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Abstract
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1 Introduction

This paper studies some implications of uncertain lumpy purchases for the management of

liquid assets in the context of inventory theoretical models. By lumpy purchases we mean

large-sized expenditures that must be paid with a liquid asset. The paper accomplishes

three objectives. First, it shows that some of the theoretical predictions of this problem are

in stark contrast compared to those of canonical inventory models. In particular, a novel

feature introduced by the lumpy purchases is the possibility that liquidity gets withdrawn

and spent immediately. This feature changes the relationship between the size of liquidity

withdrawals and the average liquidity holdings compared to canonical models. Equivalently,

this affects the relationship between the average cash holdings and its “scale variable”, e.g.

the average expenditures in a period. Second, our analysis of the optimal policy breaks

some new ground on the mathematical analysis of inventory models, as the solution of the

model with jumps turns out to be non-trivial. For instance, we show that the standard

boundary conditions used to characterize the optimal policy are necessary but not sufficient,

for an optimum. Third, the paper brings new evidence to bear on the model predictions

concerning households’ liquidity management. We use two novel datasets of Austrian and

Italian households to summarize the main patterns in the data concerning the management

of currency and of broader liquid assets. We show that our model can explain some empirical

regularities that traditional models cannot account for. Although this paper focuses on

households, mostly because of data availability, our model has clear implications for the

management of liquid assets by firms, and reserve management by banks, which we discuss

in the concluding section.

The standard inventory model solves the problem of an agent trading off the holding cost

of an inventory with the cost of adjusting the inventory. In simple models the inventories

are assumed to be needed to finance an exogenous consumption flow (for households), or net

sales (for firms). These models are typically set up in continuous time and the uncontrolled

dynamics of inventories is described by a process with continuous paths. The classic examples
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of this setup when applied to households are Baumol (1952), Tobin (1956), where the process

describes the household’s consumption that needs to be paid with currency. When applied

to firms, as in Miller and Orr (1966), the process is the firm’s net cash revenue. In this

case one cost of the inventory is the low return of the liquid asset. This paper studies the

implications for cash-management of having lumpy uncertain purchases: thus we explore the

consequences of departing from the assumption that net cash consumption has continuous

paths, allowing the unregulated inventories to follow a jump process.

The ideas in this paper can be sketched in the context of a simple model. Suppose that in

each period the agent must finance a consumption in cash of size c per unit of time and also

that with a probability κ per unit of time the agent must make a cash payment of size z. In

this case the expected consumption to be financed with cash is e = c + κz per unit of time.

One strategy for the agent is to withdraw enough money so that, at least if this happens soon

after the time of the withdrawal, all payments can be financed with the cash at hand. This

strategy has the advantage of saving on the adjustment cost, but it has the disadvantage

of incurring a holding cost on the inventory of cash. The inventory cost increases with the

purchase size z, since the agent has to withdraw more money. An alternative strategy is to

withdraw money when the purchase z happens. This strategy saves in holding cost, since

the agent spends the money right away, but it involves paying the adjustment cost more

frequently. This strategy is preferred when the probability κ is small. Thus, as the size of

the large purchases z increases, and/or as they become infrequent (κ small), the optimal

policy is to withdraw every time a large purchase occurs. In this simple extreme case the

expected value of large purchases κz has no effect on the average cash holdings (M). The

size of the withdrawal (W ), when triggered by a large purchase, increases by the amount of

this purchase, and an amount z of cash is spent immediately. These results, in some sense,

turn the logic of the classical inventory model up-side down: cash is not spent slowly and

adjustment is not triggered by the crossing of some sS bands. Instead, it is the arrival of a

large purchase that triggers an adjustment and a simultaneous withdrawal and large use of
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cash. While κz has no effect on the average cash holdings, its magnitude affects the average

size of withdrawals, and hence W/M is increasing in κz. The high value of W/M also implies

that the number of withdrawals per unit of time n is small relative to the benchmark of

the Baumol-Tobin model for an agent financing the same consumption e. The economics is

simple: the withdrawals that are triggered by large purchases account for a large share of

cash expenditures e and contribute nothing to average money holdings. Additionally, if every

random large expenditures triggers a withdrawal, agents on average hold cash at the time

of withdrawals, a behavior that can be described as “precautionary” and which is clearly

apparent in the data.

There is a large literature on inventory models applied to liquid assets. Most of the

literature assumes that the cumulated net cash consumption has continuous path, hence not

allowing for lumpy purchases or sales. Examples are Baumol (1952), Tobin (1956), Miller

and Orr (1966) among many others.1 One exception is the work by Bar-Ilan, Perry, and

Stadje (2004). The set up of that paper includes lumpy purchases and sales using a more

general specification than the one in this paper. They compute the value of selected policies,

but do not characterize the nature of the optimal decision rules. In this paper, instead,

we give a characterization of the optimal policy which, from the technical point is view, is

not a trivial matter since it has to address two issues: (i) the form of the inaction set, i.e.

whether it is a single interval or the union of disjoint ones; and (ii) whether the necessary

boundary conditions are also sufficient, which turns out not to be the case for this problem.

Additionally, the focus of our paper is different, we concentrate on the implications for the

cash management statistics and on the differences with standard models.

We present two empirical applications of our model. The first one uses two surveys on

currency management, from Italian and Austrian households. Both surveys contain infor-

mation on the patterns of cash management: the average consumption paid with cash per

1Other examples are Eppen and Fama (1969), Constantinides (1978), Constantinides and Richard (1978),
Frenkel and Jovanovic (1980), Harrison, Sellke, and Taylor (1983), Harrison and Taskar (1983), Bar-Ilan
(1990), Duffie and Sun (1990), Abel, Eberly, and Panageas (2007), Baccarin (2009), Bensoussan, Chutani,
and Sethi (2009), and Alvarez and Lippi (2009).
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period e, the average cash holdings M , average withdrawal size W , average number of with-

drawals per unit of time n, and average cash holdings at the time of withdrawal M . Besides

that, the Austrian data set contains information on the patterns of purchase size, recorded

in a consumption diary held by the same individuals to whom the survey was administered

(see the description in Mooslechner, Stix, and Wagner (2006)). The diary data show that,

for a non-negligible fraction of individuals, the assumption that large purchases are paid in

currency is realistic. We use the diary and survey information to investigate some of the

predictions of our model by comparing individuals that differ in the importance of the lumpy

component of their expenditures paid with currency. In Section 4.1 we present evidence on

several statistics, such as the frequency and size of withdrawal relative to the average holding

of currency holdings, that is supportive of the mechanism highlighted in the model. The

second application, in Section 4.2, focuses on a broader liquid assets, close to M2, using data

from a sample of Italian customers of a large commercial bank described in Alvarez, Guiso,

and Lippi (2011). We argue that accounting for the lumpy nature of purchases, as in the case

of e.g. durable purchases, seems important to understand the management of liquid assets.

The paper is organized as follows. Section 2 outlines the main idea of the paper using

a simple deterministic model. A stochastic version of the model is discussed in Section 3,

where various specifications are explored. Section 4 illustrates two empirical applications of

the model. Section 5 has conclusions and directions for future research.

2 A deterministic model with lumpy purchases

This section develops a simple version of the Baumol-Tobin (BT) model where the consump-

tion paid in cash has two deterministic components, one continuous at the rate c per unit of

time and the other discontinuous, with jumps of size z, exactly every 1/κ periods of time.

Thus, total consumption per unit of time is e ≡ c + zκ, the sum of the cumulative consump-

tion at the rate c plus the κ jumps in consumption, each of them of size z. These jumps on
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the cash consumption in the model are meant to be a simple representation of the fact that

households’ purchases varies in size. The objective function, as in BT, is to minimize the

cost V given by V = RM + bn where M is the average cash balances, R is the opportunity

cost of the cash balances, n is the number of withdrawals per unit of time, and b is the fixed

cost paid for each withdrawal.

It turns out that the optimal policy is of one of three types, depending on parameters.

When κ is small, the agent withdraws every 1/(i κ) units of time, where i ≥ 1. In this case,

there are i withdrawals between jumps in cumulative consumption, and n > κ. One of the

withdrawals will happen just before the jump z, and hence financing the discontinuous part

of consumption is done at no cost. If κ is large, the agent makes a withdrawal every j/κ

units of time, where j ≥ 1. In this case there are j jumps in cumulated consumption between

successive withdrawals, or n < κ. Thus the agent will only “save” on the opportunity cost

of the associated consumption z once every j jumps between withdrawals. For intermediate

values of κ, withdrawals happen exactly every 1/κ periods of time, or n = κ.

We define two thresholds κ and κ̄(z), which determine the patterns of cash management:

κ ≡
√

R c

2 b
≤ κ̄(z) ≡ Rz +

√

(Rz)2 + 8bRc

4b
.

Note that κ = κ̄(0) and that κ̄ is strictly increasing in z. To simplify the description we will

assume that a certain combination of parameters takes on integer values. Define u as follows:

u ≡ max

{
√

R c

2 b κ2
,

√

κ2 2 b

R (c + κz)

}

.

For the description of the optimal policy we let W be the average withdrawal size, so W/M

is the ratio of average withdrawal to average stock of money. We have:

Proposition 1. Assume that if u > 1, then u is an integer. Then the optimal decision
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rules and the value of the objective function V are given by:

If κ < κ : n =

√

R c

2 b
> κ ,

W/M

2
=

c + κz

c
, and V =

√
2 R b c ,

If κ ≤ κ ≤ κ̄(z) : n = κ ,
W/M

2
=

c + κz

c
and V =

R c

2
+ bκ ,

If κ > κ̄(z) : n =

√

R (c + zκ)

2 b
< κ ,

W/M

2
=

c + κz

c + z(κ − n)
and

V =
√

2 R b (c + κz) − R z

2
.

Using the accounting identity W n = c + κz and the expressions in the proposition one

can find the values of W and M separately. The interpretation of this proposition is as

follows: when κ is small relative to what determines the frequency of withdrawals in BT,

then the jumps can be made coincide with one of the many withdrawals. In this case, the

agent will withdraw the extra amount z and spend it immediately. Thus the cash expenditure

associated with the jump does not incur into any opportunity cost since that cash is held

only for an instant. Also, the agent does not incur any extra fixed cost b, since it has to

withdraw to finance the continuous expenditure anyway. As a consequence, the decision for

the agent on the number of withdrawals n is exactly as in BT, but it is as if the consumption

to be financed is c, instead of c+κz. This can be seen from the expression for n and V . The

expression for W/M is larger than 2, since at the time of a jump in consumption the agent

withdraws an extra amount z, which is spent immediately and does not contribute to the

average money holdings M . On the other hand, consider the case where κ is large, so that

the agent will like to withdraw several times between jumps. In this case, only the first of

the jump, the one that occurs immediately after a withdrawal will have no opportunity cost

associated with it. Otherwise, the decisions are as if the agent has to finance c + κz in the

BT model. This can be seen in the expression for n, which is the same as in BT, and in the

one for V , which is identical, except that it subtracts the “savings” in the opportunity cost
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for one jump per period. The ratio of W/M depends on how large this jumps are, i.e. on z.

The following extreme case may help to understand the model for large κ. Assume that κ

is very large, but z is very small, so there are very frequent jumps of small size, keeping the

product zκ = γ positive and finite. As the jumps become very small, the model is identical

to BT, with total consumption c + κz. This can be seen in the case where κ > κ̄(z), and

taken the limit to z to zero. We now develop the comparison with BT in detail.

Let us denote by nBT =
√

R (c + zκ)/(2 b) the optimal decision if one were to measure

the total cash consumption c + zκ and assume that it is continuous as in BT. Also we recall

that in BT the ratio W/M = 2 since cash consumption is constant per unit of time (z = 0).

We then compute two ratios, n/nBT and (W/M)/2, as functions of κ. These are useful to

compare the prediction with BT. We have

If κ ≤ κ =⇒ n

nBT
=

√

c

c + κz
,

W/M

2
=

c + κz

c
,

If κ < κ < κ̄(z) =⇒ n

nBT

=

√

κ2 2 b

R (c + κz)
≤ 1,

W/M

2
=

c + κz

c
,

If κ ≥ κ̄(z) =⇒ n

nBT
= 1, 1 ≤ W/M

2
=

c + κz

c + κz − z
√

R (c+κz)
2 b

<
c + κz

c
.

Notice that in terms of the statistics W/M and n/nBT the implications of the model

when κ < κ depend only the value of zκ, and not separately on κ and z, a feature that

will be shared by the model in Section 3.2.1. There are two extreme cases that are useful to

highlight. Keeping the product zκ = γ > 0, strictly positive and finite, we have:

lim z = 0, lim κ = ∞ =⇒ n

nBT
= 1 ,

W/M

2
= 1 ,

lim z = ∞, lim κ = 0 =⇒ n

nBT
=

√

c

c + γ
,

W/M

2
=

c + γ

c
.

The first line describes the case of an economy in which all consumption is continuous (i.e.

no jumps ever occur). In this case the model coincides with BT. The second line describes
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the limiting case of an economy in which the lumpy expenditures is concentrated in a single

jump (the probability of a jump per unit of time is thus zero). In this case the number of

withdrawal is smaller, and the W/M ratio higher, than in BT.

Finally, note that the money demand M as function of R/b, the interest rate relative to

the fixed cost, is decreasing (keeping the other parameters c, κ, z fixed). The shape of the

money demand as a function of R/b depends on the value of the interest rates. For this

purpose we divide the values of the interest rates R/b into three segments, using two cut-off

points defined as follows: R̄(κ) solves κ = κ(R) and R(κ, z) solves κ = κ̄(R, z), where κ

and κ̄ are the thresholds defined above, which we now write as functions of the interest rate.

Since κ(R) < κ̄(R), and since both are increasing in R, starting at 0 and going to ∞, the

thresholds R(κ) < R̄(κ) are well defined and are both decreasing in κ, and R is decreasing in

z. Using these thresholds, Proposition 1, and the accounting identity Wn = c + κz we have:

∂ log M

∂ log R
=























−1
2
− 1

2
zn

c+z(κ−n)
if 0 < R < R(κ, z) where n < κ

0 if R(κ, z) < R < R̄(κ) where n = κ

−1
2

if R̄(κ) < R where n > κ

(1)

Thus the elasticity of the money demand is non-monotone on R. For small values of R is

more elastic than 1/2, for intermediate values it is inelastic, and for high values of R the

elasticity is 1/2.

3 A stochastic model

We consider a model where consumption has three components: one is deterministic at a

constant rate c per unit of time, - as in our previous model. The second component represent

large purchases: we assume that the jump process occurs with probability κ per unit of

time, and that when it happens cumulated consumption increases by an amount given by

the parameter z > 0. With this parameterization, expected consumption per period, say
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per year, equals e = c + κz. The third component introduces random variation in the net

cash consumption, with variance σ2 per unit of time. This is to capture, as in the seminal

model of cash management of firms by Miller and Orr (1966), income that is received in cash,

a feature that is mostly associated with firms’ cash flows. Moreover this gives rise to cash

deposits as well as withdrawals. If we denote cumulative consumption paid in cash by C(t)

we assume that dC(t) = cdt+ zdN +σdB, where N(t) is the poisson counter, and B(t) is an

standard Brownian motion. If we interpret dC as the consumption during a period of length

dt, we note that, when σ > 0, it can be negative.

We also assume that with a Poisson arrival rate p per unit of time, the agent has an

opportunity to adjust her cash balances without paying the cost b. We introduce the free

adjustment opportunities as a way to model the possibility of cash replenishment due to the

ATM network, an feature that we have explored in Alvarez and Lippi (2009). The reason

to include it here is that it shares some implications with the model with large purchases.

Specifically, as shown below, that cash management data alone (such as frequency and size

of withdrawals, average cash holdings, etc.) cannot identify separately p from κ. On the

other hand, having data on the size distribution of cash purchases can help identify these

parameters.

The introduction of the large purchases is useful to explore the implications of an alter-

native reason for “precautionary” type of behavior. In this model, there are three types of

withdrawals, those that occur when m reaches zero, those that occur at the time of a jump in

consumption if m < z, and those that occur if the agent has a free withdrawal opportunity.

