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Abstract

We propose a theory of low-frequency movements in unemployment based on
downward real wage rigidities. The theory generates two main predictions: long-
run unemployment increases with (i) a fall in long-run productivity growth and (ii)
a rise in the variance of productivity growth. Evidence based on U.S. time series
and on an international panel strongly supports these predictions. The empirical
specifications featuring the variance of productivity growth can account for two U.S.
episodes which a linear model based only on long-run productivity growth cannot
fully explain. These are the decline in long-run unemployment over the 1980s and
its rise during the late 2000s.
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1 Introduction

This paper proposes a theory in which the low-frequency movements in unemployment are

explained by the low-frequency movements and the volatility of productivity growth.1 On

the one hand, an increase in long-run productivity growth lowers long-run unemployment.

On the other hand, a fall in the variance of productivity growth leads to a fall in long-run

unemployment even when long-run productivity growth remains flat. The key mechanism

that explains these relationships rests on the assumption that real wages, or more broadly

real marginal costs, adjust more easily upward than downward.

A recent literature has highlighted the importance of real wage rigidities to explain

labor-market dynamics at business cycle frequencies. Shimer (2005), Hall (2005), Gertler

and Trigari (2009) and Blanchard and Gali (2010) show that real wage rigidities are im-

portant to account for a number of stylized facts including the high volatility of employ-

ment and vacancies as well as the low volatility of real wages.2 This paper complements

these studies by showing that real rigidities can also account for unemployment dynamics

at low frequencies and therefore it offers a rationale for the empirical relationship between

long-run unemployment, long-run productivity growth and its variance.

Our analysis is motivated by a number of empirical papers, including Bruno and Sachs

(1985), Phelps (1994), Blanchard et al. (1995), Blanchard and Wolfers (2000), Staiger,

Stock, and Watson (2001) and Pissarides and Vallanti (2007), which show time-series

and cross-country evidence in favor of a negative relationship between unemployment and

productivity growth at low frequencies. This literature is exemplified by Figure 1 which

reports the trend in unemployment, the trend in productivity growth and the variance

of productivity growth for a postwar sample of U.S. data. The time series plotted in

the charts on the first row are obtained computing averages and variances over five-year

rolling windows. The charts on the second row display similar objects obtained using the

time-varying Vector AutoRegressive (VAR) model described in Section 3.

Two main features are evident. First, irrespective of the strategy used to look at the

data over the long-run, the charts on the first column of Figure 1 confirm the negative rela-

tionship between long-run unemployment and long-run productivity growth documented

in earlier contributions.3 Second, a probably less known, yet very interesting, feature of

the data is the strong positive association between long-run unemployment and the vari-

1The terms long-run, trend, mean and low-frequency are used interchangeably throughout the paper.
2Pissarides (2009) offers a critical appraisal of wage stickiness as a driver of the cyclical volatility of

unemployment in search models.
3Results similar to Figure 1 are obtained using ten-year rolling windows, the Hodrick-Prescott and

Christiano-Fitzgerald filters.
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ance of productivity growth, which is uncovered in the charts on the second column. The

Great Moderation in the variance of productivity growth, for instance, coincides with a

sharp fall in the unemployment trend.

The contribution of this paper is twofold. On the theoretical side, we develop a simple

model of the labor market based on the assumption of asymmetric real wage rigidities that

can account for the two empirical findings summarized in Figure 1.4 On the empirical side,

we evaluate formally the predictions of the model by exploiting low-frequency movements

in unemployment and productivity growth either over time or across countries.

In our model, wage setters face convex costs for adjusting real wages which can be

either symmetric or asymmetric up to a limiting point that nests complete downward

inflexibility. Asymmetric real-wage rigidities have two key implications. First, for a given

volatility of productivity growth, a slowdown in long-run productivity growth generates

a significant rise in long-run unemployment. This is the case because too high real wages

make it more likely that real revenues will fall relative to costs, thereby forcing firms to

reduce labor demand in order to protect profits. With symmetric rigidities, this trade-off

is weaker. Second, for a given long-run productivity growth, a higher volatility raises

the probability of an adverse shock and then leads to higher long-run unemployment.

Conversely, even when the trend in productivity growth is low, a decline in its volatility

reduces these risks and causes the unemployment trend to fall.

We present evidence consistent with the predictions of the theoretical model. Time

series for the long-run mean and the variance of U.S. unemployment and productivity

growth are obtained using an estimated VAR with drifting coeffi cients and stochastic

volatility á la Cogley and Sargent (2005), and Primiceri (2005). Panel regressions are

obtained using averages and variances over ten-year windows within a dataset of indus-

trialized and emerging economies.

Our main results can be summarized as follows. First, the long-run mean and the

variance of productivity growth are significant determinants of the long-run mean of U.S.

unemployment. This is true even when we control for changes in the demographic com-

position of the labor force. Second, the empirical specifications that include a measure

of productivity growth volatility (either linearly or non-linearly) are associated with a

significant improvement in the goodness of fit relative to a linear specification in long-

run productivity growth only. This is exemplified by two episodes that cannot be fully

explained by movements of productivity growth at low frequencies: the fall in long-run

4The significance of downward real wage rigidity has been documented by a large number of empirical
studies on micro-data, which are diffi cult to summarize in a few lines. Prominent examples include
Dickens et al. (2008), Du Caju et al. (2009), Fagan and Messina (2009), Holden and Wulfsberg (2009)
for the industrialized world and Calvo et al. (2006) for emerging markets.
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Figure 1: Long-run unemployment, long-run productivity growth and variance of pro-
ductivity growth for the U.S., computed using five-year rolling windows for the charts on
the first row and the time-varying VAR of section 3 for the charts on the second row.
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unemployment over the 1980s and its rise during the late 2000s. Third, the panel regres-

sions reveal that variation over time is more important than variation across countries for

the mean and variance of productivity growth to account for fluctuations in the mean of

unemployment.

Few theoretical papers have studied the implications for the long-run relationship

between unemployment and productivity growth but, to the best of our knowledge, none

has emphasized the importance of time variation in macroeconomic volatility for the

unemployment trend. In traditional labor search models, the relationship between pro-

ductivity and unemployment is generally uncertain, as it depends mostly on the extent

to which jobs can be upgraded or need to be eliminated when new technology arises

(Mortensen and Pissarides, 1998). If firms cannot embody the new technology into ex-

isting jobs, higher productivity would lead to job destruction and higher unemployment

(Aghion and Howitt, 1994). If productivity increases for all existing jobs, demand for

labor would increase and unemployment would decline (Pissarides, 2000, Pissarides and

Vallanti, 2007). In line with our assumption of real wage rigidities, Ball and Mankiw

(2002) suggest a possible rationale for a negative relationship between unemployment

and productivity “resting on the idea that ‘wage aspirations’adjust slowly to shifts in

productivity growth”, as “workers come to view the rate of real wage increase that they

receive as normal and fair and to expect it to continue”.

Our work complements an important literature which has built the case for demo-

graphic changes in labor force participation to explain low-frequency movements in un-

employment (see Shimer, 1998, and Francis and Ramey, 2009, among others). We show

that the finding of a significant role for the trend and the variance of productivity growth

to account for the trend in unemployment is robust to controlling for movements in the

share of young workers in the labor force as well as to using the measure of “genuine”

unemployment that Shimer (1998) argues to be unaffected by demographics influences.

The paper is organized as follows. Section 2 presents the model and shows the mechan-

ism through which asymmetric real wage rigidity generates a long-run relationship between

unemployment, productivity growth, and its volatility. Section 3 confronts the predictions

of the model to the time series properties of U.S. data while Section 4 provides evidence

for an international panel of developed and developing economies. Section 5 concludes.

The appendices provide details of the theoretical and empirical models.
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2 The model

We describe a closed-economy model in which there is a continuum of infinitely lived

households and firms (both in a [0,1] interval). Each household derives utility from the

consumption of a continuum of goods aggregated using a Dixit-Stiglitz consumption index,

and disutility from supplying one of the varieties of labor to firms in a monopolistic-

competitive market. Each firm hires all varieties of labor to produce one of the continuum

of consumption goods and operates in a monopolistic-competitive market. The economy

is subject to an aggregate productivity shock. This is denoted by At, whose logarithmic

at is distributed as a Brownian motion with drift g and variance σ2

dat = gdt+ σdBt (1)

where Bt denotes a standard Brownian motion with zero drift and unit variance.

