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1 Introduction

Individual risk preferences are a fundamental building block of any model in economics and �nance

and has therefore been at the heart of academic research for many decades. On the theoretical front,

a wide variety of theories of choice under risk have been advanced but on the empirical side our

knowledge about individual decision-making behavior is still very limited. Despite the abundance

of experimental evidence in this area, the empirical investigation of people's attitudes towards risk

in real-world scenarios that are of practical interest to economics has largely been hindered by data

constraints, so fundamental questions remain open. Which theory better explains people's attitudes

towards risk, what the magnitudes of di�erent utility parameters are, how heterogenous individual

risk preferences are and whether they are stable over time or path-dependent are some of these

questions. In this study we examine these issues using for the �rst time a rich panel of real-life

individual choices. In particular, we utilize a unique dataset that includes all the bets placed by

sports gamblers through an online bookmaker over the past 3.5 years.

Sports gambling has lately evolved into a hugely popular activity around the globe with hundreds

of bookmakers o�ering a wide range of betting opportunities on various sporting events and millions

of people risking signi�cant amounts of their income on the unknown future outcome of these events.

The popularity of this and other forms of gambling, including casino games, lottery tickets, and

racetrack betting, has led some people to believe that a taste for gambling is an inherent part of

human nature.1 Having said that, understanding how people behave in this setting will help us

uncover common aspects of individual risk preferences and contribute to the totality of empirical

evidence in this �eld.

Our sports betting data have several important advantages over the datasets that have been

used so far in the literature of estimating risk preferences. First, contrary to experimental studies,

we observe real-world choices of regular market participants who risk varying amounts of their own

money. Second, we use data at the individual bettor level instead of aggregate price data that have

been previously used in the gambling domain (e.g. Jullien and Salanie (2000), Golec and Tamarkin

(1998)). Thus, we can refrain from the representative agent assumption that these studies are forced

to make, and we are in fact able to test whether treating all individuals as one representative agent

would be a reasonable approach or not. Third, we are the �rst to use a relatively large panel which

allows us to i) estimate individual-level risk preference parameters with relative accuracy, ii) test

for the presence of heterogeneity in risk preferences across individuals, and iii) examine possible

path-dependence in individual risk preferences which could arise, for example, if people's behavior is
1For example, the sociologist William Thomas stated that gambling is an instinct that �is born in all normal

persons. It is one expression of a powerful re�ex, �xed far back in animal experience�.
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a�ected by their previous betting performance. Finally, it is important to note that sports betting

decisions share signi�cant similarities with stock trading decisions, but at the same time they have

two desirable characteristics that make them better-suited for the empirical analysis of individual

risk preferences. In particular, contrary to the stock market where people's investment horizon and

beliefs are di�cult to observe, in our case it is relatively easy to construct the distribution of the

�lottery� that people choose when placing their bets since i) sports bets reach an observable terminal

value when the sporting event in question takes place; and ii) the odds quoted by the bookmaker

provide a good approximation for the probabilities with which people evaluate their bets. It is

therefore clear that sports betting constitutes an idealized laboratory setting for the analysis of the

preferences of a group of people who resemble regular stock market participants.

The popularity of gambling and the actual behavior of gamblers has been usually explained by

the cumulative prospect theory (CPT) of Tversky and Kahneman (1992). One of the key features

of this theory, namely that people systematically distort the probabilities of events by overweight-

ing small probabilities and underweighting large probabilities, can explain why bettors prefer the

positively-skewed lotteries that are commonly encountered in a sportsbook. Barberis (2010) shows

that prospect theory can also explain the popularity of 50:50 casino bets and that it captures many

other features of the observed gambling behavior. Therefore, a natural starting point for our anal-

ysis is the characterization of risk preferences within the behavioral choice paradigm of cumulative

prospect theory. We estimate the distributions of the utility parameters of the CPT speci�cation,

namely the utility curvature, the loss aversion and the probability weighting parameter. Our �ndings

suggest that for the average bettor in our sample i) the value function is mildly concave (convex)

in the region of gains (losses) indicating that bettors are mildly risk averse (risk loving) over gains

(losses); ii) the value function has a sharp kink at the origin which indicates greater sensitivity to

losses than to gains (loss aversion) and matches the empirical observation that the average bettor in

our sample tends to reject 50 : 50 bets; and iii) the deviation from linear probability weighting is mild

which matches the empirical observation that bettors favor lotteries with medium positive skewness

but typically reject the multitude of very positively-skewed lotteries available in the sportsbook.

Nevertheless, a striking feature of the estimated distributions of preference parameters is that

substantial heterogeneity is present in all parameters, indicating that economic analysis (e.g., in an

asset-pricing model) based on a single estimate might be inappropriate and may lead to biased results.

In particular, it seems that there is a continuum of prospect theory agents in the population, whose

choices are characterized by di�erent parameter combinations. An examination of the correlations

of the utility parameters reveals that the three features of prospect theory tend to move together.

This indicates that it might be possible to classify individuals into discrete types: individuals whose
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choices are fully characterized by prospect theory preferences but also individuals who essentially

act as expected value maximizers.

In the next step, we exploit the panel aspect of our dataset to examine the presence of state de-

pendence in (some) bettors' risk preferences. Such state dependence exists, for example, if bettors'

behavior is a�ected by the outcomes of their previous bets as suggested by phenomena such as the

�house money e�ect� or the disposition e�ect. These two e�ects imply opposite predictions regarding

people's behavior after prior gains versus losses: The �house money e�ect� suggests that prior gains

(losses) increase (decrease) subsequent risk-taking and has been documented so far mainly in experi-

mental studies (e.g., Thaler and Johnson (1990)) and quasi-experimental studies such as game shows

(e.g., Post et al. (2008)), while the disposition e�ect predicts the opposite and has been documented

in datasets of individual investor trading activity. Prospect theory o�ers a natural framework to

study these issues since gains and losses are evaluated relative to a reference point and the framing

of outcomes can a�ect this reference point. Indeed, our �ndings suggest that prior outcomes signif-

icantly a�ect subsequent risk-taking, emphasizing that people integrate the outcomes of successive

gambles and that individual loss aversion changes depending on previous betting performance. In

particular, our estimation results so far indicate that bettors become e�ectively more risk loving

after losses which is consistent with the disposition e�ect observed in the stock market.

Although prospect theory o�ers a coherent framework for analyzing betting choices, researchers

have noted that gambling behavior can also be reconciled with the rational choice paradigm of

expected utility theory (EUT). Several approaches have been proposed to explain the tendency

of risk averse people to accept unfair gambles: Friedman and Savage (1948) suggest that local

convexities in an otherwise concave utility function can create a preference for skewness, while

Conlisk (1993) explains gambling behavior by introducing a direct utility of gambling that captures

the entertainment/excitement associated with casino games. Finally, a stochastic choice behavior

model that allows for variation in the preferences of a single individual when faced repeatedly with

the same choice situation, can explain why people are not always observed to choose the alternative

with the highest utility (here the option not to gamble). On top of that, the availability of near

safe lotteries inside the sportsbook further shrinks the utility di�erence between entering the casino

and not. The ability to reconcile gambling with EUT coupled with the evidence that it is a very

widespread activity,2 leads us to question the conventional wisdom that only people with CPT-

type preferences gamble, and hence that our sample is drawn exclusively from the population of

prospect theory agents. As a result, we also examine individual heterogeneity in risk preferences

between rational and behavioral theories of choice, by estimating a �nite mixture model of the
2The Economist, 8th July 2010, mentions that �[i]n 2007, nearly half of America's population and over two-thirds

of Britain's bet on something or other�, and that �[h]underds of millions of lottery tickets are sold every week.�
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EUT and the CPT. Allowing for individual heterogeneity across theories rather than assuming

that all individuals have the same type of preferences is important in several respects that have

been ignored by the literature so far. First, it enables us to estimate the proportion of individuals

that behave according to each theory and therefore test the relative strength of competing theories

in explaining individual behavior. Second, from an econometric point of view, if there are more

than one latent populations from which the observed sample is drawn, estimating a speci�cation

that assumes just one population can lead to misleading inferences with respect to the estimated

risk parameters. That is, simply allowing for individual heterogeneity within speci�cations and

sequentially estimating di�erent speci�cations on the whole sample, as it is commonly done, can

neither yield valid parameter estimates, nor be used to prove or disprove the validity of a speci�c

utility class. Our results point to the presence of some heterogeneity across individuals in the utility

theory that best describes their observed choices with the mean probability of being classi�ed in the

population of EUT agents being estimated between 15%-20%.

Taken together, our estimation results are important for testing the validity of the assumptions

rather than the predictions of prominent theoretical models in economics and �nance. In the �nance

domain, for example, our �ndings could be used to i) test whether people faced with complex real-

life decisions actually behave as hypothesized by theoretical models that have been developed to

understand various �puzzling� �nancial phenomena, such as the equity premium puzzle; ii) to con�rm

that explicitly modeling investor heterogeneity both within and between rational and behavioral

theories is important; iii) to calibrate existing research and guide future research involving models

with proportions of rational and behavioral agents, time-varying risk preferences, etc..

It is important to note that when estimating the distribution of risk preferences from our panel

dataset, play frequency is an important confounding factor. It can be informative of the frequency

with which individuals have the opportunity to log into the sportsbook, which depends on exogenous

factors such as the amount of free time available to them, but it can also be informative of the

frequency with which they choose to accept the opportunity to bet, which depends on their risk

preferences. To estimate risk preferences that take into account the confounding e�ect of play

frequency, we model individual observed and unobserved heterogeneity in both risk preferences and

the probability with which individuals get the chance to bet on each day. We are able to identify

both e�ects by exploiting variation in bettors' observed play frequency together with variation in

individuals' betting choices conditional on their decision to play.

A standard criticism of estimating preferences from betting choices is that the same choices

could be explained with several combinations of risk preferences and subjective beliefs. Thus, the

fact that di�erent people make di�erent choices might be either due to the fact that they have
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di�erent risk preferences or due to the fact that they hold di�erent beliefs regarding the various

outcomes' probabilities. Which is the primary reason why people engage in sports and racetrack

betting has divided authors over the years and given rise to two strands in the literature that aims

to explain people's betting behavior. Several authors such as Weitzman (1965), Ali (1977), Quandt

(1986) and Jullien and Salanie (2000), have provided empirical evidence of racetrack gamblers' risk

preferences under the assumption that bettors know the objective win probabilities. In contrast,

studies like Figlewski (1979), Bassett (1981) and Woodland and Woodland (1991) have argued

that sports and racetrack betting markets primarily exist due to a divergence of beliefs among

individuals. In our baseline study, we follow the �rst school of thought, i.e., we use the observed

betting choices to estimate individual risk preferences, under the assumption that the probabilities

people use to evaluate the gambles available in the sportsbook are equal to those quoted by the

bookmaker.3 In an extension, we also consider the possibility that the heterogeneity in people's

observed betting behavior may be partially due to belief heterogeneity. In particular, we allow for a

random, but systematic, individual- and event-speci�c �error� in probability assesments, which could

account for possible deviations from the quoted probabilities due to optimism, skill/information,

and/or mistakes. Finally, by tracking individual risk-adjusted betting performance, we verify that

no bettors in our sample exhibit signi�cantly positive skill in picking their bets while a few bettors

exhibit signi�cantly negative bet-picking skill.

Methodologically, our analysis proceeds in three steps. First, we represent the lottery chosen

by each bettor on each day, by constructing all possible combinations of payo�s of all bets placed

during that day, and calculating their corresponding probabilities. Second, we approximate the

choice set from which the observed lotteries are chosen by choosing a set of representative lotteries

from the set of all day lotteries chosen at least once by any bettor in our sample. This choice set

is then augmented with a safe lottery representing the option to restrain from betting on that day.

Finally, we use a multinomial mixed logit framework to model bettors' choices among the available

alternatives and develop a �nite latent class model to allow the coexistence of agents with di�erent

utility types. We estimate the resulting models using Bayesian econometrics by applying Markov

Chain Monte Carlo (MCMC) techniques and in particular the Metropolis-Hastings within Gibbs

sampling algorithm.

The remainder of the paper is organized as follows. Section 2 discusses the relation to the

literature. Section 3 describes the data and the analysis thereof. Section 4 lays out the econometric
3Depending on how the bookmaker sets the odds, these could be the probabilities that clear the market, the

probabilities that maximize the bookmaker's pro�ts or the probabilities that accurately predict the game outcomes.
The price-setting behavior of the bookmaker is beyond the scope of this study (for this, see Levitt (2004) and Paul
and Weinbach (2008)). What matters for us is that the quoted probabilities are the probabilities that bettors are
confronted with when placing their bets.
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speci�cation employed and Section 5 describes its estimation. Section 6 presents the results of our

benchmark speci�cation, Section 7 describes the setup and discusses the results of the �nite mixture

model and Section 8 presents various robustness checks.

2 Relation to Literature

2.1 Estimation of Risk Preferences

The vast majority of the earlier empirical literature on estimating individual risk preferences comes

from laboratory experiments (Hey and Orme (1994), Holt and Laury (2002), Tversky and Kahneman

(1992), Choi et al. (2007)) and hypothetical survey questions (Donkers et al. (2001)). In addition

to these, a large body of quasi experimental empirical studies has used television game shows as a

controlled natural experiment to analyze contestants' risk attitudes (Gertner (1993), Metrick (1995),

Beetsma and Schotman (2001), Bombardini and Trebbi (2007), Post et al. (2008)). More recently,

with access to real-world data becoming more widespread, a few studies examine the observed

behavior of regular market participants in a variety of settings: insurance markets (Cicchetti and

Dubin (1994), Cohen and Einav (2007), Barseghyan et al. (2010)), labor supply decisions (Chetty

(2006)), person-to-person lending portfolio choices (Paravisini et al. (2010)). Closer to our domain,

there exists a strand of empirical literature (Golec and Tamarkin (1998), Jullien and Salanie (2000),

Kopriva (2009)) that analyzes aggregate price data, mainly from racetrack betting, to infer the

preferences of a representative bettor.

