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Abstract

We present new evidence on the presence of both small and large price changes in
individual price records from the CPI both in France and in the US. After correcting
for measurement error and cross-section heterogeneity we find that the size distribu-
tion of price changes has a positive excess kurtosis, with a shape that lies between a
Normal and a Laplace distribution. We construct a menu-cost model that is capable
to reproduce the observed empirical patterns. The model, which features multiproduct
firms and randomness in menu cost, has only 4 parameters, two of which are pinned
down by the average frequency and by the standard deviation of price changes. Very
different propagation mechanism, spanning the models of Taylor (1980), Calvo (1983)
and Golosov and Lucas (2007), are nested under different combination of the remaining
two parameters. We discuss the identification of these parameters using observations
on the shape of the size-distribution of price changes (e.g. its kurtosis) and the actual
cost of price adjustments borne by firms. We characterize analytically the response of
the aggregate economy to a monetary shock, and how it depends on the variance and
kurtosis, as well as on the frequency, of price changes.
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1 Introduction and summary

This paper uses new micro evidence, and a new menu-cost model, to study the propagation

of monetary shocks in an economy with sticky prices. We use the cross-section evidence to

discipline the parametrization of our model which features multiproduct firms and random

menu costs. The model has only 4 parameters, two of which are pinned down by the av-

erage frequency and by the standard deviation of price changes. Very different propagation

mechanisms, spanning the models of Taylor (1980), Calvo (1983), Golosov and Lucas (2007)

and Alvarez and Lippi (2013), are nested under different combinations of the remaining two

parameters. The unified framework allows us to compare their effects and unveils the assump-

tions that are required to obtain each of them as an optimal mechanism. These assumptions

can be tested empirically. We discuss the identification of these parameters using observa-

tions on the shape of the size-distribution of price changes, e.g. its kurtosis, and the actual

cost of price adjustments borne by firms.

Our empirical contribution is to document the presence of small and large price changes

using a large and comprehensive dataset of price records underlying the French CPI. The

presence of small price changes is pervasive in the size-distribution of price changes and

this finding persists even at a very disaggregate level of product-outlet-type, ruling out an

explanation based on pure cross-section heterogeneity. These patterns are very similar to the

ones that Klenow and Kryvtsov (2008) detect for the US. We moreover acknowledge that the

CPI data may contain measurement error that tends to distort the measure of peakedness

of the distribution of price changes. We propose a correction for this measurement error and

conclude that the shape of the size-distribution of price changes is in between a Normal and

a Laplace distribution.

We develop an analytical model that matches these patterns, at least qualitatively, with

small price changes and positive excess kurtosis. The model yields some new results (like the

fact that for large menu costs, or large fraction of free adjustments, the decision rule is not

the quartic root and it has no option value). The model is parsimonious: for a given economy,
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as defined by a frequency and the scale of price changes, Na and Std(∆pi) respectively, there

are only two remaining parameters completely determining the cross-sectional behavior of

the economy and the impulse response to shocks: the fraction of free adjustments λ/Na and

the number of goods sold in the bundle to which the menu costs applies: n.

We use the model to solve for the impulse responses of the aggregate economy to a once-

and-for-all unexpected monetary shock analytically. We show how real effect of a monetary

shock depend on the shock size and on the fundamental “parameters”. Surprisingly, fixing

the frequency Na and scale Std(∆pi) of price adjustments, the real effects of monetary policy

are an increasing function of only one variable, namely the Kurtosis of the price changes.

We characterize how the kurtosis depends on the remaining two parameters, λ/Na and n,

showing that kurtosis ranges from 1, the value associated to the canonical menu cost model

with λ/Na = 0 and n = 1, to 6, the value in a Calvo-type model where λ/Na = 1 (in this

extreme case n becomes irrelevant). In general, for any given fraction of free adjustments

λ/Na the level of kurtosis is increasing in n, and so are the real effects of monetary policy.

The paper is organized as follows: the next section presents the cross section evidence

on price setting behavior using data for France and the USA taken from various sources.

Section 3 presents the theoretical model and the cross section predictions: it is shown that

the model has fundamentally four parameters and we discuss the mapping between those

and observable measures of price setting behavior. Section 4 derives the model predictions

on the effect of an unexpected monetary shock.

2 The distribution of price changes: micro-evidence

A vast amount of research has investigated the patterns of price changes at the microeconomic

level in the past decade. A recurring fact that emerges from those studies is that the size

distribution of price changes exhibits a large amount of small price changes, as noted by

Klenow and Malin (2010); Cavallo (2010); Klenow and Kryvtsov (2008) and Midrigan (2011)
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using selected samples of micro data from the US as well as many other industrial countries.

This section revisits this evidence using a detailed dataset of price quotes underlying the

French Consumer Price Index (about 65% of the CPI weights from 2003 to 2011), and

comparing it with other micro datasets that are not affected by measurement error, as well

as with comparable data from the US.

Two issues that are discussed in details concern heterogeneity and measurement error.

Heterogeneity across type of goods and of outlets is pervasive in price data. A well known

result related to mixtures of distribution is that under heterogeneity, the pooled data will

have a spuriously large kurtosis.1 For this reason, we standardize the data at levels at which

we suspect that there is heterogeneity. We define the standardized price changes, z, by

demeaning and dividing by the standard deviation of price changes at fine cell levels. A

cell is a category of good and of outlet type. We then compute the statistics for the pooled

standardized data. We discuss the theoretical set-ups (i.e. type of heterogeneity) where

results can be obtained by aggregating across categories or goods differences. The nature

of the correction for measurement error is to compare the CPI statistics with scanner data

for similar goods and outlet types for which both sources are available. Our analysis shows

that, after correcting for measurement error and removing the (time invariant) cross section

heterogeneity, the size distribution of price changes features a large frequency of very large

and very small price changes relative to what the standard menu cost model implies.2

We find it useful to compare the empirical distribution of price changes to three parametric

distributions ordered in terms of increasing frequency of extreme price changes: the binomial,

the Normal, and the Laplace distribution. Overall we conclude that, after taking into account

heterogeneity and measurement error, the shape of the empirical distribution of price changes

1 Formally, let ∆p be a mixture of the i = 1, ...,M distributions ∆pi with strictly positive weights, where
we assume that E[∆p1] = · · · = E[∆pN ] = 0. Denote by ki the kurtosis ki = E[∆p4

i ]/(Std(∆pi)
4) and by

ri the ratio ri = E[|∆pi|]/Std(∆pi) for each distribution i. Assume that k1 = k2 = · · · = kM ≡ k and
that r1 = r2 = · · · = rM ≡ r. Then the statistics for the pooled data satisfy: E[∆p4

i ]/(Std(∆pi)
4) ≥ k and

E[|∆pi|]/Std(∆pi) ≥ r, with equality iff Std(∆p1) = Std(∆p2) · · · = Std(∆pM ). Thus, standardizing the M
distributions will preserve the values of k and r.

2 We underline that, without correcting for measurement error and heterogeneity, the raw CPI data feature
even more extreme price changes.
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lays in “between” a Normal and a Laplace distribution. To quantify the presence of “extreme

price changes” we focus on 3 statistics that are informative about the shape of the size

distribution. These 3 statistics are appropriate for symmetric, zero-mean, distributions and

are scale-free. The first 2 statistics measure the frequency of extreme (i.e. large and small)

observations relative to the standard deviation of the distribution. The first one is kurtosis

(see Balanda and MacGillivray (1988)), E[∆p4
i ]/Std(∆pi)

4, where for now we assume that

price changes ∆pi are centered . As a benchmark, we note that for the Binomial, Normal and

Laplace distribution the Kurtosis is 1, 3 and 6 respectively. The second statistic measuring

extreme price changes is E[|∆pi|]/Std(∆pi). The main difference with respect to Kurtosis

is that this metric is less sensitive to extreme outliers (since the squares of large (small)

numbers are larger (smaller) than absolute values). For the Binomial, Normal and Laplace

distributions the reference values are: 1, 0.80 and 0.70. The third statistic we consider is

P (|∆pi| < (1/4)E[|∆pi|]), a straightforward measure of the share of small price changes used

in several previous studies. For the Binomial, Normal and Laplace distribution this statistic

is 0, 0.16 and 0.22 respectively.

2.1 The French Data

In this section we describe the French data and construct summary statistics on the size

distribution of price changes using a standardized measure that removes the cross industry

heterogeneity. We also discuss measurement error by comparing the CPI data with another

source presumably immune from measurement error: the scraped data from Cavallo (2010).

Finally, we compare our evidence on the French data with existing comparable results that

are available for the US.

The data are a longitudinal dataset of monthly price quotes collected by the INSEE

(Institut National de la Statistique et des Etudes Economiques) in order to compute the

French CPI, over the period 2003:4 to 2011:4.3 Each record relates to a precisely defined

3The dataset is documented in details in Berardi, Gautier, and Le Bihan (2013).
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product sold in a particular outlet in a given year and month. It contains the price level of

the product, as well as limited additional information such as an outlet identifier, an index

(when relevant) for package size (say 1 liter) and flags indicating the presence of sales. The

raw dataset contains around 11 million price quotes and covers about 65% of the CPI weights.4

The dataset also includes CPI weights, which we use to compute aggregate statistics. Price

changes are computed as 100 times the log-difference in prices per unit. To minimize the

presence of measurement errors we discarded observations with item substitutions (which

might give rise to spurious price changes) and removed “outliers” which, in our baseline

analysis, we defined as price changes larger than 0.1 percent, or lower than ln(10/3) (both in

absolute value). See Appendix A for more information and several robustness checks.

An important issue with the data on price changes is the treatment of sales. The relevance

of dealing with sales in analyzing price stickiness was emphasized by Nakamura and Steinsson

(2008); Kehoe and Midrigan (2007) and Midrigan (2011) inter alia. The INSEE dataset

contains an indicator variable that identifies whether a given observed price corresponds to a

sales promotion discount (either seasonal sale or temporary discounts).5 Price changes that

result from sales (including price changes from a sales price to a regular one) account for

approximately 17% of all the price changes . Overall, the incidence of sales on the frequency

of price change is less important than in the US where according to Nakamura and Steinsson

(2008) the share of price change due to sales is 21.5%. In the following, as a robustness check,

we report results both with and without sales observations.

We now document the patterns on the peakedness and thick tails of the distribution of

price changes. As those patterns vary considerably across sectors and outlet type, a concern

already mentioned is that a large variance and kurtosis of price changes may essentially

4Some categories of goods and services are not available in our sample: fresh foods, rents, and prices
centrally collected by the statistical institute - among which car prices and administered and public utility
prices (e.g. electricity). Note that, while rents are out of our dataset, cost of owner-occupied housing is not
incorporated in the French CPI, so the share of housing is the CPI is lower than in some other countries.

5 The flag is documented directly by the field agent recording prices rather than constructed using a
statistical filter. Baudry et al. (2007) investigate the extent of “undetected” sales and conclude this is a
limited concern.
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Figure 1: Histogram of Standardized Price Adjustments: French CPI 2003-2011
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The figures uses the elementary CPI data from France (2003-2011). Price changes are the log difference
in price per unit, standardized by good category (272) and outlet type (11) and pooled. Price changes
equal to zero are discarded.
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reflect that observations of price changes are drawn from a mixture of distributions, and

thus be artefacts. In what follows we address this concern by considering the distribution

of standardized price change.6 We consider a breakdown of the data into J categories (for

instance, one category will be bread in supermarkets). In each category j the standardized

price change for an item i at date t is defined as zijt = (∆pijt − mj)/σj where mj and σj

are the mean and standard deviation of price changes in category j, and price changes equal

to zero are disregarded. We will here use the finest partition possible in our data (each

category is a COICOP category at the 6-digit level in an outlet type) and have around 1,500

categories.7 Figure 1 is a weighted histogram of the standardized price changes. On the

same graph we superimpose the density of the standard normal distribution as well as the

standardized Laplace distribution (both have unit variance). The Laplace distribution has

a kurtosis of 6 and is thus more peaked than the normal. It is apparent that the empirical

distribution of standardized price changes is closer to the Laplace distribution than to the

Normal.8

Table 1 reports the frequency of price changes as well as selected moments of the distribu-

tion of price changes. The frequency of price change is around 17% per month. The fraction

of price decreases among price changes is around 40%. The average absolute price change

is sizeable (9.19%), as is the standard deviation of price change (16.6%). These patterns

match those documented by Alvarez et al. (2006) for the Euro area. With the qualification

that frequency of price change is typically found to be smaller in the Euro area than in the

US, they also broadly match US evidence provided by e.g. Nakamura and Steinsson (2008).

The kurtosis and peakedness of the distribution of price changes have not been quantitatively

documented so far on European data. The kurtosis of non-standardized price changes is huge:

12.81. This level of kurtosis is of same order of magnitude as that documented by Klenow

6This follows Klenow and Kryvtsov (2008), as well as Midrigan (2011).
7There are 11 outlet types and 272 CPI categories; but not every category of good is sold in a given outlet

type, resulting in less than 2,992 cells.
8In an online appendix, we provide similar histograms by groups of good at a disaggregated level. Most

of them have the same pattern as Figure 1, that is a distribution that is more peaked than the gaussian, and
often more peaked than the Laplace.
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Table 1: Selected moments from the size distribution of price changes (French CPI)

Data Benchmarks
all records exc.sales Normal Laplace

Frequency of price changes 17.09 14.70
Fraction of price changes that are decreases 39.23 35.73

Moments for the size of price changes: ∆p
Average 0.33 1.06
Standard deviation 16.60 8.01
Kurtosis 12.81 20.86

Moments of standardized price changes: z
Kurtosis 8.89 10.40 3 6
Moments for the absolute value of standardized price changes: |z|

Average: E (|z|) 0.70 0.69 0.80 0.70
Fraction of observations < 0.25 · E (|z|) 22.2 20.7 15.8 22.1
Fraction of observations < 0.5 · E (|z|) 39.3 38.6 31.0 39.4
Fraction of observations > 2 · E (|z|) 12.9 12.5 11.1 13.5
Fraction of observations > 4 · E (|z|) 1.8 2.0 0.0 1.8
Number of obs. with ∆p 6= 0 1,544,829 1,080,183
Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage is around
65% of CPI weight since rents, and prices of fresh food and centrally collected items (e.g. electricity,
train and airplane tickets) are not included in the dataset. Frequency of price change is monthly, in
percent. Size of price change are the first-difference in the logarithm of price per unit, expressed in
percent. Observations with imputed prices or quality change are discarded. Observations such that
0.1/100 ≤ |∆p| ≤ln(10/3) are removed as outliers. “Exc. sales” exclude observations flagged as sales by
the INSEE data collectors and observations such that 0.1/100 ≤ |∆p| ≤ln(10/3). Moments are computed
aggregating all prices changes using CPI weights at the product level. The third and fourth panels report
moments for the standardized price change zjit =

∆pjit−mi

σ∆pi
where mi and σ∆pi are the mean and standard

deviation of price changes in category j (see the text). The Normal and Laplace distributions used in
the last two columns have a zero mean and, without loss of generality, standard deviation equal to one.

and Malin (2010) for the US.9 Considering standardized price changes delivers a similar pic-

ture: the kurtosis is 8.89. The fraction of small price changes is also large. The fraction of

absolute standardized price changes lower than one fourth of the mean is 22.2 percent. Also

12.9 percent of absolute normalized price changes are larger than 2 times the mean of the

absolute standardized price change. Overall, it appears that these figures are very close to

the ones that would be produced by a (standardized) Laplace distribution. Consistently, the

size of the average absolute standardized price change in the data is equal to 0.70, the same

9They report a kurtosis of 10 for posted prices and 17.4 for regular prices.
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value that obtains for the statistic E[|∆p|]/Std(∆pi) if ∆p follows a Laplace distribution.