Household j has preferences over time given by

Et0

[∫ ∞
t0

e−ρ(t−t0)
(

lnCj
t −

l1+ηt (j)

1 + η

)
dt

]
(2)

where the expectation operator Et0(·) is defined by the shock processes (1) and ρ > 0

is the rate of time preference. Current utility depends on the Dixit-Stiglitz consumption

aggregate of the continuum of goods produced by the firms operating in the economy

Cj
t ≡

[∫ 1

0

cjt(i)
θp
θp−1di

] θp−1
θp

where θp > 0 is the elasticity of substitution among consumption goods and cjt(i) is house-

hold j’s consumption of the variety produced by firm i. An appropriate consumption-

based price index is defined as

Pt ≡
[∫ 1

0

pt(i)
1−θpdi

] 1
1−θp

,

where pt(i) is the price of the single good i.

The utility flow is logarithmic in the consumption aggregate. In (2), labor disutility

is assumed to be isoelastic with respect to the labor supplied lt(j), with η ≥ 0 measuring

the inverse of the Frisch elasticity of labor supply.5 Household j’s intertemporal budget

5These preferences are consistent with a balanced-growth path as we assume a drift in technology.
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constraint is given by

Et0

{∫ ∞
t0

QtPtC
j
t dt

}
≤ Et0

{∫ ∞
t0

Qt

[
Wt(j)lt(j) + Πj

t

]
dt

}
(3)

where Qt is the stochastic nominal discount factor in capital markets where claims to

monetary units are traded; Wt(j) is the nominal wage for labor of variety j, and Πj
t is the

profit income of household j.

Starting with the consumption decisions, household j chooses goods demand, {cjt(i)},
to maximize (2) under the intertemporal budget constraint (3), taking prices as given.

The first-order conditions for consumption choices imply

e−ρ(t−t0)C−1t = ξQtPt (4)

ct(i)

Ct
=

(
pt(i)

Pt

)−θp
(5)

where the multiplier ξ does not vary over time. The index j is omitted from the consump-

tion’s first-order conditions, because we are assuming perfect consumption risk-sharing

through a set of state-contingent claims to monetary units.

Before we turn to the labor supply decision, we analyze the firms’problem. We assume

that the labor used to produce each good i is a CES aggregate, L(i), of the continuum of

individual types of labor j defined by

Lt(i) ≡
[∫ 1

0

li,t(j)
θw−1
θw dj

] θw
θw−1

with an elasticity of substitution θw > 1. Here li,t(j) is the demand of firm i for labor

of type j. Given that each differentiated type of labor is supplied in a monopolistic-

competitive market, the demand for labor of type j on the part of a wage-taking firm of

type i is given by

li,t(j) =

(
Wt(j)

Wt

)−θw
Lt(i), (6)

where Wt is the Dixit-Stiglitz aggregate wage index

Wt ≡
[∫ 1

0

Wt(j)
1−θwdj

] 1
1−θw

; (7)
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whereas the aggregate demand of labor of type j is given by

ldt (j) =

(
Wt(j)

Wt

)−θw
Lt (8)

and aggregate labor Lt is defined as

Lt ≡
∫ 1

0

Lt(i)di.

We assume a common linear technology for the production of all goods

yt(i) = AtLt(i)
α, (9)

for a parameter α with 0 < α < 1 measuring decreasing return to scale. Profits of the

generic firm i, Πt(i), are given by

Πt(i) = pt(i)yt(i)−WtLt(i).

In a monopolistic-competitive market, given (5), each firm faces the demand

yt(i) =

(
pt(i)

Pt

)−θp
Yt

where total output is equal in equilibrium to aggregate consumption (Yt = Ct). We

assume that firms can freely adjust their prices. Standard optimality conditions under

monopolistic competition imply that all firms set the same price given by

pt(i) = Pt = µp
WtLt(i)

Yt
= µp

WtLt
Yt

(10)

where µp ≡ θp/[(θp − 1)α] > 1 denotes the mark-up of prices over marginal costs.6 An

implication of (10) is that labor income is a constant fraction of total income

PtYt = µpWtLt. (11)

Using the production function (9) into (11), aggregate demand of labor

Lt =

(
µp
Wt

Pt

1

At

) 1
α−1

(12)

6See the Appendix for the derivation of equation (10).
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depends negatively on the real wage and positively on productivity. Demand of labor is

critical to understand the main intuition behind our results. When productivity falls and

real wage remains too high, firms have to cut on labor to protect their profits.

In what follows, we define wt(j) = Wt(j)/Pt as the real wage for worker of type j

and wt = Wt/Pt as the aggregate real wage.7 The choice of real wages is modelled in a

similar way to the monopoly-union model of Dunlop (1944). Given firms’demand (8), a

household of type j (or a union) chooses real wages in a monopolistic-competitive market

to maximize (2) under the intertemporal budget constraint (3) taking as given prices {Qt}
and the other relevant aggregate variables. An equivalent formulation of this problem is

the maximization of the following objective

Et0

[∫ ∞
t0

e−ρ(t−t0)π(wt(j), wt, At)dt

]
(13)

by choosing {wt(j)}∞t=t0 , where

π(wt(j), wt, At) ≡
1

µp

(
wt(j)

wt

)1−θw
− 1

1 + η

(
1

µp

) 1+η
1−α
(
wt(j)

wt

)−(1+η)θw (At
wt

) 1+η
1−α

.

Households would then supply as much labor as demanded by firms in (8) at the chosen

real wages. In deriving π(·) we have used (4), (8) and (11).

2.1 Flexible wages

We first analyze the case in which wages are set without any friction, so that they can

be moved freely. With flexible wages, maximization of (13) corresponds to per-period

maximization and implies the following optimality condition

πwj(wt(j), wt, At) = 0 (14)

where πwj(·) is the derivative of π(·) with respect to the first argument. Since equation
(14) holds for each j, there is a unique equilibrium where wt(j) = wt = wft and in which

wft denotes the equilibrium level of real wages under flexible wages. Equation (14) defines

the equilibrium level of labor under flexible wages, which is a constant given by

Lf = (µpµw)−
1

1+η ,

7Notice that equation (11) holds because of the assumption of flexible prices which is necessary for
analytical tractability.
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where the wage mark-up is defined by µw ≡ θw/(θw − 1). Real wages are proportional to

the aggregate productivity shock

wft =
1

µp
(Lf )α−1At. (15)

2.2 Definition of unemployment rate

Following Galì (2010), we define the unemployment rate as the difference between the

“notional”amount of labor that workers would be willing to supply in a competitive and

frictionless market at the current real wage and the amount of labor currently employed.

Given our preference specifications, “notional”labor supply, Lst , is defined as the amount

of labor that equates the marginal rate of substitution between labor and (current) con-

sumption to the current real wage

(Lst)
ηCt =

Wt

Pt
. (16)

Accordingly, the unemployment rate ut is given by ut = lnLst − lnLt. Combining (16)

with (11) and using Yt = Ct we can write

ut = uf − 1 + η

η
xt (17)

where uf denotes the unemployment rate in the flexible-wage model given by uf = lnµw/η

and where the employment gap xt, equal to the output gap, is defined as the log difference

between actual labor and the flexible-wage level

xt = lnLt − lnLft . (18)

With flexible wages, unions set too high real wages and at these real wages workers

would be willing to supply more labor than currently demanded by firms. Unemployment

is given by uf and indeed captures the unions’monopoly power. With real wage rigid-

ities, unemployment depends also on the output gap and can vary over time inversely

proportional to the variation of the output gap. This second component will be the most

relevant in our model to explain the dynamics of unemployment at low frequencies.
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2.3 Sticky real wages

In this section, we investigate a general model in which real wages are allowed to adjust

either upward or downward but with some cost. In particular, we allow for both symmetric

and asymmetric adjustment costs through a linex function of the form

h(πR,t(j)) =
eχλπR,t(j) − χλπR,t(j)− 1

λ2

for some parameters χ, λ, where we have defined the rate of real wage changes as

πR,t(j)dt ≡ dwt(j)/wt(j). In particular χ is a measure of the costs of adjustment, while λ

measures the asymmetries in the cost function.8 When λ → 0, we retrieve the standard

symmetric quadratic cost function

h(πR,t(j)) = χ2
(πR,t(j))

2

2
,

while when λ < 0 it is more costly to adjust real wages downward than upward and

viceversa for λ > 0. When λ goes to minus infinity, we nest the case in which real wages

are inflexible downward and fully flexible upward. In the next section, we discuss this case

more extensively as it allows us to derive a closed form solution for the long-run mean of

unemployment.