Our sports betting data seem to have important advantages over the datasets that have been

previously used in this area. First, we are observing real-world choices of normal market partic-

ipants who risk varying amounts of their own money. In contrast, neither experimental subjects

nor game show participants ever experience real losses, casting doubt on the extent to which indi-

viduals truthfully reveal information about their risk preferences in these settings. In addition to

that, experiments are usually limited to small stakes and thus do not provide evidence about risk

preferences towards prospects that could signi�cantly a�ect one's lifetime wealth.

Second, we are using data at the individual bettor level instead of aggregate odds data that have

been widely used in the past. We can therefore refrain from the representative agent assumption that

the aforementioned studies are forced to make. Recent research (e.g., Cohen and Einav (2007)) �nds

signi�cant heterogeneity in risk aversion across subjects, suggesting that treating all individuals as

one representative agent can be misleading. In the sports betting setting, for example, aggregation

would assign more weight to frequent and/or large bettors biasing the risk aversion estimates towards
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their behavior.

Third, we have a panel dataset with more than 35 observations for the average individual (and

up to 270 for some individuals) which allows us i) to estimate the distribution of risk preferences in

the population with some relative accuracy, ii) to examine the presence and extent of heterogeneity

in risk preferences across individuals and iii) to examine possible state-dependence in bettors' risk

preferences. Recent studies that use microdata from real-life decisions, such as portfolio or insurance

choices, usually observe very few data points per subject. They are therefore not able to do this

type of analysis at all or accurately enough.

Finally, an attractive feature of our dataset is that individuals make their choices out of a large

choice set consisting of all the bets available in the sportsbook at any time, which considerably im-

proves data �tting. To our knowledge, this is the �rst study that analyzes individual risk preferences

using a rich, panel dataset from a real-life setting.

Research in this area should be studied with the following caveats in mind. First, a sample

selection bias is present to di�erent extents in most of the existing literature (e.g., experiments,

racetrack betting, game shows) and raises caution when attempting to extrapolate the risk preference

estimates to the whole population. In our case, it is clear that the sample of people who choose

to bet on an online sportsbook might not be representative of the whole population, or even of the

population of all bettors including those that visit land-based casinos. Furthermore, generalizations

of risk preferences in other settings are di�cult to make since, as Rabin and Thaler (2001) suggest,

di�erent decisions in life are taken under di�erent conditions and might thus be subject to di�erent

utility speci�cations. People playing in the sportsbook might be primed to be more risk-seeking

than they otherwise would be, since they are gambling, the same way that insurance buyers might

be primed to be more risk averse, since they are buying insurance. In addition to these, it should be

kept in mind that the sample of individuals under study might also engage in other risky activities

that are unobservable to the researcher. In our case, it is impossible to know whether bettors hold

accounts with multiple sports bookmakers, or even engage in other forms of gambling like casino

games, lottery tickets etc. The implicit assumption here is that choices are made under narrow

framing, so unobserved gambling and other types of choices do not a�ect the observed gamble

chosen. Indeed, this would also be the assumption behind any experiment, otherwise one could still

postulate that subjects integrate choices in the experiment with choices outside the experiment.

With these caveats in mind, this study takes a step towards better understanding the behavior of

online sports gamblers. We hope that information from this domain could help us uncover aspects of

preferences that we could not uncover from other drastically di�erent domains like insurance choices.

In fact, the insurance domain deals with people's fear of risk rather than their a�nity to risk. Since
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risk is particular to the context in which it is measured, we believe that the current study can be

viewed as complimentary to the existing research in the �eld, contributing to the totality of evidence

on risk preferences.

2.2 Relation to Finance Literature

Sports betting markets share signi�cant similarities with �nancial markets, both in terms of or-

ganization and in terms of the characteristics of their participants. In both cases there is a large

number of potentially di�erent types of participants, who bet on uncertain future events. The role

of the sports bookmaker is similar to that of a market maker for securities: he accepts bets on all

possible outcomes of an event and maintains a spread (vigorish) which will ensure a pro�t regardless

of the outcome of the wager. Finally, information about sport events and odds is nearly as widely

available as information about companies and stock prices. At the same time, sports betting has

several desirable characteristics that make it an idealized laboratory setting for the empirical anal-

ysis of individuals' risk preferences. Its main advantages are i) that sports bets reach an observable

terminal value when the sporting event in question takes place and ii) that the odds quoted by

the bookmaker provide a good approximation for the probabilities with which people evaluate bets.

Therefore, contrary to the stock market where it is di�cult to know people's investment horizon

and beliefs, in our case it is relatively easy to construct the distribution of the �lottery� that people

choose when placing their bets.

In the �nance literature, a large number of theoretical models have been developed to help us

understand various �puzzling� �nancial phenomena about the aggregate stock market, the cross-

section of average stock returns and investors' trading behavior among others. The papers in the

asset pricing literature could be roughly separated along two dimensions based on i) whether they

adopt a representative agent framework or explicitly model investor heterogeneity and ii) whether

they assume individual rationality or not.

Along the �rst dimension, several papers have attempted to explain the empirically observed

features of asset prices by explicitly modeling the interaction among heterogeneous investors. For

instance, Chan and Kogan (2002) show that the countercyclicality of the aggregate risk premium

can be the result of endogenous cross-sectional redistribution of wealth in an economy with multiple

agents with heterogeneous risk aversion. Dumas (1989) and Wang (1996) examine the e�ect of

investor preference heterogeneity on the dynamics and the term structure of interest rates.4 In

other models, heterogeneity in individual risk exposure arises from di�erences in beliefs rather than
4Other papers addressing �nancial phenomena under risk preference heterogeneity include Bhamra and Uppal

(2010), Kogan, Makarov, and Uppal (2007), Ehling and Heyerdahl-Larsen (2010), among others.
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di�erences in risk aversion across investors.5

Along the second dimension, a large number of theories that draw heavily on the experimental

psychology literature, argue that some �nancial phenomena can be explained by investors not be-

ing fully rational, either in their preferences or in their beliefs. Non-standard preferences can be

described by one or more of the following features: i) loss aversion, ii) probability weighting, iii)

concavity/convexity of value function over gains/losses and/or iv) time-varying risk preferences. Or-

ganized on the basis of the feature of non-standard preferences that drives their results, behavioral

�nance papers provide explanations for a wide variety of �nancial �anomalies�:

Benartzi and Thaler (1995)and Barberis et al. (2001) show that if investors are loss averse over

annual changes in the value of their stock market holdings, they require a high average return on

equity in order to hold the market supply, which helps us understand the high historical equity

premium. Barberis et al. (2001) also show that if loss aversion changes over time depending on

previous outcomes, �uctuations in the stock market caused by economic fundamentals will be am-

pli�ed, sheding light on the puzzlingly high historical volatility of the stock market. Finally, loss

aversion is essential in explaining some aspects of individuals' investing behavior, e.g. stock market

non-participation, insu�cient diversi�cation, etc. (e.g. Barberis et al. (2006)).

Barberis and Huang (2008) show that in a �nancial market in which investors overweigh extreme

events, assets with positively (negatively) skewed returns are going to be overpriced (underpriced)

and will therefore earn low (high) returns, on average. The authors argue that this idea has many

potential applications in �nance, e.g. it can help us understand why IPO stocks have a poor long-

term average return.

Several authors have argued that the concavity (convexity) of the value function over gains

(losses) would predict the disposition e�ect, i.e. the puzzling tendency of individual investors to sell

stocks that have risen in value, rather than dropped in value, since purchase. Barberis and Xiong

(2009) show that the link between prospect theory and the disposition e�ect is less obvious if the

value function is only mildly concave in the region of gains and investors' loss aversion is also taken

into account.

Asset-pricing models use habit-formation preferences to explain the mean and countercyclicality

of asset return risk premia found in the data (e.g. Constantinides (1990), Campbell and Cochrane

(1999)). Mehra and Prescott (2003) point out that it is not clear whether investors actually have the

huge time varying countercyclical variations in risk aversion postulated by these models. Brunner-

meier and Nagel (2008) �nd evidence against time-varying risk preferences by examining microdata

5Notable papers that study the determination of asset prices and their dynamics under heterogeneity in beliefs
include, but are not limited to, Harrison and Kreps (1978), Varian (1985), De Long et al. (1990), Harris and Raviv
(1993), Detemple and Murthy (1994), Zapatero (1998), and Basak (2000).
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on how households allocate their wealth between risky and riskless assets.

Since various assumptions about individual behavior have been hypothesized in these studies to

explain a number of facts about �nancial markets, it becomes essential to empirically investigate

whether people actually behave according to these assumptions. This is what we attempt to do in

this study. We will therefore revisit some of the aforementioned studies in light of our estimation

results in the following sections.

3 Data

3.1 Background Information and Data Description

The dataset used in this study was provided to us by a large online sports bookmaker whose oper-

ations are based in Europe. It consists of detailed information on all the bets placed by each of 100

gamblers, randomly selected from the company's customers. We track the betting histories of these

people in all sports markets over a period of 3.5 years, from October 2005 to May 2009.

Before we proceed with a detailed description of our dataset, we will �rst provide some back-

ground information about online sports gambling. When betting online, a potential bettor must

�rst open and fund an online sports betting account at an online bookmaker. Once he/she has

established the account, he can log into it at any time and place bets on a wide variety of future

sporting events. The bookmaker studied here o�ers betting opportunities on a variety of sports,

from soccer, baseball, and tennis to golf, boxing and auto racing. The bettor chooses the sport of

his/her interest and the event description he/she would like to wager on. There is a wide range of

event descriptions associated with each game. For example, in a soccer match one can wager on the

�nal outcome of the match (i.e., home win, away win or draw), the total number of goals scored

(e.g., over 2.5, under 2.5), the correct score, the �rst goalscorer etc. In addition to betting on actual

matches, online bettors can also make �proposition bets�, i.e., they can bet on anything from how

many goals will Lionel Messi score in the World Cup, to whether a �ght will go longer than six

rounds, or which team will win the Super Bowl.

An event on which bettors may bet, has several possible outcomes, each of which is associated

with a price. The price of an outcome is essentially the return of a unit wager on that outcome.

Prices are initially set by the bookmaker, and subsequently they vary according to supply and

demand. Associated with any given set of prices (or odds) for the possible outcomes of an event, is

a set of implied probabilities . These are the respective probabilities with which the outcomes would

need to occur to �justify� the odds. That is, if the real probabilities were di�erent than the implied

probabilities, then the bet would have a non-zero expected value.
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After selecting a number of event descriptions, the bettor then decides on the type of bet(s) he

wants to place together with the amount of money he wants to wager on each bet type.6 There

are many di�erent types of bets available in the sportsbook, that involve varying levels of risk. A

�single� is the most traditional bet type: you wager on one individual selection and get a return if

this selection is successful. However, bettors can also combine more than one selections in the same

bet. For example, a �double� is a bet on two selections that yields a return only if both selections

are successful. A �treble�, �four-fold�, ��ve-fold�, etc. follow the same logic. There also exist all

di�erent combinations of the aforementioned bet types. For example, a �singles�, �doubles�, etc. is

a combination of a number of �single�, �double�, etc., respectively, i.e., you choose the number of

events you want to wager on, and win if at least one, two, etc. of your selections win.7 Finally,

there are even more complex bet types that enable you to combine all of the above: For example,

a �trixie� is a wager on three events consisting of three �doubles� and one �treble� and a minimum

of two selections must win to gain a return. After combining the selected events in a number of bet

types, the bettor then submits a betting slip that summarizes all information regarding his wager.

Figure 1 presents a sample betting slip that includes an example of a �single�, a �double�, and a

�doubles� on a number of sports events.

[Figure 1 about here.]

In this study, we observe the following information for each bet placed by each of the bettors in

our sample: i) the date of the bet, ii) the event on which the bet was made (e.g., �nal outcome of

baseball match between teams A and B), iii) the outcome chosen (e.g., team win, total number of

goals scored, etc.), iv) the bet amount, v) the bet type (single or exact type of combination bet), vi)

the odds at which the bet was placed, and vii) the bet result. In addition to these, our data include

information about the gender, age, country of origin and zip code of the bettors as provided by

them upon registration in the sportsbook. Using the directly observable demographic information,

we approximate each bettor's annual labor income, education level and family situation by matching

the gender, age and zip code information with the relevant census data of the bettor's country of

origin.

Figure 2 provides summary statistics for the characteristics of bettors and their selected bets.

The typical bettor in our sample is a male in his early thirties with annual labor income around

AC19,000. The majority of bets are placed on standard events (i.e., �nal match outcome) of soccer

matches. People usually combine more than one events in the same bet type and place on average
6Generally, there is no upper and lower bound in the amount of money people are allowed to bet in the sportsbook.

The bookmaker, however, reserves the right to impose maximum stake limits if he/she detects arbitrage trading.
7Often, the only limit to the number of selections included within such a bet is the bookmaker's maximum allowable

payout on one bet.
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3.7 bet types per bet day. Finally, the majority of bets are placed either on the same or one day

before the sporting event in question takes place.

[Figure 2 about here.]

3.2 Data Analysis

3.2.1 Lottery Representation

In this section we will explain how we use the bet information we observe, to represent the risky

gambles selected by each individual in our sample.

In the �rst step, we create a lottery representation for all single bets selected by each bettor.

