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Abstract

Yes, but only for large monetary shocks. In particular, we show that in a broad

class of models where shocks have continuous paths, the propagation of a monetary

impulse is independent of the nature of the sticky price friction when shocks are small.

The propagation of large shocks instead depends on the nature of the friction: the

impulse response of inflation to monetary shocks is independent of the shock size in

time-dependent models, while it is non-linear in state-dependent models. We use data

on exchange rate devaluations and inflation for a panel of countries over 1974-2014 to

test for the presence of state dependent decision rules. We present some evidence of a

non-linear effect of exchange rate changes on prices in a sample of flexible-exchange rate

countries with low inflation. We discuss the dimensions in which this finding is robust

and the ones in which it is not.
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1 Introduction

During the last decade the analysis of new micro data has contributed to advancing the sticky

price literature, by challenging existing models and fostering the development of new ones.

Indeed, current frontier models are consistent with several cross sectional facts about the

size-distribution as well as the timing of price changes uncovered by the micro data. An open

issue in this research agenda concerns the nature of, or the appropriate underlying friction

used to model, sticky prices. Two alternative assumptions to generate infrequent adjustment

of prices involve either a fixed cost, as in Golosov and Lucas (2007) menu-cost model, or a

limited information-gathering and information-processing ability, as in Reis (2006) “rational

inattentiveness” setup. Following the descriptions used in the literature, we refer to these

types of models as “state-dependent” models or “time-dependent” models.1 Some scholars

argue that information frictions will generate stronger real effects of monetary policy shocks,

(e.g. Mankiw and Reis (2002); Klenow and Kryvtsov (2008)), but a systematic comparison of

the consequences of each of these mechanisms for the transmission of monetary policy shocks

has not been developed. Under what circumstances does the nature of the underlying friction

matter for the propagation of monetary shocks? What kind of empirical evidence can be used

to identify the nature of the underlying friction? This paper casts light on these questions

by presenting new theoretical results and some evidence that bears upon such theories.

The first part of the paper formalizes the definition of time-dependent and state-dependent

models (TD and SD, respectively), and analyzes the propagation of monetary shocks under

the different frictions. The class of models we consider embeds (approximately) several classic

sticky price models, such as Taylor (1980); Calvo (1983); Reis (2006); Golosov and Lucas

(2007); Nakamura and Steinsson (2010); Midrigan (2011); Bonomo, Carvalho, and Garcia

(2010); Bhattarai and Schoenle (2014); Carvalho and Schwartzman (2015) and several other

cases that are novel in the literature. All the models considered are characterized by the

presence of idiosyncratic shocks with continuous paths. We concentrate on three types of

results, which taken together show that what distinguishes state and time dependent models

is their reaction to a large aggregate shock. The first result, which holds in a very general class

of models, characterizes the impact effect on the aggregate price of a common unanticipated

permanent shock to the nominal cost of all firms. The second result, which is analyzed for a

smaller set of economies but which deals with the general equilibrium effects, characterizes

the output response to an unanticipated permanent increase of the money supply for an

economy in steady state.

1In the first class of models the firm’s decision to adjust prices depends on the state, while in the latter
class it depends only on the time elapsed since the last price change.

1



Our main result is that for small shocks the nature of the friction is irrelevant, i.e. the

propagation of the nominal shock is the same in state and time dependent models provided

that the models are fit to the same steady state moments.2 More specifically, in our first

result we follow the lead of Caballero and Engel (2007) and analyze the impact effect of a

monetary shock on inflation, a statistic they refer to as the “Flexibility index”. This statistic

corresponds to the impact effect (i.e. the initial point) of the impulse response function: the

inflation reaction at the time of the shock. We show that the flexibility index is always zero

in TD models. More surprisingly, we show that the shock does not have a first order effect on

the aggregate price even in SD models, so that for small shocks the impact is approximately

zero provided that firms follow an Ss decision rule (possibly multidimensional) and that

the shocks faced by the firms follow a diffusion. Our second result extends this irrelevance

beyond the impact-effect, by considering the total cumulated output response triggered by a

small monetary shock (measured by the area under the output impulse response function).

For economies with low inflation we show that the total cumulated output response is the

same in TD and SD models provided the models are fit to the same steady state moments,

namely that they have the same frequency of adjustment and the same kurtosis of the size of

price changes. These results are quite robust: we show that they also apply in the presence

of moderate rates of steady state inflation. One message from these results is that, as long

as one is interested in understanding the propagation of small monetary shocks, then what

matters are these important moments that the models are fitted to (frequency and kurtosis),

while the underlying nature of the nominal friction is irrelevant.