Removing sales has a large effect on the variance of absolute price change, as indicated

by the results reported in the second column of Table 1.10 However, removing sales does not

affect our findings on the peakedness of the distribution. Kurtosis actually increases when

sales observations are removed both in the raw data as well as in the standardized data. This

is also visible in the right panel of Figure 1 which plots the distribution of standardized non

sales-related price changes.

2.2 Quantifying measurement error

Eichenbaum et al. (2012) have warned that the small price changes recorded in the data may

reflect measurement error. Appendix A.2 explores the concerns raised by Eichenbaum et al.

(2012) and concludes that they only partially apply to the French data we analyze. However,

we analyze below the consequences of one particular type of measurement error, arising from

unrecorded product substitutions. We show that a small amount of this measurement error,

inconsequential for measuring the aggregate the cost of living, may have sizeable consequences

for the measurement of the descriptive statistics displayed in Table 1, such as Kurtosis, and

suggest a procedure to correct for it.

A simple model of measurement error is useful in interpreting the data. We let ∆pm

measure the observed price changes which are given by a mixture of two distributions:

∆pm =


∆pu with prob. ζ

ε with prob. 1− ζ

where we interpret that ε is a measurement error and ∆pu is a “true” price change. This

assumption aims to capture that, even at the finest level of disaggregation, some price changes

in the CPI data are the consequence of small product substitution (e.g. different brands for a

10When removing “sales” price changes we remove any observation flagged as sales, as well as the subsequent
observation of price increase on the way back to a “regular” price. Note also that for computed standardized
non-sales related price change, we first discard sales related price change, then standardize the data
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given good being recorded) which do not reflect an actual change in the good’s price. Assume

the distribution of ∆pu has standard deviation σu and kurtosis ku, assumed independent of σu.

Likewise the distribution of ε has kurtosis ke and standard deviation σe. Both distributions

are assumed to have zero expected value. One interpretation is that quality changes (not

recorded by the statistical office) generate “artificial” price changes. We assume that these

price changes are small, i.e. that σe is small, and that the process for the unreported changed

in quality is independent of the “true” changes in prices. The kurtosis of the observed price

changes is then equal to:

Kurt[∆pm] = ku
ζσ4

u + (kε/ku)σ
4
e

ζ2σ4
u + (1− ζ)2σ4

e + 2ζ(1− ζ)σ2
eσ

2
u

Letting σe go to zero we obtain that Kurtosis measured over the (observed) price changes is:

lim
σe↓0

Kurt[∆pm] =
ku
ζ

(1)

Thus, if the sample includes a fraction ζ of true price changes and the rest are spuriously

imputed small price changes the kurtosis will increase by a factor 1/ζ, relative to the kurtosis

of the true distribution.11 Thus equation (1) may allow us to quantify ζ by comparing the

observed kurtosis across a sample with measurement error and one without. We now turn to

addressing this issue empirically.

We match a subset of our French CPI data with the prices for several French retailers

taken from the Billion Price Project (BPP) dataset (see Cavallo (2010)). The BPP data are

“scraped” on-line, thus they are arguably less contaminated by measurement errors.12 We

compare the results obtained using the scraped BPP data from two large retailers with our

11Under this interpretation the number of measured price changes, denoted by Nam will be higher than the
number of true price changes per unit of time, say Nau. Let’s denote Naε the expected number of incorrectly
imputed price changes. We have: Nam = Nau +Naε = ζNam + (1− ζ)Nam. Thus if we have two estimates
of kurt[∆p] and of Na and we assume that one has no measurement error and the other has a fraction ζ of
small imputed price changes as described above, can estimate ζ using either the ratio of the two estimates of
kurtosis or the ratio of the two estimates of the number of price changes per unit of time.

12 We are extremely grateful to Alberto Cavallo for sharing part of his data with us.
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Table 2: Comparison of the CPI vs. the BPP data in France

Statistic BPP BPP CPI BPP CPI
retailer 1 retailer 5 Hypermarkets retailer 4 Large ret. electr.

duration 8.58 8.06 4.82 6.44 7.24
Statistics for standardized price changes: z

mean |z| 0.71 0.70 0.65 0.78 0.70
% below 0.5 mean |z| 37.85 40.93 45.48 29.17 41.69
% below 0.25 mean |z| 17.46 25.26 26.19 15.33 23.10
kurtosis of z 5.50 4.30 10.15 2.82 6.33

Note: The BBP data are documented in Cavallo (2010). Results were communicated by the author.
For CPI data source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4.
Sub-sample in column (3) is price records in outlet type “hypermarkets”. Sub-sample in column (5) is
goods in the category of appliances and electronic , as identified using the Coicop nomenclature, collected
in the following outlets type: “hypermarkets”,“supermarkets”, and “large area specialists”. Data are
standardized within each subsample using Coicop categories.

results based on the CPI data for a similar type of outlet: to this end we restrict our dataset

to CPI price records in “hypermarkets”, excluding gasoline. We also compare with the BBP

data from a large French retailer specialized in electronic and appliances. In that case we

restrict the CPI dataset to goods in the category of appliances and electronic using the

Coicop nomenclature, collected in outlets type “hypermarkets”,“supermarkets”, and “large

area specialists”.

Comparing the values of kurtosis from both data sets suggests that ζ ∼= 0.5. We can

apply this magnitude to the full sample of CPI data of Table 1, for which no “measurement

error-free” counterpart like the BPP exists, to obtain a corrected kurtosis. The number thus

obtained for the Kurtosis ranges between 4 and 5 (using the kurtosis of 8.89 of standardized

price changes), so it lays in between the kurtosis of the Normal and the Laplace distribution.

2.3 A comparison with the US data

To assess whether the patterns documented above are specific to France we compare our

data with the US figures presented, respectively, in Klenow and Kryvtsov (2008) and in

Eichenbaum et al. (2012).

Figure 2 plots four histograms: two are price changes from the US and France, while the

11



Figure 2: Histogram of Standardized Price Adjustments: US and French CPI
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other two are theoretical benchmarks. The first one (in red) is the distribution of standardized

(weighted) price changes (excluding sales) for the US based on Figure 3 of Klenow and

Kryvtsov (2008).13 Since the distribution is truncated at -3 and +3, its standard deviation is

0.83 instead of 1, its kurtosis is 6.95. The second histogram (in blue) is the distribution of the

standardized price changes (excl. sales) for the French CPI, constructed using the trimming

criteria used for the US. This distribution has a standard deviation 0.95 and a kurtosis

of 4.42.14 The figure also reports, for comparison, the standardized Normal and Laplace

distributions (discretized and truncated). The main outcome of Figure 2 is that the histogram

of standardized, non-sales, price change are very similar in France and the US. Furthermore,

in both cases the shape is closer to that of a Laplace distribution than to a Gaussian one

(and consistently with previous sub-section, in both cases we conjecture measurement error

explains why these distribution are actually more peaked than the Laplace).

Table 3 uses the same thresholds of Eichenbaum et al. (2012) to measure the fraction

of small price changes. The presence of small price changes (in absolute value) is at first

sight a more prominent fact in France than in the US. One factor that may contribute to

explaining this pattern is the fact that sales are less prevalent in France. Measurement

errors, as discussed above, may play a role, but we see no obvious reason to presume that

measurement errors are larger in the French CPI data. We observe that, if we define small

price change as relative to the mean average price change, rather than with an absolute

threshold, the fraction of small price change appears to be lower in France than in the US,

as shown in Table 3.

Table 4 provides a further comparison based on datasets presumably less subject to mea-

surement errors. For France we use data from the BPP, and those from hypermarkets in the

CPI dataset. For the US we use the results on scanner data reported by Midrigan (2011), as

13The histogram has twenty four bins, spaced every 0.25 units, of the distribution of standardized regular
price changes (excl. sales). The standardization was done by ELI, the narrowest categories of goods. After
standardization the distributions are weighed according to the CPI weight.

14The smaller standard deviation and much smaller kurtosis than in Table 1 are due to the discretization
and truncation.
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Table 3: Fraction of small price changes: US and French CPI

Moments for the absolute value of price changes: |∆p|
France US Normal Laplace

Average |∆p| 9.2 14.0
Fraction of |∆p| below 1% 11.8 12.5
Fraction of |∆p| below 2.5% 32.5 24.0
Fraction of |∆p| below 5% 57.1 40.6
Fraction of |∆p| below (1/14) · E (|∆p|) 2.4 12.5 4.5 6.9
Fraction of |∆p| below (2.5/14) · E (|∆p|) 13.5 24.0 11.3 16.4
Fraction of |∆p| below (5/14) · E (|∆p|) 28.7 40.6 22.4 30.0
Number of obs 1,542,586 1,047,547

For France, source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Cov-
erage is aroud 65% of CPI weight since rents, and prices of fresh food and centrally collected items
(e.g. electricity, train and airplane tickets) are not included in the dataset. Frequency of price change
is monthly, in percent. Size of price change are the first-difference in the logarithm of price per unit,
expressed in percent. Data are trimmed as in the baseline of Table 1. Observations with imputed prices
or quality change are discarded. Moments are computed aggregating all prices changes using CPI weights
at the product level. The US data are taken from Eichenbaum et al. (2012) Table 1, and refer to “Posted
price changes” from 1998:1 to 2011:6. The mean absolute size of price changes is taken from Klenow and
Kryvtsov (2008) table III where data are from 1998:1 to 2005:1. Figures for the US are weighted and
cover around 70% of the CPI (US CPI includes owners equivalent rents, while French CPI does not). In
the third panel we compute the threshold for defining small price changes as fraction of the mean so as
to match the US figures in column 2 of the second panel. The Normal and Laplace distributions used in
the last two columns have a zero mean and, without loss of generality, standard deviation equal to one.

Table 4: Comparison across datasets for large Hypermarkets in France and the US

France US
CPI BPP data scanner data Midrigan (2009)
Statistics for standardized price changes: z

mean of |z| 0.65 0.70 0.80 -
% below 0.50 mean |z| 45 39 31 29
% below 0.25 mean |z| 24 21 20 13
kurtosis of z 10 5 2.8 3.5

Percentages. All price changes, including sales. The BPP statistics for France are an average of the ones
reported in Table 2. The US scanner data in the third column are from a large US supermarket chain. The
data from Midrigan (2009) are taken from his Table 1 and 2b, using simple averages of the AC Nielsen and
Dominick’s scanner data.

well as results on scanner data from a large US supermarket chain. As reflected by our three

summary statistics, the distribution is somewhat more peaked in France; for instance the

kurtosis is 5 in the BPP against 3.5 in Midrigan (2011). However, these results still support
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the notion that the share of small price changes is sizeable in both countries.

Overall we conclude that, after accounting for heterogeneity and measurement errors,

the prevalence of small price change appears relevant both in France and in the US. We

also obtain that the shape of the empirical distribution of price changes lays in “between” a

Normal and a Laplace distribution even though the distribution appears close to a Normal

in the US and closer to Laplace in France.

3 A tractable menu cost model

This section presents a simple menu cost model aimed at qualitatively matching some of

the patterns documented above. In the canonical menu cost model the price changes when

a threshold is hit, so that the implied distribution of price changes fails to generate the

small changes that appear in the data (see the discussion in Midrigan (2011); Cavallo (2010);

Alvarez and Lippi (2013)). We thus propose a model that is able to produce a large mass of

small price changes and a positive excess Kurtosis of the distribution of price changes. Two

ingredients are key to this end: that the menu costs are random and that the menu cost

faced by the firm, ψ, applies to a bundle of n goods, so that after paying the fixed cost the

firm can reprice one or all goods at no extra cost. Each of these assumptions individually is

capable to generate small price changes and higher kurtosis than in a canonical model where

n = 1 and there menu costs are constant. The combination of the two assumptions will give

us more flexibility to parameterize the model vis a vis the data, as we discuss below. For

ease of exposition we first illustrate the model where the firm sells a single good (i.e. n = 1)

and then extend this model to include any number of goods n > 1.

The model for a firm selling n = 1 good. Consider a firm whose profit-maximizing

price at time t, p∗(t), follows the process dp∗(t) = σ dW (t) where W (t) is a standard brownian

motion with no drift and i.i.d. innovations with standard deviation σ. The technology to

change prices is as follows: to change the price at will the firm needs to incur a fixed menu
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cost of size ψ. However, with some probability the firm receives an opportunity to adjust

the price “for free”. Assume this probability is Poisson, i.e. that the free-adjustments have

a constant hazard rate per unit of time, equal to λ. Let p(t) denote the “price gap” at time

t, i.e. the difference between the actual sale price P (t) and the profit maximizing price p∗(t),

i.e. p(t) ≡ P (t) − p∗(t). The instantaneous firm losses (i.e. reduction in profits) created by

the price gap are given by the quadratic: B p2(t). Let v(p) be the present-value cost function

for a firm with price gap p.

Upon the arrival of a free adjustment opportunity the firm optimally resets the price gap

to zero, hence the Bellman equation for the range of inaction reads:

r v(p) = Bp2 + λ [v(0)− v(p)] +
σ2

2
v′′(p), for p ∈ (0, p̄) ,

where p̄ is the boundary of the region in which inaction is optimal. The value matching and

smooth pasting conditions are given by v(p̄) = v(0) + ψ and v′(p̄) = 0.

Next we describe the optimal decision rules and some key statistics implied by the model

with n = 1 (see Appendix D for the derivation). A Taylor expansion of the value function

yields the following approximate optimal threshold p̄ =
(

6ψσ2

B

) 1
4

which is accurate when

ψ/B is small.15 We comment on two properties of the decision rule of this problem which

are proved later for the more general case: the value function, and the optimal decision rules,

are a function of λ + r, as opposed to each of them separately. Intuitively this is because

when a free adjustment opportunity occurs the price gap is adjusted, so that λ acts as an

addition to the discount factor. Second, for a small value of ψ/B or a small value of r + λ,

the value of p̄ is insensitive to r + λ, as the previous approximation shows. More precisely,

the derivative of p̄ with respect to λ+ r is zero as ψ/B or r+ λ tend to zero. This property,

which was known for the case of λ = 0, extends to the case where λ + r > 0 using the first

property of the decision rule.

15 Exactly the same expression was established by Barro (1972); Dixit (1991) for the case in which λ = 0.
Below we discuss an approximate threshold for the case in which ψ is large.
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Computing the expected time between adjustments yields an expression for the average

number of adjustments per period, Na

Na = λ
e
√

2φ + e−
√

2φ

e
√

2φ + e−
√

2φ − 2
where we define φ ≡ λp̄2

σ2

which shows that the fraction of free adjustments λ/Na depends only on the parameter φ.