In this setting, we assume that wage setters maximize (13) taking into account the

present discounted value of the costs of changing real wages9

V (wt(j), wt, At) = max
πR,t(j)

Et0

[∫ ∞
t0

e−ρ(t−t0)[π(wt(j), wt, At)− h(πR,t(j))]dt

]
. (19)

The value function associated with the objective function (19) can be written as

ρV dt = max
πR,t(j)

[π(wt(j), wt, At)− h(πR,t(j))]dt+ EtdVt (20)

where

EtdVt = Vwjwt(j)πR,t(j)dt+ VwEdwt + Vag
′dt+

1

2
Vaaσ

2dt, (21)

and in which we have used the results that (dwt(j))
2 = (dwt)

2 = dwt(j)dAt = dwtdAt = 0

and defined g′ ≡ g + (1/2)σ2.10

8Varian (1974) has first introduced this specification. Kim and Murcia (2009) have recently used it to
model asymmetric nominal wage rigidities.

9With similar tools, Abel and Eberly (1994) have analyzed costly investment decisions.
10The fact that dwt has the same properties of dwt(j) follows from the symmetry of the equilibrium.
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Using the expression for the value function given by (20) and (21), we obtain the

optimal value of πR,t(j) as implicitly defined by the following condition

hπ(πR,t(j)) = Vwjwt(j), (22)

where

hπ(πR,t(j)) = χ
eχλπR,t(j) − 1

λ
. (23)

In the symmetric case, i.e. when λ→ 0, the rate of real wage changes is proportional to

its marginal cost

πR,t(j) =
1

χ2
hπ(πR,t(j)).

Using (20), (21) and (22), we show, in Appendix D, that the marginal costs of changing

real wages follow a stochastic differential equations of the form

ρhπ(πR,t)dt =
θw − 1

µp

[(
Lt
Lf

)1+η
− 1

]
dt+ Etdhπ(πR,t) (24)

and therefore

hπ(πR,t) =
θw − 1

µp
Et

∞∫
t

e−ρ(s−t)

[(
Ls
Lf

)1+η
− 1

]
ds. (25)

Under a quadratic cost function, we can simplify equation (24) to

ρπR,tdt = k

[(
Lt
Lf

)1+η
− 1

]
dt+ EtdπR,t

which is the continuos-time non-linear version of the Rotemberg’s (1982) cost of adjust-

ment model where the stickiness is applied to real wages rather than to nominal wages

and where we have defined k ≡ (θw − 1)/(µpχ
2).

Using the definition of the employment gap (18), equation (12) implies that

xt = − lnLft +
1

1− α(at − lnwt − lnµp), (26)

and therefore a diffusion process for xt of the form

dxt =
1

1− α (g − πR(xt)) dt+
1

1− ασdBt, (27)

which can be used to derive the long-run distribution and in particular the long-run mean
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of the employment gap, x. To this end, we need to solve for the unknown functional

πR(xt). By defining p(xt) ≡ hπ(πR(xt))/χ
2, the optimality condition (23) implies

πR(xt) =
ln[1 + λχp(xt)]

χλ
. (28)

In particular, using Ito’s Lemma in equation (24) and the diffusion process (27), we obtain

that the functional p(xt) satisfies the following differential equation

ρp(xt) = k
[
e(1+η)xt − 1

]
+

1

1− αpx(xt) (g − πR(xt)) +
1

2

1

(1− α)2
pxx(xt)σ

2. (29)

Notice again that with quadratic adjustment costs πR(xt) = p(xt). We use (28) and

(29) to solve for the functional πR(xt) and p(xt) and then (27) to solve for the long-run

distribution of xt, if it exists.

2.3.1 The productivity growth-unemployment trade-off

The differential equation (29) is solvable using approximation methods. In particular, an

educated guess would be to approximate the solution p(xt) with a finite-order polyno-

mial.11 An interesting case, which can be helpful to discuss first, is that of a first-order

polynomial. Consider the symmetric quadratic adjustment cost model, with λ → 0, and

consider small deviations of xt from zero. In particular, approximate the term e(1+η)xt

in (29) as e(1+η)xt ≈ 1 + (1 + η)xt. In this case, the solution for p(xt), which is equal to

πR(xt), is linear and of the form p(xt) = πR(xt) = a0 + a1xt where a1 is the positive root

of the following quadratic equation

a21
1− α + ρa1 − k(1 + η) = 0

and

a0 =
a1

ρ(1− α) + a1
g.

From the stochastic differential equation (27), it can be seen that the employment gap,

xt, follows an Ornstein-Uhlenbeck process which in the long run converges to a normal

distribution with mean given by

E(x∞) =
ρ(1− α)

ρ(1− α) + a1
g

11This is an educated guess since both the exponential in (29) and the logarithmic in (28) can be
represented with infinite-order polynomials, althought the latter only when |p(xt)| < 1.

12



4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 2: Model with symmetric real-wage rigidities: long-run relationships between the
mean of unemployment, E(u∞), and the mean of productivity growth, g, for different
values of the standard deviation of productivity growth, σ. All variables in % and at
annual rates.

where x∞ denotes the long-run level of the employment gap. The above equation displays

a positive relationship between the employment gap and productivity growth and therefore

a negative linear relationship between unemployment and productivity growth

E(u∞) ≈ uf −
1 + η

η

ρ(1− α)

ρ(1− α) + a1
g,

where we have used (17). Notice that at lower levels of real-wage stickiness (lower χ)

the link between unemployment and productivity growth is weakened and unemployment

becomes close to the frictional level. Furthermore, in this linear solution, there is no

relationship between unemployment and the volatility of productivity growth.

In order to find a role for volatility, we need to take at least a second-order polynomial

approximation for p(xt) and πR(xt).12 However, as shown in Figure 2, when we assume

a symmetric adjustment-cost function, λ → 0, we find that the trade-off between unem-

ployment and productivity growth is negligible and the curve is almost vertical. Moreover

12The approximations are accurate as long as xt, p(xt) and πR(xt) remain appropriately bounded
within the unit circle. In particular, a larger λ in absolute value requires stricter bounds for xt.
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the variance has a small role in accounting for significant shifts in such a trade-off.13

A stronger trade-off and a more important role for volatility emerge when there are

asymmetries in real wage rigidities, as shown in Figure 3 where we let the parameter λ

take negative values. As λ decreases the trade-off becomes more pronounced in a way

that it also depends on the level of productivity growth. Moreover, the lower λ the higher

the impact of volatility on unemployment. This channel is larger the closer the trend in

productivity growth is to zero.

When there are asymmetric rigidities on the downward side, lower levels of productiv-

ity growth are associated with higher unemployment because bad productivity shocks are

more likely to be absorbed by lower employment demand on the side of firms, as in (12).

Firms cut on labor to protect their profits since real wages cannot fall much. At these

too high real wages workers would like to supply more labor than what firms demand.

When the volatility of productivity growth is high, these bad draws on productivity are

even more likely requiring a larger adjustment on labor.

The mechanisms underlined by our model would be absent in a simple framework

of symmetric real wage rigidities unless there is a substantial and persistent misalign-

ment between real wages growth and productivity growth. Not only would a model

with symmetric real rigidities imply a weak relationship between productivity growth and

unemployment but also no role for the volatility of productivity growth in explaining

unemployment.

In the next section, we discuss more extensively the results in the limiting case of

complete downward real wage inflexibility.

2.4 Downward real wage rigidity

In this section, we assume that real wages are completely rigid on the downward side and

flexible on the upward side. This model can be solved in closed-form and its derivation

of its solution is helpful to illustrate the influence of volatility on unemployment.14 With

complete downward wage inflexibility, the wage setters maximize (13) under

dwt(j) ≥ 0, (30)

13In the Figure, we use the following calibration: η = 2.5, ρ = 0.04, α = 0.66, θ = 6, µp = 1.15,
µf = 0.05, χ = 1.77. In particular, within a Calvo model the assumption on χ would translate into an
average duration of contracts on real wages equal to one year and a half. Note that, as shown in Figure
1, the VAR estimates of the variance of productivity growth range between 0.0001 and 0.0005, implying
standard deviations in the range 1% to 2.3%.
14Benigno and Ricci (2010) study the implications of a model with downward nominal wage rigidities.
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Figure 3: Model with asymmetric real-wage rigidities: long-run relationships between
the mean of unemployment, E(u∞), and the mean of productivity growth, g, for differ-
ent values of the standard deviation of productivity growth, σ, and different levels of
asymmetries, λ. All variables in % and at annual rates.
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with wt0 > 0. In other words, agents choose a non-decreasing positive real wage path

to maximize (13). In appendix E, we show that this optimization problem leads to a

simple decision rule. Wage setters compare their past choice on real wages to a current

desired real wage. Whenever the past real wage is higher than the desired one, they are

constrained by the past decisions and cannot move their real wage. Otherwise, whenever

the current desired real wage is higher than the past real wage, they adjust upward to

that desired real wage, wdt , which is a fraction of the flexible-wage level and given by

wdt = c(g, σ2, η, ρ, α)1−α · 1

µp
(Lf )α−1At (31)

= c(g, σ2, η, ρ, α)1−α · wft

where c(·) is a non-negative function of the model parameters:

c(g, σ2, η, ρ, α) ≡
(

g + 1
2
γ(g, σ2, ρ) · σ2

g + 1
2

(
γ(g, σ2, ρ) + η+1

1−α
)
· σ2

) 1
1+η

≤ 1 (32)

and γ(·) is the following non-negative function

γ(g, σ2, ρ) =
−g +

√
g2 + 2ρσ2

σ2
,

which is derived in Appendix E.

