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Abstract

We prove that the ratio of kurtosis to the frequency of price changes is a sufficient
statistic for the real effects of monetary shocks, measured by the cumulated output
response following the shock. The sufficient statistic result holds in a large class of
models which includes Taylor (1980), Calvo (1983), Reis (2006), Golosov and Lucas
(2007), Nakamura and Steinsson (2010), Midrigan (2011) and Alvarez and Lippi (2014).
Several models in this class are able to account for the positive excess kurtosis of the size-
distribution of price changes that appears in the data. We review empirical measures of
kurtosis and frequency and conclude that a model that successfully matches the micro
evidence on kurtosis and frequency produces real effects that are about 4 times larger
than in the Golosov-Lucas model, and about 30% below those of the Calvo model. We
discuss the robustness of our results to changes in the setup, including small inflation
and leptokurtic cost shocks.
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1 Introduction

This paper provides an analytical characterization of the steady state cross-sectional mo-

ments, and of the response of output to an unexpected monetary shock, in models with

sticky prices. By combining the assumptions of multiproduct firms and random menu costs

the model is able to produce, in various degrees, both the small and large price changes that

have been documented in the micro data starting with Kashyap (1995). Different sticky price

set-ups, spanning the models of Taylor (1980), Calvo (1983), Golosov and Lucas (2007), some

versions of the “CalvoPlus” model by Nakamura and Steinsson (2010), the “rational inat-

tentiveness” model by Reis (2006), as well as the multi-product models of Midrigan (2011),

Bhattarai and Schoenle (2014) and Alvarez and Lippi (2014), are nested by our model. This

unified framework allows us to unveil which assumptions are required to obtain each model

as an optimal mechanism.

The main analytical result of the paper is that, in a large class of models that includes

those listed above, the total cumulative output effect of a small unexpected monetary shock

depends on the ratio between two steady-state statistics: the kurtosis of the size-distribution

of price changes Kur(∆pi) and the average number of price changes per year N(∆pi). For-

mally, given the labor supply elasticity 1/ε− 1 and a small monetary shock δ, we show that

the cumulative output M, namely the area under the output impulse response function, is

M =
δ

6 ε

Kur(∆pi)

N(∆pi)
. (1)

The impact of the frequency N (∆pi) on the real output effect is understood in the literature

and motivates a large body of empirical literature. The main novelty is that the effect of

Kur (∆pi) is equally important, and motivates our interest to discuss its measurement and

report new evidence on it. For a symmetric distribution, kurtosis is a scale-free statistic

describing its shape, specifically its peakedness: the extent to which “large” and “small”

observations (in absolute value) appear relative to intermediate values. We show that this

statistic embodies the extent to which “selection” of price changes occurs. The selection

effect, a terminology introduced by Golosov and Lucas (2007), indicates that the firms that

change prices after the monetary shock are the firms whose prices are in greatest need of

adjustment, not a random sample. Selection gives rise to large price adjustments after the

shock, so that the CPI response is fast. Such selection is absent in Calvo where the adjusting

firms are randomly chosen and, after a shock, the size of the average price change (across

adjusting firms) is constant, so that the CPI rises more slowly and the real effects are more

persistent. Surprisingly, the kurtosis of the steady-state distribution of the size of price
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changes fully encodes the selection effect. Intuitively, in the Golosov-Lucas model (steady

state) price changes are concentrated around two values: very large and very small, which

imply the smallest value of kurtosis (equal to one). In contrast, the size distribution of price

adjustments under a Calvo mechanism is very peaked, featuring a large mass of very small as

well as some very large price changes, which is exactly what is captured by the high kurtosis

predicted by the Calvo model (equal to six).

In addition to selection in the size of price changes, recent contributions have highlighted

a related selection effect in the timing of price changes, see e.g. Kiley (2002); Sheedy (2010);

Carvalho and Schwartzman (2015); Alvarez, Lippi, and Paciello (2016). This paper shows

that the selection concerning the timing is also encoded in the kurtosis of price changes. For

instance, in the models of Taylor and Calvo, calibrated to the same mean frequency of price

changes N (∆pi), the size of the average price change across adjusting firms is constant (after

a monetary shock), so there is no selection concerning the size. Yet the real cumulative output

effect in Calvo is twice the effect in Taylor. This happens because in Taylor the time elapsed

between adjustments is a constant T = 1/N (∆pi), while in Calvo it has an exponential

distribution (with mean T ), with a thick right tail of firms that adjust very late. Notice how

these features are captured by kurtosis: in Taylor the constant time between adjustments T

implies that price changes are drawn from a normal distribution, hence kurtosis is three. In

Calvo, instead, the exponential distribution of adjustment times implies that price changes

are drawn from a mixture of normals with different variances, and hence a higher kurtosis

(equal to six).

The main advantage of our theoretical result is its robustness: equation (1) allows us

to discuss the output effect of monetary shocks in a large class of models without having

to solve for the whole general equilibrium or provide details about several other modeling

choices. We see this result in the spirit of the sufficient statistic approach introduced in

the public finance literature by Chetty (2009) and applied to the new trade literature by

Arkolakis, Costinot, and Rodriguez-Clare (2012): the identification of a robust relationship

that contains useful economic information, independently of many details of the model, and

which can be measured in the data. A key assumption for equation (1) to hold is that the

distribution of the cost shocks faced by the firms is normal and that inflation is small. In

Section 5 we discuss the realism of these assumptions and explore the robustness of our model

to the assumption of non-normal cost shocks that match actual cost data. We show that

equation (1) remains accurate in predicting the real effects of monetary shocks.

The paper is organized as follows: we conclude the introduction with an overview of

the main results and a brief summary of the related literature. Section 2 discusses the

measurement of the kurtosis of price changes, a central statistic in our theory. Section 3
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presents the theoretical model and its cross section predictions. Section 4 characterizes

analytically the effect of an unexpected monetary shock. Section 5 reviews the scope of our

main result and its applicability to actual economies. Section 6 concludes by discussing the

robustness of our main result to settings where price stickiness originates from information

frictions (e.g. rational inattentiveness) rather than from a menu cost.

Overview of main results

Since kurtosis is a sufficient statistic for the real effect of monetary policy in the class of

models we analyze, we begin by discussing its estimation. We identify two potential sources

of upward bias: heterogeneity (across types of goods and outlets) and small measurement

errors (incorrectly imputing small price changes when there was none). We then analyze

the size distribution of price changes using two datasets, the French CPI and US Dominick’s

data. We show that, after controlling for cross-sectional heterogeneity and correcting for

measurement error, measured kurtosis is in the vicinity of 4 in a large a sample of low-

inflation countries.

We develop an analytical model that features both the small and large price changes

which lead to excess kurtosis. The model extends the multi-product setup developed in

Alvarez and Lippi (2014), where the fixed menu cost applies to a bundle of n goods sold

by each firm. Each good is subject to idiosyncratic cost shocks that create a motive for

price adjustment. The shocks are uncorrelated across goods and we assume zero inflation

(both assumptions can be relaxed: we show analytically in Section 4 that the results for a

small inflation rate are virtually identical to the ones for zero inflation). The multi-product

assumption generates the extreme price changes, both small and large. We extend that setup

by introducing random menu costs, a feature that produces a positive excess kurtosis of the

size-distribution of price changes.1 In particular, we assume that at an exogenous rate λ each

firm receives an opportunity to adjust its price at no cost, as in a Calvo setup. The model

has four fundamental parameters: the size of the menu cost relative to curvature of the profit

function ψ/B, the volatility of idiosyncratic cost shocks σ2, the number of products n and

the arrival rate of free adjustments λ.

The model yields three new theoretical results. First we characterize how the inaction set

behaves as a function of the parameters. For a small menu cost ψ/B the model behaves as in

Barro (1972), Dixit (1991) and Golosov and Lucas (2007): the size of the inaction set displays

the usual high sensitivity (i.e. a “quartic root”) with respect to the cost and the volatility of

the shocks σ2 (the option value effect). Interestingly, the decision rule is unaffected by the

presence of the free adjustments as long as the menu cost is small. The decision rule changes

1Absent random menu cost the multi-product model can at most produce a zero excess kurtosis.

3



substantially for large menu costs, an assumption that is useful to generate behavior that

approaches that of the Calvo model. In this case the size of the inaction set changes with

the square root of the menu cost and the arrival rate, and somewhat surprisingly it becomes

unresponsive to the volatility of idiosyncratic shock σ2, so that changes in the uncertainty

faced by firms induce no change in behavior (i.e. there is no option value).

Second, by aggregating the optimal decision rules across firms we characterize the fre-

quency N(∆pi), standard deviation Std(∆pi), and shape of the distribution of the price

changes, e.g. its kurtosis: Kur(∆pi). We show that for any pair of parameters {n, λ}, the

two remaining parameters {ψ/B, σ} map one-to-one onto the observables N(∆pi), Std(∆pi).

This mapping is convenient for the analysis because it allows us to “freeze” the two observ-

ables N(∆pi) and Std(∆pi), which one can take from the data, while retaining the flexibility

to accommodate various shapes for the size-distribution of price changes as well as various

data on the cost of price adjustment. In particular, we show that the shape of the distribution

of price changes can be written exclusively in terms of n and the fraction of free-adjustments

` ≡ λ/N(∆pi). In our model the shape of the distribution of price changes ranges from

bimodal (for the model where ` = 0 and n = 1 as in the Golosov-Lucas model) to Normal

(for n =∞ and ` = 0, our version of Taylor’s model), and Laplace (in the case ` = 1 for any

n, our version of the Calvo model). In those three models the kurtosis of price changes is,

respectively, 1, 3 and 6. In our set-up a given kurtosis may be obtained by different combi-

nations of n and `, yet we argue that models with high n yield a better representation of the

cross-sectional data because it eliminates the predominant mass of large price changes that

arises in models where n is small.2 The model is thus able to match several cross sectional

features of the micro data, such as the frequency, standard deviation and kurtosis of price

changes, using realistic small values for the menu-cost of price adjustments.

Third, we use the model to characterize analytically the impulse response of the aggre-

gate economy to a once-and-for-all unexpected permanent increase of the money supply in

Section 4. The effect of a monetary shock depends on the shock size. Large shocks (relative

to the size of price adjustments) lead to almost all firms adjusting prices and hence imply

neutrality. We fully characterize the minimum size of the shock that delivers this neutrality.

Instead, small shocks, such as those found in empirical impulse responses, yield real output

effects whose cumulative effect is completely encoded by the frequency and kurtosis of price

changes. This result is new in the literature and was discussed in equation (1). To further

illustrate our result, we also present the impulse response function associated with the total

cumulative output effect. We compute this impulse response by a calibration which shows

that a model that successfully matches the cross-sectional micro evidence produces persistent

2We show that kurtosis is increasing in both n and ` (i.e. both partial derivatives are positive).
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real effects that are not too different from what is seen in several empirical studies of the

propagation of monetary shocks. In particular, we find that the half life of a monetary shock

is about 4 times more persistent than in the Golosov-Lucas model, but 30% less than in the

Calvo model.

While the main model we present assumes ex-ante identical firms, in Appendix E we

present an extension that allows for heterogeneity in the frequency and the kurtosis of price

changes across different sectors of the economy. It is clear from equation (1) that this hetero-

geneity is the only one that matters for the real effects of monetary shocks. Other forms of

heterogeneity, such as sector specific menu costs, might give rise to different standard devia-

tions of price changes which are irrelevant for the monetary transmission (at the sector level)

but might bias the economy-wide measurement of kurtosis if heterogeneity is not accounted

for, as discussed in Section 2.

Other related literature

In addition to the papers cited above, our analysis relates to a large literature on the prop-

agation of monetary shocks in sticky price models, unifying earlier results that compare

the propagation in the Calvo model with the propagation in either the Taylor or the menu

cost model of sticky prices. Kiley (2002) showed that, controlling for the frequency of price

changes, the response of output is more persistent under Calvo than under Taylor contracts.

Golosov and Lucas (2007) compared a menu cost and a Calvo model, with the same fre-

quency of price changes, and find that the half-life of the response to the shock in Calvo is

about five times larger than in the menu cost model. Our model is related to the CalvoPlus

model of Nakamura and Steinsson (2010) who consider firms facing idiosyncratic cost shocks

as well as a menu cost that oscillates randomly between a large and a small value. In their

model, like in ours, the random menu cost makes the adjustment decision state dependent,

a feature that dampens substantially the real effect of monetary shocks relative to the Calvo

model. Our paper also relates to the random menu cost model with idiosyncratic shocks by

Dotsey, King, and Wolman (2009), as well as to Vavra (2014), who studies the propagation

of shocks in the presence of aggregate volatility shocks. Given the numerical nature of these

contributions, these papers do not provide an explicit map between the model fundamentals,

the steady state statistics and the propagation of shocks. We see our results as complemen-

tary to these numerical analyses. Our model allows for an analytical characterization of the

firm’s decision rule, the economy’s steady state statistics, the identification of the key model

parameters, as well as a characterization of the relationship between these statistics and the

size of the output effect of monetary shocks. More recently, Karadi and Reiff (2014) have

explored menu cost models where the innovation to cost shocks are assumed to be leptokur-
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tic instead of normal. Their model nests special cases, such as the model with normal cost

shocks, as well as models a la Midrigan (2011) or Gertler and Leahy (2008) where shocks

are either large or zero (and thus cost shocks have a large kurtosis), and a continuum of

intermediate cases. They show that leptokurtic cost shocks may boost the output effect of

monetary shocks in principle, even though in their calibration to actual cost data they find

near money neutrality. While our benchmark model features normal cost shocks, Section 5

uses a data-consistent parametrization to explore the consequences of leptokurtic cost shocks

on our main results. We show that equation (1) continues to convey a reliable approximation

for the real effects of monetary shocks.

2 Measuring the kurtosis of price changes

A vast amount of research has investigated the size of price changes at the microeconomic

level in the past decade (e.g. Bils and Klenow (2004), Nakamura and Steinsson (2008),

Klenow and Malin (2010)). A robust empirical pattern is that the size distribution of price

changes exhibits a large amount of small, as well as large, price changes. This feature of the

distribution is reflected in a kurtosis that is above the one of the normal distribution (i.e.

larger than 3). This pattern does not only reflect cross sectional differences between goods

types, it also appears at the very disaggregated product level, i.e. a given good typically

records both small and large price changes (see Kashyap (1995) for an early documentation

of this fact). Most theoretical models fail to produce a size-distribution for price changes

with such features. The model we present in the next section will be able to match such

patterns and will assign kurtosis a central role in the transmission of monetary shocks. Be-

cause kurtosis is a sufficient statistic for the real effect of monetary policy in the class of

models we analyze, we discuss two important sources of upward bias that arise in estima-

tion: heterogeneity (across types of goods and outlets) and measurement errors (incorrectly

imputing small price changes when there was none). We then analyze the size distribution

of price changes using two datasets, the French CPI and US Dominick’s data. We find that,

after controlling for cross-sectional heterogeneity and correcting for measurement error, the

kurtosis is substantially smaller than what is measured in the raw data. We conclude with an

overview of the existing evidence from other sources, which shows that the value of kurtosis

is in the vicinity of 4 in a large a sample of low-inflation countries. In other words, the distri-

bution lays between a Normal and a Laplace distribution. The other key sufficient statistic

for the real effects of monetary policy in our model is the average frequency of price changes,

a feature shared with many models. We do not explore the measurement of the frequency in

detail since this is the subject of many papers. We do however highlight that measurement
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error also affects the estimates of price durations, leading to overestimating the frequency of

price changes, as documented recently by Cavallo (2015) on US data.

2.1 Accounting for measurement error and heterogeneity

Two concerns arise about the measurement of kurtosis using the micro data: heterogeneity

and measurement errors. Heterogeneity refers to the fact that price data in general combine

a wide variety of goods. A well–known statistical result is that a mixture of distributions

with different variances and the same kurtosis has a larger kurtosis than each sub-population.

Likewise, measurement error may bias the estimation of kurtosis as well as of the frequency of

price changes. We use a simple statistical model to illustrate these points. Let the observed

price changes ∆pm be given by a mixture of three independent zero-mean distributions, with

a common kurtosis k and standard deviations σj. In particular, let ∆pm = I1∆p1 + I2∆p2 +

Ie∆pe where Ij is an indicator variable that refers to the distribution that originates the

price change j = {1, 2, e}. The distribution indexed by j = e describes observations that are

spurious, i.e. due to measurement error. The distributions indexed by j = {1, 2} refer to two

subpopulations of goods, with standard deviations σ1 and σ2. Let 1−ζ be the probability that

the observation is a measurement error, and π1 the probability that the price change is drawn

from population 1 (conditional on a true price change being observed). The objective is to

compute the kurtosis and frequency of price changes as they appear in a sample generated by

this mixture. We focus on an economy in which the size of the measurement error is small,

inspired by Eichenbaum et al. (2014), so that we consider the limiting case σe → 0.3 Some

algebra shows that measured kurtosis is:

lim
σe→0

Kur(∆pm) = k
Ω

ζ
where Ω ≡ π1σ

4
1 + (1− π1)σ4

2

(π1σ2
1 + (1− π1)σ2

2)
2 ≥ 1 (2)

This formula shows that for the estimation to be unbiased, i.e. Kur(∆pm) = k, it is necessary

that there is no measurement error ζ = 1 and no heterogeneity σ1 = σ2. If either of these

conditions fails, then measured kurtosis is upward biased. In the empirical analysis we

address the heterogeneity-induced bias by standardizing the price changes at a disaggregate

cell level (by demeaning the price change observations and dividing them by their standard

deviation). A cell is, for instance, a category of good and of outlet type, such as a baguette in

3The technical Appendix H.2 explores the concerns about the spurious small price changes raised by
Eichenbaum et al. (2014), concluding that they also apply to the French CPI data, albeit to a lesser extent.
Even at the finest level of disaggregation some price changes in the CPI data reflect product substitutions (e.g.
different brands for a given good being recorded) rather than an actual change in the good’s price. Likewise,
spurious small price changes may originate in scanner dataset from the unit value problem of weekly prices,
whereby the recorded prices average the prices paid by customers with and without discount coupons.
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supermarkets. A similar approach was followed by Klenow and Kryvtsov (2008) and Midrigan

(2011). Notice that, absent measurement error, the standardization procedure would deliver

an unbiased estimate of kurtosis k. To address the small measurement error issue we discard

observations with tiny price changes (e.g. smaller than 1 cent), a common practice in the

empirical studies of price changes. We then compute the statistics for the pooled standardized

data.

The model also illustrates the differential impact of measurement error and heterogeneity

on the measured frequency of price changes. Measurement error makes the (expected) number

of measured price changes, Nm, greater than the number of true price changes, Np, so that

Nm = Np + Ne where Ne is the number of incorrectly imputed price changes (all measured

per period). This prediction is supported by recent evidence by Cavallo (2015), who shows

that price durations estimated over scanner datasets are affected by measurement issues

that produce a downward bias of measured durations. We have that Ne = (1 − ζ)Nm and

Np = ζ Nm. Notice that heterogeneity has no effect on the measurement of the frequency of

price change, unlike in the case of kurtosis. If two samples are observed, one measurement

error free and the other one with a fraction 1− ζ of small spurious price changes, then ζ can

be estimated using the ratio of the two estimated frequencies of price changes. If kurtosis k

and km is also measured on the two samples, then one can infer what part of the bias in the

measurement can be attributed to measurement error (using the bias factor 1/ζ) and what

part is due to heterogeneity (the factor Ω).

2.2 Evidence

We use two large datasets to provide evidence on the kurtosis of the size distribution, ac-

counting for measurement error and heterogeneity. The first one is the Dominick’s dataset,

featuring weekly scanner data from a large supermarket chain in Chicago.4 Around 15,000

UPCs are available, belonging to 29 product categories (such as beer or shampoo), over 400

weeks from September 1989. Following Midrigan we focus on one particular store, the one

with most observations (store #122). The second piece of evidence is a longitudinal dataset

of monthly price quotes underlying the French CPI, over the period 2003:4 to 2011:4, con-

taining around 11 million price quotes, documented in details in Berardi, Gautier, and Le

Bihan (2015). Each record relates to a precisely defined product sold in a particular outlet

in a given month. One main advantage of CPI data is the broader coverage of household

consumption. The raw dataset covers about 65% of the CPI basket (some categories of goods

and services are not available in our sample). The dataset also includes CPI weights, which

4Data at the universal product code (UPC) level are provided by James M. Kilts Center, University of
Chicago Booth School of Business.
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we use to compute aggregate statistics.

Figure 1: Histogram of Standardized Price Changes: France (CPI) and US (Dominick’s)

CPI data (France) Dominick’s (US)
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The figures use the elementary CPI data from France (2003-2011), and the Dominick’s data set. Price changes
are the log difference in price per unit, standardized by good category (272) and outlet type (11) and pooled.
Price changes equal to zero are discarded. The panel with French CPI uses about 1.5 million data points, the
panel with Dominick’s about 0.3 million.

In both datasets price changes are computed as 100 times the log-difference in prices

(price per unit in the case of CPI where package size may vary, unlike with UPCs). As a first

hedge against measurement error we discard observations with item substitutions in CPI data

(which might give rise to spurious price changes). We apply the following trimming to the

data: for Dominick’s we disregard changes that are smaller than 1 cent (due to measurement

error) and drop observations with price levels smaller than 20 cents or larger than 25 dollars

(deemed implausible in view of the type of items sold and the distribution of price levels). In

the CPI data we drop price changes whose absolute value is smaller than 0.1 percent. In both

datasets, we remove as “outliers” observations with log-price changes larger in absolute value

than the 99th percentile of absolute log price changes. To handle the issue of heterogeneity,

we standardize the data at the “cell” level. A cell is defined by a good category and outlet

type in the CPI data, and a UPC-store in scanner data. We use the finest partition possible

in our data: for CPI each cell is a COICOP category at the 6-digit level in an outlet type,

and we have around 1,500 cells. As mentioned we compute the standardized price changes

by subtracting the cell mean (for all non zero price changes) and dividing by the cell-specific

standard deviation.
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Figure 1 summarizes our main findings with a weighted histogram of the standardized

price changes. On the same graph we superimpose the density of the standard Normal

distribution as well as the standardized Laplace distribution (both have unit variance). The

Laplace distribution has a kurtosis of 6 and is thus more peaked than the Normal. It is

apparent that both empirical distributions of standardized price changes are more peaked

than the Normal. The kurtosis of the standardized price changes measured on the French

CPI is large, equal to 8.0 (removing sales has a minor effect: kurtosis increases to 8.9).

This estimate is still likely upward biased because of the remaining measurement errors and

the remaining heterogeneity, which increase estimated kurtosis as indicated by Ω > 1 and

1/ζ > 1 in equation (2). Notice that our control for heterogeneity in the CPI data is partial,

as the information available prevents us from correcting heterogeneity at a finer level: e.g.,

we do not know the UPC of the product or the store where it is sold. To get a sense of how

this residual heterogeneity impacts results, we performed a computation in the Dominick’s

datasets by standardizing price changes at the product level (i.e. beer, or shampoo which

roughly matches the finest level of disaggregation available in the CPI) as opposed to the

UPC level. Kurtosis is then 4.9, against 4.0 in the baseline UPC-level standardization. Notice

that in addition to this 20% bias, the CPI has the additional problem that CPI prices are

not collected in a single store or area, giving rise to yet another source of heterogeneity that

is not present in Dominick’s data (where we focus on a single store and area). Moreover,

measurement error is likely present, as our trimming of the data is quite conservative: using a

1% to identify spurious small price changes as suggested by Eichenbaum et al. (2014) reduces

estimated kurtosis to 7 (see the technical Appendix H.1 for more evidence).

As a further assessment of measurement error, we matched a specific subset of the French

CPI data with data taken from the Billion Price Project (BPP) dataset, see Cavallo (2015).

These data were constructed with the specific intent of addressing heterogeneity and mea-

surement error issues, and so they provide an ideal environment to assess the relevance of the

issues discussed above.5 We matched the BPP data from 3 retailers with the corresponding

items in the CPI (see Appendix A). We find that for these retailers kurtosis computed on

the BPP data is around 1/2 the value computed from using the CPI data. This suggests that

the factor Ω/ζ in equation (2), is around 2 in this sample. Extrapolating this finding to the

CPI index, yields an estimated kurtosis of about 4. As discussed in Section 2.1 measurement

error (but not heterogeneity) also affects the measurement of the frequency of price changes.

Indeed, the data on duration in the BPP vs the CPI is also consistent with the presence

of substantial measurement error. In two of the three outlets considered the frequency of

5 Cavallo (2015) and Cavallo, Neiman, and Rigobon (2014) document that online prices are representative
of offline prices for a selected sample of large retailers.
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adjustment is half the frequency detected for the corresponding outlet in the CPI data, sug-

gesting that the bias in kurtosis is mostly due to measurement error. In the third outlet by

contrast the duration of price adjustment between the BPP vs the CPI is similar, suggesting

that the discrepancy in kurtosis mainly reflects residual heterogeneity in the CPI data.

Table 1: Overview of estimates of kurtosis

US Other countries

Source: M11 NS08 V13 CR15 KR14 W10 CR15
Kurtosis: 4.0 5.1 4.9 4.1 3.98 5.7–8.1 4.0

The kurtosis is computed using standardized price changes. The labels for the various studies are: M11:
Midrigan (2011), NS08: Nakamura and Steinsson (2008), V13: Vavra (2014), KR14: Karadi and Reiff
(2014) (Hungary) , W10:Wulfsberg (2010) (Norway), CR15: Cavallo and Rigobon (2016) (US and median
value across 30 low-inflation countries).

Our analysis of the Dominick’s data reveals that kurtosis of the standardized price changes

is equal to 4.0. This finding is consistent with the hypothesis that the more granular and more

precise nature of the information in the dataset allows for better control over heterogeneity

as well as measurement errors. Finally, Table 1 provides an overview of available estimates

of the kurtosis of standardized price changes for the US and some other countries. Most

estimates are located in the vicinity of 4. In particular, the estimates by Cavallo and Rigobon

(2016) based on the BPP internet scraped data discussed above stand out as the most

comprehensive (across countries) and least affected by measurement errors, although the

coverage of the goods is not as comprehensive as the CPI. These authors use data from 40

countries, standardizing price changes at the UPC level to deal with heterogeneity. Their

Table 2 shows that Kurtosis is 4 in the US and in France (values are rounded to integers).

The median value in the 40 country sample is 5, while in the subsample of 30 countries with

inflation below 5 percent the median is 4.

3 A tractable model with a random menu cost

This section presents a menu cost model aimed at qualitatively matching the patterns docu-

mented above. In the canonical menu cost model price adjustments occur when a threshold

is hit, so that the implied distribution of price changes fails to generate the small changes

that appear in the data (see the discussion in Midrigan (2011); Cavallo (2015); Alvarez and

Lippi (2014)). The model that we propose here is able to produce a large mass of small price

changes and the positive excess kurtosis that we documented above. Two ingredients are

key to this end: (i) random menu costs and (ii) the menu cost faced by the firm, ψ, applies
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to a bundle of n goods, so that after paying the fixed cost the firm can reprice all goods at

no extra cost. Each of these assumptions individually is able to generate some small price

changes and higher kurtosis than in a canonical model with n = 1 and constant menu costs.

The random menu costs is key to generate a positive excess kurtosis in the distribution of

price changes. The combination of the two is important: in the models where n = 1 (with

or without random menu costs) the distribution of price changes has a mass point at the ad-

justment threshold, a feature that is in stark contrast with the evidence. The prominence of

“large” price changes (i.e. a “U shaped” distribution) persists even in a model with n = 2, as

in Midrigan (2011) where the distribution of price changes asymptotes near the adjustment

threshold, or n = 3 as in Bhattarai and Schoenle (2014). We show below that in order to

generate a size distribution whose shape is comparable to the data one needs n ≥ 6.