The third theoretical result highlights a key difference between SD and TD models, which

appears when the aggregate shock is large. In TD models the impulse response function of

prices at any given horizon is proportional to the size of the shock. Furthermore, as implied

by our previous results, the impact effect of the shock on aggregate prices is zero for any

shock size. These features imply that the shape of the impulse response does not depend

on the size of the shock. Instead, the inherent non-linear nature of decision rules of SD

models implies that for aggregate shocks above a minimum size, the economy displays full

price flexibility. Thus for SD models the impact effect of the shock depends on their size.

This prediction suggests a simple test for the nature of the friction behind sticky prices: TD

models predict a proportional response in terms of the size of the shock, while SD models

predict a non-linear response with respect to the size of the shocks.

The final part of the paper presents an empirical investigation of the hypothesis, in-

2Small shocks are indeed central to several previous analysis both because they naturally emerge as the
residuals in a regression, as typical in the empirical VAR literature (e.g. Christiano, Eichenbaum, and Evans
(1999, 2005)), or because they provide convenient conditions for analytical approximations (e.g. Caballero
and Engel (2007); Alvarez and Lippi (2014)).
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spired by the above theoretical results, that the response of inflation to a monetary shock,

particularly on impact, depends on the size of the shock. We follow the international eco-

nomics literature that studies the pass-through of exchange rate shocks on to prices, as in e.g.

Burstein and Gopinath (2014). In particular, we use a panel of monthly data from a large

number of countries about CPI inflation and the nominal exchange rate (bilateral exchange

rate vs the dollar). To keep in line with the theory we restrict attention to countries with

moderate inflation in the post Bretton-Woods period.3

Our empirical exploration uncovers some evidence of a non-linear pass-through of deval-

uation on inflation for a sample that excludes countries in a fixed exchange rate regime as

classified by Levy-Yeyati and Sturzenegger (2003) and Ilzetzki, Reinhart, and Rogoff (2008).

This evidence is consistent with the prediction that the inflation response to an exchange rate

shock depends on the size of the shock. For instance, in the month following the shock the

elasticity of inflation with respect to a 5.5% shock is almost two times larger than the elas-

ticity to a 1% shock. Interestingly, those differences can be noticed only in the first months

after the impact, and eventually disappear, consistent with the view that large shocks trigger

a faster response of the economy. Our baseline results are robust to including countries in a

fixed exchange rate regime in the post 1990 sample, and holds with different functional form

specifications (piecewise linear, quadratic and cubic, or distributed lags), as well as different

controls (e.g. for fixed vs flex exchange rate regime, GDP growth rates). We also highlight

some dimensions along which these empirical patterns are not robust. The non-linear effect is

not robust to the introduction of fixed exchange rate countries into the full sample, and it is

not robust to removing outliers as defined by the size of the large devaluations. In particular,

removing the largest devaluation from the sample drastically increases the standard errors of

the non-linear coefficient on impact, making them statistically not significant at conventional

confidence levels.4 Nevertheless, dropping large outliers either increases or yields very similar

point estimates of the non-linear coefficient.

Novelty and relation to literature. Our analysis is inspired by the work of Klenow

and Kryvtsov (2008). Like them we also aim at investigating the nature of the frictions that

underlie sticky prices. The two papers however have a different focus. Their pioneering paper

mostly focuses on the documentation of the micro facts and on assessing the success of several

3As in previous studies, one note of caution is due: the regression coefficient can be interpreted as a
measure of the response of inflation to an exogenous nominal exchange rate innovation under the assumption
that the shock is orthogonal to the other regressors and unanticipated. This assumption, which we discuss in
the empirical analysis, is not appropriate whenever the exchange rate innovations occur in response to shocks
that also affect other domestic variables, including inflation itself.

4We are thankful to our discussant Greg Kaplan for pointing this out.
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classic models (encompassed by our framework) in matching the cross-sectional data. Their

analysis does not investigate how the different models behave in response to an aggregate

shock, which instead is the focus of our analysis. We aim to identify the implications of

the different frictions for the propagation of aggregate shocks, and provide original analytic

results that are useful for a systematic comparison of the two approaches. Our empirical

exploration shares the objective of Gagnon, Lopez-Salido, and Vincent (2012) of identifying

the extent to which pricing behavior displays state-dependent features.5

Our first result extends the theoretical analysis of Caballero and Engel (2007) about

the aggregate flexibility of an economy, which focuses on the impact effect of a monetary

shock. We analytically show that in several TD and SD models of the last generation,

featuring idiosyncratic shocks, a small monetary shock does not have a first order effect

on the aggregate price level. Second, this paper unifies recent results that focus on the

full profile of the impulse response function, not just on the impact effect. These results

build on, and extend, previous contributions in Alvarez and Lippi (2014); Alvarez, Le Bihan,

and Lippi (2016); Alvarez, Lippi, and Paciello (2016). We generalize the previous results by

showing that they also hold in settings that feature both state and time dependent frictions as

considered by Abel, Eberly, and Panageas (2007, 2013); Alvarez, Lippi, and Paciello (2011);

Bonomo, Carvalho, and Garcia (2010) and Bonomo et al. (2016).