Agents’optimizing behavior in the presence of exogenous downward real wage rigidities

implies an endogenous tendency for limiting the upward revisions in real wages. When

wages adjust upward, they adjust to the desired level wdt , which is always below the

flexible-wage level by a factor c(·). Indeed, optimizing wage setters choose an adjustment
rule that tries to minimize the ineffi ciencies of downward real wage inflexibility. Wage

setters are worried to get locked with an excessively high real wage were future unfavorable

shocks require a real wage decline (as downward real wage rigidities would imply a fall

in employment). As a consequence, optimizing agents refrain from excessive real wage

increases when favorable shocks require upward adjustment, pushing current employment

above the flexible-case level.

The above optimizing decision rule nests also a myopic rule in which agents do not

take into account the consequences of the current real wage choice for future decisions

and simply adjust real wages to a flexible-wage level whenever this level is above their

previous choice. In this case wt = wft , whenever dwt > 0. This myopic rule, which will

be of particular interest for the empirical section that follows, corresponds to the limiting
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Figure 4: Model with downward real-wage rigidities: long-run relationships between the
mean of unemployment, E(u∞), and the mean of productivity growth, g, for different
values of the standard deviation of productivity growth, σ. All variables in % at annual
rates.

case in which agents do not discount the future at all, i.e. when ρ→∞ implying c→ 1.

2.4.1 The productivity growth-unemployment trade-off

We can now solve for the equilibrium level of employment and characterize the productivity-

unemployment trade-off in the presence of downward real wage rigidities. Since we have

shown that wt ≥ c(·)1−αwft , equation (26) implies that −∞ ≤ xt ≤ − ln c(·). The ex-
istence of downward real wage rigidities endogenously adds an upward barrier on the

employment gap. Since at follows a Brownian motion with drift g and standard devi-

ation σ, also xt is going to follow a Brownian motion with mean g/(1− α) and variance

(σ/(1− α))2 but with a regulating barrier at − ln c(·). The probability distribution func-
tion for such process can be computed at each point in time.15 We are interested in

studying whether this probability distribution converges to an equilibrium distribution

15See Cox and Miller (1990, pp. 223-225) for a detailed derivation.
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when t → ∞, in order to characterize the long-run probability distribution for employ-
ment, and thus unemployment. Standard results assure that this is the case when the

drift of the Brownian motion of xt is positive, which requires g > 0. In this case, it can

be shown that the long-run cumulative distribution of xt, denoted with P (·), is given by

P (x∞ ≤ z) = e
2g

σ2
(1−α)(z+ln c)

for 0 ≤ z ≤ − ln c(·) where x∞ denotes the long-run equilibrium level of the employment

gap. We can compute the long-run mean of the employment gap,

E[x∞] = −1

2

1

1− α
σ2

g
− ln c(g, σ2, η, ρ, α). (33)

and therefore the long-run mean of unemployment

E[u∞] = uf +
1

2

1 + η

η(1− α)

σ2

g
+

1 + η

η
ln c(g, σ2, η, ρ, α). (34)

In this model the average growth rate of real wages converges in the long run to

the productivity trend, g for any positive g.16 In the presence of downward real wage

rigidities, we find a strong negative relationship between the unemployment rate and the

rate of productivity growth, which is shifted by the volatility of productivity. The shift is

quantitatively important as shown in Figure 4. For given growth of productivity, a higher

volatility implies a higher unemployment rate. For given volatility, a lower productivity

growth implies a higher unemployment rate. Notice that under the myopic adjustment

rule, in which ρ −→∞, the mean of unemployment rate is simply given by

E[u∞] = uf +
1

2

1 + η

η(1− α)

σ2

g
, (35)

as the function c(·) in (34) is now equal to 1. Indeed, a value of c(·) below one is capturing
the benefits in terms of lower unemployment due to the intertemporal optimizing behavior

of wage setters who are taking into account the future consequences of their current real

wage choices and therefore set lower real wages when adjusting upward. Absent this

channel, unemployment would simply reflect the structural level of unemployment, uf ,

and the costs of the downward real wage rigidity constraint given by the ratio between

the variance and the mean of productivity growth. The relevance of this ratio to explain

long-run unemployment will be investigated in the empirical analysis below.

16This is an appealing feature of the limiting case in contrast with the model of symmetric rigidities.
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3 Evidence for the United States

A key prediction of the theoretical model is that the variance of productivity growth

has explanatory power for the mean of the unemployment rate over and above the mean

of productivity growth. There are two ways we can take this prediction to the data.

First, focusing on a single country, we can construct time-varying measures of mean

and volatility, and then ask whether periods of higher variance in productivity growth

are associated with a higher mean of unemployment, for a given mean of productivity

growth. Second, we can investigate this relationship within a panel of countries. This

section describes the strategy and the results for the first avenue. Section 4 presents

evidence based on the second avenue.

As for exploiting the time variation within a single country, the U.S. Great Modera-

tion appears a natural candidate for assessing the empirical merits of our theory. During

the first half of the 1980s, the volatility of several measures of real activity, including

real GDP growth, residential investment and unemployment fell sharply in the U.S.. To

the extent that productivity growth also showed a pronounced decline in volatility, our

model predicts that this should have been accompanied by a pronounced fall in the mean

of unemployment. Figure 1 provides prima facie evidence in support of this prediction.

In this section, we first spell out the way the estimates in Figures 1 have been construc-

ted and we then use the time-varying measures of mean and volatility for productivity

growth to assess the ability of the model to account for the low-frequency variation in the

unemployment rate.

3.1 Measuring unemployment and productivity trends

The econometric literature offers several ways to model time-variation in the variance of

the stochastic disturbances as well as in the autoregressive coeffi cients of stochastic pro-

cesses. Some of the best-known examples in macroeconomics include models of AutoRe-

gressive Conditional Heteroskedasticity (ARCH), Regime-Switching volatility models (RS)

and Vector AutoRegressions with stochastic volatility (VAR). It is worth emphasizing that

our theoretical model has predictions for the rate of unemployment in the long-run. The

focus on the long-run makes the ARCH specification less attractive than the RS and the

VAR. Furthermore, the notion of real rigidities in the labor market hinges upon the pre-

sumption that changes in productivity diffuse gradually, rather than abruptly, to the rest

of the economy, thereby making the RS model less attractive than the time-varying VAR

for our purposes.

Following the literature pioneered by Cogley and Sargent (2001 and 2005), and followed
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among others by Primiceri (2005) and Sargent and Surico (2011), we model the evolution

of productivity growth, gt, real wage growth,∆wt, and the rate of unemployment, ut, using

a VAR with drifting coeffi cients and stochastic volatility. The drifting coeffi cients enable

us to construct a time-varying measure for the mean of the endogenous variables. Both

the drifting coeffi cients and the stochastic volatility allow us to construct a time-varying

measure of volatility.

The statistical model is a VAR(p) of the following form:

Yt = B0,t +B1,tYt−1 + ...+Bp,tYt−p + εt ≡ X
′

tθt + εt (36)

where X
′
t collects the first p lags of Yt, θt is a matrix of time-varying parameters, εt

are reduced-form errors, Yt is defined as Yt ≡ [gt, ∆wt, ut]
′, and p is set equal to 2.

The parameters of the error covariance matrix, V ar(εt) ≡ Ωt, are assumed to evolve as

geometric random walks while the parameters of the matrix of autoregressive coeffi cients

are assumed to evolve as random walks.

