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Abstract

This paper studies the importance of social interactions for the adoption of �nancial products.

We exploit a unique dataset of friendships among United States students and a novel estimation

strategy that accounts for possibly endogenous network formation. We �nd that not all social

contacts are equally important: only those with a long-lasting relationship in�uence �nancial

decisions. Moreover, the correlation in agents�behavior only arises among long-lasting ties in

cohesive network structures. This evidence is consistent with an important role of trust in

�nancial decisions. Repeated interactions generate trust among agents, which in turn aggregate

in tightly knit groups. When agents have to decide whether or not to adopt a �nancial instrument

they face a risk and might place greater value on information coming from agents they trust.

These results can help to understand the growing importance of face-to-face social contacts for

�nancial decisions.

Key words: �nancial market participation, social interactions, trust, network formation, endo-

geneity, bayesian estimation

JEL classi�cation: C11, C31, D1, D14, D81, D85, G11, M31

�Corresponding author. Cornell University, EIEF and CEPR. E-mail: epatacch@maxwell.syr.edu
yBanca d�Italia and Sapienza University of Rome. E-mail: edoardo.rainone@bancaditalia.it. The views expressed

here do not necessarily re�ect those of Banca d�Italia.



1 Introduction

What factors drive banking decisions? How people choose �nancial products? A recent study con-

ducted by the Financial Brand in 2011 reveals that, in the previous two years, the percentage of

consumers choosing online and o­ ine word-of-mouth (i.e. face-to-face) as the most important driver

of banking product and service purchases has increased signi�cantly, whereas the share of those

reporting past experience as the crucial factor slightly decreased.1 The face-to-face channel drives

about a third of consumers�checking, savings and mortgage account choices. It also explains about

one-quarter of credit card brand choices. When looking at the factors in�uencing banking decisions

by age groups, the study reveals that for young people (18-29 years old), face-to-face communication

is the most important factor. Its share of almost 50% largely dominates both past experience and

online word-of-mouth (both with shares lower than 30%). The low importance of past experience

is expected because of the young age of this group, but why face-to-face social contacts are more

important than online social contacts is not obvious This may be further puzzling for those who

think online/social media has tremendous power to in�uence a large number of consumers.

Using an unique data set of friendships among a representative sample of United States students,

we investigate the role of social interactions for �nancial decisions during the early adulthood.

Our identi�cation strategy hinges on three main features, which are novel to the �nancial litera-

ture. First, the uniqueness of our dataset lies in the fact that it is based on direct friends�nominations

and provides complete information on all nominated friends. This allows us to control not only for

individual characteristics but also for peers�characteristics, thus controlling for sorting (into peer

groups) more e¤ectively. Second, because we observe individuals over networks we can employ a

pseudo-panel data method and control for network �xed e¤ects. This strategy helps accounting for

sorting along unobserved dimensions, given that the in�uence of any factor which is constant across

individuals in the same network is washed away. It is particularly e¤ective in clearing out the error

term, when networks are small -as it is in our case. Third, we borrow from the most recent literature

on the econometrics of networks and model jointly network formation and behavior over networks.

This strategy enables to control also for the in�uence of individual-level unobserved factors that

might a¤ect both friends�choice and �nancial decisions.

Our analysis uncovers one main novel and important feature. We �nd that not all social contacts

are equally important: only those with a long-lasting relationship (strong ties) in�uence �nancial

decisions. Moreover, the correlation in agents�behavior only arises among strong ties in cohesive

network structures. The length of the relationship does not seem to proxy for its intensity. The

richness of our datasets allows us to distinguish between the two e¤ects, �nding that it is the length

of time spend together that matters the most.

This evidence is consistent with the literature in �nance showing an important role of trust in

�nancial decisions (see, most notably Guiso et al., 2008; Guiso et al., 2004).2 When agents have to

decide whether to adopt or not a �nancial instrument they face a risk and they might value more the

1The report is based on the Large Purchase Study conducted by S. Rado¤ Associates in summer 2010 on a
nationally representative sample of 1,000 U.S. adults aged 18 and up.

2Butler et al. (2012) highlight �nancial advice as an important example of trust-based exchange. In the US, 73%
of all retail investors consult a �nancial advisor before purchasing shares ( Hung et al., 2008).
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information coming from agents they trust. Our analysis thus helps understanding why face-to-face

social contacts are more important than online social contacts. Online word-of-mouth can be seen

as a less reliable source of information, since the agents spreading the information are not personally

known and consequently not necessarily trustworthy.

Financial and payment instruments are fundamental in the economy smooth functioning as a

support for money and asset transfers among agents. The adoption of novel and technology-based

�nancial instruments are trust-intensive decisions, people might trust other people when collecting

private information about a speci�c �nancial product.3 The role of social interactions is thus at the

crux of a full understanding of potential di¤usion of technological changes.4

There are ony a few papers that look at the importance of social interactions in �nance.

Hong et al. (2004) �nd that social households, as de�ned as those who interact with their neigh-

bors or attend church, are more likely to invest in the stock market than non-social households.

They present a model where social investors di¤er from non-socials in that their net cost of partic-

ipating in the market is in�uenced by the choices of their peers.5 Their model predicts an higher

participation rate among social investors than among non-socials, and also that a social multiplier

is likely to arise from the correlation between individual and peers��nancial decisions. Because

of the absence of information on precise social interaction patterns in their data (i.e. about who

interacts with whom), their empirical analysis focuses on testing the �rst model prediction only.6

Our analysis complements their �ndings, as it provides evidence on the existence and the extent

of the social multiplier in �nancial decisions. As Hong et al. (2004) argue, the presence of a social

multiplier may help understanding changes in aggregate stock-market participation over time. If

the increase of stock market participation in the last decades can be associated with a decrease in

participation cost, then social interactions may have had a crucial role by amplifying the cost shock.

Using a high-stakes �eld experiment conducted with a �nancial brokerage, Bursztyn et al. (2012)

�nd that both social learning and social utility channels have statistically and economically signi�cant

e¤ects on investment decisions. Indeed, a peer�s act of purchasing an asset would a¤ect one�s own

choice because one may acquire information from the choice of the peer (social learning)7 and because

one�s utility from possessing an asset may depend directly on the possession of that asset by another

individual (social utility).8 Although it is virtually impossible to investigate separately those two

mechanisms with non-experimental data, our paper presents novel evidence that it is not in contrast

3Algan and Cahuc (2014) characterize trust as an important driver of economic development, and identify �nancial
markets as one of the main channels through which trust in�uences economic outcomes of a society. The relationship
between individual trust and individual economic outcomes is investigated by Butler et al. (2010).

4Economists have been optimistic that currency will be replaced by technologically more advanced electronic
transfers and e-moneys of assorted varieties (see, e.g. Craig, 1999; Drehmann et al., 2002). The cost of a country�s
payment system is usually between 2% and 3% of GDP. Since the cost of an electronic payment ranges between
one-third to one-half that of a check or paper giro payment (see e.g. Gresvik, 2009; Humphrey and Berger, 1990),
promoting a shift to electronic would reduce this cost. In addition, the use of cash is a¤ected by the extent of illegal
activities including the avoidance of taxes (see e.g. Humphrey et al., 1996).

5Speci�cally, the cost for any social investor in a given peer group is reduced� relative to the value for an otherwise
identical non-social� by an amount that is increasing in the number of others in the peer group that are participating.

6They provide evidence consistent with a peer-e¤ects story by �nding that the impact of sociability is stronger in
states where stock-market participation rates are higher.

7Theoretical models of herding and asset-price bubbles focus on learning from peers� choices (see, Bikhchandani
and Sharma, 2000; Chari and Kehoe, 2004).

8A number of paper consider the "keeping up with the Joneses" hypothesis in explaining stock market behavior
(most notably, Gali, 1994; Abel, 1990; Campbell and Cochrane, 1999).
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with any of them. If one considers the learning mechanism, then our paper reveals that agents learn

more from peers they trust. A social utility -based interpretation instead suggests that long-lasting

(and hence trustworthy) social contacts are the relevant reference group. If a conformism (herding)

behavior or conspicuous consumption is driving the purchase of �nancial products ( i.e., if it is the

behavior relative to the peers that matters), then it is important to understand who the peers are

with whom each individual is compared to.

Our paper is organized as follows.

We begin by describing our data in Section 2. Section 3 presents our empirical model and

identi�cation strategy, whereas Sectin 4 discusses our main estimation results. We collect some

additional evidence in Section 5. In Section 6 we use simulation experiments to show the implications

of social interactions for the adoption of �nancial products. Section 7 concludes.

2 Data description

Our analysis is made possible by the use of a unique database on friendship networks from the

National Longitudinal Survey of Adolescent Health (AddHealth).9 The AddHealth survey has been

designed to study the impact of the social environment (i.e. friends, family, neighborhood and

school) on students�behavior in the United States by collecting data on students in grades 7-12 from

a nationally representative sample of roughly 130 private and public schools in the years 1994-1995

(Wave I). Every student attending the sampled schools on the interview day was asked to complete

a questionnaire (in-school data) containing questions on respondents�demographic and behavioral

characteristics, education, family background and friendship. A subset of students selected from

the rosters of the sampled schools - about 20,000 individuals - was then asked to complete a longer

questionnaire containing more sensitive individual and household information (in-home and parental

data). Those subjects were interviewed again in 1995�1996 (Wave II), in 2001�2002 (Wave III), and

in 2007-2008 (Wave IV).

From a network perspective, the most interesting aspect of the AddHealth data is the friendship

information, which is based upon actual friend nominations. Indeed, students were asked to identify

their best friends from a school roster (up to �ve males and �ve females).10 This information is

collected in Wave I and one year after, in Wave II. As a result, one can reconstruct the whole

geometric structure of the friendship networks and their evolution, at least in the short run. About

10% of the nominations in our data are not reciprocal, that is there are cases where agent i nominates

agent j as best friend but agent j does not list agent i among her/his best friends. We consider

two agents to be connected if at least one has nominated the other as best friend. Indeed, even if

agent j does not nominate i as best friend, it is reasonable to think that social interactions have

9This research uses data from AddHealth, a program project directed by Kathleen Mullan Harris and designed by
J. Richard Udry, Peter S. Bearman and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill,
and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human
Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment is
due to Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain
the Add Health data �les is available on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct
support was received from grant P01-HD31921 for this analysis.
10The limit in the number of nominations is not binding (even by gender). Less than 1% of the students in our

sample show a list of ten best friends, both in Wave I and Wave II.
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taken place.11 Such detailed information on social interaction patterns allows us to measure the

peer group more precisely than in previous studies by knowing exactly who nominates whom in a

network (i.e. who interacts with whom in a social group).

Moreover, one can distinguish between strong and weak ties in the data. We de�ne a strong tie

or relationship between two students if they have nominated each other in both waves (i.e. in Wave

I in 1994-1995 and in Wave II in 1995-1996) and a weak tie or relationship if they have nominated

each other in one wave only (Wave I or Wave II).

