X̄−{x}

w
¡
aI(y), bI(y), y

¢
+ w

¡
a00, b̄, x

¢
=

X
y∈X̄−{x}

w
¡
aI0(y), bI0(y), y

¢
+ w

¡
a000, b̄, x

¢
, (11)

I 00−x0
¡
a, b̄
¢
∼ I 000−x0

¡
a0, b̄

¢
implies that

X
y∈X̄−{x0}

w
¡
aI00(y), bI00(y), y

¢
+ w

¡
a, b̄, x0

¢
=

X
y∈X̄−{x0}

w
¡
aI000(y), bI000(y), y

¢
+ w

¡
a0, b̄, x0

¢
, (12)

and I 00−x0
¡
a00, b̄

¢
∼ I 000−x0

¡
a000, b̄

¢
implies that

X
y∈X̄−{x0}

w
¡
aI00(y), bI00(y), y

¢
+w

¡
a00, b̄, x0

¢
=

X
y∈X̄−{x0}

w
¡
aI000(y), bI000(y), y

¢
+w

¡
a000, b̄, x0

¢
. (13)

But (10) and (11) imply that

w
¡
a, b̄, x

¢
− w

¡
a0, b̄, x

¢
= w

¡
a00, b̄, x

¢
− w

¡
a000, b̄, x

¢
. (14)

and (12) and (13) imply that

w
¡
a, b̄, x0

¢
− w

¡
a0, b̄, x0

¢
= w

¡
a00, b̄, x0

¢
− w

¡
a000, b̄, x0

¢
. (15)
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Define a function φ(x,x0,b̄) as follows: w
¡
·, b̄, x

¢
= φ(x,x0,b̄) ◦w

¡
·, b̄, x0

¢
. Axiom (A.7) with

b̄ = b̄0 imply that it is monotonic increasing. Then φ(x,x0,b̄) is continuous. Moreover, equations

(14) and (15) in conjunction with Lemma 4.4 in Wakker (1987) imply that φ(x,x0,b̄) is affine.

Let β(x,o,b̄) > 0 and δ(x,o,b̄) denote, respectively, the multiplicative and additive coeffi-

cients corresponding to φ(x,o,b̄), where the inequality follows from the monotonicity of φ(x,o,b̄).

Observe that, by (A.6), I−o
¡
a, b̄
¢
∼ I 0−o

¡
a0, b̄

¢
if and only if I−o

¡
a, b̄0

¢
∼ I 0−o

¡
a0, b̄0

¢
. Hence

β(x,o,b̄)
£
w
¡
a, b̄, o

¢
− w

¡
a0, b̄, o

¢¤
= β(x,o,b̄0)

£
w
¡
a, b̄0, o

¢
− w

¡
a0, b̄0, o

¢¤
(16)

for all b̄, b̄0 ∈ Bcu. Thus, for all x ∈ X̄ and b̄, b̄0 ∈ Bcu, β(x,o,b̄) = β(x,o,b̄0) := ξ (x) > 0.

Let a, a0 ∈ A and b̄, b̄0 ∈ Bcu satisfy
¡
a, b̄
¢
∼o
¡
a0, b̄0

¢
. By axiom (A.7)

¡
a, b̄
¢
∼o
¡
a0, b̄0

¢
if

and only if
¡
a, b̄
¢
∼o
¡
a0, b̄0

¢
. By the representation this equivalence implies that

w
¡
a, b̄, o

¢
= w

¡
a0, b̄0, o

¢
. (17)

if and only if,

ξ (x)w
¡
a, b̄, o

¢
+ δ(x,o,b̄) = ξ (x)w

¡
a0, b̄0, o

¢
+ δ(x,o,b̄0). (18)

Thus δ(x,o,b̄) = δ(x,o,b̄0).

By this argument and continuity (A.2) the conclusion can be extended to Bcu. Let

δ(x,o,b̄) := ζ (x) for all b̄ ∈ Bcu.