The idea is that at times when cumulated consumption jumps (i.e. a large purchase occurs),

if the money balances at hand m are not large enough to pay for the sudden increase in cash

consumption, i.e. if m < z, then the agent will withdraw cash, even if cash has not reached

zero. Otherwise, the nature of the optimal policy is the same, after withdrawal agents set

their cash balances to the optimal replenishment level m∗.

The standard inventory model has unregulated inventory following a process with con-
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tinuous paths.2 Yet there are several exceptions. Milbourne’s (1983) model is set up in

discrete time and makes no special assumptions about the process for net cash-holdings. If

we let C be the cumulated unregulated process, and we let N be the counter of a Poisson

process, we have that dC(t) = zdN from state dependent F (x, z) in Song and Zipkin (1993)

(where the state x is a finite Markov chain) and in Archibald and Silver (1978). A paper

with a closely related, but more general, set up is Bar-Ilan, Perry, and Stadje (2004), which

assumes dC(t) = µdt + σdB + zudNu − zddNd and where B is a standard Brownian motion,

zi ≥ 0 are the up and down jumps, and N i are the counters of two Poisson processes with

possible different constant intensities, and where the jump sizes have general distributions

which include the exponential distribution. Their paper also has a more general adjustment

cost, including fixed and variable cost, that differs for deposits and withdrawals, for which

the authors present an analytical solution for the value of following a type of sS policy.3

We show below that solving the Bellman equation is more involved than in the standard

case where the unregulated inventory (cash in this case) follows a process with continuous

path. This requires to solve a delay-differential equation, as opposed to an ordinary differ-

ential equation. While in Section 3.1 we present an algorithm to solve for the parameters

that fully characterize the Bellman equation, we do not have a simple closed form solution

for the thresholds that describe the optimal policy (m∗, m∗∗), as we did for the case with no

jumps in Alvarez and Lippi (2009). Of course if the jumps were small, i.e. if z was small,

the statistics of interest would not be affected. In particular, we show that in the limit as

z → 0 while keeping κ z constant, the model reduces to the one with continuous consumption.

Thus, in Section 3.2.1 we will concentrate on the case of large but infrequent jumps, i.e. large

2 If we let C be the cumulated unregulated process, we have that C(t) = c t for constant c > 0 as in
Baumol (1952), Tobin (1956), Jovanovic (1982), Alvarez and Lippi (2009); or C(t) = σ Bt for constant σ > 0
and Bt a standard BM in Miller and Orr (1966), Eppen and Fama (1969); or C(t) = ct + σ Bt for constants
c, σ > 0: Constantinides and Richard (1978), Constantinides (1978), Frenkel and Jovanovic (1980), Harrison,
Sellke, and Taylor (1983), Harrison and Taskar (1983), Bar-Ilan (1990), and dC(t) = c(x)dt + σ(x)dB in
Baccarin (2009).

3Apparently unaware of this work, Sato and Suzuki (2011) have recently obtained a similar set of equations
for value of following an sS policy. Davis, Guo, and Wu (2010) show the smoothness of the value function in
a very general set-up.
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z and small κ, which echoes the deterministic case of κ < κ. We will describe the nature

of the optimal policy for this case, as well as the implications for several cash management

statistics.

3.1 Bellman Equation

We consider a trigger policy described by two thresholds: m∗, the value of cash after and

adjustment, and m∗∗, the value of cash that triggers a deposit. Non-negativity of cash triggers

a withdrawal at m = 0. After a deposit or a withdrawal, agents return to the value m∗, so

that the size of a deposit is m∗∗ − m∗ whereas, due to the consumption jumps and the free

adjustment opportunities, withdrawals have a random size. The Bellman equation in the

interior of the range of inaction, given by 0 < m < m∗∗, becomes:

rV (m) = Rm + p
[

min
m̂

V (m̂) − V (m)
]

+
σ2

2
V ′′(m)

+κ min
[

b + min
m̂

V (m̂) − V (m) , V (m − z) − V (m)
]

+V ′ (m) (−c − πm)

where π is the inflation rate. The term min [b + minm̂ V (m̂) − V (m) , V (m − z) − V (m)]

takes into account that after the jump in consumption the agent can decide to withdraw

cash, or otherwise her cash balances becomes m − z. We let

m∗ ≡ arg min
m̂

V (m̂) , and V ∗ ≡ V (m∗) . (2)

If the value function is differentiable, we have that

V ′(m∗) = 0 . (3)
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Non-negativity of cash implies that

V (m) = V ∗ + b for m ≤ 0. (4)

For the range 0 ≤ m ≤ z we look for a solution of the form of an Ordinary Differential

Equation (ODE):

(r + p + κ) V (m) = Rm + (p + κ)V ∗ + κb + V ′ (m) (−c − πm) +
σ2

2
V ′′(m) (5)

since in this range every jump triggers a withdrawal. This feature is as in Bar-Ilan, Perry,

and Stadje (2004), who refer to it as adjustment triggered by downcrosses. Instead for the

range z ≤ m ≤ m∗∗, we have a Delay-Differential Equation (DDE):

(r + p + κ) V (m) = Rm + pV ∗ + κV (m − z) + V ′ (m) (−c − πm) +
σ2

2
V ′′(m) , (6)

since in this range after a jump cash balances are positive. If cash reaches the value of m∗∗,

then it triggers a deposit of size m∗∗ − m∗ after paying the fixed cost b. Thus we have:

V (m∗∗) = V (m∗) + b and V (m∗∗) = V (m) for all m ≥ m∗∗ . (7)

If V (·) is differentiable at m = m∗∗, then we get that

V ′(m∗∗) = 0 , (8)

a condition typically referred as to “smooth pasting”. We notice that, in general, it will not

be differentiable at this point if σ = 0.

We can further characterize the Bellman equation for V for given policy described by

thresholds (m∗, m∗∗) by splitting the range of inaction in intervals of length z. The idea is

that, at a given point m, the value function depends on the local evolution around m and
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on the value that it will take after a jump, i.e. at m − z. But since cash is non-negative,

for m ∈ [0, z] any jump will lead to a withdrawal, and hence, given V ∗, the value function

only depends on its local evolution, i.e. it is a second order (first order if σ = 0) linear

ODE described by equation (5). Then, given the solution of the value function in the lower

segment, one can construct the segments corresponding to higher values of m recursively,

which themselves solve a system of ODE’s described by equation (6). In the case of π = 0 the

ODEs have constant coefficients. The value matching equation (2), equation (4), equation (7)

provide three boundary conditions. The continuity of the level, first derivative (and second

if σ > 0) across each segment, provide additional boundary conditions.

Proposition 2. Assume π = 0 and σ ≥ 0. Given two thresholds 0 < m∗ < m∗∗ the value

of following such a policy, i.e. the solution of equation (4), (5), (6) and (7), can be described

by J functions Vj :

V (m ; m∗, m∗∗) = Vj(m) for m ∈ [zj, min {z(j + 1), m∗∗}] , (9)

where

Vj(m) = Aj + Dj(m − zj) +
∑

k=1,2

j
∑

i=0

Bk
j,i eλk(m−zj) (m − zj)i (10)

where λk is a solution of r + p + κ = −cλ + σ2

2
λ2 for k = 1, 2 and where the constants

Aj, Dj, B
k
j,i for j = 0, 1, 2, ..., J − 1, i = 1, ..., j, and k = 1, 2 solve a block recursive system of

linear equations described in the proof.

Note that for σ = 0 there is only one root λ and hence one set of coefficients {Bj,i},

together with {Aj, Dj}. Using Proposition 2 we can write the optimality of the return point
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equation (3) and the smooth pasting condition equation (8) as

0 = V ′(m∗; m∗, m∗∗) = Dj∗ +
∑

k=1,2

j∗
∑

i=0

Bk
j∗,i eλk(m∗−zj∗) [λk + i (m∗ − zj∗)i − 1] , (11)

0 = V ′(m∗∗; m∗, m∗∗) = DJ−1 +
∑

k=1,2

J−1
∑

i=0

Bk
J−1,i eλk(m∗∗−z(J−1))

[

λk + i (m∗∗ − z(J − 1))i−1
]

,

(12)

where j∗ is the smallest integer such that m∗ < (j∗+1)z, and where equation (12) applies only

if σ > 0. Since Proposition 2 shows that, for the case of σ > 0 the constants {Aj, Dj , B
k
j,i}

are a function of (m∗, m∗∗), we can regard equation (11) and equation (12) as a system of two

non-linear equation determining (m∗, m∗∗). Instead if σ = 0 the constant {Aj , Dj, Bj,i} are a

function of m∗, so we can regard equation (11) as a one non-linear equation determining m∗.

Intuitively, when σ = 0 cash balances can only go down and cash deposits never occur, so

that the threshold m∗∗ drops out of the problem. The value function V (m; m∗, m∗∗) is then

simplified to V (m; m∗), i.e. it is indexed by only 1 parameter (the optimal return point m∗).

Notice that for given arbitrary values of the thresholds (m∗, m∗∗) a stochastic process

for m is completely determined. Given this process, one can use straightforward computer

simulations to derive the statistics of interest on the cash management, such as the frequency

of withdrawals n, the average money holdings M , the withdrawal size W , the money holdings

at the time of a withdrawal M , which will obviously depend of the chosen thresholds. The

optimal values of (m∗, m∗∗) have to satisfy two non-linear equations, namely equation (11)

and equation (12). The ultimate objective of course is to compare the statistics implied by

the optimal policy with the same statistics from actual data, such as the ones discussed in

Section 4. The one caveat, discussed below in Section 3.2.2, is that the conditions implied by

equation (11) and equation (12) are necessary but not sufficient, so that care must be taken

in ensuring that the values that are chosen are the ones corresponding to a global minimum

for the value function, and not just a local extreme. This can be done, for instance, by simple

inspection of the known value function evaluated at a fixed value of m, e.g. m∗, as a function
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of the (m∗, m∗∗) thresholds, as we do in Figure 1.

Next we present a proposition showing that the limit of small and frequent jumps is the

case with continuous consumption.

Proposition 3. Consider the solution of the value function as z → 0 and 0 < γ ≡

limz→0 z × κ < ∞. This solution coincides with the one without jumps, i.e. κ = z = 0 but

with continuous consumption at the rate c + γ.

The logic of the proof of this proposition is straightforward, so we only sketch the ar-

gument here. First, notice that path for the cumulative consumption accounted for jumps

zN(t) goes to γt with probability one. Second, notice that the contribution of these jumps

to the value function, given by κ(V (m − z) − V (m)) when m > z can be written as

κ (V (m) − V ′ (m) z + o (z)). Assuming that we can permute the limit of the derivative

with the derivative of the limit, we obtain that in the limit the contribution of this term

is −γV ′(m), a term analogous to the contribution from c. The contribution of the segment

m > z is negligible as z goes to zero. This result can be useful to make contact with the

data. The issue is not whether consumption transactions occur as discrete events or not,

which of course they do. The previous result states that small frequent purchases can be

approximated by the continuous model. The issue is whether the continuous consumption

model is a good approximation given the observed size of purchases. Thus, if the purchases

using cash are small and frequent, the model with a continuous path may be a good ideal-

ization. On the other hand, intuitively, a model with infrequent and large purchases, will be

the most different case, a set up to which we will turn in Section 3.2.1.

We briefly discuss the empirical counterparts and interpretations of the model with σ > 0

vs σ = 0. Notice that for σ = 0 the model predicts no deposits and only withdrawals: the

inaction region is given by [0, m∗], and cash inside this region only moves down, either at a

constant rate per unit of time, or with jumps of size z and frequency κ. Consistent with this

behavior notice that Table 1 shows that Italian households whose head is not self-employed

make very few deposits relative to withdrawals: the average ratio of the number of deposits
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to the number of withdrawals is less than 10%, with a large fraction of households with

exactly zero deposits. Thus for the non-self employed households a model with σ = 0, which

generates the extreme case of no deposits, seems a reasonable approximation. In contrast,

consider the statistics for the self-employed households, which appear in square brackets in

the table. Their deposits are more frequent than for the rest of the households: the average

ratio of number of deposits to the number of withdrawals of about 66%. The model with

σ > 0 accounts for this fact. Moreover we think that it does so for the right reason: these

households look like firms in the sense that their net cash consumption can be negative (i.e.

they receive income in cash). We believe that this is the first empirical direct evidence on

the prediction, implied by Miller and Orr (1966) models, that deposits are larger but less

frequent than withdrawals.

We finish this section with a brief comment on the optimality of the class of trigger

policies considered here. First, in the case where σ = 0, it is easy to show that the ergodic

distribution of m lies in [0, m∗], whose interior contains the inaction region. Second, in the

case with no jumps (κ = 0), σ > 0 and p = 0, it has been shown by e.g. Constantinides and

Richard (1978) that trigger policies of this type are optimal. The extension to the case of

p > 0 should be relatively straightforward. The third, more subtle, case is the combination

of jumps (so that κ > 0, z > 0) and a brownian motion (so that σ > 0) for cumulated net

cash consumption. The potential complication comes about when there are discrete changes

in the unregulated state, i.e. discrete changes in m in our case. This case has been studied in

discrete time with finite but arbitrary horizon by Neave (1970). He showed that the decision

rule will, in general, have an inaction region close to the optimal return point, that outside

the inaction region there is a set of intervals where either adjustment or inaction is optimal,

and that for large values there is an open ended interval for which adjustment is optimal.

Bar-Ilan (1990) has also produced a counterexample in the case of two periods two jumps,

one up and one down. More recently Chen and Simchi-Levi (2009) have a slightly fuller

characterization of this case and an analysis of a more general case. Hence, the issue in
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our continuous time model with jumps, which make the model mathematically very close to

a discrete time model, is whether there could be several inaction and adjustment regions.

Thus, while the form of the optimal policy for a model where the state follows the sum of

a diffusion and a more general jump component, such as in the specification of Bar-Ilan,

Perry, and Stadje (2004) has not been characterized, our set-up is special enough so that the

decision rules, in the ergodic set for m, are of the “sS” form considered above. The features

that make our problem special are that the state the jumps are all downwards and of the

same size (i.e. z > 0) and that the state is non-negative. In our case, if the state reaches m∗∗

then it is controlled to be set at m∗. Importantly, since the jumps in net cash consumption

are all downwards, the state can only reach m∗∗ at time t = τ if it was below, but very

close, at times arbitrary close to τ . On the other side, the boundary at m = 0 follows from

non-negativity of cash and from the fact that the period return function attains its minimum

at m = 0. Thus, the value of m∗∗ is defined as the smallest strictly positive value of the state

for which adjustment is optimal.4

3.2 Solving for M, W, n in the case of no Brownian shocks: σ = 0

In this section we concentrate on the special case of the model where the net cumulated

cash consumption is the sum of a deterministic constant consumption per unit of time and

random jumps, i.e. we set the brownian component to have zero variance or σ = 0. We

concentrate on this case for two reasons. The first is that our data sets for Italy and Austria

focuses on households whose head is not self employed for whom, as discussed above, the

case of σ = 0 is more appropriate. The second reason for using σ = 0 is its simplicity. In

particular, when π = σ = 0, the linear equations for the coefficients in Proposition 2 simplify

4We can write a discrete time version of our model in the notation of Neave (1970) and Chen and Simchi-
Levi (2009) as follows. To simplify we write the version with p = 0. Let ∆ be the length of the time period.
The period return function is l(m) = +∞ if m < 0 and otherwise l(m) = ∆ R m. The i.i.d. process for
unregulated cash, ξ = −∆ c+

√
∆σ s− z dN , where s is a symmetric binomial with zero mean and standard

deviation one, where dN = 1 with probability κ∆ and zero otherwise, and where dN and s are independent.
The discount factor is γ = 1/(1+r∆). The cost function has K = Q = b, and no proportional cost, k = q = 0.
In term of their notation we have, as we let ∆ ↓ 0, the decision rules satisfy: U = T = m∗, 0 = t = t+, and
u− = m∗∗.
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considerably, and since the range of inaction becomes [0, m∗], there is one non-linear equation

in one unknown (see Appendix B.1 for the relevant equations for this case). Remember that,

as discussed above, when σ = 0 the value function V (m; m∗, m∗∗) simplifies to V (m; m∗), i.e.

it is indexed by only 1 parameter (the optimal return point m∗).