The information about �nancial decisions is collected in Wave III. Unfortunately, friends�nomi-

nations are not collected in this wave, as some individuals have left high school. However, more than

80% are still at school and the large majority of the individuals (more than 75%) declare that they

are still in contact with at least one friend nominated in the past wave. Of course, new friends can

be created at the time of Wave III, of which we have no information. The network of social contacts

during high school remains however a good approximation of face-to-face information they are (or

have been in a recent past) exposed to. The questionnaire of Wave III contains detailed information

on the use of �nancial and payment instruments like saving and checking accounts, credit cards,

loans, shares of stock in publicly held corporations, mutual funds, or investment trusts. Table 1

reports on the �nancial activity participation of the agents in our sample. More than 60% of the

students have a checking account, a saving account, and a credit card. About 40% have a credit card

debt and more than 30% has a student loan. Interestingly, 25% of individuals own shares of stock in

publicly held corporations, mutual funds, or investment trusts, including stocks in IRAs. For each

individual, we construct an index of �nancial activity participation using a traditional principal

component analysis, where the loadings of these di¤erent activities are used to derive a total score.

Our measure of �nancial activity is the �rst principal component. It explains over one-third of the

total inertia.12 The last column of Table 1 shows that each �nancial activity is positively correlated

with this variable, meaning that the larger the variety of �nancial products that an individual uses,

the higher the value of our indicator of �nancial participation. The index ranges between 0 and

2.64, with mean equal to 1.47 and substantial variation around this mean value (standard deviation

equal to 0.77).

[Insert Table 1 here]

A unique feature of our data is that, by matching the identi�cation numbers of the friendship

nominations to respondents� identi�cation numbers, one can obtain information on all nominated

friends. Such a data structure thus allow us to investigate the role of peers�adoption of �nancial

instruments on individual decisions.

Before proceeding with the formal analysis, we provide a heuristic description of a social network

to illustrate the relationship between �nancial activity and the network topology. Figure 1 shows a

representative network. Each node represents an agent, with the size of the node proportional to

11An alternative de�nition of network link that exploits the direction of the nominations does not substantially
change our results.
12PCA uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set

of values of linearly uncorrelated variables (called principal components). This transformation is de�ned in such a
way that the �rst principal component accounts for the largest portion of variability in the data.
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her/his level of participation to the �nancial market. The lines represent the connections between

the agents; the thicker they are, the longer the interaction relationship between pairs of agents.

As can be seen from the picture, agents in more cohesive groups characterized by a relatively high

density of ties tend to show a higher and more similar level of �nancial activity. This stylized fact

motivates our analysis in the following sections.

[Insert F igure 1 here]

The sample of individuals that are followed over time and have non-missing information for our

target variables both in Waves I, II and III consists of 12,874 individuals. As is common with

AddHealth data, a further reduction in sample size is due to the network construction procedure

- roughly 20% of the students do not nominate any friends and another 20% cannot be correctly

linked.13 In addition, in this study we focus on networks with size between 10 to 50 agents to cope

with the computational burden required by the use of Bayesian estimation procedures.14 Our �nal

sample consists of 569 individuals distributed over 21 networks.15 The mean and the standard devi-

ation of network size are roughly 27 and 13 students, respectively. Roughly 59% of the nominations

are not renewed in Wave II, and about 56% new ones are made. On average, these individuals have

23% strong ties and 76% weak ties. Further details on nomination data can be found in Table A1

in Appendix A. Table A1 also gives precise de�nitions of the variables used in our study as well as

their descriptive statistics.16

3 Empirical model and estimation strategy

3.1 The network model

Consider a population of n individuals partitioned into �r networks. For the nr individuals in the

rth network, their connections with each other are represented by an nr � nr adjacency matrix
Gr = [gij;r] where gij;r = 1 if individuals i and j are friends and gij;r = 0 otherwise.17 Let

G�
r = [g

�
ij;r] be the row-normalized Gr such that g�ij;r = gij;r=

Pnr
k=1 gik;r.

The �nancial activity of individual i in network r, yi;r, is given by

yi;r = �
Pnr

j=1 gij;ryj;r +
Pp

k=1 xik;r�k +
Pp

k=1(
Pnr

j=1 g
�
ij;rxjk;r)�k + �r + �i;r: (1)

In this model,
Pnr

j=1 gij;ryj;r denotes the aggregate �nancial activity of i�s direct contacts with its

coe¢ cient � representing the endogenous e¤ect, wherein an individual�s choice may depend on those

13The representativeness of the sample is preserved. Summary statistics are available upon request.
14Our results, however, do not depend crucially on these network size thresholds. They remain qualitatively

unchanged when changing the network size window slightly.
15We report in Appendix E our main results which are obtained using traditional estimation techniques on the more

extensive sample. Observe that even in this case we do not consider networks at the extremes of the network size
distribution (i.e. consisting of 2-3 individuals or more than 400) because peer e¤ects can show extreme values (too
high or too low) in these edge networks (see Calvo-Armengol et al., 2009).
16 Information at the school level, such as school quality and the teacher/pupil ratio, is also available. We do not

use it since our sample of networks is within schools and we include �xed network e¤ects in our estimation strategy.
17For ease of presentation, we focus on the case where the connections are undirected and no agent is isolated so

that Gr is symmetric and
Pn
j=1 gij;r 6= 0 for all i.
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of his/her contacts about the same activity.18 xik;r indicates the kth exogenous variable accounting

for observable di¤erences in individual characteristics (e.g. gender, race, education, income, family

background, etc.).
Pnr

j=1 g
�
ij;rxjk;r is the average value of the exogenous variables over i�s direct

contacts with its coe¢ cient �k representing the contextual e¤ect, wherein an individual�s �nancial

activity index may depend on the exogenous characteristics of his/her contacts. �r is a network-

speci�c parameter representing the correlated e¤ect, wherein individuals in the same group tend to

behave similarly because they face a common environment. �i;r is an i.i.d. error term with zero

mean and �nite variance �2.

Model (1) can be extended to the case of heterogeneous peer e¤ects. If we consider that each

"ego-network" (i.e. the social contacts of a speci�c agent) can be split into two di¤erent types (weak

and strong ties), then Model (1) becomes

yi;r = �S
nrP
j=1

gSij;ryj;r + �
W

nrP
j=1

gWij;ryj;r + x
0
i;r� (2)

+
1

gSi;r

nrP
j=1

gSij;rx
0
j;r�

S +
1

gWi;r

nrP
j=1

gWij;rx
0
j;r�

W + �r + �i;r;

where gSi;r =
Pn

j=1 g
S
ij;r and g

W
i;r =

Pn
j=1 g

W
ij;r are the total number of strong and weak ties each

individual i has in network r: In this model, �S and �W represent the endogenous e¤ects (i.e. the

e¤ect of strong and weak ties��nancial activity on one�s own �nancial choices respectively) while �S

and �W capture the impact of the exogenous characteristics of the peers - which are allowed to have

a varying e¤ect by peer-type.

3.2 Identi�cation and estimation

A number of papers have dealt with the identi�cation and estimation of peer e¤ects with network

data (see, e.g. Bramoullé et al., 2009; Liu and Lee, 2010; Calvó-Armengol et al., 2009; Lin, 2010; Lee

et al., 2010). Below, we review the crucial issues while explaining how we tackle them.

Re�ection problem In linear-in-means models, simultaneity in the behavior of interacting

agents introduces a perfect collinearity between the expected mean outcome of the group and its

mean characteristics. Therefore, it is di¢ cult to di¤erentiate between the e¤ect of peers�choice of

e¤ort (endogenous e¤ects) and peers�characteristics (contextual e¤ects) that do have an impact on

their e¤ort choice (the so-called re�ection problem; Manski, 1993). Basically, the re�ection problem

arises because, in the standard approach, individuals interact in groups - individuals are a¤ected

by all individuals belonging to their group and by nobody outside the group. In the case of social

networks, instead, this is nearly never true since the reference group is individual speci�c. For

example, take individuals i and k such that gik;r = 1. Then, individual i is directly in�uenced

by yi=
Pnr

j=1 gij;ryj while individual k is directly in�uenced by yk=
Pnr

j=1 gkjyj , and there is little

chance for these two values to be the same unless the network is complete (i.e. everybody is linked

with everybody).19

18Given we are modeling the �nancial activity of agents it seems more appropriate to consider an "aggregate" model
instead of an "average" one. The �rst type of models allows the number of peers to be relevant in shaping the agents�
activity, while the second do not consider this information, i.e. it uses average values of peers� activity (see Liu
et al., 2011).
19Formally, social e¤ects are identi�ed (i.e. no re�ection problem) if G2

r 6= 0, where G2
r keeps track of indirect
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Correlated e¤ects While a network approach allows us to distinguish endogenous e¤ects from
correlated e¤ects, it does not necessarily estimate the causal e¤ect of peers�in�uence on individual

behavior. The estimation results might be �awed because of the presence of peer-group speci�c

unobservable factors a¤ecting both individual and peer behavior. For example, a correlation between

the individual and the peer-school performance may be due to an exposure to common factors (e.g.

having good teachers) rather than to social interactions. The way in which this has been addressed

in the literature is to exploit the architecture of network contacts to construct valid IVs for the

endogenous e¤ect. Since peer groups are individual speci�c in social networks, the characteristics

of indirect friends are natural candidates. Consider the network in Figure 2. Individual k a¤ects

the behavior of individual i only through her/his common friend j, and she/he is not exposed to

the factors a¤ecting the peer group consisting of individual i and individual j. As a result, the

characteristics xk of individual k are valid instruments for yj , the endogenous outcome of j.

[Insert F igure 2 here]

Sorting In most cases, individuals sort into groups non-randomly. For example, students whose
parents are low-educated (or worse than average in unmeasured ways) would be more likely to sort

with low human capital peers. If the variables that drive this process of selection are not fully ob-

servable, potential correlations between (unobserved) group-speci�c factors and the target regressors

are major sources of bias. The richness of social network data (where we observe individuals over

networks) provides a possible way out by the use of network �xed e¤ects. Network �xed e¤ects are

a remedy for the selection bias that originates from the possible sorting of individuals with simi-

lar unobserved characteristics into a network. The underlying assumption is that such unobserved

characteristics are common to the individuals within each network. This is reasonable in our case

study where the networks are quite small (see Section 3).

However, if there are individual-level unobservables that drive both network formation and out-

come choice, this strategy fails. For example, one can envision the existence of unobservable (or

unmeasurable) factors, such as risk aversion or optimism, which are possibly relevant both in social

contexts and for �nancial decisions making. Recently, Goldsmith-Pinkham and Imbens (2013) and

Hsieh and Lee (2011) highlight the fact that endogeneity of this sort can be included in the model.

Individual-level correlated unobservables would motivate the use of parametric modeling assump-

tions and Bayesian inferential methods to integrate a network formation with the study of behavior

over the formed networks. The next section contains the results which are obtained by applying this

approach to our case.