For every given b̄ ∈ Bcu and all a ∈ A, define U
¡
b̄, a
¢
= w

¡
a, b̄, o

¢
. Then, for all x ∈ X̄,

w
¡
a, b̄, x

¢
= ξ (x)U

¡
b̄, a
¢
+ ζ (x) , ξ (x) > 0. (19)
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This completes the proof of Lemma 6. ♣

Equations (8) and (9) imply that for every x ∈ X̄, b̄ ∈ Bcu and a ∈ A,

ξ (x)U
¡
b̄, a
¢
+ ζ (x) = H

ÃX
θ∈Θ

λ (a, x, θ)u
¡
b̄ (θ) , θ

¢
+ α̂ (a, x) , a, x

!
. (20)

Lemma 7 The identity (20) holds if and only if u
¡
b̄ (θ) , θ

¢
= u

¡
b̄
¢
for all θ ∈ Θ,

P
θ∈Θ

λ(a,x,θ)
ξ(x)

=

ϕ (a), α̂(a,x)
ξ(x)

= v (a) for all a ∈ A,

H

ÃX
θ∈Θ

λ (a, x, θ) u
¡
b̄ (θ) , θ

¢
+ α̂ (a, x) , a, x

!
= ξ (x)

£
u
¡
b̄
¢
+ v (a)

¤
+ ζ (x) , (21)

and there is κ (a) > 0 such that

κ (a)
X
θ∈Θ

λ (a, x, θ)

ξ (x)
u
¡
b̄ (θ) , θ

¢
+

α̂ (a, x)

ξ (x)
= U

¡
b̄, a
¢
. (22)

Proof: (Sufficiency) Let u
¡
b̄ (θ) , θ

¢
:= u

¡
b̄
¢
for all θ ∈ Θ,

P
θ∈Θ

λ(a,x,θ)
ξ(x)

:= ϕ (a) and

c (a) := κ (a)ϕ (a) for all a ∈ A and suppose that (22) holds.

But axiom (A.6) and the representation imply that, for all b̄, b̄0 ∈ Bcu,

c (a)u
¡
b̄
¢
+ v (a) = c (a0)u

¡
b̄
¢
+ v (a0)

if and only if

c (a)u
¡
b̄0
¢
+ v (a) = c (a0)u

¡
b̄0
¢
+ v (a0) .

Hence c (a) = c (a0) = c for all a, a0 ∈ A.
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Normalize u so that c = 1. Then equation (20) follows from equations (21) and (22).

(Necessity) Multiply and divide the first argument of H by ξ (x) > 0. Equation (20) may

be written as follows:

ξ (x)U
¡
b̄, a
¢
+ ζ (x) = H

Ã
ξ (x)

"X
θ∈Θ

λ (a, x, θ)

ξ (x)
u
¡
b̄ (θ) , θ

¢
+

α̂ (a, x)

ξ (x)

#
, a, x

!
. (23)

Define V
¡
a, b̄, x

¢
=
P

θ∈Θ
λ(a,x,θ)
ξ(x)

u
¡
b̄ (θ) , θ

¢
+ α̂(a,x)

ξ(x)
then, for every given (a, x) ∈ A×X

and all b̄, b̄0 ∈ Bcu,

U
¡
b̄0, a

¢
− U

¡
b̄, a
¢
=
£
H
¡
ξ (x)V

¡
a, b̄0, x

¢
, a, x

¢
−H

¡
ξ (x)V

¡
a, b̄, x

¢
, a, x

¢¤
/ξ (x) . (24)

Hence H (·, a, x) is a linear function whose intercept is ζ (x) and the slope

£
U
¡
b̄0, a

¢
− U

¡
b̄, a
¢¤
/
£
V
¡
a, b̄0, x

¢
− V

¡
a, b̄, x

¢¤
:= κ (a) ,

is independent of x. Thus

ξ (x)U
¡
b̄, a
¢
+ ζ (x) = κ (a) ξ (x)

"X
θ∈Θ

λ (a, x, θ)

ξ (x)
u
¡
b̄ (θ) , θ

¢
+

α̂ (a, x)

ξ (x)

#
+ ζ (x) . (25)

Hence

U
¡
b̄, a
¢
/κ (a) =

X
θ∈Θ

λ (a, x, θ)

ξ (x)
u
¡
b̄ (θ) , θ

¢
+

α̂ (a, x)

ξ (x)
(26)

is independent of x. However, because <x
a 6=<x0

a for all a and some x, x0 ∈ X̄, in general,

λ (a, x, θ) /ξ (x) is not independent of θ. Moreover, because α̂ (a, x) /ξ (x) is independent of

b, the first term on the right-hand side of (26) must be independent of x. For this to be true

u
¡
b̄ (θ) , θ

¢
must be independent of θ and

P
θ∈Θ λ (a, x, θ) /ξ (x) := ϕ (a) be independent

of x. Moreover, because the first term on the right-hand side of (26) is independent of x,
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α̂ (a, x) /ξ (x) must also be independent of x. Finally, by definition, b̄ the unique element in

its equivalence class that has the property that u
¡
b̄ (θ) , θ

¢
is independent of θ.