The parameter φ can be interpreted as the ratio between λ, the number of free adjustments,

and σ2/p̄2, the number of adjustments in a model where λ = 0 and the threshold policy p̄ is

followed.

The distribution of price changes w(∆pi) is symmetric around ∆pi = 0. This distribution

has a mass point at ∆pi = ±p̄ with probability 1 − λ/Na, i.e. this is the fraction of price

changes that occurs because the price gap reaches the boundaries of the inaction region. The

remaining fraction of price changes, λ/Na occurs when a free adjustment opportunity arrives,

at which time the price gap is set to zero. Price changes in the range p ∈ (−p̄, p̄) have a

density λ/Na h(p) where h(p) denotes the density of the invariant distribution of price gaps

h(p) =

√
2φ

2p̄
(
e
√

2φ − 1
)2

(
e
√

2φ(2− |p|
p̄ ) − e

√
2φ
|p|
p̄

)
for p ∈ [−p̄, p̄] .

Thus the distribution of price changes is given by


Pr (∆pi = {−p̄, p̄}) = 1

2

(
1− λ

Na

)
Pr (∆pi ∈ dp) = λ

Na
h(p)dp ≡ w(∆pi)dp for p ∈ (−p̄, p̄)

which is a symmetric “tent shaped” distribution in the (−p̄, p̄) interval with the two mass

points at the boundaries ±p̄. As detailed below the kurtosis of this distribtuion is increasing

in λ, and in particular the distribution of price changes is more peaked than that of a standard

menu cost model λ = 0.

We make two remarks about this simple model which will hold, and be generalized, in the
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more general model developed next. The first one is that the shape of the distribution of price

changes depends only on the φ (or, equivalently, on the fraction of free adjustments λ/Na).

This means that two economies, or sectors, that differ in the standard deviation of price

changes Std(∆pj) and/or in the frequency of price adjustment Na will display a distribution

of price changes with exactly the same shape (once its scale is adjusted) provided that the

have the same value of φ. This property is useful to aggregate the sectors of an economy

that are heterogenous in their steady state features (Std(∆pj),Na). Because of this property

the ratio of moments from the size distribution of price changes, such as kurtosis, are scale

free and can be used to retrieve information on φ.

The second property, which we state here and prove below for the more general economy,

is that the “shape” of the impulse response function of this economy to a (once and for all)

monetary shock depends only on φ. We will show how one can simply scale (or relabel) one

or both axes of an impulse function to analyze economies with the same φ that differ in either

Na or Std(∆pj).

3.1 Extending the model to multi-product firms

This section incorporates into the model with free adjustment opportunities discussed above

the model of Alvarez and Lippi (2013) where the firm is selling n goods, as opposed to a

single good, but pays a single fixed adjustment cost to change the n prices. We incorporate

this feature for several reasons. First, as explained above, in the model with n = 1 good,

there is a mass point on price changes of size |∆pi| = p̄. There is no evidence of this in any

data set we can find. Second, and related to the previous point, in the model with n = 1 a

simple estimate of p̄ will be the highest price change. We propose to use a different one, since

this order statistic is both difficult to measure in practice and its role to measure p̄ is very

sensitive to the specification of the model. Third, the model with λ = 0 has a kurtosis that

increases with n, hence providing and alternative to randomness on fixed cost, as discussed

below. Fourth, for large n and λ = 0 the distribution of price changes tends to normal, which
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is both a nice benchmark and an accurate description of the price changes for some sectors.

We now briefly describe the setup of the firm problem with n products. As before the

free adjustment opportunities are independent of the driving processes {Wi(t)} for price

gaps, and arrive according to a Poisson process with constant intensity λ. In between price

adjustments each of the price gaps evolves according to a Brownian motion dpi(t) = σ dWi(t).

It is assumed that all price gaps are subject to the same variance σ and that the innovations

are independent across price gaps. We assume that, when the opportunity arrives, the firm

can adjust all prices without paying the cost ψ. The analysis of the multi product problem

can be greatly simplified by using y ≡ ||p||2 as a state, as shown in Alvarez and Lippi (2013).

The scalar y summarizes the state because the period objective function can be written as a

function of it and because, from an application of Ito’s lemma one can derive one dimensional

diffusion which describes its behavior, namely

dy = nσ2 dt + 2σ
√
y dW

where W is a standard BM.

Using Na and V ar(∆pi) to denote the frequency and variance of the price changes of

product i the next proposition establishes a useful relationship that holds in a large class of

models for any policy for price changes. We describe a policy for price changes by a stopping

time.

Proposition 1 Let τ describe the time at which a price change takes place, so that all price

gaps are closed. Assume the stopping time treats each of the n price gaps symmetrically. For

any finite stopping time τ we have:

Na · V ar(∆pi) = σ2 . (2)

The proposition highlights the trade-off for the firm’s policy: more frequent adjustments

are required to have smaller price gaps. We underline that equation (2) holds for any stopping
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rule, not just for the optimal one. See Appendix B for the proof, where the reader can verify

that the key assumptions are the random walks and symmetry, indeed equation (2) holds for

a larger class of models, for instance those with correlated price gaps and a richer class of

random adjustment cost.

Upon the arrival of a free adjustment opportunity the firm will set the price gap to zero,

hence the Bellman equation for the range of inaction reads:

r v(y) = By + λ [v(0)− v(y)] + nσ2 v′(y) + 2σ2y v′′(y), for y ∈ (0, ȳ) , (3)

where By is the sum of the deviation from the optimal profits from the n goods. The use of

the one dimensional y instead of the vector (p1, ..., pn) simplifies the problem substantially.

We note that given the symmetry of the problem after an adjustment of the n prices the

firm will set each of the price gap to zero, i.e. will set ||p||2 = y = 0. The value matching

condition is then v(0) + ψ = v(ȳ), which uses that when y reaches a critical value, denoted

by ȳ, by paying the fixed cost ψ the firm can change the n prices. The smooth pasting

condition is v′(ȳ) = 0 , as derived in Alvarez and Lippi (2013). The next proposition gives

an explicit closed form solution to the value function v(y) in the inaction region, i.e. for

y ∈ (0, ȳ) subject to v(0) <∞. The solution is parameterized by β0 = v(0), see Appendix E

for a discussion of this solution.

Proposition 2 Let σ > 0. The ODE in equation (3) is solved by the analytical function:

v(y) =
∑∞

i=0 βi y
i , for y ∈ [0, ȳ] where, for any β0, the coefficients {βi} solve: β0 = nσ2

r
β1,

β2 = (r+λ)β1−B
2σ2(n+2)

, βi+1 = r+λ
(i+1)σ2 (n+2i)

βi for i ≥ 2 .

The function described in this proposition allows to fully characterize the solution of the

firm’s problem. One can use it to evaluate the two boundary conditions described above,

value matching and smooth pasting, and define a system of two equations in two unknowns,

namely β0 and ȳ. The next lemma establishes how to solve for ȳ using the solution of

a simpler problem where λ = 0 discussed in Alvarez and Lippi (2013). It turns out that a
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simple change of variables allows us to use the solution for the case of λ = 0 with the solution

for the case of interest in this paper. The change of variables consists on using r + λ as the

interest rate in the solution of the problem with λ = 0. We have:

Lemma 1 Let ȳ(r, λ) and v(y; r, λ) be the optimal threshold and value function for a problem

with discount rate r and arrival rate λ. Then ȳ(r, λ) = ȳ(r + λ, 0) and v(y; r, λ) = v(y; r +

λ, 0)− λψ/r.

The proof of this lemma follows immediately from a guess and verify strategy. The lemma

allows us to use the characterization of ȳ with respect to r given in Proposition 4 of Alvarez

and Lippi (2013) to study the effect of r + λ on ȳ. The next proposition summarizes that

result and extends the characterization of the optimal threshold to the case where ψ is large,

a case that is useful to understand the behavior of an economy with a lot of free adjustments

opportunity as in a Calvo mechanism.

Proposition 3 Assume σ2 > 0, n ≥ 1, λ+ r > 0 and B > 0, and let ȳ be the threshold for

the optimal decision rule. We then have that:

1. As ψ → 0 then ȳ√
2(n+2)σ2 ψ

B

→ 1 or ȳ ≈
√

2(n+ 2)σ2 ψ
B

.

2. As ψ → ∞ we have ȳ
ψ
→ B(r + λ) or ȳ ≈ ψ

B
(r + λ) . Moreover this also holds for

large n and large ψ
n

, namely limψ/n→∞ limn→∞
ȳ/n
ψ/n

= B(r + λ) or ȳ
n
≈ ψ/n

B
(r + λ).

The proposition shows that ȳ is approximately constant with respect to λ for small values

of ψ, so that for small menu costs the result is the well known quartic root formula (recall that

y has the units of a squared price gap) and the inaction region is increasing in the variance

of the shock, due to the higher option value. Interestingly, and novel in the literature, the

second part of the proposition shows that for large values of the adjustment cost the rule

becomes a square root and that the option value component of the decision becomes neglible.

We now turn to the discussion of the model implications for the frequency of price changes.

We let Na(ȳ;λ) be the expected number of adjustments per unit of time of a model with a

given λ and ȳ. We establish the following (see Appendix B for the proof):
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Proposition 4 The fraction of free adjustments is λ/Na = Ln(φ), where

Ln(φ) ≡
φ
[
1 +

∑∞
i=1

(∏i
k=1

n
(k+1) (n+2k)

)
φi
]

1 + φ
[
1 +

∑∞
i=1

(∏i
k=1

n
(k+1) (n+2k)

)
φi
] where φ ≡ λȳ

nσ2
(4)

The proposition shows that λ/Na, a key parameter for the behavior of the model, is a function

only of two variables: n and φ. As for the n = 1 model, the parameter φ can be interpreted as

the ratio between λ, the number of free adjustments, and nσ2/p̄2, the number of adjustments

in a model where λ = 0 and the threshold policy ȳ is followed. A second order approximation

of Ln(φ) shows that λ has a negligible effect on the frequency of adjustment Na when ȳ is

small, i.e. the first order term is the same as the one for the model with λ = 0.16

We now turn to characterize the invariant distribution of y for the case where λ > 0, a

key ingredient to compute the size-distribution of price changes. The density of the invariant

distribution solves the Kolmogorov forward equation: λ
2σ2f(y) = f ′′(y)y −

(
n
2
− 2
)
f ′(y) for

y ∈ (0, ȳ), with the two boundary conditions f(ȳ) = 0 and
∫ ȳ

0
f(y)dy = 1. It is clear from

these conditions that f(·) is uniquely defined for a given triplet: ȳ > 0, n ≥ 1 and λ/σ2 ≥ 0.

The general solution of this ODE is

f(y) =

(
λy

2σ2

)(n4−
1
2)
[
C1 Iν

(
2

√
λy

2σ2

)
+ C2 Kν

(
2

√
λy

2σ2

)]
(5)

where Iν and Kν are the modified Bessel functions of the first and second kind, C1, C2 are

two arbitrary constants and ν = |n
2
− 1|, see Zaitsev and Polyanin (2003) for a proof. The

constants C1, C2 are chosen to satisfy the two boundary conditions.17 While the density in

equation (5) depends on 3 constants n, φ and ȳ, its shape depends only on 2 constants,

namely n and φ, as formally stated in Lemma 2 in Appendix B. The lemma shows that one

can normalize ȳ to 1 and compute the density for the corresponding φ.

16The expansion gives 1
Na

= ȳ
nσ2

[
1− λ ȳ

nσ2

(n+4)
(2n+2)

]
+o
(
λ
(
ȳ
σ2

)2)
which shows that 1/Na = ȳ/(nσ2)+o (ȳ).

17 We note that both modified Bessel functions are positive, that Iν(y) is exponentially increasing with
Iν(0) ≥ 0, and that Kν(y) is exponentially decreasing with Kν(0) = +∞.
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We denote the marginal distribution of price changes by w(∆pi). Recall that firms change

prices either when y first reaches ȳ or when they get a free adjustment opportunity even

though y < ȳ. Thus to construct the distribution of price changes we need three objects: the

fraction of free adjustments λ
Na

, the invariant distribution f(y) and the marginal distribution

of price changes conditional on a value of y, ω(∆pi; y) which, following Proposition 6 of

Alvarez and Lippi (2013) when n ≥ 2, is

ω(∆pi; y) =


1

Beta(n−1
2
, 1
2) √y

(
1−

(
∆pi√
y

)2
)(n−3)/2

if (∆pi)
2 ≤ y

0 if (∆pi)
2 > y

(6)

where Beta(·, ·) denotes the Beta function. In this case the standard deviation of the price

changes is Std ( ∆pi ; y) =
√
y/n. The marginal distribution of price changes w(∆pi) is given

by

w(∆pi) = ω(∆pi; ȳ)

(
1− λ

Na

)
+

[∫ ȳ

0

ω(∆pi; y)f(y)dy

]
λ

Na

for n ≥ 2 . (7)

For the case when n = 2 the density of the price changes diverges at the boundaries of the

domain where ∆pi = ±
√
ȳ/n, as can be seen in Figure 3. This feature echoes the two mass

points that occur in the n = 1 case where a non-zero mass of price changes occurs exactly

at the boundaries. For n ≥ 6 the shape of the density takes a tent-shape, similar to the one

that is seen in the data. As the fraction of free adjustments approaches 1 the shape of the

density function converges to the shape of the Laplace distribution. The next proposition

shows that n and λ/Na completely determine the shape of the distribution of price changes.

(see Appendix B for the proof):

Proposition 5 Let w(∆pi;n,
λ
Na
, 1) be the density function for the price changes ∆pi in an

economy with n goods, a share λ/Na of free adjustments, and a unit standard deviation of

price changes Std(∆pi) = 1. This density function is homogenous of degree -1 in ∆pi and
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Std(∆pi), which implies

w

(
S∆pi;n,

λ

Na

, S

)
=

1

S
w

(
∆pi;n,

λ

Na

, 1

)
for all S > 0. (8)

The proposition establishes that the “shape” of the size distribution of price changes has

2 parameters: n and λ/Na. Every two economies sharing these parameters will have the

same size distribution of price changes once the scale is adjusted. The proposition implies

that we can aggregate firms or industries that are heterogenous in terms of frequency Na

and standard deviation of price changes Std(∆pi) provided that n and λ/Na are the same.

Notice in particular that the frequency of price changes Na does not have an independent

effect on the distribution of price changes as long as λ/Na remains constant.