3.3 Endogenous Network Formation

Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee (2011) propose two slightly di¤erent

ways to estimate peer e¤ects with unobservables driving both link formation and outcome.20 In

connections of length 2 in each network r. This means that we need at least two individuals in the networks that have
di¤erent links. This condition is generally satis�ed in every real-world network.
20The Bayesian approach allows to model couple-speci�c unobserved heterogeneity, for each possible couple in

the sample. A traditional Heckman-type selection model is con�gured to capture individual-speci�c unobserved
heterogeneity. The inclusion of alter heterogeneity would imply the computation of high-dimensional multivariate

7



Goldsmith-Pinkham and Imbens (2013) unobservables are dichotomous and only one network is

considered. As we have multiple networks in our data, we follow Hsieh and Lee (2011).21 They

present a model with one peer-type - which correspond to Model (1). We implement here an extension

of their method to the case of heterogeneous peer e¤ects. If there is an unobservable characteristic

that drives the choice of, say, strong ties and is correlated with �i;r then gSij;r is endogenous - estimates

of Model (2) are biased. By failing to account for similarities in (unobserved) characteristics, similar

behaviors might mistakenly be attributed to peer in�uence when they simply result from similar

characteristics. Let zi;r denote such an unobserved characteristic which in�uence the link formation

process. Let us also assume that zi;r is correlated with �i;r in Model (2) according to a bivariate

normal distribution

(zi;r; �i;r) � N
  

0

0

!
;

 
�2z �"z

�"z �2"

!!
: (3)

Agents choose social contacts at two points in time, t-1 and t. At each time, agent i chooses to be

friends with j according to a vector of observed and unobserved characteristics in a standard link

formation probabilistic model

P (gij;r;t�1 = 1jxij;r; zi;r; zj;r; 
t�1; �t�1) = �(
0;t�1 +
X
k

jxi;r � xj;rj
k;t�1 + jzi;r � zj;rj�t�1); (4)

and

P (gij;r;t = 1jxij;r; zi;r; zj;r; gij;r;t�1; 
t; �t; �) = �(
0;t+�gij;r;t�1+
X
k

jxi;r�xj;rj
k;t+jzi;r�zj;rj�t);

(5)

where �(�) is a logistic function. Homophily behavior in the unobserved characteristics implies that
�� < 0; where � = t� 1; t, this meaning that the closer two individuals are in terms of unobservable
characteristics, the higher is the probability that they are friends. The same argument holds for

observables. If �"z and �� are di¤erent from zero, then networks gSij;r and g
W
ij;r in model (1) are

endogenous. From Model (4) - (5), the probability of observing a weak tie is

P (gWij;r = 1jxij;r; zi;r; zj;r; 
t; �t; �; 
t�1; �t�1)

= P (gij;r;t = 1jxij;r; zi;r; zj;r; 
t; �t; �; gij;r;t�1 = 0)� P (gij;r;t�1 = 0jxij;r; zi;r; zj;r; 
t�1; �t�1)

+P (gij;r;t = 0jxij;r; zi;r; zj;r; 
t; �t; �; gij;r;t�1 = 1)� P (gij;r;t�1 = 0jxij;r; zi;r; zj;r; 
t�1; �t�1)

whereas the probability of observing a strong tie is

P (gSij;r = 1jxij;r; zi;r; zj;r; 
t; �t; �; 
t�1; �t�1)

= P (gij;r;t = 1jxij;r; zi;r; zj;r; 
t; �t; �; gij;r;t�1 = 1)� P (gij;r;t�1 = 1jxij;r; zi;r; zj;r; 
t�1; �t�1):

normal integrals, which is unfeasible using standard methods.
21Another di¤erence between those two procedures is that Goldsmith-Pinkham and Imbens (2013) set the same

unobservable in both link formation and outcome equation while Hsieh and Lee (2011) use di¤erent unobservables for
those equations and let them to be correlated.
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In this way, we have modeled the probability of being a strong or weak ties including unobservables

that are allowed to be correlated with the error term in the outcome equation.22 Joint normality in

(3) implies E(�i;rjzi;r) = �"z
�2z
zi;r, when conditioning on zi;r. Hence, the outcome equation is

yi;r = �S
nrP
j=1

gSij;ryj;r + �
W

nrP
j=1

gWij;ryj;r + x
0
i;r� +

1

gSi;r

nrP
j=1

gSij;rx
0
j;r�

S (6)

+
1

gWi;r

nrP
j=1

gWij;r;tx
0
j;r�

W + �r +
�"z
�2z
zi;r + ui;r;

where ui;r � N(0; �2z �
�2"z
�2z
). Note that if no correlation is at work (�"z = 0), then estimating

equation (6) or (2) is equivalent. Given the complexity of this framework, it is convenient to

simultaneously estimate the parameters of equations (4), (5) and (6) with a Bayesian approach.

Bayesian inference requires the computation of marginal distribution for all parameters. However,

since this requires integration of complicated distributions over several variables, a closed form

solution is not readily available and Markov Chain Monte Carlo (MCMC) techniques are usually

employed to obtain random draws from posterior distributions. The unobservable variable (zi;r) is

thus generated according to the joint likelihood of link formation and outcome - it is drawn in each

MCMC step together with the parameters of the model. The Gibbs sampling algorithm allows us to

draw random values for each parameter from their posterior marginal distribution, given previous

values of other parameters. Once stationarity of the Markov Chain has been achieved, the random

draws can be used to study the empirical distributions of the posterior.23

4 Estimation results

The aim of our empirical analysis is twofold: (i) to assess the presence of peer e¤ects in the adoption

of �nancial products, (ii) to di¤erentiate between the impact of weak and strong social ties.

4.1 Peer e¤ects

Table 2 collects the estimation results of model (1), that is without distinguishing between strong

and weak ties. Columns (1) to (6) report the results when network exogeneity is assumed, with

di¤erent estimation methods. Column (7) shows the Bayesian estimation results, which account

for a possible network endogenity. Columns (1) to (3) report OLS estimates with an increasing set

of controls. Column (1) includes individual socio-demographic characteristics (age, race, gender,

education, employment status, occupation, parental education, marital status, family background

variables, etc.), while column (2) extends the number of control variables to include peers�character-

istics. This speci�cation addresses the concern that a correlation between own and peers�behavior

is simply driven by similar (observable) characteristics between peers. Finally, column (3) adds

network �xed e¤ects, thus accounting for any further unobserved factors common to all individuals

in a social group. The issue addressed here is that correlated actions between connected agents may

be simply driven by common shocks or sorting into groups according to network-speci�c unobserved

22The procedure can be easily extended to include more than one unobservable factor.
23See Appendix B for more details on the estimation procedure. An introduction to Monte Carlo methods in

Bayesian econometrics can be found in Chib (1996) and Robert and Casella (2004).
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characteristics. Column (4) presents the estimation results using ML, that is when the simultaneity

which is endemic in spatial models is accounted for.24 Columns (5) and (6) are devoted to the

IV estimates. As explained in Section 3.2, the IV strategy that is now standard in network model

estimation consists of exploiting network architecture and uses peers of peers�characteristics as in-

struments for peers�behavior. Table 3 reports the �rst stage results. The F-statistic con�rms the

relevance of the IVs. Because of the many-IVs bias that may arise in estimating spatial models with

IVs, we follow Liu and Lee (2010) and also use a bias-corrected IV.25 Finally, column (7) reports

means and standard deviations of the posterior distributions of the parameters of Model (4) - (5)

- (6), that is with correlated unobservables, estimated by Bayesian methods. We let our Markov

Chain run for 80,000 iterations, discarding the �rst 7,000, even though ergodicity of the Markov

Chain is achieved quite quickly. It appears that the Bayesian estimates (column (7)) are remarkably

similar to the ones that are obtained using the IV biased-corrected (column (6)). This suggests

that unobservable factors in�uencing the link formation are not relevant in the �nancial decisions of

agents. Indeed, the estimated correlation between unobservables in the outcome and link formation

equations (�"z) is not signi�cantly di¤erent from zero. For completeness, Figures 3 and 4 show the

kernel density estimates of the posterior distributions (left panel) and the Markov chain (right panel)

of � and �"z. The time-series of the values of the chains (right panel) reveals that stationarity has

been achieved.26 Table 2 shows that the coe¢ cients are quite stable across columns.27 It reveals

that the e¤ect of peers��nancial activity on own activity is signi�cant and positive, i.e. there are

peer e¤ects in �nancial activity. When observable and unobservable characteristics are controlled

for (estimates in column 7), in an average group of four agents, a standard deviation increase in the

level of �nancial activity of each of the peers translates into a roughly 22% increase of a standard

deviation in the individual�s �nancial activity. In terms of the di¤erent �nancial activities embedded

in the composite index, the estimate implies an increase of about 9% in the individual probability

of getting a credit card, 6% in the probability of opening a checking or saving account, 4% in the

probability of buying shares, 3% in the probability of getting a loan, and 8% in the probability of

having a credit card debt.28 These are non-negligible e¤ects, especially given our long list of individ-

ual and peers�controls.29 Observe that the policy maker can rarely manipulate peer outcomes. Peer

e¤ects can be seen as a mechanism through which an exogenous shock could propagate through the

networks. We devote Section 6 to analyze these di¤usion mechanisms via Monte Carlo simulations.

24Spatial models are simultaneous equation models where peers�behavior depends on own behavior. This implies
that

Pnr
j=1 gij;ryj;r is correlated with the error term "i;r in equation (1). ML accounts for this simultaneity as it is

based on the reduced form. Network �xed e¤ects cannot be included in the model because the group mean yr is not
a su¢ cient statistics for �r when the adjacency matrix is not row-normalized (see Lee et al., 2010).
25See Appendix C for more details. For the sake of brevity, the appendix focuses on the case with weak and strong

ties. The case with one peer e¤ect is just a special case, that is when �S = �W .
26The kernel densities and the time-series of the values of the chain for the parameters of the control variables are

reported in Appendix D, Figure D1-D3.
27The estimate of peer e¤ects (�) using OLS is not surprisingly upper-biased. The IV estimates also su¤er from a

bias due to the large number of IVs, that are employed when estimating a spatial model (see Appendix C)
28We compute these estimated probabilities using the marginal e¤ect of an increase of the �nancial activity index

on the probability of adopting each of the di¤erent �nancial products. Marginal e¤ects are evaluated at the sample
mean: m(�) = �(x�)�, where �(�) is the normal probability density function. Results do not change signi�cantly if
the average of individual marginal e¤ects is instead considered.
29Although the computational burden requested by the Bayesian procedure prevents us from performing this type

of estimation on the entire sample, we report in Appendix E, Table E1, the OLS, ML and IV results for the entire
sample.
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[Insert Tables 2 and 3 here]

[Insert F igures 3 and 4 here]

4.2 Peer e¤ects by peer-type

Table 4 collects the estimation results of Model (2). It has a structure similar to Table 2.30 Column

(4) shows the Bayesian estimation results, which account for possible endogeneity of strong and weak

tie networks. The results in Table 4 do not change qualitatively across columns and reveal that the

�nancial choices of weak ties have no signi�cant impact on individual �nancial activity, while the

�nancial choices of strong ties do have a positive and signi�cant e¤ect on own ones.31 OLS and IV

estimates seem to overestimate the e¤ects. The IV bias-corrected and Bayesian estimates are very

close to each other. This also means that also unobservable factors in�uencing the strength of a tie

are not relevant in the �nancial decisions of agents (�"z is not signi�cantly di¤erent from zero).32

Given that our networks are quite small in size, it is thus likely that any correlated unobserved

factor is already captured by the network �xed e¤ects. The upper panel of Figures 5 shows the

kernel density estimates of the posterior distributions of �S and �W . Two features of note are: (i)

the distribution of �W is centered on zero; (ii) the distribution of �S is shifted towards the right.33

This con�rms that the e¤ect of weak ties is virtually zero and that of strong ties is di¤erent from

zero and positive. The lower panels depict the time-series of the values of the chain, which reveal

that stationarity has been achieved.

In terms of magnitude, in an average group of four strong ties, a standard deviation increase in

the �nancial activity of each of the peers translates into a 27% increase of a standard deviation in

the individual�s �nancial activity. This yields increases of about 26% in the probability of getting a

credit card, 7% in the probability of opening a checking or saving account, 5% in the probability of

buying shares, 4% in the probability of getting a loan, and 10% in the probability of having a credit

card debt.

