Does Inflation Adjust Faster to Aggregate Technology Shocks than to Monetary Policy Shocks?

by

Luigi Paciello
(EIEF)
Does Inflation Adjust Faster to Aggregate Technology
Shocks than to Monetary Policy Shocks?*

Luigi Paciello
Einaudi Institute for Economics and Finance, Rome

April 12, 2011

Abstract

This paper studies U.S. inflation adjustment speed to aggregate technology shocks and to monetary policy shocks in a medium size Bayesian VAR model. According to the model estimated on the 1959-2007 sample, inflation adjusts much faster to aggregate technology shocks than to monetary policy shocks. These results are robust to different identification assumptions and measures of aggregate prices. However, by separately estimating the model over the pre- and post-1980 periods, this paper further shows that inflation adjusts much faster to technology shocks than to monetary policy shocks in the post-1980 period, but not in the pre-1980 period.

JEL Codes: E31, E4, C11, C3
Keywords: Bayesian VAR, inflation, monetary policy

*Email: luigi.paciello@eief.it. Mailing address: EIEF, Via Sallustiana, 62, 00187 Roma. This paper is a revised version of Chapter I in my PhD dissertation at Northwestern University. I thank Martin Eichenbaum, Paul Evans, Francesco Lippi, Marco Lippi, Stefano Neri, Giorgio Primiceri and two anonymous referees for suggestions and comments. I am also grateful to seminar participants at Northwestern University, EIEF and MONCASCA workshop.
1 Introduction

This paper investigates whether U.S. inflation adjusts faster to aggregate technology shocks than to monetary policy shocks. Technology and monetary policy shocks are particularly important as these shocks account together for a large fraction of business cycle fluctuations.\(^1\) Assessing the speed of inflation adjustment to different types of shocks is an important task in macroeconomics, not only to establish the main sources of business cycle fluctuations, but also to understand the way different shocks transmit through the economy and to distinguish among available models. For instance, Altig, Christiano, Eichenbaum and Linde [1] and Dupor, Han and Tsai [19] have recently shown that DSGE models of sticky prices have a hard time jointly explaining inflation responses to technology and monetary policy shocks.

In this paper I document inflation adjustment to technology and monetary policy shocks using a medium size Bayesian VAR (BVAR) model, estimated on the U.S. economy from 1959 to 2007. This is not the first paper studying inflation responses to technology and monetary policy shocks in the context of VARs. Altig et al. [1], Edge, Laubach and Williams [20] and Dupor, et al. [19] have recently estimated a structural VAR of the U.S. economy in the post second World War period, and found that inflation responds much faster to aggregate technology shocks than to monetary policy shocks. This paper contributes to this literature on three dimensions.

First, after measuring inflation adjustment speed in response to technology and monetary policy shocks, this paper derives the posterior probability associated to the hypothesis that inflation adjusts faster to aggregate technology shocks than to monetary policy shocks. For instance, when estimating the BVAR in the whole sample, I find that this posterior probability is high, ranging from 84 to 92 percent

\(^1\)See, for instance, Smets and Wouters [36].
depending on the measure of price level and on the horizon of evaluation of adjustment speed.

Second, I show that the difference in inflation adjustment speed is not stable across different subsamples. In particular, I find that inflation adjusts faster to aggregate technology shocks than to monetary policy shocks in the post-1980 period, i.e. the period associated to Volcker and Greenspan at the helm of the Federal Reserve, but not in the pre-1980 period. Inflation adjustment speed has substantially increased to technology shocks in the Volcker-Greenspan period relatively to the pre-Volcker period, while it has changed less over time after a monetary policy shock. These results are consistent, for instance, with predictions of models of price setting under imperfect information as in Mackowiak and Wiederholt [30] and Paciello [32]. According to these models, a policy that stabilizes more the price level induces firms to pay more attention to productivity shocks relatively to nominal shocks, inducing a faster response of inflation to the former than to the latter. More generally, these results might pose a new challenge to DSGE models of sticky prices beyond the facts addressed by Altig et al. [1] and Dupor et al. [19].

Third, on the methodological side, this paper applies the methodology proposed by Banbura, Giannone and Reichlin [2] for the estimation of potentially large BVAR models, and combines it with recent results by Ramirez, Waggoner and Zha [33], [34] to obtain identification of impulse responses to both aggregate technology and monetary policy shocks. This is important as recent studies (e.g. Bernanke et al. [4], and Banbura et al. [2]) have shown that larger information set improve the identification of monetary policy shocks and reduce the risk of omitted variables miss-specifications. In fact, I show that the benchmark specification of the BVAR predicts a higher posterior probability of inflation adjusting faster to technology than

\footnote{See Clarida et al. [10] for evidence about the evolution of monetary policy over time.}
to monetary policy shocks relatively to a model of smaller size. Moreover, the paper shows that results about inflation adjustment speed are robust to several identification assumptions of the structural shocks. This is important as identification of monetary policy and technology shocks through short- and long-run restrictions as in Altig, et al. [1] have recently been questioned by part of the macroeconomic literature. I also show that whether inflation adjusts faster to technology than to monetary policy shocks is independent of the measure of price level, such as the GDP deflator, the consumer price index, the producer price index and the consumption deflator. This evidence supports the view that the difference in price adjustment speed to the two shocks is common to different sectors of the economy.