Notice that the distribution w(∆pi) is a mixture of the ω(∆pi, y) densities. These densi-

ties are scaled versions of each other with different standard deviations. This increases the

kurtosis of the distribution of price changes compared to the case where λ = 0. In particular

Proposition 6 in Alvarez and Lippi (2013) shows that the variance and kurtosis of ω(∆pi, y)

are given by y/n and 3n/(n + 2) respectively. Using that ∆pi is distributed as a mixture of

the ω(∆pi, y), we can compute several moments

E(|∆pi|) =

(
1− λ

Na

)√
ȳ + λ

Na

∫ ȳ
0

√
y f(y)dy

n−1
2
Beta

(
n−1

2
, 1

2

)
V ar(∆pi) =

(
1− λ

Na

)
ȳ

n
+

λ

Na

∫ ȳ

0

y

n
f(y)dy

Kurt(∆pi) =
3n

2 + n

(
1− λ

Na

)
ȳ2 + λ

Na

∫ ȳ
0
y2 f(y)dy[(

1− λ
Na

)
ȳ + λ

Na

∫ ȳ
0
y f(y)dy

]2 >
3n

2 + n

It is immediate from Proposition 5 that the value of the kurtosis and the value of the

ratio E(|∆pi|)/Std(∆pi) depend only on two parameters: n and λ
Na

. For instance, if one were

to change the parameters ψ/B, λ and σ2 keeping the same values for λ
Na

and n, the kurtosis

of the price changes will be the same. The inequality that appears in the third line is a well
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Figure 3: Size distribution of price changes
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known result: the mixture of distributions with the same kurtosis but with different variances

has higher kurtosis, which itself follows from Jensen’s inequality. Moreover as ȳ → ∞ (as

it will happen if ψ/B → ∞) then Na → λ and one can show that Kurt(∆pi) → 6. This is

because as ȳ → ∞ the price changes in each coordinate are independent, and hence it has

the same distribution than in the case of n = 1, i.e. a Laplace distribution. To reiterate, the

maximum kurtosis that the model with free adjustments can produce is 6 which happens in

the limiting case in which all adjustments are free (e.g. when λ/Na ↑ 1 and ȳ → ∞) and

is independent of the number of products that are priced by the firm, n. Table 5 computes

the kurtosis of the model for the intermediate cases in which only a fraction of adjustments

are free. The columns correspond to different values of n, the number of goods. Each line

corresponds to a different proportion of free adjustments: λ/Na. When the fraction of free

adjustment is small (first and second line of the table) the model behaves essentially like the

one described in Alvarez and Lippi (2013): kurtosis is increasing in n up to a level of about 3.

As the fraction of free adjustments increases the kurtosis increases towards 6, and becomes

less responsive to n.

Table 5: Model statistic for the Kurtosis of Price changes

% of free adjustments: number of products n
λ/Na 1 2 4 6 10 50
0 % 1.0 1.5 2.0 2.3 2.5 2.9
10% 1.1 1.6 2.1 2.4 2.6 3.0
20% 1.2 1.7 2.2 2.5 2.7 3.1
50% 1.6 2.2 2.7 3.0 3.2 3.6
70% 2.1 2.8 3.3 3.5 3.7 4.1
80% 2.6 3.2 3.7 3.9 4.1 4.4
90% 3.4 3.9 4.3 4.5 4.7 4.9
95% 4.1 4.5 4.8 5.0 5.1 5.3
100% 6.0 6.0 6.0 6.0 6.0 6.0

More summary statistics on the model predictions, concerning e.g. the fraction of small

price changes are provided in Appendix G.
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3.2 Quantifying the magnitude of menu cost

The model presented above has essentially four independent parameters: the menu cost

ψ/B, the volatility of shocks σ, the number of goods n and the rate of free adjustment

opportunities λ. We find it convenient to pin down two of these parameters by matching

the model to some observable statistics that are available in micro datasets: the frequency

and the variance of price changes: Na and V ar(∆pi). Given these statistics, the model

has essentially two residual parameters: λ/Na and n, which determine the shape of the size

distribution of price changes as discussed above. This section uses the model to quantify the

size of one price adjustment using two complementary measures: the first one is the cost of

a single price adjustment in units of profits per product: ψ/n. The second one is the average

flow cost of price adjustment that a firm pays, given by :

ψ

n

(
1− λ

Na

)
=
ψ

n

(
1− Ln

(
ȳλ

σ2n

))
=
ψ

n

(
1− Ln

([
ȳ

ψn

λ

Na

1

V ar(∆pi)

]
ψ

))

where we used equation (4) and that σ2 = Na V ar(∆pi). We show that the limiting case

of the Calvo model where λ
Na

= 1 (i.e. all adjustments obtain due to the free adjustment

opportunity) obtains when ψ
n
→∞ in which case we have that ψ

n

(
1− λ

Na

)
= 0.

BOTTOMLINE: TO GET A LARGE FRACTION OF FREE ADJUSTMENTS, I.E.

TO GET CLOSE TO THE DISTRIBUTION OF ADJUSTMENT TIMES IN A CALVO

MODEL, IT TAKES VERY LARGE VALUES OF THE MENU COST FOR 1 ADJUST-

MENT; HOWEVER NOTICE THAT IF ONE WANTS TO HAVE AN AVERAGE COST

OF PRICE ADJUSTMENTS BORNE PER YEAR THAT IS IN LINE WITH THE DATA

(AROUND 5% OF PROFITS (OR 0.7% OD REVENUES), ACCORDING TO LEVY ET

AL.) THEN ONE MAY BE PUSHED TO A LAMBDA/NA ABOUT 0.8 PER CENT .

The next proposition analyzes the implications for scaled menu cost ψ consistent with a

value of φ ∈ [0,∞) or equivalently consistent with a value of λ/Na ∈ [0, 1).
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Figure 4: Implied cost of price adjustment (in % of the profits per good)
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Proposition 6 Fix the number of products n ≥ 1 and let r ↓ 0. There is a unique triplet

(σ2, λ, ψ) consistent with any triplet φ ∈ [0,∞), V ar(∆pi) > 0 and Na > 0. Moreover, fixing

any value φ, the menu cost ψ ≥ 0 can be written as:

ψ

n
= B

V ar(∆pi)

Na

Ψ (n , φ) (9)

where Ψ is only a function of (n, φ). The function Ψ(n, ·) satisfies:

Ψ (n, 0) =
n

2 (n+ 2)
,
∂ log Ψ (n, 0)

∂ log φ
= 0 , and lim

φ→∞
Ψ (n, φ) =∞ .

Note for φ = 0, the value of ψ/n is increasing in n, where this expression being three

times larger as n goes from 1 to ∞.

4 The impulse response of prices to a monetary shock

In this section we give a description of the impulse response of prices and output an unex-

pected once and for all increase on the money supply of size δ, starting from a steady state

with zero inflation. We first describe the general equilibrium set up which is, essentially, the

one in Golosov and Lucas (2007), adapted to a multi-product firm as in Alvarez and Lippi

(2013). Then we describe the impulse response of prices and output to a monetary shock.

General Equilibrium Setup. Briefly, this is an economy where each firm produces n

goods, each with a linear labor only technology subject to independent idiosyncratic produc-

tivity shocks, whose logs follows a BM with instantaneous variance σ2. As in the previous

sections, a firm is subject to a random menu cost to simultaneously change the price of

its n products. In a period of length dt this cost equals ψ` units of labor with probability

1− λdt, or zero. Also each firm faces a demand with constant elasticity η > 1 for each of its

n products, coming from households’s CES utility function for the consumption aggregate.

The pi(t) in our previous sections are the logs of the markups in each product of the firm
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relative to the static optimal markup, and our quadratic objective function can be taken

to be a second order expansion on the firm’s profits with B = (1/2)η(η − 1). Households’

period utility function is additively separable: log in real balances, linear in leisure, and has

constant intertemporal elasticity of substitution 1/η for the consumption aggregate.

Impulse response to a monetary shock. The initial conditions are the steady state

of the economy with constant money supply, and hence constant economy wide price index.

The mechanics of the impulse response is that in this economy nominal wages jump on

impact by the same percentage as money supply. In Proposition 7 of Alvarez and Lippi

(2013) we show that, up to first order, the firm’s optimal policy is to keep ȳ unaltered during

the transition, a result that can be extended to the the present case with λ > 0. Given

this result the characterization of the impulse response is an exercise in aggregation: the

steady state distribution of price gaps is perturbed by the common increase in cost across all

firms, which will return to steady state slowly, in a process which we describe below. Letting

P(t) the impulse response of the percentage change in aggregate price level at horizon t, the

one for the percentage change in output is proportional to δ − P(t), where the constant of

proportionality is 1/ε.

To compute the IRF of the aggregate price level we find the contribution to the aggregate

price level of each firm at the time of the shock. They start with price gaps distributed

according to g, the invariant distribution. Then the monetary shock displaces them, by

subtracting the monetary shock δ to each of them. After that we divide the firms in two

groups. Those that adjust immediately and those that adjust at some future time. Note

that it suffices to keep track only of the contribution to the aggregate price level of the first

adjustment after the shock, because after that one the future contributions are all equal to

zero in expected value. Now we develop the notation to define the impulse response of the

aggregate price level.

Let g (p;n, λ/σ2, ȳ) be the density of firms with price gap vector p = (p1, ..., pn) at time

t = 0, just before the monetary shock, which corresponds to the invariant distribution with
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constant money supply. The density g equals the density f of the steady state square norms

of the price gaps given by Lemma 2 evaluated at y = p2
1 + · · ·+ p2

n times a correction for area

of sphere and the different variables.18 In particular we have

g

(
p1, ..., pn ;n,

λ

σ2
, ȳ

)
= f

(
p2

1 + · · ·+ p2
n ;n,

λ

σ2
, ȳ

)
Γ (n/2)

πn/2 (p2
1 + · · ·+ p2

n)
(n−2)/2

To define the impulse response we introduce two extra pieces of notation. First we let

{(p̄1(t, p), . . . , p̄n(t, p))} the process for n independent BM, each one with variance per unit

of time equal to σ2, which at time t = 0 start at p, so p̄i(0, p) = pi. We also define the

stopping time τ(p), also indexed by the initial value of the price gaps p as the minimum of

two stopping times, τ1 and τ2(p). The stopping time τ1 denotes the first time since t = 0

that jump occurs for a Poisson process with arrival rate λ per unit of time. The stopping

time τ2(p) denotes the fist time that ||p̄(t, p)||2 > ȳ. Thus τ(p) is the first time a price change

occur for a firm that start with price gap p at time zero. The stopped process p̄(τ(0), p) is

the vector of price gaps at the time of price change for such a firm.

We can write the impulse response function as:

P(t, δ;σ, λ, ȳ) = Θ(δ;σ, λ, ȳ) +

∫ t

0

θ(δ, s;σ, λ, ȳ) ds ,

where Θ(δ) gives the impact effect, the contribution of the monetary shock δ to the aggregate

price level on impact, i.e. at the time of the monetary shock. The integral of the θ’s gives the

remaining effect of the monetary shock in the aggregate price level up to time t, i.e. θ(δ, s)ds

is the contribution to the increase in the average price level in the interval of times (s, s+ds)

from a monetary shock of size δ. Instead the functions θ and Θ are easily defined in terms

of the density g, the process {p̄} and the stopping times τ :

Θ(δ;σ, λ, ȳ) ≡
∫
||p(0)−ιδ||≥ȳ

(
δ −

∑n
j=0 pj(0)

n

)
g

(
p(0);n,

λ

σ2
, ȳ

)
dp1(0) · · · dpn(0)

18See Section 5 of Alvarez and Lippi (2013) for this result and the Online appendix for a derivation.
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and θ(δ, t;σ, λ, ȳ) is the density, i.e. the derivative with respect to t of the following expression:

∫
||p(0)−ιδ||<ȳ

E

[
−
∑n

j=0 p̄j (τ(p), p)

n
1{τ(p)≤t}

∣∣∣ p = p(0)− ιδ

]
g

(
p(0);n,

λ

σ2
, ȳ

)
dp1(0) · · · dpn(0)

where ι is a vector of n ones. This expression takes each firm that has not adjusted price on

impact, i.e. those with p(0) satisfying ||p(0)− ιδ|| < ȳ, weight them by the relevant density

g, displace their initial price gap by the monetary shock, i.e. sets p = p(0) − ιδ, and then

looks a the (negative) of the average price gap at the time of the first price adjustment, τ(p),

provided that the price adjustment has happened before or at time t. We make a few remarks

about this expression. First, price changes equal the negative of the price gaps because price

gaps are defined as prices minus the ideal price. Second, we define θ as a density because,

strictly speaking, there is no effect on the price level due to price changes at exactly time t,

since in continuous time there is a zero mass of firms adjusting at any given time. Third, we

can disregard the effect of any subsequent adjustment because each of them has an expected

zero contribution to the average price level, they start with firms with zero price gaps in

all dimensions. Fourth, the impulse response is based on the steady-state decision rules,

i.e. adjusting only when y ≥ ȳ even after an aggregate shock occurs. This approximation

is justified by Proposition 7 in Alvarez and Lippi (2013) which shows that disregarding the

general equilibrium feedbacks has a second order impact on the results.

Given the results in Proposition 4 -Proposition 5 we can parametrize our model either

in terms of (n, λ, σ2, ψ/B) or instead parametrize it, for each n, in terms of the implied ob-

servable statistics (Na, Std[∆p], λ/Na). These propositions show that this mapping is indeed

one-to-one and onto. We refer to λ/Na as an “observable” statistic, because the have shown

that the “shape” of the distribution of price changes depends only on it.

Proposition 7 Fix an economy whose firm produce n products and with steady state statis-

tics (Na, Std[∆p], λ/Na). The cumulative proportional response of the aggregate price level

t ≥ 0 periods after a once and for all proportional monetary shock of size δ can be obtained
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from the one of an economy with one price change per year and with unitary standard devi-

ation of price changes as follows:

Pn
(
t , δ ; Na , Std[∆p] ,

λ

Na

)
= Std[∆p]Pn

(
tNa ,

δ

Std[∆p]
; 1 , 1 ,

λ

Na

)
. (10)

This proposition extends a similar result in Proposition 8 in Alvarez and Lippi (2013) to

the case of λ > 0. The proof in Alvarez and Lippi (2013) is constructive in nature, exploiting

results from applied math on the characterization of hitting times for BM in hyper-spheres,

which is not longer valid for λ > 0. Here we use a different strategy which relies on limits of

discrete-time, discrete state approximations.

Corollary 1 For small monetary shocks δ > 0, the impulse response is independent of

Std[∆p]. Differentiating equation (10) gives:

Pn
(
t , δ ; Na , Std[∆p] ,

λ

Na

)
= δ

∂

∂δ
Pn
(
tNa , 0 ; 1 , 1 ,

λ

Na

)
+ o(δ)

for all t > 0 and, since f(ȳ) = 0, then the initial jump in prices can be neglected, i.e.:

Pn
(

0 , δ ; Na , Std[∆p] ,
λ

Na

)
≡ Θn

(
0 , δ ; Std[∆p] ,

λ

Na

)
= o(δ) .

We define the half life of monetary shock of size δ as the (smallest) time T̂1/2 which solves:

δ

2
= Pn

(
T̂1/2 , δ ; Na , Std[∆p] ,

λ

Na

)
(11)

Using the time scaling property we obtain that:

δ

2
= Pn

(
T̂1/2Na , δ ; 1 , Std[∆p] ,

λ

Na

)

We define T1/2 as the normalized half-time, i.e we measure it relative to the time it takes in
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Figure 5: Impulse response of the CPI to a monetary shock of size δ = 1% when n = 1
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Impulse response for economies with Na = 2.0 and std(∆pi) = 0.15. (see the text).
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steady state to change each price:

T1/2 ≡ T̂1/2Na

we get that normalized half life do not depend on Na. Finally for small monetary shocks we

have the simpler expression:

1

2
=

∂

∂δ
Pn
(
T1/2 , 0 ; 1 , 1 ,

λ

Na

)
(12)

which depends exclusively on n and λ/Na, so in particular it does not depend on δ nor on

Std[∆p].