The time-series for long-run unemployment and long-run productivity growth are com-

puted as local-to-date t approximations to the mean of the endogenous variables of the

VAR, evaluated at the posterior mean E(θt|T ). Let us rewrite equation (36) in companion

form:

zt = Ct|T +Dt|T zt−1 + ς t

where zt contains current and lagged values of Yt, Ct|T is the vector of intercepts, Dt|T is

the vector of stacked time-varying parameters and ς t is a conformable vector containing

εt and zeros. Following Cogley and Sargent (2005), the long-run mean for the vector zt
can then be computed as:

z̃t =
(
I −Dt|T

)−1
Ct|T (37)

where, given the order of the variables in the VAR, the first and third elements of z̃t
correspond to the mean of productivity growth, g̃t, and the mean of unemployment, ũt,

at time t.

The time-series for the unconditional variance of the variables in the VAR can be

estimated using the integral of the spectral density over all frequencies,
∫
$
ft|T (ω), where

ft|T is defined as:

ft|T (ω) = (I −Dt|T e
−iω)−1

Ωt|T

2π

[
(I −Dt|T e

−iω)−1
]′

(38)

The element (1, 1) of the matrix ft|T (ω) represents the unconditional variance of pro-

ductivity growth, σ̃2t , at time t. Details of the model specification and estimation method
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are provided in Appendix B.

The data were collected in September 2010 from the Fred database available at the

Federal Reserve bank of St. Louis. Productivity is the non-farm business sector output

per hour of all persons (acronym ‘OPHNFB’), wage is the non-farm business sector real

compensation per hour (acronym ‘COMPRNFB’), and unemployment is the rate of civil-

ian unemployment for persons with 16 years of age or older (acronym ‘UNRATE’).17 All

variables are seasonally adjusted at the source. As we are not interested to explain quarter

on quarter changes, we compute annual growth rates for productivity and real wage to

smooth out the high frequency components in the data. Growth rates are approximated

by log differences. Results are robust to using quarterly changes. To calibrate the priors

for the VAR coeffi cients, we use a training sample of thirteen years, from 1949Q1-1961Q4.

The results hereafter, then, refer to the period 1962Q1 to 2010Q2.

We can therefore compute the estimates of long run unemployment (ũt), long run

productivity (g̃t), and the variance of productivity (σ̃2t ) from the estimates of the VAR

(36) together with the formulas (37) and (38). These series are shown in Figure 1.

3.2 The fit of the linear model

This section assesses empirically the main predictions of the model: the mean of unem-

ployment depends negatively from the mean of productivity growth and positively from

the variance of productivity growth. More formally, we can write:

E[u∞] = f(g, σ2, ϑ)

where the vector ϑ ≡ (η, ρ, α, λ, uf ) contains the relevant parameters of the model and

f(·) is a generic non-linear function which in the limiting case of downward real wage
inflexibility corresponds to (34).

A natural benchmark of comparison for this exercise is the linear specification em-

ployed in earlier contributions (see for instance Pissarides and Vallanti, 2007), which

relates long-run unemployment to long-run productivity growth:

ũt = a− bg̃t + εt (39)

17To make our empirical results comparable with earlier contributions (see for instance Staiger, Stock
and Watson, 2001), we measure productivity as the ratio of output to total hours in the non-farm business
sector, Y/L. This measure is computed and released by the Bureau of Labour Statistics. In our model,
productivity is defined as Y/Lα and the first difference of its logarithm is denoted by g. It should be
noted, however, that assuming a standard labour to capital ratio of 2/3 the correlation between g and
the first difference of the logarithm of Y/L is 0.91 over our sample period.
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where a and b are parameters and εt is a well-behaved stochastic disturbance. Using

the estimates of the VAR derived in the previous Section, we obtain the following OLS

estimates for equation (39):

ũt = 0.10
(0.002)

− 2.24
(0.088)

· g̃t + ε̂t (40)

where standard errors are reported in parentheses. The R2 of the regression is 0.77. The

estimates of this simple model show that there is a tight negative relationship between

productivity growth and unemployment in the long-run. In particular, a 1% fall in long-

run productivity growth corresponds to an increase in long-run unemployment of 2.24

percentage points. Alternatively, an increase of one standard deviation (0.002) in long-

run productivity growth would lower long-run unemployment by 0.47 percentage points.

Figure 5 confronts long-run unemployment, depicted as red continuous line, with the

fitted values from equation (40), depicted as blue dotted line. The linear model does a

good job in tracking qualitatively the movements in the unemployment rate. However,

a closer inspection of the figure reveals that neither the decline in trend unemployment

between 1984 and 1992 nor the rise since the late 1990s can be adequately explained by

the linear model, whose fit seems particularly inadequate to explain the developments in

long-run unemployment since 2007.

The theoretical model of section 2 suggests two departures from the linear specification

(39). First, it highlights the relevance of the variance of productivity growth. Consistent

with Figure 1, movements in the variance of productivity growth coincide with movements

in long-run unemployment, especially during the periods where the mean of productivity

growth was flat. Second, under the limiting case of downward real wage inflexibility, the

model allows us to derive a nonlinear relationship between unemployment and productiv-

ity growth in closed form. To appreciate the relative importance of these modifications,

we proceed in two steps. First we augment the linear specification in (39) with a vari-

ance term. Then, we estimate the relationship between unemployment and productivity

growth nonlinearly.

More specifically, we estimate the following linear specification in both the mean and

the variance of productivity growth:

ũt = 0.08
(0.001)

− 1.68
(0.047)

· g̃t + 50.89
(1.974)

· σ̃2t + ε̂t (41)

The variance term is highly significant and the R2 is now 0.95, a significant increase

relative to the estimates in (40) which are based on a linear specification in long-run
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Figure 5: Trend in the unemployment rate implied by the estimates of the time-varying
VAR (36) using formula (37), and fitted values of the Linear Model of equation (40) and
of the Linear Model with Variance of equation (41). Percent rates.
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productivity growth only.18 The improvement is evident from Figure 5. The fitted values

from equation (41) track unemployment trend far better than the linear model (40), and in

particular they allow the model to account fully for the decline in long-run unemployment

of the 1980 and the rise of the late 2000s. The coeffi cient on the productivity mean is

somewhat lower than in the bivariate case.

The effect of the variance is also economically significant: an increase of one standard

deviation (0.00005) would imply a rise in long-run unemployment of about 0.25 percent.

The estimates in Figure 1 reveal that the variance of productivity growth declined from

0.0003 to about 0.0002 during the first half of the 1980s when long-run unemployment

fell from about 6.5% to 5.5%. Together with the estimates in (41), this implies that the

decline in the variance of productivity growth can account for about 50% of the fall in

long-run unemployment during this episode. Between 2000 and 2009, the variance of

productivity growth has increased from 0.00024 to 0.00038 against the backdrop of a rise

in long-run unemployment from 5% to 6%. These numbers imply a 70% contribution of

the variance of productivity growth to long-run unemployment during the 2000s.

3.3 Controlling for demographics

An important strand of the literature has convincingly argued that changes in the demo-

graphic composition of the labour force affects the low-frequency movements in unemploy-

ment (Shimer, 1998), the low-frequency movements in productivity (Francis and Ramey,

2009) and the variance of real output growth (Jaimovich and Siu, 2009).

In this section, we want to assess the extent to which the estimates of the linear models

above may vary once we control for demographics. To this end, we construct time series

for the share of workers in the labor force with age (i) between 16 and 21 (as in Francis

and Ramey, 2009), (ii) between 16 and 34 (as in Shimer, 1998), and (i) the sum of the

shares of workers in the 16-29 and the 60-64 windows of age (as in Jaimovich and Siu,

2009). Furthermore, we run a regression of the unemployment rate on a constant and the

unemployment rate of workers in prime age (defined as those between 35 and 64 years),

and then use the fitted values from this regression in place of the unemployment rate in

the VAR to construct the trend of what Shimer (1998) refers to as a measure of genuine

unemployment which is not affected by demographics.19

The labor force series were collected in September 2010 from the Bureau of Labor

18Similar results are obtained using averages and variances of unemployment and productivity growth
computed over either five- or ten-year rolling windows.
19The estimates of this regression are: 0.0075 (.0014) for the intercept and 1.2716 (.0340) for the slope.

Standard errors in parenthesis. R2 = 0.851. Sample: 1948Q1:2010Q2.

24



Statistics using data gathered in the Current Population Survey. These data can also be

used to compute the unemployment rate for prime-age workers. The series used in this

section are reported in Appendix A. The results of these sensitivity analyses are collected

in Table 1, which presents estimates for the linear model using the trend of productivity

growth and the measures of labor force share in columns (1) to (3), and then adding the

variance of productivity growth in columns (5) to (7). The estimates for the specifications

using Shimer’s measure of genuine unemployment are displayed in columns (4) and (8),

without and with the variance of productivity growth respectively.