First, and for completeness, we consider the case where the large purchases are frequent.

As in the deterministic case, if for a given size of the purchases z, the frequency κ is high

enough, it is optimal to increase the size of the withdrawal and finance -in expected value-

several purchases with each withdrawal.

Proposition 4. Let π = σ = 0, z > 0, c ≥ 0, p ≥ 0 and b/R > 0. There exist κ̄(z), which

is increasing in z, and r̄ > 0 such that for any κ > κ̄(z) and r < r̄, the optimal threshold

satisfies m∗(p, κ, z, c) > z.

The logic of this proposition is the same as in the deterministic case, so the proof is

omitted.5 Next, we further specialize the problem to the more tractable case in which the

primitive parameters are such that the size of the jump z is larger than m∗, so that in this

case every jump in expenditures will trigger a withdrawal.

3.2.1 The case of infrequent large purchases: z > m∗

We continue with the analysis of the case of no inflation and no Brownian component, i.e.

π = σ = 0. Furthermore we solve the model and the cash holding statistics M, W, n, M for

a configuration of parameters that corresponds to the case of small κ, (i.e. smaller than κ)

in the deterministic model of Section 2 and large value of z. We found this case instructive

for two reasons: first, based on the result in Proposition 3, the case where z is large and

κ small presents some interesting differences compared to the problem with consumption

expenditures are continuous. Second we think that the parameters for which this case applies,

5 We believe that the assumption that r is small is not required for the results, but it simplifies the
constructive aspect of the proof. Appendix B provides the algorithms to compute value function and several
cash management statistics of interest for the case of σ = 0 and π = 0 for any configuration of the lumpy
purchase parameters: z, k. The logic is the same one used to solve for the value function in Proposition 2.
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which concern size and frequency of the large purchases, seem to be empirically appropriate

for modeling the currency management behavior for households in Austria, as argued below.

Abusing notation, we let V (m; m′, p, κ, z, c) denote the value function of the model an-

alyzed in Section 3.2 when current cash is m and the return point for cash is m′ for the

parameters (p, κ, z, c). We also let m∗ (p, κ, z, c) be the value of the optimal return point

for these parameters, and let M (p, κ, z, c) , W (p, κ, z, c) , M (p, κ, z, c) and n (p, κ, z, c) be the

corresponding cash-management statistics, described in Section 3.2. For future reference we

let

V ∗ (m′; p, κ, z, c) ≡ V (m′; m′, p, κ, z, c) (13)

the value of following a policy with return threshold m′ when cash is at this value. Recall

that at the optimal threshold value V ∗ (m∗ (p, κ, z, c) ; p, κ, z, c) is the smallest value of the

value function.

The next proposition studies the effect of the presence of large purchases (i.e. whether

or not C(t) jumps) in a model with free withdrawal opportunities. We note that if z = 0 or

κ = 0 the model with no jumps corresponds to a version of Baumol-Tobin where there are

p free withdrawal opportunities per unit of time. We have characterized the solution of that

model and estimated it for a cross section of Italian households in Alvarez and Lippi (2009).

The free withdrawal opportunities of that model imply that, relative to the prediction in

Baumol-Tobin, agents makes more withdrawals (say n/(c/2M) ≡ n/nBT > 1) and they are

smaller in size (say, W/M < 2). Also differently to Baumol-Tobin, that model implies that

in average agents withdraw when they have strictly positive real balances, i.e. M > 0. We

use the notation m∗(p′, 0, 0, c) to denote the optimal return threshold for the model with no

jumps, with a rate of p′ free adjustment opportunities per unit of time, and with consumption

at a constant rate c.

Proposition 5. Assume that π = σ = 0, c > 0, p ≥ 0, b/R > 0, z > 0 and r > 0. There
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exists κ > 0 such that for any κ < κ and z > m∗ (p + κ, 0, 0, c) we have:

m∗ (p, κ, z, c) = m∗ (p + κ, 0, 0, c) ,

V ∗ (m∗ (p, κ, z, c) ; p, κ, z, c) = V ∗ (m∗ (p + κ, 0, 0, c) ; p + κ, 0, 0, c) +
κb

r
,

M (p, κ, z, c) = M (p + κ, 0, 0, c) ,

W (p, κ, z, c) = W (p + κ, 0, 0, c) +
κz

n
,

M (p, κ, z, c) = M (p + κ, 0, 0, c) ,

n (p, κ, z, c) = n (p + κ, 0, 0, c) .

Moreover, the conclusion holds for the same value of κ for all z′ > z .

Part of the proof of the proposition is straightforward. In particular, if it is optimal to set

m∗(p, κ, z, c) < z, then the value of the threshold equals the one in a model with no jumps,

i.e. with z = 0, but with p + κ free adjustment opportunities, i.e. m∗(p + κ, 0, 0, c). In other

words, it is always a local minimum to set the return threshold equal to m∗(p + κ, 0, 0, c).

In the case of no jumps in consumption at each free withdrawal opportunity cash balances

are set to m∗ right after the adjustment. The consequences of a free adjustment opportunity

bear many similarities with those that follow a jump in consumption. Both cases occur

independently of the cash balances, and in both cases cash balances go to m∗ after the

adjustment. The difference is that upon a free withdrawal opportunity the agent does it

because it saves the cost b, while upon a consumption jump the agent does it because of the

binding non-negativity of consumption. For the exact equivalence we require that the rate

at which the free adjustment opportunities arrives is p + κ, so that the rate at which this

type of adjustment occurs is equally likely. The two value functions differ only by a constant

term measuring the present value of the cost saved by the free withdrawal opportunities. It

follows that the average cash holdings, average cash at withdrawals and average number of

adjustments are equal to the ones obtained in a model with z = 0, p + κ free adjustment

opportunities and consumption equal to c. The average withdrawal size differs, because the
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jumps creates an extra withdrawal of size z every κ/n withdrawals. Finally, to show that the

threshold value m∗(p+κ, 0, 0, c) < z is optimal provided that κ is small, we use an argument

that is analogous to the one of the deterministic model of Section 2.

To understand the hypothesis that z ≥ m∗ used in Proposition 5 it is useful to give a

characterization of m∗
0 ≡ m∗ (p + κ, 0, 0, c). In Alvarez and Lippi (2009) we show that m∗

0 is

the unique positive solution to:

b

c R
=

(

m∗
0

c

)2
[

1 +
∞
∑

i=1

(

m∗
0

c
(r + p + κ)

)i
1

(2 + i)!

]

(14)

which we denote by m∗
0 = ϕ (b/ (Rc) , p + r). Clearly m∗

0 is a strictly increasing function of

b/R, which goes from 0 to ∞ as b/R varies in the same range, and it is decreasing in p. The

limit as r + p + κ ↓ 0 is the familar Baumol-Tobin expression m∗
0/c =

√

2b/(cR). Finally,

m0 is increasing in c with and elasticity between 1/2 and 1. Thus, for a fixed z, one of the

hypothesis of Proposition 5 holds, for a small enough fixed cost relative to opportunity cost,

i.e. small b/R. Also, since m∗
0 is decreasing in p + κ + r, thus

√

2bc/R ≥ c ϕ( b
cR

, r + p + κ).

Hence a sufficient conditions for z ≥ m∗ (p + κ, 0, 0, c) is that z ≥
√

2bc/R ≥ c.

A direct implication of Proposition 5 is that data on M, W, M, n and e can not identify κ, p

and z separately. These data can only identify κz and κ + p.6 We now describe a condition

that the ratios W/M and M/M must satisfy to be consistent with the behaviour described

in the hypothesis of Proposition 5. Additionally, we describe how to identify κz/e and κ+ p,

as long as the previous condition is met. To do so, we first describe all the implications of

the observable statistics M, W, M, n and e for the model’s parameters under the hypothesis

of Proposition 5.

Proposition 6. Assume that the assumptions of Proposition 5 hold. Then model implies

the following relationship between the five observable statistics (M, W, M, n, c+κz), the four

6 To see this, note that for any pair of κ + p and zκ that are consistent with M, W, M, n and e, there are
several other pairs κ′ + p′ and z′κ′, with κ + p = κ′ + p′ and zκ = z′κ′, with z′ > z and κ′ < κ that produce
the same observations.
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structural parameters (c, κz, p + κ, b/R), and the threshold m∗:

n =
κ + p

1 − exp (−(κ + p)m∗

c
)

, (15)

W + M = m∗ +
κ

n
z , (16)

n
M

M
= κ + p , (17)

c + κz = nW , (18)

m∗

c
= ϕ

(

b/c

R
, r + p + κ

)

. (19)

The proof of this proposition is straightforward. Equation (15) follows by noting that the

time between withdrawals is distributed as a truncated exponential with parameter κ + p,

truncated at time t̄ ≡ m∗/c, the time it will take to deplete money holdings with continuous

consumption. The fundamental theorem of renewal theory then implies that the frequency

is the reciprocal of the expected time between adjustments. Equation (16) follows by taking

expected values of the cash flows at time of a withdrawal. It states that on average, after a

withdrawal, an agent has balances m∗, which is the sum of the average cash at the time of

withdrawal (M) and the withdrawal size (W ) net of the fraction κ/n of the withdrawals where

a consumption jump of size z is financed. Equation (17) follows by computing the average

cash holdings a the time of an adjustmment. A fraction 1 − (p + κ)/n of the withdrawals

the agent has reached zero cash holdings at the time of a withdrawal. A fraction (p + κ)/n

of the withdrawals the agents has strictly positive cash holdings, and since the occurrence

of these adjustment are independent of the level of cash holdings, in these cases the agents

has the average cash holdings. Equation (18) is simply the budget constraint. Up to here

the implications follow from the form of the optimal decision rules.7 Finally, equation (19),

already presented and discussed in equation (14) ensures that the value of the threshold m∗

7One can also add an expression that computes the value of average value of M , using n, m∗ and param-
eters, namely M/c = (n m∗/c − 1) /(κ + p). Yet, this equation is implied by equations (15)-(18).
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is optimal. Using Proposition 5 we have replaced here p by p + κ.

We use the expressions in Proposition 6 to solve for the fraction of expenditures that

corresponds to jumps, i.e. κz/(c + κz), the value of m∗, which gives a lower bound to z in

order for the proposition to apply, and the value of p + k. We have:

κz

κz + c
= 1 +

1

W/M





M/M
log(1−M/M)

M/M
+ 1



 , (20)

κ ≤ p + κ = n
M

M
≤ n , (21)

z ≥ m∗ = M





log(1 − M/M)

1 +
log(1−M/M)

M/M



 . (22)

The next proposition summarizes the implications for W/M and M/M of γ, b/(cR) and

p + κ in the case where m∗ ≤ z. To simplify the expressions we take the limit as r ↓ 0, in

which case, given γ all the other other parameters combine in a single index to explain the

effects on W/M and M/M .

Proposition 7. Let r ↓ 0 and assume that z, b/(cR), and p + κ are such that m∗ ≤ z.

Define γ ≡ zκ/(zκ + c). Then

W

M
=

1

1 − γ
ω

(

b/c

R
(p + κ)2

)

and
M

M
= µ

(

b/c

R
(p + κ)2

)

(23)

where ω : R+ → [0, 2] is strictly decreasing and µ : R+ → [0, 1] is strictly increasing. The

functions ω and µ depend on no other parameters.

The proof uses the equivalence results of Proposition 5. Since every jump triggers a with-

drawal when z > m∗ then the model is equivalent to the model with continuous consumption

and no jumps, except that p (the arrival rate of free adjustments opportunity) is now p + k,

and the consumption scale variable is simply c, not c + kz. Given this equivalence, the func-

tions ω and µ are those described in Section 4.3 (namely in proposition 6 and Figure 1) in

Alvarez and Lippi (2009).
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Figure 1: Value function under policy threshold rule m∗ evaluated at m = m∗.
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The parameters for this problem are z = 20, k = 60, c = 365, p = 15.

3.2.2 On the first order conditions for m∗

We conclude with an illustration on the necessary, but not sufficient, nature of the boundary

conditions for the optimal return point in our problem. Remember that when σ = 0 the value

function V (m; m∗, m∗∗) = V (m; m∗) is indexed by only 1 parameter, the optimal return

point m∗. Figure 1 helps to understand the different cases covered in Proposition 4 and

Proposition 5 depending on the value of κ. The figure plots the value of following a policy

characterized by a threshold m∗, evaluated at m = m∗, for different values of this threshold.

The best policy is given by the value of m∗ that minimizes V (m∗, m∗). Interestingly this

function is not single peaked. This example shows that simply adding the boundary condition

V ′(m∗; m∗) = 0 does not insure the optimality of the given policy. Note the difference with
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models without the jump component, such as Constantinides (1978), where a verification

theorem states that any function that solves the relevant ODE and boundary conditions is

a solution of the problem. The parameter values considered for this figure correspond to an

“intermediate” value for κ and z for which the optimal threshold has m∗ ≈ 35 > z = 20. Note

that while setting m∗ = m∗(p + κ, 0, 0, c) = 15 < z = 20, so that every jump would trigger

a withdrawal, is a local minimum of V (m∗; m∗) but it is not the global minimum. In other

words, the values for this example do not satisfy the hypothesis that κ < κ of Proposition 5.

Notice also that setting m∗ = 51, which is the optimal threshold for the case of no jumps,

but a larger continuous consumption equal to c+κz is also not the optimal for the case with

jumps, but it is also close to a local minimum.

4 Two Empirical Applications

In this section we describe two applications of the ideas developed above. The first one

applies the model to currency management using survey and diary data from a sample of

Austrian households. In this case the relevant liquid asset is currency, and the relevant notion

of expenditures are those paid with cash. The second investigation applies the model to the

management of liquid assets using a panel of administrative records for the customers of a

large Italian bank. In this case we take liquid asset to be a concept similar to M2, and the

expenditures to include both durable and non-durable purchases.8
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Table 1: Currency management statistics in Italy and Austria

ATM Card Italy (2002) Austria (2005)
Expenditure share paid w. currency w/o 0.65a 0.96A

w. 0.52a 0.73A

Currency: M/e (e per day) w/o 17b 15B

w. 13b 15B

M per Household w/o 410c 332C

w. 330c 206C

Currency at withdrawalsd: M/M w/o 0.46 0.22
w. 0.41 0.26

Withdrawale: W/M w/o 2.0 2.4
w. 1.3 1.6

Withdrawal / Deposith,i: W/D w. 0.66 [0.66] n.a.
w/o 1.10 [0.99] n.a.

# of withdrawals: n (per year)f w/o 23 21
w. 58 68

Normalized: n
nBT

= n
e/(2M) (e per year)f w/o 1.7 1.4

w. 3.9 5.4
# of deposits / # withdrawalsh: nD/n w. 0.09 [0.66] n.a.

Fraction of households with W/M > 2 w/o 0.25 0.29
w. 0.13 0.19

Fraction of households with n
nBT

≡ n
e/(2M) < 1 w/o 0.50 0.57

w. 0.19 0.31

# of observations w/o 2,275g 153G

w. 3,729g 895G

Entries are sample means. The unit of observation is the household for Italy; for Austria, the subject of the

survey are men and women 14 years and older, not households. Only households with a checking account (both

Austria and Italy) and whose head is not self-employed (Italy) are included, with the exception of data in square

brackets [·], which are computed only for households whose head is self-employed (approximately 17% of all

households with a bank account).

Notes for Italian data: Source: Bank of Italy - Survey of Household Income and Wealth.

-aRatio of expenditures paid with currency to total expenditures (durables, non-durables and services). -
bAverage currency held by the household during the year divided by daily expenditures paid with currency. -cIn

2004 euros. -dAverage currency at the time of withdrawal as a ratio to average currency. -eAverage withdrawal

during the year as a ratio to average currency. -fThe entries with n = 0 are coded as missing values. -gNumber

of respondents for whom the currency and the currency-consumption data are available in each survey. Data on

withdrawals are supplied by a smaller number of respondents. -hSample average over 1993-2000. -iComputed

for households reporting D > 0.

Notes for Austrian data. Source: Austrian National Bank - OeNB.