While the class of models we analyze is large, we comment next on some models that

do not belong to it. For instance in models with no idiosyncratic shocks such as Sheshinski

and Weiss (1983), and the classic analysis of monetary shocks in this environment by Caplin

and Spulber (1987) and Caplin and Leahy (1991), small monetary shocks have a first order

impact effect on inflation. We discuss the relation with these results in detail in Section 4.1.

Moreover, our setup with idiosyncratic shocks with continuous paths rules out models where

firms are hit by infrequent and large idiosyncratic shocks, as considered by Gertler and Leahy

(2008) or Midrigan (2011). While not all of our theoretical results hold as stated for these

models, the main idea still applies. In particular, small monetary shocks have no impact

effect (i.e. they are second order), but large monetary shocks have a first order effect due to

the state dependence of the decision rules.

Our paper also provides some novel empirical analysis of the non-linear passthrough

prediction. Even though most of the pass through literature focuses on the magnitude of

linear terms (e.g. Burstein and Gopinath (2014), Campa and Goldberg (2005) and Martins

(2005)), there at least two papers that test for non-linearities with a specification that is

similar to ours. Pollard and Coughlin (2004) study the non-linear response to exchange rate

5Gagnon, Lopez-Salido, and Vincent (2012) use disaggregated firm-level data and analyze how exchange
rate devaluations impact on the timing of price adjustments, a feature that is consistent with state dependent
models. Their findings are consistent with the presence of state dependent pricing rules.
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shocks of US industries using Import Prices and find that firms in over half the industries

respond asymmetrically. Bussiere (2013) studies the non-linear response to exchange rate

shocks using import and export prices of G7 countries and finds evidence, with a specification

similar to ours, of a nonlinear response in country by country regressions as well as in panel

regressions. A recent paper by Bonadio, Fischer, and Saure (2016) analyzes the pass-through

into import and export prices using disaggregated daily data for Switzerland following the

large appreciation (11%) of the Swiss Franc in January 2015. This case study shows that the

speed of the exchange rate pass through is high in the case of this large shock: the half life

of the shock is slightly above one week.

More broadly, we see our paper as a contribution to the burgeoning literature on non-

linear effects in macroeconomics. Examples of this literature are the macro-finance models

such as Brunnermeier and Sannikov (2014), as well as the models featuring the zero lower

bound, such as Fernandez-Villaverde et al. (2015). In these models shocks in different regions

of the state space have differential effects, which turns out to be important for policy. Our

contribution focuses on the differential effect of shocks according to their size, as in the

seminal empirical analysis of fiscal policy by Giavazzi, Jappelli, and Pagano (2000), and the

more recent quantitative models as in e.g. Kaplan and Violante (2014). The class of SD

models we analyze, like these models, features a size-asymmetry in the economy’s response

to small and large shocks. The application and the models are, of course, different: we focus

on how prices respond to aggregate nominal shocks, they focus on the consumption response

to fiscal shocks. Also, we offer some exploratory evidence of the non-linear pass-through of

nominal exchange rate changes on inflation using a large panel of countries.6

Organization of the paper. The next section gives a broad non-technical overview of

the modeling setup and a summary of the main results. Section 3 describes the setups we

use to analyze state-dependent models, time-dependent models, as well as a setting featuring

both time and state dependent features. Section 4 outlines the main theoretical results we

derive for these economies concerning the propagation of monetary shocks. We first discuss

the result on the equivalence between these models in the presence of small monetary shocks.

Next we discuss the differences between these models that appear with large shocks. Section 5

presents the empirical analysis and Section 6 concludes.

6It is worth noting that other papers in the literature of sticky prices have suggested non-linear response
to shocks. For example Burstein (2006) studies the nonlinear response of inflation and output to monetary
shock when firms choose price plans.
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2 Overview of main results

We start by defining the elements for state-dependent (SD) and time-dependent (TD) setups.

A state dependent setup is one where price changes occur if the state, given by current profits

or markups, attains a critical level. The SD models are characterized by decision rules that

depend on the value of the state. In the presence of adjustment costs, necessary to model

sticky prices, the state space of the problem is split in two regions, one where inaction is

optimal, and another where the firms find it optimal to adjust prices to return the state to a

point located well inside this set. Price changes occur when the state reaches the boundary

of the inaction region. A time dependent model is one where the times between consecutive

price changes are statistically independent of the state (e.g. the current markup or profits of

the firm). Instead, the time elapsed since the last price change (and potentially the duration

of the previous price spell) completely determines the hazard rate of price changes. We show

how the decision rules that correspond to TD or SD can be derived from an explicit profit

maximization problem in the presence of fixed cost to observing the state (ψo > 0) or fixed

cost to adjusting the nominal price (ψm > 0), respectively.