General Equilibrium Setup. The general equilibrium set up is essentially the one in

Golosov and Lucas (2007), adapted to multi-product firms (see Appendix B in Alvarez and

Lippi (2014) for details). Households have a constant discount rate r and an instantaneous

utility function which is additively separable: a CES consumption aggregate, log in real

balances, linear in leisure, with constant intertemporal elasticity of substitution 1/ε for the

consumption aggregate, so that the Marshallian (or uncompensated) labor supply elasticity

to real wages is 1/ε − 1. A convenient implication of this setup is that nominal wages are

proportional to the money supply in equilibrium, so that a monetary shock increases the firms’

marginal costs proportionately. Each firm produces n goods, each with a linear labor-only

technology, subject to idiosyncratic productivity shocks independent across products, whose

log follows a brownian motion with instantaneous variance σ2. The firm faces a demand with

constant elasticity η > 1 for each of its n products, coming from the household’s CES utility

function for the consumption aggregate. To keep the expenditure shares stationary across

goods in the face of the permanent idiosyncratic shocks, we assume offsetting preference

shocks (as in Woodford (2009), Bonomo, Carvalho, and Garcia (2010) Midrigan (2011),

Alvarez and Lippi (2014)). The frictionless profit-maximizing price for good i at time t is

thus given by a constant markup η/(η−1) over the marginal cost. Let P ∗i (t) be the log of the

frictionless profit maximizing price which follows the process dP ∗i (t) = σ dW (t) where W (t)

is a standard brownian motion with no drift, and σ is the standard deviation of productivity.

The technology to change prices is as follows: each firm is subject to a random menu cost to

simultaneously change the price of its n products. In a period of length dt this cost amounts

to ψL units of labor with probability 1− λdt, or zero with probability λdt. Let pi(t) denote

the “price gap” for good i at time t, i.e. the difference between the actual (log) sale price

Pi(t) and the (log) profit maximizing price P ∗i (t), i.e. pi(t) ≡ Pi(t) − P ∗i (t). The firm flow
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profit can be approximated, up to a second order, by a quadratic loss function
∑n

i Bpi(t)
2

where the scale parameter B = (1/2)η(η − 1) is related to the demand elasticity.6 Under

this approximation it is convenient to express the menu cost ψL in units of flow profits at the

optimal price, a constant value that we denote by ψ.

To keep the model simple we assume that all goods in the economy are ex-ante symmetric

and subject to shocks with a common variance σ2, and all firms share the same fundamental

parameters. An extension to a case with ex-ante heterogeneous firms, involving different

frequencies and kurtosis of price adjustment, is presented in Appendix E. Our empirical

analysis of heterogeneity and the standardization of data employed in the previous section

are fully consistent with the theoretical framework discussed in this extension provided that

the shocks that hit the individual goods are normally distributed (but possibly with different

variances).

3.1 A simple case with n = 1 good.

The simplest illustration of our random menu cost model obtains for the case where n = 1,

so the price gap p is scalar. Let V (p) be the present-value cost function for the firm. Upon

the arrival of a free adjustment opportunity, i.e. a zero menu cost, the firm optimally resets

the price gap to zero (given the symmetry of the loss function and the law of motion of price

gaps), hence the Bellman equation for the range of inaction reads:

r V (p) = Bp2 + λ
(
V (0)− V (p)

)
+
σ2

2
V ′′(p) , for p ∈ (−p̄, p̄) ,

where p̄ is the threshold rule defining the region where inaction is optimal (see the technical

Appendix I for the calculations of this section). This equation states that the flow value of

the Bellman equation is given by the instantaneous losses, Bp2, plus the expected change

in the value function, which is due either to a free adjustment (with rate λ in which case

the price gap is reset to zero) or to the volatility of shocks σ2. The value-matching and

smooth-pasting conditions are given by V (p̄) = V (0) +ψ and V ′(p̄) = 0. A Taylor expansion

of the value function yields the following approximate optimal threshold p̄ =
(

6ψσ2

B

) 1
4

which

is accurate for small values of the menu cost ψ.7

Computing the expected time between adjustments yields an expression for the average

6This approximation is quite accurate for the typical small values of the menu cost used in the literature.
See Alvarez and Lippi (2014) for a quantitative illustration of the accuracy and for a survey of several papers
that use the quadratic formulation.

7 The approximation obtains as ψ(r+λ)2

Bσ2 → 0, see Proposition 3 of Alvarez and Lippi (2014). Exactly the
same expression was established by Barro (1972) and Dixit (1991) for the case in which λ = 0. Below we
discuss an approximate threshold for large values of ψ that is useful to interpret the Calvo model.
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number of adjustments per period, N(∆pi), which we use to measure the fraction of free

adjustments over the total number of adjustments, a variable we call `, as

` ≡ λ

N(∆pi)
=

e
√

2φ + e−
√

2φ − 2

e
√

2φ + e−
√

2φ
∈ (0, 1) where we define φ ≡ λp̄2

σ2

which shows that the fraction of free adjustments ` depends only on the parameter φ. The

parameter φ can be interpreted as the ratio between λ, the number of free adjustments, and

σ2/p̄2, the number of adjustments in a model where λ = 0 and the threshold policy p̄ is

followed.

Let ∆pi = −p denote the price change implemented by a firm that adjusts when its price

gap is p. The distribution of price changes is symmetric around ∆pi = 0. This distribution

has two mass points at ∆pi = ±p̄. The two points, which account for 1− ` of the mass, are

due to the price changes that occur when the price gap hits the boundaries of the inaction

region. The remaining price changes, a fraction ` of the mass, occur when a free adjustment

opportunity arrives, at which time the price gap is set to zero. Price changes in the range

∆pi ∈ (−p̄, p̄) have a density ` g(p) where g(p) denotes the density of the invariant distribution

of price gaps given by

g(p) =

√
2φ

2p̄
(
e
√

2φ − 1
)2

(
e
√

2φ(2− |p|
p̄ ) − e

√
2φ
|p|
p̄

)
for p ∈ [−p̄, p̄] . (3)

This density is a symmetric in the (−p̄, p̄) interval and its shape is high-peaked (“tent-

shaped”). The full distribution features two mass points at the boundaries ±p̄. As shown

below the kurtosis of this distribution is increasing in λ, and in particular the distribution of

price changes is more peaked than that of the standard menu cost model where λ = 0.

We notice that the shape of the distribution of price changes depends only on the fraction

of free adjustments ` (or, equivalently, on φ). This means that two economies, or sectors, that

differ in the standard deviation of price changes Std(∆pi) and/or in the frequency of price

adjustment N(∆pi) will display a distribution of price changes with exactly the same shape

(once its scale is adjusted) provided that they have the same value of `. This property is useful

to aggregate the sectors of an economy that are heterogenous in their steady state features

N(∆pi), Std(∆pi). Because kurtosis is a scale free statistic, i.e. independent of Std(∆pi), it

is completely determined by φ in this model. The general model adds one parameter, n, as

a determinant of the shape of the size distribution of price changes and hence of kurtosis.
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3.2 The model with multi-product firms

This section incorporates the model with free adjustment opportunities discussed above into

the model of Alvarez and Lippi (2014) where the firm is selling n goods, so that p is now a

vector in Rn, but pays a single fixed adjustment cost to change the n prices. We incorporate

this feature for several reasons. First, as explained above, in the model with n = 1 good there

is a mass point on price changes of size |∆pi| = p̄. For n = 2 the mass point disappears but

the distribution of price changes still features the largest mass of observations (the highest

density) near the adjustment thresholds. There is no evidence of this in any data set we

can find. Values of n ≥ 6 produce a bell-shaped size distribution of price changes that is

much closer to what is seen in the data. Second, the model with λ = 0 has a kurtosis that

increases with n, hence providing an alternative to random menu costs. Third, for large n

and λ = 0 the distribution of price changes tends to the Normal distribution, which is both

a nice benchmark and an accurate description of the price changes for some sectors. Finally,

the multi-product model with (n > 1) has an alternative, broader, “rational inattentiveness”

interpretation for the adjustment cost ψ. In particular, one can assume that the firm freely

observes its total profits but not the individual ones (for each product), unless it either pays

the cost ψ or a free observation opportunity arrives, in which case it is able to set the optimal

price to each of them. This allows a broader interpretation of the menu cost, including not

only the physical cost of changing prices but also the cost related to gathering and processing

the information for individual products.8 For instance, as n → ∞ the model converges to

the rational inattentiveness model of Section 4.3 in Reis (2006).

We now briefly describe the setup of the firm problem with n products. As before the

free adjustment opportunities are independent of the driving processes {Wi(t)} for price

gaps i = 1, 2, ..., n, and arrive according to a Poisson process with constant intensity λ. In

between price adjustments each of the price gaps evolves according to a Brownian motion

dpi(t) = σ dWi(t). It is assumed that all price gaps are subject to the same variance σ2 and

that the innovations are independent across price gaps.9

We assume that, when the free opportunity arrives, the firm can adjust all prices without

paying the cost ψ. The analysis of the multi product problem can be greatly simplified by

using the sum of the squared price gaps, y ≡ ||p||2 as a state variable, instead of the vector

p = (p1, ..., pn), as done in Alvarez and Lippi (2014). The scalar y summarizes the state

8As an example, see Chakrabarti and Scholnick (2007) who argue that for stores such as Amazon or Barnes
and Noble physical menu cost are small, yet prices change infrequently, and thus conclude that the cost may
be of a different nature. Interestingly, they find that for such retailers price changes are synchronized across
products, which is an implication of the multi-product model.

9 Alvarez and Lippi (2014) discuss the case with correlated price gaps. Intuitively, as correlation increases
the model becomes more similar to the n = 1 case, since the price gaps of a firm become more similar.
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because the period objective function can be written as a function of it and because, from

an application of Ito’s lemma, one can derive a one dimensional diffusion which describes its

law of motion, namely

dy = nσ2 dt + 2σ
√
y dW

where W is a standard Brownian motion.

Using N(∆pi) and V ar(∆pi) to denote the frequency and the (cross sectional) variance

of the price changes of product i, the next proposition establishes a useful relationship that

holds in a large class of models for any policy for price changes, which we describe by a

stopping time rule:

Proposition 1 Let τ describe the time at which a price change takes place, so that all price

gaps are closed. Assume the stopping time treats each of the n price gaps symmetrically. For

any finite stopping time τ we have:

N(∆pi) · V ar(∆pi) = σ2 . (4)

The proposition highlights the trade-off for the firm’s policy: more frequent adjustments

are required to have smaller price gaps. See Appendix B for the proof, where the reader

can verify that the key assumptions are random walks and symmetry. We underline that

equation (4) holds for any stopping rule, not just for the optimal one. Indeed it holds for

a larger class of models, for instance those with correlated price gaps and a richer class of

random adjustment cost.

Upon the arrival of a free adjustment opportunity the firm will set the price gap to zero,

hence the Bellman equation for the range of inaction reads:

r v(y) = B y + λ
(
v(0)− v(y)

)
+ nσ2 v′(y) + 2σ2y v′′(y), for y ∈ (0, ȳ) , (5)

where B y is the sum of the deviation from the optimal profits from the n goods.

Given the symmetry of the problem after an adjustment of the n prices the firm will set

all price gaps to zero, i.e. will set ||p||2 = y = 0. The value matching condition is then

v(0) + ψ = v(ȳ), which uses the fact that when y reaches a critical value, denoted by ȳ, the

firm can change the n prices by paying the fixed cost ψ. The smooth pasting condition is

v′(ȳ) = 0.

The next lemma establishes how to solve for ȳ using the solution of the problem with

λ = 0 discussed in Alvarez and Lippi (2014). In particular, using r+λ as a modified interest

rate in the solution of the problem with λ = 0, allows us to immediately compute the solution

for the case of interest in this paper. We have:
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Lemma 1 Let v(y; r, λ) and ȳ(r, λ) be the optimal value function and adjustment threshold

for a problem with discount rate r and arrival rate λ. Then v(y; r, λ) = v(y; r + λ, 0) +
λ
r
v(0; r + λ, 0) for all y ≥ 0 and thus ȳ(r, λ) = ȳ(r + λ, 0).

The proof of this lemma follows a straightforward guess and verify strategy. The lemma

allows us to use the characterization of ȳ with respect to r given in Proposition 4 of Alvarez

and Lippi (2014) to study the effect of r + λ on ȳ.10 The next proposition summarizes that

result and extends the characterization of the optimal threshold to the case where ψ is large,

a case that is useful to understand the behavior of an economy with a lot of free adjustments

opportunity as in a Calvo mechanism (see Appendix B for the proof).

Proposition 2 Assume σ2 > 0, n ≥ 1, λ+ r > 0 and B > 0, and let ȳ be the threshold for

the optimal decision rule. We then have that:

1. As ψ → 0 then ȳ√
2(n+2)σ2 ψ

B

→ 1 or ȳ ≈
√

2(n+ 2)σ2 ψ
B

.

2. As ψ → ∞ we have ȳ
ψ
→ (r + λ)/B or ȳ ≈ ψ

B
(r + λ) . Moreover this also holds for

large n and large ψ
n

, namely limψ/n→∞ limn→∞
ȳ/n
ψ/n

= (r + λ)/B or ȳ
n
≈ ψ/n

B
(r + λ).

The proposition shows that ȳ is approximately constant with respect to λ for small values

of ψ, so that for small menu costs the result is the well known quartic root formula (recall that

y has the units of a squared price gap) and the inaction region is increasing in the variance

of the shock, due to the higher option value. Interestingly, and novel in the literature, the

second part of the proposition shows that for large values of the adjustment cost the rule

becomes a square root and that the optimal threshold does not depends on σ, which shows

that for large adjustment costs the option value component of the decision becomes negligible.

Moreover, when the menu costs are large the threshold ȳ is increasing in λ: the prospect of

receiving a free adjustment tomorrow increases inaction today.

We now turn to the discussion of the model implications for the frequency of price changes.

We let N(∆pi) be the expected number of adjustments per unit of time of a model with a

given λ and ȳ. We establish the following (see Appendix B for the proof):

Proposition 3 Let Γ denote the gamma function. The fraction of free adjustments is ` =

λ/N(∆pi), where

` =

∑∞
i=1

Γ(n2 )
i! Γ(n2 +i)

[
n
2

]i
φi∑∞

i=0

Γ(n2 )
i! Γ(n2 +i)

[
n
2

]i
φi
≡ L(φ, n), where φ ≡ λȳ

nσ2
(6)

10The technical Appendix K gives the analytical solution for the value function and provides more details.
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The proposition shows that ` is a function only of two variables: n and φ, and that it

is increasing in φ. As was the case for the model with n = 1, the parameter φ can be

interpreted as the ratio between λ, the number of free adjustments, and nσ2/p̄2, the number

of adjustments in a model where λ = 0 and the threshold policy ȳ is followed. For a given

n there is a one to one and onto mapping between φ and `: as φ → 0 then ` → 0, and as

φ→∞ then `→ 1.

Finally we characterize the invariant distribution of y for the case where λ > 0, a key

ingredient to compute the size-distribution of price changes. The density of the invariant

distribution solves the Kolmogorov forward equation: λ
2σ2f(y) = f ′′(y)y −

(
n
2
− 2
)
f ′(y) for

y ∈ (0, ȳ), with the two boundary conditions f(ȳ) = 0 and
∫ ȳ

0
f(y)dy = 1. It is clear from

these conditions that f(·) is uniquely defined for a given triplet: ȳ > 0, n ≥ 1 and λ/σ2 ≥ 0.

The general solution of this ODE is

f(y) =

(
λy

2σ2

)(n4−
1
2)
(
C1 Iν

(
2

√
λy

2σ2

)
+ C2 Kν

(
2

√
λy

2σ2

))
(7)

where Iν and Kν are the modified Bessel functions of the first and second kind, C1, C2 are

two arbitrary constants and ν = |n
2
− 1|, see Zaitsev and Polyanin (2003) for a proof. The

constants C1, C2 are chosen to satisfy the two boundary conditions.11 While the density in

equation (7) depends on 3 constants n, φ and ȳ, its shape depends only on 2 constants,

namely n and φ, as formally stated in Lemma 3 in Appendix B. The lemma shows that one

can normalize ȳ to 1 and compute the density for the corresponding φ.

We denote the marginal distribution of price changes by w(∆pi). Recall that a firm

changes all prices when y first reaches ȳ or when a free adjustment opportunity occurs even

though y < ȳ. Therefore to characterize the price changes ∆pi of good i belonging to the

vector of price gaps p we need three objects: the fraction of free adjustments `, the invariant

distribution f(y) and the marginal distribution of price changes conditional on a value of y,

ω(∆pi; y) which, following Proposition 6 of Alvarez and Lippi (2014) when n ≥ 2, is

ω(∆pi; y) =


1

Beta(n−1
2
, 1
2) √y

(
1−

(
∆pi√
y

)2
)(n−3)/2

if (∆pi)
2 ≤ y

0 if (∆pi)
2 > y

(8)

where Beta(·, ·) denotes the Beta function. In this case the (cross-sectional) standard devia-

tion of the price changes is Std (∆pi ; y) =
√
y/n. The marginal distribution of price changes

11 We note that both modified Bessel functions are positive, that Iν(y) is exponentially increasing with
Iν(0) ≥ 0, and that Kν(y) is exponentially decreasing with Kν(0) = +∞. The technical Appendix O gives a
closed form expression for f in terms of power series.
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w(∆pi) is given by

w(∆pi) = ω(∆pi; ȳ) (1− `) +
(∫ ȳ

0

ω(∆pi; y)f(y)dy
)
` for n ≥ 2 . (9)

which shows that the distribution w(∆pi) is a mixture of the ω(∆pi, y) densities. These

densities are scaled versions of each other with different standard deviations. The mixture

increases the kurtosis of the distribution of price changes compared to the case where λ = 0,

for the reasons discussed in Section 2.12 Before illustrating the shapes produced by this

distribution, the next proposition shows that those shapes are completely determined by n

and ` and no other parameters (see Appendix B for the proof):

Proposition 4 Let w(∆pi;n, `, 1) be the density function for the price changes ∆pi in an

economy with n goods, a share ` of free adjustments, and a unit standard deviation of price

changes Std(∆pi) = 1. This density function is homogenous of degree -1 in ∆pi and Std(∆pi),

which implies

w (a∆pi;n, `, a) =
1

a
w (∆pi;n, `, 1) for all a > 0. (10)

The proposition implies that we can aggregate firms or industries that are heterogenous in

terms of frequency N(∆pi) and standard deviation of price changes Std(∆pi) provided that n

and ` are the same. Notice in particular that the frequency of price changes N(∆pi) does not

have an independent effect on the distribution of price changes as long as ` remains constant.

Figure 2 shows the shapes of the distribution of price changes ∆pi in equation (9) obtained

for different combinations of n and `. It is evident that for small values of n the shape of the

distribution does not match the “tent-shaped” patterns that are seen in the data as in e.g.

Figure 1. For the case when n = 2 the density of the price changes diverges at the boundaries

of the domain where ∆pi = ±
√
ȳ/n. This feature echoes the two mass points that occur

in the n = 1 case where a non-zero mass of price changes occurs exactly at the boundaries.

For n ≥ 6 the shape of the density takes a tent-shape, similar to the one that is seen in the

data. As the fraction of free adjustments approaches 1 the density function converges to the

Laplace distribution.

Using that ∆pi is distributed as a mixture of the ω(∆pi, y), we can compute several

12 In particular Proposition 6 in Alvarez and Lippi (2014) shows that the variance and kurtosis of ω(∆pi, y)
are given by y/n and 3n/(n+ 2) respectively.
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Figure 2: Size distribution of price changes
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Note: All distributions are zero mean with unit standard deviation. As stated in Proposition 4 the shape
of this distribution only depends on ` and n.

moments of interest, such as

V ar(∆pi) = (1− `) ȳ
n

+ `

∫ ȳ

0

y

n
f(y)dy (11)

Kur(∆pi) =
3n

2 + n

(1− `) ȳ2 + `
∫ ȳ

0
y2 f(y)dy(

(1− `) ȳ + `
∫ ȳ

0
y f(y)dy

)2 >
3n

2 + n

As stated in Proposition 4 the value of the kurtosis Kur(∆pi) depends only on two

parameters: n and `. Moreover, kurtosis is increasing in both n and `, as can be seen in

Figure 4 which plots the value of Kur(∆pi)/6 for various combinations of n and `, the only

two parameters determining kurtosis. For small values of ` kurtosis is increasing in n up

to a level of 3. For instance, if ` = 0 and n → ∞, the kurtosis converges to 3 since the

distribution of price changes at the time of adjusting for each firm becomes normal; this

value is the highest that the purely multi-product model with ` = 0 can produce. For any n,

as the fraction of free adjustments ` increases, the kurtosis increases towards 6, the maximum

value achieved in our model when ` = 1.13 The inequality that appears in the second line is

a well known result: the mixture of distributions with the same kurtosis but with different

13The relationship between the fraction of free adjustment and the “mass of small price changes”, a statistic
that is closely related to kurtosis, was noticed in the numerical simulations of Nakamura and Steinsson (2010)
(see their footnote 15, where their “frequency of low repricing opportunities”, 1− α, is essentially our `).
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variances has higher kurtosis, which follows from Jensen’s inequality.14

To conclude the description of the model we summarize a few special cases nested by our

setup. The Golosov-Lucas model is obtained when n = 1 and ` = 0, implying a kurtosis of

1. The Taylor model, or equivalently “rational inattentiveness” model by Reis, is obtained

when n =∞ and ` = 0, implying a kurtosis of 3. The Calvo model is obtained for `→ 1, for

all values of n, implying a kurtosis of 6. Additionally, two recent models can be proxied: the

“CalvoPlus” model by Nakamura and Steinsson (2010) for the special case of no intermediate

goods (sm = 0 using their notation), is obtained assuming n = 1 and ` ∈ (0, 1). The

multiproduct model of Midrigan (2011) is obtained assuming n = 2 and modeling the fat

tailed shock by assuming ` ∈ (0, 1). Depending on the parameter choice for `, the last two

models can generate a kurtosis between 1 and 6. It is shown in Section 4.1 that higher values

of kurtosis are essential in both models to explain why the real effects in those models are

closer to Calvo than to Golosov-Lucas.

The map between the fundamental parameters and observables. Our model has

four independent parameters: the scaled menu cost ψ/B, the volatility of shocks σ, the

number of goods n and the rate of free adjustment opportunities λ. The model provides

an invertible mapping between these parameters and 4 observables, which is useful to think

about parameters’ identification and the model’s comparative statics. Since different papers,

e.g. Golosov-Lucas and Midrigan, have in common that they are matched to the same fre-

quency and standard deviation of price changes for the US, we find it convenient to illustrate

the behavior of our model while keeping the frequency N(∆pi) and the variance V ar(∆pi)

constant. Matching these statistics implies that 2 of the 4 fundamental model parameters,

namely ψ/B and σ, are pinned down. The model has two residual parameters: n and λ,

with the latter mapping one-to-one and onto ` = λ/N(∆pi). The parametrization of the

model can thus be usefully interpreted as choosing n and ` to match two additional empir-

ical moments. It was shown in Proposition 4 how ` and n shape the distribution of price

changes, in particular its kurtosis. In Appendix C we show how ` and n map into the cost of

price adjustments, for given values of N(∆pi) and V ar(∆pi). Kurtosis and the cost of price

adjustments can thus be used to discipline the parameterization of the model.

4 The real output effect of a monetary shock

In this section we discuss the response of the economy’s aggregate output to an unexpected

(once and for all) increase of the money supply of size δ, starting from a steady state with

14The technical Appendix L gives a closed form solution for kurtosis without solving for f(y).
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zero, or small, inflation. Figure 3 plots the impulse response function (IRF) of output pro-

duced by our model for different combinations of n and `. The impulse response functions

were computed numerically using the decision rules described above. Appendix D gives the

derivation in details and establishes analytically two useful results: first that the shape of the

IRF depends only on n and `. Second, changes in the standard deviation of price changes

std(∆pi) and in the frequency of price changes N(∆pi) imply a rescaling of the vertical and

horizontal axes, respectively, but do not affect the shape of the IRF. For instance, while

the figure is drawn for an economy with N(∆pi) = 1, it can be readily used to analyze an

economy with N(∆pi) = 2 simply by dividing values on the time axis by 2. The left panel of

the figure presents the IRF for an economy with n = 1. Three cases are given: the ` = 0.01

is essentially the economy of Golosov and Lucas (2007), where the real effects of monetary

shocks are short-lived. The outer line corresponding to ` = 0.99 is the Calvo model, where

(almost) all adjustments are triggered by exogenous arrivals of adjustment opportunities.

The right panel of the figure plots an economy with n = 10. Compared to the economy with

n = 1 the multi-product economy implies a size distribution of the price changes that features

several small and large price changes (and no mass points), an arguably realistic feature of

the model. It is also apparent that the economy with n = 10 implies more persistent effects

of monetary shocks, for instance the half-life of the shock roughly doubles that in Golosov

and Lucas. The line corresponding to ` = 2/3 is calibrated to match a kurtosis of the size

distribution of price changes equal to 4, an empirically plausible value as discussed in Sec-

tion 2.2. Notice that this calibration, which we see as realistic, delivers a significant increase

of the persistence of monetary shocks compared. For instance in the Golosov-Lucas model

(n = 1, ` = 0, left panel) the half-life of the shock is close to 1.5 months, while in our cali-

brated model (n = 10, ` = 0.67, right panel) the half-life is about 6 months. The calibrated

model thus produces real effects that are much more persistent than the canonical model,

but less persistent than a Calvo model (` = 1.0) where the half-life is around 8 months.

Our main objective in this section is to characterize the real output effect of monetary

shocks using a simple summary statistic, namely the total cumulative output. This statistic

measures the area under the output’s impulse response function, e.g. the gray shaded area

that appears for illustrative purposes in Figure 3 for the models with ` = 0.01. We find

this statistic convenient for two reasons. First, it combines in a single value the persistence

and the size of the output response, and it is closely related to the output variance due to

monetary shocks, which is sometimes used in the literature.15 Second for small monetary

shocks (like the ones typically considered in the literature) this statistic is completely encoded

15 For more discussion and evidence on the equivalence between the area under the impulse response
function and the variance due to monetary shocks see footnote 21 of Nakamura and Steinsson (2010).
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Figure 3: Output response to a monetary shock of size δ = 1%
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The figures represent an economy with N(∆pi) = 1.0 and std(∆pi) = 0.10.

in the frequency of price changes N(∆pi) and the kurtosis of price changes Kur(∆pi), as

highlighted by equation (1). These two sufficient statistics thus provide a straightforward

metric to compare the workings of different models.

Formally, the cumulative output M after a shock δ is given by:

M(δ) =
1

ε

∫ ∞
0

(δ − P(δ, t)) dt (12)

where P(δ, t) is the aggregate price level t periods after the shock. The argument of the

integral gives the aggregate real wages at time t, which are then mapped into output through

1/ε, a parameter related to the (uncompensated) labor supply elasticity. Integrating over

time gives the total cumulative real output.

To characterizeM(δ) we consider the expected cumulative output deviation from steady

state of a firm with a vector of price gaps p:

m (p1, ..., pn) = −E

[∫ τ

0

n∑
i=1

pi(t) dt
∣∣ p(0) = p

]
(13)

where τ is the stopping time associated with the optimal decision rule described as the first

time that ||p(t)||2 reaches threshold ȳ or that a free adjustment opportunity arrives. Note

that, by definition, if ||p||2 ≥ ȳ then m(p) = 0. Intuitively, a firm with a price gap −pi(t) for

good type i is producing pi(t)/ε percent excess output compared to its steady state at time
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t. Thus, integrating over time until the (random) time of adjustment τ , m(p)/n gives the

expected total excess output produced by a firm that has a vector of price gaps equal to p

immediately after the monetary shock. Three remarks about this solution are in order. First,

given the GE structure, identical to the one in Golosov and Lucas (2007), a once and for all

increase in money supply is followed by a once and for all increase in nominal wages, and

leaves nominal interest rates unaltered. Second, by using the steady state decision rule, ȳ, we

are ignoring the general equilibrium feedback effects. In Proposition 7 of Alvarez and Lippi

(2014) we showed that, given a combination of the general equilibrium set-up in Golosov

and Lucas (2007) and the lack of the strategic complementarities, these effects are of second

order.16 Third, we use the fact that after the first price change the expected contribution

to output of each firm is zero since positive and negative output contributions are equally

likely, i.e. m(0) = 0. This is convenient since it allows us to characterize the propagation

of the monetary shocks without having to keep track of the time evolution for the whole

distribution of price gaps.