In a related literature, Galí, Lopez-Salido and Valles [27] have shown that inflation adjustment speed has increased to technology shocks in the Volcker-Greenspan era. Boivin and Giannoni [6] and Boivin, Kiley and Mishkin [8] have shown that inflation responsiveness to monetary policy shocks has decreased in the Volcker-Greenspan period. Findings of this paper are consistent with results by those authors. Differently from those papers, I estimate inflation response to the two structural shocks within the same model, including a larger number of macroeconomic indicators. This approach allows a direct comparison of the evolution of inflation adjustment speed to technology and monetary policy shocks over time and reduces uncertainty in the posterior estimates.

The paper is organized as follows. Section 2 describes the BVAR model, the data, the prior and the identification assumptions. Section 3 derives impulse responses to aggregate technology and monetary policy shocks in the whole sample, and assesses subsample stability of results. Section 4 assesses robustness of findings against the

3 See the reference list in Erceg, Guerreri and Gust [21] for most of the relevant references regarding identification of technology shocks. See Faust [22] and references therein regarding identification of monetary policy shocks.
assumptions on the identification of aggregate technology and monetary policy shocks. Section 5 concludes.

2 The benchmark BVAR model

This section describes the baseline empirical model consisting of a structural vector autoregression (SVAR) for an n-dimensional vector of variables, \(Y_t \). The SVAR model is given by

\[
A_0 Y_t = v + A_1 Y_{t-1} + \ldots + A_p Y_{t-p} + e_t,
\]

where \(Y_t = (y_{1,t}, y_{2,t}, \ldots, y_{n,t})' \) is the set of time-series at period \(t \), \(v = (v_1, v_2, \ldots, v_n) \) is a vector of constants, \(A_0, A_1, \ldots, A_p \) are \(n \times n \) matrices of structural parameters, \(p \) is a non-negative integer, and \(e_t \) is an \(n \)-dimensional Gaussian white noise with unitary covariance matrix, \(E \{ e_t e_t' \} = I \), representing structural shocks. The reduced form VAR model associated to (1) is given by

\[
Y_t = c + B_1 Y_{t-1} + B_2 Y_{t-2} + \ldots + B_p Y_{t-p} + u_t,
\]

where \(c = A_0^{-1} v \), \(B_s = A_0^{-1} A_s \) for \(s = 1, \ldots, p \), and \(u_t = A_0^{-1} e_t \). It follows that \(Y_t \equiv E \{ u_t u_t' \} = A_0^{-1} (A_0^{-1})' \).

Several authors (e.g. Bernanke et al. [4] and Banbura et al. [2]) have shown that larger information set help improving the identification of monetary policy shocks, as well as the model ability at forecasting inflation, output and short-term interest rate. The vector \(Y_t \) includes the same macroeconomic indicators considered in the VAR model of Altig et al. [1], but augmented by some of the additional indicators considered by Banbura et al. [2] in their "medium" size BVAR. These additional indicators help to reduce uncertainty in the estimate of inflation responses to technology and
monetary policy shocks, while the Bayesian shrinkage helps addressing the curse of dimensionality.4 The VAR is specified in terms of stationary variables. Stationarity of (2) is needed to implement the identification scheme in the next section.5 To achieve stationarity I rescale the non-stationary economic variables similar to Altig et al. [1].6 The time span is from January 1959 through June 2007, and the model is estimated at a quarterly frequency with the number of lags \(p \) set equal to 4.

I assume a Normal inverted-Wishart prior for the parameters of (2) according to results by Kadilaya and Karlsson [29] and similarly to Banbura et al. [2]. In particular, let \(B \equiv (B_1, \ldots, B_p, c)' \), the Normal inverted-Wishart prior has the form

\[
\text{vec}(B) | \Psi \sim N(\text{vec}(B_0), \Psi \otimes \Omega_0) \quad \text{and} \quad \Psi \sim iW(S_0, \alpha_0).
\]

The prior parameters \(B_0, \Omega_0, S_0 \) and \(\alpha_0 \) are chosen consistently with the assumption that the prior mean can be associated to the following process

\[
Y_t = c + \text{diag}(\delta_1, \ldots, \delta_n) Y_{t-1} + u_t,
\]

where the \(i^{th} \) equation in (2) is centered around a random walk with drift if the \(i^{th} \) element of \(Y_t \) is highly persistent, \(\delta_i = 1 \), and around a white noise otherwise, \(\delta_i = 0 \). This amounts to shrinking the diagonal elements of \(B_1 \) corresponding to the \(i^{th} \) equation for which \(\delta_i = 1 \) toward one, and the remaining coefficients in \(B_1, \ldots, B_p \) toward zero. I refer to Appendix B for more details on the prior.

I assume a white noise prior, \(\delta_i = 0 \), for all variables but the Federal funds.

4The appendix provides details on the variables included in the model.
5All the roots of the VAR polynomial need to be outside the unit circle. Draws with coefficients inside the unit circle are discarded.
6Details on the specification of the vector \(Y \) are given in the appendix. The price level and labor productivity enter the model in log-differences. Standard test of cointegration cannot reject the hypothesis of no cointegration among variables in \(Y \).
rate which is entered in levels and characterized by substantial persistence. In fact, the other persistent variables are either rescaled or entered in first differences. The overall tightness of the prior distribution around model (3) is governed by an hyper-parameter, formally defined as λ in Appendix B. Banbura et al. [2] suggest that prior tightness should be chosen in relation to the size of the system. De Mol, Giannone and Reichlin [17] discuss this point in detail and show that as the number of estimated parameters increases, the overall tightness should increase as well in order to avoid over-fitting of the model to the data. In comparing VARs of different size, these authors suggest fixing a VAR model as a reference, and adjusting prior tightness associated to each model so that the different models are characterized by comparable in-sample mean squared forecast error for a selected group of variables. I follow this recommendation. I set prior tightness relative to a reference model that has flat prior and the size of a standard new-Keynesian model, including five macroeconomic indicators. See Appendix C for more details on the choice of the hyper-parameter governing prior tightness. In Section 4 I will assess robustness of results to this choice.