Each bet available in the sportsbook is associated with a probability distribution over a set of

possible monetary prizes. In particular, there are two possible prizes associated with each selection:

you either win and earn a positive return if the selected outcome occurs, or lose your stake if the

outcome does not occur. The net total that will be paid out to the bettor, should he win, is implied

by the odds associated with the selected outcome. For example, odds of 4/1 imply that the bettor

will make a pro�t of $400 for each $100 staked. The odds quoted by the bookmaker on all outcomes

of an event also imply a probability with which each of these outcomes is expected to occur.8 For

example, odds of 4/1 imply that the outcome has a chance of one in �ve of occurring and therefore

the implied probability is 20%. The sum of the implied probabilities over all outcomes of an event is

always greater than 1, with the amount by which the sum exceeds 1 representing the bookmaker's

commission.9 The �sum to one� probability is then obtained by dividing the implied probability of

an outcome by the sum of the implied probabilities over all outcomes of the event in question. For

example, if the implied probabilities sum to 1.1, then the �sum to one� probability of an outcome

whose odds are 4/1 would be 0.18 (i.e., 0.2/1.1).

In the second step, we create a lottery representation for all combination bets selected, i.e. a

number of single bets combined under a speci�c bet type. As explained in the previous section,

bet types di�er in the number of selections involved and the minimum number of winning selections

required to guarantee a positive return. In particular, bets of type �double�, �treble�, etc. have 2

outcomes, i.e., you either get some positive return if all of your selections win, or lose your stake if

at least one selection loses. The odds for these types of bets are calculated by simply multiplying

the odds quoted by the bookmaker on the separate events involved. For example, the odds on the

�double� presented in Figure 3 is the product of the odds for the two single bets it contains. On the

other hand, bets of type �singles�, �doubles�, �trebles�, etc. have 2n outcomes where n is the number
8This implied probability is often quoted by bookmakers together with the odds.
9The bookmaker's commission is usually around 7%-10%, though it varies a lot across di�erent sports and events.
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of events that people have combined in the same bet type. These types of bets can be decomposed

into a number of �single�, �double�, etc. each of which is evaluated separately. For example, a

�doubles� bet on n events is equivalent to

 n

2

 �double� bets, a �trebles� is equivalent to

 n

3


�treble� bets, etc.10 More complex bet types are similarly treated according to their de�nition. An

important note here is that bettors are not allowed by the bookmaker to place combination bets on

events that are considered related (e.g. winner of a soccer match and total number of goals scored,

winner of the semi-�nal and winner of the �nal, etc.). Figure 3 shows how odds and prizes are

calculated for each of the bet types included in the betting slip of Figure 1.

[Figure 3 about here.]

In the third step, we create a lottery representation for all bets selected during a given play

session. A play session is de�ned as the set of all bets placed over a single day by an individual.11

We thus represent the day lottery by constructing all possible combinations of payo�s of all the

bets chosen on that day. One challenge in calculating the day lottery is that the outcomes of some

bets placed on the same day might not be independent.12 We therefore identify the events whose

outcomes are not independent and deal with days that involve these events accordingly. In particular,

for more than one bets on the same match and event description (e.g., on the �nal outcome of the

same soccer match) we i) compute all possible combinations of event outcomes of all independent

matches wagered on that day, ii) �nd the corresponding probability of each combination and iii)

calculate the payo� of the bettor in each combination according to the choices he/she has made. In

cases of more than one bets placed on separate related matches (e.g., on the outcome of the semi-

�nal and the outcome of the �nal) or on di�erent event descriptions of the same match (e.g., on the

�nal outcome of a soccer game and on the total number of goals scored) we are unable to construct

the day lottery without further information about the correlation among the win probabilities of

the event outcomes involved. We therefore drop the bet days that involve related bets of this type.

After these steps, we have constructed all day lotteries chosen by every bettor in our sample. Our

�nal sample contains 3,755 day lotteries chosen by 100 bettors from October 2005 to May 2009.
10The amount staked on a �doubles�, �trebles�, etc. is divided evenly among the �double�, �treble�, etc. bets involved.
11Lacking information on the exact time of bets, we decide to carry out our analysis at the lowest level of aggregation

available to us which is the bet day. The choice of this time window is supported by the fact that the majority of the
bets in our sample are placed one day before the actual event date.

12Although related bets are not allowed within the same bet type, people may bet on them under di�erent bet
types placed within the same bet day.
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3.2.2 Descriptive Statistics

Figure 4 reports summary statistics of the day lotteries chosen by the bettors in our sample. A typical

day lottery contains 2 prizes, has negative expected value (−2.2) and expected return (−0.23), high

variance (308) and positive skewness (2.1). The bet amounts range from AC0.01 to AC1768 with the

median bet amount being equal to AC10. The maximum prize of the day loterries ranges from AC0.24

to AC12000 with the median maximum prize equal to AC62. The summary statistics in Figure 4

indicate that there is a multitude of bets available in the sportsbook that have actually been chosen

by the bettors in our sample. In fact, since bettors are allowed to construct any desired day lottery

by combining a wide variety of odds, bet types and stakes, they can essentially choose anything from

an almost safe lottery that returns a tiny payo� with probability 0.99 to a highly skewed lottery

that returns a very high payo� with probability 0.01. However, as Figure 4 shows, only around 10%

of the chosen lotteries have very high positive skewness (over 10) and about the same proportion

of lotteries are negatively skewed. The reason why people do not bet on very positively skewed

lotteries is that their expected return is very low. In fact, there is a strong negative correlation

between the skewness and the expected return of the chosen lotteries (−0.7). The reason for this is

that the majority of highly skewed lotteries represent combinations bets, and when bettors combine

more than one events, the e�ect of the bookmaker's commission in each event is compounded to the

detriment of the bettor in terms of the �nancial return. Finally, note that only 4.5% of the chosen

lotteries are close to 50:50 bets to win or lose some �xed amount.

[Figure 4 about here.]

It is important to note here that the lotteries considered in this study are quite di�erent from

those faced by individuals in related studies. Experimental subjects are typically confronted with

a sequential series of choices over lottery pairs. The gambles involved have a small number of

outcomes (usually two to four) and the stakes are usually limited to less than $50. In the most

widely studied game show �Deal or Not Deal�, contestants are typically asked to decide whether to

accept some deterministic cash o�er or face a lottery where a list of monetary prizes ranging from

$0.01 to $1000000 are equally possible. Depending on the game round, the risky lotteries involved

can have up to 20 outcomes, all of which are positive. Insurance subjects are asked to choose a

contract from a menu of deductible and premium combinations. Choice is typically exercised from

a set of two binary lotteries representing unknown future expenditure: a lottery that involves a high

premium but provides a high deductible payment in the event of an accident, and a lottery that

involves a low premium but provides a low deductible payment. The typical contract in the data of

Cohen and Einav (2007) o�ers an individual to pay an additional premium of $55 in order to save
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$182 in deductible payments. As the summary statistics in Figure 4 indicate , the lotteries available

in a sportsbook span a much wider range of prizes and probabilities than those considered so far.

3.3 Choice Set

In the empirical analysis, we employ discrete choice modeling methods to analyze bettors' lottery

choices. The development of discrete choice models is a signi�cant advance in the study of individual

choice behavior. They are widely used in economics, marketing, transportation and other �elds to

represent choice from a set of mutually exclusive alternatives. Therefore, specifying the set of

alternatives among which choice is exercised is an essential component of all discrete choice models.

In some choice situations13, however, the actual choice set is either not observable or extremely

large so that it becomes essential for the researcher to describe it as best as possible using some

reasonable, deterministic or probabilistic rules.

In our setting, the true set of alternatives should ideally be the set of all day lotteries considered

by each bettor on each bet day. Obviously, what constitutes a feasible alternative for any particular

individual on any particular day is di�cult to determine. Therefore, the true choice set is a latent

construct to us since nothing is observed about it except for the chosen alternative. Moreover, given

the large number of day lotteries that can be constructed from the bets available at any time in

the sportsbook, especially if you consider that the bet amount is selected from an in�nite set of

possible values, the number of elements in the true choice set is immense. We therefore follow the

literature in discrete choice analysis and approximate this universal choice set by choosing a set of

representative lotteries from the set of all day lotteries chosen at least once by any bettor in our

sample.

We therefore proceed in the following steps. First, we reduce the number of alternative lotteries

in the choice set by clustering the 3,755 observed day lotteries in 100 clusters. We do so using

a hierarchical agglomeration algorithm, according to which, in each step we combine in a cluster

the two most similar clusters, until we reach the desired level of clustering. The similarity of

two degenerate clusters, i.e., two lotteries, is measured by their Wasserstein distance, which is a

metric de�ned on the space of probability distributions (see Rachev (1991)).14 The similarity of two

non-degenerate clusters is measured by the mean of all the pairwise Wasserstein distances. After
13Examples include consumers' residential choice (Weisbrod et al. (1980)), travelers' choice of destination (Daly

(1982)) and household choice of telephone service options (Train et al. (1987)) among others.
14The Wasserstein distance between two probability measures µ and ν on the real line R, is de�ned as:

W (µ, ν) =

(
1

n

∑
i

(xi − yi)2
) 1

2

,where {xi},{yi} are sorted �observations�.
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clustering to the desired level is performed, we choose the most representative lottery from each

cluster, i.e., the lottery that has the smallest mean Wasserstein distance to the other members of the

cluster. We assume that the choice set faced by a bettor on a given day includes the lottery chosen

on that day and the 100 lotteries that are most representative of all day lottery choices observed

in our sample, the idea being that this reduced choice set reasonably spans the space of all feasible

day lotteries available in the sportsbook.15 Finally, we augment the resulting choice set with a safe

lottery that represents the option not to place any bets on that day.

4 The Empirical Model

4.1 Econometric Model

To analyze bettors' choices out of the set of alternative lotteries, we use a multinomial discrete choice

model and in particular, a random utility model with random coe�cients (mixed logit). The mixed

logit model is one of the most �exible and widely used innovations of discrete choice modeling. Unlike

standard logit, which allows for only observed heterogeneity in tastes across individuals, mixed logit

also accounts for unobserved taste heterogeneity by assuming that individual preference parameters

are randomly distributed in the population (McFadden and Train (2000)).16

Under the random utility model, the utility Unjt that individual n obtains from choosing lottery

j on day t can be decomposed into a deterministic and a random component as:

Unjt = Vnjt + εnjt

with Vnjt and εnjt being the observed and unobserved parts of utility respectively.

In this study, Vnjt will take a non-linear utility functional form h (ρn,Pnjt), wherePnjt represents

the probability distribution over the set of monetary prizes of lottery j chosen by individual n on

day t (representative utility) and ρn is a vector of parameters representing the tastes of individual

n, which is to be estimated from the data. For instance, under the expected utility theory with

CRRA, h (·) will be given by:

h (·) =
∑
k

pkU (mk) =
∑
k

pk

(
m1−ρn
k

1− ρn

)
15An alternative approach would be to adopt a probabilistic choice set generation process where the probability

that a particular choice set is chosen among the set of all possible choice sets is either a function of exogenous factors
(e.g., budget constraints) as Manski (1977) proposes, or a function of the underlying utilities of the alternatives that
belong in each choice set as Swait (2001) proposes. In our case, with 100 alternative lotteries the set of all subsets of
the alternatives would contain 2100 − 1 elements so we would need to impose further restrictions on it.

16Under an alternative interpretation, mixed logit allows for correlation in unobserved errors in choice over time
(Revelt and Train (1998)) and/or rich substitution patterns across alternatives.
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where ρn is the risk aversion coe�cient of bettor n and Pnjt := (p1,m1; . . . ; pK ,mK)njt where

probability pk is assigned to monetary outcome mk, for k = 1, 2, . . . ,K.

The unobserved utility term εnjt can be interpreted as i) possible mistakes that the bettor might

make due to carelessness in evaluating or choosing a bet, ii) utility components that are known to the

bettor but unobserved by the econometrician or iii) unobserved variation in the choice behavior of

individual n when facing the same observed portion of utility Vnjt ∀j, t. The logit model is obtained

by assuming that each of the error terms εnjt is i) extreme value distributed with a location parameter

ηn and a scale parameter µn > 0 and ii) independently and identically distributed across individuals,

alternatives and time. The mixed logit model assumes that the unknown utility parameters, labeled

ρn, vary over decision makers in the population with some density f (·|θ) to be speci�ed by the

researcher.

The probability L (ynjt) that lottery j is chosen by bettor n on day t out of the set of alternative

lotteries C is given by:

L (ynjt) = Pr

(
Vnjt + εnjt ≥ max

j∈C
(Vnjt + εnjt)

)

which under the assumptions of the mixed logit speci�cation becomes:

L (ynjt|θ) =

ˆ
ρn

∏
t

L (ynjt|ρn) f (ρn|θ) dρn (1)

where

L (ynjt|ρn) =
eknVnjt∑

i∈C
eknVnit

(2)

is the standard logit choice probability. Note that in Equation 2, we have normalized the variance

µn of the error terms to unity and therefore the scale of the utility kn can be interpreted as the

relative precision of the error. It can be shown that when the cardinality of the choice set is greater

than 2, the relative error precision kn a�ects the estimation of the utility parameters. We therefore

treat kn as an additional free parameter, randomly distributed across individuals, to be estimated

along with the parameters included in ρn.

4.2 Cumulative Prospect Theory

Many authors have pointed out the suitability of prospect theory for explaining the popularity

of gambling and the actual behavior of gamblers. Tversky and Kahneman (1992) �rst suggested

that prospect theory can explain why people bet on longshot outcomes at actuarially unfair odds

(e.g. purchase of lottery tickets). Barberis (2010) shows that prospect theory can also explain
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the popularity of 50:50 casino bets and that it captures many features of the observed gambling

behavior. On the empirical side, Jullien and Salanie (2000) and Snowberg and Wolfers (2010) �nd

that prospect theory has the highest explanatory power for the actual behavior of a representative

racetrack gambler.