The function m(p) defined in equation (13) is extremely useful: exploiting the law of

motion of the state yields a differential equation that fully characterizes the cumulative

output without having to solve (or simulate) the whole impulse response function. The idea

follows the same logic used to compute expected values using a Bellman (or Kolmogorov)

equation. For example in the n = 1 case, where p is a scalar price gap in (−p̄, p̄), a Bellman

equation type of logic gives λm(p) = −p + m′′(p)σ2/2 with boundary condition m(p̄) = 0

and negative symmetry m(p) = −m(−p), with closed form solution:

m(p) = −p
λ

+
p̄

λ

(
e
√

2φ p
p̄ − e−

√
2φ p

p̄

e
√

2φ − e−
√

2φ

)
for all p ∈ [−p̄ , p̄] where φ ≡ λp̄2/σ2. (14)

The final element to define M(δ) is the density of the invariant distribution g(p) for

a vector of price gaps p ∈ Rn which is directly implied by the invariant density of the

squared price gaps f(y), given in equation (7), and by the observation that in steady state

the distribution of price gaps with ||p||2 = y is uniform on the n dimensional hypersphere of

square radius y, whose closed form expression is given by:

g (p1, ..., pn) = f
(
p2

1 + · · ·+ p2
n

) Γ (n/2)

πn/2 (p2
1 + · · ·+ p2

n)
(n−2)/2

. (15)

16This proposition can be extended in a straightforward way to this paper using the logic of Lemma 1.
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Thus we can write

M(δ) =
1

ε n

∫
...

∫
m (p1 − δ, ..., pn − δ) g (p1, ..., pn) dp1 ... dpn (16)

Note thatM takes g(p) firms with price gap vector p in steady state, shifts them down by δ,

which amounts to increasing the marginal nominal cost on impact, and then computes their

contribution m (p1 − δ, ..., pn − δ).
Recall that, for any n ≥ 1 we can index the steady state of an economy by three numbers,

N (∆pi) , Std (∆pi) , and `, for which we can always find the values of (λ, ψ, σ2) to rationalize

them. The next proposition shows that M can be normalized, i.e. written in terms of the

values of an economy with one price change per year, and where the monetary shock is

measured in terms of steady-state size of price changes (see Appendix B for the proof)

Proposition 5 Consider an economy whose firms produce n > 1 products, with steady-state

statistics (N(∆pi), Std(∆pi), `). The following rescaling of M holds:

M (δ;N(∆pi), Std(∆pi), n, `) =
Std(∆pi)

N(∆pi)
M
(

δ

Std(∆pi)
; 1, 1, n, `

)
(17)

Equation (17) shows a useful homogeneity property of M: keeping (n, `) fixed, M can be

scaled by the steady state frequency of price changes N (∆pi), and that the size of the

monetary shock measured relative to steady-state size of price changes Std (∆pi). This is

convenient since, given the steady state features of an economy, (Std (∆pi) , N (∆pi)), there

are only 2 remaining parameters to characterize the cumulative impulse response: n and `.

4.1 The case of a small monetary shock

To focus on a small shock δ, a realistic standard in this literature, we take the first order ap-

proximation to equation (12). Using equation (17) we obtainM (δ;N(∆pi), Std(∆pi), n, `) ≈
δ/N(∆pi) M′ (0; 1, 1, n, `). Thus for a small monetary shock, Std(∆pi) has no effect on the

cumulative output. The usefulness of the approach developed in this section is easily seen in

the n = 1 case. Using the closed form solution for g(p) in equation (3) and the expression

for m(p) in equation (14) we can analytically compute the cumulative effect of a small shock

δ using equation (16) and the approximation M(δ) ≈ δ M′(0) which yields

δM′(0) =
δ

εN(∆pi)

e
√

2φ + e−
√

2φ(
e
√

2φ + e−
√

2φ − 2
)2

(
e
√

2φ + e−
√

2φ − 2− 2φ
)
. (18)
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This formula can be used to compare a Calvo model where `→ 1 (or φ→∞, see equation (6))

with a Golosov-Lucas model, where `→ 0 (or φ→ 0). Simple analysis shows that in Calvo

we have δM′(0) = δ
εN(∆pi)

, whereas in Golosov-Lucas we have δM′(0) = δ
6εN(∆pi)

, so that

the cumulative output effect in these models differs by a factor of 6. Interestingly, the number

6 is exactly the ratio between the kurtosis of price changes in each of these models. The next

proposition generalizes this result to any n ≥ 1 and ` ∈ (0, 1) (see Appendix B for the proof)

Proposition 6 Consider an economy with n > 1, with steady-state statistics N(∆pi), Std(∆pi),

` and a steady-state kurtosis of price changes Kur (∆pi). For a small monetary shock δ we

have the following first order Taylor expansion of M (δ;N(∆pi), Std(∆pi), n, `):

δ M′ (0;N(∆pi), Std(∆pi), n, `) =
δ

ε

Kur (∆pi)

6N(∆pi)
=
δ

ε

∑∞
i=2

1

i! Γ(n2 +i)

(
λȳ
2σ2

)i
λ
∑∞

i=1
1

i! Γ(n2 +i)

(
λȳ
2σ2

)i . (19)

The proposition illustrates how it is possible for two models sharing similar features, e.g.

calibrated to the same observables N(∆pi), Std(∆pi), to have different output effects: what

is needed is that the models feature a different kurtosis of price changes.

Recall from Proposition 4 that the shape of the size distribution of price changes, and

hence kurtosis, depends only on n and `. For a fixed n, kurtosis is increasing in `. Indeed, as

` goes to 1 then kurtosis goes to 6, and hence we obtain M(δ) ∼= δ/(εN(∆pi)), which is the

result produced by the Calvo pricing model. On the other extreme, as ` goes to 0 kurtosis

equals 3n/(n + 2). This implies that, for instance, in the Golosov and Lucas case of n = 1,

the impact of monetary policy is 1/6 of Calvo. Also, keeping ` = 0 and varying n from 1

to ∞, the effect goes from 1/6 to 1/2 of Calvo. Note that in the case of ` = 0 and n = ∞
the model becomes Taylor’s staggered price model or, equivalently, the Reis (2006) model.

Thus the purely multi-product Taylor-Reis case (` = 0, n =∞) delivers only half of the real

effects compared to a purely Calvo model (` = 1), as further discussed below.

Figure 4 offers a richer systematic comparison of the real effects of monetary shocks as n

and ` vary: the vertical axis plots the real output effect produced by a small monetary shock

relative to the effect produced by a Calvo model where ` = 1. Four curves are plotted in the

figure, corresponding to n = 1, 2, 10,∞. It appears that the model behavior for n = 2 remains

quite close to the case where n = 1, as was also seen from the analysis of the distribution

of price changes. Instead, the model behavior for n = 10 is quite close to that of a model

where n = ∞. This is useful because the latter is quite tractable analytically, as discussed

below. Figure 4 shows that at any level of ` the real output effects are smallest for n = 1.

As explained in Alvarez and Lippi (2014) a larger number of goods dampens the selection

effect, increasing the real output consequences of a monetary shock. Indeed at any level of `
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Figure 4: Cumulative output effect relative to Calvo pricing: Kur(∆pi)/6
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the effect is increasing in n. The figure shows that fixing n the output effect is increasing in

`. In the limit, as `→ 1 the economy converges to a Calvo model where the real effects are

largest and independent of n.

The curves plotted in the figure are convex. In particular, some analysis reveals that the

slope of the curve as ` → 1 diverges to +∞ for any level of n.17 The economic implication

of this property is that a small deviation from Calvo pricing, i.e. a fraction of adjustment

` that is slightly below 1 is going to give rise to a large deviation from the real effects

predicted by the Calvo pricing. That the relatively large real effects in Calvo are very

sensitive to the introduction of a small amount of selection by firms regarding the timing of

price changes is also apparent in the CalvoPlus model of Nakamura and Steinsson (2010) (see

their figure VII). Hence the finding seems robust as these models, and their measures of real

effects, are similar but not identical. Additionally, equation (19), together with equation (4)

and equation (6), completes the closed form solutions for N(∆pi), Std(∆pi), Kur(∆pi) and

M′(0) given parameters n, λ, σ2 and threshold ȳ, which instead can be solved explicitly using

Lemma 1 and Proposition 2.

We conclude by discussing the economics of why there is a systematic relationship between

kurtosis and the cumulative output effect of a monetary shock. As noticed by Golosov and

17For a formal proof see the closed form solution for M in the n =∞ case, in technical Appendix Gsec-2-
closedform-cases.
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Lucas (2007) the small output effect of a monetary shock in the menu cost model is related

to the degree to which the firms that change prices right after the shock are of a “selected”

type. Our result establishes that the steady state kurtosis of the price changes encodes the

strength of such selection effects across several models. For instance in Golosov-Lucas the

price changes in the steady state are concentrated at the value of the adjustment barrier

(e.g. ±p̄), which yields the smallest possible value of kurtosis (equal to 1). This matters for

the transmission of monetary shocks since the price changes immediately after a shock are

going to be large, mostly of size ∆pi = p̄, so that the CPI response is fast. By contrast, in

Calvo the size of the average price change across adjusting firms (after a shock) equals the

size of the shock, typically a small value δ (much smaller than the adjustment threshold p̄).

This happens from averaging across all small (a large mass) as well as large price changes,

which occur due to the random choice of the adjusting firms, and are reflected in the high

kurtosis (a peaked shape) of the size distribution of price changes in Calvo (equal to 6). This

causes the CPI to rise more slowly and the real effects to be more persistent than in the

Golosov-Lucas model.

Yet selection in the size of price adjustment is only one piece of the mechanism: the size

of the price changes across adjusting firms in Calvo (` = 1) and in Taylor (n = ∞, ` = 0)

is exactly δ, and yet the cumulative output in Taylor is half of the cumulative output in

Calvo. The difference across these models is in the timing of adjustments: in Taylor the time

elapsed between adjustments is constant, while in Calvo it has an exponential distribution,

with a thick right tail of firms that adjust very late (notice though that the expected time

between adjustments coincides in the two models). This selection effect (in the times of price

changes) is also captured by the steady state kurtosis, since a more dispersed distribution

of times between adjustments produces a distribution of price changes that is a mixture of

normals with different variances (recall the variance of the distribution is proportional to

the time elapsed since the adjustment), whose kurtosis will be above the one of the normal

distribution (see Lemma 2 below for a formalization). Indeed in Alvarez, Lippi, and Paciello

(2016) we show that the result in Proposition 6 extends to a more general class of models

where selection concerns exclusively the times of adjustment (not the size), as in the model

of Carvalho and Schwartzman (2015).

Lack of sensitivity to inflation. While the model we have written is based on an economy

which has zero steady-state inflation, we argue that the characterization of kurtosis as well

as the key result for the effect of monetary policy in Proposition 6 apply also for low rates

of inflation. Indeed steady-state inflation has only second-order effect on both the kurtosis

of the price changes as well as the area under the IRF of output for a small monetary shock.
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In particular, we show that both the left and right hand side of equation (19) have a zero

derivative with respect to steady-state inflation, evaluated at zero inflation. For this we

consider an economy where the money supply grows at the rate µ and the steady state

inflation rate and the growth rate of nominal wages both equal µ. In this case the price gaps

will evolve as dpi(t) = −µdt+ σ dWi(t) where the negative sign of the drift reflects the fact

that wages grow at a constant rate. For this model we let Kur(∆pi;µ), N(∆pi;µ) be the

kurtosis and frequency of price changes at steady state as a function of inflation µ. Likewise,

we consider a once and for all (unanticipated) increase in the level of money supply of size δ,

so that the path continues to grow at rate µ immediately afterwards. We letM(δ;µ) be the

area-under the IRF of output after such monetary shock δ, also indexed by the steady state

inflation. We have the following result (see Appendix B for the proof)

Proposition 7 Let µ be the steady state inflation rate. Then: 0 = ∂ Kur(∆pi;µ)
∂ µ

∣∣∣
µ=0

=

∂ N(∆pi;µ)
∂ µ

∣∣∣
µ=0

= ∂M′(0;µ)
∂ µ

∣∣∣
µ=0

, hence the derivative of both sides of equation (19) with respect

to µ, evaluated at µ = 0, is equal to zero.

Hence, even though we have developed the result for zero inflation, this proposition shows

that the results provide a good benchmark for a low inflation economy. We think this is

important since developed economies have low but positive inflation rates. The idea behind

the proof is to exploit the symmetry of both kurtosis Kur(∆pi;µ) and the cumulative IRF

M′(0;µ)δ with respect to inflation µ around µ = 0.

To summarize, we showed that adding a small inflation has a negligible effect on the

findings of the paper, including the main result in equation (1). This theoretical prediction

is consistent with evidence on the small elasticity of several price setting statistics (such as

the frequency, variance and kurtosis) provided in Gagnon (2009) and Alvarez et al. (2015).

4.2 The case of a large monetary shock

The dependence of the output effect on the size of the monetary shock is a hallmark of menu

cost models. The next proposition characterizes the smallest value of the monetary shock

δ for which all firms adjust prices immediately, in which case the impact response of the

aggregate price level is equal to the monetary shock, P(δ, 0) = δ so that prices are flexible

and there is no effect on output, M(δ) = 0. The value of this threshold for the monetary

shock is proportional to the Std(∆pi) which properly scales the “size” of the monetary shocks,

and to a constant of proportionality that is increasing in ` (see Appendix B for the proof).

Proposition 8 Define δ as the smallest once-and-for-all monetary shock for which there is

full price flexibility, i.e. M(δ) = 0 for any δ ≥ δ. We have δ = 2
√

ȳ
n

= 2Std(∆pi)
√
L−1(`;n)

`
,
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where L(·;n) is given by equation (6). Fixing any n ≥ 1, the ratio δ/(2Std(∆pi)) is a strictly

increasing function of `, ranging from 1 to ∞ as ` varies from 0 to 1.

Note that for ` = 0, we have δ = 2Std(∆pi) for all n ≥ 1, so the minimum shock is simply

twice the standard deviation of prices. In general this threshold is increasing in `, becoming

unbounded as the model gets closer to Calvo, i.e. lim`→1 δ = +∞ for all n ≥ 1. In other

words, δ is a steep convex function of `, with an infinite positive slope as `→ 1.

5 Robustness and scope of results

The class of models for which Proposition 6 holds is one where the innovations to the firm’s

costs are i.i.d. and normally distributed. In Section 5.1 we discuss the usefulness and realism

of this assumption. In Section 5.2 we modify the model with normal innovations to the costs

to one where cost innovations are drawn from a mixture of normals, and thus can display

an arbitrarily large kurtosis. We start by establishing some time-aggregation properties of

leptokurtic cost changes as a function of the time elapsed between observations T > 0. This

property is important because as T grows large the distribution of the cost changes converges

to normal, even though its innovations are leptokurtic, as an immediate consequence of the

central limit theorem. Next, we parameterize the model using observations on the kurtosis of

cost changes (i.e. wholesale prices) over time periods of different lengths. We then rederive

a measure the real output effects of monetary shocks in this economy using the method

developed in the previous section. The main result, summarized in Proposition 10 and

illustrated in Figure 5, indicates that, even in the presence of cost shocks with large kurtosis

(such as the estimated from wholesale price data), equation (1) remains informative to gauge

the size of the real effects for actual economies.

5.1 Usefulness and realism of normally distributed cost shocks

Our analysis was built on the assumption that the (log) changes in costs are normally dis-

tributed. For instance in the firm level data on prices and costs reported in Figure 1 by

Carlsson and Skans (2012) the distribution of the annual cost changes is close to normal,

with a kurtosis coefficient of 3.8.18 While the assumption of normally distributed cost shocks

is stylized, it is particularly useful to evaluate whether price changes reflect cumulative

small changes in costs. Indeed, the normal i.i.d. innovations of the costs is the only as-

sumption needed for the result in Proposition 1, which shows that for almost any model

18Notice that data from all the 702 firms behind this statistic are pooled, i.e. not standardized, so that it
is likely that the kurtosis is smaller.
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V ar (∆pi) ·N (∆pi) = σ2. Thus, the variance of price changes is inversely proportional to the

frequency of prices changes, for a given level of the innovations for cost σ2. There is some

support for this hypothesis, for instance Eichenbaum, Jaimovich, and Rebelo (2011): “In our

dataset prices are more volatile than our measure of marginal cost [...] The basic intuition

for this result is that prices often do not change much in response to small changes in cost.

But small cost changes that cumulate and create large deviations from the average markup

can trigger very large changes in price.”19

Another key assumption in deciding whether normally distributed cost shocks are realistic

concerns the level of the production chain at which costs should be measured, or more broadly,

the level of the production chain at which price stickiness is created. Should one measure the

costs faced by retailers, or measure the costs at an early stage in the production-distribution

chain? For instance, taking the perspective that “the price-setting firm” stands for the

integrated production-wholesale-retail sector, where a non-negligible fraction of the cost is

the price of raw materials and/or imported inputs, the assumption that costs follow a random

walk with normally distributed innovations is reasonable.20 Some evidence consistent with

this perspective is provided by Nakamura and Zerom (2010) and by Goldberg and Hellerstein

(2013) who conduct two interesting case studies of coffee and imported beer, respectively.

They find that the frequency of price changes at the retail level is essentially the same as the

one for wholesale prices changes faced by the retailers, and that there is a very high pass-

through between wholesale and retail prices–see Figures 1 and 2 in both of these papers.

For these products, changes in the price of coffee beans and in the exchange rates –both

realistically modeled as random walks with normal innovations– are important determinants

of the cost at an earlier stage of production. Thus it appears that for these products the

stickiness was generated before the last retail stage. To complement these detailed case

studies we used a data set with prices charged by producers to wholesalers (“PromoData”)

with broad coverage both geographically and in terms of the number of products. We compare

the frequencies of price changes from “PromoData” with the frequencies from a retailer

(scanner) data of very broad coverage (the IRI Symphony). We find that prices charged by

producers to wholesalers are at least as sticky as prices charged by retailers to households

–see Appendix F for more details. Nevertheless, establishing which is the more reasonable

level of aggregation and properly measuring them is a hard question which we leave for future

research. Hence, to be conservative, in the rest of this section we take the narrow perspective

19For instance, the bottom panel of Table 2 in their paper estimates that the standard deviation of the
Log changes in weekly prices, conditional on a price change, is 0.20. This is considerably higher than the
standard deviation of Log changes in weekly cost, estimated to be 0.11 – or in the case of reference prices
and reference cost of 0.14 and 0.06.

20Additionally, from the perspective of an integrated sector, one can obtain normality of the cost shocks
by combining a large number of inputs with independent shocks, by virtue of the central limit theorem.
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of the price setting firm as a retailer.

5.2 A menu-cost model with leptokurtic cost-shocks

Let x(t) measure the change of the firm’s marginal cost at time t, which obeys:

dx(t) = σ(t) dW (t) with x(0) = 0 and x(T ) =

∫ T

0

σ(t) dW (t) (20)

where {W (t)} is a standard Brownian motion, and where {σ(t)} is a process independent

of {W (t)}. We are interested in the kurtosis of the cost changes over a period of length T ,

K(T ) =
E0[x(T )4]

(E0[x(T )2])2 . We obtain the following lemma (see Appendix B for the proof)

Lemma 2 Assume that σ(t) is uniformly bounded from above we have:

K(T ) = 6

∫ T
0

[ ∫ t
0
E0 [σ(t)2 σ(s)2 ] ds

]
dt(∫ T

0
E0 [σ(t)2] dt

)2 (21)

Inspection of equation (21) shows that when x is a standard Brownian motion, so that

σ(t) = σ̄, we have that K(T ) = 6 σ̄4 T 2/2
σ̄4 T 2 = 3, which is obvious since x(T ) is normally

distributed at all horizons T . Instead, if the changes in cost shocks are caused by innovations

with different volatility then the mixture of normals generated by equation (20) may give

rise to arbitrarily large values of excess Kurtosis, depending on the behavior of {σ(t)} and

the time interval T over which the change in the cost is measured.

In what follows, we specialize {σ(t)} to be a continuous-time two-state Markov chain.

We assume that in one state the cost innovations have a low variance σ0 ≥ 0, and that in

the other state they have a larger variance σ1 > σ0. In particular we assume that there is

a state u(t) ∈ {0, 1}, and that if u(t) = i then the state changes to u(t + dt) = j 6= i with

a probability θi dt where i, j ∈ {0, 1}. Then for all t we have: σ(t) = σu(t), so there are

four non-negative parameters describing the problem, the two exit rates θ0, θ1 and the two

values for the instantaneous volatility: σ0, σ1. This simple specification of the process for

cost shocks allows us to approximate several menu cost models, considered in the literature,

which deviate from the assumption of normal shocks. For instance Gertler and Leahy (2008)

or Midrigan (2011) can be modeled as σ0 → 0 and a fixed rate of arrival (θ0) of the large

shocks (parametrized by σ1, whose persistence is given by θ1). Likewise the setup can be used

to study the discrete-time model by Karadi and Reiff (2014) in which the weekly innovations

to cost shocks are a mixture of two normal distributions (characterized by σ0 and σ1) and the

relative frequency and persistence of each of these two states (characterized by θ0 and θ1).
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The next proposition characterizes the kurtosis K(T ) given these 4 fundamental parameters

(see Appendix B for the proof). We have:

Proposition 9 Assume that the volatility follows a two-state continuous time Markov pro-

cess as described above. Without loss of generality parameterize the process for x in terms

of the average rate of change of the state, θ, the fraction of time spent in state 1, s, and the

ratio of the standard deviations of the two states, ξ:

θ ≡ 1

2
(θ1 + θ0) , s ≡ θ0

θ0 + θ1

, and ξ ≡ σ0

σ1

Then the kurtosis of the cumulative changes up to horizon T ≥ 0 is given by

K (T ; θ, ξ, s) = 3 + 6
(1− ξ2)

2
s(1− s)

[ξ2(1− s) + s]2

[
2T θ − 1 + e−2T θ

]
(2T θ)2 (22)

This proposition shows that the kurtosis of the cost shocks is monotonically decreasing in

Tθ, converging towards the value of 3 as Tθ becomes large. The latter feature is easily

understood: as the time period become sufficiently long (large T ) or as the switching rate

between states with high and low variance increases (high θ) then the mixture of normals

converges towards the normal distribution (a weighted sum of normals).

We consider three values of T , corresponding to empirical observations of the cost changes

after 1-week (T = 1/52), 4-weeks (T = 4/52) and 8-weeks (T = 8/52). Our interest in

these 3 moments is motivated by the corresponding moments of cost changes observed in the

Dominick’s dataset, previously used in the sticky price literature.21 In what follows we present

results obtained with a minimal filtering of the cost data, which yields much higher values

for kurtosis (sensitive to extreme observations). We see this case as useful for the robustness

analysis, even though a more reasonable analysis might involve more trimming of the tails of

the cost distributions and some weighting of the different UPC, producing results that are

even closer to the assumption of Normally distributed shocks. The data show that the kurtosis

of cost changes measured over 1-week is 25.4, over 4-weeks is 11.6 and over 8-weeks is 8.8. Note

that these estimates include the cost changes equal to zero (those obtained when the level

21 Following Midrigan (2011) we focus on store #122 (see his Table 8), the one with most observations.
For each observation, the cost is measured by: cost=price*(100-profit margin)/100. The change in cost is
100 times the log-change in cost over 1, 4 and 8 weeks. We apply the following trimming to the data: we
drop observations whose cost is smaller than 20 cents or larger than 25 dollars (deemed implausible in view
of the type of items sold and the distribution of price levels); we drop non-zero cost changes that are smaller
than 1 cent (in absolute value); we drop as outliers observations with log-cost changes larger in absolute
value than the 99th percentile of absolute log cost changes. The resulting number of observations of cost
changes is 946,315 for 1 week changes, 924,363 for 4-week changes, and 900,783 for 8-week changes. As for
price changes, we standardize cost changes at the UPC level (around 15,000 UPCs are available). The data
is publicly available at http://research.chicagobooth.edu/kilts/marketing-databases/dominicks.
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of the cost remains constant), which might contribute to a high level of kurtosis. It appears

that kurtosis is decreasing in T , consistently with the central prediction of Proposition 9: as

more time elapses more averaging occurs (between low and high variance states), and thus

kurtosis decreases. Given the 3 values of T corresponding to these 3 moments, we pin down

the remaining 3 parameters, {ξ, s, θ} by matching the data. The parameters underlying this

calibration imply a ratio between the standard deviation ξ = σ0/σ1 = 0.15, the mass of firms

with high variance is s = 0.022 and that θ = (θ0 +θ1)/2 = 36. The left panel of Figure 5 plots

the theoretical lines associated to each T at the calibrated values of ξ and s as a function

of θ. The three observed moments are marked by thin horizontal lines. It appears that at

θ = 30 the theory is essentially on top of the data.

Figure 5: Model with leptokurtic cost shocks (n = 1, ` = 0)

Kurtosis of cost changes after T -weeks (T = 1, 4, 8) Cumulative output effect relative to 1
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Three dashed horizontal lines (left panel) indicate the kurtosis values observed in the data over the 1-,
4-, and 8-week durations (Dominick’s data). The calibration of the Kurtosis of cost shocks uses ξ = 0.14,
the mass of firms with high variance is s = 0.022 and that θ = (θ0 + θ1)/2 = 36. The right panel uses
these calibrated parameters and p̄/σ1 such that there is one price adjustment per year, Na = 1.

Real output effects. Next, we apply the analytical methods developed in Section 4

to compute M(δ), the expected cumulated output effect for a small monetary shock δ to

this environment with leptokurtic cost shocks. For simplicity, we consider a simple price

setting problem where the firm sells a single good, n = 1, and there are no free-adjustment

opportunities ` = λ = 0. We assume that firms follow a threshold rule such that the price
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is adjusted if the price gap falls outside the inaction interval (−p̄, p̄).22 Under normally

distributed cost shocks these assumption correspond to the Golosov and Lucas model where

the kurtosis of price changes equals 1 and the cumulated output effect is equal to M(δ) =

1/(6Na), as from Proposition 6. Our objective is to analyze what is the cumulated output

effects in this model once the shocks are leptokurtic.

We use the definition of cumulative output gap after a shock of size δ to define the

cumulated real output effect as:

M(δ) =

∫ p̄−δ

−p̄

(
m0(p) g0(p+ δ) +m1(p) g1(p+ δ)

)
dp

which is the analogue of equation (16) in this model with a single good (n = 1), no free-

adjustment opportunities ` = 0 and a two-state Markov process for the variance of the cost

shocks. The key novelty compared to Section 4 is that there are now two sets of firms (one

for each high/low variance state), as indicated by the densities gi(p), and two measures of

expected cumulated output associated to each firm in each state, mi(p). The next proposition

characterizes the frequency of price adjustment Na and the real output effectM(δ) in terms

of few fundamental parameters (see Appendix B for the proof and closed form expressions

for gi(p) and mi(p)):

Proposition 10 Fix the 3 parameters {θ, s, ξ} that pin down K(T ), and fix the ratio p̄/σ1.

The mean time between price adjustments is:

1

Na

=
p̄2/σ2

1

s (ξ2ρ̂+ 1)
+

ρ̂(1− ξ2)2

2θ(ξ2ρ̂+ 1)2

(
1− 2

eχp̄ + e−χp̄

)
(23)

where ρ̂ ≡ θ1

θ0

=
1− s
s

and χ ≡

√
4θs(ξ2ρ̂+ 1)

σ2
1 ξ

2

The cumulated output following a small monetary shock of size δ is

M(δ) ≈ δ M′(0) =
δ

ε

[
p̄2/σ2

1

6(1 + ξ2ρ̂)s
− ρ̂(1− ξ2)2

θ(1 + ξ2ρ̂)2

(
eχp̄ + e−χp̄ − 2

χp̄(eχp̄ − e−χp̄)
− 1

2

) ]
. (24)

The proposition states that the frequency of adjustment Na is a function of 4 fundamental

parameters. Three parameters are pinned down by the data on kurtosis, {θ, ξ, s}, a new

parameter p̄/σ1 is pinned down to match the data onNa. Notice that given these 4 parameters

the cumulated real effects of a small monetary shock M(δ) in equation (24) is completely

22We follow this rule for comparability with the literature. The optimal threshold rule p̄u(t) is in general
indexed by the state. A full solution for the latter case is available from the authors.
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determined. This result is important because it identifies the determinants of the cumulated

real effects of a small monetary shock. The right panel in Figure 5 plots the cumulated output

effectsM(δ) relative to the same effect produced by the model with Normal cost shocks (equal

to 1/(6Na)) as a function of θ, the arithmetic average of the number of state switches per

year. Some analysis shows that equation (24) equals 1 as θ → 0 or as θ → ∞, independent

of all other parameters. The reason is that under these extreme cases the distribution of cost

shocks is again Normal, and the real effects coincide with the ones in Golosov and Lucas (so

the ratio of the effects is 1). At intermediate values of θ the cumulated output effect is bigger

in the model with leptokurtic shocks, and the exact amount depends on the parameterization.