Two main results emerge from Table 1. First, controlling for demographics does not

overturn our finding of a significant role for both the long-run mean and the variance of

productivity growth to explain low-frequency movements in unemployment. In particular,

the estimated coeffi cient on σ̃2t in columns (5) to (8) is never statistically different from the

estimates in (41), which omits any demographic measures. Similar results are obtained

for the estimated coeffi cient on g̃t, although in column (4) this is statistically lower than

the estimates in (40). Second, in line with Shimer (1998), Francis and Ramey (2009) and

Jaimovich and Siu (2009), the composition of the labor force has a significant influence

on the low-frequency movements in unemployment, although its statistical and economic

significance appear muted once the variance of productivity growth is added as additional

regressor in the columns (5) to (7). The finding of an important role for the variance

of productivity growth is robust to using Shimer’s measure of genuine unemployment

in column (8), although the coeffi cient on the productivity growth trend is statistically

smaller than in (41).

In summary, we conclude that the long-run mean and the variance of productiv-

ity growth are significant determinants of U.S. long-run unemployment over and above

changes in the demographic composition of the labor force in the post-WWII period.
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3.4 The fit of the nonlinear model

The results above point toward a significant role for asymmetries in real wage rigidities.

To investigate this channel further, we estimate the non-linear equation implied by the

model under the limiting case of complete downward real wage rigidities:

ũt = uf +
1

2

1 + η

η(1− α)

σ̃2t
g̃t

+
1 + η

η
ln c(g̃t, σ̃

2
t , η, ρ, α) + εt. (42)

Unfortunately, the parameters α and η are not separately identified. Nevertheless, we

can still estimate a reduced-form version of (42), which we refer to as the ‘unrestricted

model’.

The estimates of the unrestricted model yield so high estimates for ρ as to imply values

of the function c(·) very close to one, which correspond to the case of myopic agents. We
therefore estimate also a simplified version of the theoretical model in (42) where we

impose c = 1 prior to estimation:

ũt = uf +
1

2

1 + η

η(1− α)
· σ̃

2
t

g̃t
+ εt (43)

The simplified version (43), which is linear in the variance-to-mean ratio of productivity

growth, is referred to as the ‘restricted model’.

The fitted values associated with the non-linear unrestricted model and with the

variance-to-mean restricted model are presented in Figure 6. Both specifications track

long-run unemployment remarkably well and they clearly outperform the linear specific-

ation of Figure 5 which is based on long-run productivity growth only. In particular, the

specifications in (42) and (43) capture well the fall in long-run unemployment during the

1984-1992 period and its increase during the (late) 2000s.

The non-linear model has a R2 of 0.92 and a point estimate (standard error) for the

flexible-wage unemployment rate, µf , of 3.88% (0.29). The restriction implied by the

variance-to-mean ratio implies only a modest deterioration in the goodness of fit with a

R2 of 0.90 and a coeffi cient µf of 3.41% (0.05). This suggests that the simplified expression

(43) provides a reasonable approximation to the unrestricted specification (42). Notice

again that in the simplified model (43) with myopic agents, downward real wage rigidities

play a crucial role through the influence of the variance-to-mean ratio of productivity

growth in affecting unemployment in the long-run.

In summary, versions of the theoretical model that feature strong asymmetries in real

rigidities appear to account for the low-frequency movements in the U.S. unemployment

rate which a model with symmetric real rigidity has hard time to explain. Similar results,
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available upon request, are obtained using Shimer’s measure of genuine unemployment,

which controls for demographic changes.

4 International evidence

In this section, we explore the empirical implications of the model in Section 2 within a

panel of international data. In particular, we are interested in whether the variance of

productivity growth has predictive power for the mean of unemployment across different

countries over a suffi ciently long period of time. Our international dataset is an unbalanced

panel of quarterly observations for developed and developing economies over the post-

WWII period.20

For each country i, we compute over a window of ten years: (i) the mean of unem-

ployment, ũit, (ii) the mean of productivity growth, g̃it, (iii) the variance of productivity

growth, σ̃2it, and (iv) the ratio between the variance of productivity growth and the mean

of productivity growth, V -to-M ratioit.

Unemployment is taken from various data sources (World Development Indicators,

IFS, WEO, OECD, and Datastream, via splicing in the respective order); the sample

spans the years between 1960 and 2008. For productivity, we use real GDP per worker

where real GDP is taken from employment World Development Indicators, IFS, and WEO

(via splicing in the respective order) and employment is taken from the same sources as

unemployment. Prior to estimation, we drop observations for which there are less than

eight periods in a ten-year window.

The estimates are displayed in Table 2 and each column refers to a different specific-

ation and estimation method. The estimates in the first eight columns are based on the

Fixed-effect Estimator (FE) with time dummies included only in the columns (5) to (8).

The last two columns refer to the Between Estimator (BE) and will allow us to assess

the extent to which cross-country variation in the mean of unemployment is due to cross-

country variation in the mean and variance of productivity growth. In all specifications,

standard errors are adjusted for heteroskedasticity. In the FE columns, standard errors

are also adjusted for intra-group correlation.

In line with the theory, the coeffi cient on average productivity growth is negative and

the coeffi cient on the variance of productivity growth is positive. While the latter is

20The countries are: Argentina, Australia, Austria, Belgium, Bulgaria, Canada, Chile, China,P.R.:Hong
Kong, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland,
Israel, Italy, Japan, Korea, Latvia, Lithuania, Luxembourg, Malaysia, Malta, Morocco, Netherlands,
New Zealand, Norway, Peru, Philippines, Portugal, Russia, Slovak Republic, Slovenia, Spain, Sweden,
Switzerland, Taiwan Prov.of China, Thailand, United Kingdom, United States, Venezuela, Rep. Bol.
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Figure 6: Trend in the unemployment rate implied by the estimates of the time-varying
VAR (36) using formula (37), and fitted values for the Non-linear Unrestricted model of
equation (42) and the Variance-to-Mean-Ratio model of equation (43). Percent rates.
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always significant, the former is significant only in the specifications that do not include

time dummies. A possible interpretation of this result is that the countries in our panel

share a common trend in productivity growth which absorbs the negative correlation with

national unemployment. The coeffi cients are somewhat lower than those estimated in the

previous section, in part reflecting higher standard deviations for all variables in this

international sample. Indeed, the coeffi cient in column 3 indicates that the effect of a

one standard deviation increase in productivity growth (about 0.02) is to lower average

unemployment by a full percentage point.

The significance of the variance of productivity growth is strongly supported. The

estimated coeffi cient on the variance to mean ratio is positive and statistically different

from zero in both specifications (4) and (8), and therefore it accords with the prediction

of the model of section 2. As for the goodness of fit, the specifications that contain the

variance term (either linearly or as a ratio) have the largest R2. The coeffi cient reported

in column 3 suggests that the effect of a one standard deviation increase in the variance

of productivity growth (about 0.0005) is to lower average unemployment by more than

one percentage point.

While the between-country effects of average productivity growth on average unem-

ployment (columns 9 and 10) are not statistically different from the within-country effects

(columns 1 to 8), the results of the last two columns reveal that the effects across countries

are imprecisely estimated. The FE specifications are associated with a better fit than the

BE specifications, thereby corroborating the view that the theory is more successful in

explaining fluctuations in long-run unemployment over time. This finding is not surpris-

ing as the cross-sectional dimension of the long-run unemployment rates is more likely to

reflect other factors such as labor market structures and institutions.

30



T
ab
le
2:
P
an
el
re
gr
es
si
on
s

es
ti
m
at
io
n
m
et
ho
d:

F
E

F
E

F
E

F
E

F
E

F
E

F
E

F
E

B
E

B
E

sp
ec
ifi
ca
ti
on
s:

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

m
ea
n

va
ri
an
ce

bo
th

V
-t
o-
M
ra
ti
o

m
ea
n

va
ri
an
ce

bo
th

V
-t
o-
M
ra
ti
o

bo
th

V
-t
o-
M
ra
ti
o

D
ep
en
de
nt
va
ri
ab
le
:
ũ
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5 Conclusions

A simple model of the labor market with sticky real wages implies that unemployment

and productivity growth are negatively related in the long-run. When coupled with the

assumption of asymmetric wage rigidities, we show that the model generates a stronger

trade-off and the additional prediction that long-run unemployment depends positively

on the variance of productivity growth. We employ two alternative strategies to bring

these predictions to the data. The first, based on U.S. data, extracts the trend component

of unemployment and productivity growth and therefore exploits low-frequency variation

over time. The second strategy, based on a panel of international data, evaluates the

association between averages and variances of unemployment and productivity growth for

windows of ten years and therefore exploits low-frequency variation both over time and

across countries.