2.1 Identification of the structural parameters

Identification of (1) amounts to putting enough restrictions on the model to be able to recover A_0, A_1, \ldots, A_p and v given estimates of the reduced form parameters, $\Upsilon, B_1, \ldots, B_p$ and c. This is achieved, in the benchmark specification of the model, by appealing to the combination of standard identification assumptions for technology and monetary policy shocks. These identification assumptions have the advantage of making results easily comparable to the existing literature. However, in section 4, I will show that results about inflation responses are robust to different identification

7The 5 variables are: labor productivity, per-capita hours worked, the Federal Funds rate, M2 and the GDP deflator. This model is similar to models studied by Galí et al. [27] and Boivin and Giannoni [6].
assumptions.

First, it is assumed that only technology shocks may have a permanent effect on the level of labor productivity, as originally proposed by Galí [25]. This restriction is satisfied by a broad range of business cycle models under standard assumptions. In particular, let’s define the matrix $C \equiv (I - B_1 - \ldots - B_p)^{-1} A_0^{-1}$, and suppose that labor-productivity growth is the i^{th} element of vector Y_t, and that the technology shock is the j^{th} element of vector e_t. It is assumed that all the elements of the i^{th} row of C are zero but the one associated to the j^{th} column.

Second, similarly to Christiano et al. [12], it is assumed that monetary policy targets a policy instrument, S_t, according to

$$S_t = f(F_t) + \omega e_t^s,$$

(4)

where F_t is the information available to the central bank as of time t, ω is a constant and e_t^s is the monetary policy shock. Following the Bernanke-Blinder assumption, S_t is set equal to the 3-months average Federal Funds rate. Variables in Y_t are divided in four subsets, $Y_t = (X_t, S_t, Z_t, F_t)'$. Similarly to the recursive assumption of Christiano et al. [12], it is assumed that variables in X_t may respond to monetary policy shocks, e_t^s, with one period lag. It is also assumed that the FED targets the monetary policy instrument so that S_t is unresponsive to contemporaneous changes in Z_t, where Z_t includes money velocity. F_t is equal to the interest rate on Treasury bonds with ten years maturity in difference from the the 3-months average Federal Funds rate, and there is no short-run restriction on the relationship between F_t and the other variables in Y_t.

Finally, the column of A_0^{-1} corresponding to the impact of monetary policy shocks

8This implies that the monetary policy instrument S_t is allowed to respond contemporaneously to F_t, as well as F_t is allowed to respond contemporaneously to S_t. See Appendix D for details.
on Y_t is normalized so that monetary policy shocks are associated to a contemporaneous increase in the federal funds rate; the column of A_0^{-1} corresponding to the impact of technology shocks is normalized so that such shocks are associated to a permanent increase in labor productivity.\footnote{Results are robust to different normalization assumptions, and in particular to the likelihood preserving normalization proposed by Waggoner and Zha \cite{Waggoner2015}.} Under this set of assumptions the impulse responses of Y_t to monetary policy and technology shocks are exactly identified.\footnote{See Appendix D for details.}

3 Impulse responses and inflation adjustment speed

Impulse responses are generated according to the methodology proposed by Ramirez, Waggoner and Zha \cite{Ramirez2011, Ramirez2012}. More details are given in Appendix D. The model reduced-form parameters B_1, \ldots, B_p and Υ are drawn from the estimated Normal inverted-Wishart posterior distribution. For each draw of B_1, \ldots, B_p and Υ, the model structural-form parameters A_0, \ldots, A_p are computed according to the identification assumptions above. Given the structural parameters, the impulse responses of Y_t to a one standard deviation technology shock and to a one standard deviation monetary policy shock are computed for each draw.\footnote{Results are based on 5,000 draws and are robust to larger number of draws.}

I consider four different measures of inflation: the GDP deflator, the CPI, the PPI and the consumption expenditure deflator. I separately estimate the BVAR for each of these measures.

Inflation adjustment speed is measured according to the methodology proposed by Cogley, Primiceri and Sargent \cite{Cogley2005}. Relative to other measures of inflation persistence, such as half-lives, this measure has the advantage of not relying on the monotonicity of responses. Given that inflation response to monetary policy shocks is characterized by a hump-shape dynamic, this property is very appealing. In particular, inflation
persistence to shock i, j periods after the shock, is measured as

$$r^j_i \equiv 1 - \frac{\sum_{s=0}^{j} (\hat{\pi}_s^j)^2}{\sum_{s=0}^{\infty} (\hat{\pi}_s^j)^2},$$

(5)

where $\hat{\pi}_s^j$ is the response of the inflation rate to shock $i \in \{TECH, MP\}$, evaluated j periods after the shock. According to this measure, inflation is weakly persistent when the effects of shocks decay quickly, and it is strongly persistent when they decay slowly. When the effects of shock i die quickly, r^j_i is close to zero at relatively short horizon. But when the effects of shock i decay slowly, r^j_i remains far from zero for longer horizon. Thus, for small or medium $j \geq 0$, a small r^j_i signifies high adjustment speed, and a large r^j_i implies low adjustment speed.