-ANumerator and denominator of the ratio are based on transactions collected in a diary kept for 7 days.

The diary excludes automatic payments and likely misses large transactions (a broader measurement would

produce smaller values for the ratio). -BAverage currency carried by the individual (sum of currency with them

and currency available at home; items 18 and 18a in questionnaire), divided by daily expenditures paid with

currency. Respondents keep a large fraction of currency balances at home; The average of the ratio of currency

at home to total currency held is about 60%. - CIn 2005 Euros; - GNumber of respondents with a bank deposit

account and non-zero values for M , W , e, n. This accounts for about 87% of the sample.
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4.1 Currency Management of Austrian and Italian Households

In this section we present evidence on the cash management of italian and austrian house-

holds, and then concentrate on the latter for which we also have data on the nature of their

consumption paid with cash. We present evidence that there are some large expenditures

paid with cash, and that the households for which these expenditures are more important

exhibit some of the behavior predicted by the theory in terms of their frequency and size of

withdrawals.

Table 1 displays some statistics from two households surveys, one from Italy and one from

Austria. We present all statistics splitting the sample between households with an ATM card

and those without, as a rough way to control for the consequences of the “free withdrawals”

opportunities, namely a large number of withdrawals relative to Baumol-Tobin, as explained

above and in Alvarez and Lippi (2009). We display the mean across households (individuals

for Austria) of several statistics: share of consumption that is paid using currency for both

countries, the average amount of currency held M , the average amount of currency held

at the time of a withdrawal M , the average size of a withdrawal W , the average size of

deposits D, the number of deposits per year nD and number of withdrawals per year n.

Several of the statistics are computed as ratios, which helps in interpreting them in terms

of the model. For instance, we use M/e, the average money to daily cash consumption,

W/M the average withdrawal size to average currency held, the ratio of the average size

of deposits to withdrawals W/D, the ratio of n to nBT , where the latter is the frequency

implied by the assumption that withdrawals occur when cash is zero and that W = 2M , so

that nBT = e/(2M). The statistics displayed in Table 1 show that the Austrian and Italian

households cash management is similar in several dimensions. The Italian survey data have

8While in this paper we focus on the implication of these large purchases for cash management, a related
interesting literature, both empirical and theoretical, studies the choice of means of payments, especially in
relation to the purchases size, as in e.g. Whitesell (1989), Bounie, Francois, and Houy (2007) and Mooslechner,
Stix, and Wagner (2006). The problem of the choice of means of payment differ across economies. In particular
we conjecture that for developing economies and less developed countries, where alternative to cash are less
prevalent, more people will be paying for large purchases using cash, and hence the issues discussed in this
paper are more relevant. Preliminary work using panel data from rural Thailand in Alvarez, Pawasutipaisit,
and Townsend (2011) supports this hypothesis.
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been used in several paper studying cash management, such as Attanasio, Guiso, and Jappelli

(2002), Lippi and Secchi (2009), Alvarez and Lippi (2009). The Austrian dataset is smaller

in size but includes some additional information concerning the size distribution of purchases

that we are going to use below.

Using the outcomes of the case in which σ = 0, analyzed in Proposition 5 and Proposition 6,

we compute some statistics to measure the degree of large infrequent cash purchases for in-

dividuals in Austria. The data comes from two related sources: a diary of daily expenditures

of the Austrian households and a retrospective survey of the same households, described in

Mooslechner, Stix, and Wagner (2006). The diary asked individuals to record all purchases

made in the following week. The survey contains several questions on cash management, as

well as on method and pattern of purchases. We split the sample between agents with and

without ATM cards because, at least using only the cash management statistics M, W, M, e,

the model does not identify separately p and κ. Yet the value of p should be related (pos-

itively) to the density and availability of ATMs.9 Thus, the split between those with and

without ATM cards serves as a way to “control” for the value of p.

Table 2: Currency as the usual payment method for purchases of different size

All w/ATM card w/o ATM card
(1048 Obs.) (895 Obs.) (153 Obs.)

% Individuals that use currencya

Purchases between [0, 10] euros 95.6 94.9 100.0
Purchases between [11, 30] euros 83.3 80.6 99.4
Purchases between [30, 50] euros 70.4 65.6 98.7
Purchases between [51, 100] euros 58.1 51.5 97.7
Purchases between [100, 200] euros 47.6 39.2 97.7
Purchases between [201, 400] euros 43.2 24.2 96.1
Purchases between [401,∞) euros 45.9 27.4 96.1

Using survey of Austrian individuals described in Mooslechner, Stix, and Wagner (2006).

- a Percentage of individuals that answer that currency is the usual method of payments for purchases for each different

size. The alternatives are currency or other method. Based on 1048 responses for each purchase size.

9For empirical support of this hypothesis in a model with κ = z = 0 see Alvarez and Lippi (2009).
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Table 2 shows that the small size purchases are made using currency by almost all individ-

uals, but that less than half of the individuals use currency as the usual means of payments

for the large purchases (400 euros or more). These statistics are presented separately for

those with ATM cards and for those without, which shows a clear difference. Almost all

individuals without an ATM card use cash as the usual payments regardless of the size of the

purchases, whereas the use of cash falls sharply with the size of the purchase for individuals

with an ATM card.

Table 3: Cash Management and Large Purchases (> 400 euros) in Austria

All w/ATM card w/o ATM card
(1048 Obs.) (895 Obs.) (153 Obs.)

Individuals who usually make large purchases in casha

% persons that use cash for large purchases 46% 37% 96%
mean median mean median mean median

Withdrawal to Money: W/M 2.0 1.1 1.9 1.0 2.1 1.3
# withdrawals relative to BT:b n/nBT 3.5 1.2 4.4 1.5 1.5 0.7
Normalized cash at withdrawals:c nM/M 13.4 4.5 17.5 6.3 4.0 2.6
Normalized size of cash expenditures:d z/m∗ 5.9 1.7 5.7 1.8 6.9 1.2

Individuals who usually do NOT make large purchases in casha

% persons that do not use cash for large purchases 54% 63% 4%
mean median mean median mean median

Withdrawal to Money: W/M 1.6 1.0 1.5 1.0 10.4 2.1
# withdrawals relative to BT:b n/nBT 5.9 1.9 6.0 1.9 0.9 0.7
Normalized cash at withdrawals:c nM/M 20.6 7.8 20.8 8.0 3.8 2.9

Using survey of Austrian individuals described in Mooslechner, Stix, and Wagner (2006).

- a Based on a question about how individual usually paid for items that cost more than 400 euros. Two options are

available, either currency or other payment methods. Total number of respondents is 1048.

- b # of withdrawals n relative to Baumol-Tobin benchmark, nBT = e/(2 M) Based on a diary of all transactions

during a week. This the week is right after the month corresponding to the question on large transactions above.

- c The variable nM/M is the product of the number of withdrawals n and the ratio of the average cash at the time

of withdrawal, M to the average cash holdings.

- d The statistics is computed for individuals with z > 0, measured with the diary data (see footnote a), m∗ computed

using equation (22) and the survey data on M/M .

Table 3 displays some cash management statistics for individuals who use cash for large

purchases (top panel) and for those that do not (bottom panel). These data are useful to

compare our model with the canonical one with continuous consumption. These statistics

are also presented separately for those with ATM cards. We display the ratio of the average

size of withdrawals to the average cash holdings, W/M , as well as the ratio of the number
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of withdrawals relative to the one implied by Baumol-Tobin, n/nBT .10 We interpret the

model as having implications for the comparison between individuals for whom currency is

the usual means of payment for large purchases versus those for whom it is not. For those

that use currency for large purchases we expect W/M to be larger, and n/nBT to be smaller.

Comparing the top and the bottom panels of Table 3 we find some support for this prediction

for all the individuals and for those with ATM cards.11 With respect to nM/M recall that,

from equation (21), this statistic equals p + κ. So under the reasonable assumption that

individuals with ATM cards have a higher value of p, consistent with the evidence in Alvarez

and Lippi (2009), this statistic should be larger in this group.

The last row of the first panel of Table 3 reports a statistic that shows how the threshold

of 400 euros, chosen independently by the survey designers as a threshold for large purchases,

is a reasonable approximation for the value of z which satisfies z > m∗. The row reports

the mean and median value of z/m∗, where the variable z is measured using the diary data,

computed for those individuals for whom z > 0 in the diary data. The value of m∗ is

computed using equation (22) and the observations on M/M . It appears that, for all the

cases considered the value is greater than one, confirming the empirical appropriateness of

the assumption z > m∗.

In Table 4 we use the diary expenditures data (recorded during a week). We first note

that, given how infrequent are the large purchases in cash per month, there is not enough

information in a week of expenditures to measure heterogeneity across individuals by using

the 400 euros threshold. Therefore we measure the lumpiness of expenditures using the ratio

of the average cash purchase to the median cash purchase both for those with and without

ATM cards. This indicator is given by the ratio between the average and the median size

10 The accounting identity Wn = e implies that the product of these statistics should be 2. We present
both statistics because the identity does not hold exactly for each unit of observation. We interpret this
discrepancy as measurement error. Consistent with this interpretation we find that the patterns of violation
of the identity are symmetric and centered around zero (see Alvarez and Lippi (2009)).

11 The prediction is not verified when comparing across individuals without ATM cards. But notice that
there are only 6 individuals w/o ATM who did not use cash as the payment method, so this statistic is likely
noisy.
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Table 4: Statistics on the lumpiness of cash purchases in Austria (based on diary data)

with ATM card without ATM card
mean median mean median

Purchase size: average / median:a ea/em 1.6 1.3 1.6 1.3
Average purchase size / income:b ea/y 2.2 1.4 4.4 2.3
Number of purchases per week 10 9 10 9

Based on a diary of all transactions during a week (right after the month corresponding to the question on large

transactions described in the survey).

- a The ratio uses the average and median transaction size paid with currency for each individual during the

week of the diary.

- b Value of the average purchase made with currency (ea) divided by the monthly income of the individual (y).

of the household purchase, denoted as ea/em. Notice that in our model this statistic is

ea/em = (c + κ z)/c so that it is increasing in the share of lumpy purchases.12 Additionally,

we report a statistic for the number of purchases made with cash during a week. The table

shows that the measure of lumpy purchases are essentially constant across ATM ownership.

Next we use our proxy for the lumpiness of purchases, ea/em, and correlate it to patterns

of cash-management statistics. We first present cash management statistics pooling all Aus-

trian individuals. We find some patterns that are broadly consistent with what the model

predicts as a consequence of variation of z across agents. Recall that, using the discrete time

interpretation of the model outlined above, the skewness in the size distribution of purchases

is increasing in z, so that we interpret ea/em as a proxy for z. We find that ea/em is nega-

tively correlated with n/nBT and positively with W/M (see Figure 2). We did not find any

correlation between ea/em and M/M , which is consistent with the hypothesis that the ratio

is determined by the variation of p+κ rather than that of z, and that it is dominated by the

12 To see this it is helpful to consider a discrete-time version of the model, with a period of length 1 broken
into small subperiods of length dt, so that 1/dt is the number of subperiods. In each subperiod there is
exactly one “small” purchase of size c dt. Moreover, one large purchase of size z occurs with probability
κ dt and no large purchase occurs with probability 1 − κ dt. Large purchases are independently distributed
across subperiods. In this discrete-time model there are exactly 1/dt purchases of size c dt in a period of
length 1, and a number between 0 and 1/dt purchases of size z, with a binomial distribution. (There are
1/dt purchases of size c dt and a probability (κ dt)j(1 − κ dt)1/dt−jj! (1/dt − j)! /(1/dt!) of having exactly j
“large purchases” of size z for j = 0, ..., 1/dt). The average number of large purchases over a period of length
1 is κ, so that for sufficiently small time periods (i.e. 1/dt > κ) the median purchase size is em ≡ c dt while
the average purchase size per period is ea = (c + κ z) dt, so that ea/em = (c + κ z)/c gives a measure of the
skewness of the size distribution of expenditures.
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Figure 2: Austria: the inventory model statistics vs. ea/em

n/nBT W/M

Regr. coeff. −1.01, t−stat −10.0 

.2
5

1
4

n 
 / 

 n
_B

T 

1 2 5 10
Ratio between average and median purchases in cash

Number of withdrawals relative to BT regression

Regr. coeff. 0.17  , t−stat 2.4 

.2
5

1
4

W
 / 

M

1 2 5 10
Ratio between average and median purchases in cash

Avg Withdrawal to Avg cash holdings regression

M/M

Regr. coeff. 0.001 , t−stat 0.001 

.0
1

.0
5

.2
.5

1
2

M
_l

ow
 / 

M
  

1 2 5 8
Ratio between average and median purchases in cash

Cash at withdrawals relative to Avg cash holdings regression

variation on p.

We now turn to a comparison of the cash management statistics across ATM ownership

groups. Figure 3 plots the normalized number of withdrawals, n/nBT against the skewness

measure ea/em. The negative correlation displayed is consistent with what the model predicts

as a consequence of variation of z across agents.

4.2 Management of Liquid Assets by Italian Investors

This section applies the lumpy-purchases hypothesis to the modeling of the household man-

agement of a broad liquid asset, close to M2, using data from a sample of Italian households.

The information source is a panel of Italian households (investors), whose transactions were

recorded in the administrative data of a large commercial bank. We document that following

liquidations of high return asset into liquid asset, a disproportionate amount (relative to the

frequency of adjustments) is spent early on, a pattern that is predicted by our model where
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Figure 3: Austria: normalized withdrawal frequency, n/nBT , vs. lumpiness, ea/em
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Note: Log scale. The vertical axis reports the normalized number of withdrawals n/nBT .

lumpy expenditures triggers withdrawals.

In Alvarez, Guiso, and Lippi (2011) we analyze a class of models where households must

use a liquid asset to pay for all their expenditures and they face information and/or transac-

tion cost to transfer money from high-yield illiquid assets to the low-yield liquid asset. In that

paper we consider specifications with either non-durable consumption or durable consump-

tion. In the specification where all the expenditures are in non-durable goods − a version of

Duffie and Sun (1990) or Abel, Eberly, and Panageas (2007) − then the expenditures occur

at a constant rate between the adjustments of liquid assets. This implies an average holding

of liquid asset similar to the one in Tobin (1956)-Baumol (1952). Indeed in Alvarez, Guiso,

and Lippi (2011) we found that the cross section distribution of the ratio of M2 times the

frequency of financial trades relative to the rate of consumption of non-durables is totally at

odds with this prediction. On the other hand, in the specification where all the expenditures

are in durable goods − a variation of Grossman and Laroque (1990) − then the expenditures

are lumpy and occur infrequently, implying that they can be paid without holding any liquid

asset between adjustments. This implies that the average holdings of liquid assets tend to

zero as the model time period shrinks. A more realistic model will have expenditures both
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in non-durable goods − so that they are continuous − as well as on durable goods -which

with either transaction cost of indivisibilities, becomes lumpy and infrequent. The model in

this paper analyzes such a set up. Hence while the model generalizes the one considered in

Alvarez, Guiso, and Lippi (2011) by having both type of expenditures, it simplifies the set up

in two dimensions: the process for expenditures is exogenous and the adjustment cost does

not include observation costs.

The analysis uses a panel data of administrative records from Unicredit, one of the largest

Italian commercial banks. The administrative data contain information on the stocks and the

net flows of 26 assets categories that investors have at Unicredit. These data are available at

a monthly frequency for 35 months beginning in December 2006.13 Since the administrative

record registers both the stock of each asset category at the end of the period as well as the

net trading flow into that category, we can directly identify trading decisions, which would

not be possible if only assets valuation at the end of period were available. One of the 26

assets is the checking account. In what follows we distinguish assets into two categories:

liquid assets, which we identify with the checking account, and investments the sum of the

remaining 25 assets classes. We also experimented, with no change on the results, with a

broader definition of liquid assets, and hence a narrower definition of financial assets.

The data we are interested in concern the household flows of financial investment liqui-

dations and purchases, and the changes in the liquid asset holdings (i.e. checking account).