The right panel of the figure plots two curves, both consistent with a frequency of 1 price

adjustment per year, Na = 1. The lower thick curve uses the parameters {ξ, s} that were

chosen to calibrate the data on kurtosis. This corresponds to our “preferred” specification

since it is the one that matches the cost data more closely. At these values the figure shows

that the cumulated real effect is about 25% larger than the effect that is obtained in the

model with normally distributed shocks (marked by a thick dot in the figure). The higher

dashed curve uses values of ξ and s that are implied by the parametrization of Karadi and

Reiff (2014).23 These values imply a kurtosis of cost changes that is smaller than the one

in the data (namely of 12, 6 and 5, over the 1-, 4- and 8-week duration).24 Nevertheless we

consider this case as a robustness check. The figure shows that, using the parametrization

of Karadi and Reiff, the cumulated real effect is close to what these authors report in their

paper (see the bold bullet on the dashed curve), and aligned to the values predicted by our

calibration, only 25% above the value predicted by Proposition 6. To put this approximation

error into perspective, consider that the order of magnitudes involved in the discussion on

the size of the real effects of monetary shocks in sticky price models are in the order of 600%,

as given by the ratio between the real cumulative effect in a Calvo model (` = 1) versus the

real effect in a Golosov-Lucas menu cost model (` = 0, n = 1).

Finally, we notice that we developed our robustness analysis using a model with a single

good, n = 1. Considering multi-product firms would further strengthen the robustness of our

findings. The reason is easily seen: with 1 good the firm is “averaging” high and low variance

shocks across time, so that the cost shock innovations become normally distributed as Tθ

becomes large (see equation (22)). As n increases the approximation error shrinks further

23See their Table 2. Translating their weekly parameters into ours gives ξ = 0.088 for the ratio of standard
deviations, 1 − s = 0.912 or that 91.2% of firms are in state 0. They assume that the probability per week
of drawing a high-variance state is p = 0.912, iid distributed. This implies an expected duration in weeks of
p/(1 − p) + p/(1 − p)2. Once this is translated into duration in years it is immediate to map it into our θi
parameter. Using their value for p we get θ0 = 0.40 and θ1 = 257, or θ ∼= 129.

24Instead, a parametrization as in Midrigan or Gertler and Leahy, in which ξ = 0, predicts a value of
kurtosis at the 1 week frequency of around 80, much higher than in the data.

36



since the firm’s cost shocks are now averaged both across time as well as across goods (at a

given point in time).25

6 Concluding remarks

This paper develops an analytical model that is able to match the cross sectional patterns

on the frequency, variance and kurtosis of price changes, for small values of the (menu) cost

of price adjustment. Our model nests several classic models of price setting, such as Taylor

(1980); Calvo (1983); Reis (2006); Golosov and Lucas (2007); Midrigan (2011); Nakamura and

Steinsson (2010); Alvarez and Lippi (2014), and sheds light on the propagation of monetary

shocks. The main finding is that the real cumulative output effect of a monetary shock is

proportional to the kurtosis of the size-distribution of price changes. The sizable differences

produced by previous models can be largely explained in terms of their different predictions

for the kurtosis of price changes.

Our main result, namely equation (1), is robust to realistic changes in the setup, such

as a small inflation rate, and some (data consistent) degree of non-normality of the cost

shocks. The result also holds in a version of our model, closer to the original CalvoPlus

model by Nakamura and Steinsson (2010), which assumes that the price adjustment upon

a random opportunity is cheaper than the regular menu cost but not free (see the technical

Appendix U). This result also emerges in different model setups: in Alvarez, Lippi, and

Paciello (2016) we consider the case where firms face a random observation cost and no menu

costs. This setup produces random adjustment times at the firm level, whose consequences

for the propagation of monetary shocks have been studied by Mankiw and Reis (2002) and

Carvalho and Schwartzman (2015). The last class of models does not feature any selection

in the size of price changes but only in the times of adjustment.26 Interestingly, one can

show analytically that equation (1) holds in this class of models, too. More broadly, in

Alvarez, Lippi, and Paciello (2011) we analyzed the optimal decision problem of a firm that

faces both an observation as well as a menu cost − so that the decision rules of both Reis

(2006) and Golosov and Lucas (2007) are obtained as special cases. Numerical simulations

for the aggregate economy implied by this setup suggest that equation (1) continues to hold.

In Alvarez, Lippi, and Passadore (2016) we discuss differences and similarities of models

featuring time dependent versus state dependent rules. We conclude that for small aggregate

shocks equation (1) continues to hold irrespective of the fundamental friction that causes

25 Technically the state variable for a multi product firm is the sum of the (squared) price gaps, whose law
of motion follows the Bessel process (the sum of n squared Brownian motions). In the presence of leptokurtic
shocks convergence to this law of motion is faster as n increases.

26 Moreover, while kurtosis is between 1 and 6 in our menu cost model, it is unbounded in these models.
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price stickiness.
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APPENDICES – FOR ONLINE PUBLICATION ONLY

A Comparing BBP to CPI data to estimate kurtosis

We match a subset of our French CPI data with the prices from 3 French retailers taken from

the Billion Price Project (BPP) dataset, see Cavallo (2015).27 Table 2 offers two comparisons.

The first three columns compare the BPP data from 2 large retailers with our CPI data

for a similar type of outlet: to this end we restrict our dataset to CPI price records in

“hypermarkets”, excluding gasoline. The last two columns compare the BPP data from a

large retailer specialized in electronics and appliances with the CPI data for goods in the

category of appliances and electronic (we use the Coicop nomenclature, collected in outlets

type “hypermarkets”,“supermarkets”, and “large area specialists”). Comparing the values

of kurtosis from both data sets suggests that Ω/ζ ∼= 2, see equation (2). We can apply this

magnitude to the full sample of CPI data, for which no “measurement error-free” counterpart

like the BPP exists (and the feasible correction for heterogeneity is only partial), to obtain a

corrected kurtosis. The number thus obtained for the kurtosis is near 4, so it lays in between

the kurtosis of the Normal and the Laplace distribution.

Table 2: Comparison of the CPI vs. the BPP data in France

CPI category: Hypermarkets Appliances and electronic
Data source: BPP BPP CPI BPP CPI

retailer 1 retailer 5 Hypermarkets retailer 4 Large ret. electr.
duration (months) 8.6 8.1 4.8 6.4 7.2
kurtosis 5.5 4.3 10.1 2.8 6.3

Note: The BPP data are documented in Cavallo (2015). Results were communicated by the author. For
CPI data source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. The sub-
sample in the third column features the CPI records for the outlet type “hypermarkets”. The sub-sample
in the 5th column features the CPI records in the category of “appliances and electronic”, as identified
using the Coicop nomenclature, collected in the following outlets type: “hypermarkets”,“supermarkets”,
and “large area specialists”. Data are standardized within each subsample using Coicop categories.

B Proofs

Proof. (of Proposition 1). Let p(0) = 0. Define x(t) ≡ ||p(t)||2 − nσ2 t for t ≥ 0. Using

Ito’s lemma we can verify that the drift of ||p||2 is nσ2, and hence x(t) is a Martingale. By

27 We are extremely grateful to Alberto Cavallo for sharing part of his data with us.
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the optional sampling theorem x (τ), the process stopped at τ , is also a martingale. Then

E
[
x(τ)

∣∣∣ p(0)
]

= E
[
||p(τ)||2

∣∣∣ p(0)
]
− nσ2E

[
τ
∣∣∣ p(0)

]
= x(0) = 0 and since N(∆pi) =

1/E
[
τ
∣∣∣ p(0)

]
and V ar(∆pi) = E

[
||p(τ)||2

∣∣∣ p(0)
]
/n we obtain the desired result. �

Proof. (of Lemma 1). First, note that since two value functions differ by a constant, then

all their derivatives are identical. Hence, if the one for the discount rate and arrival rate of

free adjustment (r + λ, 0) satisfies value matching and smooth pasting, so does the one for

discount rate and arrival rate of free adjustment (r, λ, 0), for the same boundary. Second,

consider the range of inaction, subtracting the value function for the problem with parameters

(r+λ, 0) from the one with parameters (r, λ), and using that all the derivatives are identical,

one verifies that if the Bellman equation holds for the problem with (r + λ, 0), so it does for

the problem with (r, λ). �

Proof. (of Proposition 2 ). The first part is straightforward given Lemma 1 and Proposition 3

in Alvarez and Lippi (2014). The second part is derived from the following implicit expression

determining ȳ (see the proof of Proposition 3 in Alvarez Lippi for the derivation):

ψ =
B

r + λ
ȳ

[
1−

2σ2(n+2)
r+λ

ȳ + ȳ2 + ȳ2
∑∞

i=1 κi (r + λ)i ȳi

2σ2(n+2)
r+λ

ȳ + 2ȳ2 + ȳ2
∑∞

i=1 κi (i+ 2) (r + λ)i ȳi

]
(25)

where κi = (r + λ)−i
∏i

s=1
1

σ2(s+2)(n+2s+2)
. So we can rewrite equation (25) as: ψ = B

r+λ
ȳ

[1− ξ(σ2, r + λ, n, ȳ)] . Since ȳ →∞ as ψ →∞ then we can define the limit:

lim
ψ→∞

ψ

ȳ
=

B

r + λ

[
1− lim

ȳ→∞
ξ(σ2, r + λ, n, ȳ)

]
Simple analysis can be used to show that limȳ→∞ ξ(σ

2, r + λ, n, ȳ) = 0 which gives the

expression in the proposition (see the technical Appendix J for a detailed derivation). �

Proof. (of Proposition 3 ). To characterize N(∆pi) we write the Kolmogorov back-

ward equation for the expected time between adjustments T (y) which solves: λT (y) =

1 + n σ2 T ′(y) + 2 y σ2 T ′′(y) for y ∈ (0, ȳ) and T (ȳ) = 0 (see the technical Appendix K for

details on the solution to this equation). Then the expected number of adjustments is given

by N(∆pi) = 1/T (0), subject to T (0) <∞.

The solution of the second order ODE for T (y) has a power series representation: T (y) =∑∞
i=0 αi y

i , for y ∈ [0, ȳ], with the following conditions on its coefficients {αi}: α1 =
λα0−1
nσ2 , αi+1 = λ

(i+1) σ2 (n+2i)
αi , for i ≥ 1 and where 0 < α0 < 1/λ is chosen so that

0 ≥ αi for i ≥ 1, limi→∞
αi+1

αi
= 0 and 0 =

∑∞
i=0 αi ȳ

i. Moreover, T (0) = α0 is an increasing

43



function of ȳ since α0 solves:

0 = α0 +
(α0 − 1/λ)

n

(
ȳλ

σ2

)[
1 +

∞∑
i=1

(
i∏

k=1

1

(k + 1) (n+ 2k)

)(
ȳλ

σ2

)i]

Note that for i ≥ 1: αi = αi/ [i! (n/2 + i)] (λ/(2σ2)) , and using the properties of the Γ

function

αi = Γ(n/2)/ (Γ(n/2 + i)
(
λ/(2σ2)

)i
(α0 − 1/λ) .

Solving for α0 and using L ≡ λ/N(∆pi) = λT (0) = λα0. Thus

` =

(
∞∑
i=1

Γ
(
n
2

)
i! Γ
(
n
2

+ i
) ( λȳ

2σ2

)i)/( ∞∑
i=0

Γ
(
n
2

)
i! Γ
(
n
2

+ i
) ( λȳ

2σ2

)i)

which is equation (6). �

Proof. (of Proposition 4). We first state a lemma about the density f(y).

Lemma 3 Let f(y;n, λ
σ2 , ȳ) be the density of y ∈ [0, ȳ] in equation (7) satisfying the boundary

conditions. For any k > 0 we have: f
(
y;n, λ

σ2 , ȳ
)

= 1
k
f
(
y
k
;n, λk

σ2 ,
ȳ
k

)
.

Proof. (of Lemma 3 ). Consider the function f(y;n, λ
σ2 , ȳ) solving equation (7) (and

boundary conditions) for given n, λ
σ2 , ȳ. Without loss of generality set σ′ = σ and consider

ȳ′ = ȳ/k and λ′ = λk. Notice that by setting C ′1 = C1k and C ′2 = C2k we verify that the

boundary conditions hold (because C ′1/C
′
2 = C1/C2) and that (7) holds (which is readily

verified by a change of variable). �

We now prove the proposition. Let w (∆pi;n, `, Std(∆pi)) be the density function in

equation (9). Next we verify equation (10). From the first term in equation (9) notice that

(1− `)ω (∆pi; ȳ) = s (1− `)ω
(
s∆pi; s

2ȳ
)

where the first equality uses the homogeneity of degree -1 of ω(∆pi; y) (see equation (8)).

From the second term in equation (9) for n ≥ 2

`

∫ ȳ

0

ω(∆pi; y)f(y;n,
λ

σ2
, ȳ)dy = `

∫ ȳ

0

s ω
(
s∆pi; s

2y
)
s2 f

(
ys2;n,

λ

s2σ2
, ȳs2

)
dy

where the first equality follows from Lemma 3 for k = 1/s2, and the homogeneity of degree

-1 of ω(·, ·). Further we note

`

∫ ȳ

0

s ω
(
s∆pi; s

2y
)
s2 f

(
ys2;n,

λ

s2σ2
, ȳs2

)
dy = s3`

∫ ȳ

0

ω
(
s∆pi; s

2y
)
f

(
ys2;n,

λ′

σ′2
, ȳ′
)
dy
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where λ′ȳ′

σ′2
= λȳ

σ2 , so that ` is the same across the two economies. Using z = y s2

s3`

∫ ȳ

0

ω
(
s∆pi; s

2y
)
f

(
ys2;n,

λ′

σ′2
, ȳ′
)
dy = s `

∫ ȳ′

0

ω (s∆pi; z) f

(
z;n,

λ′

σ′2
, ȳ′
)
dz .

where ȳ′ = s2ȳ, which completes the verification of equation (10). �

Proof. (of Proposition 5). For any p ∈ Rn with ||p||2 ≤ ȳ, we write m(p; ȳ, σ, λ) to emphasize

the dependence on (ȳ, σ, λ). A guess and verify strategy can be used to show the following

scaling property of the function m: Let k > 0, then for all p ∈ Rn with ||p||2 ≤ ȳ:

m(kp; k2ȳ, kσ, λ) = km(p; ȳ, σ, λ) and m(p; ȳ, σ
√
k, λk) =

1

k
m(p; ȳ, σ, λ) .

It is straightforward to verify that this function satisfies the ODE and boundary conditions

for m(p) (see e.g. the one in the main text for the n = 1 case). Recall the homogeneity of

f(y) stated in Lemma 3. Finally, note that the density g(p) can be expressed as a function

of the density f(y) given in equation (7) and the density of the sum of n coordinates of

a random variable uniformly distributed on a n dimensional hypersphere of square radius

y, as obtained in Equation 21 in Alvarez and Lippi (2014). These properties applied to

equation (16) establish the scaling property stated in the proposition.

Proof. (of Proposition 6). We first notice that for some special cases a simple analytic proof

is available. These cases concern n = 1 or n =∞ with ` ∈ (0, 1); alternatively, they concern

1 < n <∞ and ` = 0 or ` = 1. See the technical Appendix G for details.

We now assume 1 ≤ n < ∞ and 0 < ` < 1 and prove that M′(0) = Kur(∆pi)
6N(∆pi)

. The proof

is structured as follows. First we derive an analytic expressions for Kur(∆pi)
6N(∆pi)

and for M′(0).

Each expression is a power series that involves only two parameters: n and `. Verifying the

equality is readily done numerically to any arbitrary degree of accuracy. A simple Matlab

code for the verification, called solveMp0.m, is available on our websites.

We first show that Kur(∆pi)
6N(∆pi)

can be written as the right hand side of equation (19). This

is done in two steps. First notice that Kur(∆pi)
N(∆pi)

=(1/λ)L(φ, n)Kur (∆pi) where L is given in

Proposition 3. The second step is to derive an analytic expression for the Kur (∆pi). We

notice that

Kur (∆pi) =
E (∆p4

i (τ) | y(0) = 0)

V ar (∆pi)
2 =

Q(0)
σ4

N(∆pi)
2

=
(λ/σ2)

2
Q(0)

(L(φ, n))2

where τ is the stopping time associated with a price change, and where Q(y) is the expected
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fourth moment at the time of adjustment τ conditional on a current squared price gap y, i.e.

Q(y) = E
(
∆p4

i (τ) | y(0) = y
)

=
3

(n+ 2)n
E
(
y2(τ)|y(0) = y

)
where y(τ) is the value of the squared price gap at the stopping time. Notice that for y ∈ [0, ȳ]

the function Q(y) obeys the o.d.e.:

λQ(y) = λ
3y2

(n+ 2)n
+Q′(y)nσ2 +Q′′(y) 2σ2y

with boundary condition Q(ȳ) = 3ȳ2

(n+2)n
. The solution of Q has a power series representation

which is easily obtained by matching coefficients and using the boundary conditions. Using

this power series in the expression for Kur(∆pi)
N(∆pi)

obtained in the first step gives the expression

on the right hand side of equation (19). See the technical Appendix L for details on the

algebra.

Next we derive an expression for M′(0), which holds for all 1 ≤ n <∞ and 0 ≤ ` ≤ 1:

Lemma 4 Let M(·;n) be the area under the IRF of output and f(·;n) be the density of the

invariant distribution for an economy with n products and parameters (ȳ, λ, σ2). Let Tn+2(y)

be the expected time until either y(t) hits ȳ or that until there is a free adjustment opportunity,

whichever happens first, starting at y(0) = y, for an economy with n + 2 products and the

same parameters (ȳ, λ, σ2). Then

M′(0;n) =
1

ε

∫ ȳ

0

[
Tn+2(y) +

2

n
T ′n+2(y) y

]
f(y;n) dy . (26)

The function Tn(y) is characterized in the proof of Proposition 3 where we give an explicit

power series representation for this function. The proof of Lemma 4 uses a characterization

of m(p) in terms of a two dimensional vector (z, y), where z is the sum of the n coordinates

of p. The function m(z, y) solves a PDE whose solution can be expressed in terms of Tn(y)

(see the technical Appendix M for details on the algebra).

To compute the right hand side of equation (26), we separately characterize Tn+2(y) +
2
n
T ′n+2(y) y and f(y;n). Using the power series representation of Tn+2(y) (see proof of Propo-

sition 3) it is immediate to obtain a power series representation of Tn+2(y)+ 2
n
T ′n+2(y) y. This

gives (see the technical Appendix N for details on the algebra):

Tn+2(y) +
2

n
T ′n+2(y) y =

∑∞
i=1

Γ(n2 +1)
i! Γ(n2 +i+1)

[(
λȳ

2σ2

)i − (1 + 2i
n

) (
λy
2σ2

)i]
∑∞

i=0

Γ(n2 +1)
i! Γ(n2 +i+1)

(
λȳ

2σ2

)i (27)
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For f we use the characterization in equation (7) in term of modified Bessel functions of the

first and second kind (see the technical Appendix O for a step-by-step derivation). These

functions have a power series representation, which we use to solve for the two unknown

constants C1, C2. This gives:

f(y) =

( λy2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λy
2σ2

)i(
λȳ
2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λȳ
2σ2

)i −
∑∞

i=0 βi,1−n2
(
λy
2σ2

)i∑∞
i=0 βi,1−n2

(
λȳ
2σ2

)i
 / (28)

( λȳ2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

ȳ
i+n/2

(
λȳ
2σ2

)i
(
λȳ
2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λȳ
2σ2

)i −
∑∞

i=0 βi,1−n2
ȳ
i+1

(
λȳ
2σ2

)i∑∞
i=0 βi,1−n2

(
λȳ
2σ2

)i


where the two sequence of coefficients β are defined in term of the Γ function as

βi,n
2
−1 ≡

1

i! Γ(i+ n/2)
and βi,1−n

2
≡ 1

i! Γ(i+ 2− n/2)
for i = 0, 1, 2, ... .

The expression in equation (28) holds for all real numbers n ≥ 1, except when n is an even

natural number (due to a singularity of the power expansion of the modified Bessel function

of the second kind). Yet the expression is continuous in n.

Finally, we establish an equivalence to verify equation (19):

Lemma 5 The equality between equation (26) and the ratio Kur(∆pi)/(6N(∆pi)), as from

equation (19), is equivalent to

∞∑
j=1

γj
1

1+j∑∞
s=0 γs

1
1+s

j =
∞∑
j=1

γj

(
1 +

2 j

n

)
× (29)([∑∞

i=0 ξi
1

n
2

+i+j∑∞
i=0 ξi

−
∑∞

i=0 ρi
1

i+1+j∑∞
i=0 ρi

] / [∑∞
i=0 ξi

1
n
2

+i∑∞
i=0 ξi

−
∑∞

i=0 ρi
1
i+1∑∞

i=0 ρi

])
,

where the sequences {γj, ξj, ρj}∞j=0 are defined as

γj ≡
Γ
(
n
2 + 1

)
j! Γ

(
n
2 + 1 + j

) ( λȳ

2σ2

)j
, ξj ≡

1

j! Γ
(
j + n

2

) ( λȳ

2σ2

)(n
2 +j−1)

and ρj ≡
1

j! Γ
(
j + 2− n

2

) ( λȳ

2σ2

)j
.

The derivation of equation (29) uses equation (27) and equation (28) to compute equa-

tion (26). Verifying equation (29) is straightforward since both sides are simple functions

of convergent power series, which are arbitrarily well approximated by a finite sum. As

explained above, for even values of n this expression should be understood as the limit for

n→ 2 k (or, numerically, as the sum for values of n close to 2 k for k ∈ N and k ≥ 1). �
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Proof. (of Proposition 7). The idea is to show that for any n and ` we have

Kur(∆pi;µ) = Kur(∆pi;−µ) , N(∆pi)(µ) = N(∆pi)(−µ) , M(δ;µ) = −M(−δ;−µ) (30)

for all (µ, δ) in a neighborhood of (0, 0). Note that differentiating the last expression with

respect to δ, and evaluating it at δ = 0 we obtain that M′(0;µ) = M′(0;−µ). Hence we

have that Kur(∆pi; ·), N(∆pi)(·) and M′(0; ·) are symmetric functions of inflation around

µ = 0. Hence, if they are differentiable, they must have zero derivative with respect to

inflation at zero inflation. The symmetry in equation (30) follows from the symmetry on the

firm’s problem with respect to positive and negative drift. To establish this symmetry we

proceed in two steps. First we analyze the symmetry of the decision problem for the firm of

Section 3.2. Second, we consider the approximation to the GE problem for values µ 6= 0. All

the arguments follow a guess and verify strategy of a simple nature but with heavy notation.

The technical Appendix S provides the details of the proof.

Proof. (of Proposition 8.) The proof proceeds by verification. We analyze the condition

that ensures that every firm with ||p||2 = y ≤ ȳ before the shock will find that ||p− ιδ||2 ≥ ȳ

after the shock, where ι is a vector of ones. See the technical Appendix Q for a detailed

derivation.

Proof. (of Lemma 2) To prove the lemma we let z(t) = x4(t) and y(t) = x2(t). We use Ito’s

lemma to obtain:

dy(t) = σ(t)2 dt + 2x(t)σ(t)dW (t) or y(t) =

∫ t

0

σ(s)2 ds +

∫ t

0

2x(s)σ(s) dW (s)

and taking expected values: E0 [y(T )] = E0

[∫ T
0
σ(t)2 dt

]
=
∫ T

0
E0 [σ(t)2] dt . Likewise

dz(t) = 6x2(t)σ(t)2 dt + 4x3(t)σ(t)dW (t)

then E0 [z(T )] = 6E0

[∫ T
0
σ(t)2 y(t) dt

]
= 6

∫ T
0
E0 [σ(t)2 y(t)] dt. Now note that:

E0

[
σ(t)2 y(t) dt

]
= E0

[
σ(t)2

(∫ t

0

σ(s)2 ds +

∫ t

0

2x(s)σ(s) dW (s)

)]

and using the independence of {W (t)} and {σ(t)} we have: E0 [σ(t)2 y(t)] = E0

[∫ t
0
σ(t)2 σ(s)2 ds

]
.

Then, replacing this expression and noticing that K(T ) = E0 [z(T )] / (E0 [y(T )])2, we obtain

the desired result. �

Proof. (of Proposition 9. ) Define the probability that u(t) = 1 if u(0) = i as P1 (t |i ), or:
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P1 (t | i ) ≡ Pr {u(t) = 1 | u(0) = i} for i ∈ {0, 1} . These probabilities are given by:

P1 (t | 0 ) =
θ0

θ0 + θ1

[
1− e−(θ0+θ1)t

]
, P1 (t | 1 ) =

θ0

θ0 + θ1

[
1 +

θ1

θ0

e−(θ0+θ1)t

]
.

We now use these probabilities to compute two expressions that appear in equation (21).

(see the technical Appendix T for the details on the derivation). The first expression is the

expected second moment v(t) ≡ E0 [σ(t)2] which is given by

v(t) = E0

[
σ(t)2

]
= σ2

0

θ1

θ1 + θ0

+ σ2
1

θ0

θ0 + θ1

. (31)

Notice that this expected variance is independent of the horizon t. The second expression is

k(t, s) ≡ E0 [σ(t)2 σ(s)2 ], or the expected fourth moment over an horizon t conditional on

σ(t). This is given by

k(t, s) =

[
σ2

0

θ1

θ1 + θ0

+ σ2
1

θ0

θ1 + θ0

]2

+
(
σ2

1 − σ2
0

)2 θ0θ1

(θ0 + θ1)2
e−(θ0+θ1)(t−s) (32)

Using equation (31) and equation (32) into equation (21) gives

K(T ) = 3 + 6
(σ2

1 − σ2
0)

2 θ0θ1
(θ0+θ1)2[

σ2
0

θ1
θ1+θ0

+ σ2
1

θ0
θ1+θ0

]2

[
T (θ0 + θ1)− 1 + e−(θ1+θ0)T

]
(θ1 + θ0)2 T 2

.

Without loss of generality, since the expression is homogeneous of degree zero on (σ1, σ0), we

can set σ1 = 1. We can also use θ = (1/2)(θ1+θ0). Finally for any θ we can let s = θ0/(θ0+θ1)

to obtain equation (22). �

Proof. ( of Proposition 10. ) First we compute the frequency of adjustment. Let Ti(p)

denote the expected time to hit a barrier conditional on the state p. The Kolmogorov

backward equation gives the following system of ODEs for the expected times:θ0(T0 − T1) = 1 + T ′′0
σ2

0

2

θ1(T1 − T0) = 1 + T ′′1
σ2

1

2

which is symmetric Ti(p) = Ti(−p) with boundary condition Ti(p̄) = 0. The solution isT0(p) = (θ0+θ1)(p̄2−p2)

σ2
0θ1+σ2

1θ0
+

σ2
1θ0(σ2

0−σ2
1)

(σ2
0θ1+σ2

1θ0)2

(
eχp+e−χp

eχp̄+e−χp̄
− 1
)

T1(p) = (θ0+θ1)(p̄2−p2)

σ2
0θ1+σ2

1θ0
+

σ2
0θ1(σ2

1−σ2
0)

(σ2
0θ1+σ2

1θ0)2

(
eχp+e−χp

eχp̄+e−χp̄
− 1
)

where χ ≡
√

2
σ2

0θ1+σ2
1θ0

σ2
0σ

2
1
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This implies that the average time between price adjustment is given by

1

Na

=
T0(0)θ1 + T1(0)θ0

θ0 + θ1

=
(θ0 + θ1)p̄2

σ2
0θ1 + σ2

1θ0

+
θ0θ1(σ2

1 − σ2
0)2

(θ0 + θ1)(σ2
0θ1 + σ2

1θ0)2

(
1− 2

eχp̄ + e−χp̄

)
or, rewriting in terms of the fundamental parameters that pin down K(T ), namely θ, s, ξ,

and the implied parameter ρ̂ = θ1
θ0

= 1−s
s

we have equation (23).