Cumulative prospect theory (CPT) is a variant of the original prospect theory proposed by Kah-

neman and Tversky (1979). According to CPT, an agent evaluates a lottery (p−m,m−m; . . . ; p0,m0; . . . ; pn,mn)

where m−m ≤ . . . ≤ m0 = 0 ≤ . . . ≤ mn by assigning it the value:

∑
i

πiu (mi)

where

πi =

 w+ (pi + . . .+ pn)− w+ (pi+1 + . . .+ pn) for 0 ≤ i ≤ n

w− (p−m + . . .+ pi)− w− (p−m + . . .+ pi−1) for −m ≤ i < 0
(3)

with w+ (·) and w− (·) being the probability weighting functions for gains and losses, respectively,

and u (·) is the value function.17 The main characteristics of this theory are the following: i) Utility

is de�ned over gains and losses relative to a reference point rather than over �nal wealth positions;

ii) The value function u is concave in the domain of gains and convex in the domain of losses,

meaning that people are risk averse over gains, and risk-seeking over losses. It also has a kink at

the origin, indicating a greater sensitivity to losses than to gains (loss aversion); iii) The framing

of outcomes can a�ect the reference point used in the evaluation of prospects (mental accounting);

and iv) People evaluate gambles using transformed probabilities obtained by applying a probability

weighting function on objective probabilities. The probability weighting function has an �inverse S-

shape�, implying that people tend to overweigh low probabilities and underweigh high probabilities.

The di�erence of CPT from the original version of prospect theory is that probability weighting is

applied to the cumulative probability distribution instead of the probability density function.18

Here we employ the value function and probability weighting function proposed by Tversky and

Kahneman (1992):

u (m) =

 ((W +m)−RP )
a for W +m ≥ RP

−λ (RP − (W +m))
a for W +m < RP

(4)

17When i = n and i = −m, Equation 3 reduces to πn = w+ (pn) and π−m = w− (p−m), respectively.
18This procedure for assigning weights ensures that the utility function satis�es monotonicity. It also has the

appealing property that the weights attached to two outcomes with the same objective probability may di�er depending
on their relative standing. This would imply, for example, that extreme outcomes are assigned particularly high or
low weights.

18



and

w− (P ) = w+ (P ) =
P γ

(P γ + (1− P )
γ
)

1
γ

(5)

where RP = W is the reference point that separates losses from gains, a ∈ (0, 1) measures the

curvature of the value function, λ > 1 is the coe�cient of loss aversion, and γ ∈ (0.28, 1) measures

the curvature of the probability weighting function.1920

4.2.1 State Dependence

The panel aspect of our dataset is particularly interesting, because it allows us to examine the

existence of possible state and time dependence in bettors' risk preferences. One form of state

dependence we consider is the dependence of bettors' risk preferences on the outcomes of their

previous bets, an idea that is supported by the psychology literature. Thaler and Johnson (1990)

study risk-taking behavior in an experimental setting and �nd that when people are faced with

sequential gambles, they are more willing to take risk after prior gains than after prior losses. This

behavior is labeled �the house money e�ect�, re�ecting the idea that after a prior gain, losses are

coded as reductions in this gain, as if losing the �house's money� is less painful than losing one's own

cash. Gertner (1993) and Post et al. (2008)obtain similar results when studying the behavior of TV

game show contestants. Contrary to these studies in which subjects never lose money out of their

own pockets, our study examines this e�ect from bettors who experience real losses ranging from a

few dollars to thousands of dollars.

Prospect theory o�ers a natural framework to study how prior outcomes could a�ect people's

subsequent choices. Since the framing of outcomes a�ects the reference point relative to which gains

and losses are evaluated, it seems reasonable to allow this reference point to depend on individuals'

prior betting performance. In particular, after incurring a gain/loss, the reference point might not

update completely to re�ect this gain/loss but rather remain sticky to some previous level resulting

in prior outcomes being integrated with current payo�s.

Formally, we express this idea by using a variant of the cumulative prospect theory described

above. First, we create a measure of previous gains/losses experienced by bettor n on day t, denoted

by CumProfitnt, as the cumulative payo� of all the bets previously placed by bettor n that were

settled from one month before the current bet day up to one day before the current bet day, i.e.,

from t − 30 up to t − 1.21 Then, we allow the reference point RPnt that bettor n uses to evaluate
19To reduce the number of free parameters we restrict the curvature of the probability weighting function to be equal

in the domain of gains and losses. Using experimental data, Tversky and Kahneman (1992) estimate the probability
weighting parameters for their median subject to be 0.61 and 0.69 for gains and losses respectively.

20Ingersoll (2008) notes that the probability weighting parameters need to be above the critical value 0.28 to ensure
that decision weights are positive and the probability weighting function is monotone.

21Note that this variable is just a proxy of bettor n's cumulative gains on day t. First, it is day-speci�c rather than

19



the payo�s of the lottery of day t to be a convex combination of bettors' wealth with and without

the payo�s of previous bets, i.e.

RPnt = δnWnt + (1− δn) (Wnt − CumProfitnt)

where Wnt is the wealth of bettor n in the beginning of day t including all gains/losses incurred

during the last month up to day t, and δn ∈ [0, 1] is an individual-level parameter to be estimated,

that measures the stickiness of the reference point for bettor n. When δn = 1, the reference point is

instantaneously updated to incorporate the outcomes of previous bets as standard CPT suggests.

To illustrate this idea with an example, consider the following situation. Suppose that your

wealth in the beginning of day t is $120 including your last month's cumulative gains which are

−$20. According to the standard version of CPT, the reference point relative to which people will

evaluate the outcomes of the day lottery they are about to take should be $120− $20 = $100. Here

we suggest that this reference point does not update completely to $100 but rather remains sticky

to some number between $120 and $100, let's say $110. Therefore, positive outcomes less than $10

will now be coded as a loss.

Apart from the dependence of the reference point on previous betting performance, the richness

of our dataset allows us to consider an additional, previously unexplored, channel through which

prior outcomes could a�ect bettors' subsequent risk-taking. In particular, we consider an extension

of standard CPT in which the loss aversion parameter λ and the curvature of the value function α

of bettor n on day t are allowed to be a linear function of earlier bet outcomes, i.e.

λnt = λn0 + λn1CumProfitnt

αnt = αn0 + αn1CumProfitnt

where λn0, αn0 are individual-speci�c intercepts and λn1,αn1 measure the sensitivity of λ and α to

previous betting performance.

In addition to the dependence on previous bet outcomes, in future research we are planning

to explore more types of possible time dependence in bettors' behavior. For instance, it would be

bet-speci�c creating a problem if some bets placed on day t were placed after some previous bets placed on the same
day have already paid o�. Since we only observe the dates on which bets were placed but not their exact times, this
problem cannot be resolved. Second, a bet is considered settled when all uncertainty about it has been revealed, i.e.,
we know the outcome of all the matches it involves. However, the earliest time at which the payo� of a bet is known
is not necessarily the conclusion of the last game involved in it, i.e., the bettor might already know his payo� if he
knows the outcome of some, not all, of the games that he has combined in the same bet. For example, in the case of
a double, if someone loses the bet on the �rst match, he knows he has lost the bet no matter what happens in the
second match or in the case of a doubles on 3 games, he knows he has won at least some amount of money if he wins
2 of the matches.
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interesting to allow utility parameters to vary with the GDP of bettors' country of origin representing

the e�ect on individuals' preferences of aggregate macroeconomic conditions. Furthermore, possible

time dependence above and beyond the e�ect of economic growth and business cycle �uctuactions

could be captured by a set of time dummies. Finally, we can introduce state dependence in terms

of outstanding bets (i.e. bets that have not paid o� before the current day lottery is chosen), for

example by allowing risk preference parameters to be a linear function of the characteristics of these

bets (e.g. mean, variance, skewness).

4.3 Frequency of Betting

In addition to the lotteries chosen by bettors on the days on which they have decided to bet, we

also observe the frequency with which individuals place their bets. In our setting, both the play

frequency and the lottery choice per play are informative of bettors' risk aversion so the two should

not be considered in isolation. For example, failing to consider the play frequency, a bettor that

concentrates all of his bets on one day of the week will be mistakenly predicted to have lower risk

aversion than a bettor who spreads the same bets on more than one days.

The observed play frequency is determined both by the frequency with which people get the

chance to log into the sportsbook depending on their lifestyle (e.g., a single bettor might have more

free time than a married bettor, and will therefore play more frequently) but also by the number

of bet opportunities people reject depending on their risk preferences. To account for the e�ect of

play frequency in the empirical analysis, we partition bettors' decision-making process into three

sequential stages: In the �rst stage, bettor n gets or does not get the opportunity to log into the

sportsbook on day t with probability pnt and 1−pnt respectively.22 This stage is not a decision that

the bettor makes: whether he gets the chance to bet or not on a given day is determined solely by

his demographic characteristics (i.e., gender, age, family situation, etc.) and time covariates (i.e.,

day of the week, etc.). If the bettor gets the chance to log into the sportsbook, in the second stage

he decides whether or not to accept this opportunity. If he accepts it, in the third stage he chooses

a day lottery from the set of alternative risky lotteries. If he rejects it, he essentially chooses a safe

lottery that will pay back his stake with probability 1.

Letting yn = (yn1, . . . , ynTn)
′ be the sequence of daily lottery choices we observe for individual

n and xn = (xn1, . . . , xnTn)
′ be a set of dummy variables indicating whether we observed play on a

given day or not for individual n, the conditional probability of observing {xn, yn} is given by:

22This probability is allowed to vary with bettors' demographic characteristics as well as day, month and year
dummies.
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L (xn, yn|ρnt, pnt) =

Tn∏
t=1

{xntpntL (ynt|ρnt) + (1− xnt) [pntL (ynt = 0|ρnt) + (1− pnt)]} (6)

Equation 6 says that if the bettor is o�ered the opportunity to play (with probability pnt), he may

either reject it, i.e., choose a safe lottery, with probability L (ynt = 0|ρnt), or he may accept it and

choose one of the risky lotteries available in the sportsbook with probability L (ynt|ρn). Note that

the former is observed as no bet for that day. Probabilities L (ynt = 0|ρnt) and L (ynt|ρnt) are the

standard logit choice probabilities given by Equation 2. If the bettor does not have the opportunity

to bet (with probability 1 − pnt), then we simply observe no bet for that day. The probability pnt

is treated as a latent parameter to be estimated from the data together with the vector of utility

parameters ρn.

5 Estimation of the Benchmark Model

There are two ways to estimate our extension of the multinomial mixed logit model described in the

previous section. The classical approach would be to implement a Maximum Simulated Likelihood

(MSL) methodology, which requires the maximization of the log-likelihood function given by the

logarithm of Equation 11 above, where the integrals are approximated through simulation.23 The

Bayesian approach suggests starting out with some prior density for the latent parameter vector

βn =
(
ρn
pn

)
and then using the observed data to update this prior and form a posterior density. With

a large enough sample, both approaches should asymptotically provide similar results. However,

given the complexity of the empirical speci�cation we employ, in our case the Bayesian approach

is far more convenient in terms of computation time. Moreover, as noted by Train (2001), the

Bayesian procedure also has a theoretical advantage over the classical one, which derives from the

fact that both estimations require the simulation of an integral that cannot be expressed in closed

form: The conditions under which the simulation-based version of the Bayesian estimator becomes

consistent, asymptotically normal and e�cient are less stringent than those required for the classical

estimator.24 In view of the above, we decided to follow a Bayesian perspective in estimating our
23The simulation is performed by taking draws from f (·), calculating the integrand for each draw, and averaging

the results.
24The Bayesian estimator is consistent and asymptotically normal for a �xed number of simulation draws. If the

number of draws rises with the sample size L at any rate, the simulation noise disappears asymptotically and the
Bayesian estimator becomes e�cient and asymptotically equivalent to the MLE. In contrast, the MSL estimator
becomes consistent when the number of draws rises with L and asymptotically normal (and equivalent to the MLE)
when the number of draws rises faster than

√
L. As Train (2001) points out, since it is di�cult to know in practice

how to satisfy the condition that the number of draws rises faster than
√
L, the Bayesian estimator is attractive

relative to the MSLE, even though their non-simulated counterparts are equivalent.
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empirical model.

In the following sections we present the hierarchical model we employ and discuss how we estimate

it using Markov Chain Monte Carlo (MCMC) methods in the Bayesian framework.

5.1 Hierarchical Bayes Model

We would like to have a posterior distribution for the utility parameter vector ρ = (ρ′1, . . . , ρ
′
N )
′

and the exogenous probability of having the opportunity to bet p = (p′1, . . . , p
′
N )
′. The vector of

individual-speci�c parameters associated with the CPT speci�cation that includes path-dependence

is ρn = (kn, αn, λn, γn, δn)
′ where kn is the scale of the utility, αn the curvature of the utility

function, λn the loss aversion coe�cient, γn the curvature of the probability weighting function and

δn measures the degree to which the reference point that separates gains from losses is a�ected by

previous bet outcomes.

Selected parameters are allowed to vary with bettors' demographic characteristics and variables

that capture possible state dependence on bettors' risk preferences, such as previous betting perfor-

mance. Therefore, the elements of βn =
(
ρn
pn

)
can be expressed as:

βn = β0 + Z ′nβ1 +Gntβ2

where Zn is a vector of individual speci�c attributes andGnt is a vector of individual and time varying

covariates. For identi�cation purposes, we restrict the e�ect of the demographics to be �xed, i.e., the

same across individuals, and allow the intercept β0 and the sensitivity to state dependent variables

β2 to vary randomly in the population. The covariates in Zn include gender, age, education level,

family situation and a set of home area dummies. As such, we divide the set of parameters β into

two sets; β̂ represents a part of β containing deterministic parameters and β̃n is a set of parameters

randomly distributed in the population.