The key hypothesis to be explored is whether expenditures occur at a constant rate between

liquidations, i.e. whether the liquid assets are depleted at a roughly constant rate, as implicit

13 See Appendix F in Alvarez, Guiso, and Lippi (2011) for a detailed description of the data. There are two
samples. The first is a sample of about 40,000 investors that were randomly drawn from the population of
investors at Unicredit and that served as a reference sample from extracting the investors to be interviewed
in the 2007 survey. We refer to this as the large sample. We do not have direct access to the administrative
records for the large sample; calculations and estimates on this sample were kindly done at Unicredit. The
second which we call the survey sample has the same administrative information for the investors that actually
participated in the 2007 survey. We do have access to the survey-sample data which can additionally be
matched with the information from the 2007 survey. A description of the merged data is in Guiso, Sapienza
and Zingales (2010). Since some households left Unicredit after the interview the administrative data are
available for 1,541 households instead on the 1,686 in the 2007 survey. Notice that both the large sample
and the survey sample are balanced panel data.
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in inventory models with a continuous consumption process. For this we use the temporal

patterns of asset sales and liquid asset changes in our panel data to show that the spending

rate of liquid assets that comes from asset sales is at least twice as fast as the one consistent

with a model with steady expenditure financed with cash and the observed frequency of asset

liquidations.

Table 5: Liquidity and portfolio transactions by Italian investors

Dependent variable: Change in the checking account in the month of the transaction

Regressors Coefficient Standard
Error

Flow of investment sales:
β0: current 0.703*** 0.0057
β1: lag 1 -0.23*** 0.0062
β2: lag 2 -0.16*** 0.0065
β3: lag 3 0.002 0.006
β4: lag 4 -0.03 0.0065

Flow of investment purchases:
γ0: current -0.65*** 0.0065
γ1: lag 1 0.020*** 0.007
γ2: lag 2 -0.076*** 0.007
γ3: lag 3 0.056*** 0.007
γ4: lag 4 -0.011** 0.006

Investor total assets:
δ : 0.092*** 0.0025

N. observations 31,622
R2 0.47

OLS regressions of the net flow into the checking account on the net flow of investments sales and
purchases. Estimates include investors fixed effects. Three or two asterisks denote that the coefficients
are significant at the 1% or less and 5% confidence level, respectively. Source: Unicredit survey sample,
monthly administrative records (35 months) of 26 accounts for each of 1,541 investors.

Next we illustrate the empirical exercise. We run a regression between Cjt -the net euro-

flow of the checking account of investor j in month t, and the net investments flows Fjt

distinguishing between the net flow of investment sales F S
jt and investment purchases F P

jt ,
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also in euro amounts during the same month, as well as with lags. Empirically four lags are

sufficient to characterize the dynamics. We notice that by construction F S
jt and F P

jt are either

zero or positive. So for instance F S
jt = 100 (or F P

jt = 100) means that over that month there

is a net investment sale (or purchase) of 100 euros. Thus F S
jt and F P

jt are never positive (at

the same time) for investor j and are both zero if there are no trades with a net cash flow.

The regression we run is

Cjt =
4
∑

k=0

βk F S
jt−k +

4
∑

k=0

γk F P
jt−k + δ Wjt + hj + ujt

where Wjt is investor j total financial assets, hj is an investor j fixed effect and ujt an error

term. We use the estimated coefficients, shown in Table 5, to characterize the pattern of

liquidity management by a household who sells an asset. The implied impulse response is

readily computed using the point estimates of the βk coefficients. Following an investment

sale, about 30 cents per dollar are spent in the same month. In the two months following the

sale, approximately 60 cents per dollar are spent (the sum of (1-0.703)+0.23+0.16).14

Table 6: Summary statistics for the average annual number of asset sales trades

All Asset Sales NSj Asset sales ≥ 500 Asset sales ≥ 1000
Median Mean (sd) Median Mean (sd ) Median Mean (sd )

Total sample 1.03 1.40 (1.29) 1.03 1.17 (1.11) 0.70 1.06 (1.03)
Stockholders (total) 1.71 1.81 (1.28) 1.37 1.53 (1.13) 1.02 1.40 (1.07)
Stockholders (direct) 1.71 1.97 (1.30) 1.37 1.69 (1.19) 1.37 1.55 (1.12)

Source: Unicredit survey sample, monthly administrative records (35 months) of 26 accounts for each of
1,541 investors.

To assess whether these patterns are consistent with a steady depletion of the liquid asset,

such as the one implied by the models with continuous consumption described above, we need

14For comparison if we use a broader definition of liquid asset that includes time deposits (hence excludes
them from financial investments) we obtain that the results are essentially the same. In particular the pattern
of coefficients of the lags of investments sales on change in liquid asset account, i.e. of the coefficients βk for
k = 0, 1..., 4 are 0.70,−0.22,−0.16, 0.002 and −0.03 respectively.
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to use the information on the frequency of asset sales computed in our dataset, reported in

Table 6. The table shows that the annual frequency of asset sales for the median household

is around one sale per year. Hence, if assets sales were used mostly to finance a steady flow

of consumption expenditures, one would expect that the liquidity obtained from the asset

sale should be spent out at a rate of roughly 1/12 per month.15 This would imply that in

the first month one should see an increase in the checking account of about 0.92 cents per

euro of investments liquidation, and a negative effect of about 0.08 cents in the subsequent

months. Instead, the estimated pattern indicates a much larger liquidity reduction in the

first month (0.7 vs 0.9) than is implied by the steady consumption hypothesis. Likewise,

the rate at which liquidity further decrease in the following two months is faster than the

one predicted by the steady consumption hypothesis. Considering the mean frequency of

asset sales, as opposed to the median, makes the picture a bit less striking, since the mean

frequency of asset sales is higher (about 1.4 trades per year), though the observed dynamics

of the checking account remain inconsistent with the steady consumption hypothesis (as e.g.

the observed value of 0.7 is smaller than 1-1.4 /12 = 0.88).

5 Concluding remarks

We presented an inventory model for the demand of liquid assets that allows for the possibility

that, in addition to a continuous (deterministic or random) component, the law of motion

for the liquid assets might record a jump when left controlled. These jumps may be caused

by lumpy expenditures, such as the purchase of durable goods by households. We showed

that a key difference compared to canonical inventory models is that, since the liquidity used

to finance these jumps has infinite velocity, then the lumpy expenditure component does

not enter as the “scale variable” for the average demand of liquidity and only affects some

15An even 1/12 is an upper bound since our statistics are based on records of the balance of the investor’s
accounts at the end of every month. Thus, for example, if the sale of assets happens during the middle of
the month the fraction of the sale of asset that should be consumed during the remaining period of the first
month should be 1/24. This would imply an increase during the first month in the checking account of about
0.96.
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cash managements statistics, such as size and frequency of withdrawals. We showed that

accounting this phenomenon is useful to interpret cash management patterns in Austria and

in Italy.

Other applications of the ideas in this paper concerns models of liquidity management

by firms and by banks. First, consider the case of firms which have large expenditures that

must be paid with a liquid asset. Our model predicts that these expenditures will not affect

the average firm holdings of liquid assets, for exactly the same reasons discussed in the model

for households: these expenditures have an infinite velocity. This prediction is potentially

testable by examining a panel data of liquid asset holding. We find some confirmation of our

hypothesis in the existing literature. Bates, Kahle, and Stulz (2009) run several specifications

of panel regressions to explain the ratio of liquid asset to total asset for of U.S. manufacturing

firms from 1980 to 2006. After controlling for other determinants of liquid asset holding, they

find a negative coefficient on the ratio of acquisitions to assets, which can be interpreted as

a measure of large and infrequent disbursement of liquid assets. The second application is

the management of reserves of banks in accounts at the Federal Reserve System. It has been

documented that the distribution of payments made through Fedwire is highly skewed.16

Thus our framework, adapted to take into account some specific features of this market,

would be suitable to study and interpret this data. We leave the investigation of these topics

for future work.
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A Proofs

A.1 Proof of Proposition 1.

Proof. We consider two possible patterns for cash management, depending of the relative
frequencies of withdrawals and jumps in cumulative consumption. In the first, the agent
makes a withdrawal every j/κ units of time, where j ≥ 1. In this case there are j jumps
in cumulated consumption between withdrawals. In the second, the agent withdraws every
1/(i κ) units of time, where i ≥ 1. In this case, there are i withdrawals between jumps in
cumulative consumption.

Case I: withdrawals every j/κ units of time (j jumps between withdrawals)
We consider policies where agents make a withdrawal every j/κ units of time, and thus

there are j ≥ 1 jumps in cumulated consumption between two withdrawals. Thus the number
of withdrawals per unit of time, the size of the withdrawal, and the average cash balances
per unit of time:

n(j) =
κ

j
,

W (j) = c
j

κ
+ z j =

c

n
+

κz

n
,

M(j) =
1

2
c

j

κ
+

1

2
z (j − 1) =

(c + zκ)

2 n
− 1

2
z .

for and integer j ≥ 1. the number of withdrawals per unit of time n is the reciprocal of
the time between withdrawals. The expression for withdrawal size W accounts for flow of c
during the time period of length j/κ. In this case the cash balances between two withdrawals
decrease continuously with consumption c and discontinuously at times that are multiplies of
1/κ by the amount z. The first part of the expression for average cash balances M contains
the contribution to required average cash balances from the continuous consumption c, an
expression identical to the one in Baumol-Tobin. The second part contains the contribution
due to the “jumps”, or discontinuous consumption. The last part of the expression contains
only (j−1) because the last consumption jump is financed by the corresponding withdrawal.

The objective function is then

CI ≡ min
j≥1

RM(j) + b n(j) ≡ min
κ/n∈I+

R
(c + zκ)

2 n
+ b n − R z

2

Notice that, except for the constraint on n the relevant problem to decide n is as in Baumol-
Tobin, but with total consumption equal to c + κz. Thus the optimal decision rule and
objective function, ignoring integer constraint on j, but imposing that j ≥ 1, or equivalently
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n ≤ κ, can be written as

If 2 b κ2 ≥ R (c + zκ) =⇒ nI =

√

R (c + zκ)

2 b
and CI =

√

2 R b (c + κz) − R z

2

If 2 b κ2 < R (c + zκ) =⇒ nI = κ and CI =
R c

2
+ bκ

The ratio of average withdrawal to average money stock is given by:

W

M
= 2

c + κz

c + z(κ − n)
≥ 2 .

If 2 b κ2 < R (c + zκ) =⇒ 1 <
W/M

2
=

c + κz

c + κz − z
√

R (c+κz)
2 b

<
c + κz

c

If 2 b κ2 ≥ R (c + zκ) =⇒ W/M

2
=

c + κz

c

Case II: withdrawals every 1/(iκ) units of time (i withdrawals between jumps)
Consider policies where agents make i withdrawals in a period of length 1/κ, where i is an

integer. Thus, the time between withdrawals is 1/(iκ). In this case the number of withdrawals
per unit of time is iκ. The size of withdrawals varies, since 1 every i withdrawals includes the
amount for a consumption jump. Finally, the average average money holdings are identical to
those of the Baumol Tobin model where consumption is given by the continuous component
only. Hence we have:

n(i) = iκ ,

W (i) =
z

i
+

c

iκ
=

κz

n
+

c

n
,

M(i) =
c

2iκ
=

c

2 n
.

The agent solves:

CII = min
i≥1

RM(i) + b n(i) = min
n/κ∈I+

R
[ c

2 n

]

+ b n .

Notice that, except for the constraint on n the relevant problem to decide n is as in
Baumol-Tobin, but with total consumption equal to c. Thus the optimal decision rule and
objective function, ignoring the integer constraints on n, but imposing that n ≥ κ can be
written as

If 2 b κ2 ≤ R c =⇒ nII =

√

R c

2 b
and CII =

√
2 R b c

If 2 b κ2 > R c =⇒ nII = κ and CII =
R c

2
+ bκ
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The ratio of average withdrawal to average money stock is given by:

W

M
= 2

c + κz

c
≥ 2 .

Optimal Policy: combining Case I and Case II
Now we can obtain the decision rule, combining the case where there are multiple jumps

between withdrawals (case I) and there are multiple withdrawals between jumps (case II).
We first find an expression for the thresholds (κ, κ̄(z)) for which the constraint on i ≥ 1 and
j ≥ 1 binds, for case II and I respectively.

κ =

√

R c

2 b
≤ κ̄(z) =

Rz +
√

(Rz)2 + 8bRc

4b
.

Note that κ = κ̄(0) and that κ̄ is strictly increasing in z. We can then write:

If κ ≤ κ =⇒ n = nII =

√

R c

2 b
and C = CII =

√
2 R b c

If κ < κ < κ̄(z) =⇒ n = κ and C = CI = CII =
R c

2
+ bκ

If κ ≥ κ̄(z) =⇒ n = nI =

√

R (c + zκ)

2 b
and C = CI =

√

2 R b (c + κz) − R z

2

For simplicity, in the characterization of the optimal policies, we disregarded the con-
straint that either j or i are integers. A necessary and sufficient conditions to disregard that
constraint is the following. Define u as follows:

u ≡ max

{
√

R c

2 b κ2
,

√

κ2 2 b

R (c + κz)

}

.

The condition is that if u > 1, then u is an integer. In this case the constraint that n is an
integer is not binding.

A.2 Proof of Proposition 2.

Proof. Step 1: Deriving a system of ODE’s
Taking as given the values of m∗ and m∗∗. Using these values, we split the range of inaction

for V , given by [0, m∗∗], into J intervals. The first J −1 intervals are of width z and are given
by [jz, (j + 1) z] for j = 0, 1, ..., J−1. The last interval is given by [Jz, min {m∗∗, (J + 1) z}].
We also define j∗ as the smallest integer such that z(j∗+1) ≥ m∗, so that zj∗ m∗ < z(j∗+1).
We index the solution of each of the ODE’s by j. We start with V0 : [0z] → R which solves
the linear second order (first order if σ = 0) ODE:

(r + p + κ)V0 (m) = Rm + (p + κ) V ∗ + κb + V ′
0 (m) (−c − πm) +

σ2

2
V ′′

0 (m) (A-1)

for 0 ≤ m ≤ z. For 1 ≤ j ≤ J , taking as given the function Vj−1(·), we have the following
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linear second order (first order if σ = 0) ODE for Vj : [jz , min {(j + 1) z , m∗∗}] → R:

(r + p + κ)Vj (m) = Rm + pV ∗ + κVj−1 (m − z) + V ′
j (m) (−c − πm) +

σ2

2
V ′′

j (m) (A-2)

for j = 1, ..., J − 1. We also have the following value matching at m = 0, m = m∗∗ and
m = m∗:

V0(0) = V ∗ + b , (A-3)

VJ−1(m
∗∗) = V ∗ + b , (A-4)

Vj∗(m
∗) = V ∗ . (A-5)

Since V is twice differentiable for σ > 0, (once if σ = 0) we require that

Vj (zj) = Vj−1 (zj) and if σ > 0, V ′
j (zj) = V ′

j−1 (zj) ,

for j = 1, 2, ..., J − 1. Notice that for σ > 0, if the Vj solve their corresponding ODE,
then these pair of equalities implies that the second derivatives of Vj and Vj−1 agree at each
point for j ≥ 1. This can be shown, recursively, starting from j = 1. Instead if σ = 0, if
Vj (zj) = Vj−1 (zj), then the first derivative agrees on these points.

Step 2: Solving the system of ODEs
Up to here, given (m∗, m∗∗) we have a system of second order (first order if σ = 0) linear

differential equations, with exactly as many boundary conditions to find a unique solution,
which we denote by V (·; m∗, m∗∗) on the range [0, m∗∗]. The function V (·; m∗, m∗∗) is the
value of following a policy indexed by (m∗, m∗∗). In particular, for any given V ∗, there is a
two parameter family (one parameter if σ = 0) that solves V0 in [0, z]. Thus, fixing V ∗ and
these two parameters (one if σ = 0) we can use V0 to solve for V1 in the range, [z, 2z]. These
second order (first order if σ = 0) ODE uses the two (one if σ = 0) boundary conditions:
V0(z) = V1(z) and (if σ > 0) V ′

0(z) = V ′
1(z). We continue recursively, solving for Vj on

[jz, (j+1)z] for j = 1, ..., J−1, using the previously found solution for Vj−1 on [(j−1)z, jz],
each time using the two (one if σ = 0) boundary conditions Vj−1(jz) = Vj(jz) and (if σ > 0)
V ′

j−1(jz) = V ′
j (jz). At the end of this procedure we have functions V0, V1, ..., VJ−1 depending

on V ∗ and two parameters (one if σ > 0). We can solve for these three numbers (two if
σ = 0) imposing the value matching conditions equations (A-3)-(A-4)-(A-5).