[Insert Table 4 and Figure 5 here]

4.3 Network Formation

For completeness, Table 5 reports on the factors driving link formation in Wave I and II. It shows

the complete list of estimation results of Model (4)-(5)-(6), that is when network formation and

30For brevity, we do not report here the ML estimation results. They are similar to the IV-bias corrected estimation
results.
31When estimating model (2) including only strong ties (i.e. gWij;r = 0), we obtain comparable results.
32Observe that we model unobserved factors at the individual level. This means that the unobserved factors a¤ecting

weak and strong tie formation may be di¤erent.
33Borrowing from decision theory, we can say that �S stochastically dominates �W , that is P (�S � x) � P (�W �

x); 8x 2 R (�rst-order stochastic dominance). Figure 5 also shows that the distribution of �S is negatively (left)
skewed. This is due to the condition on the autoregressive parameter in spatial models (peer e¤ect parameter) that
guarantees matrix inversion in Model (2). More speci�cally, the parameter space is (-0.10,0.10) for our network. While
this is never binding for �W , �S is constrained to be below the upper bound. See Appendix B for model details.
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behavior over network are simultaneously estimated.34 The estimates of the outcome equation (�rst

column) are the ones in column (4) of Table 4. Looking at the estimates of the network formation

model in the last two columns, one can see that all the signi�cant coe¢ cients are negative. This

evidence reveals homophily behavior- the closer two agents are in terms of observable characteristics

the higher is the likelihood of a link between them. Interestingly, the factors predicting the existence

of a link slightly change between Wave I and Wave II. While family background characteristics (such

as parental education and income) are important in Wave I, when the student grows up individual

characteristics (such as own income and employment status) acquire more importance. Importantly,

it appears that there are unobserved factors which are relevant in network formation both for Wave

I and II. Those factors, however, are not correlated with the error term in the outcome equation.

Indeed, the estimate of �"z is not statistically signi�cant. In our case where networks are quite small,

the inclusion of network �xed e¤ects is likely to control for correlated unobservables. As a result,

the use of traditional estimation strategies with network �xed e¤ects that treat network formation

as exogenous are not likely to produce biased coe¢ cient estimates. This is why our estimates in

columns (6) and (7) of Table 2 and in columns (3) and (4) in Table 4 are similar.

[Insert Table 5 here]

5 Understanding the mechanism

By exploiting the recent advances in the econometrics of social networks, our estimation strat-

egy accounts for a possible sorting of agents into networks and controls for unobserved individual

characteristics. These unobserved factors possibly capture characteristics such as risk aversion and

optimism. Having thus ruled out possible e¤ects of confounding factors, we should believe in a

causal e¤ect of peers�behavior on individual behavior which depend on the length of the friendship

relationship. Thus, the relevant question is why strong ties are important whereas weak ties are not.

One possibility is that when agents have to decide whether to adopt a �nancial instrument, they

face a risk and place higher value on information from (or the behavior of) agents they trust more.

Trust has been widely studied as an important driver of �nancial decisions (Guiso et al., 2004; Guiso

et al., 2008) . The greater the trust in a social tie, the greater the trust in her choice. Repeated

interactions play an important role in determining the level of trust. Several theoretical papers

explore the role of information transmission and trust formation in communities and networks. Bal-

maceda and Escobar (2013) model cohesive communities as complete social networks emerging from

optimal agents�choices. Agents maximize common knowledge and consequently minimize defection

temptation. In their conceptual framework where investors observe whether their direct neighbors

invest or not, complete networks are optimal. Their repeated game model with community-based

information �ow let trust emerge among agents. The repeated interactions horizon generates a

bilateral incentive in letting relationships with more trusted agents surviving over time. Karlan

et al. (2009) view network connections as a "social collateral" and argue that the level of trust is

34The kernel densities and the time-series of the values of the chain for the parameters of the network formation
equation at time t (equation (5)) are reported in Appendix D, Figure D4.
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determined by the structure of the entire network. They focus on borrowing and lending optimal

choices in informal contract enforcement by agents joining the network. The utility derived from

links prevents agents from acting unfairly and lets them repay the borrowed value. Kandori (1992)

focuses on the role of "social pressure" and "reputation" in informal contracts. Rewarded honesty

and punished defection incentivize agents to behave correctly. This incentive is created by repeated

interactions among agents.35 In his model, enforcement mechanisms work best in long-term rela-

tionships. Strong correlation patterns in the behavior of connected agents is driven by the presence

and circulation of private information among agents.36 ;37 Lippert and Spagnolo (2011) explore sce-

narios characterized by Word-of-Mouth Communication. Their game design lets "network closure"

be particularly relevant for sustainability of agents relationships, providing a micro-foundation for

the idea of "embeddedness" from Granovetter (1985).

The common vein of these theoretical models is broadly that repeated interactions generate trust

among agents, who in turn aggregate in cohesive network structures. If our indicator of strong ties

captures high level of trust between agents, then an evidence consistent with this line of reasoning

should be the �nding of an e¤ect of strong ties on individual �nancial decisions in cohesive network

structures only.

Jackson et al. (2012) use the concept of "supported" links to de�ne a "social quilt", i.e. a union

of groups of agents where everybody is connected with everybody else (cliques). They provide an

analysis of repeated interactions where an individual�s decisions are in�uenced by the network pattern

of behavior in the community. Bilateral interactions may not provide natural self-enforcement of

cooperation. Any robust equilibrium network must exhibit a speci�c trait: each of its link (bilateral

connection) must be "supported". That is, if some agent i is linked to an agent j; then there must

be some agent k linked to both of them. Agents with "supported" links tend to form tightly knit

groups characterized by a relatively high density of ties.38

The �rst panel of Table 6 reports the estimation results of Model (2) when strong and weak ties

are split according to their level of support. The results con�rm our conjecture. It indeed appears

that the signi�cant correlation between agents��nancial decisions arises among strong ties in highly

cohesive network structures. Observe that the network structure per se is not a relevant driver of

behavior correlation. Indeed, weak ties in highly cohesive networks do not show any similar behavior.

It is only when agents have long-lasting friendship relationships that a signi�cant relationship arises.

This evidence is thus in line with the idea that a trust-based mechanism is driving our results.

Another possible explanation is that our indicator of strong ties, which is based on the length

of the friendship relationship, simply captures the frequency of interactions. This story is not in

35The Folk Theorem in the repeated game literature ( Rubinstein, 1979; Fudenberg and Maskin, 1986) provides a
formal model of personal enforcement, showing that any mutually bene�cial outcome can be sustained as a subgame-
perfect equilibrium if the same set of agents frequently play the same stage game ad in�nitum.
36The role of private information in a community of buyers with word-of-mouth communication is also highlighted

by Ahn and Suominen (2001). In this model, buyers receive signals from other agents and adapt their willingness to
buy a seller�s product. This mechanism incentivizes the seller to produce high quality output.
37See also Greif et al. (1994) for an analysis of the role of bilateral and multilateral reputation mechanisms in the

organization of economic transactions.
38An alternative measure of network connectivity is the clustering coe¢ cient. While clustering is a node-speci�c

measure, support considers pairs of nodes (link-speci�c measure). Thus, support is more appropriate in our analysis,
which is based on bilateral interaction-types (weak or strong). Observe that networks with an high level of clustering
will necessarily display a high fraction of supported links, whereas the converse is not true.
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contrast with our trust-based mechanism described above. Indeed, to the best of our knowledge

there is no theoretical model or empirical evidence indicating that the repeated interactions that

generate trust should be measured using the length or the frequency of the interactions. However,

it is important to understand whether correlated choices of �nancial products in social networks are

to be found only between agents with long lasting friendship ties, or if random, intense encounters

in a short amount of time could also be in�uential. The richness of information provided by the

AddHelath allows us to shed light on this issue. More speci�cally, the Addhealth questionnaire asks

detailed questions about the frequency of interactions for each nominated friend. The questions

listed are: "Did you go to {NAME}�s house during the past seven days?"; "Did you meet {NAME}

after school to hang out or go somewhere during the past seven days?"; "Did you spend time with

{NAME} during the past weekend?"; "Did you talk to {NAME} about a problem during the past

seven days?"; "Did you talk to {NAME} on the telephone during the past seven days?". We de�ne

a high frequency friend if the respondent has shared at least two of these activities with the friend,

and low frequency friend otherwise. The second panel of Table 6 shows the estimation results of

Model (2) when strong and weak ties are split according to the frequency of interactions. It appears

that the frequency of interactions does not matters at all. The weak tie e¤ect remains not di¤erent

from zero, regardless of the strength of interactions, whereas the strong tie e¤ect remains always

statistically signi�cant, with no statistical signi�cance in terms of magnitude between high and low

frequency strong tie.39

[Insert Table 6 here]

6 Policy experiments

Using our data and the estimates of the parameters in Model (2),40 we perform Monte Carlo simula-

tions to asses the extent to which the presence of social interactions can alter the e¤ect of exogenous

shocks on the �nancial activity of agents. The simulated shocks are variations in income, which is

one of the most important determinants of �nancial activity. In a simplistic view, an increase in

income can be interpreted as a decrease in participation cost, ceteris paribus. Our goal is to provide

evidence about the individual and aggregate implications of strong and weak ties e¤ects.

Our analysis can be used to understand which agents (or which type of agents) should be targeted

to maximize the aggregate �nancial activity participation or to converge to a desired distribution of

individual �nancial activity.

Four exercises are implemented. The �rst three exercises evaluate aggregate e¤ects, i.e. the

change in the sum of agents��nancial activity after a given intervention. In the �rst exercise the

intervention is an increasing income shock for a �xed number of agents (intensive margin) who

have a di¤erent number of strong ties. In the second, the intervention is a �xed income shock for

an increasing number of agents (extensive margin) who have a di¤erent number of strong ties. In

the third exercise, we increase the income of a �xed number of agents who have no strong ties

39A formal t-test on the di¤erence between high and low frequency strong ties in a pooled model with interaction
terms returns a value of 1.45.
40The Bayesian estimates in column (4) of Table 4 are used.
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while decreasing the income of agents who have strong ties and look at the �nal aggregate �nancial

activity. The fourth exercise reports on individual e¤ects - we increase the income of a given agent

while decreasing the income of her/his peers and look at the consequences on her/his individual

�nancial activity.

Figure 6 depicts the results for the �rst two exercises. The surfaces represent the variation of

aggregate �nancial activity in our sample after the simulated shocks. Panel (a) depicts the e¤ect

of an increasing positive shock of income (h, x-axis) on aggregate �nancial activity for agents who

have di¤erent number of strong ties (ns, y-axis), holding constant the number of shocked agents.

The shock intensity is administered in terms of the estimated standard deviation in our sample

(std points). Each point of the surface is an average coming from 500 replications, where in each

replication we shock a random sample of nodes of the same numerosity.41 It appears that the higher

is the number of strong ties the shocked agents have, the higher is the aggregate e¤ect of the income

shocks. The ampli�cation e¤ects of strong ties is sizable. Indeed, the aggregate e¤ect of an income

shock of 10 std points administered to agents that have 4 strong ties is the same as the one of 20 std

points administered to agents without strong ties. In panel (b), we increase the number of shocked

agents (nh, y-axis), holding constant the shock intensity.42 It appears that the aggregate �nancial

activity is higher if the shock is administered to agents with an higher number of strong ties. Indeed,

shocking 10 agents who have 4 strong ties produces the same aggregate result as shocking 20 agents

who have no strong ties. If policy interventions of this type have a cost, then our results show that

targeting highly connected agents can help cutting costs while maintaining the same e¢ cacy. Peer

e¤ects can in fact act as a mechanism through which a shock is propagated (and ampli�ed) through

the network.