3.1 Results from the whole sample

This section evaluates inflation responses in the 1959:Q1-2007:Q2 sample, with particular emphasis on inflation adjustment speed.12 Figure 1 displays scatter plots for the values of r^j_i obtained from the posterior draws of the structural parameters of the BVAR model; r^j_i is evaluated at one year horizon of responses, i.e. $j = 4$.13 Each plot is associated to one of the four measures of prices. The vertical axis of each plot reports values of r^j_i associated to the monetary policy shock, and the horizontal axis values of r^j_i associated to the technology shock. By definition of r^j_i, draws above (below) the 45 degree line mean that inflation adjustment is faster (slower) to technology

12Impulse responses of inflation, as well as other economic variables, are provided in an on-line appendix available on the author’s website.

13Results are qualitatively similar for other horizon j. More details are in the on-line appendix.
shocks than to monetary policy shocks.

[Figures 1-2, Table 1 about here]

In Figure 1, the vast majority of draws is above the 45 degree line for all measures of prices. The posterior probability that inflation adjusts faster to technology shocks than to monetary policy shocks, i.e. \(r_{j=4}^{TECH} < r_{j=4}^{MP} \), is relatively high across all four measures of aggregate price level, ranging from about 0.87 for the GDP deflator to 0.91 for the CPI. Figure 2 evaluates the same measure but across different horizons \(j \) for \(r_{j}^{i} \), holding fixed the measure of prices to the GDP deflator. The shorter the horizon of evaluation, the higher the posterior probability of inflation adjusting faster to technology shocks, ranging from a low of 0.84 at an evaluation horizon of 3 years to a maximum of 0.92 for a horizon of 2 quarters.

Table 1 reports the median, 16\(^{th}\) and 84\(^{th}\) percentiles of the posterior distribution of \(r_{j}^{i} \) for the technology and the monetary policy shocks respectively, evaluated at \(j = 2, 4, 8, 12, 16 \). From these tables we can draw the following conclusions. First, inflation adjustment speed to technology shocks is much faster than to monetary policy shocks, independently of the horizon of the response at which we measure \(r_{j}^{i} \), and independently of the measure of aggregate prices. For instance, two years after the shock, GDP deflator inflation has accomplished at the median about 85 percent of total adjustment to the technology shock, but only 18 percent of total adjustment to the monetary policy shock.\(^{14}\) In addition, it takes 2 quarters for median inflation response to accomplish half of its response to the technology shock, while it takes more than 2 years in response to the monetary policy shock.

\(^{14}\text{Notice that the fraction of inflation adjustment accomplished } j \text{ quarters after the shock is measured by } 1 - r_{j,i}.\)
3.2 Subsample analysis

Boivin and Giannoni [6] and Boivin et al. [8] have documented that the impact of monetary policy shocks on the U.S. economy has became less effective in the Volcker-Greenspan period compared to the pre-Volcker one. Similarly, Galí et al. [27] have found that the effects of technology shocks on inflation differ drastically between the two periods. This section answers the following questions: (i) does inflation adjust faster to technology shocks than to monetary policy shocks in all subsamples? (ii) is the difference in inflation adjustment speed quantitatively similar in the different subsamples?

I evaluate and compare inflation adjustment speed to the two shocks in the periods before and after Volker’s tenure, i.e. 1959:Q1-1979:Q3 and 1979:Q4-2006:Q1, as well as in the periods including Volcker’s second mandate and/or Greenspan, i.e. 1983:Q4-2006:Q1 and 1987:Q3-2006:Q1. Hence, I label these subsamples as "pre-Volcker", "Volcker I - Greenspan", "Volcker II - Greenspan" and "Greenspan" respectively.

Figure 3 displays scatter plots for the values of \(r_i^j \) obtained from the posterior draws of the structural parameters of the BVAR model in the different periods; \(r_i^j \) is evaluated at one year horizon of responses.\(^{15}\) These figures show that the difference between inflation adjustment speed to the two shocks has changed over time. In fact, in the 1959:Q1-1979:Q3 subsample, the majority of draws is below the 45 degree line, indicating that inflation adjusts faster to monetary policy shocks than to technology

\(^{15}\)There statistics refer to the CPI. Similar statistics are obtained for the GDP deflator, but the shape of median impulse responses of the CPI to a monetary policy shock in the post 80’s subsamples display a less pronounced "price puzzle". See the Online Appendix for more details on the shape of impulse responses.
shocks. In contrast, in the 1979:Q4-2006:Q1 subsamples, the majority of draws is above the 45 degree line, indicating that inflation adjusts faster to technology shocks than to monetary policy shocks.

To better quantify inflation adjustment speed in the different subsamples, Tables 3 reports the median, 16th and 84th percentiles of the posterior distribution of r^j_i in the different subsamples. Inflation adjustment speed to technology shocks has substantially increased over time. This is true across all horizons of evaluation of inflation adjustment speed. For instance, two years after the shock, inflation accomplishes about 17 versus 85 percent of overall adjustment to technology shocks under the "pre-Volcker" and "Volcker - Greenspan" subsamples respectively. In contrast, inflation adjustment speed to monetary policy shocks is lower in the last two decades than in the pre-Volcker subsample. The latter is consistent with findings by Boivin and Giannoni [6].

4 Robustness analysis

This section investigates to what extent results from the benchmark BVAR model are robust to several features of the identification assumptions. While extensively adopted, identification of monetary policy shocks through the recursive assumption of Christiano et al. [12], and identification of technology shocks through long-run restrictions as in Gali [25] have been recently criticized by part of the macroeconomic literature. In fact, zero restrictions on the contemporaneous responses of economic variables to monetary policy shocks might be particularly restrictive when frequency of observations is quarterly.16 Furthermore, long-run restrictions on the response of economic variables to technology shocks might give biased results in a VAR with a

16See Faust [22] and references therein regarding identification of monetary policy shocks.
finite number of lags.17 This section investigates to what extent results from the benchmark BVAR model are robust to several features of the identification assumptions. I identify the two structural shocks of interest through a different method relying on sign restrictions of impulse responses, and I consider a different identification assumption of technology shocks based on a Solow-residual measure of quarterly total factor productivity growth. The insights from these exercises reinforce the results obtained in the previous sections. Below I discuss some of these results more in detail.