The Bayesian estimation methodology we employ involves the following steps. In the �rst step,

we specify the prior distributions for the parameters of interest. For β̃n we adopt a hierarchical

normal prior. In particular, we assume that all individual-level parameters are i.i.d. drawn from a

multivariate normal distribution with population mean b and population variance-covariance matrix

W , i.e., ∀β̃n
β̃n|b,W ∼ N (b,W ) .

Appropriate transformation functions are applied so that all parameters in β̃n lie in (−∞,+∞). In

particular, a logarithmic function is used to map to the real line parameters that are allowed to

take only positive values and a Johnson's transformation function is used to transform parameters
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that are bounded by 0 and 1.25The population level parameters b and W follow a multivariate

normal-inverse Wishart unconditional prior distribution, i.e.:

W−1 ∼W
(
v,V−1

)
b|W ∼ N (b,W/k)

In Section 8.1 we discuss our choice of the prior hyperparameters v,V,b and k.

In the second step, we derive the posterior distribution of the parameters of interest, i.e., β̃n, b,W ,

β̂, conditional on the observed data {X,Y }. The joint posterior distributionK
({

β̃n

}N
n=1

, b,W, β̂|X,Y
)

will be proportional to the product of the likelihood function and the prior densities, i.e.:

K

({
β̃n

}N
n=1

, b,W, β̂|X,Y
)
∝

∏
n

L
(
xn, yn|β̃n, β̂

)
·
(
fN

(
β̃n|b,W

)
· k (b,W )

)
· k
(
β̂
)

(7)

where i) fN
(
β̃n|b,W

)
is the normal density with mean b and variance W , ii) kβ (b,W ) =

k (b) k (W ) is the prior on b and W , i.e., normal for b and inverted Wishart for W , and v) k
(
β̂
)
is

the prior for the �xed parameters β̂. The likelihood L
(
xn, yn|β̃n, β̂

)
is given by Equation 6.

Finally, information about the joint posterior K
(
β̃n, b,W, β̂|X,Y

)
is obtained through simula-

tion, that is, by taking draws from the posterior and computing relevant statistics, e.g., moments,

over these draws. Since this posterior is not from a known family of distributions and cannot be

drawn from directly, we use the Gibbs Sampler algorithm (Gelfand and Smith (1990)) to make

sampling possible. In particular, we generate a sequence of draws from the conditional posterior

distribution of each parameter given the previous draw of the other parameters and the data. The

resulting sequence of draws from the conditional posteriors is a Markov chain with a stationary

distribution equal to the joint posterior distribution. An attractive feature of Gibbs sampling is

that it allows for data augmentation of latent variables (Tanner and Wong (1987)), which amounts

to simulating the individual-level parameters β̃n conditional on the data and the population level

parameters and then treating these simulations as part of the observed data. This technique enables

us to obtain individual-level parameter estimates while facilitating the derivation of the posterior

distribution. We use joint distribution tests (see Geweke (2004)) to verify that the Gibbs sampler

is derived and programmed correctly.
25As an example, the utility scale parameters kn > 0 and the probability parameter 0 < pn < 1 will be transformed

as follows:

k̃n = log (kn)

p̃n = log

(
pn

1− pn

)
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6 Estimation Results

In this section we present the estimation results of the CPT speci�cation with and without the

presence of state-dependence in individual risk preferences.

6.1 Cumulative Prospect Theory Without State-Dependence

Figure 5 shows the posterior simulator distribution of the latent parameter vector β̃n estimated

by taking draws from a normal distribution with parameters equal to the posterior mean of the

population level parameters.26

[Figure 5 about here.]

The posterior means of the CPT preference parameters α and λ imply that for the average bet-

tor in our sample the concavity (convexity) of the value function in the region of gains (losses) is

mild (α = 0.82), while the kink at the origin is sharp (λ = 2.73). Also, the posterior mean of the

probability weighting parameter, γ = 0.85, indicates that the average bettor exhibits only moderate

deviation from linear probability weighting. The estimated loss aversion parameter matches the

empirical observation that the average bettor in our sample tends to reject 50-50 bets The estimated

probability weighting parameter (γ = 0.85) matches the empirical observation that bettors favor

lotteries with medium positive skewness but typically reject lotteries with very high positive skew-

ness, which imposes a lower bound in the estimated parameter. Using a di�erent set of lotteries,

Tversky and Kahneman (1992) �nd that their median experimental subject has a value function with

a shape similar to the one we estimate here (a = 0.88 and λ = 2.25), albeit with a more pronounced

probability distortion (γ = 0.65).

Figures 6 and 7 show the posterior simulator distribution evaluated not only at the posterior

mean (solid line) but also at the lower and upper bound of the 95% Highest Predictive Density

Interval (HPDI) (dashed lines) for the population mean and the population variance of the CPT

parameters.27

[Figure 6 about here.]

[Figure 7 about here.]

26The appropriate transformation functions are applied to transform parameters in β̃n that need to be constrained
within a speci�c range.

27The HPDI is the Bayesian analog to the classical 95% con�dence interval, i.e. a 95% HPDI delivers a lower and
an upper bound such that the resulting interval is the smallest possible to contain 95% of the density mass of a given
distribution.
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The two panels of Figure 8 show the shape of the value function and the probability weighting

function in the CPT speci�cation, where the solid lines correspond to the curves for the posterior

population means of parameters a, λ and γ and the dashed lines delimit their respective HPDIs.

[Figure 8 about here.]

Nevertheless, the most striking feature of Figure 5 is the presence of substantial heterogeneity in

all utility parameters, which indicates that making inferences based simply on the posterior means

is inappropriate and may lead to biased results.28 In particular, the posterior standard deviation of

parameters a, λ and γ are 0.19, 2.2 and 0.11 respectively. We can therefore conclude that there is a

continuum of prospect theory types in the population, whose choices are characterized by di�erent

parameter triplets (a, λ, γ).

By looking at the correlations among the CPT parameters presented in Figure 9, we observe

that there is a very strong negative correlation between parameters γ and λ (−0.87), a less strong

positive correlation between parameters α and γ (0.34), and a negative correlation between α and

λ (−0.27), all of which are signi�cant at the 95% level. These correlations imply that the three

features of prospect theory tend to move together, and more predominantly, that individuals with

high sensitivity to losses (high λ) tend to signi�cantly distort probabilities (low γ). This negative

correlation between λ and γ seems reasonable if we consider that increasing the loss aversion pa-

rameter λ makes the global shape of the value function more concave, which in turn implies that

people dislike positively skewed lotteries (i.e. large gains with small probability) than they otherwise

would. Since we observe that bettors in our sample often choose gambles with positive skewness, by

lowering γ the counterintuitive e�ect of λ on positively skewed gambles is mitigated.

[Figure 9 about here.]

6.2 Interpretation of Results

In this section we explore how the estimated preference parameters re�ect individuals' actual behav-

ior by examining the relationship between the individual-level estimates and the main characteristics

of the chosen lotteries.

It is well-known that the parameter α controls the curvature of the value function: A smaller

α corresponds to a higher degree of risk-aversion in gains and a higher degree of risk-lovingness in

losses. The results in Panel A of Figure 10 show that individuals for whom we estimate a smaller α

don't exhibit higher risk-aversion in gains (see Columns 3 and 4), but they do exhibit a statistically

signi�cantly higher degree of risk-lovingness in losses (see Columns 5 and 6). What is somewhat

28It is important to note that this heterogeneity is not driven by our selection of priors (see Section 8.1).
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less well-known about α is that for some distributions of outcomes, a small α is also associated with

skewness-aversion. In particular, Barberis and Huang (2008) show that in a �nancial market with

several assets having normally distributed payo�s and an asset having a positively-skewed payo�,

the expected excess return on the positively-skewed asset in equilibrium is decreasing in α. In

addition, Ågren (2006) shows that in a �nancial market with assets having normal-inverse Gaussian

distributed returns, the derivative of an investor's utility with respect to skewness is increasing in

α. These are by no means fully general results, but they are indicative of another channel through

which α can a�ect behavior. Indeed, the results in Panel B of Figure 10 verify that in our data,

individuals for whom we estimate a smaller α choose gambles with statistically signi�cantly smaller

skewness.

[Figure 10 about here.]

The parameter λ controls the degree of loss aversion of the value function: A larger λ corresponds

to a more pronounced kink of the value function at the reference point. This higher degree of local

concavity is often used to explain peoples' aversion to 50-50 gambles. Interestingly, Barberis and

Huang (2008) and Ågren (2006) also show that a large λ is associated with skewness-aversion. Again,

the results in Figure 10 verify this in our data, since individuals for whom we estimate a larger λ

choose gambles with statistically signi�cantly smaller skewness. Consistent with this intuition, the

results in Panel B of Figure 10 show that a larger λ is also associated with signi�cant variance-

aversion.

Finaly, the parameter γ controls the degree of probability weighting: Loosely speaking, a smaller

γ corresponds to a more pronounced systematic overweighting of small probabilities. As a result, a

smaller γ is associated with a preference for positive skewness and an aversion to negative skewness.

The results in Panel B of Figure 10 verify this in our data, since individuals for whom we estimate

a smaller γ choose gambles with statistically signi�cantly larger skewness.

6.3 Cumulative Prospect Theory With State-Dependence

6.3.1 Descriptive Statistics

Before proceeding with the results of the structural estimation model described in Section 4.2.1,

it would seem natural to start our investigation of the e�ect of previous betting performance on

subsequent risk-taking by conducting some preliminary regression analysis. We therefore estimate

two models, one for the decision to play in the sportsbook or not, and one for the characteristics

of the lotteries chosen given that the bettor has decided to play. We shall henceforth refer to the

former as the participation model and to the latter as the lottery-choice model. We are interested in
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how both the participation decision and the lotteries chosen are a�ected by bettors' previous betting

performance measured by their cumulative gains over the period of one month (CumProfitnt). The

participation model is given by:

Betnt = Xntβ + εnt

where Betnt is an indicator variable for whether bettor n has placed at least one bet on day t or not

and Xnt is a vector of observable covariates including the variable of interest CumProfitnt as well

as individual �xed e�ects. The lottery-choice model is given by:

Lotterynt = Xntα+ vnt

where Lotterynt is the characteristic of the lottery chosen by bettor n on day t, e.g. mean, variance,

skewness, etc., and Xnt is de�ned as above. It is important to note here that the variable Lotterynt

is observable not only conditional on the bettor having decided to bet in the sportsbook on a given

day, but also for all other days of an individual's betting history, where a safe lottery has been

selected on days on which we observe no play. Therefore, we do not have to worry about the classic

selection bias problem often encountered in this type of analysis and we can estimate the two models

independently. We should keep in mind, however, that in these simple regressions it is not easy to

account for the confounding factor of play frequency discussed in Section 4.3, which might a�ect the

parameter estimates of the participation model. With this caveat in mind, the results of this section

are meant to give us a �rst indication of the directional e�ect of previous betting performance on

subsequent risk-taking and are by no means conclusive.

Figure 11 presents the results of the pooled probit regression (top panel) and the pooled OLS

regression (bottom panel) of the participation model and the lottery-choice model respectively. We

observe that previous betting performance signi�cantly a�ects both the participation decision and

the characteristics of the chosen lotteries. In the participation model, we �nd that the variable

CumProfitnt has a signi�cant positive coe�cient implying that bettors are more likely continue

to play after prior gains than after prior losses. In the lottery choice model, however, we �nd that

the variable CumProfitnt has a signi�cant negative e�ect on the variance of the chosen lotteries

indicating that bettors who have experienced previous gains (losses) subsequently become more risk

averse (risk loving). Keeping in mind the caveat associated with the speci�cation of our participation

model, we now proceed with the results of our formal estimation model which properly controls for

the observed play frequency.

[Figure 11 about here.]
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6.3.2 Results

Next, we turn our attention to the estimation of the full econometric model of the CPT speci�cation

with state-dependence described in Section 4.2.1. We �rst employ the Deviance Information Crite-

rion to con�rm that the extended model that includes state-dependence is actually to be preferred

than the standard CPT speci�cation without state-dependence.

Our estimation results indicate that i) for the majority of bettors the reference point does not

update completely to re�ect prior outcomes but rather remains sticky to some previous level resulting

in prior gains/losses being integrated with current payo�s (the posterior mean of parameter δ is 0.32),

ii) the sensitivity of the curvature of the value function on previous betting performance, denoted

by α1, is positive but insigni�cant, and iii) the sensitivity of the loss aversion parameter on previous

betting performance, denoted by λ1, is positive and signi�cant.

Our �nding that the sensitivity to losses increases after prior outcomes implies that bettors

become e�ectively more risk averse (loving) after gains (losses). This �nding is consistent with the

disposition e�ect observed in �nancial markets (e.g. Odean (1998), Zhu and Dhar (2006)), i.e. the

tendency of investors to sell stocks that have risen in value, rather than dropped in value, since

purchase. At �rst sight, it also seems to be opposite to the �house money� e�ect reported in the

experiment of Thaler and Johnson (1990) and the game show studies of Gertner (1993) and Post

et al. (2008). There is, however, an important caveat to this evidence, which suggests that our

�nding should not be interpreted as inconsistent with the �house money� e�ect documented in the

aforementioned studies. The �house money� e�ect focuses primarily on how people behave after

previous gains and not after previous losses which is what we usually observe in our gambling data.