Figure 7 shows how the network structure of social ties matters when negative and positive

income shocks hit the population. The surface again represents the variation of aggregate �nancial

activity. In this numerical experiment, we increase the income of a �xed number of agents who

have no strong ties (i.e. with no network di¤usion of their shock),43 and decrease the income of an

increasing number of agents who have a di¤erent number of strong ties (i.e. with network di¤usion

of their shock).44 We observe that the higher the number of strong ties each shocked agent has, the

smaller the number of shocked agents needed to render null the positive shock at the aggregate level.

This evidence helps to explain why some policies targeting a large number of agents did not reach

the desired e¤ects. Even if the observable costs of using, say, a new digital credit card are lower

than the cost incurred when using a traditional product, the social equilibrium may fail to predict

the expected rate of adoption of the new credit card. Social interaction e¤ects amplify whatever

aggregate local preferences are induced by exogenous cross-product di¤erences in participation costs.

Many agents may be discouraged from adopting the new product largely because they do not know

41The number of shocked agents is chosen in a way such that for each category of strong ties we use a numerosity not
larger than the real one. In our case, the minimum number of agents for each category of strong ties is 13 (when the
number of strong ties is equal to 4). We then shock 13 randomly chosen nodes for each category at each replication.
The results, however, remain qualitatively unchanged when changing the number of shocked nodes.
42The shock intensity is 2 std points. The results remain qualitatively change when changing the shock intensity.
43We set this number equal to 13, as in our previous exercise. The qualitative results, however, do not depend on

this number.
44The shocks are symmetrical and equal to +2 std points for agents who have no strong ties and equal to -2 std

points for those who do have strong ties.
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anybody else that they trust who has adopted the product. From Figure 7 one can see that if highly

connected agents have a negative shock, then the aggregate �nancial activity decreases even if there

is a higher number of agents in the economy that experience a positive shock, provided that those

agents have lower social interactions. For example, Figure 7 reveals that if 11 agents who have 4

strong ties are negatively shocked and 13 agents who have not strong ties are positively shocked,

then the aggregate �nancial activity on average decreases. Social interactions may be responsible

for this (seemingly) paradoxical result.

In order to better understand this result, in our last simulation exercise we consider the e¤ects at

the individual level of individual and peers�shocks. Each point of the surface represented in Figure

8 depicts the variation of individual �nancial activity after the simulated shocks averaged over 500

replications. In each replication, we randomly extract an individual i who has a certain number of

strong ties, increase her/his income by a �xed amount, and decrease each of her/his peer�s income

by an increasing amount.45 The exercise is implemented for agents who have a di¤erent number of

strong ties. We �nd that the higher the number of strong ties the agent has, the lower the magnitude

of the negative shock given to the peers that is needed to cancel the e¤ect of the individual positive

shock. For example, Figure 8 shows that if an agent has 1 strong tie, then she/he needs the peer�s

negative shock to be double in absolute value to counterbalance the e¤ect of her/his positive one.

However, if the agent has 4 strong ties, it is enough a negative shock equal to one �fth of one�s own

of each of them .

[Insert F igures 6; 7 and 8 here]

7 Conclusions

In spite of the common consensus about the importance of word-of-mouth on �nancial product

purchases, the �nance literature provides little evidence on the role of peer-to-peer communications.

Much of the debate is about how to use social media innovatively and e¤ectively. Yet, a large number

of consumers rely on o­ ine word-of-mouth when making banking product and brand choices, in

particular young customers. The scarcity of studies on face-to face peer e¤ects in �nance is mainly

motivated by the lack of appropriate data on personal contacts. In addition, endogeneity and reverse

causality issues make the identi�cation and estimation of peer e¤ects a challenging empirical exercise.

This paper tries to �ll this gap. By employing detailed data on each individual and friends�

�nancial decisions for a representative sample of US students and a novel identi�cation strategy,

we are able to uncover the existence and extent of heterogeneous peer e¤ects in �nancial decisions.

Not all social contacts are equally important. Our evidence is consistent with the hypothesis that

when agents have to decide whether or not to adopt a �nancial instrument they face a risk and

they might value the information more coming from agents they trust. A social multiplier may

amplify consumers�preferences towards certain products. Even if the direct participation costs of

adopting, say, a novel digital credit card are lower than the costs incurred with traditional cards,

many consumers may be deterred from adopting the new technology largely because they do not

45We set the individual income shock equal to 10 std points, while the shock given to the peers varies from -1 to
-20 std points. The qualitative results remain qualitatively unchanged when changing such intensities.
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know anybody they trust who does so. Thus, if social interaction helps to increase �nancial market

participation, then an e¤ective policy should not only be measured by its direct e¤ects but also by

the group interactions it engenders.
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Appendix

Appendix A: Descriptive Statistics

Table A1: Data Description and Summary Statistics

Variables Description Average (Std.Dev.) Min - Max

Financial Variables
Checking Account Dummy variable taking value one if the respondent has a checking account. 0.76 (0.42) 0 - 1
Saving Account Dummy variable taking value one if the respondent has a saving account. 0.63 (0.48) 0 - 1

Shares
Dummy variable taking value one if the respondent has any shares of stock
in publicly held corporations, mutual funds, or investment trusts, including
stocks in IRAs

0.24 (0.43) 0 - 1

Credit Card Dummy variable taking value one if the respondent has credit card. 0.61 (0.49) 0 - 1

Student Loan Dummy variable taking value one if the respondent has any student loans
or other educational loans that have not yet been paid.

0.33 (0.47) 0 - 1

Credit Card Debt Dummy variable taking value one if the respondent has any credit card
debt.

0.40 (0.49) 0 - 1

Financial Activity Index The financial activity index is measured using the respondent’s financial
activities listed above. The index is the first principal component score.

1.47 (0.77) 0 - 2.64

Financial Activity Index of
Peers

Sum of financial activity index of respondent’s peers. 5.76 (1.81) 0 - 15.10

Individual Socio-demographic Variables
Male Dummy variable taking value one if the respondent is male. 0.47 (0.49) 0 - 1
Latino Race dummies. “White” is the reference group 0.12 (0.33) 0 - 1
Black // 0.16 (0.37) 0 - 1
Age Grade of student in the current year. 21.65 (1.58) 18 - 27

Mathematics Score
Mathematics score. Score in mathematics at the most recent grading pe-
riod, coded as A=4, B=3, C=2, D=1. The variable is zero if missing, a
dummy for missing values is included.

2.15 (1.10) 0 - 4

GPA

The school performance is measured using the respondent’s scores received
in wave II in several subjects, namely English or language arts, history
or social science, mathematics, and science. The scores are coded as 1=D
or lower, 2=C, 3=B, 4=A. The final composite index is the first principal
component score.

1.42 (0.72) 0 - 3.31

Married Dummy variable taking value one if the respondent is male. 0.16 (0.37) 0 - 1
Family Size Number of people living in the household 3.36 (1.96) 0 - 10
Employed Dummy variable taking value one if the respondent is employed. 0.70 (0.46) 0 - 1

Occ. Manager Occupation dummies. Closest description of the job. Reference category is
”other occupation”

0.05 (0.23) 0 - 1

Occ. Prof. Tech. = 0.17 (0.37) 0 - 1
Occ. Manual = 0.25 (0.43) 0 - 1
Occ. Sales = 0.20 (0.38) 0 - 1

Income

Respondent’s total yearly personal income before taxes in thousand of dol-
lars, wages or salaries, including tips, bonuses, and overtime pay, and in-
come from self-employment. Interest or dividends (from stocks, bonds, sav-
ings, etc.), unemployment insurance, workmen?s compensation, disability,
or social security benefits, including SSI (supplemental security income)
are included.

14.07 (14.66) 0 - 250

Family Background

Father Education Years of education attained by the father of the respondent. The variable
is zero if missing. A dummy for missing values is included.

10.73 (6.85) 0 - 19

Parental Income
Total income in thousand of dollars, before taxes of respondent’s family. It
includes own income, income of everyone else in the household, and income
from welfare benefits, dividends, and all other sources.

49.40 (51.42) 0 - 900

Contextual Effects Average of peers’ characteristics of all listed variables.

Networks
Links in Wave I Number of individual links in Wave I. 2.23 (1.88) 0 - 11
Links in Wave II Number of individual links in Wave II. 2.22 (2.18) 0 - 11
Deleted links Percentage of nominations in Wave I not renewed in Wave II. 0.59 (0.39) 0 - 1
New links Percentage of new nominations in Wave II. 0.57 (0.39) 0 - 1
Strong Ties Percentage of strong ties on total individual links. 0.23 (0.27) 0 - 1
Weak Ties Percentage of weak ties on total individual links. 0.77 (0.27) 0 - 1



Appendix B: Bayesian Estimation

Prior and Posteriors Distributions

In order to draw random values from the marginal posterior distributions of parameters in Model

(4)-(5)-(6) we need to set prior distributions of those parameters. Once priors and likelihoods are

speci�ed, we can derive marginal posterior distributions of parameters and draw values from them.

Given the link formation Model (4)-(5), the probability of observing a network r at time t-1 and t,

Gt�1
r and Gt

r is

P (Gt�1
r jxij;r; zi;r; zj;r; 
t�1; �t�1) =

Y
i 6=j
P (gij;r;t�1jxij;r; zi;r; zj;r; 
t�1; �t�1);

P (Gt
rjxij;r; zi;r; zj;r; 
t�1; �t�1) =

Y
i 6=j
P (gij;r;tjxij;r; zi;r; zj;r; gij;r;t�1; 
t; �t; �):

Let �� = (�; �S ; �W ); following Hsieh and Lee (2011) our prior distributions are

zi;r � N(0; 1)

! � N2K+3(!0;
0)

�S � U [��L; �L]

�W � U [��S ; �S ]

�� � N3K+1(�0; B0)

(�2"; �"z) � TN2(�0;�0)

�rj�� � N(0; ��)

�� � IG(
&0
2
;
�0
2
)

where ! = (
T ; �T ; �; 
T�1; �T�1), �L =
1
��j�

W j, �S = 1
��j�

S j and � = 1=max(min(maxi(
P

j g
S
ij);

maxj(
P

i g
S
ij));min(maxi(

P
j g

W
ij );maxj(

P
i g
W
ij ))) from Gershgorin Theorem, U [�] , TN2(�) and

IG(�) are respectively the uniform, bivariate truncated normal, and inverse gamma distributions.
Those distributions depend on hyper-parameters (like �0) that are set by the econometrician. It
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follows that the marginal posteriors are

P (ZrjYr;G
W
r ;G

S
r ; �) /

rY
r=1

nrY
i

�(zi;r)P (Yr;G
W
r ;G

S
r jZr; �)

P (!jYr;G
W
r ;G

S
r ) / �2K+3(!; !0;
0)

rY
r=1

P (GW
r ;G

S
r jZr; !)