Define v (a) := α̂ (a, x) /ξ (x), u
¡
b̄ (θ) , θ

¢
= u

¡
b̄
¢
, for all θ ∈ Θ, and U

¡
b̄, a
¢
= u

¡
b̄
¢
+

v (a) and κ (a)ϕ (a) = 1. Thus

U
¡
b̄, a
¢
= κ (a)

X
θ∈Θ

λ (a, x, θ)

ξ (x)
u
¡
b̄ (θ) ; θ

¢
+

α̂ (a, x)

ξ (x)
. (27)

This completes the proof of Lemma 7. ♣

Note that

U
¡
b̄, a
¢
=
X
θ∈Θ

λ (a, x, θ)

ξ (x)ϕ (a)
u
¡
b̄ (θ) ; θ

¢
+

α̂ (a, x)

ξ (x)
= u

¡
b̄
¢
+ v (a) . (28)

But, by Lemma 7,
P

θ∈Θ λ (a, x, θ) = ξ (x)ϕ (a) . Hence, by the inclusivity of Bcu, the

representation (7) is equivalent to

I 7→
X
x∈X̄

"X
θ∈Θ

λ
¡
aI(x), x, θ

¢P
θ∈Θ λ

¡
aI(x), x, θ

¢u ¡bI(x) (θ) ; θ¢+ α̂
¡
aI(x), x

¢
ξ (x)

#
. (29)

For all x ∈ X, a ∈ A and θ ∈ Θ, define the joint subjective probability distribution on

Θ× X̄ by

π (x, θ | a) = λ (a, x, θ)P
x0∈X̄

P
θ0∈Θ λ (a, x

0, θ0)
. (30)

Since
P

θ∈Θ λ (a, x, θ) = ξ (x)ϕ (a), for all x ∈ X̄,

X
θ∈Θ

π (x, θ | a) = ξ (x)ϕ (a)P
x0∈X̄ ξ (x0)ϕ (a)

=
ξ (x)P

x0∈X̄ ξ (x0)
. (31)

Define the subjective probability of x ∈ X̄ as follows:

μ (x) =
ξ (x)P

x0∈X̄ ξ (x0)
. (32)
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Then the subjective probability of x is given by the marginal distribution on X induced by

the joint distributions π (·, · | a) on X ×Θ and is independent of a.

For all θ ∈ Θ, define the subjective posterior and prior probability of θ, respectively, by

π (θ | x, a) = π (x, θ | a)
μ (x)

=
λ (a, x, θ)P
θ∈Θ λ (a, x, θ)

(33)

and

π (θ | o, a) = λ (a, o, θ)P
θ∈Θ λ (a, o, θ)

. (34)

Substitute in (29) to obtain the representation (5),

I 7→
X
x∈X̄

μ (x)

"X
θ∈Θ

π
¡
θ | x, aI(x)

¢
u
¡
bI(x) (θ) , θ

¢
+ v

¡
aI(x)

¢#
. (35)

Let a ∈ A, I ∈ I and b, b0 ∈ B, satisfy I−o (a, b) ∼ I−o (a, b
0) . Then, by (35),

X
θ∈Θ

π (θ | o, a)u (b (θ) , θ) =
X
θ∈Θ

π (θ | o, a)u (b0 (θ) , θ) (36)

and, by axiom (A.5) and (35)

X
x∈X

μ (x)

1− μ (0)

X
θ∈Θ

π (θ | x, a)u (b (θ) , θ) =
X
x∈X

μ (x)

1− μ (0)

X
θ∈Θ

π (θ | x, a)u (b0 (θ) , θ) . (37)

Thus

X
θ∈Θ

[u (b (θ) , θ)− u (b0 (θ) , θ)]

"
π (θ | o, a)−

X
x∈X

μ (x)

1− μ (0)
π (θ | x, a)

#
= 0. (38)

This implies that π (θ | o, a) =
P

x∈X μ (x) π (θ | x, a) / [1− μ (0)].