Now we turn to computing the cumulative output effect. Use the approximation

M(δ) ≈ δ M′(0) =
2δ

ε

∫ p̄

0

(m0(p)g′0(p) +m1(p)g′1(p)) dp

Next we solve for the terms in the equation. First consider the ODE that characterizes mi(p):θ0(m0 −m1) = −p+
σ2

0

2
m′′0

θ1(m1 −m0) = −p+
σ2

1

2
m′′1

The function must satisfy mi(p) = −mi(−p) and the boundaries mi(p̄) = 0. The solution ism0(p) =
(θ0+θ1) p(p2−p̄2)

3(σ2
0θ1+σ2

1θ0)
+

σ2
1θ0(σ2

1−σ2
0)

(σ2
0θ1+σ2

1θ0)2

(
eχp−e−χp
eχp̄−e−χp̄ p̄− p

)
where χ ≡

√
2
σ2

0θ1+σ2
1θ0

σ2
0σ

2
1

m1(p) =
(θ0+θ1) p(p2−p̄2)

3(σ2
0θ1+σ2

1θ0)
+

σ2
0θ1(σ2

0−σ2
1)

(σ2
0θ1+σ2

1θ0)2

(
eχp−e−χp
eχp̄−e−χp̄ p̄− p

)
Finally we compute the invariant distribution of price gaps. Let gi(p) be the density for

price gaps in state i which must be symmetric around p = 0, zero at the boundary: gi(p̄) = 0.
σ2

0

2
g′′0(p) = θ1g1(p)− θ0g0(p)

σ2
1

2
g′′1(p) = θ0g0(p)− θ1g1(p)

For p ∈ [−p̄, p̄], the shape of the densities is linear triangular, with density functionsg0(p) = θ1
θ0+θ1

p̄−|p|
p̄2

g1(p) = θ0
θ0+θ1

p̄−|p|
p̄2

�

C On the implied cost of price adjustment

In this section we give a characterization of the model implications for the size of the menu

cost, i.e. a mapping between observable statistics and the value of ψ/B or ψ (we also discuss
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how to measure B). We consider two measures for the cost of price adjustment: the first one

is the cost of a single price adjustment as a fraction of profits: ψ/n. Recall that ψ is the cost

that a firm must pay if it decides to adjust all prices instantaneously (i.e. without waiting for

a free adjustment). Measuring this cost as a fraction of profits transforms these magnitudes

into units that have an intuitive interpretation. The second measure is the average flow cost

of price adjustment given by: N(∆pi)
ψ
n

(1− `). This cost measures the average amount of

resources that the firm pays to adjust prices per period. The latter measure is useful because

it relates more directly to what has been measured in the data by Levy et al. (1997); Zbaracki

et al. (2004), namely the “average” cost of a price adjustment. The next proposition analyzes

the mapping between the scaled menu cost ψ/n , and B, `, n, N(∆pi) and V ar(∆pi).

Proposition 11 Fix the number of products n ≥ 1 and let r ↓ 0. There is a unique triplet

(σ2, λ, ψ) consistent with any triplet ` ∈ [0, 1], V ar(∆pi) > 0 and N(∆pi) > 0. Moreover,

fixing any value `, the menu cost ψ ≥ 0 can be written as:

ψ

n
= B

V ar(∆pi)

N(∆pi)
Ψ (n , `) (33)

where Ψ is only a function of (n, `). For all n ≥ 1 the function Ψ(n, ·) satisfies:

lim
`→0

Ψ (n, `) =
n

2 (n+ 2)
, lim

`→1
Ψ (n, `) =∞ , lim

`→1
Ψ (n, `) (1− `) = 0 , (34)

lim
`→1

Ψ(n′, `)/n′

Ψ(n, `)/n
≤ 1 for n′ ≥ n, and lim

n→∞

Ψ(n, `)/n

Ψ(1, `)/1
→ 0 as `→ 1 . (35)

Equation (33) shows that for any fixed n ≥ 1 and ` ∈ [0, 1] the menu cost ψ is proportional

to the ratio V ar(∆pi)/N(∆pi). Second, equation (33) shows that the menu cost is propor-

tional to B, which measures the benefits of closing a price gap. The parameter B is related

to the constant demand elasticity faced by firms η (see Section 3), so that B = η(η − 1)/2,

which can be written in terms of the (net) markup over marginal costs m ≡ 1/(η − 1) so

that B = (1 + m)/(2m2).28 The last expression is useful to calibrate the model using em-

pirical estimates of the markup such as the ones by Christopoulou and Vermeulen (2012):

the estimated markups average around 28% for the US manufacturing sector, and around

36% for market services (slightly smaller values are obtained for France, see their Table 1).29

A similar value for the US, namely a markup rate of about 33%, is used by Nakamura and

28Nakamura and Steinsson (2010) notice that lower markups (higher values of demand elasticity) η must
imply higher menu costs, as shown by equation (33). Footnote 14 in their paper discusses evidence on the
markup rates across several microeconomic studies and macro papers.

29 The evidence for the US services is consistent with the gross margins, based on accounting data, reported
in the Annual Retail Trade Survey by the US Census (see http://www.census.gov/retail/).
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Steinsson (2010).

Figure 6: Implied cost of price adjustment

Cost of one price adjustment ψ/n (as % of profits) Yearly cost of adjustment (as % of revenues)
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All economies in the figures feature Std(∆pi) = 0.10 and a markup of 25%. For those in the left panel
we set N(∆pi) = 1.5.

The left panel of Figure 6 illustrates the comparative static effect of ` and n on the implied

menu cost, fixing B V ar(∆pi)/ N(∆pi), i.e. it plots the function Ψ(n, `). Fixing a value of n

it can be seen that the menu cost ψ/n is increasing in `. Indeed equation (34) shows that as

`→ 1, the implied menu cost diverges to +∞. On the other hand, for ` = 0 and n = 1, our

version of Golosov-Lucas ’s model, the menu cost attains its smallest (strictly positive) value.

Fixing ` and moving across lines shows that the implied fixed cost ψ/n is not monotone in

the number of products n. Indeed, as stated in equation (34) for a very small share ` the

values of ψ/n are increasing in n. On the other hand, for larger value of the share `, the

order of the implied fixed cost is reversed.

The model also has clear predictions about the per period (say yearly) cost of price ad-

justments borne by the firms: (1−`)N(∆pi)ψ/n. In spite of the fact that the cost of a single

deliberate price adjustment diverges as `→ 1, the total yearly cost of adjustment converge to

zero continuously. This can be seen in the right panel of Figure 6. A simple transformation

gives the yearly cost of price adjustments as a fraction of revenues: (1−`)N(∆pi) ψ/n
η

, where the

scaling by η transforms the units from fraction of profits into fraction of revenues.30 This

statistic is useful because it has empirical counterparts, studied e.g. by Levy et al. (1997).

30Since R = ηΠ where R is revenues per good and Π profits per good.
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Using equation (33) and the previous definition for the markup yields

Yearly costs of price adjustment

Yearly revenues
=

1

2

V ar(∆pi)

m
(1− `) Ψ (n , `) (36)

Figure 6 plots the two cost measures in equation (33) and (36) as functions of `, n for

an economy with N(∆pi) = 1.5, Std(∆pi) = 0.10 and a markup m ≈ 25% (i.e. B = 10).

We see this parametrization as being consistent with the US data on price adjustments,

markups, and the size distribution of price changes discussed above. The figure illustrates

how observations on the costs of price adjustments can be used to parametrize the model.

Levy et al. (1997) and Dutta et al. (1999) (Table IV and Table 3, respectively) document

that for multi-product stores (a handful of supermarket chains and one drugstore chain) the

average cost of price adjustment is around 0.7 percent of revenues. For an economy with

n = 10 (a reasonable parametrization to fit the size-distribution of price changes) the right

panel of the figure shows that the model reproduces the yearly cost of 0.7% of revenues when

the fraction of free adjustments ` is around 60%. The left panel in the figure indicates that

at this level of ` the cost of one price adjustment is around 5% of profits.

Proof. (of Proposition 11). To obtain the expression in equation (33) we use the character-

ization of ` = L
(
λ ȳ
nσ2 , n

)
of Proposition 3, it is equivalent to fix a value of φ ≡ λ ȳ

nσ2 . We let

the optimal decision rule be ȳ (ψ/B, σ2, r + λ, n) so that we have:

ȳ

(
ψ

B
, σ2, r + λ, n

)
λ

nσ2
= φ

To be consistent with V ar(∆pi) and N(∆pi) we have, using Proposition 1 and ` = L(φ, n):

N(∆pi) = λ/L(φ, n) and
λ

σ2
= L(φ, n)/V ar(∆pi) .

Thus, after taking r ↓ 0 and using the expression above we can write:

ȳ

(
ψ

B
, N(∆pi)V ar(∆pi) , `N(∆pi) , n

)
`

n V ar(∆pi)
= L−1(`;n)

Fixing n and ` and computing the total differential for this expression with respect to

(ψ/B,N(∆pi), V ar(∆pi)), and denoting by ηψ, ησ2 , ηλ the elasticities of ȳ with respect to

ψ/B, σ2, λ we have:

ηψ ψ̂ + ησ2 (N̂(∆pi) + V̂ ar(∆pi)) + ηλ N̂(∆pi) = V̂ ar(∆pi)
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where a hat denotes a proportional change. Using Proposition 3-(iv) in Alvarez and Lippi

(2014) and Lemma 1 we have that these elasticities are related by: ηλ = 2ηψ − 1 and ησ2 =

1−ηψ .Thus ηψ ψ̂+(1−ηψ) (N̂(∆pi)+V̂ ar(∆pi))+(2ηψ−1) N̂(∆pi) = V̂ ar(∆pi). Rearranging

and canceling terms: ηψ ψ̂ + ηψ N̂(∆pi) − ηψV̂ ar(∆pi) = 0. Dividing by ηψ we obtain that

ψ̂ = V̂ ar(∆pi) − N̂(∆pi). Additionally, since ȳ is a function of ψ/B, then we can write

ψ/n = B (V ar(∆pi)/N(∆pi)) Ψ(n, `) for some function Ψ(n, `).

That ψ →∞ as `→ 1 follows because L(φ, n)→ 1 as φ→∞ and because, by Proposition

3-(i) in Alvarez and Lippi (2014), ȳ is increasing in ψ and has range and domain [0,∞). For

λ = 0 and N(∆pi) > 0 we obtain: ψ
n

= B V (∆p)
N(∆pi)

n
2 (n+2)

.This follows from using the

square root approximation of ȳ for small ψ (λ + r)2, the expression for N(∆pi) = nσ2/ȳ

and Proposition 1, i.e. N(∆pi)V ar(∆pi) = σ2. To obtain the expression for Ψ(n, 0) we use

Proposition 6 in Alvarez and Lippi (2014) where it is shown that for λ = 0 then Kur (∆pi) =

3n/(n+ 2).

D The CPI response to a monetary shock

To compute the IRF of the aggregate price level we analyze the contribution to the aggregate

price level by each firm. Firms start with price gaps distributed according to g, the invariant

distribution. Then the monetary shock displaces them, by subtracting the monetary shock δ

to each of them. After that we divide the firms in two groups. Those that adjust immediately

and those that adjust at some future time. Note that, for each firm in the cross section,

it suffices to keep track only of the contribution to the aggregate price level of the first

adjustment after the shock because the future contributions are all equal to zero in expected

value.

Let g (p;n, λ/σ2, ȳ) be the density of firms with price gap vector p = (p1, ..., pn) at time

t = 0, just before the monetary shock, which corresponds to the invariant distribution with

constant money supply. The density g equals the density f of the steady state square norms

of the price gaps given by Lemma 3 evaluated at y = p2
1 + · · ·+p2

n times a correction factor:31

g

(
p1, ..., pn ;n,

λ

σ2
, ȳ

)
= f

(
p2

1 + · · ·+ p2
n ;n,

λ

σ2
, ȳ

)
Γ (n/2)

πn/2 (p2
1 + · · ·+ p2

n)
(n−2)/2

(37)

To define the impulse response we introduce two extra pieces of notation. First we let

{(p̄1(t, p), . . . , p̄n(t, p))} the process for n independent BM, each one with variance per unit

of time equal to σ2, which at time t = 0 start at p, so p̄i(0, p) = pi. We also define the

stopping time τ(p), also indexed by the initial value of the price gaps p as the minimum of

31See Section 5 of Alvarez and Lippi (2014) for this result and the technical Appendix P for a derivation.

54



two stopping times, τ1 and τ2(p). The stopping time τ1 denotes the first time since t = 0 that

jump occurs for a Poisson process with arrival rate λ per unit of time. The stopping time

τ2(p) denotes the first time that ||p̄(t, p)||2 > ȳ. Thus τ(p) is the first time a price change

occurs for a firm that starts with price gap p at time zero. The stopped process p̄(τ(0), p) is

the vector of price gaps at the time of price change for such a firm.

The impulse response for the aggregate price level can be written as:

P(t, δ;σ, λ, ȳ) = Θ(δ;σ, λ, ȳ) +

∫ t

0

θ(δ, s;σ, λ, ȳ) ds , (38)

where Θ(δ) gives the impact effect, the contribution of the monetary shock δ to the aggregate

price level on impact, i.e. at the time of the monetary shock. The integral of the θ’s gives the

remaining effect of the monetary shock in the aggregate price level up to time t, i.e. θ(δ, s)ds

is the contribution to the increase in the average price level in the interval of times (s, s+ds)

from a monetary shock of size δ. Figure 3 displays several examples of impulse responses

(the figures plots output, i.e. (δ−P)/ε). The functions θ and Θ are readily defined in terms

of the density g, the process {p̄} and the stopping times τ :

Θ(δ;σ, λ, ȳ) ≡
∫
||p(0)−ιδ||≥ȳ

(
δ −

∑n
j=0 pj(0)

n

)
g

(
p(0);n,

λ

σ2
, ȳ

)
dp1(0) · · · dpn(0)

and θ(δ, t;σ, λ, ȳ) is the density, i.e. the derivative with respect to t of the following expression:

∫
||p(0)−ιδ||<ȳ

E

[
−
∑n

j=0 p̄j (τ(p), p)

n
1{τ(p)≤t}

∣∣∣ p = p(0)− ιδ

]
g

(
p(0);n,

λ

σ2
, ȳ

)
dp1(0) · · · dpn(0)

where ι is a vector of n ones. This expression takes each firm that has not adjusted prices on

impact, i.e. those with p(0) satisfying ||p(0)− ιδ|| < ȳ, weights them by the relevant density

g, displaces the initial price gaps by the monetary shock, i.e. sets p = p(0) − ιδ, and then

looks a the (negative) of the average price gap at the time of the first price adjustment, τ(p),

provided that the price adjustment has happened before or at time t. We make 3 remarks

about this expression. First, price changes equal the negative of the price gaps because price

gaps are defined as prices minus the ideal price. Second, we define θ as a density because,

strictly speaking, there is no effect on the price level due to price changes at exactly time t,

since in continuous time there is a zero mass of firms adjusting at any given time. Third, we

can disregard the effect of any subsequent adjustment because each of them has an expected

zero contribution to the average price level. Fourth, the impulse response is based on the

steady-state decision rules, i.e. adjusting only when y ≥ ȳ even after an aggregate shock
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occurs.

Given the results in Proposition 3 -Proposition 4 we can parametrize our model either

in terms of (n, λ, σ2, ψ/B) or instead parametrize it, for each n, in terms of the implied

observable statistics (N(∆pi), Std(∆pi), `). These propositions show that this mapping is

indeed one-to-one and onto. We refer to ` as an “observable” statistic, because we have

shown that the “shape” of the distribution of price changes depends only on it.

Proposition 12 Consider an economy whose firms produce n products and with steady state

statistics (N(∆pi), Std(∆pi), `). The cumulative proportional response of the aggregate price

level t ≥ 0 periods after a once and for all proportional monetary shock of size δ can be

obtained from the one of an economy with one price change per period and with unitary

standard deviation of price changes as follows:

P (t , δ ; N(∆pi) , Std(∆pi)) = Std(∆pi) P
(
tN(∆pi) ,

δ

Std(∆pi)
; 1 , 1

)
. (39)

This proposition extends the result of Proposition 8 in Alvarez and Lippi (2014) to the

case of ` ≡ λ/N(∆pi) > 0.32 The proof proceeds by verification. It is made of three parts.

First we introduce a discrete-time, discrete-state version of the model. Second we show the

scaling of time with respect to Na , and finally the homogeneity of degree one with respect

to Std(∆pi) and δ. The step by step passages are reported in the technical Appendix P.

The proposition establishes that the shape of the impulse response is completely deter-

mined by 2 parameters: n and `, whose comparative static is explored in Figure 3. Economies

sharing these parameters but differing in terms of N(∆pi) or Std(∆pi) are immediately an-

alyzed by rescaling the values of the horizontal and/or vertical axis. In particular, a higher

frequency of price adjustments will imply that the economy “travels faster” along the im-

pulse response function (this is the sense of the rescaling the horizontal axis). Instead, the

effect of a larger dispersion of price changes is seen by rescaling the monetary shock δ by

Std(∆pi) and by a proportional scaling of the vertical axis. A further simplification to the

last result is given by next corollary, showing that for small values of the monetary shocks

one can overlook the scaling by Std(∆pi) so that, for a given n and ` determining the shape,

the most important parameter is the frequency of price changes N(∆pi):

Corollary 1 For small monetary shocks δ > 0, the impulse response is independent of

32The proof in Alvarez and Lippi is constructive in nature, exploiting results from applied math on the
characterization of hitting times for brownian motions in hyper-spheres, which is not longer valid for λ > 0.
Here we use a different strategy which relies on limits of discrete-time, discrete state approximations.
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Std(∆pi). Differentiating equation (39) gives:

P (t , δ ; N(∆pi) , Std(∆pi) ) = δ
∂

∂δ
P (tN(∆pi) , 0 ; 1 , 1 ) + o(δ)

for all t > 0 and, since f(ȳ) = 0, then the initial jump in prices can be neglected, i.e.:

P (0 , δ ; N(∆pi) , Std(∆pi) ) ≡ Θn,` (δ;Std (∆pi)) = o(δ) .

E An economy with heterogenous sectors

Assume that there are S sectors, each with an expenditure weight e(s) > 0, and with different

parameters so that each has N(s) price changes per unit of time, and a distribution of price

changes with kurtosis Kur(s). In this case, after repeating the arguments above for each

sector and aggregating, we obtain that the area under the IRF of aggregate output for a small

monetary shock δ is

M(δ) ∼= δM′(0) =
δ

6 ε

∑
s∈S

e(s)

N(s)
Kur(s) =

δ

6 ε
D
∑
s∈S

d(s)Kur(s) (40)

where D is the expenditure-weighted average duration of prices D ≡
∑

s∈S
e(s)
N(s)

and the

d(s) ≡ e(s)
N(s)D

are weights taking into account both relative expenditures and durations. In

the case in which all sectors have the same durations then d(s) = e(s) andM is proportional

to the kurtosis of the standardized data. Likewise, the same result applies if all sectors have

the same kurtosis.33 In general, if sectors are heterogenous in the durations (or expenditures),

then the kurtosis of the sectors with longer duration (or expenditures) receive a higher weight

in the computation of M. For the French data, computation of the duration weighted

kurtosis in equation (40) increases the estimated cumulative effect by about 15%, reflecting

a correlation between the kurtosis and the duration of price changes.

F Frequency of price changes in Retail vs. Wholesale

In this appendix we document that wholesale prices are as sticky as retail prices for a broad

cross section of products sold in grocery stores. For wholesale price we use PromoData,

a dataset on manufacturer prices for packaged foods from grocery wholesalers (the largest

33The effect of heterogeneity in N(∆pi) on aggregation is well known, so that D is different from the
average of N(∆pi)’s, see for example Carvalho (2006) and Nakamura and Steinsson (2010).
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Table 3: Weekly Frequency of Price Adjustment - Wholesale vs Retail Level

Data Period Frequency excl. Sales Frequency
All Products

PromoData (Wholesale) 2006-2012 0.09 0.14
IRI Symphony (Retail) 2001-2011 0.11 0.22

All Products (2006 - 2011)
PromoData (Wholesale) 2006-2011 0.08 0.14
IRI Symphony (Retail) 2006-2011 0.12 0.23

Coffee
PromoData (Wholesale) 2006-2012 0.17 0.20
IRI Symphony (Retail) 2001-2011 0.10 0.19
RMS 2006-2012 - 0.16

The table reports the weekly frequency of price adjustment using three datasets: Nielsen’s PromoData, IRI

Symphony, and Nielsen’s Retail Scanner (RMS) data. The frequency of adjustment is computed at the

product level and then aggregated across products using equal weights.

wholesaler in each location). PromoData provides the price per case charged by the man-

ufacturer to the wholesaler for a UPC in a particular day, for 48 markets, over the period

2006-2012. The data includes information on almost 900 product categories and more than

500,000 UPC×Market products, and contain information on both base prices and “trade

deals” (discounts offered to the grocery wholesalers to encourage promotions). We compute

the frequency of price changes using base prices (excluding trade deals) as well as including

trade deals.34

The frequency of price adjustment at the retail level is computed using the IRI Symphony

data. The dataset contains weekly scanner price and quantity data covering a panel of

stores in 50 metropolitan areas from January 2001 to December 2011, with multiple chains

of retailers for each market. The dataset contains around 2.4 billion transactions from over

170,000 UPCs and around 3,000 stores. Goods are classified into 31 general product categories

and a sales flag is provided when an item is on discount (thus we compute the frequency

both including and excluding sales as in Section 2.2). To correct for measurement error

(due to composition and time aggregation) we only retain price changes within the interval

0.1 ≤ |∆pi| ≤ 100 · log(10/3). Finally, to compare with and extend Nakamura and Steinsson

(2008), we compute the frequency of price changes for coffee using data on retail prices and

34In PromoData firms report only the dates in which their prices change. We thus assume that the price is
constant between reporting dates. We discard the last price (uncompleted spell) and consider products with
at least two price changes. The frequency of adjustment is computed at the weekly level for comparability
with the retail data sets (even though our data may have a higher frequency). The frequency of adjustment
is computed for each product (i.e. UPC x Market given that the data is not at the store level) and then
aggregated using equal product weights.
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sales from the Retail Scanner Data (RMS) by Nielsen. Our data is at the week-product-

store level for the period of 2006-2013. The structure of the dataset is the same as the IRI

Symphony data except that the RMS does not provide a sales flag, and covers about 200

cities.

Table 3 summarizes the main findings of this measurement exercise. The weekly frequency

of price adjustment (sales excluded) for the entire wholesale data (PromoData) is 0.09 per

week which compares with a mean frequency of adjustment of about 0.11 per week in the

retail (IRI) data. Frequencies of comparable magnitude are detected across samples from

different segments of the distribution chain, as well as for different items (coffee and beer,

not reported) in the samples that exclude sales. Including sales makes the frequency of

adjustment in retail somewhat higher than the frequency in wholesale.

G Simple special cases of Proposition 6

This section discusses some limiting cases in which tractable closed form expressions for the

cumulative effectM as well as the frequency and kurtosis of price adjustments can be derived.

The first two cases we illustrate assume either n = 1 or n → ∞: we derive the implications

for the cumulative output effect while considering the full range of values for ` ∈ (0, 1) and

keeping the frequency of price changes constant. The last case restricts attention to ` = 0 or

` = 1 but allows for any value of n ≥ 1.

G.1 Analytical computation of M in the case of n = 1

We give an analytical summary expression for the effect of monetary shocks in two interesting

cases, those for one product, i.e. n = 1, and those for the large number of product, i.e. n =∞.

The summary expression is the area under the impulse response for output, i.e. the sum of

the output above steady state after a monetary shock of size δ > 0, which we denote as:

Mn(δ) = (1/ε)

∫ ∞
0

[δ − Pn(δ, t)] dt (41)

where 1/ε is related to the uncompensated labor supply elasticity and Pn(δ, t) is the cumu-

lative effect of monetary shock δ in the (log) of the price level after t periods. For large

enough shocks, given the fixed cost of changing prices, the model display more price flex-

ibility. Because of their prominence in the literature, and because of realism, we consider

the case of small shocks δ by taking the first order approximation to equation (41), so we

consider Mn(δ) ≈M′
n(0)δ.
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For the case of n = 1 we obtain an analytical expression which, after normalizing by

N(∆pi) depends only on λ/N(∆pi). Thus as λ/N(∆pi) ranges from 0 to 1 the model ranges

from a version of the menu cost model of Golosov and Lucas to a version using Calvo pricing.

The analytical expression is based upon the following characterization:

M1(δ) = (1/ε)

∫ p̄−δ

−p̄
m(p0) g(p0 + δ) dp0 (42)

where p0 is the price gap after the monetary shocks and where m(p) gives the contribution

to the area under the IRF of firms that start with price gap, after the shock, equal to p0.

Since the monetary shock happens when the economy is in steady state, the distribution

right after the shock has the steady state density h displaced by δ. Immediately after the

shock the firms with the highest price gap have price gap p̄ − δ. Note that the integral in

equation (42) does not include the firms that adjust on impact, those that before the shock

have price gaps in the interval [−p̄, p̄− δ), whose adjustment does not contribute to the IRF.

The definition of m is:

m(p) = −E
[∫ τ

0

p(t) dt
∣∣ p(0) = p

]
where τ is the stopping time denoting the first time that the firm adjusts its price. This

function gives the integral of the negative of the price gap until the first price adjustment.

This expression is based on the fact that those firms with negative price gaps, i.e. low

markups, contribute positively to output being in excess of its steady state value, and those

with high markups contribute negatively. Given a decision rule summarized by p̄ we can

characterize m as the solution to the following ODE and boundary conditions:

λm(p) = −p+
σ2

2
m′′(p) for all p ∈ [−p̄, p̄] and m(p) = 0 otherwise .

The solution for the function m is:

m(p) = −p
λ

+
p̄

λ

(
e
√

2φ p
p̄ − e−

√
2φ p

p̄

e
√

2φ − e−
√

2φ

)
for all p ∈ [−p̄ , p̄] .

φ ≡ λp̄2/σ2. We then have:

M(δ) ≈M′(0)δ = (δ/ε)

∫ p̄

p̄

m(p) g′(p) dp = (δ/ε) 2

∫ p̄

0

m(p) g′(p) dp

since m(p̄)g(p̄) = 0. The last equality uses that m is negative symmetric, i.e. m(p) =
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−m(−p), and that g is symmetric around zero. Using the expression for g in Section 3.1

g′(p) = − 2φ

2p̄2
(
e
√

2φ − 1
)2

(
e
√

2φ(2− p
p̄) + e

√
2φ p

p̄

)
for p ∈ [0, p̄] .

we obtain:

δM′(0) =

(
δ

ε

)
−2

λ
(
e
√

2φ − 1
)2

(
e
√

2φ

(
1 + φ− e

√
2φ + e−

√
2φ

2

))
.