[Table 3 and Figure 4 about here]

In addition, Table 3 and Figure 4 also assess robustness of results to prior tightness, and to estimating the model on monthly data. While relaxing the weight on the prior may increase uncertainty in posterior estimates, it does not change the prediction about inflation adjusting faster to technology shocks. Results are robust to estimating the model at a monthly frequency.

4.1 Identification through sign restrictions

This method has been originally proposed by Faust \cite{faust2008} and then applied by Uhlig \cite{uhlig2011} to the identification of monetary policy shocks, and by Dedola and Neri \cite{dedola2016} to the identification of technology shocks. These sign restrictions are robust in the sense that they are consistent with a wide range of DSGE models.18 From a Bayesian point of view, sign restrictions amount to attributing probability zero to reduced-form pa-

17See the reference list in Erceg, et al.\cite{erceg2010} for most of the relevant references regarding identification of technology shocks.

18Canova, Gambetti and Pappa \cite{canova2015}, Dedola and Neri \cite{dedola2016} provide detailed examples of standard DSGE models where these restrictions hold. Moreover, these restrictions are consistent with impulse responses estimated in a DSGE model by Smets and Wouters \cite{smets2007}. I refer to these authors for more details.
parameters giving rise to impulse responses which contravene the restrictions. To the extent that these restrictions do not lead to over-identification, they impose no constraint on the reduced form of the VAR. Differently from the benchmark identification assumptions, this procedure does not require stationarity of the vector Y. Therefore, I can leave the non-stationary variables of the model in levels.\footnote{The specification of δ is changed accordingly. For instance in the benchmark specification $\delta = 0$ for inflation, in the specification in levels $\delta = 1$.} Given the specification in levels, I can include in the VAR different measures of price level and money supply, as reported in the appendix. Apart from the different identification assumptions, the rest of the estimation procedure is as in the benchmark specification of the model. I adopt the algorithm proposed by Ramirez et al. \cite{Ramirez2004}, \cite{Ramirez2005} to compute the posterior distribution of impulse responses.\footnote{For more details see Ramirez, Waggoner and Zha \cite{Ramirez2004} pp. 38-40.}

Sign restrictions on the impulse responses to monetary policy shocks are similar to the ones adopted by Uhlig \cite{Uhlig2005}, while sign restrictions on the impulse responses to technology shocks are similar to the ones adopted by Dedola and Neri \cite{Dedola2005}.\footnote{I refer to these authors for a discussion of the ability of these restrictions to distinguish technology from monetary policy shocks as well as from other shocks.} Intuitively, this method distinguishes the two types of shocks on the basis of the facts that: i) permanent technology shocks have a more persistent impact on quantities than monetary policy shocks; ii) quantities and prices move in opposite directions following a technology shock, but move in the same direction following a monetary policy shock; iii) monetary policy shocks are associated to changes in monetary aggregates and interest rates.\footnote{More specifically, sign restrictions to a monetary policy shock are such that: the impulse responses of M2, investments, consumption, GDP and hours worked are non-positive for the first 2 periods at least; the Federal Funds rate is non-negative for the first 2 periods at least; the impulse responses of CPI is negative in at least one quarter within the first 12 quarters from the shock. Restrictions to a technology shock are such that: the impulse responses of GDP and investments are non-negative in the first 10 quarters; the impulse responses of labor productivity non-negative; the impulse responses of the real wage and consumption are non-negative for at least 5 quarters; the impulse responses of CPI is negative in at least one quarter within the first 12 quarters from the shock.}

19
20
21
22
Results in Table 3 and Figure 4 confirm main findings from the benchmark model, i.e., that inflation adjustment speed is higher to technology shocks than to monetary policy shocks.

4.2 A Solow-residual based identification for technology

As an additional robustness check on identification of technology shocks, this subsection adopts a different identification assumption for technology shocks, relying on a Solow-residual measure of quarterly total factor productivity (FTFP) growth estimated by Fernald [23]. Fernald’s quarterly measure explicitly accounts for variable capital utilization and labor hoarding.23 The FTFP series is added to Y and the posterior distribution of (B, γ) is estimated as in section 2. Differently from section 2, in this subsection the identifying assumption is that a technology shock is the only shock affecting FTFP in the long-run. Relative to the identification assumptions of section 2, the advantage of this procedure is that, by explicitly assuming an aggregate production function, it directly estimates total factor productivity growth.24 As long as the assumption about the aggregate production function holds at low frequencies, the model provides unbiased estimates of technology shocks. The remaining assumptions required to jointly identify the monetary policy shock are unchanged from section 2. According to Table 3, inflation adjustment speed to technology shocks is higher than to monetary policy shocks. The associated posterior probability is about 0.86.

23The growth rate of FTFP is given by:

$$\Delta \ln(FTFP) = \Delta \ln(GDP) - \alpha (\Delta \ln(K) + \Delta \ln(Z)) - (1 - \alpha) (\Delta \ln(QH) + \Delta \ln(E)),$$

where Z is capital utilization, K is capital input, E is labor effort per (quality-adjusted) hour worked, Q is labor quality (i.e., a labor composition adjustment), and H is hours worked.