We note that in the case in which π = 0, the homogeneous linear second order (first order
if σ = 0) ODE have constant coefficients. Hence the solution of the homogenous is given by
the linear combination of two exponential functions. The solution of the non-homogenous
solution is given by sum of the product of each of the solution of the homogeneous and other
function. This can be computed recursively, starting from j = 0. This gives the following
solution in equation (10).

Step 3: Deriving the linear equations for the coefficients of the solution of equation (10)
First we will take as given the two values of Bk

00 for k = 1, 2 and develop a system of
equation for {Aj, Dj} and the remaining {Bk

j,i}.
The variable V ∗ can be eliminated of the system using the value matching at m = 0,

44



equation (A-3) and the form of V0, namely

V ∗ = A0 +
∑

k=1,2

Bk
0,0 − b . (A-6)

We solve for the coefficients of V0 on the constant and multiplying m on both sides of the
ODE We have

D0 =
R

(r + p + κ)
, A0 =

(p + κ)V ∗ + κ b − c D0

r + p + κ
(A-7)

Replacing the conjectured form of Vj in equation (10) on both sides of the ODE equation (A.2)
for j = 1, 2, ..., J − 1:

(r + p + κ)

(

Aj + Dj(m − zj) +
∑

k=1,2

j
∑

i=0

Bk
j,i eλk(m−zj) (m − zj)i

)

(A-8)

= Rm + pV ∗ − c

(

Dj +
∑

k=1,2

j
∑

i=0

Bk
j,i eλk(m−zj)

(

λk (m − zj)i + i (m − zj)i−1
)

)

+ κ

(

Aj−1 + Dj−1(m − zj) +
∑

k=1,2

j−1
∑

i=0

Bk
j−1,i eλk(m−zj) (m − zj)i

)

+
σ2

2

(

∑

k=1,2

j
∑

i=0

Bk
j,i eλk(m−zj)

(

λ2
k (m − zj)i + 2λki (m − zj)i−1 + i(i − 1) (m − zj)i−2

)

)

For 1 ≤ j ≤ J − 1 : matching the constant and coefficients on m on both sides of the ODE
for Vj equation (A-8) we have:

Dj =
R

(r + p + κ)
+

κ

(r + p + κ)
Dj−1 , Aj =

pV ∗ − c Dj − κz j Dj−1 + κAj−1

r + p + κ
+ Dj zj .

(A-9)
Thus, using equation (A-6), equation (A-7) and equation (A-9) we can solve for all {Dj, Aj}j=1,...,J−1

as a functions of Bk
00 for k = 1, 2.

Now we match the coefficients of the terms involving eλk(m−zj)(m − zj)i in both sides of
equation (A-8), the ODE for Vj . Fixing an ODE j = 1, ..., J − 1, we have coefficients for
i = 0, 1, ..., j. Matching the coefficient for eλk(m−zj)(m− zj)j gives no additional restrictions,
given the expression for λk. The coefficient for eλk(m−zj)(m − zj)j−1 gives the following
difference equation for Bk

j,j:

Bk
j,j j

(

c − σ2λk

)

= κBk
j−1,j−1 for j = 1, ..., J − 1, k = 1, 2 . (A-10)

Thus using equation (A-6) we can solve for {Bk
j,j}j=1,...,J−1 given Bk

00 for k = 1, 2.

Likewise matching the coefficients for eλk(m−zj)(m − zj)i for i = 0, 1, ..., j − 2, canceling
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some terms due to the expression for λk, gives

(c−σ2λk)(i+1)Bk
j,i+1 = κBk

j−1,i+
σ2

2
Bk

j,i+2(i+1)(i+2) for j = 2, ..., J−1, i = 0, ..., j−2, k = 1, 2 .

(A-11)
Imposing that the level and the first derivative of the functions Vj−1 and Vj agree when

evaluated at zj we obtain:

Aj + Dj +
∑

k=1,2

Bk
j,0 = Aj−1 + Dj−1z +

∑

k=1,2

j−1
∑

i=0

Bk
j−1,i eλkz zi (A-12)

Dj +
∑

k=1,2

Bk
j,0λk = Dj−1 +

∑

k=1,2

j−1
∑

i=0

Bk
j−1,i eλk z

[

λk zi + i zi−1
]

, (A-13)

for j = 1, 2, ..., J − 1.
We will now solve for {Bk

j,i} for j = 1, ..., J − 1 and i = 0, ..., j − 1, for each k = 1, 2.
First, we can use equation (A-12) and equation (A-13) for j = 1 to solve for Bk

1,0. Using
these values and {Bk

2,2} we can use equation (A-11) and equation (A-12)-equation (A-13) for
j = 2 to solve for {Bk

2,1, B
k
2,0}. In general, on one hand, fixing k = 1, 2 and j = 2, ..., J − 1

if {Bk
j−1}i=0,...,j−2 are known, equation (A-11) can be solve for {Bk

j,i}i = 0, ..., j − 1 using
Bk

j,j as a known boundary condition. On the other hand, we can use equation (A-12) and
equation (A-13) for j = 2, ..., J −1 to obtain two extra linear equations for {Bk

j,0}i=0,...,j,k=1,2,
given the values of {Bk

j−1,i}i=0,...,j−1.
At this point we have solved for {Dj, Aj , B

k
j,i} as functions of Bk

0,0. We can now solve
for Bk

0,0 using two more linear equations: the value at Vj∗ at m∗ and of VJ−1 at m∗∗ has to
satisfy:

V ∗ = Aj∗ + Dj∗(m
∗ − zj∗) +

∑

k=1,2

j∗
∑

i=0

Bk
j∗,i eλk(m∗−zj∗) (m∗ − zj∗)i , (A-14)

V ∗ + b = AJ−1 + DJ−1(m
∗∗ − z(J − 1)) +

∑

k=1,2

J−1
∑

i=0

Bk
J−1,i eλk(m∗∗−z(J−1)) (m∗∗ − z(J − 1))i

(A-15)

We note that while V ∗ appears in these equation, it can be replaced by using equation (A-6)
in terms of A0, B

k
00.

A.3 Proof of Proposition 3.

Proof. Consider the Bellman equation for the case of continuous consumption at the rate
γ + c and no jumps, so z = 0. If 0 < m < m∗∗ it reads:

(r + p)V (m) = Rm + pV ∗ − V ′(m)(c + γ).
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Instead he Bellman equation for the case of jumps, when z < m < m∗∗ is

(r + p)V (m; z) = Rm + pV ∗(z) − V ′(m; z)c + κ (V (m; z) − V (m − z; z)) .

Where the z as a second argument is included to emphasize that it is the problem with
jumps. We want to show that as z → 0 boh Bellman equations coincide, which is the same
than showing that:

V ′(m)γ = lim
z→0

κ (V (m; z) − V (m − z; z)) .

This instead holds by writing V (m− z; z) = V (m; z)− V ′(m; z)z + o(z). Taking the limit as
z → 0 and using that κz = γ.

A.4 Proof of Proposition 5.

Proof. Consider the function V (m; m′, p, κ, z, c), the value of following a policy with an
upper threshold m′ at the current value m. This function has been characterized fully in
Proposition 8 in Appendix B for the appropriate setting of θ. Recall that the solution of
the agent’s problem V (·; m∗, p, κ, z, c) is minimized at m∗. Thus, we can find the optimal
threshold m∗ by minimizing V ∗(m′; p, κ, z, c) ≡ V (m′; m′, p, κ, z, c).

The condition that m∗ (p + κ, 0, 0, c) < z ensures that

V ∗(m′, p, κ, z, c) ≥ V ∗(m∗ (p + κ, 0, 0, c0) ; p, κ, z, c) +
κb

r

for all m′ ≤ z every jump triggers a withdrawal, and hence, apart from the cost b, the jumps
behaves exactly as free withdrawal opportunities. Thus in this range the value function
satisfies

V ∗(m′; p, κ, z, c) = V ∗(m′, p + κ, 0, 0, c) + κb/r .

The value function V (·; ·, p, 0, 0, c) is the value function for the problem studied in Alvarez
and Lippi (2009), with no jumps. Either using the results in Alvarez and Lippi (2009), or
solving the relevant ODE and boundary condition in Proposition 8 for the case where m′ < z
we have the following explicit solution

V ∗(m′, p + κ, 0, 0, c) =
r + p + κ

r

[

m′ R
r+p+κ

+ b

1 − e−(r+p+κ)m′/c
+ b

]

This function is single peaked, attains its minimum at m∗(p + κ, 0, 0, c) and is strictly in-
creasing in m′ for values m′ > m∗(p + κ, 0, 0, c).

The argument for values m′ > z uses that for any ǫ > 0, we can find κ such that for
κ < κ:

∣

∣

∣

∣

V ∗ (m∗ (p, κ, z, c) ; p, κ, z, c) − V ∗ (m∗ (p + κ, 0, 0, c) ; p + κ, 0, 0, c) − bκ

r

∣

∣

∣

∣

< ǫ
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The result will follow by choosing ǫ to be

ǫ(z) = V ∗(z; p, κ, z, c) − V ∗(m∗(p + κ, 0, 0, c); p + κ, 0, 0, c) − κb/r .

That ǫ > 0 follows from the assumption that m∗(p + κ, 0, 0, c) < z. Since V ∗(z; p, κ, z, c) is
increasing in z, then so is ǫ(z).

Now we show the required continuity. Consider a policy where, regardless of whether
m < z or not, if a jump takes place the agent makes a withdrawal. The expected discounted
cost of this policy equals V ∗(m′; p+κ, 0, 0, c)+κb/r. The first term is the expected discounted
cost of financing a constant cash consumption of c and having free withdrawal opportunities
at the rate p + κ. The second term is the expected discounted cost of all the withdrawals
that occur every time a jump occur. Since withdrawals occur even if m ≥ z we have for all
m′:

V ∗(m′; p, κ, z, c) ≤ V ∗(m′; p + κ, 0, 0, c) + κb/r .

From the optimality of m∗(p + κ, 0, 0, c) and m∗(p, 0, 0, c) we have that for all m′:

V ∗(m′; p + κ, 0, 0, c) ≥ V ∗(m∗(p + κ, 0, 0, c); p + κ, 0, 0, c)

V ∗(m′; p, 0, 0, c) ≥ V ∗(m∗(p, 0, 0, c); p, 0, 0, c) .

Since the cost is increasing in each component of the cash expenditures:

V ∗(m′; p, κ, z, c) ≥ V ∗(m′; p, 0, 0, c) ≥ V ∗(m∗(p, 0, 0, c); p, 0, 0, c) .

Collecting these inequalities we have that for any m′:

V ∗(m∗(p, 0, 0, c); p, 0, 0, c) ≤ V ∗(m′; p, 0, 0, c) ≤ V ∗(m′; p, κ, z, c)

≤ V ∗(m∗(p + κ, 0, 0); p + κ, 0, 0, c) +
κb

r

Finally since we show in Alvarez and Lippi (2009) that V ∗(m∗(·, 0, 0, c); ·, 0, 0, z) is con-
tinuous and κb/r is continuous on κ, we have that for any c, b/R, and p, there exist a κ such
that for all κ < κ,

∣

∣

∣

∣

V ∗(m∗(p + κ, 0, 0); p + κ, 0, 0, c) +
κb

r
− V ∗(m∗(p, 0, 0, c); p, 0, 0, c)

∣

∣

∣

∣

< ǫ(z) .

We note that the absolute value in the previous expression is independent of z. Hence for all
κ < κ:

∣

∣

∣

∣

V ∗(m∗(p + κ, 0, 0); p + κ, 0, 0, c) +
κb

r
− V ∗(m∗(p, κ, c, z); p, κ, z, c)

∣

∣

∣

∣

< ǫ(z) .

Finally, since ǫ(z) is increasing in z, but the upper and lower bounds on V ∗(m∗(p, κ, c, z); p, κ, z, c)
are not, we have that the conclusion of the proposition holds also for z′ > z.
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B The model with π = σ = 0

B.1 Solution of the Bellman equation for the π = σ = 0 case.

In this case the linear system described in the proof of Proposition 2 further simplifies. In
particular we have that there is only one root λ so we omit k from all the expression.

Since σ = 0, the range of inaction is [0, m∗]. Let j∗ the smallest integer such that
(j∗ + 1)z ≥ m∗. The value function in each segment Vj : [zj, z (j + 1)] → R for j = 0, ..., j∗ :

Vj (m) = Aj + Dj (m − z j) + exp (λ (m − zj))

j
∑

i=0

Bj,i (m − z j)i

where the constants V ∗, λ, Aj , Dj and Bj,i satisfy the following set of linear equations:

λ =
r + p + κ

−c
, D0 =

R

(r + p + κ)
,

(r + p + κ) A0 = (p + κ) V ∗ + κb − c

r + p + κ
, B0,0 = b + V ∗ − A0.

and for j = 0, 1, ..., j∗ − 1 :

Dj+1 =
−1

λ

[

R

c
+

κ

c
Dj

]

, Aj+1 =
1

λ

(

Dj+1 −
pV ∗

c
− κ

c
[Aj − Dj z (j + 1)]

)

+ Dj+1z (j + 1) ,

Bj+1,0 = Aj + Djz + eλz

j
∑

i=0

Bj,i zi − Aj+1 , Bj+1,i+1 =
1

i + 1

κ

c
Bj,i for i = 0, 1, 2, ..., j and

V ∗ = Aj∗ + Dj∗ (m∗ − z j∗) + eλ(m∗−zj∗)

j∗
∑

i=0

Bj∗,i (m∗ − z j∗)i

Finally, the optimality of the threshold m∗ implies that:

0 = Dj∗ + eλ(m∗−zj∗)

[

j∗
∑

i=0

Bj∗,i

(

λ (m∗ − z (j∗))i + i (m∗ − zj∗)i−1
)

]

(A-16)

B.2 Computing M, W, n for any z, k when π = σ = 0

This section computes the value function and several cash management statistics of interest
for the case of σ = 0 and π = 0 for any configuration of the lumpy purchase parameters: z, k.
Besides the value function V (m) we also define the functions M(m), w(m), m(m) and n(m)
as the expected discounted (at rate ρ) integral of the respective quantities (cash balances,
withdrawals size, cash-at-withdrawal and deposit indicator), conditional on the current value
of m, where cash holding follow the law of motion that corresponds to the optimal decision
rule of the model with σ = π = 0 and optimal return m∗. If there is no free withdrawal
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opportunity, cash balances evolve as

dm(t) = −c dt − z dN(t) for m(t) ∈ (0, m∗] (A-17)

where N(t) is the counter of a Poisson process with arrival at the rate κ. If there is a free
adjustment, which occurs with Poisson arrival rate p per unit of time. We let mt the cash at
the time of a withdrawal, and wt the amount of the withdrawal. In an instant an adjustment
(withdrawal) can happen in either of the following three cases:i) m(t) reaches zero in which
case, mt = 0 and wt = m∗, ii) a jump in cash consumption occurs when m(t) < z, then
mt = m(t) and w(t) = z + m∗ − m(t), iii) a free withdrawal opportunity takes place, then
mt = m(t) and wt = m∗ − m(t). We use the functions M(m), w(m), m(m) and n(m) to
compute the expected value under the invariant distribution of the money holdings M , the
average withdrawal size W , the average cash holdings at the time of withdrawal M/M , and
the average number of withdrawals per unit of time n. We define the unconditional expected
values (M, W, M, n) by multiplying the expected discounted value by the discount rate ρ.
This adjustment converts these quantities in a flow. For these cash holding statistics we take
the discount rate to zero, to obtain the corresponding expected value under the invariant
distribution of the process for {m(t)}, as explained below.17 In particular let:

M (m) = E

[

ρ

∫ ∞

0

e−ρtm (t) dt | m0 = m

]

w (m) = E

[

ρ

∞
∑

j=0

e−ρτj
(

m
(

τ+
j

)

− m
(

τ−
j

)

+ z Iτj

)

| m0 = m

]

m (m) = E

[

ρ
∞
∑

j=0

e−ρτjm
(

τ−
j

)

| m0 = m

]

n (m) = E

[

ρ
∞
∑

j=0

e−ρτj | m0 = m

]

V (m) =
1

ρ
[R M (m) + b (n (m) − p)] ,

where τj are the times at which a withdrawal happens (which may coincide with a free
withdrawal opportunity or with a jump in consumption or not) and where It is an indicator
that a cash consumption jump has occurred at time τj when m(τ−

j ) ≤ z. The expectations
are taken with respect to the process for {m(t)} generated by equation (A-17). Notice that
the value function V is the sum of the expected discounted cost of holding cash plus the
expected discounted cost of the adjustments. The factor 1/ρ corrects the flow nature of the
definitions for M and n. Since the adjustments n include those that are free, the last terms
subtracts the expected discounted value of them. In the case of the value function we let

17 Alternatively, the limits of M, W, M and n can be computed by solving for the invariant distribution
of m, say h, and the expected number of withdrawals, n and using them to define the remaining statistics
(M, M and W ). We do so in the Online Appendix C, but the derivation and calculations of n and h are
more involved and specialized.
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ρ = r. For the cash holding statistics we are interested in

M = lim
ρ→0

M (m) , w = lim
ρ→0

w (m) , m = lim
ρ→0

m (m) , n = lim
ρ→0

n (m) .