(If π (θ | o, a) >
P

x∈X μ (x)π (θ | x, a) / [1− μ (0)] for some θ and μ (o)π (θ0 | o, a) <P
x∈X μ (x)π (θ0 | x, a) / [1− μ (0)] for some θ0, let b̂, b̂0 ∈ B be such that b̂ (θ) > b (θ) and
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b̂
³
θ̂
´
= b

³
θ̂
´
for all θ̂ ∈ Θ − {θ}, b̂0 (θ0) > b0 (θ0) and b̂0

³
θ̂
´
= b0

³
θ̂
´
for all θ̂ ∈ Θ − {θ0}

and I−o
³
a, b̂
´
∼ I−o

³
a, b̂0

´
. Then

X
θ∈Θ

h
u
³
b̂ (θ) , θ

´
− u

³
b̂0 (θ) , θ

´i"
π (θ | o, a)−

X
x∈X

μ (x)

1− μ (0)
π (θ | x, a)

#
> 0. (39)

But this contradicts (A.5).)

(a.ii) ⇒ (a.i) . The necessity of (A.1), (A.2) and (A.3) follows from Theorem 1. To

see the necessity of (A.4), suppose that I−x (a, b−θr) < I−x
¡
a, b0−θr

0¢ , I−x ¡a, b0−θr00¢ <
I−x (a, b−θr

000) , and I−x0
¡
a0, b00−θr

0¢ < I−x0
¡
a0, b000−θr

¢
. By representation (8)

X
θ0∈Θ−{θ}

λ (a, x, θ0)u (b (θ0) , θ0)+λ (a, x, θ)u (r, θ) ≥
X

θ0∈Θ−{θ}

λ (a, x, θ0)u (b0 (θ0) , θ0)+λ (a, x, θ)u (r0, θ) ,

(40)

X
θ0∈Θ−{θ}

λ (a, x, θ0)u (b0 (θ0) , θ0)+λ (a, x, θ)u (r00, θ) ≥
X

θ0∈Θ−{θ}

λ (a, x, θ0)u (b (θ0) , θ0)+λ (a, x, θ)u (r000, θ) ,

(41)

and

X
θ0∈Θ−{θ}

λ (a0, x0, θ0)u (b00 (θ0) , θ0)+λ (a0, x0, θ)u (r0, θ) ≥
X

θ0∈Θ−{θ}

λ (a0, x0, θ0)u (b000 (θ0) , θ0)+λ (a0, x0, θ)u (r, θ)

(42)

But (40) and (41) imply that

u (r00, θ)− u (r000, θ) ≥
P

θ0∈Θ−{θ} λ (a, x, θ
0) [u (b (θ0) , θ0)− u (b0 (θ0) , θ0)]

λ (a, x, θ)
≥ u (r0, θ)− u (r, θ) .

(43)

Inequality (42) implies

u (r0, θ)− u (r, θ) ≥
P

θ0∈Θ−{θ} λ (a
0, x0, θ0) [u (b000 (θ0) , θ0)− u (b00 (θ0) , θ0)]

λ (a0, x0, θ)
. (44)

31



But (43) and (44) imply that

u (r00, θ)− u (r000, θ) ≥
P

θ0∈Θ−{θ} λ (a
0, x0, θ0) [u (b000 (θ0) , θ0)− u (b00 (θ0) , θ0)]

λ (a0, x0, θ)
. (45)

Hence

X
θ0∈Θ−{θ}

λ (a0, x0, θ0) [u (b00 (θ0) , θ0)− u (b000 (θ0) , θ0)] + λ (a0, x0, θ) [u (r00, θ)− u (r000, θ)] ≥ 0.