Using the expression for N(∆pi) for the n = 1 and simple algebra we can rewrite it as:

δM′(0) =

(
δ

ε

)
1

N(∆pi)

e
√

2φ + e−
√

2φ(
e
√

2φ + e−
√

2φ − 2
)2

(
e
√

2φ + e−
√

2φ − 2− 2φ
)

which yields the cumulative output effect of a small monetary shock of size δ.35

Kurtosis. We now verify that the expression can be equivalently obtained by computing

the kurtosis, as stated in Proposition 6. For notation convenience let x ≡
√

2φ. Using the

distribution of price changes derived in Section 3.1 and the definition of kurtosis we get

Kur (∆pi) =

2`

(
12
x4 − 12+x2

x2(ex/2−e−x/2)
2

)
+ 1− `(

2`
(

1
x2 + 1

2−e−x−ex
)

+ 1− `
)2 =

12− 12x2+x4

(ex/2−e−x/2)
2 + x4 1−`

2`

2`
(
1 + x2

2−e−x−ex + x2 1−`
2`

)2

Recall from Section 3.1 that ` = ex+e−x−2
ex+e−x

so that , after some algebra

Kur (∆pi) = 6
ex + e−x

(ex + e−x − 2)2

(
ex + e−x − 2− x2

)
It is immediate that the kurtosis and the cumulative output effect satisfy Proposition 6.

35As a check of this formula compute the case for φ = 0, i.e. the cumulative output for the Golosov-Lucas

model. In this case we let λ = 0 and p̄ > 0. In this case we have: m(p) = − p̄
2 p

3σ2 + p3

3σ2 . Also g′(p) = −1/p̄2

for p ∈ (0, p̄], so we have:

M′(0)δ =

(
δ

ε

)
2

−3σ2p̄2

∫ p̄

0

[
−p̄2p+ p3

]
dp =

(
δ

ε

)
−2

3σ2p̄2

[
− p̄

4

2
+
p̄4

4

]
=

(
δ

ε

)
2p̄2

3σ2

2

8
=

(
δ

ε

)
1

N(∆pi)

1

6

which is the same value obtained by taking the limit for φ→ 0 in the general expression above.
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G.2 Analytical computation of M in the case of n =∞

Define

Yn(t, δ) ≡ 1

n

n∑
i=1

[pi(t)− δ] = Yn(t, 0)− 2δ

∑n
i=1 pi(t)

n
+ δ2 .

where the pi(t) are independent of each other, start at pi(0) = 0 and have normal distribution

with E [pi(t)] = 0 and V ar [pi(t)] = σ2t. Then, by an application of the law of large numbers,

we have:

Y∞(t, δ) = Y∞(t, 0) + δ2 = tσ2 + δ2

Letting Ȳ ≡ limn→∞ ȳ(n)/n we can represent the steady state optimal decision rule as

adjusting prices when t, the time elapsed since last adjustment, attains T = Ȳ /σ2. We

compute the density of the distribution of products indexed by the time elapsed since the

last adjustment t and, abusing notation, we denote it by f . This distribution is a truncated

exponential with decay rate λ and with truncation T , thus the density is:

f(t) = λ
e−λ t

1− e−λT
for all t ∈ [0, T ] .

The (expected) number of price changes per unit of time is given by the sum of the free

adjustments and the ones that reach T , so

N(∆pi) = λ+ f(T ) = λ

[
1 +

e−λT

1− e−λT

]
=

λ

1− e−λT

Note that, using the definition of T given above, λT = Ȳ λ/σ2 the parameter which indexes

the shape of f and of the distribution of price changes. Since this figures prominently in this

expressions we define:

φ ≡ λT =
Ȳ λ

σ2
.

which is consistent with the definition of φ in Proposition 3. Using this definition we get:

` =
λ

N(∆pi)
= 1− e−φ and thus N(∆pi) =

λ

1− e−φ

Impulse Response of Prices to a monetary Shock. We can now define the impulse

response. Note that after the monetary shock firms that have adjusted their prices t periods

ago, in average will adjust their price up by δ. This highlights that as n → ∞ there is no

selection.
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Now we turn to the characterization of the impact effect Θ. In this case we have

Y∞(t, δ) = Y∞(t, 0) + δ2 = tσ2 + δ2 ≥ Ȳ = σ2T ⇐⇒ t ≥ T − δ2/σ2 .

Thus the impact effect is:

Θ(δ) = δ

∫ T

T−δ2/σ2

f(t)dt = δ
e−λT+ λ

σ2 δ
2

− e−λT

1− e−κ
= δ

e−κ+ λ
σ2 δ

2

− e−κ

1− e−κ

Using that N(∆pi)V ar(∆pi) = σ2 we can write:

Θ(δ) = δ + δ
e
−κ+ λ

N(∆pi)
δ2

V ar(∆pi) − 1

1− e−κ
= δ + δ

(
1− λ

N(∆pi)

)
e

λ
N(∆pi)

δ2

V ar(∆pi) − 1

λ/N(∆pi)

Note that

lim Θ(δ) =

δ
(

δ
Std(∆pi)

)2

as λ/N(∆pi)→ 0

0 as λ/N(∆pi)→ 1

and in general

Θ(δ)

∂(λ/N(∆pi))
= δ

e
λ

N(∆pi)
δ2

V ar(∆pi)

(
δ2

V ar(∆pi)
λ

N(∆pi)

(
1− λ

N(∆pi)

)
− 1
)

+ 1

(λ/N(∆pi))2
< 0

whenever δ < 2Std(∆pi).

θ(t) = δe−λt

[
f
(
T − δ2/σ2 − t

)
+ λ

∫ T−δ2/σ2−t

0

f(s)ds

]
= δ

λe−λt

1− e−λT
.

We can interpret θ(t)dt as θ(t) times the number of firms that adjust its price at times (t, dt).

This is the sum of two terms. The first term is the fraction that adjust because they hit the

boundary between t and t + dt. The second term is the fraction that have not yet adjusted

times the fraction that adjust, λdt due to a free opportunity. Both terms are multiplied by

e−λt to take into account those firms that have received a free adjustment opportunity before

after the monetary shock but before t.

Thus we have:

P∞(t, δ) = Θ(δ) + δ

∫ t

0

λe−λs

1− e−λT
ds = Θ(δ) + δ

1− e−
λ

N(∆pi)
tN(∆pi)

λ/N(∆pi)
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Using P∞ we can compute the IRF for output, and a summary measure for it, namely

the area below it:

M∞(δ) =
1

ε

∫ T

0

[δ − P∞(δ, t)] dt ≈ δ

εN(∆pi)

[
1− (1 + φ) e−φ

(1− e−φ)2

]
where the approximation uses the expression for small δ, i.e. its first order Taylor’s expansion.

Kurtosis. For completeness we also include here an expression for the kurtosis of the

distribution of price changes in the case of n =∞. Price changes are distributed as:

E
[
(∆pi)

2
]

= σ2/N(∆pi) =
σ2

λ

λ

N(∆pi)
=
Tσ2

Tλ

λ

N(∆pi)
= Tσ2 1

Tλ

λ

N(∆pi)

E
[
(∆pi)

4
]

= 3
λ

N(∆pi)

∫ T

0

(σ2t)2λe−λt

1− e−λT
dt+

(
1− λ

N(∆pi)

)
3
(
σ2T

)2

= 3σ4T 2

[
2− e−λT (λT (λT + 2) + 2)

(Tλ)2 +

(
1− λ

N(∆pi)

)]
Some algebra shows that kurtosis is then given by:

E [(∆pi)
4]

(E [(∆pi)2])2 = 6
1− e−φ (1 + φ)

(1− e−φ)2

It is immediate to use the expressions above to verify Proposition 6.

G.3 Analytical computation for ` = 0 or ` = 1 (any n).

For ` = 0, or equivalently λ = 0, we use the result in Alvarez and Lippi (2014) for

Tn+2(y) =
ȳ − y

(n+ 2)σ2

gives:

M′(0) =
1

nε

∫ ȳ

0

[
n(ȳ − y)− 2y

(n+ 2)σ2

]
f(y) dy
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and using the following expression for f from Alvarez and Lippi (2014) :

f(y) =
1

ȳ
[log(ȳ)− log(y)] if n = 2, and

f(y) = (ȳ)−
n
2

(
n

n− 2

)[
(ȳ)

n
2
−1 − (y)

n
2
−1
]

otherwise

gives that:

M′(0) =
1

nε

2 ȳ n(n− 2)

(n2 − 4)σ2
=

1

ε

Kurt(∆pi)

6N(∆pi)

which verifies the equality in Proposition 6.

For 1 < n < ∞ and ` = 1, with λ > 0 and σ2 > 0, using Proposition 3 it must be the

case that ȳ = ∞. In this case, N(∆pi) = λ` = λ, and the distribution of price changes is

independent across each of the n products, and given by a Laplace distribution, which has

kurtosis 6. Likewise Tn+2(y) = 1/λ for all y ≥ 0. Thus, using equation (26) we obtain the

desired result.
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H Data Appendix

This appendix provides further empirical evidence. Section H.1 offers more summary statis-

tics about the French CPI and a robustness-to-trimming exercise. Section H.2 explores the

extent to which the statistical protocols used to measure prices are responsible for the small

price changes, as suggested by Eichenbaum et al. (2014).

H.1 More statistics on the French CPI and robustness to trimming

Table 4 reports the frequency of price changes as well as selected moments of the distri-

bution of price changes. The basic patterns that emerge form the CPI data (frequency of

price change, average and standard deviation of price changes) match those documented by

Berardi, Gautier, and Le Bihan (2015) for France and are representative of those obtaiend

by Alvarez et al. (2006) for the Euro area. With the qualification that the frequency of

price changes is typically found to be smaller in the Euro area than in the US, they also

broadly match the US evidence by e.g. Nakamura and Steinsson (2008). The frequency of

price change is around 17% per month, or about 2 price changes per year. The fraction of

price decreases among price changes is around 40%. The average absolute price change (not

reported in the table) is sizable (9.2%), as is the standard deviation of price changes (16.6%).

A second investigation on measurement error was developed by varying the upper and

lower thresholds of small and large price changes used to define outliers. Results are displayed

in Table 5. In each of the variants considered in Table 5, both kurtosis and the fraction of

small price changes remain large. The lowest level of kurtosis obtains when we use the most

stringent thresholds for outliers. If in the vein Eichenbaum et al. (2014) we consider that

all price changes lower in absolute value that 1 percent are presumably measurement errors,

and discard them from the sample, the resulting kurtosis is reduced to 7.1. Furthermore,

some large price changes may as well be measurement (transcription) errors. If we restrict

the sample to price changes larger in absolute value that 1 percent, and lower than log(2)

(meaning that observaions with multiplied by more than 2, or divided by more than 2,– a

stricter threshold than the 99th percentile– are considered as likely measurement errors), the

kurtosis is further reduced to 6.2.

H.2 Small price changes and measurement errors

This appendix examines to what extent the arguments of Eichenbaum et al. (2014) apply to

our data and investigates the robustness of our findings to various criteria for trimming the

data. Measurement errors may arise for several reasons. Eichenbaum, Jaimovich, and Rebelo
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Table 4: Selected moments from the size distribution of price changes

Dominick’s CPI Data France
DFF all records exc.sales

Frequency of price changes 32.7 17.1 15.7
Moments for the size of price changes: ∆pi

Average 0.1 0.3 3.2
Standard deviation 24.5 15.6 11.9

Moments of standardized price changes: z
Kurtosis 4.0 8.0 8.9
Number of obs. with ∆pi 6= 0 295,692 1,530,878 1,266,507

Source for Dominick’s is Kilts Center for Marketing, data are weekly scanner price records for 400 weeks
from 1989 to 1997. Source for CPI is INSEE, monthly price records from French CPI, data from 2003:4
to 2011:4. Coverage is around 65% of CPI weight since rents, and prices of fresh food and centrally
collected items (e.g. electricity, train and airplane tickets) are not included in the dataset. Frequency
of price change is the average fraction of price changes per week (Dominick’s) or month (INSEE) ,
in percent. Size of price change is the first-difference in the logarithm of price per unit, expressed in
percent. Observations with imputed prices or quality change are discarded. Observations outside the
interval 0.1 ≤ |∆pi| ≤ P99 are removed as outliers. “Exc. sales” exclude observations flagged as sales by
the INSEE data collectors. Moments are computed aggregating all prices changes using CPI weights at
the product level. The “kurtosis” row report kurtosis for the standardized price change zijt =

∆pijt−mj

σj

where mj and σj are the mean and standard deviation of price changes in category j (see the text).

(2011) and Eichenbaum et al. (2014) articulate two concerns about the small price change.

First they notice that in scanner data studies the price level of an item is typically computed

as the ratio of recorded weekly revenues to quantity sold. To the extent that there are

temporary or individual specific discounts (say coupons), this will generate spurious small

price changes.36 Moreover Eichenbaum et al. (2014) highlight a related problem for some

CPI items: they spot 27 items (named ELIS in the BLS terminology) that are problematic

because these prices are typically computed as a Unit Value Index (a ratio of expenditure

to quantity purchased), or they are not consistently recorded in the same outlet, or they

are the price of a bundle of goods (for instance the sum of airplane fare and airport tax).

We were able to match these items with their counterparts in our French dataset. Out of

the 27 problematic items 15 are not present in our data because in the French CPI those

items are not recorded by a field agent but are centrally collected (thus not made available

36 Notice that in principle CPI data are immune from this type of measurement error, as these data are
direct transaction prices observed by a field agent. Indeed, in the instance of a temporary discount, the
CPI dataset will record either no price change, or the large price change of observed during the discount, if
the field agent happens to be collecting data during the temporary discount. Further, the protocol of data
collection requires that the field agent records the price faced by a regular customer, not benefiting from
individual-specific discounts.
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Table 5: Robustness to trimming

Type of trimming Freq Kur(z) Std(dp) N obs case
|∆p| < P99 17.05 7.98 15.63 1530878 0
exc sales 15.71 8.85 11.88 1266507 1
<log(10/3) 17.09 8.89 16.60 1542527 2
<log(2) 17.08 8.53 16.12 1537895 3
<100pct 16.86 7.03 13.33 1482044 4
>0 17.17 8.12 15.56 1540243 5
>0.5pct 16.63 7.61 15.86 1480753 6
>1pct 15.34 7.07 16.65 1377209 7
>1pct <log(2) 15.14 6.15 14.21 1328378 8
>1pct nosales 13.95 7.84 12.68 1116076 9

Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage is aroud 65% of
CPI weight since rents, and prices of fresh food and centrally collected items (e.g. electricity, train and airplane
tickets) are not included in the dataset. Freq. denotes monthly frequency of price change in percent. Size
of price change ∆p are the first-difference in the logarithm of price per unit, expressed in percent.Std(dp) is
standard devation of log price change. Kur[z] denotes kurtosis of the distribution of standardized price changes.
Standardized price changes are computed at the category of good * type of outlet level. Observations with
imputed prices or quality change are discarded. Moments are computed aggregating all prices changes using
CPI weigths at the product level. Each row describes a sub-sample constructed applying the filter described by
the column “type of trimming”. The subsample with flag “case 0” is the baseline sample in the main text of the
paper: price changes are included if they are larger in absolute value than 0.1 percent, and lower in absolute
value than the 99th percentile; sales are included. Each subsequent row describes the impact of changing one
(or two) of these thresholds and criteria, the one(s) that is explicitely mentionned. For example the second row
considers the sample with |∆p| > 0.1, |∆p| < P99,and sales excluded; the third row considers the sample with
|∆p| > 0.1, |∆p| < log(10/3),and sales included “Ex. sales” exclude observations flagged as sales by the INSEE
data collectors.

in the subset of CPI we have access to).37 Concerning the 12 remaining items virtually no

price record in the French CPI is computed as a Unit Value Index, which is hypothesized by

Eichenbaum et al. (2014) as a major source of small price changes. Inspecting the patterns

of price changes over these 12 potentially “problematic” items in our dataset shows that the

amount of small price changes is not significantly different from the one detected over the rest

of our sample. One exception is the price of “Residential water” where it can be suspected

that many small variations in local taxes occur.38

Finally, Table 6 compares the fraction of small price changes in US vs the French data.

37These items are Hospital room in-patient; Hospital in-patient services other than room ; Electricity;
Utility natural gas service; Telephone services, local charges ; Interstate telephone services ; Community
antenna or cable TV ; Cigarettes; Garbage and trash collection; Airline fares; New cars; New trucks; Ship
fares; Prescription drugs and medical supplies; Automobile insurance.

38Otherwise, on the bulk of consumption items, there are no local taxes in France, and the main, nation-
wide, rate of the Value Added Tax rate did not move over the sample period.
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Table 6: Fraction of small price changes: US and French CPI

Moments for the absolute value of price changes: |∆pi|
France US Normal Laplace

Average |∆pi| 9.2 14.0
Fraction of |∆pi| below 1% 11.8 12.5
Fraction of |∆pi| below 2.5% 32.5 24.0
Fraction of |∆pi| below 5% 57.1 40.6
Fraction of |∆pi| below (1/14) · E (|∆pi|) 2.4 12.5 4.5 6.9
Fraction of |∆pi| below (2.5/14) · E (|∆pi|) 13.5 24.0 11.3 16.4
Fraction of |∆pi| below (5/14) · E (|∆pi|) 28.7 40.6 22.4 30.0
Number of obs 1,542,586 1,047,547

Note: For France the source is INSEE monthly price records from the French CPI (2003:4 to 2011:4).
Coverage is around 65% of CPI weight since rents, and prices of fresh food and centrally collected items
(e.g. electricity, train and airplane tickets) are not included in the dataset. Frequency of price change
is monthly, in percent. Size of price change are the first-difference in the logarithm of price per unit,
expressed in percent. Data are trimmed as in the baseline of Table 4. Observations with imputed prices
or quality change are discarded. Moments are computed aggregating all prices changes using CPI weights
at the product level. The US data are taken from Eichenbaum et al. (2014) Table 1, and refer to “Posted
price changes” from 1998:1 to 2011:6. The mean absolute size of price changes is taken from Klenow and
Kryvtsov (2008) table III where data are from 1998:1 to 2005:1. Figures for the US are weighted and
cover around 70% of the CPI (US CPI includes owners equivalent rents, while French CPI does not). In
the third panel we compute the threshold for defining small price changes as fraction of the mean so as
to match the US figures in column 2 of the second panel. The Normal and Laplace distributions used in
the last two columns have a zero mean and, without loss of generality, standard deviation equal to one.

The table uses the same thresholds of Eichenbaum et al. (2014) to measure the fraction

of small price changes. The presence of small price changes (in absolute value) is at first

sight a more prominent fact in France than in the US. One factor that may contribute to

explaining this pattern is the fact that sales are less prevalent in France. Measurement error,

as discussed above, may play a role. We nevertheless observe that, if we define small price

changes as relative to the mean average price change, rather than with an absolute threshold,

the fraction of small price change appears to be lower in France than in the US, as shown in

Table 6.

I Details of the solution for the model with n = 1

Integrating the Bellman equation gives the following value function

V (p) =
Bp2 + λV (0)

λ+ r
+

Bσ2

(λ+ r)2
+ C

(
ep

√
2(λ+r)

σ2 + e−p
√

2(λ+r)

σ2

)

4



where we already used that V (p) = V (−p). Notice that the value function has a minimum

(and zero derivative) at p = 0, which is the optimal return point. The constant C and the

threshold value p̄ are the values that solve the 2 equation system given by the value matching

condition and the smooth pasting conditions.

The expected time to adjustment, T (p) obeys the differential equation λT (p) = 1 +
σ2

2
T ′′(p) with boundary condition T (p̄) = 0. Given the symmetry of the law of motion for p,

the function is symmetric, i.e. T (p) = T (−p). Integrating gives T (p) = 1
λ

(
1− e

√
2λ
σ2 p+e

−
√

2λ
σ2 p

e

√
2λ
σ2 p̄+e

−
√

2λ
σ2 p̄

)
.

The distribution of price gaps g(p) satisfies the Kolmogorov forward equation 0 = −2λ
σ2 g(p)+

g′′(p) for 0 < |p| ≤ p̄. The density is symmetric, g(p) = g(−p), and satisfies the boundary

conditions: g(p̄) = 0 and it integrates to one i.e. 2
∫ p̄

0
g(p) dp = 1 where we used that it is

symmetric.39

J Proof that limȳ→∞ ξ(σ2, r + λ, n, ȳ) = 0

Note that, by examining the definition of κi and the sums in the expression for ξ we have

that:

lim
ȳ→∞

ξ(σ2, r + λ, n, ȳ) = lim
ȳ→∞

ξ

(
1, 1, n,

(r + λ) ȳ

σ2

)
so this limit cannot depend on r + λ or σ2. Thus we denote it as:

ξ̄(n) ≡ lim
ȳ→∞

ξ(1, 1, n, ȳ)

So we have:

ȳ ≈ ψ

B
(r + λ)

[
1− ξ̄(n)

]
for large ψ .

Now we show that ξ̄(n) = 0. First we notice that the power series:

g(x) =
∞∑
i=1

i∏
s=1

1

(s+ 2)(n+ 2s+ 2)
xi

39The first boundary can be derived as the limit of the discrete time, discrete state, low of motion where
each period is of length ∆ and where p increases or decreases with probability 1/2, so that g(p) = 1

2g(p +
∆) + 1

2g(p −∆). At the boundary p̄ this law of motion is g(p̄) = 1
2g(p̄ −∆), which shows that g(p̄) ↓ 0 as

∆ ↓ 0 .
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converges for all values of x since its coefficients satisfy the Cauchy-Hadamard inequality.

Then we can write:

ξ(1, 1, n, ȳ) ≡
2(n+2)

ȳ
1

g(ȳ)
+ 1

g(ȳ)
+ 1

ȳ2

2(n+2)
ȳ

1
g(ȳ)

+ 2 1
g(ȳ)

+
∑∞

i=1 ω(i, ȳ) (2 + i)

where the weights ω(i, ȳ) are given by:

ω(i, x) =

xi∏i
s=1(s+2)(n+2s+2)∑∞

j=1

∏j
s=1

1
(s+2)(n+2s+2)

xj

Note that for higher x the weights of smaller i decrease relative to the ones for higher i. Now

since g(ȳ)→∞ as ȳ →∞, then:

ξ̄(n) =
1

limȳ→∞
∑∞

i=1 ω(i, ȳ) (2 + i)

To show that ξ̄(n) = 0, suppose, by contradiction that is finite. Say, without loss of generality

that equals j + 2 for some integer j. Note that, by the form of the ω′s and because g(ȳ)

diverges as ȳ gets large enough, then by any j and ε > 0 there exist a y∗ large enough so

that
∑j

i=1 ω(i, ȳ) < ε for any ȳ > y∗. Thus, the expected value must be larger than 2 + j.

Finally, we consider the case of n → ∞. In this case we have that, the value function

divided by n gives:

v = min
T
B

∫ T

0

σ2 t e−(λ+r) dt+ e−(r+λ)T (Ψ + v)

where Ψ = limn→∞ ψ/n. The first order condition for T gives, for a finite T :

0 =
(
B σ2 T − (r + λ)Ψ

)
− (r + λ)e−(r+λ)Tv (43)

Now consider the case where Ψ→∞. Note that v is finite since T =∞, a feasible strategy

as a finite value. Also let Ȳ = σ2T = limn→∞
ȳ(n)
n

. Note that as Ψ → ∞ then Ȳ must also

diverge towards ∞. Dividing the previous expression by Ψ:

Ȳ

Ψ
=

(r + λ)

B
+ (r + λ)e−(r+λ)T v

Ψ

and taking the limits:

lim
Ψ→∞

Ȳ

Ψ
=
r + λ

B
. �
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K Note on solutions of value function v(y), expected

time to adjust T (y) and invariant density of the squared

price gap f (y).

First we state a proposition which gives an explicit closed form solution to the value func-

tion v(y) in the inaction region, i.e. for y ∈ (0, ȳ) subject to v(0) < ∞. The solution is

parameterized by β0 = v(0).

Proposition 13 Let σ > 0. The ODE in equation (5) is solved by the analytical function:

v(y) =
∑∞

i=0 βi y
i , for y ∈ [0, ȳ] where, for any β0, the coefficients {βi} solve: β0 = nσ2

r
β1,

β2 = (r+λ)β1−B
2σ2(n+2)

, βi+1 = r+λ
(i+1)σ2 (n+2i)

βi for i ≥ 2 .

The function described in this proposition allows to fully characterize the solution of the

firm’s problem. One can use it to evaluate the two boundary conditions described above,

value matching and smooth pasting, and define a system of two equations in two unknowns,

namely β0 and ȳ.

The alert reader may have noticed that to solve for the invariant density f we have

followed a standard procedure, i.e. set a 2nd order ordinary linear difference equation (the

Kolmogorov forward equation) and find its solutions in terms of two constant, and using two

boundary conditions to find the value of the constants. Instead to solve for v and T we have

followed a different approach, we guess an infinite expansion around y = 0 and compute

its coefficients. Additionally, it may have looked that we did not provide enough boundary

conditions to be able to solve for T and v. For instance, for T we gave only one equation

as boundary conditions, namely T (ȳ) = 0. Here we explain that we could have followed the

more standard route, which required an analysis of the behavior close to the y = 0 boundary,

to set one constant to zero and also would have produced a less informative result, i.e. one

in terms of modified Bessel functions. Nevertheless we include it here for completeness.

Note that v(y), T (y) and f(y) are solutions to a linear ODE on y whose homogeneous

component, say q(·), solves :

y q′′(y) + a q′(y) + b q(y) = 0 (44)

for y ∈ [0, ȳ], for (different) constants a and b, with different particular solution, and different

boundary conditions. The general solution of the homogeneous equation (44) is given by:

q(y) = |b y|(1−a)/2
[
C1Iν

(
2
√
|b y|

)
+ C2Kν

(
2
√
|b y|

)]
(45)
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provided that b y < 0, i..e. that b < 0, where C1 and C2 are arbitrary constants, ν = |1−a| and

where Iν and Kv are the modified Bessel functions of the first and second kind respectively.

The values of b = −λ/(2σ2) in the three cases. The value of a = n/2 for T and for v,

which are the same Kolmogorov backward equation, and a = −(n/2− 2) for f , which is the

Kolmogorov forward equation.

It is important to notice the behavior of Iν(z) and Kν(z) for values of 0 < z but very

close to zero. We have:

Iν v
1

Γ(ν + 1)

(z
2

)ν
(46)

and

Kν v


Γ(ν+1)

2

(
2
z

)ν
if ν > 0

− log(z/2)− γ if ν = 0
(47)

We thus have that each of the solution will behave as:

I|1−a|
(
y1/2

)
y(1−a)/2 v

1

Γ(|1− a|+ 1)

(
y1/2

2

)|1−a|
y(1−a)/2

=
1

Γ(|1− a|+ 1)

(
1

2

)|1−a|
y(1−a)/2+|1−a|/2

So if 1− a = −|1− a|, i.e. if 1− a ≤ 0, the value of this product is finite at y ↓ 0. Otherwise

it diverges to ∞. Likewise for ν = |1− a| > 0:

K|1−a|
(
y1/2

)
y(1−a)/2 v

Γ(|1− a|+ 1)

2

(
2

y1/2

)|1−a|
y(1−a)/2

=
Γ(|1− a|+ 1)

2

(
2

1

)|1−a|
y(1−a)/2−|1−a|/2

So if 1− a = |1− a|, i.e. if 1− a ≥ 0, the value of this product is finite at y ↓ 0. Otherwise

it diverges to ∞. The case of ν = 0 i.e. a = 1 is special, but K0(z) also diverges and I0(z)

converges to a non-zero constant as z ↓ 0.

Note that v(0) and T (0) are both finite. For these two cases the Kolmogorov backward

equation has a = n/2 so 1 − a ≥ 0 iff n ≥ 2. In these cases we have that C2, the constant

associated with Kν must be zero. We can use the constant C1 to impose the boundary

condition T (ȳ) = 0 for T and to have a one dimensional representation of v in the range of

inaction given ȳ. Then we can use smooth pasting and value matching, i.e. two boundary

conditions, to find the constants C1 and ȳ.

Note that for f we don’t require that f(0) be zero, since the density at zero gap can be

infinite if the y mean reverts to zero fast enough. Thus in this case we will, in general, have

8



both constants be non-zero.

L Power series representation of Kurtosis

Given (λ, σ2, ȳ) the kurtosis of the steady state price distribution can be written as:

Kur (∆pi) =
Q(0)
σ4

N(∆pi)
2

=
(λ/σ2)

2
Q(0)

(L(φ, n))2

where Q(y) is the expected fourth moment at the time of adjustment τ conditional on having

today a squared price gap y, i.e.