As implicit in the notation, as ρ ↓ 0 the functions do not depend on m. Note that w is the
expected value of the total amount of withdrawals during a period of length 1, and hence
the average withdrawal size is W = w

n
. Likewise, m is the expected value of the total amount

of cash at the time of withdrawal in a period of length 1, and hence the average cash at the
time of a withdrawal is M = m

n
.

These functions satisfy the following system of ODE equations, which, in order to simplify
the solution, we only write for the case of π = 0. The logic for them is the same as the one
for the value function in the general case discussed in Section 3.1. We let j∗ be the smallest
integer for which m ≤ (j∗ + 1)z. Thus, all these functions will be defined in segments of the
form [zj, z (j + 1)]. For m ∈ [0, z] we have:

(ρ + κ + p) F0 (m) = ρ ν0 m + ρ α0 − F ′
0 (m) c + (κ + p) F ∗

for suitable choices of the constants ν0 and α0 (see the Appendix B.4 for details). We follow
the notational convention that the function evaluated right after hitting the barrier m∗, i.e.
at m(t+) = m∗, is denoted with a ∗, say for instance M(m∗) = M∗. For m ∈ [zj, z (j + 1)] for
j = 1, 2, ..., j∗

(ρ + κ + p) Fj (m) = ρ ν m + ρ α − F ′
j (m) c + κFj−1 (m − z) + p F ∗ ,

for some suitable choices of α and ν (see Appendix B.4 for details). Continuity at m = zj
for j = 1, .., j∗

Fj (zj) = Fj−1 (zj)

for j = 1, 2, ..., j∗. The conditions at m = 0 are

F0 (0) = ρ α∗ + F ∗ ,

for a suitable choice of α∗ (see the Appendix B.4 for details). Now we can write the solution
for F as a function of m∗, ν, ν0, α, α0 and α∗.

Proposition 8. Assume that c > 0, ρ > 0, and ρ + p + κ > 0. The ODE-DDE for F has
the following solution. Let m∗ and θ ≡ (ν, ν0, α, α0, α

∗) be given. Define j∗ as the smallest
integer so that (j∗ + 1)z ≥ m∗. Then Fj (·; m∗, θ) : [zj, z (j + 1)] → R has the form:

Fj (m; m∗, θ) = Gj + Sj (m − zj) +

j
∑

i=0

Hj,i eλ(m−zj) (m − zj)i

where given the constant λ = ρ+κ+p
−c

, and the values for Gj , Sj, Hij for j = 1, ..., j∗ and
i = 1, .., j solve a block recursive system of linear equations described in the proof.

We use this general set-up to develop a non-linear equation to find the value of the optimal
return point m∗. This equation reflects that m∗ is chosen optimally, and hence it must satisfy
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that V ′(m∗) = V ′
j∗(m

∗) = 0. This can be written as:

0 = Sj∗ +

j∗
∑

i=0

Hj∗i eλ(m∗−zj∗) i (m∗ − zj∗)i−1 + λ

j∗
∑

i=0

Hj∗i eλ(m∗−zj∗) (m∗ − zj∗)i

B.3 Proof of Proposition 8

First we describe the system of linear equations that the coefficients for Gj , Sj , Hij for
j = 1, ..., j∗ and i = 1, .., j and F ∗ solve:

S0 =
ρ

ρ + κ + p
ν0 ,

G0 =
ρ

ρ + κ + p
α0 −

c

ρ + κ + p
S0 +

(κ + p)

ρ + κ + p
F ∗,

H00 = ρα∗ + F ∗ − G0 ,

for j = 0, 1, 2, ..., j∗ − 1 :

Sj+1 =
ρ

ρ + κ + p
ν +

κ

ρ + κ + p
Sj ,

Gj+1 =
ρα + pF ∗

ρ + κ + p
+

κ

ρ + κ + p
[Gj − Sjz (j + 1)] − c

ρ + κ + p
Sj+1 + Sj+1z (j + 1) ,

Hj+1,0 = Gj + Sj z +

j
∑

i=0

Hj,i eλz zi − Gj+1 where

Hj+1, i =
1

i

κ

c
Hj,i−1 for i = 1, 2, ..., j + 1, and

F ∗ = Gj∗ + Sj∗ (m∗ − zj∗) +

j∗
∑

i=0

Hj∗i eλ(m∗−zj∗) (m∗ − zj∗)i

Second, we derive this equations. We do this in two steps.
Step I. Solution for j = 0.
We have

F0 (m) = G0 + S0m + H00 exp (λm)

and
F ′

0 (m) = S0 + λH00 exp (λm)

or

(ρ + κ + p)
[

G0 + S0m + H00e
λm
]

= ρ ν0 m + ρ α0 − c
[

S0 + λH00e
λm
]

+ (κ + p) F ∗

Now we solve for λ, S0, G0 and H00.
For λ we have:

(ρ + κ + p) exp (λm) = −cλH00 exp (λm)
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or

λ =
ρ + κ + p

−c
,

For S0 :
(ρ + κ + p) S0 = ρ ν0

or
S0 =

ρ

ρ + κ + p
ν0.

For G0

(ρ + κ + p) G0 = ρ α0 − cS0 + (κ + p) F ∗

or

G0 =
ρ

ρ + κ + p
α0 −

c

ρ + κ + p
S0 +

(κ + p)

ρ + κ + p
F ∗

Using the boundary condition F0 (0) = ρ α∗ + F ∗,

F0 (0) = G0 + H00 = ρα∗ + F ∗

or
H00 = ρα∗ + F ∗ − G0.

Step II. Solution for 1 ≤ j ≤ j∗.
We have

F ′
j (m) = Sj + eλ(m−zj)

j
∑

i=0

Hj,i

[

λ (m − zj)i + i (m − zj)i−1
]

so that

(ρ + κ + p)

[

Gj+1 + Sj+1 (m − z (j + 1)) +

j+1
∑

i=0

Hj+1,i exp (λ (m − z (j + 1))) (m − z (j + 1))i

]

= ρ ν m + ρα + pF ∗

+κ

[

Gj + Sj (m − z (j + 1)) +

j
∑

i=0

Hj,i exp (λ (m − z (j + 1))) (m − z (j + 1))i

]

−c

[

Sj+1 + exp (λ (m − z (j + 1)))

j+1
∑

i=0

Hj+1,i

[

λ (m − z (j + 1))i + i (m − z (j + 1))i−1
]

]

5



Matching the coefficients for exp (λ (m − z (j + 1))) requires:

(ρ + κ + p)

j+1
∑

i=0

Hj+1,i (m − z (j + 1))i

= κ

j
∑

i=0

Hj,i (m − z (j + 1))i

−c

j+1
∑

i=0

Hj+1,i

[

λ (m − z (j + 1))i + i (m − z (j + 1))i−1
]

and using the expression for λ

0 = κ

j
∑

i=0

Hj,i (m − z (j + 1))i

−c

j+1
∑

i=0

Hj+1,i i (m − z (j + 1))i−1

and matching the coefficients for (m − z (j + 1))i−1 :

0 = κ Hj i−1 − c i Hj+1 i

so that

Hj+1, i =
1

i

κ

c
Hj,i−1

for i = 1, 2, ..., j + 1.
Matching the coeffcients of m :

(ρ + κ + p) Sj+1 = ρ ν + κSj

or
Sj+1 =

ρ

ρ + κ + p
ν +

κ

ρ + κ + p
Sj

Matching the coefficient for the constants:

(ρ + κ + p) [Gj+1 − Sj+1z (j + 1)]

= ρα + pF ∗ + κ [Gj − Sjz (j + 1)] − cSj+1

or

Gj+1 =
ρα + pF ∗

(ρ + κ + p)
+

κ

ρ + κ + p
[Gj − Sjz (j + 1)] − c

(ρ + κ + p)
Sj+1 + Sj+1z (j + 1)
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Finally using the continuity at zj :

Fj+1 (z (j + 1)) = Gj+1 + Sj+1 +

j+1
∑

i=0

Hj+1, i (0)i = Gj+1 + Hj+1,0

Fj (z (j + 1)) = Gj + Sj z +

j
∑

i=0

Hj,i exp (λz) (z)i

so that

Gj+1 + Hj+1,0 = Gj + Sj z +

j
∑

i=0

Hj,i exp (λz) (z)i

or

Hj+1,0 = Gj + Sj z +

j
∑

i=0

Hj,i exp (λz) (z)i − Gj+1 .

Finally we require that

F ∗ = Fj∗ (m∗) or

F ∗ = Gj∗ + Sj∗ (m∗ − zj∗) +

j∗
∑

i=0

Hj∗i exp (λ (m∗ − zj∗)) (m∗ − zj∗)i

B.4 Bellman equations for V, M, M, W, n and its coefficients

In the range [0, z] we have:

(ρ + κ + p)M0 (m) = ρ m − M ′
0 (m) c + (κ + p) M∗

(ρ + κ + p)w0 (m) = ρ (κ + p) (m∗ − m) + ρκz − w′
0 (m) c + (κ + p) w∗

(ρ + κ + p)m0 (m) = ρ (κ + p) m − m′
0 (m) c + (κ + p) m∗

0

(ρ + κ + p) n0 (m) = ρ (κ + p) − n′
0 (m) c + (κ + p) n∗

(ρ + κ + p) V0 (m) = Rm + κb − V ′
0 (m) c + (κ + p) V ∗

We follow the notational convention that the function evaluated right after hitting the barrier
m∗, i.e. at m(t+) = m∗, is denoted with a ∗, say for instance M(m∗) = M∗. For m ∈
[zj, z (j + 1)] for j = 1, 2, ..., j∗

(ρ + κ + p) Mj (m) = ρ m − M ′
j (m) c + κMj−1 (m − z) + pM∗

(ρ + κ + p)wj (m) = ρp (m∗ − m) − w′
j (m) c + κ wj−1 (m − z) + p w∗

(ρ + κ + p) mj (m) = ρ pm − m′
j (m) c + κ mj−1 (m − z) + pm∗

(ρ + κ + p) nj (m) = ρp − n′
j (m) c + κnj−1 (m − z) + pn∗

(ρ + κ + p)Vj (m) = Rm − V ′
j (m) c + κVj−1 (m − z) + pV ∗
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Continuity of these function across the segments gives:

Mj (zj) = Mj−1 (zj) ,

wj (zj) = wj−1 (zj) ,

mj (zj) = M j−1 (zj) ,

nj (zj) = nj−1 (zj) ,

Vj (zj) = Vj−1 (zj) ,

The boundary conditions at m = 0 : are

M0 (0) = M∗,

w0 (0) = ρ m∗ + w∗,

m0 (0) = m∗,

n0 (0) = ρ + n∗,

V0 (0) = V ∗ + b ,

We display the expressions to map the equations for the general formulation F to each
of the 4 variables: M, w, m, and n. They are

M0 : ν0 = 1, α0 = 0,

w0 : ν0 = − (κ + p) , α0 = (κ + p) m∗ + κz,

m0 : ν0 = κ + p, α0 = 0,

n0 : ν0 = 0, α0 = (κ + p) ,

V0 : ν0 = R/ρ, α0 = κb/ρ,

Mj : ν = 1, α = 0,

wj : ν = −p, α = pm∗

mj : ν = p, α = 0,

nj : ν = 0, α = p,

Vj : ν = R/ρ, α = 0,

and

M0 : α∗ = 0,

w0 : α∗ = m∗

m0 : α∗ = 0,

n0 : α∗ = 1,

V0 : α∗ = b/ρ.
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C Invariant distribution of cash holdings h

We derive analytically the stationary distribution of cash holdings. The pdf of the invariant
distribution h solves the ODE

h (m) (p + κ) = h′ (m) (c + πm)

for m∗ ≥ m ≥ m∗ − z and the DDE

h (m) (p + κ) = h′ (m) (c + πm) + κ h (m + z)

for 0 ≤ m ≤ m∗ − z.

Proof of the ODE-DDE for h.

Take a discrete time version of the law motion with time period of length ∆. For m∗ ≥
m ≥ m∗ − z − (c + m∗π)∆ we have:

h (m, t + ∆) = (1 − (p + κ) ∆) h (m + (c + mπ)∆, t)

and for 0 ≤ m < m∗ − z − (c + m∗π) ∆ we have:

h (m, t + ∆) = (1 − (p + κ) ∆) h (m + (c + mπ) ∆, t) + κ∆ h (m + z + (c + mπ) ∆, t)

This gives:
h (m) (p + κ) = h′ (m) (c + πm)

In steady state,
h (m) = (1 − (p + κ)∆) h (m + (c + mπ) ∆)

and
h (m) = (1 − (p + κ)∆) h (m + (c + mπ) ∆) + κ∆ h (m + z + (c + mπ) ∆)

or
h (m) = (1 − (p + κ) ∆) [h (m) + h′ (m)∆ (c + πm) + o (∆)]

and

h (m) = (1 − (p + κ) ∆) [h (m) + h′ (m) ∆ (c + πm) + o (∆)] + κ∆ h (m + z + (c + mπ)∆)

or

h (m) ((p + κ)) = (1 − (p + κ)∆)

[

h′ (m) (c + πm) +
o (∆)

∆

]

and

h (m) (p + κ) = (1 − (p + κ)∆) h′ (m) (c + πm) +
o (∆)

∆
+ κ h (m + z + (c + mπ)∆)

and taking ∆ → 0 :
h (m) (p + κ) = h′ (m) (c + πm)
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for m∗ ≤ m ≤ m − z and

h (m) (p + κ) = h′ (m) (c + πm) + κ h (m + z)

for 0 ≤ m ≤ m∗ − z.

Characterization of h
As in the case of the value function, we can further characterize h by splitting its support

[0, m∗] into J intervals, where J is the smallest integer for which Jz ≥ m∗. The first J −
1 intervals have width z, and are given by [m∗ − (j + 1) z, m∗ − zj] , for j = 0, 1, ..., J − 2, so
that

hj : [m∗ − (j + 1) z, m∗ − zj] → R+

for j = 0, ..., J −2. The last one may be smaller, and is given by [0, m∗ − z (J − 1)] , so that

hJ−1 : [0, m∗ − z (J − 1)] → R+

For the first interval we have an ODE

h0 (m) (p + κ) = h′
0 (m) (c + πm)

for m ∈ [m∗ − z, m∗] . Notice that, except for a multiplicative constant of integration,
h0 can be solved for in this interval. For the next intervals we take as given hj−1 and solve
for hj solving the following ode:

hj (m) (p + κ) = h′
j (m) (c + πm) + κ hj−1 (m + z)

for m ∈ [max {m∗ − z (j + 1) , 0} , m∗ − zj] .
We impose that the function h is continuous everwhere, so that

hj (m∗ − zj) = hj−1 (m∗ − zj)

for j = 1, 2, ..., J − 1. Notice that this implies that the derivatives of hj and hj−1 agree at
these points for j ≥ 2.