P (�S ; �W jYr;G
W
r ;G

S
r ;Zr; �; �

2
"; �"z) /

rY
r=1

P (YrjGW
r ;G

S
r ;Zr; �

�; �2"; �"z)

P (��jYr;G
W
r ;G

S
r ;Zr; �

2
"; �"z; �

S ; �W ) / �3K+2(e�; eB)
P (�2"; �"zjYr;G

W
r ;G

S
r ;Zr; �

S ; �W ) / �2T ((�
2
"; �"z); �0;�0)

rY
r=1

P (YrjGW
r ;G

S
r ;Zr; �

�; �2"; �"z; ��)

P (�rjYr;G
W
r ;G

S
r ;Zr; �

S ; �W ; �2"; �"z; ��) / �(�r; e�r;fMr)

P (��jYr;G
W
r ;G

S
r ;Zr; �

S ; �W ; �2"; �"z) / �
(
&0 + r

2
;
�0 +
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r=1 �

2
r

2
)

where � = (!; �S ; �W ; ��; �2"; �"z; ��; �), �
l(�) is the multivariate l� dimensional normal den-

sity function, �l

T (�) is the truncated counterpart, �
(�) is the inverse gamma density function. e� =eB(B�10 �0+
Pr

r=1X
0
rVr(SrYr��"zZr)), eB = (B�10 +

Pr
r=1X

0
rVrXr)

�1, e�r = (�2"��2"z)�1fMrl
0
nr (SrYr�

�"zZr � X�
r�

�), and fMr = (��2� + (�2" � �2"z)�1l0nr lnr )
�1, where Vr = (�2" � �2"z)Inr + �2�lnr l

0
nr ,

where X�
r = (Xr;G

�S
r Xr;G

�W
r Xr). The posteriors of �

�,f�rg and �� are available in closed forms
and a usual Gibbs Sampler is used to draw from them. The other parameters are drawn using the

Metropolis-Hastings (M-H) algorithm (Metropolis-within-Gibbs).46

Sampling Algorithm

We start our algorithm by picking (!(1); �L(1); �S(1); ��(1); �2(1)" ; �
(1)
"z ; �

(1)
� ; �(1)) as starting values.

For ��(1); �(1); �L(1); �S(1) we use OLS estimates, while we set the variances-covariances �2(1)" ; �
(1)
"z ; �

(1)
�

at 0.47 We ought to draw samples of zti;r from P (zi;rjYr; GWr ; GSr ; �); i = 1; � � � ; n. To do this, we
�rst draw a candidate ezti;r from a normal distribution with mean z(t�1)i;r , then we rely on a M-H

decision rule: if ezti;r is accepted we set zti;r = ezti;r, otherwise zti;r = zt�1i;r . Once all zi;r are sampled,

we move to the sampling of ��. By specifying a normal prior and a normal likelihood we can now

easily sample �t from a multivariate normal distribution. A di¤use prior for �2� allows us to sample

it from an inverse chi-squared distribution. We follow the Bayesian spatial econometric literature by

sampling �S ; �W from uniform distributions with support [��L; �L] and [��S ; �S ]; as de�ned above.

A M-H step is then performed over a normal likelihood: if accepted, then �S
t

= f�St and �W t

=g�Wt

. For network �xed e¤ects we deal again with normal prior and normal likelihood, so � is easily

sampled from a multivariate normal. We sample �2"; �"z from a truncated bivariate normal over an

admissible region � such that the variance-covariance matrix is positive de�nite. Acceptation or

46See Tierney (1994) and Chib and Greenberg (1996) for details regarding the resulting Markov chain given by the
combination of those two methods.
47The algorithm is robust to di¤erent starting values. However, speed of convergence may increase signi�cantly.
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rejection is determined by the usual M-H decision rule. A detailed step-by-step description of the

algorithm is provided below.

Step 1: Sample Ztr from P (ZrjYr;G
W
r ;G

S
r ; �).

Propose eZtr drawing each ezti;r from N(z
(t�1)
i;r ; �z), then set z

t
i;r = ezti;r with probability �Z or

zti;r = z
t�1
i;r with probability 1� �Z where

�Z = min

(
P (YrjGW

r ;G
S
r ;
eZtr; �t�1)

P (YrjGW
r ;G

S
r ;Z

t�1
r ; �t�1)

nrY
i

P (gWij;r; g
S
ij;rjezti;r; zt�1j;r ; !)

P (gWij;r; g
S
ij;rjz

t�1
i;r ; z

t�1
j;r ; !)

�(ezti;r)
�(zt�1i;r )

)

Step 2: Sample e!t from P (!jYr;G
W
r ;G

S
r ).

Propose e!t from N2K+3(!t�1; �!
0), then set !
t = e!t with probability �! or !t = !t�1 with

probability 1� �! where

�! = min

(
rY
r=1

P (GW
r ;G

S
r jZtr; e!t)

P (GW
r ;G

S
r jZtr; !t�1)

�2K+3(e!t; !0;
0)
�2K+3(!t�1; !0;
0)

)

Step 3: Sample f�St andg�Wt

from P (�S ; �W jYr;G
W
r ;G

S
r ;Zr; �

�; �2"; �"z).

Propose f�St from N(�St�1 ; ��) andg�Wt

from N(�W
t�1
; ��), then set �

St = f�St and �W t

=g�Wt

with probability �� or �
St = �S

t�1
and �W

t

= �W
t�1

with probability 1� �� where

��=min

8<:
rY

r=1

P (YrjGW
r ;G

S
r ;Z

t�1
r ;f�St;g�W t

; ��t�1; �2
t�1
" ; �t�1"z ; �t�1� )

P (YrjGW
r ;G

S
r ;Z

t�1
r ; �L

t�1
; �S

t�1
; ��t�1; �2t�1" ; �t�1"z ; �t�1� )

� I(f�St 2 [��L; �L])I(g�W t
2 [��S ; �S ])

9=;
Step 4: Sample e�t" and e�t"z from P (�2"; �"zjYr;G

W
r ;G

S
r ;Zr; �

S ; �W ).
Propose e�t" and e�t"z from N2((�2

t�1

" ; �t�1"z ); ��;�0) , then set �
t
" = e�t" and �t"z = e�t"z with

probability �� or �t" = �
t�1
" and �t"z = �

t�1
"z with probability 1� �� where

�� = min

(
rY

r=1

P (YrjGW
r ;G

S
r ;Z

t�1
r ; �L

t�1
; �S

t�1
; ��t�1; e�t"; e�t"z ; �t�1� )

P (YrjGW
r ;G

S
r ;Z

t�1
r ; �L

t�1
; �S

t�1
; ��t�1; �t�1" ; �t�1"z ; �t�1� )

�2T ((e�t"; e�t"z); �0;�0)
�2T (�

t�1
" ; �t�1"z ; �0;�0)

I((e�t"; e�t"z) 2 �)
)

where � is a region in which the variance-covariance matrix is de�nite properly.

Step 5: Sample ��t�1, �t and �t� from conditional posterior distributions.

Step 6: Repeat previous steps updating values indexed with t.

In each of the M-H steps (1-4) the algorithm accepts the new random values (proposals) if the

likelihood is higher than the current one. In the algorithm, �z ,�!, ��; and �� are tuning parameters

chosen by the econometrician. This choice determines the rejection rate of proposals in the M-

H steps (1-4). We set a dynamic algorithm for calibrating those tuning parameters so that they

converge to the optimal ones. Optimality means that the proposals are accepted about 50% of the

times.48 Figure B1 shows the time-series of rejection rates for all of the parameters. It appears that

48The intuition is that if a tuning parameter is too high, the draws are less likely to be within "high density regions"
of the posterior and then rejection is too frequent. The "step" is too long and the chain "does not move enough". On
the other hand if the "step" is too short, the proposal is more likely to be accepted and the chain "moves too much".
Given that we want a mixing chain with a balanced proportion of rejections and acceptances, an optimal step must
be chosen. Setting it manually requires a huge amount of time and many manual operations. The dynamic setting of
tuning parameters is as follows:
if tA=t � 0:4 then �t+1 = �t=1:1;
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convergence is achieved around an acceptance rate of 50% for all of the parameters.49

[Insert F igure B1 here]

if tA=t � 0:6 then �t+1 = �t � 1:1;
if 0:4 � tA=t � 0:6 then �t+1 = �t;
where tA is the acceptance rate at iteration t. The procedure decreases the tuning parameter (the "step") when pro-

posals are rejected too frequently, while it increases the tuning parameter when proposals are accepted too frequently.
This mechanism guarantees a bounded acceptance rate and convergence to optimal tuning.
49Given that the rejection rate-based correction of tuning parameters has 0.4 and 0.6 as boundaries, rejection rates

oscillate between these values. The likelihood of reaching the boundaries decreases as the number of draws increases
and the rejection rates tend to 0.5, as Figure B1 shows.
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Appendix C: IV Estimation

Let Yr = (y1;r; � � � ; ynr;r)0, Xr = (x1;r; � � � ; xnr;r)0, and �r = (�1;r; � � � ; �nr;r)0. Denote the nr � nr
adjacency matrix by Gr = [gij;r], the row-normalized of Gr by G�

r , and the nr-dimensional vector

of ones by lnr . Let us split the adjacency matrix into two submatrices G
S
r and G

W
r , which keep

trace of strong and weak ties, respectively. Then, model (2) can be written in matrix form as

Yr = �
SGS

rYr + �
WGW

r Yr +X
�
r�

� + �rlnr + �r; (7)

For a sample with �r networks, stack up the data by de�ningY = (Y0
1; � � � ;Y0

�r)
0,X� = (X�0

1 ; � � � ;X�0
�r )
0,

� = (�01; � � � ; �0�r)0, G = D(G1; � � � ;G�r), G� = D(G�
1; � � � ;G�

�r), � = D(ln1 ; � � � ; ln�r ) and � =

(�1; � � � ;��r)0, where D(A1; � � � ;AK) is a block diagonal matrix in which the diagonal blocks are

nk � nk matrices Ak�s. For the entire sample, the model is thus

Y = �SGSY + �WGWY +X�� + � � � + �: (8)

We use the 2SLS estimation strategy from Liu and Lee (2010), and extend it to the case of two

di¤erent network structures. Model (8) can be written as

Y = Z� + � � � + �; (9)

where Z = (GSY;GWY;X�), � = (�S ; �W ; �0)0; and � = D(ln1 ; � � � ; ln�r ).
We treat � as a vector of unknown parameters. When the number of networks �r is large, we have

the incidental parameter problem. Let J = D(J1; � � � ;J�r), where Jr = Inr � 1
nr
l0nr lnr . The network

�xed e¤ect can be eliminated by a transformation with J such that

JY = JZ� + J�: (10)

Let M = (I � �SGS � �WGW )�1. The equilibrium outcome vector Y in (9) is then given by the

reduced form equation

Y =M(X�� + � � �) +M�: (11)

It follows that GSY = GSMX�� + GSM�� + GSM� and GWY = GWMX�� + GWM�� +

GWM�. GSY and GWY are correlated with � because E[(GSM�)0�] = �2tr(GSM) 6= 0 and

E[(GWM�)0�] = �2tr(GWM) 6= 0. Hence, in general, (10) cannot be consistently estimated by

OLS.50 If G is row-normalized such that G � ln = ln, where ln is a n-dimensional vector of ones, the
endogenous social interaction e¤ect can be interpreted as an average e¤ect.