4.1 The cumulated output effect of a monetary shock

We give an analytical characterization of a summary measure for the effect of monetary

shocks. The summary measure is the area under the impulse response for output, i.e. the

sum of the output above steady state after a monetary shock of size δ > 0, which we denote

as:

Mn(δ) = (1/ε)

∫ ∞
0

[δ − Pn(δ, t)] dt (13)

where ε is a the reciprocal of intertemporal elasticity of substitution, and where Pn(δ, t) is

the cumulative effect of monetary shock δ in the (log) of the price level after t periods. For

large enough shocks, given the fixed cost of changing prices, the model display more price

flexibility, so to isolate the effects from that, and because it is more realistic (see corollary

Corollary 1) we consider the case of small shocks δ by taking the first oder approximation to

equation (13), so we considerMn(δ) ≈M′
n(0)δ. As a consequence of our characterization in

Proposition 7, the derivativeM′
n(0) is the product of 1/(εNa) times a function that depends

on n and λ/Na only. The scaling for Na is quite intuitive: the effect of monetary policy

is inversely proportional to price flexibility. The scaling by ε represent the elasticity of the

labor supply. To isolate these effects we writeM′
n(0) εNa, and refer to it as the scaled effect
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of monetary shocks. The next results links the scaled effect of monetary policy with the

kurtosis of the price changes.

Proposition 8 Fix n ≥ 1. Let Kurtn

(
∆pi;

λ
Na

)
be the kurtosis of the steady state price

changes for an economy where each firm sells n products and the fraction of free adjustments

is λ
Na

. Then:

Mn

(
δ;Na, Std[∆pi],

λ

Na

)
≈M′

n

(
0;Na, 1,

λ

Na

)
δ =

δ

εNa

Kurtn

(
∆pi;

λ
Na

)
6

,

where ≈ means the remainder is of order smaller than δ.

A few comments are in order. First recall that the shape of the distribution, and hence

kurtosis, depends only on n and λ/Na, or equivalently on the pair (n, φ). For a fixed n,

kurtosis is increasing in λ/Na. Indeed, as λ/Na goes to 1 then kurtosis goes to 6, and hence

we obtain that: Mn(δ) ≈ δ/(εNa), which is the same result as using Calvo’s pricing model.

On the other extreme, as λ/Na = 0 we have that kurtosis equals 3n/(n + 2). This implies

that, for instance, in the Golosov and Lucas case of n = 1, the impact of monetary policy

is 1/6 of Calvo’s. Also, keeping λ/Na = 0 and varying n the effect goes from 1/6 to 1/2 of

Calvo’s, as n diverges towards infinity. Indeed in the case of λ/Na = 0 and n =∞ the model

becomes Taylor’s staggered price model.

The cumulative output effect in two special cases: n = 1 and n =∞. This section

displays the expression for two special cases which are easier to derive analytically, namely

the n = 1 case and the n→∞ case. These special cases bracket the possible range of output

effects that are achievable by our model, i.e. they bracket the general cases of 2 ≤ n < ∞.

For each case we derive the implications for prices and output while considering the full range

of values for λ/Na ∈ (0, 1) while always keeping the frequency and variance of price changes

constant.
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Figure 6: Total cumulated output effect of a monetary shock
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The expression for these effects are given by

M′(0) =


1

εNa

[
1−(1+φ)e−φ

(1−e−φ)
2

]
for n =∞

1
εNa

e2
√

2φ+1

(e
√

2φ−1)
2

(
e
√

2φ+e−
√

2φ−2(1+φ)

e
√

2φ+e−
√

2φ−2

)
for n = 1

where different values of φ map monotonically into the fraction of free adjustments λ/Na.

Figure 6 shows that at any level of λ/Na the real output effect of a monetary shock is smaller

for n = 1 that for a very large n. As shown by Alvarez and Lippi (2013) a larger number of

goods dampens the selection effect of monetary policy increasing the real output consequences

of a monetary shock. Moreover, the figure shows that fixing n the output effect are increasing

in λ/Na. In the limit, as λ/Na → 1 the economy converges to a Calvo model where the real

effects are largest and independent of n.
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A Data Appendix

A.1 Details on data treatment and further sectoral statistics

Some additional features of our data treatment are as follows.
Dealing with product replacement. The dataset contains flags for product replacement
as well as imputed prices which we use as follows to design our dataset. First, we discarded
observations with item substitution, as item substitution may result into spurious values for
price changes, if quality adjustment is not accounted for or imperfectly measured (Berardi,
Gautier, and Le Bihan (2013) investigate the inclusion of information on item substitutions).
Second, we replaced any “imputed price” in the dataset, by the previous price of the same
item in the same outlet present in the data, i.e. a carry–forward procedure. In the source
dataset imputed prices are introduced by the INSEE when prices are missing.19 Imputed
prices are constructed either using the carry–forward procedure, or imputing the average
price change of similar goods observed in the close area. The latter procedure makes sense
from the aggregate CPI point of view but is obviously ill-suited for characterizing price change
at the individual level. We used the flag for imputed prices to locate and replace them by
carry-forward prices. This procedure amounts to discarding imputed prices when computing
the distribution of (non-zero) price changes.
Computing price changes and dealing with outliers. Price changes were computed as
100 times the log-difference in prices per unit. We compute a consistent price per unit by,
when relevant, dividing prices by the indicator of quantity sold (package size). We removed
outliers, which in our baseline analysis we define as price changes larger in absolute value
than 0.1 percent, or lower in absolute value than ln(10/3). These thresholds are set as a
first crude ways to deal with measurement errors. Some robustness checks are presented in
Table 7.

The upper threshold for outliers is set with sales in mind, as we informally observe that
price rebates as large as 70% are sometime advertised in sales periods. Our threshold allows
for a price to decrease by up to 70% and subsequently return to its former level without
discarding the observation. Price changes larger than this threshold are discarded as being
outliers.20

Identifying sales. The flag for sale allows to identify sales. Two kinds of sales-promotion
discounts, that have a different status, exist in France: seasonal sales or temporary discounts.
Seasonal sales (‘soldes’) are subject to administrative restrictions: the time period (twice a
year) is decided by local authorities and price posting is subject to precise regulations. Tem-
porary discounts are not subject to such restrictions but sales below cost are prohibited by
commercial law. By contrast, selling below cost is allowed in the case of seasonal sales.
On the sample period, seasonal sales are observed only in some specific categories of goods
(mainly clothes). The proportion of price quotes that are flagged as seasonal sales is 0.76%
and the proportion of temporary discounts amounts to 1.92%.

Some sectoral facts of price changes are as follows.

19Prices may be missing because of stock-outs, closed outlet due e.g. to holidays or seasonality in product
availability, for instance.

20An example of outlier is the fee for parking in the street, which is free in some cities in summer.
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Main facts at sectoral level. The different sectors in the CPI have very different pricing
patterns, as well documented in recent research. The purpose of this appendix section is
to illustrate that the peakedness of the price change distribution is a fact observed in all
sectors. Table 6 documents pricing patterns fact using a breakdown 6 into broad economic
sectors.21 As previous research, we observe many sectoral specificities: prices change less
often and rarely decrease in services; the size of price changes is smaller in services; energy
prices change frequently and by small amounts; reflecting sales, the variance of price change is
huge in clothes. However, noticeably a large kurtosis is observed in all sectors, one exception
being clothes for which kurtosis (2.09) is lower than that of the Gaussian distribution. The
fraction of small price changes, using one fourth of mean absolute price change as a threshold,
ranges between 8% and 27% for all categories other than energy. An Online appendix, using
a sector and type of good partition, further documents that this fact is consistently observed
at higher levels of disaggregation.

Table 6: Results by type of goods
Good type Freq Avg |dp| Std |dp| Kurt (dp) Frac25
Food 19.38 9.18 12.31 10.78 29.26
Durable goods 15.16 14.73 13.57 5.99 18.07
Clothing 11.00 42.48 24.71 2.16 10.21
Other manufactured goods 11.43 10.39 14.34 9.36 34.02
Energy 77.00 3.79 3.10 6.90 12.13
Services 6.53 7.80 10.29 17.58 21.29

Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage
is aroud 65% of CPI weight since rents, and prices of fresh food and centrally collected items
(e.g. electricity, train and airplane tickets) are not included in the dataset. Freq. denotes monthly
frequency of price change in percent. Size of price change ∆p are the first-difference in the logarithm
of price per unit, expressed in percent. Avg is average, Std standard devation, Frac25 the share
of absolute price change that are inferior to 0.25 Avg[|∆p|], Kurt denotes Kurtosis. Observations
with imputed prices or quality change are discarded. Moments are computed aggregating all prices
changes using CPI weigths at the product level.

A.2 Small price changes and measurement error

This appendix examines to what extent the arguments of Eichenbaum et al. (2012) apply to
our data and investigates the robustness of our findings to various criteria for trimming the
data. Measurement errors may arise for several reasons. Eichenbaum, Jaimovich, and Rebelo
(2008) and Eichenbaum et al. (2012) articulate two concerns about the small price change.
First they notice that in scanner data studies the price level of an item is typically computed
as the ratio of recorded weekly revenues to quantity sold. To the extent that there are
temporary or individual specific discounts (say coupons), this will generate spurious small

21The breakdown we use (food; durable goods; clothing & textile; other manufactured goods ; en-
ergy;services) is one we deem the most meaningful to capture price-setting idiosyncracies.
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Table 7: Robustness to trimming
Type of trimming Flag Freq. Avg(|∆p|) Std[|∆p|] Frac25 Kurt[∆pi] Kurt[∆p−mi

σ∆pi
]

|∆pi| ≤ ln(2) 1 17.10 8.51 12.00 28.93 10.23 7.35
Exc. flagged sales 2 14.82 5.05 5.90 18.77 13.59 8.60
|∆pi| ≤ ln(10/3) 3 17.21 9.12 13.79 30.33 12.92 9.04
0.1/100 ≤ |∆pi| ≤ln(2) 4 16.98 8.59 12.03 28.48 10.14 7.21
0.5/100 ≤ |∆pi| ≤ ln(2) 5 16.56 8.84 12.12 27.06 9.84 6.86
0.1/100 ≤ |∆pi| ≤ln(10/3) & ex.sales 6 14.70 5.15 6.23 18.21 20.86 10.40
0.1/100 ≤ |∆p| ≤ln(10/3) 8 17.09 9.19 13.82 29.91 12.81 8.89
1/100 ≤ |∆pi| ≤ln(2) 11 15.27 9.66 12.44 22.46 8.94 6.33

(Table, continued) Moments of standardized price change

Type of trimming Flag Frac(< 0.25m) Frac(< 0.5m) Frac(> 2m) Frac(> 4m)
|∆pi| ≤ ln(2) 1 39.29 22.01 13.10 1.75
Exc. flagged sales 2 38.59 20.62 12.58 1.97
|∆pi| ≤ ln(10/3) 3 39.55 22.25 12.95 1.82
0.1/100 ≤ |∆pi| ≤ln(2) 4 39.10 21.90 13.07 1.72
0.5/100 ≤ |∆pi| ≤ ln(2) 5 38.36 20.91 12.85 1.61
0.1/100 ≤ |∆pi| ≤ln(10/3) & ex.sales 6 38.55 20.67 12.51 1.96
0.1/100 ≤ |∆p| ≤ln(10/3) 8 39.31 22.18 12.91 1.79
1/100 ≤ |∆pi| ≤ln(2) 11 35.61 17.74 12.09 1.29

Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage is aroud 65% of
CPI weight since rents, and prices of fresh food and centrally collected items (e.g. electricity, train and airplane
tickets) are not included in the dataset. Freq. denotes monthly frequency of price change in percent. Size of price
change ∆p are the first-difference in the logarithm of price per unit, expressed in percent. Avg is average, Std
standard devation, Frac25 the share of absolute price change that are inferior to 0.25 Avg[|∆p|], Kurt denotes
Kurtosis. Kurt[∆p−mi

σ∆pi
] denotes Kurtosis of the distribution of standardized price changes. Standardized price

changes are computed at the category of good * type of outlet level. Observations with imputed prices or
quality change are discarded. Moments are computed aggregating all prices changes using CPI weigths at the
product level. Each row describes a sub-sample constructed applying the filter described by the column “type of
trimming”.“Ex. sales” exclude observations flagged as sales by the INSEE data collectors. “ex. euro” indicates
the 12 month period (2001:7-2002:6)surrounding the euro cash change-over is discarded. Subsample described
by the last row, with flag code 8, is taken as a baseline in the tables of the paper.

price changes.22 Moreover Eichenbaum et al. (2012) highlight a related problem for some
CPI items: they spot 27 items (named ELIS in the BLS terminology) that are problematic
because these prices are typically computed as a Unit Value Index (a ratio of expenditure
to quantity purchased), or they are not consistently recorded in the same outlet, or they
are the price of a bundle of goods (for instance the sum of airplane fare and airport tax).

22 Notice that in principle CPI data are immune from this type of measurement error, as these data are
direct transaction prices observed by a field agent. Indeed, in the instance of a temporary discount, the
CPI dataset will record either no price change, or the large price change of observed during the discount, if
the field agent happens to be collecting data during the temporary discount. Further, the protocol of data
collection requires that the field agent records the price faced by a regular customer, not benefiting from
individual-specific discounts.
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Figure 7: Distribution of standardized Price Adjustments by group of goods: France 2003-
2011
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The figures uses the elementary CPI data from France (see the text).

We were able to match these items with their counterparts in our French dataset. Out of
the 27 problematic items 15 are not present in our data because in the French CPI those
items are not recorded by a field agent but are centrally collected (thus not made available
in the subset of CPI we have access to).23 Concerning the 12 remaining items virtually no
price record in the French CPI is computed as a Unit Value Index, which is hypothesized by
Eichenbaum et al. (2012) as a major source of small price changes. Inspecting the patterns
of price changes over these 12 potentially “problematic” items in our dataset shows that the
amount of small price changes is not significantly different from the one detected over the rest
of our sample. One exception is the price of “Residential water” where it can be suspected
that many small variations in local taxes occur.24

A second investigation on measurement error was developed by varying the upper and
lower thresholds of small and large price changes used to define outliers. Results are displayed
in Table 7 of the Appendix. In each of the variants considered in Table 7, both kurtosis and
the fraction of small price changes remain large. The lowest level of kurtosis obtains when
we use the most stringent thresholds for outliers, discarding price change smaller than 0.5%
and larger than ln(2) (i.e. treating price decreases larger in absolute value than 50% and

23These items are Hospital room in-patient; Hospital in-patient services other than room ; Electricity;
Utility natural gas service; Telephone services, local charges ; Interstate telephone services ; Community
antenna or cable TV ; Cigarettes; Garbage and trash collection; Airline fares; New cars; New trucks; Ship
fares; Prescription drugs and medical supplies; Automobile insurance.

24Otherwise, on the bulk of consumption items, there are no local taxes in France, and the main, nation-
wide, rate of the Value Added Tax rate did not move over the sample period.
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price increases larger than 100% as outliers). However, even in this case, the kurtosis of the
standardized prices change is still as large as 6.33.