(46)

Thus, I−x0
¡
a0, b00−θr

00¢ < I−x0
¡
a0, b000−θr

000¢ .
Next I show that if b̄ ∈ B satisfies u

¡
b̄ (θ) , θ

¢
= u

¡
b̄
¢
for all θ ∈ Θ then b̄ ∈ Bcu. Suppose

that representation (5) holds and let I, I 0, I 00, I 000 ∈ I, a, a0, a00, a000 ∈ A and x, x0 ∈ X̄, such

that I−x
¡
a, b̄
¢
∼ I 0−x

¡
a0, b̄

¢
, I 0−x

¡
a00, b̄

¢
∼ I−x

¡
a000, b̄

¢
and I 00−x0

¡
a0, b̄

¢
∼ I 000−x0

¡
a, b̄
¢
. Then the

representation (7) implies that

X
x̂∈X̄−{x}

w
¡
aI(x̂), bI(x̂), x̂

¢
+μ (x)

£
u
¡
b̄
¢
+ v (a)

¤
=

X
x̂∈X̄−{x}

w
¡
aI0(x̂), bI0(x̂), x̂

¢
+μ (x)

£
u
¡
b̄
¢
+ v (a0)

¤
(47)X

x̂∈X̄−{x}

w
¡
aI0(x̂), bI0(x̂), x̂

¢
+μ (x)

£
u
¡
b̄
¢
+ v (a00)

¤
=

X
x̂∈X̄−{x}

w
¡
aI(x̂), bI(x̂), x̂

¢
+μ (x)

£
u
¡
b̄
¢
+ v (a000)

¤
(48)

and

X
x̂∈X̄−{x0}

w
¡
aI00(x̂), bI00(x̂), x̂

¢
+μ (x0)

£
u
¡
b̄
¢
+ v (a0)

¤
=

X
x̂∈X̄−{x0}

w
¡
aI000(x̂), bI000(x̂), x̂

¢
+μ (x0)

£
u
¡
b̄
¢
+ v (a)

¤
.

(49)

But (47) and (48) imply that

v (a)− v (a0) = v (a00)− v (a000) . (50)
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Equality (49) impliesP
x̂∈X̄−{x0}

£
w
¡
aI00(x̂), bI00(x̂), x̂

¢
− w

¡
aI000(x̂), bI000(x̂), x̂

¢¤
μ (x0)

= v (a)− v (a0) . (51)

Thus

X
x̂∈X̄−{x0}

w
¡
aI00(x̂), bI00(x̂), x̂

¢
+u
¡
b̄
¢
+v (a000) =

X
x̂∈X̄−{x0}

w
¡
aI000(x̂), bI000(x̂), x̂

¢
+u
¡
b̄
¢
+v (a00) (52)

Hence I 00−x0
¡
a000, b̄

¢
∼ I 000−x0

¡
a000, b̄

¢
and b̄ ∈ Bcu.

To show the necessity of (A.5) let a ∈ A, I ∈ I and b, b0 ∈ B, by the representation

I−o (a, b) ∼ I−o (a, b
0) if and only if

X
θ∈Θ

π (θ | o, a)u (b (θ) , θ) =
X
θ∈Θ

π (θ | o, a)u (b0 (θ) , θ) . (53)

But π (θ | o, a) =
P

x∈X μ (x)π (θ | x, a) / [1− μ (0)] . Thus (53) holds if and only if

X
x∈X

μ (x)
X
θ∈Θ

π (θ | x, a)u (b (θ) , θ) =
X
x∈X

μ (x)
X
θ∈Θ

π (θ | x, a)u (b0 (θ) , θ) . (54)

But (54) is valid if and only if I−o (a, b) ∼ I−o (a, b0) .

For all I and x, let K(I, x) =
P

y∈X−{x} μ (y)
£P

θ∈Θ π (θ | x, a)u
¡
bI(y) (θ)

¢
+ v

¡
aI(y)

¢¤
.

To show the necessity of (A.6) Then I−x
¡
a, b̄
¢
< I 0−x

¡
a0, b̄

¢
if and only if

K(I, x) + u
¡
b̄
¢
+ v (a) ≥ K(I 0, x) + u

¡
b̄
¢
+ v (a0) (55)

if and only if

K(I, x) + u
¡
b̄0
¢
+ v (a) ≥ K(I 0, x) + u

¡
b̄0
¢
+ v (a0) (56)
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if and only if I−x
¡
a, b̄0

¢
< I 0−x

¡
a0, b̄0

¢
.