Our analysis focuses on the propagation of a permanent unexpected shock δ, measuring

the change (in log points) of the nominal marginal cost of all firms, starting from the steady

state of an economy with an inflation rate π and idiosyncratic shocks with variance σ2. There

are three theoretical results that we discuss. The first result concerns the impact effect of δ

on the price level. For this result we don’t need to specify the whole economy, instead we

just take a continuum of firms that solve the type of problem described above and that face

a common (once and for all) nominal cost shock.7 We show that for both TD and SD models

a small monetary shock δ has a second order effect on the price level P(δ, t) on impact, for

any π > 0 provided that σ > 0. Formally, let P(δ, t) be the price level t ≥ 0 periods after an

unexpected increase of the money supply of size δ. This implies

P(δ, t) = Θ(δ) +

∫ t

0

θ(δ, s)ds (1)

where Θ(δ) denotes the impact response of the price level at the time of the shock. In

particular we show that in all TD, SD, and mixed models, we have that Θ′(0) = 0, i.e.

that there is no first-order effect of the monetary shock on the price level. An illustration

of this result can be seen in Figure 1, which plots the response of output to a permanent

monetary shock for 3 economies characterized by the same frequency of price changes per

year (normalized to unity) and different kurtosis of the size distribution of price changes. It

7The approach is standard and has been used in e.g. Caballero and Engel (2007).
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appears that as the 1% shock hits the economy output increases by approximately 1% in

all economies, since the CPI does not respond on impact.8 This result is of interest because

it clarifies previous analyses of the impact effect. For instance Caballero and Engel (2007)

propose a theoretical characterization of the impact effect, Θ′(0), which they refer to as the

flexibility index, as a way to characterize different sticky price models. Thus in a large class

of models, with σ > 0 and π > 0, the flexibility index is zero.

Figure 1: Output response to a monetary shock of size δ = 1%
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The figure represents an economy with ǫ = 1, N(∆pi) = 1.0 and std(∆pi) = 0.10. The three
curves correspond to economies with a steady state kurtosis of the size of price changes equal
to 1, 2 and 6, respectively.

While monetary shocks do not have a first order impact on the aggregate price level

in neither TD nor SD models, the reason behind this result is different. For TD models,

the distribution of the number of firms adjusting at different times is independent of the

aggregate shock. Thus, the aggregate price level does not jump on impact, i.e. Θ(δ) = 0 for

all δ. For SD models the result is due to the fact that there is no “mass” of firms close to

the adjustment boundaries (literally, a zero density), which in turn is explained because the

boundaries are exit points where all firms adjust.9 Thus, in SD models Θ(δ) is of order δ2,

so small shocks trigger extremely small jumps.

An important property of the impact effect concerns how it changes as a function of

8 This example assumes a unit elasticity of output to real wages.
9 Technically this last result depends on the continuous-time and continuous-path nature of the shocks,

but its qualitative implications also apply to discrete-time discrete-state versions of this model.
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inflation, π, relative to the volatility of the idiosyncratic shocks σ. While for σ > 0 the

impact effect Θ is of order δ2, we notice that the impact effect is increasing with π and that

the effect becomes first order as π/σ diverges. The menu cost models of Sheshinski and

Weiss (1983) and Caplin and Spulber (1987) illustrate this point: in both models the impact

effect Θ(δ) is of order δ, the reason is that in these models σ = 0 and π > 0, so that the

ratio diverges. Thus, since the impact effect is second order but it is increasing in π, in the

empirical analysis we will focus on low-inflation countries where the lack of response to small

shocks should be easier to detect.

The second result goes beyond the analysis of the impact effect and considers a summary

measure for the whole profile of the impulse response function. We derive this second result

focusing on economies where the steady state inflation equals (or is close to) zero.10 Moreover,

for this result we completely specify a General Equilibrium effect, so the shock is interpreted

as a monetary shock. Specifically, the summary statistic that we choose is the area under

the output impulse response function following an increase of the money supply of size δ.

We denote this magnitude by M(δ), e.g. the gray shaded area that appears for illustrative

purposes in Figure 1 for three models with kurtosis equal to 1, 2 and 6, respectively. Formally,

the cumulative output M after a shock δ is:

M(δ) =
1

ǫ

∫ ∞

0

(δ − P(δ, t)) dt (2)

where P(δ, t) is the aggregate price level t periods after the shock δ. The argument of the

integral gives the aggregate real wages at time t, which are then mapped into output by

1/ǫ, a parameter related to the elasticity of the labor supply. Integrating over time gives

the total cumulative real output. We find the M statistic convenient for two reasons. First,

it combines in a single value the persistence and the size of the output response, and it is

closely related to the output variance due to monetary shocks, which is sometimes used in

the literature.11 Second for small monetary shocks (like the ones typically considered in the

literature) this statistic is completely encoded by a simple formula that involves the frequency

of price changes N(∆pi) and the kurtosis of price changes Kur(∆pi).