In fact, by allowing the utility parameters to be just a linear function of previous bet performance,

we are not able to capture possible di�erential e�ects of previous outcomes on wins versus losses.29

In fact, given that most bettors in the sportsbook have prior losses, it is possible that our �nding is

driven by increased risk-taking after prior losses and not necessarily by decreased risk-taking after

prior gains. Indeed, Thaler and Johnson (1990) report that prior losses induce risk seeking behavior

for gambles that o�er bettors the opportunity to break even, and in our setting the possibility of

such gambles is abudant.

The behavior documented in our gambling data seems to be inconsistent with some of the as-

sumptions employed by some behavioral �nance studies. For instance, Barberis et al. (2001) explain

the volatility puzzle assuming that individuals' loss aversion increases after previous losses. In our

setting, however, the opposite e�ect seems to govern gamblers' behavior. Barberis and Xiong (2009)

29In the future we are planning to introduce interaction terms that will allow for a di�erent slope in the region of
gains and losses.
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show that, contrary to conventional wisdom, prospect theory might not explain the disposition e�ect.

The authors argue that a loss averse prospect theory agent is only willing to buy stocks that have

a reasonably skewed distribution. They then show that this skewed distribution together with the

mild concavity in the value function estimated by Tversky and Kahneman (1992) and the assump-

tion that people integrate the outcomes of successive gambles, implies that the optimal strategy

for a prospect theory agent is to increase (decrease) risk after gains (losses). The authors conclude

that prospect theory actually predicts the opposite of the disposition e�ect, i.e. the house money

e�ect. In our setting, we con�rm that the average bettor is loss averse with a mildly curved value

function and a sticky reference point as standard CPT suggests, but we also �nd that previous bet

outcomes directly a�ect parameter λ, inducing greater (less) risk aversion after gains (losses). This

result indicates that even for skewed distributions a prospect theory agent might in fact display the

disposition e�ect. We are planning to explore this idea further in the future.

7 Extensions

7.1 Mixture of Utilities

Although prospect theory o�ers a coherent framework for analyzing betting choices, researchers have

noted that gambling behavior can also be reconciled with an expected utility model. Several ap-

proaches have been proposed to explain the tendency of risk averse people to accept unfair gambles.

Friedman and Savage (1948) and Markowitz (1952) suggest that local convexities in an otherwise

concave utility function can create a preference for skewness while Golec and Tamarkin (1998) �nd

empirical support for risk averse, skewness loving behavior in the marginal racetrack bettor. Clotfel-

ter and Cook (1989) and Conlisk (1993) explain gambling behavior using a standard expected utility

function augmented with a direct utility of gambling that captures the entertainment/excitement

associated with casino games. Finally, a stochastic choice behavior that allows for variation in the

preferences of a single individual when faced repeatedly with the same choice situation, can explain

why people are not always observed to choose the alternative with the highest utility (here the option

not to play in the casino) and might as well appear in our sample. On top of that, the availability of

near safe lotteries inside the sportsbook further shrinks the utility di�erence between entering the

casino and not.

Since it is not clear that our sample is drawn exclusively from the population of prospect theory

agents, in this section we estimate a utility mixture model that allows for di�erences across pop-

ulation groups in the utility theories that have generated the observed choices. In particular, we

assume that our sample is drawn from two latent populations: the population of rational agents
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whose choices are characterized by the expected utility theory of von Neumann and Morgenstern

(1944) and the population of behavioral agents whose choices are characterized by the cumulative

prospect theory of Tversky and Kahneman (1992). In this way, we are able to identify and charac-

terize the distribution of risk preferences both across and within the two most widely used theories

of choice under risk.

The cumulative prospect theory model is described in Section 4.2. Under the expected utility

theory, an agent evaluates a gamble (p1,m1; . . . ; pn,mn) by assigning it the value:

∑
i

piu (mi)

where pi is the probability associated with outcome mi for i = 1, . . . , n. The functional form for

u (·) that we estimate here is a �exible HARA speci�cation, which nests, among other things, both

the CRRA and the CARA families:

U (m) =
(ρ0 +W +m)

1−ρ1

1− ρ1
(8)

whereW represents the level of wealth against which the lottery payo�s are evaluated and ρ0, ρ1 are

parameters to be estimated. Strictly speaking, under the expected utility framework, the reference

wealth level W should be interpreted as individuals' lifetime wealth at the time they place each

bet. However, because lifetime wealth is not observable and because some individuals might not

integrate their total wealth with the bet payo�s, this measure of W is less suitable in empirical

work. We therefore follow Post et al. (2008) and Beetsma and Schotman (2001) and treat W as

an individual-speci�c free parameter that we estimate from the data. Therefore, we can identify

parameters ρ̃0 = ρ0 +W and ρ1.30

Under the utility mixture model, each of the utility classes is described by a component prob-

ability density function, and its mixture weight is the probability that an individual comes from

this component31, i.e. the choices of this individual are best described by the speci�c utility theory.

Mixture modeling has often been applied in Bayesian econometrics to allow for �exible prior dis-

tributions of the parameters to be estimated (e.g. Geweke and Keane (1997)) The use of mixture

models to compare the validity of theories of choice under risk is a novel approach. There are a

few recent experimental studies that use �nite mixture models to characterize individual risk taking

behavior, but their work di�ers from ours in several respects. Harrison and Rutström (2009) apply

30An alternative would be to approximate lifetime wealth using the census data information on individuals' annual
labor income (e.g., Bombardini and Trebbi (2007)). However, one issue with using proxies for income is that their
measurement error will be added to the parameter estimates.

31This mixing probability can also be related to individuals' observable characteristics.
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a utility mixture model by allowing the same subject to behave in accord with one utility class for

some choices and in accord with another utility class for other choices. In contrast, in this study

we �nd more reasonable to assume that all choices of the same subject are generated by one or the

other utility theory. Conte et al. (2009) estimate a mixture model of EUT and rank-dependent EUT

using maximum simulated likelihood techniques. In their model, they estimate the population-level

parameters of each utility by assuming that the population of each utility type consists of all in-

dividuals rather than the subset of individuals that are classi�ed to each type. Given their �nding

that all individuals are clearly associated with one utility class, their estimation procedure might

have substantially a�ected the parameter estimates. Bruhin et al. (2010) estimate a mixture of two

prospect theory types using a maximum likelihood-expectation maximization algorithm. In their

setup, they allow for heterogeneity only within the prospect theory speci�cation rather than both

within and across di�erent utility classes as we do in this study. Furthermore, Bruhin et al. (2010)

are not able to identify individual loss aversion since they consider lotteries that contain only positive

or only negative prizes. More importantly, since all these studies are based on choices among simple

lotteries presented to experimental subjects, it becomes particularly interesting to examine whether

the distribution of risk preferences changes when individuals are faced with more complex real-life

decision tasks.

Formally, in our utility mixture model, each subject is allocated to one of a set of Q utility

classes. Since the true allocation is unknown to the researcher, these are latent classes. The utility

Un that individual n obtains is therefore given by:

Un =

Q∑
q=1

enquq (ρnq) ,

where uq (·) is the q−class utility speci�cation (e.g., prospect theory, etc.) with individual-speci�c

parameter vector ρnq, and enq indicates the component utility in the mixture that the n−th indi-

vidual uses, i.e., enq = 0 or 1 and
∑Q
q=1 enq = 1, ∀n.

Letting ρn = (ρn1, . . . , ρnQ)
′ be the utility parameter vector, the conditional probability that

individual n makes a sequence of choices {xn, yn} given that he/she belongs to utility class q for

q = 1, . . . , Q can now be written as:

L (xn, yn|ρn, enq = 1, pn) =

Tn∏
t=1

{xntpntL (ynt|ρnq, enq = 1) + (1− xnt) [pntL (ynt = 0|ρnq, enq = 1) + (1− pnt)]} .

(9)

In practice, however, it is unknown which component utility the n−th individual uses, and thus we

let hq for q = 1, . . . , Q be the probability of the q−th utility being used, i.e., hq = P (enq = 1), ∀n
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with 0 ≤ hq ≤ 1 and
∑
q
hq = 1. Letting en = (en1, . . . , enQ)

′, we formally write en|h ∼ M (1, h) ,

where M (1, h) stands for the multinomial distribution that picks one alternative with probability

vector h.

Therefore, the probability of observing the data {xn, yn} for individual n, conditional on the

parameter vector βn =
(
ρn
pn

)
can now be written as:

L (xn, yn|βn, h) =

Q∑
q=1

hq · L (xn, yn|ρnq, enq = 1, pn) (10)

where L (xn, yn|ρnq, enq = 1, pn) is given by Equation 9 above.

The unconditional probability will be the integral of L (xn, yn|βn, h) over the latent parameter

vector βn (see Equation 1 above) and as a result the likelihood of observing our data {X,Y }, where

X = (x′1, . . . , x
′
N )
′ and Y = (y′1, . . . , y

′
N )
′ , is given by:

L (X,Y |h, θ) =
∏
n

(
ln

(
Q∑
q=1

hq ·
ˆ
βn

L (xn, yn|ρnq, enq = 1, pn) · f (βn|θ) dβn

))
(11)

where f (βn|θ) is the density function of βn characterized by parameters θ. In this study, we consider

Q = 2 utility classes representing the expected utility theory and the prospect theory. To overcome

the labeling identi�cation problem that is common in all mixture models, we assume a speci�c order

for the utilities considered, i.e., q = 1 corresponds to the HARA speci�cation and q = 2 corresponds

to the standard cumulative prospect theory speci�cation.

Methodologically, the utility mixture model is estimated using an extension of the hierarchical

Bayes model described in Section 5.1. In addition to the hierarchical normal prior used for the

parameter vector βn, we adopt a hierarchical Dirichlet prior for the individual-speci�c class mem-

bership indicator vector en, i.e. we assume that en|h ∼M (1, h) where h = (h1, . . . , hQ) follows the

Dirichlet distribution, i.e., h ∼ D (h). The joint posterior distribution in Equation 7 now becomes:

K

({
β̃n

}N
n=1

, b,W, β̂, {en}Nn=1 , h|X,Y
)
∝∏

n

L
(
xn, yn|β̃n, β̂, en

)
·
(
fN

(
β̃n|b,W

)
· k (b,W )

)
· (fM (en|h) · k (h)) · k

(
β̂
)

(12)

where fM (en|h) is the multinomial density that picks one alternative with probability vector h,

and k (h) is the Dirichlet prior on h. The likelihood L
(
xn, yn|β̃n, β̂, en

)
is given by Equation 10

where we have replaced the hq term with enq because given en we know which component utility

bettor n uses. We take draws from the above posterior distribution using the Metropolis-Hastings
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within Gibbs sampler algorithm analytically described in the Appendix.

7.1.1 Results of Utility Mixture Model

Figure 12 shows the posterior density of the individual mixing probability for the EUT model, i.e.

the probability with which a bettor is classi�ed as an EUT agent. We �nd that the posterior mean

of the EUT mixing probability is 14%, the posterior median is 11% and the posterior standard

deviation is 0.13.

[Figure 12 about here.]

Figure 13 presents the posterior simulator densities of the utility parameters of the HARA and the

CPT speci�cations. Substantial heterogeneity is present in all utility parameters. The distributions

of the CPT utility parameters are similar to the ones we report in our benchmark speci�cation. It

should be noted, however, that the CPT estimates include a minority of subjects who are essentially

expected value maximizers since they display an almost linear value function (α > 0.95), near linear

probability weighting function (γ > 0.95) and no loss aversion (λ < 1.05). Therefore the proportion

of bettors who strictly belong to the EUT class should be somewhat more than the 14% implied by

the posterior mean of the mixing probability. This proportion is similar to the one estimated in the

experimental studies of Conte et al. (2009) and Bruhin et al. (2010) using a di�erent set of lotteries

and di�erent estimation procedures. It is important to note here that by allowing for preference

heterogeneity both within and across the two utility theories and given our sample size, we do not

expect to �nd a clear classi�cation of individuals to either utility type. In other words, the fact

that almost all mixing probabilities are less than 0.5 does not mean that prospect theory preferences

�t the data better than EUT preferences for all subjects. On the contrary, the choices of subjects

who fall in the right tail of the mixing probability distribution are better explained by the EUT

model but the number of observations available in the sample are not enough to move their mixing

probabilities too far away from the population mean.

[Figure 13 about here.]

Regarding the parameters of the EUT speci�cation, we observe that the posterior mean of the

risk aversion parameter ρ1 is 2.4 with the posterior median and standard deviation being 2.45 and

2.75 respectively. As mentioned in other parts of the paper, we might have expected an agent with

a globally concave utility function to always turn down the negative expected value bets o�ered in

the sportsbook. The positive risk aversion coe�cient that we �nd without imposing any ex ante

constraints on its sign is not inconsistent with this observation. First, as Friedman and Savage (1948)

suggest, local convexities in bettors' otherwise concave utility functions can create a preference for
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the skewed lotteries available in the sportsbook. If this is the case, then our estimated positive ρ1

captures just the general shape of the utility function rather than this exact shape. In addition

to this, under the random utility model that we employ, people make their decisions based on a

probabilistic ranking of the alternatives available in their choice set. This framework can explain

not only why a standard expected utility maximizer will choose to bet in a sportsbook and has

therefore not been dropped from our sample but also why we do not estimate a negative ρ1 for all

subjects although that would immediately imply that someone is willing to accept negative expected

value bets. To be more speci�c, a positive ρ1 under a RUM means that the choices bettors make out

of the set of alternative lotteries are more consistent with the rankings implied by a positive ρ1 than

with the rankings implied by a negative ρ1. To illustrate this idea, consider the following simpli�ed

example. Suppose that the choice set among which choice is exercised consists of 3 alternative

lotteries: a safe lottery S := (0, 1) that returns payo� 0 with probability 1 and represents no bet,

and two risky lotteries that have negative expected value but di�erent variance: a low-variance

lottery RL := (−1, 0.6; 1, 0.4) and a high variance lottery RH := (−10, 0.6; 10, 0.4)32. A bettor with

a positive ρ1 would rank these alternatives in the order (S,RL, RH) while someone with a negative

rho would rank them in the order (RH , RL, S). Observing a sequence of choices in which a bettor

has chosen the safe lottery 20 − 30% of the time and the low-variance lottery the rest of the time,

is more consistent with a positive than with a negative risk aversion coe�cient.