To show that axiom (A.7) is implied, not that I−x
¡
a, b̄
¢
< I 0−x

¡
a0, b̄0

¢
if and only if

K(I, x) + u
¡
b̄
¢
+ v (a) ≥ K(I, x) + u

¡
b̄0
¢
+ v (a0) (57)

if and only if

K(I, x0) + u
¡
b̄
¢
+ v (a) ≥ K(I, x0) + u

¡
b̄0
¢
+ v (a0) (58)

if and only if I−x0
¡
a, b̄
¢
< I 0−x0

¡
a0, b̄0

¢
. This completes the proof of part (a).

(b) Suppose, by way of negation, that there exist continuous, real-valued functions

{ũ (·, θ) | θ ∈ Θ} on R, ṽ ∈ RA and, for every a ∈ A, there is a joint probability mea-

sure π̃ (·, · | a) on X̄ ×Θ, distinct from those that figure in the representation (5), such that

< on I is represented by

I 7→
X
x∈X̄

μ̃ (x)

"X
θ∈Θ

π̃
¡
θ | x, aI(x)

¢
ũ
¡
bI(x) (θ) , θ

¢
+ ṽ

¡
aI(x)

¢#
, (59)

where μ̃ (x) =
P

θ∈Θ π̃ (x, θ | a) for all x ∈ X̄, and π̃ (θ | x, a) = π̃ (x, θ | a) /μ̃ (x) for all

(θ, x, a) ∈ Θ×X ×A.

Define κ (x) = μ̃ (x) /μ (x) , for all x ∈ X̄. Then the representation (59) may be written

as

I 7→
X
x∈X̄

μ (x)

"X
θ∈Θ

π
¡
θ | x, aI(x)

¢
γ
¡
θ, x, aI(x)

¢
κ (x) ũ

¡
bI(x) (θ) , θ

¢
+ κ (x) ṽ

¡
aI(x)

¢#
. (60)
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Hence, by (5), ũ (b (θ) , θ) = u (b (θ) , θ) /γ̃ (θ, x, a)κ (x) and ṽ (a) = v (a) /κ (x) . The second

equality implies that κ (x) = κ for all x ∈ X̄. Consequently, the first inequality implies that

γ̃ (θ, x, a) = γ (θ) for all (x, a) ∈ X̄ ×A. Thus, for b̄ ∈ Bcu,

I 7→
X
x∈X̄

μ (x)

"X
θ∈Θ

π
¡
θ | x, aI(x)

¢ u ¡b̄¢
γ (θ)

+ v
¡
aI(x)

¢#
. (61)

Let b̂ ∈ B be defined by u
³
b̂ (θ) , θ

´
= u

¡
b̄
¢
/γ (θ) for all θ ∈ Θ. Then, b̂ ∼x

a b̄ for all

(x, a) ∈ X̄ × A, and, by definition 2, b̂ ∈ Bcu. Moreover, if γ (·) is not a constant function

then b̂ 6= b̄. This contradicts the uniqueness of b̄ in definition 2. Thus γ (θ) = γ for all θ ∈ Θ.

But

1 =
X
x∈X̄

X
θ∈Θ

π̃
¡
θ, x | aI(x)

¢
= γ

X
x∈X̄

X
θ∈Θ

π (θ, x | a) = γ. (62)

Hence, π̃ (θ, x | a) = π (θ, x | a) for all (θ, x) ∈ Θ× X̄ and a ∈ A.

Next consider the uniqueness of the utility functions. The representations (5) and (7)

imply that

w (a, b, x) = μ (x)

"X
θ∈Θ

π (θ | x, a)u (b (θ) , θ) + v (a)

#
. (63)

Hence, by the uniqueness part of Theorem 1, {ũ (·, θ)}θ∈Θ and ṽ ∈ RA must satisfy

X
θ∈Θ

π (θ | x, a) v (b (θ) , θ) + ṽ (a) = m

"X
θ∈Θ

π (θ | x, a)u (b (θ) , θ) + v (a)

#
+K (x) , (64)

where m > 0. Clearly, this is the case if ũ (·, θ) = mu (·, θ) + k and ṽ = mv + k0.