We show that in state-dependent (SD) and time-dependent (TD) models, as well as

in models where both TD and SD features, the total cumulative output effect of a small

10 Theoretically the result extends to small inflation since in the presence of idiosyncratic shocks the drift
has a second order impact on decision rules, such as the frequency of price adjustments (see Alvarez, Lippi,
and Paciello (2011) for a proof in a model with both TD and SD components). For evidence supporting this
claim see Gagnon (2009) and Alvarez et al. (2015) who show that decision rules are quite insensitive to the
inflation for rates that are below 10 per cent.

11 For more discussion and evidence on the equivalence between the area under the impulse response
function and the variance due to monetary shocks see footnote 21 of Nakamura and Steinsson (2010).
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unexpected monetary shock depends on the ratio between two steady-state statistics: the

kurtosis of the size-distribution of price changes Kur(∆pi) and the average number of price

changes per year N(∆pi). Formally, given the labor supply elasticity 1/ǫ − 1 we show that

for a small monetary shock δ the cumulative output M is accurately approximated by the

following expression

M(δ) ≈ δ

6 ǫ

Kur(∆pi)

N(∆pi)
. (3)

An immediate implication of this result is that for small monetary shocks the underlying

friction is irrelevant (provided the economies have the same frequency and kurtosis of price

changes).

The explanation of why this result holds is involved, but its interpretation is not. The

ratio in equation (3) controls for both the degree of flexibility of the economy, as measured

by N(∆pi), as well as for the presence of “selection” effects, as measured by Kurt(∆pi).
12

On the one hand, that the cumulative impulse response depends on the degree of flexibility

is hardly surprising. On the other hand, that the selection effect is captured completely by

the steady state kurtosis of prices is, at least to us, more surprising. Moreover, that exactly

the same expression holds for state dependent and time dependent models is, again at least

to us, revealing. In summary, the reason is that the selection effect operates equally in terms

of the size distribution of price changes (which is the mechanism for state dependent models)

as well as on the distribution of times between adjustments (which is the mechanism for

time dependent models). Our result states that as long as any two models produce the same

level of kurtosis (of the size of price changes) as well as the same average frequency of price

changes then the total cumulated output response produced by a monetary shock is the same

across these models, in spite of the fact that their underlying frictions might differ.

The third theoretical result is that TD and SD models behave differently in response to

large shocks. Using the notation of equation (18) we have that Θ′(δ) = 0 for any value of the

shock δ in TD models. This is intuitive since the timing of pricing decisions is independent

of the state by definition. Thus TD models imply an impulse response function for the

aggregate price level is proportional to the size of the shock. Formally for all shock sizes δ

there is no impact effect on prices in TD models, so that Θ(δ) = 0. Moreover, TD models

have a proportional flow effect θ(δ, t) = θ(1, t) δ at all horizons t ≥ 0. These two results imply

that

TD models: P(δ, t) = P(1, t) δ , for all δ

12The selection effect, a terminology introduced by Golosov and Lucas (2007), indicates that firms that
change prices after the monetary shock are the firms whose prices are in greatest need of adjustment, a
hallmark of SD models.
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so that the function P(·, t) is linear with a zero intercept.

Instead, in SD models we have that Θ′(0) = 0 but Θ′(δ) > 0 for δ > 0, and thus Θ′′(0) > 0.

In particular SD models imply a minimum shock size such that all shocks above this size

give rise to full price flexibility (monetary neutrality). Formally, we can show that there is a

shock δ̄ < ∞ such that for all δ ≥ δ̄ we have Θ(δ) = δ and θ(δ, t) = 0 or, that the economy

displays full price flexibility for sufficiently large shocks. Thus in SD models P(·, t) has unit

derivative with respect to δ for large values of δ:

SD models: P(δ, t) = δ for all t if δ ≥ δ̄ , otherwise P(δ, 0) =
1

2
Θ′′(0)δ2 + o(δ2) .

We explore the hypothesis of a non-linear response to nominal shocks following the ideas

in Burstein and Gopinath (2014) and Campa and Goldberg (2005), as well many others in

the pass-through literature, and use nominal exchange rate fluctuations as a proxy for an

“orthogonal” nominal shock to the firms’ nominal costs. Since we seek to identify the different

behavior of the economy conditioning on the size of the exchange rate shocks, it is important

that we have a large number of observations to be able to include as many episodes as possible

of small as well as of large shocks.