B Proofs

Proof. (of Proposition 1)
Let p(0) = 0. Define x(t) ≡ ||p(t)||2 − nσ2 t for t ≥ 0. Using Ito’s lemma we can verify

that the drift of ||p||2 is nσ2, and hence x(t) is a Martingale. By the optional sampling
theorem x (τ), the process stopped at τ , is also a martingale. Then

E
[
x(τ)

∣∣∣ p(0)
]

= E
[
||p(τ)||2

∣∣∣ p(0)
]
− nσ2E

[
τ
∣∣∣ p(0)

]
= x(0) = 0

and since
Na = 1/E

[
τ
∣∣∣ p(0)

]
and V ar(∆pi) = E

[
||p(τ)||2

∣∣∣ p(0)
]
/n

we obtain the desired result. �

Proof. (of Proposition 3 ) The first part is straightforward given Lemma 1 and Proposition 3
in Alvarez and Lippi (2013). The second part is derived from the following implicit expression
determining ȳ (see the proof of Proposition 3 in Alvarez Lippi (2013) for a derivation):

ψ =
B

r + λ
ȳ

[
1−

2σ2(n+2)
r+λ

ȳ + ȳ2 + ȳ2
∑∞

i=1 κi (r + λ)i ȳi

2σ2(n+2)
r+λ

ȳ + 2ȳ2 + ȳ2
∑∞

i=1 κi (i+ 2) (r + λ)i ȳi

]
(14)

where κi = (r + λ)−i
∏i

s=1
1

σ2(s+2)(n+2s+2)
. So we can write this expression as:

ψ =
B

r + λ
ȳ
[
1− ξ(σ2, r + λ, n, ȳ)

]
where ξ(σ2, r + λ, n, ȳ) is given by:

ξ(σ2, r + λ, n, ȳ) ≡
2σ2(n+2)
r+λ

ȳ + ȳ2 + ȳ2
∑∞

i=1 κi (r + λ)i ȳi

2σ2(n+2)
r+λ

ȳ + 2ȳ2 + ȳ2
∑∞

i=1 κi (i+ 2) (r + λ)i ȳi

Since ȳ →∞ as ψ →∞ then we can define the limit:

lim
ψ→∞

ψ

ȳ
=

B

r + λ

[
1− lim

ȳ→∞
ξ(σ2, r + λ, n, ȳ)

]
Simple analysis can be used to show that limȳ→∞ ξ(σ

2, r + λ, n, ȳ) = 0 which gives the
expression in the proposition (see the Online Appendix F for a detailed derivation). �

Proof. (of Proposition 4 ).
To characterize Na we write the Kolmogorov backward equation for the expected time

between adjustments T (y) which solves (see Appendix E for a discussion of the solution to
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this equation): λT (y) = 1 + n σ2 T ′(y) + 2 y σ2 T ′′(y) for y ∈ (0, ȳ) and T (ȳ) = 0. Then
the expected number of adjustments is given by Na = 1/T (0), subject to T (0) <∞.

We guess that the solution of the ODE equation (3) has a power series representation:

T (y) =
∞∑
i=0

αi y
i , for y ∈ [0, ȳ] . (15)

and then obtain the following conditions on its coefficients {αi}:

α1 =
λα0 − 1

nσ2
, αi+1 =

λ

(i+ 1) σ2 (n+ 2i)
αi , for i ≥ 1 . (16)

and where 0 < α0 < 1/λ is chosen to that 0 ≥ αi for i ≥ 1, limi→∞
αi+1

αi
= 0 and 0 =∑∞

i=0 αi ȳ
i. Moreover, T (0) = α0 is an increasing function of ȳ since α0 solves:

0 = α0 +
(α0 − 1/λ)

n

(
ȳλ

σ2

)[
1 +

∞∑
i=1

(
i∏

k=1

1

(k + 1) (n+ 2k)

)(
ȳλ

σ2

)i]
or

α0

{
1 +

1

n

(
ȳλ

σ2

)[
1 +

∞∑
i=1

(
i∏

k=1

1

(k + 1) (n+ 2k)

)(
ȳλ

σ2

)i]}

=
1

λn

(
ȳλ

σ2

)[
1 +

∞∑
i=1

(
i∏

k=1

1

(k + 1) (n+ 2k)

)(
ȳλ

σ2

)i]
.

Solving for α0 gives the desired expression. The second order approximation follows from
differentiating this expression twice. �

We first state a lemma about the density f(y).

Lemma 2 Let f(y;n, λ
σ2 , ȳ) be the density of y ∈ [0, ȳ] in equation (5) satisfying the boundary

conditions. For any k > 0

f

(
y;n,

λ

σ2
, ȳ

)
=

1

k
f

(
y

k
;n,

λk

σ2
,
ȳ

k

)
Proof. (of Lemma 2 ). Consider the function f(y;n, λ

σ2 , ȳ) solving equation (5) (and
boundary conditions) for given n, λ

σ2 , ȳ. Without loss of generality set σ′ = σ and consider
ȳ′ = ȳ/k and λ′ = λk. Notice that by setting C ′1 = C1k and C ′2 = C2k we verify that the
boundary conditions hold (because C ′1/C

′
2 = C1/C2) and that (5) holds (which is readily

verified by a change of variable). �

Proof. (of Proposition 5) Let w
(

∆pi;n,
λ
Na
, Std(∆pi)

)
be the density function in equa-

tion (7). Next we verify equation (8). From the first term in equation (7) notice that(
1− λ

Na

)
ω (∆pi; ȳ) = s

(
1− λ

Na

)
ω
(
s∆pi; s

2ȳ
)
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where the first equality uses the homogeneity of degree -1 of ω(∆pi; y) (see equation (6)).
From the second term in equation (7) for n ≥ 2

λ

Na

∫ ȳ

0

ω(∆pi; y)f(y;n,
λ

σ2
, ȳ)dy =

λ

Na

∫ ȳ

0

s ω
(
s∆pi; s

2y
)
s2 f

(
ys2;n,

λ

s2σ2
, ȳs2

)
dy

where the first equality follows from Lemma 2 for k = 1/s2, and the homogeneity of degree
-1 of ω(·, ·). Further we note

λ

Na

∫ ȳ

0

s ω
(
s∆pi; s

2y
)
s2 f

(
ys2;n,

λ

s2σ2
, ȳs2

)
dy = s3 λ

Na

∫ ȳ

0

ω
(
s∆pi; s

2y
)
f

(
ys2;n,

λ′

σ′2
, ȳ′
)
dy

where we note that λ′ȳ′

σ′2
= λȳ

σ2 , so that λ/Na is the same across the two economies. Using the
change of variable z = y s2

s3 λ

Na

∫ ȳ

0

ω
(
s∆pi; s

2y
)
f

(
ys2;n,

λ′

σ′2
, ȳ′
)
dy = s

λ

Na

∫ ȳ′

0

ω (s∆pi; z) f

(
z;n,

λ′

σ′2
, ȳ′
)
dz .

where ȳ′ = s2ȳ, which completes the verification of equation (8). �

Proof. (of Proposition 6)
To obtain expression in equation (9) we use the characterization of λ/Na = Ln

(
λ ȳ
nσ2

)
of

Proposition 4, it is equivalent to fix a value of φ ≡ λ ȳ
nσ2 . We let the optimal decision rule be

ȳ (ψ/B, σ2, r + λ, n) so that we have:

ȳ

(
ψ

B
, σ2, r + λ, n

)
λ

nσ2
= φ

Moreover we have that to be consistent with V ar(∆pi) and Na we have, using Proposition 1
and λ/Na = Ln(φ):

Na = λ/Ln(φ) and
λ

σ2
= Ln(φ)/V ar(∆pi) .

Thus, after taking r ↓ 0 and using the expression above we can write:

ȳ

(
ψ

B
, NaV ar(∆pi) , Ln(φ)Na , n

)
Ln(φ)

nV ar(∆pi)
= φ

Fixing n and totally differentiating this expression with respect to (ψ/B,Na, V ar(∆pi)), and
denoting by ηψ, ησ2 , ηλ the elasticities of ȳ with respect to ψ/B, σ2, λ we have:

ηψ ψ̂ + ησ2 (N̂a + V̂ ar(∆pi)) + ηλ N̂a = V̂ ar(∆pi)

where a hat denotes a proportional change. Using Proposition 3-(iv) in Alvarez and Lippi
(2013) and Lemma 1 we have that these elasticities are related by:

ηλ = 2ηψ − 1 and ησ2 = 1− ηψ .
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Thus
ηψ ψ̂ + (1− ηψ) (N̂a + V̂ ar(∆pi)) + (2ηψ − 1) N̂a = V̂ ar(∆pi) .

Rearranging:

ηψ ψ̂ + (1− ηψ + 2ηψ − 1) N̂a + (1− ηψ − 1)V̂ ar(∆pi) = 0 ,

and canceling terms:
ηψ ψ̂ + ηψ N̂a − ηψV̂ ar(∆pi) = 0 .

Dividing by ηψ we obtain that ψ̂ = V̂ ar(∆pi)− N̂a. Additionally, since ȳ is a function of B,
then we can write ψ/n = B (V ar(∆pi)/Na) Ψ(n, φ).

That ψ → ∞ as λ/Na → 1 follows because Ln(φ) → 1 as φ → ∞ and because, by
Proposition 3-(i) in Alvarez and Lippi (2013), ȳ is increasing in ψ and has range and domain
[0,∞).

Taking logs and differentiating the definition of ψ we obtain:

ηψ ψ̂ + ηλ L̂n + L̂n = 1

Replacing ησ2 = 1− ηψ, we obtain:

ψ̂ = 1/ηψ − 2L̂n .

As discussed above, ηψ → 1/2. Using Ln(φ) = hn(φ)/(1 + h)n(φ)). We get

L̂n ≡
φ

Ln(φ)

∂Ln(φ)

∂φ
=

1

1 + hn(φ)

φh′n(φ)

hn(φ)

using the form of hn and taking φ→ 0 it is easy to see that this elasticity is one. Thus

lim
φ→0

φ

Ψ(n, φ)

∂Ψ(n, φ)

∂φ
= 0 .

Finally, for λ = 0 and Na > 0 we obtain:

ψ

n
= B

V ar (∆p)

Na

n

2 (n+ 2)
.

This follows from using the square root approximation of ȳ for small ψ (λ+r)2, the expression
for Na = nσ2/ȳ and Proposition 1, i.e. Na V ar(∆pi) = σ2. �

Proof. (of Proposition 7) The proof has three parts. First we introduce a discrete time,
discrete state version of the model, second we show the scaling of the time with Na , and
finally the homogeneity of degree one in terms of Std[∆p] and δ.

Discrete Time Formulation. We start with discrete time version of the process for price
gaps, with length of the time period ∆, which makes some of the arguments more accessible.
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Let N be a

N(t+ ∆) =

{
N(t) with probability (1− λ∆)

N(t) + 1 with probability λ∆
(17)

Thus, as ∆ ↓ 0 this process converges to a continuous time Poisson counter with instantaneous
intensity rate λ per unit of time. Let p̄i follow n drift-less random walks

p̄i(t+ ∆, p) =

{
p̄i(t, p) + σ

√
∆ with probability 1/2

p̄i(t, p) − σ
√

∆ with probability 1/2
(18)

where the initial condition satisfies:

p̄i(0) = pi for i = 1, .., n ,

and where the n random walks are independent of each other and of the Poisson counter. As
∆ ↓ 0 the process for p̄ converges to a Brownian motion whose changes have variance σ2 per
unit of time. We define the stopping time of the first price adjustment τ(p), conditional on
the starting at price gap vector p at time zero, as:

τ1 ≡ min {t = 0,∆, 2∆, ... : N(j∆ + ∆)−N(j∆) = 1} ,

τ2(p) ≡ min

{
t = 0,∆, 2∆, ... :

n∑
i=1

(p̄i(j∆ + ∆, p))2 ≥ ȳ

}
and

τ(p) ≡ min {τ1 , τ2(p)} .

The function g is the density for the continuous time limit, i.e. the case where ∆ ↓ 0. For
small ∆, we can approximate the distribution of the fraction of firms with price gap vector p
as the product of the density g and a correction to convert it into a probability, i.e a fraction.
This gives:

g
(
p1, ..., p;n, λ/σ

2, ȳ
) (

σ
√

∆
)n

where the last term uses that in each dimension price gaps vary discretely in steps of size
σ
√

∆. We can write the discrete time impulse response function as:

P(t, δ;σ, λ, ȳ,∆) = Θ(δ;σ, λ, ȳ,∆) +
t∑

s=∆

θ(δ, s;σ, λ, ȳ, ,∆) ∆ ,

In this expression we can, without loss of generality, restrict t to be an integer multiple of
∆. We have divided the expression for θ by ∆, and hence multiplied its contribution back
by ∆ in P , so that it has the interpretation of the contribution per unit of time to the IRF
of price changes at time t, i.e. it has the units of a density. Moreover, in this manner the
term has a non-zero limit, and the expression in P converges to an integral. Thus we get the
P = limP(∆) as ∆ ↓ ∞. The functions θ and Θ are given by:

Θ(δ;σ, λ, ȳ,∆) ≡
∑

||p(0)−ιδ||≥ȳ

(
δ −

∑n
j=0 pj(0)

n

)
g

(
p(0);n,

λ

σ2
, ȳ

) (
σ
√

∆
)n

, and
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θ(δ, t;σ, λ, ȳ,∆) ≡

− 1

∆

∑
||p(0)−ιδ||<ȳ

E

[∑n
j=0 p̄j(t, p)

n
1{τ(p)=t}

∣∣∣ p = p(0)− ιδ

]
g

(
p(0);n,

λ

σ2
, ȳ

) (
σ
√

∆
)n

Time scaling of the IRF with Na. For this (i) Note that if multiply the parameters σ2

and λ by a constant k > 0, leaving ȳ unaltered, then N ′a = k Na, where primes are used
to denote the values that correspond to the scaled parameters. This follows directly from
the expression we derive for Na = 1/T (0) in Proposition 4. (ii) By Proposition 5 with these
changes the distribution of price changes implied by (σ2, λ, ȳ) is exactly the same as the one
implied by (kσ2, kλ, ȳ). (iii) we change notation and write (σ2, λ, ȳ) instead of (λ, σ2, ψ/B)
and omit n. We establish that

Pn
(
t

k
, δ; kσ2, kλ, ȳ

)
= Pn

(
t, δ;σ2, λ, ȳ

)
We will do so by establishing this proposition for the discrete time version of the IRF. Yet
the result is immediate, since λ and σ2 are the only two parameters which are rates per unit
of time (the other parameters are n and ȳ), so by multiplying them by k we just scale time.
The details can be found in the discrete time formulation, whose notation we develop below.
We show that

P(t, δ; kσ2, kλ, ȳ,∆/k) = P(t/k, δ;σ2, λ, ȳ,∆) (19)

We will do so by establishing this proposition for the discrete time version of the IRF. Let
∆′ = ∆ /k, σ′2 = σ2 k and λ′ = λk. Note that, by construction σ′

√
∆′ = σ

√
∆ and

λ′/(σ′)2 = λ/(σ)2. To establish this we first note that, for a given shock δ, Θ depends only
on n, ȳ, σ

√
∆, and λ/σ2. This is because the invariant density g and the scaling factor to

convert it into probabilities depends only on those parameters. Second we show that

t/k∑
s=∆/k

∆

k
θ

(
s, δ; kσ2, kλ, ȳ,

∆

k

)
=

t∑
s=∆

∆ θ (s, δ;σ, λ, ȳ,∆)

This follows because for each s and p(0)

E

[∑n
j=0 p̄j (s, p)

n
1{τ(p)=s}

∣∣∣ p = p(0)− ιδ ; σ, λ,∆

]

= E

[∑n
j=0 p̄j

(
s
k
, p
)

n
1{τ(p)= s

k}
∣∣∣ p = p(0)− ιδ ; σ′, λ′,∆′

]

where we include the parameters (λ, σ2,∆) as argument of the expected values. This itself
follows because, using equation (17) and equation (18) then the processes for {p̄i} are the
same in the original time and in the time time scales by k since the probabilities of the
counter to go up λ′∆′ = λ∆ and the steps of the symmetric random walks σ′

√
∆′ = σ

√
∆
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are the same in the original time and the time scaled by k. In particular we have that

p̄j

( s
k
, p;λ′, σ′2,∆′

)
≡ p̄j

(
s

k
, p; kλ, kσ2,

∆

k

)
= p̄j

(
s, p;λ, σ2,∆

)
= p̂

with exactly the same probabilities for each price gap p̂ ∈ R and each time s ≥ 0. Also, re-

peating the arguments used for Θ, we have g
(
p(0);n, λ

σ2 , ȳ
) (

σ
√

∆
)n

= g
(
p(0);n, λ

′

σ′2
, ȳ
) (

σ′
√

∆′
)n

.