Suppose that ũ (·, θ) = mu (·, θ) + k, ṽ = m0v + k0 and, without loss of generality, let

m > m0 > 0. Take a, a0 ∈ A and b̄, b̄0 ∈ Bcu such that
¡
a, b̄
¢
∼x

¡
a0, b̄0

¢
. Then, by the
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representation (5),

u
¡
b̄
¢
− u

¡
b̄0
¢
= v (a)− v (a0) . (65)

But

ũ
¡
b̄
¢
− ũ

¡
b̄0
¢
= m

£
u
¡
b̄
¢
− u

¡
b̄0
¢¤

> m0 [v (a)− v (a0)] = ṽ (a)− ṽ (a0) . (66)

Hence ũ (·, θ) and ṽ do not represent < .

Consider next ũ (·, θ) = mu (·, θ) + k (θ) , where k (·) is not a constant function. Let

k̄ (x, a) =
P

θ∈Θ π (θ | x, a) k (θ) . Take a, a0 ∈ A and b̄, b̄0 ∈ Bcu such that
¡
a, b̄
¢
∼x

¡
a0, b̄0

¢
and

£
k̄ (x, a)− k̄ (x, a0)

¤
6= 0 for some x. Then

ũ
¡
b̄
¢
− ũ

¡
b̄0
¢
= m

£
u
¡
b̄
¢
− u

¡
b̄0
¢¤
+
£
k̄ (x, a)− k̄ (x, a0)

¤
6= m [v (a)− v (a0)] = ṽ (a)− ṽ (a0) .

Hence ũ (·, θ) and ṽ do not represent < .

If ṽ (a) = mv (a) + k0 (a) , where k0 (·) is not a constant function then, by a similar

argument, ũ (·, θ) and ṽ do not represent < . ¥

36



References

[1] Anscombe, F., and R. Aumann. 1963. A definition of subjective probability, Annals of

Mathematical Statistics 34, 199-205.

[2] Drèze, J. H. 1961. Les fondements logiques de l’utilite cardinale et de la probabilite

subjective. La Decision, Colloques Internationaux de CNRS, 73-87.

[3] Drèze, J. H. 1987. Decision Theory with Moral Hazard and State-Dependent Prefer-

ences, in Drèze, J. H. Essays on Economic Decisions Under Uncertainty. Cambridge

University Press, Cambridge.

[4] Hill, B. 2008. An additive separable representation in the Savage’s framework. unpub-

lished manuscript.

[5] Karni, E. 1996. Probabilities and Beliefs. Journal of Risk and Uncertainty 13, 249-262.

[6] Karni, E. 2006. Subjective Expected Utility Theory without States of theWorld. Journal

of Mathematical Economics 42, 325 - 342.

[7] Karni, E. 2008. On optimal insurance in the presence of moral hazard. Geneva Risk and

Insurance Review, 33, 1 - 18.

[8] Karni, E. and D. Schmeidler. 1993. On the uniqueness of subjective probabilities. Eco-

nomic Theory 3, 267-277.

[9] Machina, M. J., Schmeidler, D. 1992. A more robust definition of subjective probability,

Econometrica 60, 745—780.

37



[10] Machina, M. J., Schmeidler, D. 1995. Bayes without Bernoulli: Simple conditions for

probabilistically sophisticated choice, Journal of Economic Theory 67, 106-128.

[11] Mirrlees, J. 1974. Notes on welfare economics, information and uncertainty. In M. Balch,

McFadden, D. and Wu S. (eds.) Essays in economic behavior under uncertainty. Ams-

terdam: North Holland.

[12] Mirrlees, J. 1976. The optimal structure of authority and incentives within an organi-

zation. The Bell J. of Economics 7, 105-113.

[13] Nau, Robert F. 1995. Coherent Decision Analysis with Inseparable Probabilities and

Utilities, Journal of Risk and Uncertainty 10, 71-91.

[14] Ramsey, F. P. 1931. Truth and probability. In The Foundations of Mathematics and

Other Logical Essays. K. Paul, Trench, Truber and Co. London.

[15] Savage, L. J. 1954. The Foundations of Statistics. John Wiley and Sons, New York.

[16] Schervish, M., J., T. Seidenfeldt and J. B. Kadane. 1990. State-Dependent Utilities.

Journal of American Statistical Association 85, 840-847.

[17] Wakker, P. P. 1987. Subjective probabilities for state dependent continuous utility.

Mathematical Social Sciences 14, 289-298.

[18] Wakker, P. P. 1989. Additive Representations of Preferences. Kluwer Academic Pub-

lishers, Dordrecht.

38