Q(y) = E
(
∆p4

i (τ) | y(0) = y
)

=
3

(n+ 2)n
E
(
y2(τ)|y(0) = y

)
where y(τ) is the value of the squared price gap at the stopping time and where, using

results from Alvarez and Lippi (2014), we have that Kur(∆pi|y) = 3n
(n+2)

and the variance is

V ar (∆pi | ||p||2 = y) = y/n. Notice that for y ∈ [0, ȳ] the function Q(y) obeys the o.d.e.:

λQ(y) = λ
3y2

(n+ 2)n
+Q′(y)nσ2 +Q′′(y) 2σ2y

with boundary condition Q(ȳ) = 3ȳ2

(n+2)n
. Assuming that Q(y) =

∑∞
i=0 aiy

i, matching coeffi-

cients, and writing them as function of a0 one obtains:

a1(a0) =
a0

σ2

λ
n
, a2(a0) =

a1(a0)

2σ
2

λ
(n+ 2)

, a3(a0) =
a2(a0)− 3

(n+2)n

3σ
2

λ
(n+ 4)

and

ai+1(a0) =
ai(a0)

(i+ 1)σ
2

λ
(n+ 2i)

for i ≥ 3

Thus Q(0) = a0 is determined as the solution to
∑∞

i=0 ai(a0) ȳi = 3 ȳ2

(n+2)n
. After tedious but

simple algebra this gives:

Q(0) = a0 =
3n

(n+ 2)

(
σ2

λ

)2
φ2 +

∑∞
i=3

(∏i
j=3

n
j[n+2(j−1) ]

)
φi

1 +
∑∞

i=1

(∏i
j=1

n
j[n+2(j−1) ]

)
φi


where φ ≡ λȳ

nσ2 .

9



Replacing Q(0) into Kur (∆pi) =
(λ/σ2)

2
Q(0)

L2 and using equation (6) for L(φ, n) we get

Kur (∆pi) =
3n

(n+ 2)

φ2 +
∑∞

i=3

(∏i
j=3

n
j[n+2(j−1) ]

)
φi

1 +
∑∞

i=1

(∏i
j=1

n
j[n+2(j−1) ]

)
φi

1 +
∑∞

i=1

(∏i
j=1

n
j[n+2(j−1) ]

)
φi∑∞

i=1

(∏i
j=1

n
j[n+2(j−1) ]

)
φi

2

Thus

Kur (∆pi) =
3n

(n+ 2)

(
φ2 +

∑∞
i=3

(∏i
j=3

n
j[n+2(j−1) ]

)
φi
)(

1 +
∑∞

i=1

(∏i
j=1

n
j[n+2(j−1) ]

)
φi
)

(∑∞
i=1

(∏i
j=1

n
j[n+2(j−1) ]

)
φi
)2

(48)

For future reference note that Kur (∆pi) /N (∆pi) =(1/λ)L(φ, n)Kur (∆pi) so

Kur (∆pi)

N (∆pi)
=

1

λ

3n

(n+ 2)

(
φ2 +

∑∞
i=3

(∏i
j=3

n
j[n+2(j−1) ]

)
φi
)

∑∞
i=1

(∏i
j=1

n
j[n+2(j−1) ]

)
φi

Using that

i∏
j=1

n

j [n+ 2 (j − 1) ]
=

(n/2)i

i!

i∏
j=1

1[
n
2

+ (j − 1)
] =

(n/2)i

i!

Γ
(
n
2

)
Γ
(
n
2

+ i
)

we can write:

Kur (∆pi)

N (∆pi)
=

1

λ

3n

(n+ 2)

(
φ2 + 2 Γ

(
n
2

+ 2
) (

2
n

)2∑∞
i=3

1

i! Γ(n2 +i)
(φn/2)i

)
Γ
(
n
2

) ∑∞
i=1

1

i! Γ(n2 +i)
(φn/2)i

=
1

λ

3n

(n+ 2)

2 Γ
(
n
2

+ 2
) (

2
n

)2

Γ
(
n
2

)
(

(1/2)
(
1/Γ

(
n
2

+ 2
)) (

n
2

)2
φ2 +

∑∞
i=3

1

i! Γ(n2 +i)
(φn/2)i

)
∑∞

i=1
1

i! Γ(n2 +i)
(φn/2)i

=
1

λ

12n

(n+ 2)

2 (n/2 + 1) (n/2)

n2

(
1

2Γ(n2 +2)
(φn/2)2 +

∑∞
i=3

1

i! Γ(n2 +i)
(φn/2)i

)
∑∞

i=1
1

i! Γ(n2 +i)
(φn/2)i

=
6

λ

∑∞
i=2

1

i! Γ(n2 +i)
(φn/2)i∑∞

i=1
1

i! Γ(n2 +i)
(φn/2)i

which gives the right hand side of equation (19). From there it is apparent that for a fixed

10



n, this ratio is increasing in λȳ/σ2 and that for a fixed λȳ/σ2, this ratio is increasing in n.

M Proof of Lemma 4

Proof. (of Lemma 4.) We use the property of the n independent BM’s to write m as a

function of a pair (z, y), where z =
∑

i pi, as well as to write g as a function of (z, y) only. If

each price gap follows an independent BM with common variance per unit of time σ2, then,

applying Ito’s Lemma one can show that the pair (y, z) follows:

dy(t) = nσ2dt + 2σ
√
y(t) dWa(t)

dz(t) =
√
nσ

 z(t)√
n y(t)

dWa(t) +

√√√√1−

(
z(t)√
n y(t)

)2

dWb(t)


where Wa,Wb are 2 standard (univariate) independent BM’s. So that E(dy)2 = 4σ2y dt ,

E(dz)2 = nσ2 dt, and E(dz dy) = 2σ2z dt.

Hence we can write m̃(p1, ..., pn) = m̃ (||p||2,
∑n

i=1 pi), in which case m̃ solves the PDE :

λm̃(z, y) = −z + m̃y(z, y)nσ2 + m̃zz(z, y)
nσ2

2
+ m̃yy(z, y)

4σ2y

2
+ m̃zy(z, y) 2σ2z

with boundary conditions: m̃(z, ȳ) = 0 . We guess, and verify, that m̃(z, y) = z κn(z) for

some function κn(·) and where for emphasis we include the subindex n indicating the number

of products. We then obtain:

λκn(y) = −1 + κ′n(y) (n+ 2)σ2 + κ′′n(y) 2σ2 y

for all 0 ≤ y ≤ ȳ and κn(ȳ) = 0. Note that, except of the sign, this function obeys the same

ODE and boundary conditions than the one for the time until adjustment Tn+2(y), which we

solved to obtain L as if there were n+ 2 products instead of n products, and hence we get:

κn(y) = −Tn+2(y) (49)

The joint density of the invariant distribution h(z, y) can be written as:

h(z, y) = s(z|y) f(y)

where f is the invariant distribution of y and s(z|y) is the density distribution of the sum of

the coordinates of a uniform distribution on an n dimensional hypersphere with square norm
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equal to y. In Alvarez and Lippi (2014) we have shown that this distribution is given by

s(z|y) =
1

Beta
(
n−1

2
, 1

2

) √
n y

(
1−

(
z
√
y n

)2
)(n−3)/2

for z ∈ (−√y n , √y n) (50)

Thus we can write

M(δ) =
1

ε

∫ ȳ

0

∫ √ny
−√ny

1

n
m̃(z − nδ, y − 2zδ + nδ2) h(z, y) dz dy (51)

and where we can express the invariant distribution of (z, y) with density h. Differentiating

this expression w.r.t. δ and evaluating it at δ = 0:

M′(0) = − 1

nε

∫ ȳ

0

∫ √ny
−√ny

[
n
∂m̃(z, y)

∂z
+

∂m̃(z, y)

∂y
2 z

]
h(z, y) dz dy

= − 1

nε

[∫ ȳ

0

nκn(y) f(y) dy + 2

∫ ȳ

0

κ′n(y)

∫ √ny
−√ny

z2 s(z|y)dz f(y) dy

]
.

Integrating z2 w.r.t. s gives
∫ √ny
−√ny z

2 s(z|y)dz = y so

M′(0) = − 1

nε

∫ ȳ

0

[ nκn(y) + 2κ′n(y)y ] f(y) dy

=
1

ε

∫ ȳ

0

[
Tn+2(y) +

2

n
T ′n+2(y) y

]
f(y) dy

where the last equality uses equation (49). �

N Power series representation of Tn+2 + T ′n+2 y (2/n)

Lemma 4 shows that ∂m/∂δ can be written in terms of Tn+2, the expected time until a

price adjustment, as characterized in Proposition 3. In that proof we obtain the power series

representation

Tn+2(y) =
∞∑
i=0

αi, n+2 y
i

with

α1,n+2 =
1

(σ2/λ)(n+ 2)
α0,n+2 −

1

σ2(n+ 2)
=

1

(σ2/λ)(n+ 2)

[
α0,n+2 −

1

λ

]

12



and for i ≥ 1:

αi+1, n+2 =
αi, n+2

(i+ 1) (σ2/λ) (n+ 2 + 2i)
=

αi, n+2

(i+ 1) (σ2/λ) (n/2 + 1 + i)

1

2

[
α0,n+2 −

1

λ

]
.

and using the properties of the Γ function:

αi, n+2 =
Γ
(
n
2

+ 1
)

i! Γ
(
n
2

+ i+ 1
) ( λ

2σ2

)i [
α0,n+2 −

1

λ

]
Note that Tn+2(0) = α0, n+2

Given the power series representation we have for all y ∈ [0, ȳ]:

Tn+2(y) + T ′n+2(y) y
2

n
=
∞∑
i=0

αi, n+2

[
1 + i

2

n

]
yi

= α0,n+2 +

[
α0,n+2 −

1

λ

] ∞∑
i=1

Γ
(
n
2

+ 1
)

i! Γ
(
n
2

+ i+ 1
) [1 + i

2

n

] (
λy

2σ2

)i
Note that α0,n+2 = Tn+2(0) with

λα0,n+2 = ` =

∑∞
i=1

(∏i
j=1

1
j[n+2+2(j−1) ]

) (
λȳ
σ2

)i
1 +

∑∞
i=1

(∏i
j=1

1
j[n+2+2(j−1) ]

) (
λȳ
σ2

)i =

∑∞
i=1

(∏i
j=1

1

j[ n2 +j ]

)(
λȳ

2σ2

)i
1 +

∑∞
i=1

(∏i
j=1

1

j[ n2 +j ]

)(
λȳ

2σ2

)i
=

∑∞
i=1

Γ(n2 +1)
i! Γ(n2 +1+i)

(
λȳ

2σ2

)i
∑∞

i=0

Γ(n2 +1)
i! Γ(n2 +1+i)

(
λȳ

2σ2

)i
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Thus we have:

λ

(
Tn+2(y) + T ′n+2(y) y

2

n

)
=

∑∞
i=1

Γ(n2 +1)
i! Γ(n2 +i+1)

(
λȳ

2σ2

)i
∑∞

i=0

Γ(n2 +1)
i! Γ(n2 +i+1)

(
λȳ

2σ2

)i
+


∑∞

i=1

Γ(n2 +1)
i! Γ(n2 +i+1)

(
λȳ

2σ2

)i
∑∞

i=0

Γ(n2 +1)
i! Γ(n2 +i+1)

(
λȳ

2σ2

)i − 1

[ ∞∑
i=1

[
1 + i

2

n

]
Γ
(
n
2

+ 1
)

i! Γ
(
n
2

+ i+ 1
) ( λy

2σ2

)i]

=

∑∞
i=1

Γ(n2 +1)
i! Γ(n2 +i+1)

(
1
2

)i (λȳ
σ2

)i −∑∞i=1

Γ(n2 +1)
i! Γ(n2 +i+1)

[
1 + i 2

n

] (
λy

2σ2

)i
∑∞

i=0

Γ(n2 +1)
i! Γ(n2 +i+1)

(
1
2

)i (λȳ
σ2

)i
=

∑∞
i=1

Γ(n2 +1)
i! Γ(n2 +i+1)

[(
λȳ

2σ2

)i − (1 + 2i
n

) (
λy
2σ2

)i]
∑∞

i=0

Γ(n2 +1)
i! Γ(n2 +i+1)

(
λȳ

2σ2

)i (52)

We can write this as:

λ

(
Tn+2(y) + T ′n+2(y) y

2

n

)
=

∑∞
i=1 γi∑∞
i=0 γi

−

∑∞
i=1 γi

(
1 + 2 i

n

) (
y
ȳ

)i∑∞
i=0 γi

(53)

where

γi =
Γ
(
n
2

+ 1
)

i! Γ
(
n
2

+ 1 + i
) ( λȳ

2σ2

)i
(54)

O Power series representation of the density f (y)

From equation (7) we can write f as the product of a power of y and the sums of two modified

Bessel functions of the first and second kind, multiplied by appropriate constants.

Consider then n ≥ 3 and n odd, so that ν = n/2 − 1 is not an integer. When n is even

the expression for Kν requires to evaluate the limit, so it is more complicated. Thus, we can

write: (
λy

2σ2

)(n4−
1
2)
In

2
−1

(
2

√
λy

2σ2

)
=

(
λy

2σ2

)(n2−1) ∞∑
i=0

βi,n
2
−1

(
λy

2σ2

)i
where

βi,n
2
−1 ≡

1

i! Γ(i+ n/2)
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and for ν not an integer

(
λy

2σ2

)(n4−
1
2)
Kn

2
−1

(
2

√
λy

2σ2

)
=

π
2

sin
(
(n

2
− 1)π

) ∞∑
i=0

βi,1−n
2

(
λy

2σ2

)i
−

π
2

sin
(
(n

2
− 1)π

) ( λy

2σ2

)(n4−
1
2)
In

2
−1

(
2

√
λy

2σ2

)

where

βi,1−n
2
≡ 1

i! Γ(i+ 2− n/2)

This means we can write:

f(y) =

(
CI −

π
2

sin
(
(n

2
− 1)π

)CK)( λy

2σ2

)(n2−1) ∞∑
i=0

βi,n
2
−1

(
λy

2σ2

)i
+ CK

π
2

sin
(
(n

2
− 1)π

) ∞∑
i=0

βi,1−n
2

(
λy

2σ2

)i
Since f(0) > 0 and

f(0) = CK

π
2

sin
(
(n

2
− 1)π

)β0,1−n
2

= CK

π
2

sin
(
(n

2
− 1)π

) 1

Γ(2− n/2)

then CK > 0. Then to set f(ȳ) = 0 we obtain:

CI −
π
2

sin((n
2
−1)π)

CK

−
π
2

sin((n
2
−1)π)

CK
=

∑∞
i=0 βi,1−n2

(
λȳ
2σ2

)i(
λȳ
2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λȳ
2σ2

)i
Using the expressions for f(0) and f(ȳ) = 0 we can then rewrite f as:

f(y) = −f(0) Γ
(

2− n

2

) ( ∞∑
i=0

βi,1−n
2

(
λȳ

2σ2

)i)
×( λy2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λy
2σ2

)i(
λȳ
2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λȳ
2σ2

)i −
∑∞

i=0 βi,1−n2
(
λy
2σ2

)i∑∞
i=0 βi,1−n2

(
λȳ
2σ2

)i


Using that 1 =
∫ ȳ

0
f(y)dy we obtain an expression for f(0) and replacing in the previous
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formula we obtain:

f(y) =

( λy2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λy
2σ2

)i(
λȳ
2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λȳ
2σ2

)i −
∑∞

i=0 βi,1−n2
(
λy
2σ2

)i∑∞
i=0 βi,1−n2

(
λȳ
2σ2

)i
 / (55)

( λȳ2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

ȳ
i+n/2

(
λȳ
2σ2

)i
(
λȳ
2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λȳ
2σ2

)i −
∑∞

i=0 βi,1−n2
ȳ
i+1

(
λȳ
2σ2

)i∑∞
i=0 βi,1−n2

(
λȳ
2σ2

)i


Remark. While this expression was obtained for n ≥ 2 and n odd, it does work for any

real number n ≥ 2 different from an even natural. Since it is continuous in n, the expression

equation (55) can be used to obtain the values of f in the case of n is even by taking the

limit as n approaches any even natural, or by evaluating at a real number very close to the

desired even natural number.

P Discrete Time Formulation for Proposition 12.

We start with discrete time version of the process for price gaps, with length of the time

period ∆, which makes some of the arguments more accessible. Let N be

N(t+ ∆) =

N(t) with probability (1− λ∆)

N(t) + 1 with probability λ∆
(56)

Thus, as ∆ ↓ 0 this process converges to a continuous time Poisson counter with instantaneous

intensity rate λ per unit of time. Let p̄i follow n drift-less random walks

p̄i(t+ ∆, p) =

p̄i(t, p) + σ
√

∆ with probability 1/2

p̄i(t, p) − σ
√

∆ with probability 1/2
(57)

where the initial condition satisfies:

p̄i(0) = pi for i = 1, .., n ,

and where the n random walks are independent of each other and of the Poisson counter. As

∆ ↓ 0 the process for p̄ converges to a Brownian motion whose changes have variance σ2 per

unit of time. We define the stopping time of the first price adjustment τ(p), conditional on

16



the starting at price gap vector p at time zero, as:

τ1 ≡ min {t = 0,∆, 2∆, ... : N(j∆ + ∆)−N(j∆) = 1} ,

τ2(p) ≡ min

{
t = 0,∆, 2∆, ... :

n∑
i=1

(p̄i(j∆ + ∆, p))2 ≥ ȳ

}
and

τ(p) ≡ min {τ1 , τ2(p)} .

The function g is the density for the continuous time limit, i.e. the case where ∆ ↓ 0. For

small ∆, we can approximate the distribution of the fraction of firms with price gap vector p

as the product of the density g and a correction to convert it into a probability, i.e a fraction.

This gives:

g
(
p1, ..., p;n, λ/σ

2, ȳ
) (

σ
√

∆
)n

where the last term uses that in each dimension price gaps vary discretely in steps of size

σ
√

∆. We can write the discrete time impulse response function as:

P(t, δ;σ, λ, ȳ,∆) = Θ(δ;σ, λ, ȳ,∆) +
t∑

s=∆

θ(δ, s;σ, λ, ȳ, ,∆) ∆ ,

In this expression we can, without loss of generality, restrict t to be an integer multiple of

∆. We have divided the expression for θ by ∆, and hence multiplied its contribution back

by ∆ in P , so that it has the interpretation of the contribution per unit of time to the IRF

of price changes at time t, i.e. it has the units of a density. Moreover, in this manner the

term has a non-zero limit, and the expression in P converges to an integral. Thus we get the

P = limP(∆) as ∆ ↓ ∞. The functions θ and Θ are given by:

Θ(δ;σ, λ, ȳ,∆) ≡
∑

||p(0)−ιδ||≥ȳ

(
δ −

∑n
j=0 pj(0)

n

)
g

(
p(0);n,

λ

σ2
, ȳ

) (
σ
√

∆
)n

, and

θ(δ, t;σ, λ, ȳ,∆) ≡

− 1

∆

∑
||p(0)−ιδ||<ȳ

E

[∑n
j=0 p̄j(t, p)

n
1{τ(p)=t}

∣∣∣ p = p(0)− ιδ

]
g

(
p(0);n,

λ

σ2
, ȳ

) (
σ
√

∆
)n

Time scaling of the IRF with N(∆pi). For this (i) Note that if multiply the parameters

σ2 and λ by a constant k > 0, leaving ȳ unaltered, then N(∆pi)
′ = k N(∆pi), where primes

are used to denote the values that correspond to the scaled parameters. This follows directly

from the expression we derive for N(∆pi) = 1/T (0) in Proposition 3. (ii) By Proposition 4
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with these changes the distribution of price changes implied by (σ2, λ, ȳ) is exactly the same

as the one implied by (kσ2, kλ, ȳ). (iii) we change notation and write (σ2, λ, ȳ) instead of

(λ, σ2, ψ/B) and omit n. We establish that

Pn
(
t

k
, δ; kσ2, kλ, ȳ

)
= Pn

(
t, δ;σ2, λ, ȳ

)
We will do so by establishing this proposition for the discrete time version of the IRF. Yet

the result is immediate, since λ and σ2 are the only two parameters which are rates per unit

of time (the other parameters are n and ȳ), so by multiplying them by k we just scale time.

The details can be found in the discrete time formulation, whose notation we develop below.

We show that

P(t, δ; kσ2, kλ, ȳ,∆/k) = P(t/k, δ;σ2, λ, ȳ,∆) (58)

We will do so by establishing this proposition for the discrete time version of the IRF. Let

∆′ = ∆ /k, σ′2 = σ2 k and λ′ = λk. Note that, by construction σ′
√

∆′ = σ
√

∆ and

λ′/(σ′)2 = λ/(σ)2. To establish this we first note that, for a given shock δ, Θ depends only

on n, ȳ, σ
√

∆, and λ/σ2. This is because the invariant density g and the scaling factor to

convert it into probabilities depends only on those parameters. Second we show that

t/k∑
s=∆/k

∆

k
θ

(
s, δ; kσ2, kλ, ȳ,

∆

k

)
=

t∑
s=∆

∆ θ (s, δ;σ, λ, ȳ,∆)

This follows because for each s and p(0)

E

[∑n
j=0 p̄j (s, p)

n
1{τ(p)=s}

∣∣∣ p = p(0)− ιδ ; σ, λ,∆

]

= E

[∑n
j=0 p̄j

(
s
k
, p
)

n
1{τ(p)= s

k}
∣∣∣ p = p(0)− ιδ ; σ′, λ′,∆′

]

where we include the parameters (λ, σ2,∆) as argument of the expected values. This itself

follows because, using equation (56) and equation (57) then the processes for {p̄i} are the

same in the original time and in the time time scales by k since the probabilities of the

counter to go up λ′∆′ = λ∆ and the steps of the symmetric random walks σ′
√

∆′ = σ
√

∆

are the same in the original time and the time scaled by k. In particular we have that

p̄j

( s
k
, p;λ′, σ′2,∆′

)
≡ p̄j

(
s

k
, p; kλ, kσ2,

∆

k

)
= p̄j

(
s, p;λ, σ2,∆

)
= p̂

18



with exactly the same probabilities for each price gap p̂ ∈ R and each time s ≥ 0. Also, re-

peating the arguments used for Θ, we have g
(
p(0);n, λ

σ2 , ȳ
) (

σ
√

∆
)n

= g
(
p(0);n, λ

′

σ′2
, ȳ
) (

σ′
√

∆′
)n

.

Thus, since equation (58) holds for all ∆ > 0, taking limits

P
(
t

k
, δ; kσ2, kλ, ȳ

)
= lim

∆↓0
P
(
t

k
, δ; kσ2, kλ, ȳ,

∆

k

)
= lim

∆↓0
P
(
t, δ;σ2, λ, ȳ,∆

)
= P

(
t, δ;σ2, λ, ȳ

)
Scaling of the IRF in the monetary shock with Std(∆pi). For this we use properties

of the invariant distribution f , which are then inherited by g. In particular, we will compare

the IRF with parameters (λ, σ2, ȳ) with one with parameters (λ′, σ′2, ȳ) where λ′ = λ, σ′2 =

k σ2 and ȳ′ = k ȳ. With this choice we have N(∆pi)
′ = N(∆pi) and thus ` = λ′/N(∆pi)

′

since λȳ/(nσ2) = λ′ȳ′/(nσ′2) (see Proposition 3). Then by Proposition 1 we have that

the standard deviation of price changes scales up with k, i.e.: Std(∆pi)
′ =
√
k Std(∆pi).

The main idea is that the invariant distribution corresponding to the ′ parameters is a

radial expansion of the original, so that
∫ y

0
f(x;λ, σ2, ȳ)dx =

∫ yk
0
f(x;λ′, σ′2, ȳ′)dx and thus

f(y, λ, σ2, ȳ) = kf(yk, λ′, σ′2, ȳ′). Indeed using Lemma 3 we have:

f

(
y;
λ

σ2
, ȳ

)
= k f

(
yk;

λ

kσ2
, kȳ

)
≡ k f

(
yk;

λ′

σ′2
, ȳ′
)
. (59)

Thus we have:

g

(
p1, ..., p;n,

λ

σ2
, ȳ

)
= f

(
p2

1 + · · ·+ p2
n;n,

λ

σ2
, ȳ

)
Γ (n/2)

2 πn/2 (p2
1 + · · ·+ p2

n)
(n−2)/2

=

= kf

(
k(p2

1 + · · ·+ p2
n);n,

λ′

σ′2
, ȳ′
)

Γ (n/2) k(n−1)/2

2πn/2 (k(p2
1 + · · ·+ p2

n))
(n−2)/2

= g

(√
k(p1, ..., pn);n,

λ′

σ′2
, ȳ′
)
k(n−2)/2 k

Using this for the discrete time formulation we have:

g

(
p;n,

λ

σ2
, ȳ

)(
σ
√

∆
)n

= g

(√
k p;n,

λ′

σ′2
, ȳ′
)(

σ′
√

∆
)n
k(n−2)/2 k k−n/2

= g

(√
k p;n,

λ′

σ′2
, ȳ′
)(

σ′
√

∆
)n

Note that {||p(0)− ιδ|| ≥ ȳ} = {||
√
k p(0)− ι

√
k δ|| ≥

√
k ȳ} = {||

√
k p(0)− ιδ′|| ≥ ȳ′}. Also(

δ −
∑n

j=0 pj(0)

n

)
√
k =

(
δ′ −

∑n
j=0

√
k pj(0)

n

)
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Thus

√
k

∑
||p(0)−ιδ||≥ȳ

(
δ −

∑n
j=0 pj(0)

n

)
g

(
p(0);n,

λ

σ2
, ȳ

) (
σ
√

∆
)n

=
∑

||
√
kp(0)−ιδ′||≥ȳ′

(
δ′ −

∑n
j=0

√
kpj(0)

n

)
g

(√
k p(0);n,

λ′

σ′2
, ȳ′
) (

σ′
√

∆
)n

Using the definition of Θ(·,∆):

√
kΘ(δ;σ, λ, ȳ,∆) = Θ

(√
k δ; kσ2, λ, kȳ,∆

)
≡ Θ

(
δ′;σ′2, λ′, ȳ′∆

)
.

Since this holds for all ∆, by taking limits as ∆ ↓ 0, we have shown the desired result for

Θ. The result for θ follows the steps for g. We set ∆′ = ∆ and note that for all p(0) ∈ Rn,

scaling factor k > 0 and time horizon s > 0:

√
k E

[∑n
j=0 p̄j (s, p)

n
1{τ(p)=s}

∣∣∣ p = p(0)− ιδ ; σ, λ,∆

]

= E

[∑n
j=0 p̄j (s, p)

n
1{τ(p)=s}

∣∣∣ p =
√
k p(0)− ιδ′ ; σ′, λ′,∆

]
.

This follows because λ′ = λ and σ′
√

∆′ =
√
k σ
√

∆, thus the each p ∈ Rn the paths√
k p̄(s, p;σ, λ) = p̄(s,

√
kp;σ′, λ′) occur with the same probabilities.

Q Detailed Proof. of Proposition 8.

Proof. (of Proposition 8.) In general we have δ = 2
√
ȳ/n, since for a shock of this size every

single firm for which ||p||2 = y ≤ ȳ before the shock will find that ||p− ιδ||2 ≥ ȳ, where ι is

a vector of ones. In particular we want to find out the smallest value of δ for which

||p− ιδ||2 = ||p||2 − 2 δ
∑
i

pi + nδ2 ≥ ȳ

for any ||p||2 ≤ ȳ. Using that
∑

i pi ≤ n
√
y/n for y = ||p||2 it is easy to establish the desired

result.

We can rewrite it as δ = 2
√
ȳ/n = 2

√
σ2/λ

√
φ, which gives an equivalent way to write
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the expression for δ as

δ = Std(∆pi) 2

√
φ

L(φ, n)
where φ ≡ ȳ λ/(nσ2) .

where φ(n, `) ≡ ȳλ/(nσ2) a function that depends only on ` and n, as shown in Proposition 3.

Using Proposition 1 we have:

(N(∆pi)/λ) V ar(∆pi) = σ2/λ or σ2/λ = V ar(∆pi)/`

Combining the two equations we obtain the desired result.