We use an unbalanced panel of monthly data from the post-Bretton woods period for

about 70 countries in periods of moderate inflation. Our focus on moderate inflation countries

is suggested by the theory: as inflation increases the impact effect Θ(δ) of a small nominal

shock δ becomes larger, so that the difference between a small and a large shock becomes

harder to detect.13 Since the data are monthly we cannot really estimate the impact effect

Θ(δ), but we can measure the CPI change after the shock P(δ, t) where t, the time elapsed, is

1 month.14 The monthly data provide yet another reason to focus on low inflation: while the

frequency of price adjustment is unresponsive to inflation at low inflation rates, the frequency

increases as inflation enters the 2 digit range (see the evidence in Gagnon (2009) and Alvarez

et al. (2015)), so that the propagation of shocks is faster and its shape becomes harder to

detect.

We compute an inflation forecast at different horizons conditional on an exchange rate

innovation, using a simple non-linear regression.15 We measure the pass-through from ex-

13Alternative definitions of moderate inflation are used: our baseline requires that the mean inflation rate
is below X% in a 10 year time window centered on the observation date. Our baseline results use X = 8 but
results are robust to using a threshold of X = 6. Smaller thresholds reduce the number of large devaluations
observed in sample. The mean unconditional annual inflation in our baseline sample is below 4%, see the
summary statistics reported in Table 1.

14This is a marginal improvement of the early analysis of Caballero and Engel (1993) who measured the
inflation response during the year after the shock.

15Our baseline specification uses simple non-linear projections as suggested in Jorda (2005), but results are
robust to the distributed lag specification commonly used in the international economics literature.
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change rate changes to inflation for t = 1, 3, 6, 12 and 24 months, allowing for the magnitude

of the pass-through to depend on the size of the exchange rate shock. A key issue in estima-

tion concerns the simultaneous interaction between inflation and the nominal exchange rate,

which opens the possibility of reverse causation. We think reverse causation is especially

likely for countries in a fixed exchange rate regime, where large devaluations may occur as

a “realignment” after periods of above average inflation. For this reason we also control for

the type of de facto exchange rate regime distinguishing between flexible, managed and fixed

exchange rates (as classified by Levy-Yeyati and Sturzenegger (2003); Reinhart and Rogoff

(2004) and the following update in Ilzetzki, Reinhart, and Rogoff (2008)). Also, the (near)

random-walk nature of exchange rates in floating-exchange rate countries makes such a sam-

ple a more appropriate to use our specification to test the hypothesis of the differential (in

terms of size) impact effect of exchange rate shocks.

We test whether the short-term pass through, namely the conditional correlation between

the nominal exchange rate innovations and inflation (at various horizons), is bigger for large

exchange rate movements than for small ones. This is because the theory of SD models

predicts a larger response of inflation to nominal shocks in the presence of large shocks, while

TD models predict the shape of the impulse response function to be independent of the size

of the shock. Various non-linear functional forms were considered: a quadratic specification,

a cubic as well as a piecewise linear specification. In Table 2 we report the estimates of the

quadratic specification:

πi,(t,t+h) = αi + δt + βh ∆ei,t + γh (∆ei,t)
2 sign (∆ei,t) + ǫπit (4)

where πi,(t,t+h) is the inflation rate of country i in the period from month t to month t+h (for

h = 1, 3, 6, 12, 24), ∆ei,t is the devaluation from month t− 1 to month t.16 The sign operator

is used to impose “symmetry”, i.e. that the inflation effect of a large devaluation equals

the deflation effect of a large appreciation. All regressions use time and country dummies

(fixed effects) and standard errors are computed using STATA’s robust standard error options

(similar results obtain by clustering errors at the period or country level).

Our empirical results, summarized in Table 2, uncover some evidence of a non-linear

effect, i.e. of a statistically significant γh coefficient, in the sample that excludes countries in

a fixed exchange rate regime.17 The top panel of the table shows that the impulse response

16To be precise, devaluation is computed as ∆ei,t = (ei,t/ei,t−1−1)×100 where ei,t is the end of the period
bilateral exchange rate of country i against the US and inflation is computed as πi,(t,t+h) = (pi,t+h/pi,t −
1)× 100 where h = 1, 3, 6, 12, 24 months and pi,t is the price level reported for period t. Note that the CPI
pi,t is constructed using prices that are sampled during period t; that is, between the end of period t− 1 and
the end of period t.

17This result is robust to alternative classifications of the de facto ER regime, such as Ilzetzki, Reinhart,
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of inflation to large shock is above the response to a small shock up to the 6-month horizon.

After 24 months the two impulse responses coincide, with a pass through of about 10%.

This is consistent with the hypothesis that larger nominal shocks have a shorter half-life. As

mentioned in the introduction, in Section 5 we discuss the dimensions in which this result is

robust, and the ones in which it is not (see Tables 3-8).