Liu and Lee (2010) use an instrumental variable approach and propose di¤erent estimators based

on di¤erent instrumental matrices, here denoted by Q1 and Q2. In particular, besides the conven-

tional instrumental matrix (Q1 = J(GX�;X�)) for the estimation of (10), they propose to use

50Lee (2002) has shown that the OLS estimator can be consistent in the spatial scenario where each spatial unit
is in�uenced by many neighbors whose in�uences are uniformly small. However, in the current data, the number of
neighbors are limited, so that result does not apply.
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additional instruments (IVs) JG� and enlarge the instrumental matrix Q2 = (Q1; JG�). The addi-

tional IVs of JG� are simply the row sums of G (i.e. the number of links of each agent). Liu and

Lee (2010) show that those additional IVs could help model identi�cation when the conventional

IVs are weak and improve on the estimation e¢ ciency of the conventional 2SLS estimator based on

Q1. As a result, an IV based on Q2 (rather than Q1) should be preferred. However, the number of

such additional instruments depends on the number of networks. If the number of networks grows

with the sample size, so does the number of IVs. The 2SLS could be asymptotically biased when the

number of IVs increases too quickly relative to the sample size, i.e. when there are many networks.

Liu and Lee (2010) thus propose a bias-correction procedure based on the estimated leading-order

many-IV bias (IV bias-corrected). The bias-corrected IV estimator is properly centered, asymptot-

ically normally distributed, and e¢ cient when the average network size is su¢ ciently large.51 The

(more e¢ cient) IV estimator (based on Q2) and its bias-corrected version are the IV estimators used

in our analysis.

Let us derive those estimators for equation (10), i.e. for the model where agents are heterogeneous

and allowed to interact according to di¤erent network structures. From the reduced form equation

(9), we have E(Z) = [GSM(X�� + � � �);GWM(X�� + � � �);X�]. The best IV matrix for JZ is

given by

Jf = JE(Z) = J [GSM(X�� + � � �);GWM(X�� + � � �);X�] (12)

which is an n�(3m+2)matrix. However, this matrix is unfeasible as it involves unknown parameters.
Note that f can be considered as a linear combination of the vectors in Q0 = J [GSM(X� +

�);GWM(X� + �);X�]. As � has �r columns the number of IVs in Q0 increases as the number of

groups increases. Furthermore, as M = (I� �SGS � �WGW )�1 =
P1

j=0(�
SGS + �WGW )j when

sup jj�SGS + �WGW jj1 < 1, MX� and M� can be approximated by linear combinations of

(GSX�;GWX�;GWGSX�;
�
GS
�2
X�;

�
GW

�2
X�;

�
GW

�2
GSX�;

�
GW

�2 �
GS
�2
X�; � � �)

and

(GS�;GW �;GWGS�;
�
GS
�2
�;
�
GW

�2
�;
�
GW

�2
GS�;

�
GW

�2 �
GS
�2
�; � � �);

respectively. Hence, Q0 can be approximated by a linear combination of

Q1 = J(GS(GSX�;GWX�;GWGSX�; � � �;GS�;GW �;GWGS�; � � �); (13)

GW (GSX�;GWX�;GWGSX�; � � �;GS�;GW �;GWGS�; � � �);X�):

Let QK be an n � K submatrix of Q1 (with K � 3m + 2) including X�: Let QS be an n � KL

submatrix ofQL1= G
S(G

S
X�;GWX�;GWGSX�; � � �;GS�;GW �;GWGS�; � � �) andQS an n�KS

submatrix of QS1= G
W (G

S
X�;GWX�;GWGSX�; � � �;GS�;GW �;GWGS�; � � �). We assume that

KL

KS
= 1: Let PK = QK(QK

0QK)
�1QK

0 be the projector of QK. The resulting 2SLS estimator is

51Liu and Lee (2010) also generalize this 2SLS approach to the GMM using additional quadratic moment conditions.
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given by b�2sls = (Z0PKZ)�1 Z0PKy: (14)

Note that, given that we are in a multiple adjacency matrices framework, if the approximation

(KL;KS) is of high order, the many IV problem can arise even if the number of networks is small.

The intuition is the following- the higher the number of adjacency matrices, the higher the number of

adjacency matrices�combinations needed for approximating JE(Z): This should be clear looking at

(13). If we want to approximate Q1 setting a P -order approximation, we will have
PP
p=1

bp matrices

to include, where b is the number of adjacency matrices.

The 2SLS estimators of � = (�S ; �W ;�0)0 considered in this paper are

(i) IV : b�2sls = (Z0P2Z)
�1Z0P2y, where P2 = Q2(Q

0
2Q2)

�1
2 Q0

2 and Q2 contains the linearly

independent columns of [Q1;JG
S�;JGW �].

(ii) IV Bias-corrected : b�c2sls = (Z0P2Z)�1fZ0P2y�e�22sls[tr�P2GSfM� ; tr�P2GWfM� ;03m�1]0g,
where ~M = (I� e�S2slsGS � e�W2slsGW )�1, e�22sls; e�S2sls and e�W2sls are pn-consistent initial estimators of
�2; �S ; and �W obtained by Finite-IV. e�22sls[tr�P2GSfM� ; tr�P2GWfM� ;03m�1] is the empirical
counterpart of the theoretical many-IV bias b2sls = �2 (Z0PKZ)

�1
[tr (	K;L) ; tr (	K;S) ;03m�1]

0 ,

where 	K;L = PKG
SM and 	K;S = PKG

WM.
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Appendix D: Bayesian Estimation - Additional Results

Figure D1: Bayesian Estimation Results
Control Variables (β)

Panel (a)

Panel (b)

Notes: see Figure 3.



Figure D2: Bayesian Estimation Results
Contextual Effects (δ)

Panel (a)

Panel (b)

Notes: see Figure 3.



Figure D3: Bayesian Estimation Results
Network Fixed Effects (η)

Panel (a)

Panel (b)

Notes: see Figure 3.



Figure D4: Bayesian Estimation Results
Link Formation Control Variables (ω)

Panel (a)

Panel b)

Notes: see Figure 3.



Appendix E: Results for the Entire Sample

Table E1: Peer Effects in Financial Decisions
-Entire Sample-

Dependent Variable: Financial Activity Index

OLS OLS OLS ML IV IV bias-corrected
(1) (2) (3) (4) (5) (6)

Peer Effects φ 0.0520*** 0.0450*** -0.0081 0.0308*** 0.0779*** 0.0451**
(0.0145) (0.0184) (0.0184) (0.0133) (0.0233) (0.0234)

Male -0.0950*** -0.0980*** -0.1046*** -0.1027*** -0.1095*** -0.1102***
(0.0360) (0.0374) (0.0366) (0.0400) (0.0383) (0.0381)

Latino -0.0089 0.0251 0.0342 -0.0059 0.0228 0.0137
(0.0731) (0.0796) (0.0868) (0.0867) (0.0908) (0.0905)

Black -0.1239*** -0.1267** 0.0419 -0.1706*** 0.0694 0.0559
(0.0466) (0.0583) (0.0886) (0.0648) (0.0927) (0.0924)

Age -0.0094 -0.0051 -0.0172 -0.0956*** -0.0054 -0.0022
(0.0127) (0.0140) (0.0173) (0.0096) (0.0178) (0.0177)

Education 0.1463*** 0.1456*** 0.1261*** 0.1499*** 0.1218*** 0.1246***
(0.0116) (0.0119) (0.0123) (0.0125) (0.0129) (0.0129)

Income 6.32E-06*** 6.21E-06*** 5.99E-06*** 9.31E-06*** 6.00E-06*** 6.06E-06***
(1.45E-06) (1.47E-06) (1.47E-06) (1.81E-06) (1.54E-06) (1.53E-06)

Employed 0.2451*** 0.2465*** 0.2773*** 0.2672*** 0.2825*** 0.2854***
(0.0685) (0.0694) (0.0684) (0.0749) (0.0714) (0.0711)

Occ. Manager 0.2112 0.2330 0.2367 0.2513 0.3295** 0.3422**
(0.1712) (0.1700) (0.1817) (0.1872) (0.1629) (0.1718)

Occ. Prof. Tech -0.1247* -0.1310* -0.1238 -0.1205 -0.1122 -0.1191
(0.0756) (0.0764) (0.0750) (0.0807) (0.0787) (0.0784)

Occ. Manual -0.1741*** -0.1864*** -0.1848*** -0.2255*** -0.1818*** -0.1827***
(0.0690) (0.0698) (0.0689) (0.0750) (0.0718) (0.0715)

Occ. Sales -0.0591 -0.0591 -0.0619 -0.0695 -0.0609 -0.0651
(0.0725) (0.0730) (0.0723) (0.0777) (0.0757) (0.0754)

Married 0.3267*** 0.3289*** 0.3719*** 0.3879*** 0.3575*** 0.3618***
(0.0510) (0.0522) (0.0519) (0.0537) (0.0540) (0.0538)

Family Size -0.0247** -0.0230* -0.0233* -0.0346*** -0.0221* -0.0245*
(0.0118) (0.0120) (0.0120) (0.0124) (0.0126) (0.0125)

Father Education 0.0204** 0.0226*** 0.0069 -0.0016 0.0091 0.0100
(0.0083) (0.0084) (0.0089) (0.0086) (0.0093) (0.0093)

Parental Income 0.0001 0.0001 -0.0001 0.0003 -0.0002 -0.0002
(0.0003) (0.0003) (0.0004) (0.0004) (0.0004) (0.0004)

Constant -2.1605*** -2.2904*** -2.3642***
(0.3047) (0.3227) (0.4822)

School Performance Variables Yes Yes Yes Yes Yes Yes
Contextual Effects No Yes Yes Yes Yes Yes
Network Fixed Effects No No Yes No Yes Yes
Number of Observations 1497 1497 1497 1497 1497 1497
Number of Networks 151 151 151 151 151 151

Notes: standard errors in parentheses. *** p<0.01,** p<0.05,* p<0.1. Dummy variables for missing Income, Family
Size, Father Education, Parental Income and GPA are included. Maximum network size 400, minimum 4.



Table E2: Weak and Strong Ties in Financial Decisions
-Entire Sample-

Dependent Variable: Financial Activity Index

OLS IV IV bias-corrected
(1) (2) (3)

Strong Ties φS 0.0526** 0.1571*** 0.0443**
(0.0215) (0.0221) (0.0221)

Weak Ties φW 0.0228 -0.0700 0.0237
(0.0169) (0.0425) (0.0427)

Male -0.0965*** -0.1005*** -0.0962***
(0.0383) (0.0399) (0.0415)

Latino 0.0407 0.0645 0.0817
(0.0812) (0.0904) (0.0940)

Black -0.1557*** 0.0771 0.0882
(0.0657) (0.0947) (0.0985)

Age -0.0114 -0.0266 -0.0342*
(0.0146) (0.0190) (0.0197)

Education 0.1431*** 0.1227*** 0.1192***
(0.0121) (0.0130) (0.0135)

Income 0.0000*** 0.0000*** 0.0000***
(0.0000) (0.0000) (0.0000)

Employed 0.2432*** 0.3045*** 0.3115***
(0.0696) (0.0722) (0.0751)

Occ. Manager 0.2493 0.3762** 0.3482**
(0.1703) (0.1681) (0.1711)

Occ. Prof. Tech -0.1337* -0.1363* -0.1342
(0.0770) (0.0798) (0.0830)

Occ. Manual -0.1689*** -0.1958*** -0.2041***
(0.0701) (0.0728) (0.0757)

Occ. Sales -0.0447 -0.0844 -0.0950
(0.0733) (0.0771) (0.0801)

Married 0.3493*** 0.3982*** 0.4052***
(0.0526) (0.0553) (0.0575)

Family Size -0.0236* -0.0267** -0.0268**
(0.0121) (0.0128) (0.0133)

Father Education 0.0178** 0.0044 0.0027
(0.0086) (0.0095) (0.0099)

Parental Income 0.0001 -0.0001 0.0000
(0.0003) (0.0004) (0.0004)

Constant -2.0534***
0.3384

School Performance Variables Yes Yes Yes
Contextual Effects Yes Yes Yes
Network Fixed Effects No Yes Yes
Number of Observations 1497 1497 1497
Number of Networks 151 151 151

Notes: see Table E1.