Note that φ(`, n)/` = φ/L(φ, n). Since L(φ, n) is increasing in φ with limφ→∞ L(φ, n) = 1,

then lim`→1 φ(`, n)/` =∞. To study the limit as `→ 0, using the functional form of L, and

taking a Taylor expansion of L(φ, n) = φ+ o(φ), thus

φ

L(φ, n)
=

φ

φ+ o(φ)
=

1

1 + o(φ)/φ
,

and hence

lim
`→0

φ(`, n)

`
= lim

φ→0

φ

L(φ, n)
= 1 .

Omitting n to simplify the notation we have:

∂

∂φ

[
φ

L(φ)

]
=

1

L(φ)

[
1− L

′(φ)φ

L(φ)

]

and rewriting L(φ) = g(φ)
1+g(φ)

we obtain: L′(φ) = g′(φ)
[1+g(φ)]2

and thus

L′(φ)φ

L(φ)
=

g′(φ)

(1 + g(φ))2

(1 + g(φ))

g(φ)
φ =

g′(φ)

(1 + g(φ))

φ

g(φ)

since g(·) is convex and g(0) = 0 then 0 = g(0) ≥ g(φ) + g′(φ)(0 − φ) or g(φ) ≤ g′(φ)φ
L′(φ)φ
L(φ)

≤ 1
1+g(φ)

≤ 1 and thus φ(`, n)/` is strictly increasing in ` for all ` ∈ (0, 1). �
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Figure 7: Minimum size of monetary shock for full price flexibility

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Fration of free adjustments !

m
o
n
e
ta

ry
sh

o
c
k
δ

 

 

Std(∆p)

n = 1
n = 2
n = 10
n = 50

R Proof of Lemma 5

Proof. (of Lemma 5) We can rewrite this expression as

λKur (∆pi)

6N (∆pi)
=

∑∞
i=1

Γ(n2 +1)
i! Γ(n2 +1+i)

(
λȳ
2σ2

)i 1
1+i∑∞

i=0

Γ(n2 +1)
i! Γ(n2 +1+i)

(
λȳ
2σ2

)i 1
1+i

=

∑∞
i=1 γi

1
1+i∑∞

i=0 γi
1

1+i

(60)

Thus the equation

λKur (∆pi)

6N (∆pi)
=

∫ ȳ

0

[
λ

(
Tn+2(y) + T ′n+2(y) y

2

n

)]
f(y) dy (61)

is equivalent to:∑∞
i=1 γi

1
1+i∑∞

i=0 γi
1

1+i

−
∑∞

i=1 γi∑∞
i=0 γi

= −
∑∞

i=1 γi
(
1 + 2 i

n

)∑∞
i=0 γi

∫ ȳ

0

(
y

ȳ

)i
f(y) dy
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We can write this equation as:

(
∑∞

i=0 γi)
(∑∞

i=1 γi
1

1+i

)
− (
∑∞

i=1 γi)
(∑∞

i=0 γi
1

1+i

)(∑∞
i=0 γi

1
1+i

)
(
∑∞

i=0 γi)

= −
∑∞

i=1 γi
(
1 + 2 i

n

)∑∞
i=0 γi

∫ ȳ

0

(
y

ȳ

)i
f(y) dy

or

(γ0 +
∑∞

i=1 γi)
(∑∞

i=1 γi
1

1+i

)
− (
∑∞

i=1 γi)
(
γ0 +

∑∞
i=1 γi

1
1+i

)∑∞
i=0 γi

1
1+i

= −

[
∞∑
i=1

γi

(
1 +

2 i

n

)]∫ ȳ

0

(
y

ȳ

)i
f(y) dy

or

γ0

(∑∞
i=1 γi

1
1+i

)
− (
∑∞

i=1 γi) γ0∑∞
i=0 γi

1
1+i

= −

[
∞∑
i=1

γi

(
1 +

2 i

n

)]∫ ȳ

0

(
y

ȳ

)i
f(y) dy

and using that γ0 = 1 and rearranging:

∞∑
i=1

γi
1

1+i∑∞
j=0 γj

1
1+j

i =

[
∞∑
i=1

γi

(
1 +

2 i

n

)]∫ ȳ

0

(
y

ȳ

)i
f(y) dy (62)

Using the expression for f , and solving the integrals of terms by term we have:

∞∑
j=1

γj
1

1+j∑∞
s=0 γs

1
1+s

j =
∞∑
j=1

γj

(
1 +

2 j

n

)
× (63)


(
λȳ
2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

ȳ
n
2

+i+j

(
λȳ
2σ2

)i
(
λȳ
2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λȳ
2σ2

)i −
∑∞

i=0 βi,1−n2
ȳ

i+1+j

(
λȳ
2σ2

)i∑∞
i=0 βi,1−n2

(
λȳ
2σ2

)i
 /


(
λȳ
2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

ȳ
n
2

+i

(
λȳ
2σ2

)i
(
λȳ
2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λȳ
2σ2

)i −
∑∞

i=0 βi,1−n2
ȳ
i+1

(
λȳ
2σ2

)i∑∞
i=0 βi,1−n2

(
λȳ
2σ2

)i



canceling the values of ȳ, and defining

ξi =
1

i! Γ
(
i+ n

2

) ( λȳ

2σ2

)(n2 +i−1)
and ρi =

1

i! Γ
(
i+ 2− n

2

) ( λȳ

2σ2

)i
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∞∑
j=1

γj
1

1+j∑∞
s=0 γs

1
1+s

j =
∞∑
j=1

γj

(
1 +

2 j

n

)
× (64)([∑∞

i=0 ξi
1

n
2

+i+j∑∞
i=0 ξi

−
∑∞

i=0 ρi
1

i+1+j∑∞
i=0 ρi

] / [∑∞
i=0 ξi

1
n
2

+i∑∞
i=0 ξi

−
∑∞

i=0 ρi
1
i+1∑∞

i=0 ρi

])

S Detailed Proof. of Proposition 7.

First we turn to the steady state firm’s problem considered in Section 3.2. In that firm’s

problem we use the same discount rate r for any inflation rate µ. The reason for this is

that the period return function is itself normalized by nominal wages which we assume that

growth at a constant rate µ and that the nominal rate is equal to r + µ, so that these two

effect cancel. The price gap pi is a real quantity, the difference between the ideal markup

and the current markup, and has drift equal to minus the inflation rate due to the increase

in the nominal wages. The period return is still B||p||2 ≡ B y, but each of the product’s

price gap evolve as dpi(t) = −µ dt+ σ dWi(t). In this problem it is not longer true that y is

sufficient to index the state of the firm’s problem, since the distribution of y(t+dt) cannot be

computed only knowing y(t). While in Alvarez and Lippi (2014) we show that one can take

the state to be (y, z) where z is the sum of the price gaps: z =
∑n

i=1 pi, for the arguments

here we keep the entire price gap vector p ∈ Rn as the state. In this case the inaction set is no

longer a hyper-sphere, nor is the optimal return point to set a zero price gap for each of the

products. We let I(µ) ⊂ Rn be the inaction set –so the firm adjust only if it receives a free

adjustment opportunity or if it exist the inaction set. We regard I(z) as a correspondence

parametrized by µ, and let p̂(µ) ∈ Rn be the optimal return point -which is identical across

all products- a function parametrized by µ. Note that for any rectangle ⊂Rn the uncontrolled

price gaps satisfy that Pr {p(t)− p(0) ∈ p |µ} = Pr {−(p(t)− p(0)) ∈ p | − µ}. This equality

uses that the increments of a standard brownian motion are normally distributed. Using this

property, and the symmetry around zero of the period return function, it is easy to show that

p̂(µ) = −p̂(µ). Also, one can see that if p ∈ I(µ) then it must be the case that −p ∈ I(−µ).

From these two properties of the decision rules one concludes that N(∆pi)(µ) and that any

even centered moment of the distribution of the price changes, and hence its ratio such as

kurtosis Kur(∆pi;µ), is symmetric around µ = 0. The same property is shown in Alvarez,

Lippi, and Paciello (2011) for a closely related model. Likewise, the (negative) symmetry of

M)(δ, µ) follows by considering first the invariant distribution of price gaps, and then the

dynamics of each one. For the invariant distribution of price gaps as defined in Section D,

whose density is denoted by g(p;µ), we note that g(p;µ) = g(−p;−µ) –where we now indexed

the density only by the inflation rate µ, allowing the optimal decision rule to change with
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it. Following the same steps we can construct the impulse response of prices P(t, δ;µ) which

we index in the same way as the density. We define this impulse response as the change in

price level t periods after a once and for all shock δ to the path of the level of money that

has occurred to an economy starting at the steady state distribution of price gaps. The price

level is in P(δ, t;µ) is measured relative to what the prices would have been absence of a

shock, where they would have been rising at a constant rate µ. Using the results previously

established we have: P(t,−δ;−µ) = −P(t, δ;µ). Using this property of the impulse response

of the price level into definition of M in equation (12), we obtain the desired (negative)

symmetry of this function.

Second, we sketch the differences in the GE set-up when µ 6= 0. In this case the same

arguments yields that both nominal interest rates and wages growth at a constant rate µ

independently of the distribution of prices at time zero. Additionally, the nominal profit

function of the firm, once we replace the first order condition for the households for con-

sumption, labor, and money, can be written as a function of the price gap (i.e. the deviation

relative to the markup that maximizes static profits) and the period nominal wages. Hence,

one can approximate the real profits (deflated by the money supply) in the same way as

with zero inflation, obtaining the same second order approximation. Finally, the result in

Proposition 7 in Alvarez and Lippi (2014) which states that GE feedback effects are of order

higher than second order in the firm’s problem applies almost with no changes.

T Algebraic details for the Proof of Proposition 9

To compute the probabilities P (t|i) notice that

P1 (t+ dt | i ) = (1− θ1dt) P1 (t | i ) + θ0 dt [1− P1 (t | i )]

for i ∈ {0, 1}. Taking a Taylor expansion in P1 (t+ dt | 1 ), dividing by dt, canceling terms

we get:

P ′1 (t | i ) = − (θ1 + θ0) P1 (t | i ) + θ0

The solution of this o.d.e. is:

P1 (t | i ) =
θ0

θ0 + θ1

+B e−(θ0+θ1)t

for some constant B. Evaluating this solution at t = 0 we have:

P1 (0 | i ) =
θ0

θ0 + θ1

+B or B = P1 (0 | i )− θ0

θ0 + θ1
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Thus the solution is

P1 (t | i ) =
θ0

θ0 + θ1

+

[
P1 (0 | i )− θ0

θ0 + θ1

]
e−(θ0+θ1)t

By definition we have

P1 (0 | 0 ) = 0 and P1 (0 | 1 ) = 1

which gives the desired expressions.

Next , notice that:

E0

[
σ(t)2|u(0) = i

]
= σ2

0 [1− P1(t|i)] + σ2
1 P1(t|i)

and

E0

[
σ(t)2

]
= E0

[
σ(t)2|u(0) = 1

] θ0

θ0 + θ1

+ E0

[
σ(t)2|u(0) = 0

] θ1

θ0 + θ1

.

Grouping all terms:

E0

[
σ(t)2

]
= σ2

0 +
(
σ2

1 − σ2
0

) [
P1 (t | 0)

θ1

θ1 + θ0

+ P1 (t | 1)
θ0

θ1 + θ0

]
.

We can now use the expressions for P1 (t |i) to obtain:

E0

[
σ(t)2

]
= σ2

0 +(
σ2

1 − σ2
0

) [ θ0

θ0 + θ1

[
1− e−(θ0+θ1)t

] θ1

θ1 + θ0

+
θ0

θ0 + θ1

[
1 +

θ1

θ0

e−(θ0+θ1)t

]
θ0

θ1 + θ0

]
.

Note that we can take common factor e−(θ0+θ1)t in the right hand side and obtain equa-

tion (31).

We also have, using the law of iterated expectations, for 0 ≤ s ≤ t ≤ T :

k(t, s) = E0

[
σ(t)2 σ(s)2

]
= E0

[
σ(s)2 E

[
σ(t)2 |σ2(s)

]]
which we can write as:

E0

[
σ(t)2 σ(s)2

]
= E0

[
σ̄2
i E
[
σ(t)2 |u(s) = i

]]
for which we have the inner expectation:

E
[
σ(t)2 |u(s) = i

]
= σ2

0 +
(
σ2

1 − σ2
0

)
P1 (t− s | i)
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and we also have

E0

[
σ(t)2 σ(s)2

]
= E

[
σ(t)2 σ(s)2 |u(0) = 1

] θ0

θ0 + θ1

+ E
[
σ(t)2 σ(s)2 |u(0) = 0

] θ1

θ0 + θ1

.

Thus we can write (after some algebra):

E
[
σ(t)2 σ(s)2 |u(0) = i

]
= σ2

0

[
σ2

0 +
(
σ2

1 − σ2
0

)
P1 (t− s | 0)

]
(1− P1 (s | i)) + σ2

1

[
σ2

0 +
(
σ2

1 − σ2
0

)
P1 (t− s | 1)

]
P1 (s | i) .

Finally, taking expected values for the initial u(0), and using the formula above, we get:

k(t, s)

= σ2
0

[
σ2

0 +
(
σ2

1 − σ2
0

)
P1 (t− s | 0)

] [
1− P1 (s | 1)

θ0

θ0 + θ1

− P1 (s | 0)
θ1

θ0 + θ1

]
+ σ2

1

[
σ2

0 +
(
σ2

1 − σ2
0

)
P1 (t− s | 1)

] [
P1 (s | 0)

θ1

θ0 + θ1

+ P1 (s | 1)
θ0

θ1 + θ1

]
and using the expressions for the probabilities, or the definition of ergodicity,

P1 (s | 0)
θ1

θ0 + θ1

+ P1 (s | 1)
θ0

θ1 + θ1

=
θ0

θ1 + θ0

we get:

k(t, s) = σ2
0

[
σ2

0 +
(
σ2

1 − σ2
0

)
P1 (t− s | 0)

] θ1

θ1 + θ0

+ σ2
1

[
σ2

0 +
(
σ2

1 − σ2
0

)
P1 (t− s | 1)

] θ0

θ1 + θ0

.

Replacing the expression for P1 (t− s | 1) and rearranging we get equation (32).

U A model with two point non-zero random fixed cost

This version of the model assumes that with probability λ per unit of time the menu cost is

smaller than the regular adjustment, namely that it costs b ψ with b ∈ (0, 1). For simplicity

we focus here on a model with one product, i.e. n = 1. The introduction of a small (but non

zero) adjustment cost will imply that this model will have a lower bound for the size of price

changes p > 0, such that no |∆pi| < p will be observed. in spite of this important change,

which may be important to fit cross section data, we stress that the formula in equation (1)

continues to hold.
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Firm’s problem. The firm’s optimal policy now involves two thresholds: 0 < p < p̄. If the

price gap is small, i.e. if |p| ∈ [0, p] the firm optimally decides not to adjust the price, even if

an opportunity for cheap adjustment occurs. If the price gap is large, i.e. if |p| ∈ [p, p̄), the

firm adjusts the price only if a cheap adjustment opportunity arises. As in the case where

b = 0, the firm adjust its price the first time that |p| reaches p̄.

Given the values of two thresholds p, p̄, the value function v can be describe as two

functions holding in each segment, as follows:

r v0(p) = B p2 +
σ2

2
v′′0(p), for p ∈ [0, p] ,

r v1(p) = B p2 + λ [v0(0) + bψ − v1(p)] +
σ2

2
v′′1(p), for p ∈ [p, p̄]

where we use that the optimal return point upon adjustment is v0(0) and where used that

by symmetry vi(p) = vi(−p) for i = 0, 1.

The value function can be expressed as the sum of a particular solution and two solutions

multiplied by constants K0 and K1 and the two parameters 0 < p, p̄. The value function

has the following boundary conditions v0(p) = v1(p) and v0(0) + ψ = v1(p̄), as well as the

smooth pasting conditions v′0(p) = v′1(p) and 0 = v′1(p̄). Using the four boundary conditions

one solve for both the value function (i.e. the constants Ki) and the thresholds p, p̄. We give

the details in Appendix U.1 and Appendix U.2.

Frequency of price changes. To find the frequency of price changes we first introduce

the expected time to adjustment function T (p). This function obeys the following ODE:

0 = 1 +
σ2

2
T ′′0 (p) for 0 < |p| ≤ p and λT1(p) = 1 +

σ2

2
T ′′1 (p) for p < |p| ≤ p̄

with Ti(p) = Ti(−p), and boundary conditions T0(p) = T1(p), T ′0(p) = T ′1(p) and T1(p̄) = 0.

Thus

T0(p) = J − p2

σ2
and T1(p) =

1

λ
+Keϕ|p| + Le−ϕ|p|

where the J,K, L are constant to be determined using the boundary conditions, and where

ϕ =
√

2λ/σ2. Thus, given thresholds p, p̄, solving for the function T boils down to solve

three linear equations in three unknowns as detailed in Appendix U.4. In particular the

average number of adjustment per period is simply:

N (∆pi) =
1

T0(0)
=

1

J
, (65)

28



Kurtosis of price changes. To measure the steady state kurtosis of price changes, we

first solve for the density function for the price gaps g(p) ∈ [0, p̄]. This density solves

0 = g′′0(p) for 0 ≤ |p| ≤ p and 0 = −2λ

σ2
g1(p) + g′′1(p) for p < |p| ≤ p̄ or

g0(p) = C1 + C2 |p| for 0 ≤ |p| ≤ p and g1(p) = C3e
ϕ|p| + C4e

−ϕ|p| for p ≤ |p| ≤ p̄

where the 4 constants solve the 4 equations g0(p) = g1(p), g′0(p) = g′1(p), g1(p̄) = 0 and 1/2 =∫ p
0 g0(p) dp+

∫ p̄
p
g1(p) dp which use that the density is differentiable. Given p, p̄ the solution

boils down to solve four linear equations in four unknowns, as detailed in Appendix U.5.

Then using that only the fraction 2
∫ p̄
p
g1(p)dp of cheap adjustment opportunities will

trigger an actual price change, the distribution of (non-zero) price changes p ∈ [−p̄,−p]∪[p, p̄]

is symmetric and is given by (we only report the formulas for x > 0) . Thus the distribution

of (positive) price changes is

Price changes ∼

{
density for a price change of size p ∈ [p, p̄) : λ

Na
g1(p)

mass point at p̄ : 1
2
− λ

Na

∫ p̄
p
g1(p)dp

The j − th moment of price changes for j even is

E
(
∆pj

)
=

λ

Na

2

∫ p̄

p

xj g1(p) dp+

1−
λ 2
∫ p̄
p
g1(p)dp

Na

 p̄j

Using that V ar (∆p)N (∆p) = σ2, the kurtosis of price changes is given by:

Kur (∆p) =
E (∆p4)

(σ2/N (∆p))2 . (66)

Area under impulse response. To find an expression for M′(0) we first define the con-

tribution to the area under impulse response of a firm that starts with price gap p. Letting

m(p) the integral of the (minus) expected price gap until the first time the firms adjusts its

price, and starting the economy with a distribution of price gaps with density f we have

M(δ) =

∫ p̄

−p̄
m(p− δ) g(p) dp (67)

and differentiating it:

M′(0) = −
∫ p̄

−p̄
m′(p) g(p) dp (68)
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To obtain the solution for m we consider two functions in each segments which solves:

0 = −p+
σ2

2
m
′′

0(p) for 0 ≤ p ≤ p (69)

λm1(p) = −p+
σ2

2
m
′′

1(p) for p ≤ p ≤ p̄ (70)

The boundary conditions are that these functions meet in a continuously differentiable man-

ner in the lower boundary, i.e. m0(p) = m1(p), m′0(p) = m′1(p), and that a price change occurs

at the upper boundary, i.e. m1(p̄) = 0. The solution, with three constant of integration is:

m0(p) = A1 p+
p3

3σ2
(71)

m1(p) = −p
λ

+ A2 e
pϕ + A3 e

−pϕ (72)

Thus, given p, p̄ boils down to solving three linear equations in three unknowns, as detailed

in Appendix U.6.

Hence, given any pair (p, p̄) we can find the solution for the density g, the solution to the

function m and compute:

M′(0) = − 2

∫ p̄

0

m′(p) g(p) dp

Likewise, given any pair (p, p̄), we can find the solution for g, N (∆p) and compute Kur (∆p)

as in equation (66). In Appendix U.7 we collect the solutions as function of the thresholds

(p, p̄) and constants (A1, A2, A3, J, C3, C4). From this one can easily compute both expressions

and check the equality in

M′(0) =
Kur (∆p)

6N (∆p)
.

U.1 Solution of ode for value function in inaction

v0(p) =
B p2

r
+
B σ2

r2
+K0

(
e
p
√

2r
σ2 + e

−p
√

2r
σ2

)
v1(p) =

B p2 + λ (v0(0) + bψ)

λ+ r
+

B σ2

(λ+ r)2
+K1

(
ep

√
2(λ+r)

σ2 + e−p
√

2(λ+r)

σ2

)
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U.2 Solution for value function

Note that smooth pasting v′1(p̄) = 0 gives

0 =
2Bp̄

λ+ r
+K1

√
2(λ+ r)

σ2

(
ep̄

√
2(λ+r)

σ2 − e−p̄
√

2(λ+r)

σ2

)
or K1 as function of p̄

K1 =
2Bp̄

λ+ r

[√
2(λ+ r)

σ2

(
e−p̄

√
2(λ+r)

σ2 − ep̄
√

2(λ+r)

σ2

)]−1

(73)

Using v0(0) = Bσ2

r2 + 2K0 and value matching v0(0) + ψ = v1(p̄) gives

r

λ+ r
v0(0) + ψ =

λbψ +Bp̄2

λ+ r
+

Bσ2

(λ+ r)2
+K1

(
ep̄

√
2(λ+r)

σ2 + e−p̄
√

2(λ+r)

σ2

)
or K0 as function of p̄

2rK0 = Bp̄2 − (λ(1− b) + r)ψ − λBσ2

r(λ+ r)
+ (λ+ r)K1

(
ep̄

√
2(λ+r)

σ2 + e−p̄
√

2(λ+r)

σ2

)
(74)

Value matching at p gives

Bp2

r
+
Bσ2

r2
+K0

(
e
p
√

2r
σ2 + e

−p
√

2r
σ2

)
=

Bp2 + λ (v0(0) + bψ)

λ+ r
+

Bσ2

(λ+ r)2
+K1

(
ep

√
2(λ+r)

σ2 + e−p
√

2(λ+r)

σ2

)
or an equation implicitly defining p in terms of p̄

Bp2λ

r(r + λ)
+

Bσ2λ

(λ+ r)2r
+K0

(
e
p
√

2r
σ2 + e

−p
√

2r
σ2 − 2λ

λ+ r

)
=

λbψ

λ+ r
+K1

(
ep

√
2(λ+r)

σ2 + e−p
√

2(λ+r)

σ2

)
Given these 3 equations implicitly defining K0, K1, p as function of p̄, the smooth pasting

at p gives one equation in one unknown to solve for p̄ , namely

(
2B

r
− 2B

r + λ

)
p+

√
2r

σ2
K0

(
e
p
√

2r
σ2 − e−p

√
2r
σ2

)
=

√
2(λ+ r)

σ2
K1

(
ep

√
2(λ+r)

σ2 − e−p
√

2(λ+r)

σ2

)

31



U.3 Value function approximation

Recall

v0(p) =
Bp2

r
+
Bσ2

r2
+K0

(
e
p
√

2r
σ2 + e

−p
√

2r
σ2

)
v1(p) =

Bp2 + λ (v0(0) + bψ)

λ+ r
+

Bσ2

(λ+ r)2
+K1

(
ep

√
2(λ+r)

σ2 + e−p
√

2(λ+r)

σ2

)
We approximate the value functions v0(p), v1(p) using a fourth order expansion around

p = 0. We get

v0(p) =
Bσ2

r2
+ 2K0 +

(
B

r
+K0ϕ

2
0

)
p2 +

K0

12
ϕ4

0 p
4

v1(p) =
λ(v0(0) + bψ)

λ+ r
+

Bσ2

(λ+ r)2
+ 2K1 +

(
B

λ+ r
+K1ϕ

2
1

)
p2 +

K1

12
ϕ4

1 p
4

where ϕ0 ≡
√

2r

σ2
and ϕ1 ≡

√
2(λ+ r)

σ2

The smooth pasting at p , namely v′0(p)− v′1(p) = 0, gives

p

[(
B

r
+K0ϕ

2
0

)
−
(

B

λ+ r
+K1ϕ

2
1

)
+
(
K0ϕ

4
0 −K1ϕ

4
1

) p2

6

]
= 0

which gives

p = ±

√(
B
λ+r

+K1ϕ2
1

)
−
(
B
r

+K0ϕ2
0

)
(K0ϕ4

0 −K1ϕ4
1) /6

Similarly smooth pasting at p̄ gives

p̄ = ±

√(
B
λ+r

+K1ϕ2
1

)
−K1ϕ4

1/6
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U.4 Boundary conditions for Ti

We have the following three linear equations for Ti:

−1

λ
= Keϕp̄ + Le−ϕp̄

−
2 p

σ2
= ϕ

(
Keϕp − Le−ϕp

)
J =

(
p
)2

σ2
+

1

λ
+Keϕp + Le−ϕp

U.5 Density function

The 4 unknowns of the density function, using g1(p̄) = 0 and g′0(p) = g′1(p), give

C3 = −C4e
−2ϕp̄ and C2 = −C4ϕ

(
e−2ϕp̄+ϕp + e−ϕp

)
Next, using g0(p) = g1(p) gives

C1 = −C2p− C4

(
e−2ϕp̄+ϕp − e−ϕp

)
= C4

[
e−2ϕp̄+ϕp

(
ϕp− 1

)
+ e−ϕp

(
ϕp+ 1

)]
Finally we solve for C4 by imposing 1/2 =

∫ p
0 g0(p) dp+

∫ p̄
p
g1(p) dp i.e.

1

2
= C1p+

1

2
C2p

2 +
1

ϕ

[
C3 (eϕp̄ − eϕp)− C4

(
e−ϕp̄ − e−ϕp

)]
or, substituting the expressions,

1

2C4

=
[
e−2ϕp̄+ϕp

(
ϕp− 1

)
+ e−ϕp

(
ϕp+ 1

)]
p− 1

2
ϕ
(
e−2ϕp̄+ϕp + e−ϕp

)
p2

− 1

ϕ

[
e−2ϕp̄ (eϕp̄ − eϕp) + e−ϕp̄ − e−ϕp

]
U.6 Equation for the solution of m

The boundary conditions are: m1(p̄) = 0, m1(p) = m0(p) and m′1(p) = m′0(p). They give a

linear system of equations on A1, A2, A3 :

0 = − p̄
λ

+ A2 e
p̄ϕ + A3 e

−p̄ϕ (75)

A1 +
(p)2

σ2
= −1

λ
+ ϕA2 e

pϕ − ϕA3 e
−pϕ (76)

A1 p+
(p)3

3σ2
= −

p

λ
+ A2 e

pϕ + A3 e
−pϕ (77)
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U.7 Algebraic details for main proposition

For the area under the IRF of output we get:

M′(0) = − 2

∫ p

0

[
A1 + A3

p2

σ2

]
[C1 + C2p] dp

− 2

∫ p̄

p

[
−1

λ
+ ϕA2 e

pϕ + ϕA3 e
−pϕ
] [
C3e

ϕp + C4e
−ϕp] dp

For the kurtosis of steady state price changes we get:

Kur (∆p)

6N (∆p)
= N (∆p)

E (∆p4)

6σ4

=

λ J 2
∫ p̄
p
p4 [C3e

ϕp + C4e
−ϕp] dp+

(
1−

λ 2
∫ p̄
p [C3eϕp+C4e−ϕp]dp

Na

)
p̄4

6 J σ4

=
λ 2

6σ4

∫ p̄

p

p4
[
C3e

ϕp + C4e
−ϕp] dp+

1

6 J σ4
− λ 2

6σ4

∫ p̄

p

p̄4
[
C3e

ϕp + C4e
−ϕp] dp

=
λ 2

6σ4

∫ p̄

p

(
p4 − p̄4

) [
C3e

ϕp + C4e
−ϕp] dp+

1

6 J σ4
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