3 Set up for Model Economies

In this section we describe the class of model economies for which we characterize the effect

of a once and for all monetary shock. Section 3.1 defines the economic environment within

which firms operate. In Section 3.2, Section 3.3 and Section 3.4 we define state-dependent,

time-dependent and of a mixed type pricing rules, and describe the pricing problem of a firm

under which each one of these rules optimally emerges. In these problems the firms take a

constant interest rate as well the common part of their nominal marginal cost as given. In a

sense, this is an “industry analysis” as, for instance, in Eichenbaum, Jaimovich, and Rebelo

(2011). In Appendix A we describe a set up where the results hold and can be interpreted

as the general equilibrium response to a nominal shock in a closed economy model. Our

main results, in Section 4, characterize the propagation of the monetary shock under these

different pricing rules.

3.1 Firm’s price setting problem

We first describe the static production function of the firms, and then we define the price

gaps, a concept we will use to characterize the firm’s decision rules.

Production. Each firm k produces and sells a quantity yki of n goods (each indexed by i),

each with a linear labor-only technology with productivity 1/Z:

yki(t) =
ℓki(t)

Zki(t)
where Zki(t) = exp (σWki(t))

where ℓki(t) its the labor input. Firm k is subject to a productivity shock that is common

across all its products, W̄k, as well as to idiosyncratic productivity shocks W̃ki, independent

across products. In particular we assume the log of productivity follows a brownian motion

and Rogoff (2008), used in the table, vs the one by Levy-Yeyati and Sturzenegger (2003), which includes
fewer countries, and was used by us for a robustness check.
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Wki(t) with variance σ2, namely:

Wki(t) =
σ̄√

σ̄2 + σ2
W̄k(t) +

σ√
σ̄2 + σ2

W̃ki(t) (5)

where the processes {W̄k(t), W̃ki(t)} are independent across k and i. In words, the process

for {Wki} are independent across firms, have a common component with volatility σ̄, and

product specific volatility σ.

Profit function and price gaps. For all the model specifications that we consider we can

define a “price gap”, gki, namely the log difference between the current nominal price and the

static profit maximizing price for good i sold by firm k. In particular we let Pki(t) be the

nominal price at time t and W (t)Zki(t) be the nominal marginal cost of production for good

i and firm k, where W (t) is the nominal wage at time t. Each firm faces a demand with a

constant elasticity η for the bundle of its n products, which has an elasticity of substitution

̺ between each of its n varieties.18 We define the price gap gki(t) as the log of the difference

between the current price and the static profit maximizing price:

gki(t) = logPki(t)− log (W (t)Zki(t))− log (η/(η − 1))

= logPki(t)−Wki(t)− logW (t)− log (η/(η − 1))

where we omit the firm k subindex whenever it causes no misunderstanding. Since we consider

the case of constant inflation π, which induces a constant drift in the nominal wage W (t), and

productivity follows a brownian motion, the law of motion of the price gaps will also follow

a brownian motion with drift equal to minus the inflation rate and possibly with correlation

between products. Thus, absent a price adjustment, each price gap gki has continuous paths:

dgki(t) = −π dt+ σdWki(t) . (6)

We let Π (Pk1(t), ..., Pkn(t), Zk1(t), ..., Zkn(t),W (t); c(t)) denote the nominal profits of firm

k, i.e. its total nominal revenue minus production costs. We can approximate this profit

18See equation (37) and equation (38) in Appendix A for a model where price gaps are derived from
primitives.
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function around the frictionless profit maximizing prices as:

Π (Pk1(t), ..., Pkn(t), Zk1(t), ..., Zkn(t),W (t); c(t)) (7)

= W (t)





̺(η − 1)

2n

(

n
∑

i=1

g2ki(t)

)

− (̺− η)(η − 1)

2n2

(

n
∑

i=1

gki(t)

)2




+ o
(

||(c(t), gk1(t), . . . , gkn(t))||2
)

+ terms independent of gk(t)

where o(x) a function of order smaller than x. This second order approximation is useful

because it simplifies the objective function to be used in the dynamic problem. Notice that

profits can be expressed as a function of price gaps. The variable c(t) stands for any variable

that enters in the profit function in a weakly separable way. For instance, in the general

equilibrium model of Section A, c(t) corresponds to the aggregate consumption. In that

model c(t) is a shifter of the quantity demanded –due to its effect on the aggregate ideal

price index– and also indirectly affects the present value of profits through its effect on the

real rate. Nevertheless, up to a second order, we argue we can disregard these effects. We

make this approximation precise in Section A.1.

3.2 State dependent pricing rules

We describe a price setting problem where the firm’s optimal decision rule are state dependent,

i.e. where price changes occur when the state, given by current profits or markups, attains

a critical level. We assume that firms has to pay a fixed menu cost to simultaneously adjust

the price charge for the n products it produces.

State dependent and Ss decision Rules. We let g = (g1, . . . , gn) be the vector of the

n price gaps for the firm, where we omit the firm index k for simplicity. A state dependent

decision rule is described by an inaction set I ⊂ Rn and a value of the price gap g∗ ∈ I.