Table 1: Financial Activity Participation

Percentage of Contribution to the
Agents Possessing Financial Activity Index

Checking Account 76% 0.40
Credit Card 61% 0.57
Saving Account 63% 0.73
Shares 25% 0.80
Student Loan 33% 0.53
Credit Card Debt 41% 0.47

Notes: the Financial Activity Index is obtained using a principal component analysis on the listed variables. It is the first principal
component, which explains 35 % of the total variance.
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Table 3: 2SLS First Stage Results

Dependent Variable: GY

X GX G2X
Variables: X Own Peers Peers of peers

(Exclusion Restrictions)

Male -0.1113 -0.0694 0.0159
(0.0830) (0.0655) (0.0341)

Latino 0.3363** 0.1356 -0.4939***
(0.1731) (0.1441) (0.0674)

Black -0.0420 0.4622*** 0.1238
(0.2032) (0.1874) (0.0968)

Age -0.0294 0.0143 0.0231***
(0.0350) (0.0282) (0.0078)

Education 0.0700*** 0.1323*** -0.0031
(0.0277) (0.0223) (0.0111)

Income 3.61E-07 8.24E-06*** -8.19E-07
(2.68E-06) (3.50E-06) (1.69E-06)

Employed 0.2556 -0.1312 -0.2035***
(0.2114) (0.1583) (0.0842)

Occ. Manager 0.0877 0.3160 -0.1892
(0.2548) (0.2038) (0.1171)

Occ. Prof. Tech. -0.1222 0.1921 -0.0868
(0.2256) (0.1682) (0.0922)

Occ. Manual -0.0747 0.0374 0.0247
(0.2102) (0.1639) (0.0848)

Occ. Sales -0.1370 0.1682 0.0263
(0.2171) (0.1671) (0.0863)

Married -0.2654*** 0.4318*** 0.1468***
(0.1168) (0.0796) (0.0444)

Family Size 0.0359 -0.0389* -0.0423***
(0.0266) (0.0211) (0.0116)

Father Education 0.0317 -0.0065 -0.0051
(0.0202) (0.0146) (0.0073)

Parental Income 0.0006 -0.0021*** -0.0004
(0.0010) (0.0006) (0.0004)

F-stat 10.8892

School Performance Variables Yes
Network Fixed Effects Yes
Number of Observations Yes
Number of Networks Yes

Notes: OLS estimation results, standard errors in parentheses.*** p<0.01,**
p<0.05,* p<0.1. Dummy variables for missing values in variables are included,
see Table 2. The instrumental set also includes the individual number of
connections. See Appendix C for further details on IV estimation of spatial
models.
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Table 5: Network Formation and Financial Activity
Bayesian Estimation

Outcome Link Formation

t− 1 t

Strong Ties 0.0707***
(0.0158)

Weak Ties -0.0027
(0.0123)

Male -0.0257 -0.0831*** -0.1667***
(0.0340) (0.0212) (0.0244)

Age 0.0205 -1.0166*** -1.1772***
(0.0220) (0.0604) (0.0820)

Latino 0.0138 -0.0579*** -0.1441***
(0.0392) (0.0215) (0.0296)

Black 0.0653 -0.1783*** -0.2340***
(0.0540) (0.0408) (0.0578)

Education 0.1327*** -0.1493*** -0.1968***
(0.0169) (0.0266) (0.0317)

Income 3.54E-06** -0.0487 -0.1770***
(1.82E-06) (0.0308) (0.0386)

Employed 0.0334 -0.0290 -0.0647***
(0.0752) (0.0214) (0.0242)

Occ. Manager 0.0935* -0.0069 -0.0418*
(0.0527) (0.0180) (0.0237)

Occ. Prof. Tech. 0.1332** -0.0367* 0.0376
(0.0678) (0.0203) (0.0242)

Occ. Manual -0.0099 -0.0641*** -0.0560**
(0.0729) (0.0220) (0.0259)

Occ. Sales 0.0760 -0.0580*** -0.0051
(0.0717) (0.0183) (0.0241)

Married 0.2248*** 0.0043 0.0008
(0.0389) (0.0195) (0.0237)

Family Size -0.0200 0.0391 0.0548
(0.0153) (0.0255) (0.0343)

Father Education 0.0021 -0.1797*** -0.0658
(0.0050) (0.0587) (0.0910)

Parental Income -0.0004 -0.0379 -0.0453
(0.0005) (0.0294) (0.0354)

Constant -0.7269*** -1.2700***
(0.0712) (0.1028)

Link at t-1 (gij,t−1) 1.4096***
(0.0704)

Unobservables (z) 0.6891*** 0.9642***
(0.0549) (0.0698)

σεz -0.0338
(0.0643)

σε 0.7062
(0.3235)

School Performance Variables Yes Yes Yes
Contextual Effects Yes Yes Yes
Network Fixed Effects Yes Yes Yes
Number of Observations 569 18985 18985
Number of Networks 21 21 21

Notes: see Table 2. We report peer effects estimate when net-
work formation an behavior over network are jointly considered.
Column (1) reports on the results for Model (2), columns (2)-(3)
report on the results for Model (4)-(5).



Table 6: Understanding the Mechanism

Dependent Variable: Financial Activity Index

Network Topology Frequency of Interactions

% of links OLS IV % of links OLS IV
bias-corrected bias-corrected

Strong Ties Supported 72% 0.1646*** 0.0691**
(0.0316) (0.0318)

Strong Ties not Supported 28% 0.1923*** 0.0409
(0.0347) (0.0357)

Weak Ties Supported 58% -0.0037 0.0266
(0.0276) (0.0274)

Weak Ties not Supported 42% -0.0575 -0.0053
(0.0318) (0.0314)

Strong Ties High Frequency 78% 0.1589*** 0.0675**
(0.0223) (0.0218)

Strong Ties Low Frequency 22% 0.2543*** 0.0790**
(0.0357) (0.0367)

Weak Ties High Frequency 84% -0.0272 -0.0114
(0.0273) (0.0276)

Weak Ties Low Frequency 16% -0.0318 0.0073
(0.0549) (0.0559)

Male -0.0657 -0.0703 -0.0699 -0.0650
(0.0610) (0.0604) (0.0610) (0.0606)

Latino 0.1756 0.1876 0.1708 0.1837
(0.1313) (0.1293) (0.1315) (0.1298)

Black 0.2567* 0.3269** 0.2504 0.3286**
(0.1548) (0.1575) (0.1540) (0.1564)

Age 0.0102 0.0146 0.0093 0.0113
(0.0266) (0.0261) (0.0266) (0.0263)

Education 0.0935*** 0.0991*** 0.0931*** 0.1005***
(0.0201) (0.0197) (0.0201) (0.0197)

Income 0.0000 0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0000)

Employed 0.0210 0.0061 0.0075 -0.0102
(0.1476) (0.1449) (0.1475) (0.1453)

Occ. Manager 0.3036* 0.3164* 0.3193* 0.3359**
(0.1786) (0.1757) (0.1787) (0.1764)

Occ. Prof. Tech 0.2472 0.2187 0.2501 0.2187
(0.1571) (0.1555) (0.1567) (0.1557)

Occ. Manual 0.0408 0.0589 0.0483 0.0672
(0.1478) (0.1455) (0.1474) (0.1455)

Occ. Sales 0.1546 0.1633 0.1624 0.1727
(0.1515) (0.1504) (0.1514) (0.1507)

Married 0.4169*** 0.3943*** 0.4211*** 0.4099***
(0.0830) (0.0797) (0.0829) (0.0800)

Family Size -0.0088 -0.0116 -0.0104 -0.0159
(0.0193) (0.0188) (0.0194) (0.0189)

Father Education 0.0042 0.0058 0.0051 0.0044
(0.0144) (0.0140) (0.0145) (0.0141)

Parental Income -0.0002 -0.0007 -0.0002 -0.0007
(0.0006) (0.0006) (0.0006) (0.0006)

School Performance Variables Yes Yes Yes Yes Yes
Contextual Effects Yes Yes Yes Yes Yes
Network Fixed Effects No Yes Yes Yes Yes
Number of Observations 569 569 569 569
Number of Networks 21 21 21 21

Notes: see Table 2. Percentage of links is referred to the total of same type of tie (strong or weak).



Figure 1: Social Ties and Financial Activity

Notes: a network of 49 agents (nodes) is represented. The size of the node is proportional to the agent’s financial activity; the
thickness of lines is proportional to the length of the relationship between agents. Thicker lines represent strong ties, while thinner
ones represent weak ties.

Figure 2: Identification with Network Data



Figure 3: Bayesian Estimation Results
Peer Effects (φ)

(a) Posterior Distribution (b) Markov Chain

Notes: panel (a) shows the kernel density estimate of the posterior distribution. Panel (b) shows the Markov chain draws.

Figure 4: Bayesian Estimation Results
Covariance between Unobservables (σε,z)

(a) Posterior Distribution (b) Markov Chain

Notes: panel (a) shows the kernel density estimate of the posterior distribution. Panel (b) shows the Markov chain draws.



Figure 5: Bayesian Estimation Results.
Strong (φS) vs Weak (φW ) Tie Effects

(a) Posterior Distributions

(b) Markov Chain (c) Markov Chain

Notes: panel (a) shows the kernel density estimates of the posterior distributions. Panel (b) and panel (c) show the Markov chain
draws.



Figure 6: Simulation Results
Income Shocks and Strong Tie Effects

(a) Intensive Margin (b) Extensive Margin

Notes: the surfaces represent
∑

i ∆yi, which is the variation of the financial activity of agent i, yi, after the shock. ns is the
number of strong ties of the shocked agents. In Panel (a) shock intensity (h) goes from 1 to 20 income std points, while the
number of shocked agents is constant and equal to 13. For each combination of (ns, h) the income of a random sample of agents
which have a ns strong ties is increased by h. In Panel (b) the shock intensity is constant and equal to 2 income std points, while
the number of shocked agents (nh) goes from 1 to 13. For each combination of (ns, nh) the income of nh agents, which have ns

strong ties, is increased by 2 income std points. Each point of the surfaces is the average of 500 replications, in which agents
are randomly sampled. The results remain basically unchanged if we use a different number of shocked agents in panel (a) or a
different shock intensity in panel (b).

Figure 7: Simulation Results
Heterogeneous Income Shocks and Strong Tie Effects

Notes: see Figure 6. The income of 13 agents with no strong ties is increased by 2 income std points. The surface represents
∆

∑
i yi when the income of n−

h agents, who have ns strong ties, is decreased by 2 income std points.



Figure 8: Simulation Results
Individual vs Peer Income Shocks

Notes: the surface represents ∆yi, which is the variation of the financial activity of agent i, yi, after the shock. Each point of
the surface is the average of 500 replications in which an agent i is randomly sampled. In each replication, agent i’s income is
increased by 10 income std points and the income of all of peers of i is decreased by h− income std points.



Figure B1: Bayesian Estimation Results
Acceptance Rates