Thus, since equation (19) holds for all ∆ > 0, taking limits

P
(
t

k
, δ; kσ2, kλ, ȳ

)
= lim

∆↓0
P
(
t

k
, δ; kσ2, kλ, ȳ,

∆

k

)
= lim

∆↓0
P
(
t, δ;σ2, λ, ȳ,∆

)
= P

(
t, δ;σ2, λ, ȳ

)
Scaling of the IRF in the monetary shock with Std[∆p]. For this we use properties of
the invariant distribution f , which are then inherited by g. In particular, we will compare the
IRF with parameters (λ, σ2, ȳ) with one with parameters (λ′, σ′2, ȳ) where λ′ = λ, σ′2 = k σ2

and ȳ′ = k ȳ. With this choice we have N ′a = Na and thus λ/Na = λ′/N ′a since λȳ/(nσ2) =
λ′ȳ′/(nσ′2) (see Proposition 4). Then by Proposition 1 we have that the standard deviation
of price changes scales up with k, i.e.: Std[∆p]′ =

√
k Std[∆p]. The main idea is that the

invariant distribution corresponding to the ′ parameters is a radial expansion of the original,
so that

∫ y
0
f(x;λ, σ2, ȳ)dx =

∫ yk
0
f(x;λ′, σ′2, ȳ′)dx and thus f(y, λ, σ2, ȳ) = kf(yk, λ′, σ′2, ȳ′).

Indeed using Lemma 2 we have:

f

(
y;
λ

σ2
, ȳ

)
= k f

(
yk;

λ

kσ2
, kȳ

)
≡ k f

(
yk;

λ′

σ′2
, ȳ′
)
. (20)

Thus we have:

g

(
p1, ..., p;n,

λ

σ2
, ȳ

)
= f

(
p2

1 + · · ·+ p2
n;n,

λ

σ2
, ȳ

)
Γ (n/2)

2 πn/2 (p2
1 + · · ·+ p2

n)
(n−2)/2

=

= kf

(
k(p2

1 + · · ·+ p2
n);n,

λ′

σ′2
, ȳ′
)

Γ (n/2) k(n−1)/2

2πn/2 (k(p2
1 + · · ·+ p2

n))
(n−2)/2

= g

(√
k(p1, ..., pn);n,

λ′

σ′2
, ȳ′
)
k(n−2)/2 k

Using this for the discrete time formulation we have:

g

(
p;n,

λ

σ2
, ȳ

)(
σ
√

∆
)n

= g

(√
k p;n,

λ′

σ′2
, ȳ′
)(

σ′
√

∆
)n
k(n−2)/2 k k−n/2

= g

(√
k p;n,

λ′

σ′2
, ȳ′
)(

σ′
√

∆
)n

Note that {||p(0)− ιδ|| ≥ ȳ} = {||
√
k p(0)− ι

√
k δ|| ≥

√
k ȳ} = {||

√
k p(0)− ιδ′|| ≥ ȳ′}. Also(

δ −
∑n

j=0 pj(0)

n

)
√
k =

(
δ′ −

∑n
j=0

√
k pj(0)

n

)
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Thus

√
k

∑
||p(0)−ιδ||≥ȳ

(
δ −

∑n
j=0 pj(0)

n

)
g

(
p(0);n,

λ

σ2
, ȳ

) (
σ
√

∆
)n

=
∑

||
√
kp(0)−ιδ′||≥ȳ′

(
δ′ −

∑n
j=0

√
kpj(0)

n

)
g

(√
k p(0);n,

λ′

σ′2
, ȳ′
) (

σ′
√

∆
)n

Using the definition of Θ(·,∆):

√
kΘ(δ;σ, λ, ȳ,∆) = Θ

(√
k δ; kσ2, λ, kȳ,∆

)
≡ Θ

(
δ′;σ′2, λ′, ȳ′∆

)
.

Since this holds for all ∆, by taking limits as ∆ ↓ 0, we have shown the desired result for
Θ. The result for θ follows the steps for g. We set ∆′ = ∆ and note that for all p(0) ∈ Rn,
scaling factor k > 0 and time horizon s > 0:

√
k E

[∑n
j=0 p̄j (s, p)

n
1{τ(p)=s}

∣∣∣ p = p(0)− ιδ ; σ, λ,∆

]

= E

[∑n
j=0 p̄j (s, p)

n
1{τ(p)=s}

∣∣∣ p =
√
k p(0)− ιδ′ ; σ′, λ′,∆

]
.

This follows because λ′ = λ and σ′
√

∆′ =
√
k σ
√

∆, thus the each p ∈ Rn the paths√
k p̄(s, p;σ, λ) = p̄(s,

√
kp;σ′, λ′) occur with the same probabilities. �
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C Related literature

Models with random cost of adjustment have been introduced by Caballero and Engel (1999)
and Dotsey, King, and Wolman (1999). Caballero and Engel (1999) study and solve numer-
ically a model of investment with random fixed cost of adjustement. Two outcomes are (i)
that the decision rule has the form of a “generalized (S,s) rule”, thus time-varying inaction
thresholds, and (ii) that higher moments of the cross-sectional distribution of firm disequilib-
ria can predict aggregate investment. Dotsey, King, and Wolman (1999) introduce random
menu cost in a price-setting context, to develop a tractable general equilibrium model of
state-dependent pricing. While at the individual level, adjustment is discrete, the introduc-
tion of random menu costs makes the fraction of adjusting firms become a relevant state
variable which reacts smoothly to shocks. The model can then be solved with standard lin-
earization techniques, using the property that it is sufficient to keep track of vintages of firms
each characterized by the same reset dates.25 Dotsey, King, and Wolman (1999) and Dotsey
and King (2005) use the model to investigate how the response to monetary policy shocks
under state–dependent pricing differ from that time–dependent pricing.

Recently, a series of papers have used random menu cost models with the explicit aim
of fitting of micro data on price changes.26 Dotsey, King, and Wolman (2008) follow up on
Dotsey, King, and Wolman (1999) by introducing idiosyncratic shocks and calibrating the
model using inter alia the distribution of micro economic price changes in the US. Caballero
and Engel (2007) apply the generalized hazard approach of Caballero and Engel (1999) to
price dynamics and illustrate how introducing random free opportunity of price changes alters
the response of the economy to a monetary shock. Midrigan (2011) show that economies
of scales in price setting for a multiproduct firm, and random menu costs, are alternative
mecanisms that generate small price changes at the individual level. He concludes that under
either economies of scales in price setting, or random menu costs, monetary policy have more
persistent effect than in the Golosov and Lucas (2007) menu cost model. Burstein and Hellwig
(2006) reach the same conclusion when adding random menu cost in a model with pricing
complementarity. Nakamura and Steinsson (2010) also examine, in a multisector menu cost
model, to which extend monetary non-neutrality is increased in a variant of the model in
which the menu cost can randomly receive a low or high value. Woodford (2009) develops
a model of price-setting under information capacity constraint. Optimal policy gives rise to
randomisation of the price review decision. Costain and Nakov (2011, 2012) develop a model
in which the probability of adjustment is a function of the value of adjustment for firms.
Both in Woodford (2009) and Costain and Nakov (2011, 2012), the model is calibrated using
moments of the distribution of price changes from micro data, and the obtained decision
rule is observationally equivalent to that derived under a random menu cost model. Overall,
two common features of this series of recent models is that they are solved using numerical
techniques, and they obtain that under random menu cost the degree of monetary policy
non-neutrality is to some extent larger than in the fixed menu cost model of Golosov and

25The model is set-up under the assumptions of no idiosyncratic shocks and i.i.d. random cost, so all firms
that reset price set the same price. To have a finite number of vintages, the model requires positive steady
state inflation.

26Previous to the recent research, Willis (2000) had estimated a partial equilibrium model stochastic menu
cost model on magazine data
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Lucas (2007).
The present paper is related to this recent literature. A distinctive feature is that results

are derived analytically, and the way the impact of monetary policy shock depends on “deep”
parameters is studied in a systematic way. The model with random menu cost is also extended
to incorporate economies of scales in price adjustment.

D Details of the solution for the model with n = 1

Integrating the bellman equation gives the following value function

v(p) =
Bp2 + λv(0)

λ+ r
+

Bσ2

(λ+ r)2
+ C

(
ep
√

2(λ+r)

σ2 + e−p
√

2(λ+r)

σ2

)
where we already used that v(p) = v(−p). Notice that the value function has a minimum
(and zero derivative) at p = 0, which is the optimal return point. The constant C and the
threshold value p̄ are the values that solve the 2 equation system given by the value matching
condition and the smooth pasting conditions.

The expected time to adjustment, T (p) obeys the differential equation λT (p) = 1 +
σ2

2
T ′′(p) with boundary condition T (p̄) = 0. Given the symmetry of the law of motion for p,

the function is symmetric, i.e. T (p) = T (−p). Integrating gives T (p) = 1
λ

(
1− e

√
2λ
σ2 p+e

−
√

2λ
σ2 p

e

√
2λ
σ2 p̄+e

−
√

2λ
σ2 p̄

)
.

The distribution of price gaps h(p) satisfies the Kolmogorov forward equation 0 = −2λ
σ2h(p)+

h′′(p) for 0 < |p| ≤ p̄. The density is symmetric, h(p) = h(−p), and satisfies the boundary
conditions: h(p̄) = 0 and it integrates to one i.e. 2

∫ p̄
0
h(p) dp = 1 where we used that it is

symmetric.27

Now we compute some moments for price changes ∆pi which are illustrative of the map-
ping between the model and the data. The mean absolute value of price changes is

E|∆p| =
2λ

Na

∫ p̄

0

p h(p) dp+

(
1− λ

Na

)
p̄ = H p̄

where it is to be noticed that the term H depends only on φ, namely

H =

 λ

Na

 e
√

2φ − e−
√

2φ − 2
√

2φ
√

2φ
(
e
√

2φ
2 − e−

√
2φ

2

)2

+ 1− λ

Na


The variance of price changes

V ar (∆p) =
2λ

Na

∫ p̄

0

p2 h(p) dp+

(
1− λ

Na

)
p̄2 =

σ2

Na

27The first boundary can be derived as the limit of the discrete time, discrete state, low of motion where
each period is of length ∆ and where p increases or decreases with probability 1/2, so that h(p) = 1

2h(p +
∆) + 1

2h(p −∆). At the boundary p̄ this law of motion is h(p̄) = 1
2h(p̄ −∆), which shows that h(p̄) ↓ 0 as

∆ ↓ 0 .
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and a closed form expression for the kurtosis

kurt (∆p) =
E (∆p)4[
E (∆p)2]2 =

2λ
Na

 12
(
√

2φ)4 − 12+(
√

2φ)2

(
√

2φ)2

(
e

√
2φ
2 −e

−
√

2φ
2

)2

+
(

1− λ
Na

)
(

2λ
Na

(
1

(
√

2φ)2 + 1
2−e−

√
2φ−e

√
2φ

)
+
(

1− λ
Na

))2

Since λ/Na is a function only of φ, then the equation shows that φ completely determines the
value of the kurtosis. Likewise, the absolute value of the mean price change and the variance
depend on this parameter (through the term in the square bracket) as well as on p̄.

Next we compute the fraction of price adjustments below a given threshold κ E|∆pi, which
we label F(κ). We can use this formula to quantify the fraction of price changes smaller than
a proportion κ ∈ (0, 1) of the mean absolute price change E|∆p| = Hp̄ and compare this to
the data. This gives

F(κ) =
2λ

Na

∫ κHp̄

0

h(p) dp =
λ

Na

e2
√

2φ
(

1− e−κH
√

2φ
)

+ 1− eκH
√

2φ(
e
√

2φ − 1
)2


which is an expression that depends only on two parameters: κ and φ. Simple algebra shows
that in the limit as p̄ → ∞ and adjustments occur only when the free opportunity arrives,
as in the Calvo model, then the right hand side of the function is 1− e−k.

E Note on Solutions of value function V , expected time

to adjust T and invariant density of the squared price

gap f .

The alert reader may have noticed that to solve for the invariant density f we have followed a
standard procedure, i.e. set a 2nd order ordinary linear difference equation (the Kolmogorov
forward equation) and find its solutions in terms of two constant, and using two boundary
conditions to find the value of the constants. Instead to solve for V and T we have followed a
different approach, we guess an infinite expansion around y = 0 and compute its coefficients.
Additionally, it may have looked that we did not provide enough boundary conditions to
be able to solve for T and V . For instance, for T we gave only one equation as boundary
conditions, namely T (ȳ) = 0. Here we explain that we could have followed the more standard
route, which required an analysis of the behavior close to the y = 0 boundary, to set one
constant to zero and also would have produced a less informative result, i.e. one in terms of
modified Bessel functions. Nevertheless we include it here for completeness.

Note that V (y), T (y) and f(y) are solutions to a linear ODE on y whose homogeneous
component, say q(·), solves :

y q′′(y) + a q′(y) + b q(y) = 0 (21)
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for y ∈ [0, ȳ], for (different) constants a and b, with different particular solution, and different
boundary conditions. The general solution of the homogeneous equation (21) is given by:

q(y) = |b y|(1−a)/2
[
C1Iν

(
2
√
|b y|

)
+ C2Kν

(
2
√
|b y|

)]
(22)

provided that b y < 0, i..e. that b < 0, where C1 and C2 are arbitrary constants, ν = |1−a| and
where Iν and Kv are the modified Bessel functions of the first and second kind respectively.
The values of b = −λ/(2σ2) in the three cases. The value of a = n/2 for T and for V ,
which are the same Kolmogorov backward equation, and a = −(n/2− 2) for f , which is the
Kolmogorov forward equation.