Hence, by splitting the domain in this way we turn the DDE into the solution of several
ODE’s.

Finally, since h is a density we have:

1 =

∫ m∗

0

h (m) dm =
J−1
∑

j=0

∫ m∗−zj

m∗−z(j+1)

hj (m) dm +

∫ m∗−z(J−1)

0

hJ−1 (m) dm.

Solution of h for the case of π = 0.
The solution for h is of the following form:

h (m)

(

p + κ

c

)

= h′ (m)
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for m∗ ≥ m ≥ m∗ − z and otherwise

h (m) =
c

p + κ
h′ (m) +

κ

p + κ
h (m + z)

We have that
h0 (m) = K00 exp (µ (m + z − m∗))

since
h′

0 (m) = µ K00 exp (µ (m + z − m∗))

Thus the ODE is satisfied setting

µ =
p + κ

c
.

for any value of K00.
For j = 1, 2, ..., J − 1we have

hj (m) =
c

p + κ
h′

j (m) +
κ

p + κ
hj−1 (m + z)

for m ∈ [max {m∗ − z (j + 1) , 0} , m∗ − zj] .
We guess the solution of the form:

hj (m) = exp (µ [m + z (j + 1) − m∗])

j
∑

i=0

Kj,i (m + z (j + 1) − m∗)i

and thus

h′
j (m) = exp (µ [m + z (j + 1) − m∗])

j
∑

i=0

Kj,i

[

µ (m + z (j + 1) − m∗)i + i (m + z (j + 1) − m∗)i−1
]

Replacing our guess in the ode:

exp (µ [m + z (j + 2) − m∗])

j+1
∑

i=0

Kj+1,i (m − z (j + 2) − m∗)i

=
c

p + κ
exp (µ [m + z (j + 2) − m∗])

j+1
∑

i=0

Kj+1,i

[

µ (m + z (j + 2) − m∗)i + i (m + z (j + 1) − m∗)i−

+
κ

p + κ
exp (µ [m + z (j + 2) − m∗])

j
∑

i=0

Kj,i (m − z (j + 2) − m∗)i
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Simplifying:

j+1
∑

i=0

Kj+1,i (m − z (j + 2) − m∗)i

=
c

p + κ

j+1
∑

i=0

Kj+1,i

[

µ (m + z (j + 2) − m∗)i + i (m + z (j + 2) − m∗)i−1
]

+
κ

p + κ

j
∑

i=0

Kj,i (m − z (j + 2) − m∗)i

or using µ = (p + κ) /c :

0 =
c

p + κ

j+1
∑

i=0

Kj+1,i i (m + z (j + 2) − m∗)i−1

+
κ

p + κ

j
∑

i=0

Kj,i (m − z (j + 2) − m∗)i

Matching the coefficients of term with (m − z (j + 1) − m∗)i−1 for i = 1, 2, ..., j + 1

c

p + κ
Kj+1,i i = − κ

p + κ
Kj,i−1

or

Kj+1,i = − 1

i

κ

c
Kj,i−1

for i = 1, 2, ..., j + 1.
For Kj+1,0 we use that

hj+1 (m∗ − z (j + 1)) = hj (m∗ − z (j + 1))

or

hj (m∗ − z (j + 1)) = exp (µ 0)

j
∑

i=0

Kj,i 0 i = Kj,0

hj+1 (m∗ − z (j + 1)) = exp (µ z)

j+1
∑

i=0

Kj+1,i (z)i

Kj,0 = exp (µ z)

j+1
∑

i=0

Kj+1,i (z)i

or

Kj+1,0 =
Kj,0

exp (µz)
−

j+1
∑

i=1

Kj+1,i (z)i
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Finally K00 is obtained by requiring that

1 =

∫ m∗

0

h (m) dm =
J−1
∑

j=0

∫ m∗−zj

m∗−z(j+1)

hj (m) dm +

∫ m∗−z(J−1)

0

hJ−1 (m) dm.

We use that for 0 ≤ j < J − 1,

∫ m∗−zj

m∗−z(j+1)

hj (m) dm

=

∫ m∗−zj

m∗−z(j+1)

j
∑

i=0

(

exp (µ [m + z (j + 1) − m∗]) Kj,i (m + z (j + 1) − m∗)i
)

dm

=

j
∑

i=0

Kj,i

∫ m∗−zj

m∗−z(j+1)

(

exp (µ [m + z (j + 1) − m∗]) (m + z (j + 1) − m∗)i
)

dm

=

j
∑

i=0

Kj,i

∫ z

0

exp (µm̂) (m̂)i dm̂

and

∫ m∗−z(J−1)

0

hJ−1 (m) dm

=

∫ m∗−z(J−1)

0

(

J−1
∑

i=0

exp (µ [m + z (J − 2) − m∗]) KJ−1,i (m + z (J − 2) − m∗)i

)

dm

=

J−1
∑

i=0

KJ−1,i

∫ m∗−z(J−1)

0

exp (µ [m + z (J − 2) − m∗]) (m + z (J − 2) − m∗)i dm

=
J−1
∑

i=0

KJ−1,i

∫ m∗−z(J−1)

0

exp (µ [m + z (J − 2) − m∗]) (m + z (J − 2) − m∗)i dm

we have

1 =

J−2
∑

j=0

j
∑

i=0

Kj,i

∫ z

0

exp (µm̂) (m̂)i dm̂

+
J−1
∑

i=0

KJ−1,i

∫ m∗−z(J−1)

0

exp (µ [m + z (J − 2) − m∗]) (m + z (J − 2) − m∗)i dm

Letting

L (i) =

∫ z

0

exp (µm) midm =
exp (µm) mi

µ
|z0 −

i

µ

∫ z

0

exp (µm) mi−1dm

=
exp (µz) zi

µ
− i

µ
L (i − 1)
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so that

L (i) =
exp (µz) zi

µ
− i

µ
L (i − 1)

for i = 1, 2, ..., with

L (0) =

∫ z

0

exp (µm) dm =
exp (µz)

µ
.

Likewise letting

G (i) =

∫ m∗−z(J−1)

0

exp (µ [m + z (J − 2) − m∗]) (m + z (J − 2) − m∗)i dm

=
exp (µ [m + z (J − 2) − m∗]) (m + z (J − 2) − m∗)i

µ
|m

∗−z(J−1)
0

− i

µ

∫ z

0

exp (µ [m + z (J − 2) − m∗]) (m + z (J − 2) − m∗)i−1 dm

=
exp (µz) (z)i

µ
− exp (µ [z (J − 2) − m∗]) (z (J − 2) − m∗)i

µ

− i

µ
G (i − 1)

with

G (0) =

∫ m∗−z(J−1)

0

exp (µ [m + z (J − 2) − m∗]) dm

=
exp (µz)

µ
− exp (µ [z (J − 2) − m∗])

µ

Now we can write

1 =

J−2
∑

j=0

j
∑

i=0

Kj,i L (i) +

J−1
∑

i=0

KJ−1,iG (i)

Expected number of withdrawals n
The expected number of withdrawals n is obtained by computing the reciprocal of the

expected time between withdrawals. To to do we first compute the expected time until the
next withdrawal, as a function of the current level of cash m. We denote such a function as
t (m) . Below we show that this function solves the following DDE:

t (m) (p + κ) = 1 + t′ (m) (c + πm) + κ t (m − z)

for m∗ ≥ m > z and the ODE

t (m) (p + κ) = 1 + t′ (m) (c + πm)

for 0 ≤ m < z, with t (0) = 0. Since after any withdrawal real balances go to m∗, the
expected time between succesive withdrawals is t (m∗) and by the fundamental theorem of

14



renewal theory the average number of withdrawals is:

n =
1

t (m∗)

Proof. Consider a discrete time version with periods of length ∆ of the system. In this
case the time until adustment solves

t (m) = (1 − (p + κ) ∆) [∆ + t (m − ∆c − πm∆)] + κ∆ t (m − ∆c − πm∆ − z)

for m > z and
t (m) = (1 − (p + κ) ∆) [∆ + t (m − ∆c − πm∆)]

for m < z, with boundary condition
t (0) = 0.

This law of motion gives:

t (m) (1 − [1 − (p + κ) ∆]) = (1 − (p + κ) ∆) [∆ + t′ (m) (c + πm) ∆ + o (∆)]+κ∆ t (m − ∆c − πm∆ − z)

or

t (m) (p + κ) = (1 − (p + κ) ∆)

[

1 + t′ (m) (c + πm) +
o (∆)

∆

]

+ κ t (m − ∆c − πm∆ − z)

and taking ∆ → 0 :

t (m) (p + κ) = 1 + t′ (m) (c + πm) + κ t (m − z)

for m∗ ≥ m > z and
t (m) (p + κ) = 1 + t′ (m) (c + πm)

for 0 ≤ m < z.

Characterization of the solution for t
As in the case of the value function, we solve for t (·) by dividing the domain in J intervals,

where again J is the smallest integer for which Jz ≥ m∗. The first J − 1 intervals are
of length z, denoted them by [zj, z (j + 1)] for j = 0, 1, ...., J − 2. The last interval is
[z (J − 1) , m∗] . We then find t0 : [0, z] → R++ that solves the ODE:

t0 (m) =
1

p + κ
+ t′0 (m)

(

c + πm

p + κ

)

for m ∈ [0, z] , and given tj−1 we solve for tj : [zj, z (j + 1)] → R++

tj (m) =
1

p + κ
+ t′j (m)

(

c + πm

p + κ

)

+
κ

p + κ
tj−1 (m − z)
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for m ∈ [zj, z (j + 1)] for j = 0, 1, ..., J−2. For j = J−1, the function tJ−1 : [z (J − 1) , m∗] →
R+ solves the same ode than for the other j ≥ 1. Finally the continuity of t requires that

tj+1 (z (j + 1)) = tj (z (j + 1))

for j = 0, 1, ..., J − 2. Hence, by splitting the domain in this way we turn the solution of a
DDE into the solution of several ODE’s.

Solving t (m) for π = 0.
In this case we have:

t0 (m) =
1

p + κ
+ t′0 (m)

(

c

p + κ

)

for m ∈ [0, z] , and given tj−1 we solve for tj

tj (m) =
1

p + κ
+ t′j (m)

(

c

p + κ

)

+
κ

p + κ
tj−1 (m − z)

for m ∈ [zj, z (j + 1)] for j = 0, 1, ..., J − 2 , and for j = J − 2, then m ∈ [z (J − 1) , m∗] .

I. Solutioin for j = 0. We guess a solution for t0 of the form:

t0 (m) = C0 + T0,0 exp (µ m)

so that

C0 + T0,0 exp (µ m) =
1

p + κ
+ T0,0µ exp (µ m)

(

c

p + κ

)

and hence:

µ =
p + κ

c
,

C0 =
1

p + κ
.

We impose that t (0) = 0 obtaining

1

p + κ
+ T00 exp

(

p + κ

c
0

)

= 0

or

T00 = − 1

p + κ
.

II. Solution for j ≥ 1. For m ∈ [zj, z (j + 1)] and 1 ≤ j ≤ J−2 or m ∈ [m (J − 1) , m∗] we
guess

tj (m) = Cj + exp (µ (m − zj))

j
∑

i=0

Tj,i (m − zj)i
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and hence:

t′j (m) = exp (µ (m − zj))

j
∑

i=0

Tj,i

[

µ (m − zj)i + i (m − zj)i−1
]

Substituting in the ode we have:

Cj+1 +

j+1
∑

i=0

Tj+1,i exp (µ (m − z (j + 1))) (m − z (j + 1))i

=
1

p + κ
+

(

c

p + κ

)

exp (µ (m − zj))

j+1
∑

i=0

Tj+1,i

[

µ (m − z (j + 1))i + i (m − z (j + 1))i−1
]

+
κ

p + κ

[

Cj + exp (µ (m − z (j + 1)))

j
∑

i=0

Tj,i (m − z (j + 1))i

]

Matching coeeficcients we have the following conditions. For the cosntant:

Cj+1 =
1

p + κ
+

κ

p + κ
Cj

For exp (µ (m − z (j + 1)))

j+1
∑

i=0

Tj+1,i (m − z (j + 1))i

=

(

c

p + κ

) j+1
∑

i=0

Tj+1,i

[

µ (m − z (j + 1))i + i (m − z (j + 1))i−1
]

+
κ

p + κ

j
∑

i=0

Tj,i (m − z (j + 1))i

and using µ = p+κ
c

,

0 =

(

c

p + κ

) j+1
∑

i=0

Tj+1,i i (m − z (j + 1))i−1

+
κ

p + κ

j
∑

i=0

Tj,i (m − z (j + 1))i

Matching the coefficients of (m − z (j + 1))i :

(

c

p + κ

)

Tj+1,i+1 (i + 1) = − κ

p + κ
Tj,i
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or

Tj+1,i+1 =
1

(i + 1)

(κ

c

)

Tj,i

for i = 0, 1, ..., j.
Finally we use the continuity of t at the edges of the intervals

tj+1 (z (j + 1)) = tj (z (j + 1))

for all j = 0, 1, ..., J − 2. This gives

tj (z (j + 1)) = Cj + exp (µz)

j
∑

i=0

Tj,i (z)i

tj+1 (z (j + 1)) = Cj+1 + exp (µ0)

j+1
∑

i=0

Tj+1,i (0)i = Cj+1 + Tj+1,0

thus

Cj + exp (µz)

j
∑

i=0

Tj,i (z)i = Cj+1 + Tj+1,0

or

Tj+1,0 = Cj + exp (µz)

j
∑

i=0

Tj,i (z)i − Cj+1

Finally evaluating tJ−1 (·) at m∗ gives the desired quantity.

Average Withdrawals W

We characterize the average withdrawal size W. To do so, notice that we can divide the
withdrawals in three types: i) those that happens when m = 0, ii) those that happens because
a jump in consumption, i.e. the arrival of a consumption jump when m ≤ z and iii) those
that happens because the arrival of a free opportunity to withdraw. In average ther are
n withdrawals per unit of time, out of which p are of type iii), κ

∫ z

0
h (m) dm of type ii) and

hence n − p − κ
∫ z

0
h (m) dm are of type i. The size of the withdrawals is different in each

case, so the average withdrawal is given by:

W =

[

n − p − κ
∫ z

0
h (m) dm

n

]

m∗ +
p

n

∫ m∗

0

(m∗ − m) h (m) dm

+

[

κ
∫ z

0
h (m) dm

n

]

∫ z

0
(m∗ + z − m)h (m) dm

∫ z

0
h (m) dm

or

W =

[

n − p − κ
∫ z

0
h (m) dm

n

]

m∗ +
p

n

∫ m∗

0

(m∗ − m) h (m) dm

+
[κ

n

]

∫ z

0

(m∗ + z − m) h (m) dm
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C.1 Supplemental Material

Table 7: Cash management statistics across payment technology - Italy

Stats: 1993 1995 1998 2000 2002 2004

Share of cash expenditure
HH w. Demand deposit - No card 70 68 66 68 67 64

HH w. Debit / ATM card - No credit 65 63 60 57 54 50

HH w. Credit card 57 57 55 52 50 44

W / M
HH w. Demand deposit - No card 2.3 1.7 1.9 2.1 2.0 1.9

HH w. Debit / ATM card - No credit 1.6 1.2 1.4 1.4 1.3 1.5

HH w. Credit card 1.3 1.0 1.2 1.3 1.2 1.3

n / nBT = 2 M n / e
HH w. Demand deposit - No card 1.2 1.4 2.6 2.0 1.7 2.0

HH w. Debit / ATM card - No credit 2.1 2.5 3.7 3.4 3.6 4.0

HH w. Credit card 3.3 3.1 4.1 4.5 4.2 4.4

M / M
HH w. Demand deposit - No card .41 .31 .47 .47 .45

HH w. Debit / ATM card - No credit .41 .30 .37 .43 .40

HH w. Credit card .47 .32 .41 .48 .44

Source SHIW. Entries are sample means. The unit of observation is the household whose head is not

self-employed.
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