24This procedure has been originally applied by Christiano, Eichenbaum and Vigfusson [14], suggesting there could be high frequency cyclical measurement error in Solow-residual based measures of total factor productivity, that the long-run restriction might clean out.
4.3 Smaller VAR

Table 3 and Figure 4 report results from the estimation of the smaller size VAR used as reference model. This model includes GDP, the Federal Funds rate, inflation, per-capita hours worked and money velocity. The model has the same size of a standard new-Keynesian model, and a similar version has been studied in the context of VARs by Gali et al. [27] or Boivin and Giannoni [6]. When analyzing impulse responses obtained from the small size model, I obtain no clear answer on whether inflation adjusts faster to technology shocks than to monetary policy shocks. In fact, uncertainty in the estimates of impulse responses is higher.25 This uncertainty reflects in the estimate of the posterior probability of inflation adjusting faster to technology shocks, which drops substantially to about 0.47. In fact, the difference in median estimates of inflation adjustment speed to the two shocks is much smaller than under the benchmark model. Therefore, allowing for more information in the VAR helps identifying the response of the economy to the two shocks, and reduces uncertainty in the estimation of inflation adjustment speed.

5 Concluding remarks

This paper answers the question of whether, by how much and how likely it is that U.S. inflation adjusts faster to aggregate technology shocks than to monetary policy shocks. According to a BVAR model for the 1959-2007 sample, this paper finds that U.S. inflation adjusts much faster to technology shocks than to monetary policy shocks. This paper also finds that this result is robust to different identification assumptions. However, when investigating more in detail over subsamples, this paper finds that inflation adjusts faster to technology shocks than to monetary policy shocks.25 Impulse responses are available in the on-line appendix.
shocks in the Volcker-Greenspan period, but the opposite is true in the pre-Volcker subsample. This result is due to the fact that inflation adjustment speed in the later subsample has substantially increased to technology shocks, while it has changed much less to monetary policy shocks. These results are interesting, for instance, from the perspective of models of price setting under rational inattention. Recent studies have in fact shown that the allocation of attention by firms, and hence the speed of inflation adjustment, crucially depend on the systematic response of monetary policy to expected inflation and output fluctuations.26

Increasing the number of macroeconomic indicators in the VAR helps reducing the uncertainty in the estimation of inflation responses to technology and monetary policy shocks. Reducing the uncertainty might help to evaluate the ability of available models of price setting to account for the different speed of inflation adjustment to the two structural shocks.

References

26See Paciello [32] for details.

Appendix

A Data

<table>
<thead>
<tr>
<th>Mnemon</th>
<th>Series</th>
<th>$Y=(X,S,Z,F)$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDPQ/LBMNU</td>
<td>Labor productivity</td>
<td>X</td>
<td>$\Delta \log$</td>
</tr>
<tr>
<td>LBMNU/P16</td>
<td>Index total hours worked per person</td>
<td>X</td>
<td>log</td>
</tr>
<tr>
<td>FYFF</td>
<td>Interest rate: Federal Funds rate</td>
<td>S</td>
<td>Level</td>
</tr>
<tr>
<td>(LBCPU+LBMNU)/GDP</td>
<td>Labor share of GDP</td>
<td>X</td>
<td>log</td>
</tr>
<tr>
<td>FYGT10</td>
<td>Interest rate: 10-YR U.S. Treasury</td>
<td>F</td>
<td>Level</td>
</tr>
<tr>
<td>(GCN+GCS+GGE)/GDP</td>
<td>Consumption share of GDP</td>
<td>X</td>
<td>log</td>
</tr>
<tr>
<td>(GCD+GPI)/GDP</td>
<td>Investment share of GDP</td>
<td>X</td>
<td>log</td>
</tr>
<tr>
<td>IPS10/QGDP</td>
<td>Industrial production relative to GDP</td>
<td>X</td>
<td>log</td>
</tr>
<tr>
<td>UTL11</td>
<td>Capacity utilization</td>
<td>X</td>
<td>Level</td>
</tr>
<tr>
<td>LHUR</td>
<td>Unemployment rate</td>
<td>X</td>
<td>Level</td>
</tr>
<tr>
<td>HSFR</td>
<td>Housing starts index</td>
<td>X</td>
<td>log</td>
</tr>
<tr>
<td>MZMSL/GDP</td>
<td>Money velocity</td>
<td>Z</td>
<td>log</td>
</tr>
<tr>
<td>PGDP</td>
<td>GDP price deflator (PGDP)</td>
<td>X</td>
<td>$\Delta \log$</td>
</tr>
<tr>
<td>PUNEW</td>
<td>Consumer price index (CPI)*: **</td>
<td>X</td>
<td>log</td>
</tr>
<tr>
<td>PCPEPI</td>
<td>Personal cons. expend. deflator (PCE)*: **</td>
<td>X</td>
<td>log</td>
</tr>
<tr>
<td>PWFSA</td>
<td>Producer price index (PPI)*: **</td>
<td>X</td>
<td>log</td>
</tr>
<tr>
<td>FM1</td>
<td>M1 monetary stock*</td>
<td>Z</td>
<td>log</td>
</tr>
<tr>
<td>FMRRRA</td>
<td>Non-borrowed reserves*</td>
<td>Z</td>
<td>log</td>
</tr>
<tr>
<td>FMRNBA</td>
<td>Total reserves*</td>
<td>Z</td>
<td>log</td>
</tr>
</tbody>
</table>