8 Robustness Tests

8.1 Prior Sensitivity Analysis

In this section, we perform prior sensitivity analysis, to check whether our results depend crucially

on the prior assumptions.

Our baseline priors, for which we have reported results elsewhere, are k = 1, v = 5, b = 0 · I,

and V = 1.5I. Setting k and v as low as possible (note that v needs to be at least as high as the

number of parameters we estimate so that it remains proper) makes the priors as weak as possible,

and lets the data determine the posteriors. Doing so, renders the choice of b immaterial, so we have

set it equal to 0 by default. However, the choice of V does a�ect some posterior results, therefore we

report below results for di�erent choices of V. In particular, we report results for V = 15I, V = 1.5I,

V = 0.015I, which we refer to as prior 1, prior 2, and prior 3, respectively. Prior 1 assumes almost

no variance/heterogeneity in the population, while in the other end of the spectrum, prior 3 assumes

32The choice set that we actually use in this study consists of a safe lottery together with a 100 negative expected
value lotteries with varying levels of variance.

35



very large variance/heterogeneity, and prior 2 - our baseline - is somewhere in between.

From Figure 14 below, we see that the posterior population means are largely una�ected by the

choice of the prior. For α, the mode (mean) ranges from 0.87 (0.85)to 0.92 (0.90); for λ the mode

(mean) ranges from 1.7 (2.1) to 2.2 (2.5); while for γ the mode (mean) ranges from 0.87 (0.87) to 0.89

(0.89). In addition, the variance and skewness of the posterior population mean distributions aren't

substantially di�erent, meaning that the HPDIs for the parameters aren't substantially di�erent

either.

[Figure 14 about here.]

From Figure 15 below, we see that the posterior population variances are somewhat more a�ected.

More speci�cally, while the distribution of the posterior population variance for λ is identical for all

prior hyperparameter choices, the corresponding distributions for α and particularly for γ are quite

a�ected by the choices of priors. In the case of α, the population variance is estimated to be as low

as 4.34 or as high as 6.95. Comparing the prior densities for α with the corresponding posterior

densities, we conclude that the true population variance lies very close to 6.95. In the case of γ, the

population variance is estimated to be as low as 1.95 or as high as 7.87. Comparing this time the

prior densities for γ with the corresponding posterior densities, we can only conclude that the true

population variance lies between the bounds of 1.95 and 7.87, which is admittedly a large range.

However, we can safely conclude that the variance is bounded far away from 0, and therefore there

is signi�cant heterogeneity. It is also comforting to know that despite the substantial e�ect that the

choice of prior has on the posterior estimate of the population variance for γ, all other parameters

are largely una�ected.

[Figure 15 about here.]

8.2 Information Errors

In the baseline model presented so far, bettors are assumed to evaluate the gambles available in

the sportsbook using the probabilities quoted by the bookmaker. Systematic distortions in people's

beliefs with respect to the win probabilities are captured in the cumulative prospect theory spec-

i�cation by the probability transformation function that converts the quoted odds into subjective

decision weights. Well-documented biases, such as the favorite-longshot bias revealed in studies of

racetrack betting (i.e., the overbetting of longshot outcomes and underbetting of favorite outcomes),

have largely been explained by a systematic tendency of individuals to overestimate (underestimate)

the chances of low (high) probability outcomes (Thaler and Ziemba (1988), Jullien and Salanie

(2000)). However, other factors might as well a�ect bettors' subjective beliefs with respect to the
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win probabilities in a non-systematic fashion. In this section we consider an extension of our baseline

model in which we allow for idiosyncratic errors in the probabilities people use to evaluate bets.

Strictly speaking, since people's subjective beliefs are not observable, several combinations of

risk preferences and beliefs could be used to explain bettors' observed choices, creating an apparent

identi�cation problem. Here, following the literature that views sports betting as a primarily risk-

taking activity, we choose to explain variation in bettors' choices by variation in their risk preferences,

imposing a sensible restriction on the form of their subjective beliefs. This approach is supported

by the observation that there is a multitude of bets associated with each event, and therefore even

though the event choice might be driven by information reasons, the speci�c lottery chosen is still

informative about bettors' risk preferences. In other words, choosing the speci�c lotteries that we

observe reveals a lot about bettors' risk preferences, even acknowledging that part of their choice

might be motivated by information. In particular, we assume that people evaluate bets using the

probabilities implied by the posted odds �plus� some individual-match speci�c error. Letting 1−pnut
be the quoted win probability for the outcome of event u selected by bettor n on day t, we de�ne

bettor n's perceived probability of winning this bet as:

1− pnutεnut

where 0 ≤ εnut ≤ 1 is an i.i.d. error term drawn from a distribution with support [0, 1]. εnut = 1

implies that the bettor evaluates the gamble using the probability quoted by the bookmaker, while

εnut = 0 implies that the bettor considers the gamble a sure bet. These errors can be interpreted ei-

ther as individual-speci�c optimism and skill/information or as individual-match speci�c probability

assessment mistakes.

Since the errors εnut are associated with individual sporting events but our analysis is carried out

at the day level, it is clear that the vector of εnut is much larger than the number of our datapoints.

Therefore, although we are unable to identify εnut's for all unit bets chosen, we exploit the idea that

these errors are i.i.d. draws from the same population distribution, i.e., ∀εnut we have

εnut|bε,Wε ∼ N (bε,Wε)

where a Johnson's transformation function is used to map the errors to the real line. To the extent

that individual-speci�c optimism and/or skill/information can be linked to observable individual

attributes, such as bettors' previous betting performance, we could introduce them in the model by

allowing the mean of the error distribution to depend deterministically on them, i.e., bε = X ′nγ.

Assuming that bettors' beliefs take this speci�c form gives us the identi�cation power we need
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to estimate variation in risk preferences from variation in choices across individuals. Having said

that, clearly identi�cation in this setting will be weaker than in our baseline case and is expected

to manifest itself as higher variance in our preference estimates. Methodologically, we estimate the

distribution of the probability errors εnut by employing the Gibbs sampling techniques with data

augmentation described in the Appendix.

8.3 Testing for Skill in Picking Bets

In this section we examine whether there is heterogeneity in skill across bettors in our sample. We

calculate the proportion of noise traders who pick bets randomly and the proportion of bettors who

exhibit signi�cant positive or negative �skill� in picking their bets. We will refer to the former as

�zero-alpha� bettors and to the latter as �skilled� and �unskilled� bettors respectively. Skilled bettors

systematically outperform the bookmaker at predicting the outcomes of matches; this could be the

case, for example, if some bettors have superior private information about match outcomes while

the odds re�ect the true win probabilities, if some sophisticated bettors exploit the biases of other

bettors that are re�ected in the quoted odds, etc.. Unskilled bettors exhibit signi�cantly negative

performance; this could be the case, for example, if there exist bettors who su�er from a systematic

bias in their beliefs with respect to the win probabilities, e.g. they overestimate the win probability

of longshots and thus overbet them, bettors who take on face value the biased odds quoted by the

bookmaker, etc.. The identi�cation of both of these types of bettors is important for us since their

bet choices might not re�ect solely their risk preferences.

The �rst step in testing for skill heterogeneity across bettors is to create a measure of individual

betting performance. Since varying levels of risk are involved in the day lotteries chosen by di�erent

bettors and possibly also by the same bettor on di�erent bet days, it may not be appropriate to

make comparisons based on absolute performance measures. We therefore create a risk-adjusted

betting performance measure, similar to the �alpha� that is widely used in the �nance literature. We

de�ne �alpha� as the realized daily return of a bettor (i.e. the realized return from all bets placed

within the same day) minus the bettor's expected daily return (i.e. the expected return of the day

lottery we have constructed by combining all individual bets placed within the same day).

To investigate if and how many individuals in our sample possess true bet-picking skills, we carry

out individual-level hypothesis tests by examining whether the average �alpha� of each bettor across

all bet days is signi�cantly di�erent from zero.33 However, when performing a set of hypothesis tests
33Since the sample size is small and the normality assumption might fail, we calculate bootstrap p-values for each

bettor's alpha coe�cient. To do so, we create B = 1000 bootstrap samples that satisfy the null hypothesis. That
is, in each of these samples, we draw for each bettor and each bet day a possible payo� from the lottery selected on
that day, and calculate the corresponding realized return. We then follow the approach of Davidson and MacKinnon
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simultaneously (multiple testing), the probability of incorrectly rejecting the null hypothesis (Type

I error) is increased. To illustrate, consider, for example, that with one test performed at the 5%

signi�cance level, there is only a 5% chance of rejecting the null hypothesis when in fact it is true.

Therefore, when performing 100 tests at the 5% level each, we expect 5 of these comparisons to

be declared as signi�cant purely due to chance. If the tests are independent, this implies that the

probability of at least one incorrect rejection is 99.4%. In order to properly adjust for the problem of

�false discoveries� in multiple hypothesis testing, various statistical techniques have been developed.

The main idea behind these methods is that a stricter signi�cance threshold is required for the

individual tests, in order to compensate for the fact that multiple tests have been performed. In our

setting, since the individual tests are independent, we use a variant of the Bonferroni correction (the

�idák correction)34 according to which the signi�cance level a of individual tests is set such that the

probability of at least one false discovery in n tests equals some desired signi�cance level β, i.e.

a = 1− (1− β)
1/n

After making this adjustment with β = 0.05, the proportion of �skilled� bettors for whom the

estimated alpha coe�cient is signi�cantly positive is 0 while the proportion of �unskilled� bettors

for whom the estimated alpha coe�cient is signi�cantly negative is 2.7%. These results indicate

that under the odds quoted by the bookmakers, no bettors earn signi�cantly positive excess returns,

while there are a few bettors who earn signi�cantly negative excess returns.

8.4 Testing for �Favorite-Team Bias�

One of the concerns associated with sports betting data is that bettors' choices might be driven

by their preference towards teams that they support, e.g. home area teams, rather than their risk

preferences. Indeed, bettors might choose to bet on their favorite team(s) either because they are

getting extra utility from it (for example because they are planning to watch the match live on TV)

or because they are emotionally involved and naively think that the probability of their favorite

team winning is higher than the one implied by the bookmaker's odds. Both of these cases could

(2004) and compute the p-value as:

p̂n = 2·min
(

1

B

∑
b

I
{
t̂bn > t̂n

}
,
1

B

∑
b

I
{
t̂bn < t̂n

})

where I
{
t̂bn > t̂n

}
is an indicator function that takes the value 1 if the alpha t-statistic t̂bn of indivdual n calculated

from the bootstrap sample b, is higher than the corresponding t-statistic, t̂n, calculated from the real sample.
34An alternative method which has been recently employed in the �nance literature to examine the prevalence of

skill in mutual funds and hedge funds (Barras et al. (2010) is the �False Discovery Rate� (FDR) approach. It is a less
conservative procedure for comparison, with greater power than the Bonferroni correction, at a cost of increasing the
likelihood of obtaining type I errors.
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introduce a bias in our risk preference estimates and could be formally captured in our model by

allowing the unobserved utility term and the errors in probabilities, respectively, to be a function of

observable team characteristics. However, for the sake of reducing the complexity of our model, we

present here some features of our data that indicate that the �favorite-team bias� is unlikely to have

a�ected our risk preference estimates.

The �rst observation is based on the histogram of the fraction of total wagers placed on the

favorite team of each individual (see top-left panel of Figure 16). We de�ne the favorite team in two

alternative ways. According to the �rst de�nition, we identify the team(s) that are based on the

bettor's home location: For international matches the favorite team is de�ned as the national team

of the bettors' country of origin and for domestic matches as the team that is based in the bettor's

area of residence (according to the bettor's zip code). According to the second de�nition, for each

bettor we identify the team with the highest betting frequency. Under both de�nitions, we observe

that the proportion of unit bets that most bettors have placed on their favorite team seems to be

relatively small. In particular, in the bottom two panels of Figure 16 it is clear that the proportion

of unit bets placed on the team with the highest betting frequency is comparable to the proportion

placed on the team with the second highest betting frequency, indicating that there is no one team

that is massively overbet for any bettor. These results imply that, under the odds quoted by the

bookmaker, people do not systematically bet on one team, e.g. because they gain extra utility from

it, and therefore their choices do not simply re�ect the odds usually associated with this team.

[Figure 16 about here.]

The second observation is that people tend to combine more than one bets on di�erent events

within the same day (the top-right panel of Figure 16 shows that the proportion of days on which

people have bet solely on their favorite team is close to 0 for our median bettor). When combining

bets, there is a wide variety of day lotteries that can be constructed, especially if you consider that

choosing a day lottery involves a series of sub-decisions that people have to make, i.e. bettors choose

the number of matches they want to combine, the type of bet (e.g. single or combination), the

event description (e.g. �nal match outcome, total number of goals, etc.), the odds, the bet amount,

etc. Therefore, even though the choice of some or all of these matches might be driven by reasons

independent of bettors' risk preferences, we are con�dent enough that the resulting day lottery can

still be informative about bettors' risk preferences.