The empirical results show robust support for both predictions of the theoretical model:

higher volatility of productivity growth and lower levels of long-run productivity growth

are associated with higher levels of long-run unemployment. Moreover they are robust to

controlling for demographic factors, which have been recently shown to influence long-run

unemployment. The panel regressions reveal that variation over time is more important

than variation across countries to explain this pattern. Movements in the variance of pro-

ductivity growth, for instance, allows our model to account for two episodes in U.S. data

which cannot be fully accounted for by a linear specification in the trend of productivity

growth only. These are (i) the fall in long-run unemployment during the second half of

the 1980s and early 1990s; (ii) the rise in long-run unemployment during the late 2000s.

Our paper has also important policy implications. To the extent that stabilization

policies played a significant role in the Great Moderation, our theoretical and empirical

findings highlight a new channel through which such policies may contribute to lower

long-run unemployment.
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A The data
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Figure 7: Productivity growth, unemployment and real wage growth, quarterly data on
sample 1949Q1:2010Q2. All data are in percent. Productivity growth and real wage
growth at annual rates.
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34, between 16 and 29 plus between 60 and 64, unemployment rate for workers with age
between 35 and 64, quarterly data on sample 1949Q1:2010Q2. Percent rates.
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B A stochastic volatility model

The statistical model is a VAR(p) of the following form:

Yt = B0,t +B1,tYt−1 + ...+Bp,tYt−p + εt ≡ X
′

tθt + εt (B.1)

where X
′
t collects the first p lags of Yt, θt is a matrix of time-varying parameters, εt are

reduced-form errors, Yt is defined as Yt ≡ [gt, ∆wt, ut]
′, and p is set equal to 2. We stack

the time-varying VAR parameters in the vector θt, which is assumed to evolve as:

p(θt | θt−1, Q) = I(θt) f(θt | θt−1, Q) (B.2)

where I(θt) is an indicator function that takes a value of 0 when the roots of the associated

VAR polynomial are inside the unit circle and is equal to 1 otherwise. f(θt | θt−1, Q) is

given by

θt = θt−1 + ηt (B.3)

with ηt ∼ N(0, Q). The VAR reduced-form innovations in (36) are postulated to be zero-

mean normally distributed, with time-varying covariance matrix Ωt which is factored as

V ar(εt) ≡ Ωt = A−1t Ht(A
−1
t )′ (B.4)

The time-varying matrices Ht and At are defined as:

Ht ≡

 h1,t 0 0

0 h2,t 0

0 0 h3,t

 At ≡

 1 0 0

α21,t 1 0

α31,t α32,t 1

 (B.5)

with the elements hi,t evolving as geometric random walks:

lnhi,t = lnhi,t−1 + νi,t (B.6)

Following Primiceri (2005), we postulate:

αt = αt−1 + τ t (B.7)
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where αt ≡ [α21,t, α31,t, α32,t]′, and assume that the vector [ε′t, η
′
t, τ

′
t, ν

′
t]
′ is distributed as

εt

ηt
τ t

νt

 ∼ N (0, V ) , with V=


I4 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 Z

 and Z=

 σ21 0 0

0 σ22 0

0 0 σ23

 (B.8)

where εt is such that εt ≡ A−1t H
1
2
t εt.

The model (B.1)-(B.8) is estimated using Bayesian methods (see Kim and Nelson

(2000)). Full descriptions of the algorithm, including the Markov-Chain Monte Carlo

(MCMC) used to simulate the posterior distribution of the hyperparameters and the

states conditional on the data, are provided in a number of papers (see, for instance,

Cogley and Sargent, 2005, and Primiceri, 2005) and will not be repeated here.

Even though one cannot characterize analytically the joint posterior distribution of the

model parameters, it is possible to construct a Markov chain whose invariant distribution

is the posterior. The MCMC procedure draws from the marginal density of a set of

random variables j, conditional on some realizations for another set of random variables

i, and then drawing from the marginal distribution of i conditional on the realizations of j

in the previous step. Under some assumption, the chain converge to an invariant density

that equals the desired posterior density.

The elements of S are assumed to follow an inverse-Wishart distribution centered

at 2 ∗ 10−3 times the prior mean(s) of the relevant element(s) of the vector αt with

the prior degrees of freedom equal to the minimum allowed The priors for all the other

hyperparameters are borrowed from Cogley and Sargent (2005). We use 100000 Gibbs

sampling replications, discard the first 80000 as burn-in.
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C Convergence

In figure 9, we plot the posterior means of key model parameters. These statistics are

computed recursively as the average for every 20th draw of the retained repetitions of

the Gibbs sampler. The figure reveals that the fluctuations in the posterior means are

modest, thereby providing informal evidence in favour of convergence.
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Figure 9: posterior means of key parameters of the time-varying VAR
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D The asymmetric real-wage rigidity model

The value function associated with the objective function (19) can be written

ρV dt = max
πR,t(j)

[π(wt(j), wt, At)− h(πR,t(j))]dt+ EtdVt (D.9)

where

EtdVt = Vwjwt(j)πR,t(j)dt+ VwEtdwt + Vag
′dt+

1

2
Vaaσ

2dt, (D.10)

where we have used the results that (dwt(j))
2 = (dwt)

2 = dwt(j)dAt = dwtdAt = 0.21

From (D.9) and (D.10), the optimal value of πR,t(j) is implicitly defined by the following

condition

Vwjwt(j) = hπ(πR,t(j)) = χ
eχλπR,t(j) − 1

λ

from which it follows that

πR,t(j) = f(Vwjwt(j)) ≡
ln[1 + λχ−1Vwjwt(j)]

χλ
. (D.11)

Substituting (D.11) into (D.9), we get

ρV dt = [π(wt(j), wt, At)− h̃(Vwj · wt(j))]dt+ (D.12)

+Vwjwt(j)f(Vwj · wt(j))dt+ VwEtdwt + Vag
′ +

1

2
Vaaσ

2dt

where we have defined h̃(·) = h(f(·)) and g′ = g + 1/2σ2. Taking the derivative of (D.12)

with respect to wt(j) we obtain

ρVwjdt = [πwj(wt(j), wt, At)− hπ(πR,t(j))f1(·)(Vwjwjwt(j) + Vwj)dt+ (D.13)

+Vwjwjwt(j)f(Vwj · wt(j))dt+ Vwjf(Vwj · wt(j))dt+

+Vwjwt(j)f1(·)(Vwjwjwt(j) + Vwj)dt

+VwjwEtdwt + Vwjag
′dt+

1

2
Vwjaaσ

2dt

where f1(·) is the derivative of f(·) with respect to its argument.
First note that

dhπ(πR,t(j)) = dVwj · wt(j) + Vwj · dwt(j)
21The fact that dwt has the same properties of dwt(j) will follow from the symmetry of the equilibrium.
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and therefore

Etdhπ(πR,t(j)) = EtdVwj · wt(j) + Vwj · Etdwt(j)

= Vwjwjwt(j)dwt(j) + Vwjwwt(j)Etdwt + Vwjawt(j)g
′dt+

1

2
Vwjaawt(j)σ

2dt+

+Vwjwt(j) · πR,t(j)dt.

Substituting into (D.13) we obtain

ρhπ(πR,t(j))dt = wt(j)[πwj(wt(j), wt, At)]dt+ Etdhπ(πR,t(j)).

which in a symmetric equilibrium implies

ρhπ(πR,t)dt = wt[πwj(wt, wt, At)]dt+ Etdhπ(πR,t).

Note that

πwj(wt, wt, At) =
kw
wt

[
1

µp
− µw

(
1

µp

) 1+η
1−α
(
At
wt

) 1+η
1−α
]

=
θw − 1

µpwt

[(
Lt
Lf

)1+η
− 1

]
,

where kw ≡ 1− θw. It follows that

ρhπ(πR,t)dt =
θw − 1

µp

[(
Lt
Lf

)1+η
− 1

]
dt+ Etdhπ(πR,t)

and finally

hπ(πR,t) = Et

∞∫
t

e−ρ(s−t)
θw − 1

µp

[(
Ls
Lf

)1+η
− 1

]
ds

which are equations (24) and (25) in the text.

E The downward real-wage rigidity model

Let W the space of non-decreasing non-negative stochastic processes {wt(j)}. This is
the space of processes that satisfy the constraint (30). First we show that the objective

function is concave over a convex set. To show that the set is convex, note that if x ∈ W
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and y ∈ W then τx+ (1− τ)y ∈ W for each τ ∈ [0, 1]. Since the objective function is

Et0

{∫ ∞
t0

e−ρ(t−t0)π(wt(j), wt, At)dt

}
and π(·) is concave in the first-argument, the objective function is concave in {wt(j)}
since it is the integral of concave functions.