It is important to notice the behavior of Iν(z) and Kν(z) for values of 0 < z but very
close to zero. We have:

Iν v
1

Γ(ν + 1)

(z
2

)ν
(23)

and

Kν v

{
Γ(ν+1)

2

(
2
z

)ν
if ν > 0

− log(z/2)− γ if ν = 0
(24)

We thus have that each of the solution will behave as:

I|1−a|
(
y1/2

)
y(1−a)/2 v

1

Γ(|1− a|+ 1)

(
y1/2

2

)|1−a|
y(1−a)/2

=
1

Γ(|1− a|+ 1)

(
1

2

)|1−a|
y(1−a)/2+|1−a|/2

So if 1− a = −|1− a|, i.e. if 1− a ≤ 0, the value of this product is finite at y ↓ 0. Otherwise
it diverges to ∞. Likewise for ν = |1− a| > 0:

K|1−a|
(
y1/2

)
y(1−a)/2 v

Γ(|1− a|+ 1)

2

(
2

y1/2

)|1−a|
y(1−a)/2

=
Γ(|1− a|+ 1)

2

(
2

1

)|1−a|
y(1−a)/2−|1−a|/2

So if 1− a = |1− a|, i.e. if 1− a ≥ 0, the value of this product is finite at y ↓ 0. Otherwise
it diverges to ∞. The case of ν = 0 i.e. a = 1 is special, but K0(z) also diverges and I0(z)
converges to a non-zero constant as z ↓ 0.

Note that V (0) and T (0) are both finite. For these two cases the Kolmogorov backward
equation has a = n/2 so 1 − a ≥ 0 iff n ≥ 2. In these cases we have that C2, the constant
associated with Kν must be zero. We can use the constant C1 to impose the boundary
condition T (ȳ) = 0 for T and to have a one dimensional representation of V in the range of
inaction given ȳ. Then we can use smooth pasting and value matching, i.e. two boundary
conditions, to find the constants C1 and ȳ.

Note that for f we don’t require that f(0) be zero, since the density at zero gap can be
infinite if the y mean reverts to zero fast enough. Thus in this case we will, in general, have
both constants be non-zero.
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F Proof that limȳ→∞ ξ(σ2, r + λ, n, ȳ) = 0

Note that, by examining the definition of κi and the sums in the expression for ξ we have
that:

lim
ȳ→∞

ξ(σ2, r + λ, n, ȳ) = lim
ȳ→∞

ξ

(
1, 1, n,

(r + λ) ȳ

σ2

)
so this limit cannot depend on r + λ or σ2. Thus we denote it as:

ξ̄(n) ≡ lim
ȳ→∞

ξ(1, 1, n, ȳ)

So we have:

ȳ ≈ ψ

B
(r + λ)

[
1− ξ̄(n)

]
for large ψ .

Now we show that ξ̄(n) = 0. First we notice that the power series:

g(x) =
∞∑
i=1

i∏
s=1

1

(s+ 2)(n+ 2s+ 2)
xi

converges for all values of x since its coefficients satisfy the Cauchy-Hadamard inequality.
Then we can write:

ξ(1, 1, n, ȳ) ≡
2(n+2)

ȳ
1

g(ȳ)
+ 1

g(ȳ)
+ 1

ȳ2

2(n+2)
ȳ

1
g(ȳ)

+ 2 1
g(ȳ)

+
∑∞

i=1 ω(i, ȳ) (2 + i)

where the weights ω(i, ȳ) are given by:

ω(i, x) =

xi∏i
s=1(s+2)(n+2s+2)∑∞

j=1

∏j
s=1

1
(s+2)(n+2s+2)

xj

Note that for higher x the weights of smaller i decrease relative to the ones for higher i. Now
since g(ȳ)→∞ as ȳ →∞, then:

ξ̄(n) =
1

limȳ→∞
∑∞

i=1 ω(i, ȳ) (2 + i)

To show that ξ̄(n) = 0, suppose, by contradiction that is finite. Say, without loss of generality
that equals j + 2 for some integer j. Note that, by the form of the ω′s and because g(ȳ)
diverges as ȳ gets large enough, then by any j and ε > 0 there exist a y∗ large enough so
that

∑j
i=1 ω(i, ȳ) < ε for any ȳ > y∗. Thus, the expected value must be larger than 2 + j.

Finally, we consider the case of n → ∞. In this case we have that, the value function
divided by n gives:

v = min
T
B

∫ T

0

σ2 t e−(λ+r) dt+ e−(r+λ)T (Ψ + v)
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where Ψ = limn→∞ ψ/n. The first order condition for T gives, for a finite T :

0 =
(
B σ2 T − (r + λ)Ψ

)
− (r + λ)e−(r+λ)Tv (25)

Now consider the case where Ψ→∞. Note that v is finite since T =∞, a feasible strategy
as a finite value. Also let Ȳ = σ2T = limn→∞

ȳ(n)
n

. Note that as Ψ → ∞ then Ȳ must also
diverge towards ∞. Dividing the previous expression by Ψ:

Ȳ

Ψ
=

(r + λ)

B
+ (r + λ)e−(r+λ)T v

Ψ

and taking the limits:

lim
Ψ→∞

Ȳ

Ψ
=
r + λ

B
.

�

G More model statistics

This appendix reports more model statistics that are functions only of n and λ/Na. First we
provide a formula to quantify the fraction of price changes that are smaller than a threshold
κE|∆pi|, which will prove useful to compare with the empirical evidence discussed above:

Fn(κ) = 2

∫ κE|∆pi|

0

w(x) dx

where w(x) is density of price changes in equation (7).

Table 8: Model statistic for the fraction of price changes smaller than 1
4
E|∆pi|

% of free adjustments: number of products n
λ/Na 1 2 4 6 10 50
0 % 0.00 0.10 0.13 0.14 0.15 0.16
10% 0.04 0.12 0.15 0.15 0.16 0.16
20% 0.08 0.13 0.16 0.16 0.17 0.17
50% 0.17 0.18 0.19 0.19 0.19 0.19
70% 0.20 0.20 0.20 0.20 0.20 0.21
80% 0.21 0.21 0.21 0.21 0.21 0.21
90% 0.22 0.22 0.22 0.22 0.22 0.22
95% 0.22 0.22 0.22 0.22 0.22 0.22
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Table 9: Model statistic for E|∆pi|/Std(∆pi)

% of free adjustments: number of products n
λ/Na 1 2 4 6 10 50
0 % 1.00 0.90 0.85 0.83 0.82 0.80
10% 0.98 0.87 0.84 0.82 0.81 0.80
20% 0.95 0.86 0.83 0.81 0.80 0.79
50% 0.87 0.81 0.79 0.78 0.77 0.76
70% 0.81 0.77 0.76 0.75 0.75 0.75
80% 0.78 0.75 0.74 0.74 0.74 0.73
90% 0.74 0.73 0.73 0.73 0.72 0.72
95% 0.73 0.72 0.72 0.72 0.72 0.71

H A model with random costly adjustment

This version of the model assumes that with probability λ per unit of time the menu cost is
smaller than the regular adjustment, namely that it costs bψ with b ∈ (0, 1). The optimal
policy now involves two thresholds: p and p̄. For p ∈ [0, p] the firm optimally decides not to
adjust the price, even if an opportunity for cheap adjustment occurs. For p ∈ [p, p̄) the firm
adjusts the price only if a cheap adjustment opportunity arises. For p ≥ p̄ the firm adjusts
the price. The value function then solves:

r v0(p) = Bp2 +
σ2

2
v′′0(p), for p ∈ [0, p] ,

r v1(p) = Bp2 + λ [v0(0) + bψ − v1(p)] +
σ2

2
v′′1(p), for p ∈ [p, p̄]

where we use that the optimal return point upon adjustment is v0(0). This gives

v0(p) =
Bp2

r
+
Bσ2

r2
+K0

(
e
p
√

2r
σ2 + e

−p
√

2r
σ2

)
v1(p) =

Bp2 + λ (v0(0) + bψ)

λ+ r
+

Bσ2

(λ+ r)2
+K1

(
ep
√

2(λ+r)

σ2 + e−p
√

2(λ+r)

σ2

)
where we already used that vi(p) = vi(−p).

To solve for the two constants K0 and K1 and the two parameters 0 < p, p̄ we use that
the value function must satisfy the boundary conditions v0(p) = v1(p) and v0(0) + ψ = v1(p̄)
and the smooth pasting conditions v′0(p) = v′1(p) and 0 = v′1(p̄)

The expected time to adjustment, T (p) obeys the following ODE

0 = 1 +
σ2

2
T ′′0 (p) for 0 < |p| ≤ p and λT1(p) = 1 +

σ2

2
T ′′1 (p) for p < |p| ≤ p̄
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with Ti(p) = Ti(−p) and boundary conditions T0(p) = T1(p) and T1(p̄) = 0. Thus

T0(p) =
1

λ

(
1− eφp + e−φp

eφp̄ + e−φp̄

)
−
p2 − p2

σ2
and T1(p) =

1

λ

(
1− eφp + e−φp

eφp̄ + e−φp̄

)
where φ ≡

√
2λ

σ2

so that the average number of adjustment per period is

Na =
1

T0(0)
=

1

1
λ

(
1− e

φp
+e
−φp

eφp̄+e−φp̄

)
+

p2

σ2

(26)

The density function for the price gaps h(p) ∈ [0, p̄] solves

0 = f ′′0 (p) for 0 ≤ |p| ≤ p and 0 = −2λ

σ2
f1(p) + f ′′1 (p) for p < |p| ≤ p̄ or

f0(p) = C1 + C2 |p| for 0 ≤ |p| ≤ p and f1(p) = C3e
φ|p| + C4e

−φ|p| for p ≤ |p| ≤ p̄

where the 4 constants solve the 4 equations f0(p) = f1(p), f ′0(p) = f ′1(p), f1(p̄) = 0 and

1/2 =
∫ p

0 f0(p) dp+
∫ p̄
p
f1(p) dp which use that the density is differentiable (see the Appendix).

Then using that only the fraction 2
∫ p̄
p
f1(x)dx of cheap adjustment opportunities will

trigger an actual price change, the distribution of (non-zero) price changes x ∈ [−p̄,−p]∪[p, p̄]
is symmetric and is given by (we only report the formulas for x > 0){

density for a price change of size x ∈ [p, p̄) : λ
Na
f1(x)

mass point at p̄ 1
2
− λ

Na

∫ p̄
p
f1(x)dx

So the mean absolute price change is

E|∆p| = λ

Na

∫ p̄

p

x 2f1(x) dx+

1−
λ
∫ p̄
p

2f1(x)dx

Na

 p̄

and the j − th moment of price changes for j even is

E
(
∆pj

)
=

λ

Na

∫ p̄

p

xj 2f1(x) dx+

1−
λ
∫ p̄
p

2f1(x)dx

Na

 p̄j

H.1 Density function

To determine the 4 unknowns of the density function, using f1(p̄) = 0 and f ′0(p) = f ′1(p),
gives

C3 = −C4e
−2φp̄ and C2 = −C4φ

(
e−2φp̄+φp + e−φp

)
Next, using f0(p) = f1(p) gives

C1 = −C2p− C4

(
e−2φp̄+φp − e−φp

)
= C4

[
e−2φp̄+φp

(
φp− 1

)
+ e−φp

(
φp+ 1

)]
8



Finally we solve for C4 by imposing 1/2 =
∫ p

0 f0(p) dp+
∫ p̄
p
f1(p) dp i.e.

1

2
= C1p+

1

2
C2p

2 +
1

φ

[
C3

(
eφp̄ − eφp

)
− C4

(
e−φp̄ − e−φp

)]
or, substituting the expressions,

1

2C4

=
[
e−2φp̄+φp

(
φp− 1

)
+ e−φp

(
φp+ 1

)]
p− 1

2
φ
(
e−2φp̄+φp + e−φp

)
p2

−1

φ

[
e−2φp̄

(
eφp̄ − eφp

)
+ e−φp̄ − e−φp

]
I Homogeneity of IRF: Example

Figure 8: Impulse response of the CPI to a monetary shock of size δ = 1%: homogeneity
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P t; δ, S td(∆p) , Na, λ/Na = 0 .01

P t/2; 2δ, 2Std(∆p) , Na, λ/Na = 0 .01

P t; δ, S td(∆p) , Na, λ/Na = 0 .8

P t/2; 2δ, 2Std(∆p) , Na, λ/Na = 0 .8

Impulse response for economies with Na = 1.3 and std(∆pi) = 0.10. (see the text).

9



J More sectoral empirical results

Table 10: Statistics by type of goods and outlet category (un-standardized price changes)
Good type Outlet type Freq Avg |∆p| Std |∆p| Kurt (∆pi) Frac25
Food Hypermakets 27.56 8.89 11.88 10.25 30.79
Food Supermarkets 18.84 9.84 13.48 10.57 30.36
Food Traditional 7.52 7.84 8.48 11.68 15.63
Food Services 7.14 9.45 9.41 7.52 12.06
Durable goods Hypermakets 15.82 13.35 12.97 6.36 21.02
Durable goods Supermarkets 19.11 14.96 12.97 5.52 16.38
Durable goods Traditional 7.93 14.77 15.82 7.08 22.02
Durable goods Services 8.02 23.45 20.95 3.36 20.14
Clothing Hypermakets 8.09 45.13 27.42 1.89 17.41
Clothing Supermarkets 9.55 43.23 25.42 2.20 10.79
Clothing Traditional 12.68 41.85 24.23 2.24 7.31
Clothing Services 10.86 41.20 21.76 1.87 12.53
Other manufactured goods Hypermakets 15.69 9.40 12.92 11.25 32.71
Other manufactured goods Supermarkets 12.14 11.87 14.79 7.94 33.99
Other manufactured goods Traditional 8.22 11.51 16.40 8.16 34.59
Other manufactured goods Services 11.25 6.59 10.55 12.91 32.85
Energy Hypermakets 80.89 3.56 2.84 9.23 8.28
Energy Supermarkets 76.43 3.56 2.81 8.50 8.60
Energy Traditional 75.55 4.22 3.51 5.39 14.35
Energy Services 71.93 3.35 2.56 4.69 8.99
Services Hypermakets 5.13 13.84 14.32 7.71 22.64
Services Supermarkets 9.99 9.70 10.99 10.33 26.22
Services Traditional 6.34 7.74 10.13 19.97 19.54
Services Services 6.41 7.65 10.20 18.30 20.86

Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage is aroud
65% of CPI weight since rents, and prices of fresh food and centrally collected items (e.g. electricity, train
and airplane tickets) are not included in the dataset. Freq. denotes monthly frequency of price change
in percent. Size of price change ∆p are the first-difference in the logarithm of price per unit, expressed
in percent. Avg is average, Std standard devation, Frac25 the share of absolute price change that are
inferior to 0.25 Avg[|∆p|], Kurt denotes Kurtosis. Observations with imputed prices or quality change
are discarded. Moments are computed aggregating all prices changes using CPI weigths at the product
level.
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