The source of most of the data is the DRI Basic Economics Database, available on-line at Northwestern University. Output, GDP deflator were obtained from the BEA website; "**" denotes those variables that are included in the model only under
sign restrictions identification; "***" denotes the price indeces that are entered in the benchmark specification of Y one at the time in place of PGDP, to obtain statistics in Figure 1 and Table 1.
B Kadiyala and Karlson (1997) prior

Let’s rewrite model (2) as a system of multivariate regressions:

\[Y_{T \times n} = X_{T \times k} B_{k \times n} + U_{T \times n}, \]

where \(Y = (y_1, \ldots, y_T)' \), \(X = (X_1, \ldots, X_T)' \) and with \(X_t = (Y_{t-1}', \ldots, Y_{t-p}', 1)' \), \(U = (u_1, \ldots, u_T)' \), \(B = (B_1, \ldots, B_p, c)' \), and \(k = np + 1 \). The prior beliefs are such that \(B \) and \(\Psi \) have a Normal inverted-Wishart distribution, according to which

\[\Psi \sim iW(S_0, \alpha_0) \quad \text{and} \quad vec(B)|\Psi \sim N(vec(B_0), \Psi \otimes \Omega_0). \]

The prior parameters \(S_0, \alpha_0, B_0 \) and \(\Omega_0 \) are chosen so that the prior expectation of \(\Psi \) is equal to \(E(\Psi) = diag(\sigma_1^2, \ldots, \sigma_n^2) \), and the prior expectations and variances of the elements of \(vec(B) \) coincide with

\[
\begin{align*}
E\left((B_s)_{ij} \right) &= \begin{cases}
\delta_i, & \text{if } i = j, s = 1 \\
0, & \text{otherwise}
\end{cases}, \\
V\left((B_s)_{ij} \right) &= \frac{\lambda^2 \sigma_i^2}{s^2 \sigma_j^2},
\end{align*}
\]

where \((B_s)_{ij} \) is the \(i, j \) element of \(B_s \) for \(s = 1, \ldots, p \), \(i = 1, 2, \ldots, n \), \(j = 1, 2, \ldots, n \). Notice that the unconditional distribution of \(B \) is multivariate t. For details see Kadiyala and Karlsson [29] and Banbura, Giannone and Reichlin [2] at pages 74-75. The scale parameters \(\sigma_t^2 \) are set equal to the variance of the residual from a univariate autoregressive model of order \(p \) for the variable \(Y_i \).

The prior is implemented by adding \(T_0 \) dummy observations, \(Y_0 \) and \(X_0 \), to \(Y \) and \(X \) respectively. The vectors \(Y_0 \) and \(X_0 \) are defined as in eq. 5 of Banbura et al.
It can be shown that this is equivalent to imposing a Normal inverted-Wishart prior with $B_0 = (X_0'X_0)^{-1}X_0'Y_0$, $\Omega_0 = (X_0'X_0)^{-1}$, $S_0 = (Y_0 - X_0B_0)'(Y_0 - X_0B_0)$ and $\alpha_0 = T_0 - k - n - 1$. It follows that the dummy-augmented VAR model is:

$$Y_* = X_* B + U_* ,$$

where $T_* = T + T_0$, $X_* = (X', X_0')'$, $Y_* = (Y', Y_0')'$ and $U_* = (U', U_0')'$. To insure the existence of the prior expectation of Ψ it is necessary to add an improper prior $\Psi^{-|\Psi|-(n+3)/2}$. The posterior distribution is a Normal inverted-Wishart:

$$\Psi|Y \sim iW(S_*, \alpha_*) \quad \text{and} \quad B|\Psi, Y \sim N(B_*, \Psi \otimes \Omega_*) ,$$

where $B_* = (X_*'X_*)^{-1}X_*'Y_*$, $\Omega_* = (X_*'X_*)^{-1}$, $S_* = (Y_* - X_*B_*)'(Y_* - X_*B_*)$ and $\alpha_* = T_* - k + 2$.

C Parameterization of λ

Consider an n_1- dimensional subset of Y. Define the in-sample mean squared forecast error (MSFE) of the 1-step-ahead mean squared forecast as:

$$MSFE_{i}^{(\lambda,m)} = \frac{1}{T - p - 1} \sum_{t=p+1}^{T} \left(\hat{y}_{i,t}^{(\lambda,m)} - y_{i,t} \right)^2 ,$$

where $i = 1, ..., n_1$ indices the variable the MSFE is computed for, T is the length of the sample, $\hat{y}_{i,t}^{(\lambda,m)}$ is the one-step-ahead forecast computed in model m with prior parameterization equal to λ. This analysis studies two types of models, depending on the number of variables included in the analysis and the value of λ. The first model, $m = 1$, is similar to the model by Gali et al. [27], including $n_1 < n$ variables and is estimated with a flat prior, $\lambda = \infty$. The n_1 variables considered are: labor-
productivity, hours worked, GDP price deflator, Federal Funds rate and M2 money stock. The second model \(m = 2 \) is the benchmark model with \(n \) variables. Following Banbura, Reichlin and Giannone [2], I choose \(\lambda \) in model \(m = 2 \) so to minimize the difference in fit from model \(m = 1 \) over the \(n_1 \) variables:

\[
\lambda^* = \arg \min_{\lambda} \left| F - \frac{1}{n_1} \sum_{i=1}^{n_1} \frac{MSFE_i^{(\lambda, 2)}}{MSFE_i^{(0, 1)}} \right|
\]

where \(F = \frac{1}{n_1} \sum_{i=1}^{n_1} \frac{MSFE_i^{(\infty, 1)}}{MSFE_i^{(0, 1)}} = 0.17 \) is the measure of relative fit associated to the reference model. From this procedure \(\lambda^* \) is equal to 0.07.