Let {w∗t (j)} be a process belonging toW that maximizes (13) and V (·) the associated
value function defined by

V (wt(j), wt, At) = max
{wτ (j)}∈W

Et

{∫ ∞
t

e−ρ(τ−t)π(wτ (j), wτ , At)dτ

}
.

We now characterize the properties of the optimal process {w∗t (j)}. The Bellman equation
for the wage-setter problem can be written as

ρV (wt(j), wt, At)dt = max
dwt(j)

π(wt(j), wt, At)dt+ Et{dV (wt(j), wt, At)} (E.14)

subject to

dwt(j) ≥ 0 (E.15)

From Ito’s Lemma we obtain that

Et{dV (wt(j), wt, At)} = Et{Vwj(wt(j), wt, At)dwt(j) + Vw(wt(j), wt, At)dwt +

+Va(wt(j), wt, At)dAt +
1

2
Vaa(wt(j), wt, At)(dAt)

2 +

+
1

2
Vww(wt(j), wt, At)(dwt)

2 + Vaw(wt(j), wt, At)dwtdAt}

Et{dV (wt(j), wt, At)} = Vwj(wt(j), wt, At)dwt(j) + Vw(wt(j), wt, At)Etdwt +(E.16)

+Va(wt(j), wt, At)Atg
′dt+

1

2
Vaa(wt(j), wt, At)A

2
tσ
2dt

since dwt(j), and therefore also dwt, have finite variation implying (dwt(j))2 = dwt(j)dwt =

dwt(j)dAt = (dwt)
2 = dwtdAt = 0. We have defined g′ ≡ g + 1

2
σ2. Substituting (E.16)

into (E.14) and maximizing over dwt(j) we obtain the complementary slackness condition:

Vwj(wt(j), wt, At) ≤ 0

for each t and

Vwj(wt(j), wt, At) = 0
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for each t when dwt(j) > 0. We can write (E.14) as

ρV (wt(j), wt, At)dt = π(wt(j), wt, At)dt+ Vw(wt(j), wt, At)Etdwt +

+Va(wt(j), wt, At)Atg
′dt+

1

2
Vaa(wt(j), wt, At)A

2
tσ
2dt,

which can be differentiated with respect to wt(j) to obtain

ρVwj(wt(j), wt, At)dt = πwj(wt(j), wt, At)dt+ Vwwj(wt(j), wt, At)Etdwt + (E.17)

+Vawj(wt(j), wt, At)Atg
′dt+

1

2
Vaawj(wt(j), wt, At)A

2
tσ
2dt.

Since the objective is concave and the set of constraints is convex, the optimal choice for

wt(j) is unique. It follows that wt(j) = wt for each j. Moreover, super-contact conditions

require that when dwt > 0

Vwjwj(wt, wt, At) = 0,

Vwjw(wt, wt, At) = 0,

Vwja(wt, wt, At) = 0.

It follows that we can write (E.17) as

ρv(wt, At) = π̃w(wt, At) + va(wt, At)Atg
′ +

1

2
vaa(wt, At)A

2
tσ
2 (E.18)

where we have defined v(wt, At) ≡ Vwj(wt, wt, At)

π̃w(wt, At) ≡ kw

[
1

wt

1

µp
− µw

(
1

µp

) 1+η
1−α
(
At
wt

) 1+η
1−α 1

wt

]
,

with kw ≡ 1− θw. In particular we can define the function w(At) such that

v(w(At), At) = 0 (E.19)

vw(w(At), At) = 0, (E.20)

va(w(At), At) = 0, (E.21)

when dwt > 0 while v(wt, At) ≤ 0 when dwt = 0. We now solve for the functions w(At)

and v(wt, At). Thus we seek for functions w(At) and v(wt, At) that satisfies (E.18) and
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the boundary conditions (E.19)—(E.21). A particular solution to (E.18) is given by

vp(wt, At) =
kw
ρ

1

wt

1

µp
− kw

v
µw

(
1

µp

) 1+η
1−α
(
At
wt

) 1+η
1−α 1

wt

v ≡ ρ− g′ 1 + η

1− α −
1

2

1 + η

1− α

[
1 + η

1− α − 1

]
σ2

while in this case the complementary solution has the form

vc(Wt, At) = w−1−γt Aγt

where γ is a root that satisfies the following characteristic equation

1

2
γ2σ2 + γg − ρ = 0 (E.22)

i.e.

γ =
−g +

√
g2 + 2ρσ2

σ2
.

Since when wt → ∞ and/or At → 0, the length of time until the next wage adjustment

can be made arbitrarily long with probability arbitrarily close to one, then it should be

the case that

lim
wt→∞

[v(wt, At)− vP (wt, At)] = 0

lim
At→0

[v(wt, At)− vP (wt, At)] = 0

which both require that γ should be positive. The general solution is then given by the

sum of the particular and the complementary solution, so that

v(wt, At) =
kw
ρ

1

wt

1

µp
− kw

v
µw

(
1

µp

) 1+η
1−α
(
At
wt

) 1+η
1−α 1

wt
+ kw−1−γt Aγt (E.23)

for a constant k to be determined. Since

vw(wt, At) = −kw
ρ

1

w2t

1

µp
+
kw
v

2 + η − α
1− α µw

(
1

µp

) 1+η
1−α
(
At
wt

) 1+η
1−α 1

w2t
− (1 + γ)kw−2−γt Aγt

(E.24)

and

va(wt, At) = −kw(1 + η)

v(1− α)
µw

(
1

µp

) 1+η
1−α
(
At
wt

) 1+η
1−α 1

Atwt
+ γkw−1−γt Aγ−1t , (E.25)
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the boundary conditions (E.19)—(E.21) imply

kw
ρ

1

µp
− kw

v
µw

(
1

µp

) 1+η
1−α
(

At
wt(At)

) 1+η
1−α

+ k

(
At

wt(At)

)γ
= 0, (E.26)

−kw
ρ

1

µp
+
kw
v

2 + η − α
1− α µw

(
1

µp

) 1+η
1−α
(

At
wt(At)

) 1+η
1−α

− (1 + γ)k

(
At

wt(At)

)γ
= 0, (E.27)

−kw
(1 + η)

v(1− α)
µw

(
1

µp

) 1+η
1−α
(

At
wt(At)

) 1+η
1−α

+ γk

(
At

wt(At)

)γ
= 0. (E.28)

Note that this is a set of three equations, two of which are independent.22 They

determine k and the function Wt(At). In particular, we obtain that

wt(At) = c1−α
(

1

µw

1

µp

)α−1
1+η 1

µp
At

where

c ≡
(
γ − η+1

1−α
γ

ρ

ρ− g′ 1+η
1−α −

1
2
1+η
1−α

[
1+η
1−α − 1

]
σ2

) 1
1+η

.

Using (E.22), we can write

c(g, σ2, η, ρ, α) =

(
g + 1

2
γ(g, σ2, ρ)σ2

g + 1
2

[
γ(g, σ2, ρ) + 1+η

1−α
]
σ2

) 1
1+η

which shows that 0 < c(g, σ2, η, ρ, α) ≤ 1.

22In fact, the homogenous function has been chosen appropriately for this purpose.
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F Derivation of equation (10)

A generic firm i maximizes profits given by

Πt(i) = pt(i)yt(i)−WtLt(i). (F.29)

facing the demand

yt(i) =

(
pt(i)

Pt

)−θp
Yt, (F.30)

and the production technology

yt(i) = AtLt(i)
α. (F.31)

Using constraints (F.30) and (F.31) into (F.29) we write

Πt(i) = pt(i)yt(i)−Wt

(
yt(i)

At

) 1
α

.

Noting that
∂yt(i)

∂pt(i)
= −θp

yt(i)

pt(i)

we can write the first-order condition of profits with respect to prices pt(i) as

∂Πt(i)

∂pt(i)
= (1− θp)yt(i) +

θp
α

Wt

pt(i)

(
yt(i)

At

) 1
α

=

= (1− θp)pt(i)yt(i) +
θp
α
WtLt(i) = 0.

It follows that at optimum

pt(i)yt(i) = µpWtLt(i)

where µp ≡ θp/[(θp − 1)α] > 1. Notice that there exists a unique equilibrium for the

optimal price pt(i), given Wt, Pt and Yt. Therefore the equilibrium is symmetric and

pt(i) = Pt, yt(i) = Yt and Lt(i) = Lt for each i. Equation (10) follows.
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