Finally, we have left for future research the investigation of whether the expected return bettors

get from betting on their favorite team is systematically lower than the bookmaker's commission,

which would indicate that the particular team has been overbet, i.e. it has been bet more frequently

than it is justi�ed by the bookmaker's odds. This could be the case either if bettors hold subjective
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beliefs with respect to the win probability of their favorite team or if bettors' risk preferences are

such that makes them want to bet on the odds usually associated with the particular team.

9 Conclusion

In this paper we have used a unique panel dataset of consumer betting activity in an online sports-

book to examine individual attitudes towards risk. We have developed an econometric model that

accounts for individual heterogeneity in risk preferences both between and within the two dominant

theories of choice under risk: the rational choice paradigm of expected utility theory and the be-

havioral paradigm of prospect theory. The panel aspect of our dataset allowed us i) to estimate

individual-level risk preference parameters with relative accuracy, ii) to test for the presence of het-

erogeneity in risk preferences across individuals and iii) to examine possible state dependence in

bettors' risk-taking behavior, which would arise if, for example, subsequent risk-taking is a�ected

by previous bet outcomes. Our �ndings suggest that the majority of bettors in our sample are

likely to depart from full rationality when presented with complex real-life decisions. However, there

is signi�cant heterogeneity across individuals regarding the aspect of rational preferences they vio-

late: state-dependence, probability weighting, loss aversion and utility curvature vary across bettors.

Methodologically, we have used a discrete choice framework and estimated a multinomial mixed logit

model using Bayesian econometrics techniques. Our �ndings have substantial implications for micro-

founded models in economics and, in particular, in �nance, since gambling decisions share signi�cant

similarities with stock trading decisions.

Appendix

A. Estimation Algorithm

A1. Gibbs Sampler for the Utility Mixture Model

In this section, we describe the MCMC methods used for the estimation of the �nite mixture model

of EUT and CPT presented in Section 7.1. The estimation of our benchmark speci�cation of CPT

alone is a direct simpli�cation of the procedure descibed in this section.

In the utility mixture model, the parameters for which we would like to have a posterior

distribution are: i) the utility parameter vector ρ = (ρ′1, . . . , ρ
′
N )
′ where ρn = (ρn1, . . . , ρnQ)

′,

ii) the exogenous probability of having the opportunity to bet p = (p′1, . . . , p
′
N )
′, and iii) the

dummy variable vector that indicates the component utility used in the mixture e = (e′1, . . . , e
′
N )
′
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where en = (en1, . . . , enQ)
′. The vector of individual-speci�c parameters associated with EUT is

ρn1 =
(
k1n, ρ̃0, ρ1

)′
where k1n is the scale of the utility, ρ1is the risk aversion parameter and ρ̃0 is a

constant plus the level of wealth that bettors integrate with the current bet payo�s, and the vector

of individual-speci�c parameters associated with CPT is ρn2 =
(
k2n, αn, λn, γn, δn

)′
where k2n is the

scale of the utility, αn is the curvature of the utility function, λn is the loss aversion coe�cient,

γn is the curvature of the probability weighting function and δn measures the degree to which the

reference point that separates gains from losses is a�ected by previous bet outcomes.

In each iteration k+1, the Gibbs sampler produces sequential draws from the following conditional

distributions:

K
(
b,W |β̃(k)

n , e(k)n

)
(13)

K
(
β̃n|xn, yn, b(k+1),W (k+1), β̂(k), e(k)n

)
(14)

K
(
β̂|xn, yn, β̃(k+1)

n , b(k+1),W (k+1), e(k)n

)
(15)

K
(
h|e(k)n

)
(16)

K
(
en|xn, yn, β̃(k+1)

n , β̂(k), h(k+1)
)

(17)

The conditional densities for each block of the Gibbs sampler take the following forms:35

1. The conditional density in Equation 13 follows the normal-inverse Wishart distribution, i.e.:

K
(
b,W |β̃n, en

)
∼ N − IW

(
b, k, v, V

)
where the posterior hyper-parameters for utility class q ∈ {1, 2} are given by:

bq =

(∑
n
enq

)(∑
n

(
enqβ̃nq

))
+ kqbq

kq

kq = kq +
∑
n

enq

vq = vq +
∑
n

enq

Vq = Vq +
∑
n

(
β̃nq − ˜β∗nq

)(
β̃nq − ˜β∗nq

)′
+
kq

kq

(∑
n

enq

)(
˜β∗nq − bq

)(
˜β∗nq − bq

)′

where ˜β∗nq =
∑
n

(
enqβ̃nq

)
is the sample mean of β̃nq and bq, kq,vq, Vq are the utility-speci�c

35We have suppressed the k iteration superscript for notational convenience.

42



prior hyper-parameters of (b,W ).36

2. The conditional posterior in Equation 14 can be expressed as proportional to the product of

the likelihood function and the prior density of βn:

K
(
β̃n|xn, yn, b,W, β̂, en

)
∝ L

(
xn, yn|β̃n, β̂, en

)
· fN

(
β̃n|b,W

)
Since this conditional posterior does not have a convenient shape, to make draws from it we

use a Gaussian random-walk Metropolis-Hastings algorithm (see Chib and Greenberg (1995)).

To produce a draw from some target density, this MCMC algorithm simulates a candidate

draw β̃∗n = β̃n + σLη where σLη is a jumping factor with η ∼ N (0, I), σ a positive parameter

speci�ed by the researcher37 and L the Cholesky factor of W . This candidate draw is accepted

with a probability that depends on the ratio of the posterior density at the proposed and the

current draw. If the candidate draw is not accepted, the algorithm retains the current draw

and proceeds to the next block of the Gibbs sampler.

3. The conditional posterior in Equation 15 is proportional to the product of the likelihood across

all individuals and the prior density of β̂. Under the assumed �at prior for β̂ we derive that:

K
(
β̂|xn, yn, β̃n, b,W, en

)
∝

(∏
n

L
(
xn, yn|β̃n, β̂, en

))

Drawing from this posterior density requires another application of the Metropolis-Hastings

algorithm on the pooled data this time.

4. The conditional posterior in Equation 16 follows the Dirichlet distribution, i.e.:

K (h|en) ∼ D
(
h̄
)

36For the probability parameter pn which is included in β̃n but is independent of the utility speci�cation used, the
posterior hyper-parameters are given by:

bp =

N

(∑
n
pn

)
+ kpbp

kp

kp = kp +N

vp = vp +N

Vp = Vp +
∑
n

(
pn −

∑
n

pn

)(
pn −

∑
n

pn

)′
+
kp

kp
N

(∑
n

pn − bp

)(∑
n

pn − bp

)′
37As recommended by Gelman et al. (1995) we adjust σ in each iteration of the Gibbs sampler based on the

acceptance rate among the N trial draws of βn, ∀n in the previous iteration. In particular, we lower σ if the acceptance
rate is below .2 and raise it if the rate is above .2.
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where it can be shown that h̄ = h+
N∑
i=1

en.

5. The conditional posterior in Equation 17 can be expressed as proportional to the product of

the likelihood function and the prior density of en:

K
(
en|xn, yn, β̃n, β̂, h

)
∝ L

(
xn, yn|β̃n, β̂, en

)
· fM (en|h)

where

fM (en|h) = M (1, h) =
1

en1! . . . enQ!
hen1
1 . . . h

enQ
Q .

If, say, enq = 1 and en,−q = 0, then p (enq = 1|h) = hq while L
(
xn, yn|β̃n, β̂, enq = 1

)
is given

by Equation 9, i.e.:

L
(
xn, yn|β̃n, β̂, enq = 1

)
=

Tn∏
t=1

{xntpntL (ynt|ρnq, enq = 1) + (1− xnt) [pntL (ynt = 0|ρnq, enq = 1) + (1− pnt)]}

and so

K
(
enq = 1|xn, yn, β̃n, β̂, h

)
∝ L

(
xn, yn|β̃n, β̂, enq = 1

)
· hq.

So we can write

K
(
en|xn, yn, β̃n, β̂, h

)
∝

Q∏
q=1

hq ·
(
L
(
xn, yn|β̃n, β̂, enq = 1

))enq
,

which is the kernel of the multinomial distribution

M

1,
h1 · L

(
xn, yn|β̃n, β̂, en1 = 1

)
∑Q
q=1 hq · L

(
xn, yn|β̃n, β̂, enq = 1

) , . . . , hQ · L
(
xn, yn|β̃n, β̂, enQ = 1

)
∑Q
q=1 hq · L

(
xn, yn|β̃n, β̂, enq = 1

)
 .

A2. Gibbs Sampler for the Model with Information Errors

In this section we describe the Gibbs sampling techniques we employ for the estimation of our ex-

tension model that includes the information errors εnut. We treat εnut as additional latent variables

with population parameters bε andWε and explore the posterior distribution of all model parameters

and latent variables by sequentially drawing from their conditional posteriors. Assuming a hierar-

chical normal prior for εnut where the population-level parameters (bε,Wε) are distributed according

to the normal-inverse Wishart distribution, our Gibbs sampler produces draws from the conditional
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distributions described in the previous section (now also conditioned on εnut, bε,Wε) and from the

following conditional distributions:

1. We draw (bε,Wε) from:

K (bε,Wε|εnut) ∼ N − IW
(
bε, kε, vε, Vε

)
where the posterior hyper-parameters are given by:

bε =

N

(∑
n
εn

)
+ kεbε

kε

kε = kε +
∑
n

εn

vε = vε +
∑
n

εn

Vε = Vε +
∑
n

(
εn −

∑
n

εn

)(
εn −

∑
n

εn

)′
+
kε

kε

(∑
n

enq

)(∑
n

εn − bε

)(∑
n

εn − bε

)′

where εn is a randomly selected error for individual n and bε,kε,vε,Vε are the prior hyper-

parameters of (bε,Wε).

2. For each n,u,t, we draw εnut from:

K
(
εnut|xn, yn, β̃n, b,W, β̂, en, bε,Wε

)
∝ L

(
xn, yn|β̃n, β̂, en, εnut

)
· fN (εnut|bε,Wε)

To draw from this posterior we use the Gaussian random-walk Metropolis-Hastings algorithm

speci�ed above.
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Event Sport Selection Bet Type Odds Total Stake
Potential 
Winnings

USA vs Germany (FIBA World 
Championship)
Match Winner Basketball Germany Single 1/3 50 66.67

Man United vs Liverpool (English 
Premier League)
Match Winner Soccer Draw Double 3/1 2

Roger Federer vs Diego Hartfield 
(Australian Open 1st Round)
1st set winner Tennis Federer Double 3/5 2 12.80

Man United vs Liverpool (English 
Premier League)
Total Goals Over/Under 2.5 Soccer Over 2.5 Doubles 5/4 30

New York Yankees vs Toronto Blue 
Jays (MLB Regular Season)
Total Match Runs Odd/Even Baseball Odd Doubles 4/6 30

Phil Taylor vs Ronnie Baxter (World 
Grand Prix 1st rnd)
Match Winner Darts Ronnie Baxter Doubles 1/10 30 80.58

BETTING SLIP

Figure 1: Example of a betting slip containing the selections made by a sports bettor. The shaded
lines denote related bets and cannot be combined in a multiple bet.
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Figure 2: Summary Statistics of Lottery Characteristics.
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Figure 3: Calculation of odds and prizes for possible winning outcomes of sample bets in the betting
slip in Figure 1.
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Figure 4: Summary statistics of lottery characteristics. All prizes are in Euros; Bet Amount is the
minimum prize in the lottery; and Expected Return is Expected Value divided by Bet Amount.
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Figure 5: Posterior Simulator Distribution for β̃n.
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Figure 6: Posterior Simulator Distribution for β̃n, for bounds of HPDIs for Mean.
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Figure 7: Posterior Simulator Distribution for β̃n, for bounds of HPDIs for Variance.
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Figure 8: Value and probability weighting functions for the posterior estimates of CPT parameters
and for their 95% HPDIs (dotted).
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Figure 9: Scatterplot showing correlations among Cumulative Prospect Theory parameters.
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Figure 10: OLS regressions of Lottery Characteristics on Estimated Preference Parameters. In Panel
A, the dependent variables are the average Variance (Columns 1 and 2), average Variance among
positive (Columns 3 and 4), and average Variance among negative outcomes (Columns 5 and 6), for
individuals' chosen lotteries. In Panel B, the dependent variable is average Skewness for individuals'
chosen lotteries. The main explanatory variables are the estimated preference parameters: α the
curvature, λ the loss aversion, and γ the probability weighting. Alternative speci�cations including
as explanatory variables other lottery characteristics are presented. t−statistics are reported below
the OLS estimates. ∗/∗∗/∗∗∗ indicate signi�cance at the 10%/5%/1% levels.
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Figure 11: Panel A presents a probit regression of the probability that an individual makes a bet
on a given day on past pro�ts. Panel B presents OLS regressions of lottery characteristics on
the past pro�ts. In particular, in Panel B the dependent variables are the Expected Value, the
Variance, the Skewness, and the Bet Amount of the lottery chosen by an individual on a given
day. The main explanatory variable is past pro�ts, measured as cumulative pro�ts in the past
month. All speci�cations include individual-speci�c dummies. t−statistics are reported below the
OLS estimates. ∗/∗∗/∗∗∗ indicate signi�cance at the 10%/5%/1% levels.
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Figure 12: Histogram of individuals' posterior probability of belonging to HARA population.

63



Figure 13: Posterior simulator densities of utility parameters of the HARA and CPT speci�cations.
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Figure 14: Prior (dotted) and corresponding posterior densities for β̃n, for three priors.
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Figure 15: Prior (dotted) and corresponding posterior densities for the population variance, for three
priors.
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Figure 16: Histograms showing the proportions of unit bets or days (for top-right panel) placed on
the home team (for the top two panels) and the most-frequently and second-most-frequently bet
teams (bottom two panels).
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