D Identification

Let’s order the variables in the model as \(Y_t = (X_t, S_t, Z_t, F_t)' \), where the first element of \(X_t \) and \(Y_t \) is log-labor productivity. Variables are entered in the VAR according to Appendix A. Following Ramirez et al. [33], [34] let’s express the set of linear restrictions onto the structural parameters of \(A_0 \) as

\[
H (A_0) = \begin{bmatrix}
A_0^{-1} \\
(I - B (1))^{-1} A_0^{-1}
\end{bmatrix} \equiv D
\]

where \(B (1) = B_1 + \ldots + B_p \) and \(B_1, \ldots, B_p \) are the estimates of the reduced form autoregressive matrices. \(D \) is a \(2n \times n \) matrix of restrictions imposed on the impact and long-run responses to structural shocks. Let’s define \(n_x \) and \(n_z \) as the number of variables in \(X \) and \(Z \) respectively. Let’s order the technology and monetary policy shock as the \(n^\text{th} \) and \((n_z + 1)^\text{th} \) elements of the vector of structural shocks \(e_t \) respectively. In particular, the identifying restrictions are zero restrictions such that the
matrix D is given by

$$
D^* = \begin{bmatrix}
 0 & 0 & T_x & x \\
 (n_x \times n_z) & (n_x \times 1) & (n_x \times n_x) & (n_x \times 1) \\
 0 & x & x & x \\
 (1 \times n_z) & (1 \times 1) & (1 \times n_x) & (1 \times 1) \\
 T_z & x & x & x \\
 (n_z \times n_z) & (n_z \times 1) & (n_z \times n_x) & (n_z \times 1) \\
 x & x & x & x \\
 (1 \times n_z) & (1 \times 1) & (1 \times n_x) & (1 \times 1) \\
 0 & 0 & 0 & x \\
 (1 \times n_z) & (1 \times 1) & (1 \times n_x) & (1 \times 1) \\
 x & x & x & x \\
 (n - 1 \times n_z) & (n - 1 \times 1) & (n - 1 \times n_x) & (n - 1 \times 1)
\end{bmatrix}, \quad (6)
$$

where T_z and T_x are $n_z \times n_z$ and $n_x \times n_x$ matrices respectively, and have the form of upper triangular matrices with an inverted order of columns:

$$
T_i = \begin{bmatrix}
 0 & \cdots & 0 & x \\
 0 & \cdots & x & x \\
 0 & / & \vdots & \vdots \\
 x & \cdots & x & x
\end{bmatrix},
$$

where $i = z, x$. The zero restrictions on D^* satisfy both the necessary and sufficient (rank) conditions for exact identification derived by Ramirez, Waggoner and Zha [33] and [34]. In order to recover A_0 from the system of linear equations, $H(A_0) = D^*$ and $A_0^{-1}A_0^{-1'} = \Upsilon$, I recur to an algorithm proposed by Ramirez, Waggoner and Zha.
Let $\Sigma = SD^{\frac{1}{2}}$ be the $n \times n$ lower diagonal Cholesky matrix of the covariance of the residuals of the reduced form VAR, that is $SDS' = E[u_t u'_t] = \Upsilon$ and $D = \text{diag}(\Upsilon)$. Let's compute $H(\Sigma^{-1})$ and define matrices P_1 and P_2 as:

\[
P_1 \equiv \begin{bmatrix}
0_{1 \times n} & 1 & 0_{1 \times n-1} \\
I_{n \times n} & 0_{n \times 1} & 0_{n \times n-1} \\
0_{n-1 \times n} & 0_{n-1 \times 1} & I_{n-1 \times n-1}
\end{bmatrix},
\]

\[
P_2 \equiv [i_{n}, i_{n-1}, \ldots, i_{1}],
\]

(7)

(8)

where $I_{s \times s}$ is the s-dimensional identity matrix and i_s is an n-dimensional column vector of zeros with the s^{th} element equal to 1. This means that the structural shocks are ordered so that all variables in X do not respond contemporaneously to the monetary policy shock. The Federal Funds rate, i.e. the $(n_x + 1)^{th}$ element of Y, does not respond contemporaneously to variables in Z. To be more specific, the structural shocks are ordered in the following way:

\[
e'_t = \begin{bmatrix}
e'_t^{zt} & e'_t^{st} & e'_t^{xt} & e'_t^{ft} & e'_t^{ot} \\
(1 \times n_z) & (1 \times 1) & (1 \times n_x) & (1 \times 1) & (1 \times 1)
\end{bmatrix},
\]

where e'_t^{st} and e'_t^{ot} are the monetary policy and technology shocks respectively.

Proposition 1 For given estimates of B and Υ, let Σ be the Cholesky factor associated to Υ, and let $H(\cdot)$, P_1 and P_2 be defined as in (7) – (8). Let P_3 be the Q factor associated with the QR decomposition of the matrix $(P_1 H(\Sigma^{-1}))'$ and define $P = P_3P'_2$. Let also A_0 satisfy the restriction $H(A_0) = D^*$ where D^* is defined as in (6). It follows that $A_0 = \Sigma^{-1}P$.

For a proof see Ramirez, Waggoner and Zha [33] and [34]. These restrictions satisfy both the necessary and the rank conditions for exact identification. The structural
shocks e_t are obtained from $e_t = A_0^{-1}u_t$. Finally, notice that the order of the variables in X and Z can be arbitrarily changed without any effect on the identifications of the columns for technology and monetary policy shocks.