Given these two elements the optimal state dependent decision rule is inaction if g(t) ∈ I,

and otherwise if g(t) /∈ I, then prices are changed so that the vector of price gaps right after

the adjustment equal g(t) = g∗. We note that if g∗ = 0, i.e. if the n price gaps are set to

zero, then it means that when prices are adjusted they are all set to a value that maximizes

the static profits.

In general the inaction set can be described by a function b : Rn → R:

(g1, . . . , gn) ∈ I =⇒ b(g1, . . . , gn) ≤ 0 and (g1, . . . , gn) /∈ I =⇒ b(g1, . . . , gn) > 0 (8)

We will consider the case where the n products enter symmetrically, so that b is symmetric
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and the n elements of g∗ are identical. Symmetry provides a convenient mapping from the

inaction set I into an Ss rule given by two (scalar) threshold functions, one for the lower

bound g : Rn−1 → R, and one for the upper bound ḡ : Rn−1 → R. In an Ss rule prices are

changed if, given the rest of the price gaps, the price gap of any product (say product one)

reaches either a lower threshold g, or an upper threshold ḡ, i.e.:

(g1, g2, . . . , gn) ∈ I ⇐⇒ g(g2, . . . , gn) ≤ g1 ≤ ḡ(g2, . . . , gn) (9)

Summarizing, we can describe an Ss rule by the optimal return point g∗ and either a function

b or the pair of functions (g, ḡ).

Micro-foundation of state dependent model. We can microfound the state dependent

rules described in equation (8) or equation (9) as the solution of the following problem.

Consider a firm that chooses when to change prices, i.e. the stopping times {τi} as well as

the price changes ∆Pj(τi) at those times to maximize:

max
{τi,∆Pj(τi),j=1,...,n,i=1,2,...,}

E

[
∫ ∞

0

e−rtΠ ({P1(t), ..., Pn(t), Z1(t), ..., Zn(t)} , W (t)) dt

−
∞
∑

i=1

e−rτi ψmW (τi)

]

(10)

Pj(t) = Pj(τi) for all t ∈ (τi, τi+1] and ∆Pj(τi) = lim
ǫ↓0

Pj(τi + ǫ)− Pj(τi)

The two main parameters for this class of models are the size of the menu cost ψm and the

number of products n. The key assumption for the multi product specification (where n > 1)

is that once the menu cost ψm is paid the firm can adjust the prices of all goods at no extra

cost. We will provide an analytic characterization of this non-concave stochastic sequence

problem by solving an approximate version which uses the quadratic profit function defined

in equation (7). Several models discussed in the recent literature are nested as special cases

of the state dependent setup. We briefly recall some of them next.

Classic menu cost. The menu cost problem, as in Golosov and Lucas (2007), is obtained

setting n = 1. In this model the menu cost is constant at ψ and with zero inflation the

optimal policy is the well known Ss rule: firms adjust their prices when the distance (in

absolute value) between the actual price and the profit maximizing price gap reaches a value

±ḡ. This model produces a size-distribution of price changes that is degenerate: when the

price adjustments occur and are of size ±ḡ.
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Multiproduct models. This model allows for n ≥ 2 and any value of π. Different values

of n map into several models studied in the literature. For example, the case with n = 2 and

normal innovations to productivity is studied in Midrigan (2011) and the one with n = 3 was

studied in Bhattarai and Schoenle (2014). For large values of n (technically n → ∞, but in

practice for n > 10) the model produces staggered pricing, where the time elapsed between

two price adjustments is constant, as in Taylor’s (1980). Alvarez and Lippi (2014) show that

with zero inflation π = 0, and with η = ̺ (which implies that the elasticity of substitution

between bundles is the same as the elasticity between varieties in a bundle), then the function

b describing the optimal Ss rule can be written as:

b(g1, . . . , gn) =

n
∑

i=1

g2i − ȳ and g∗i = 0 for all i = 1, . . . , n , (11)

for an optimally determined value of ȳ. Equivalently we can write b in terms of the optimal

thresholds:

g(g2, . . . , gn) = −
(

ȳ −
n
∑

i=2

g2i

)1/2

and ḡ(g2, . . . , gn) =

(

ȳ −
n
∑

i=2

g2i

)1/2

(12)

The key economic insight of this model is that this framework generates small price changes,

since the stopping times (for price adjustments) are defined by the sum of n price gaps,

which implies that an individual price gap at the time of adjustment can take any value in

(−√
ȳ,
√
ȳ).19

In the case where the elasticity of substitution η 6= ̺, and/or there is steady state inflation,

so π 6= 0, and/or there is correlation between the idiosyncratic shocks to the products, so

σ̄ > 0, we have that the function b that defines the set of inaction I can be written as:

b(g1, . . . , gn) =
n
∑

i=1

g2i − ȳ

(

n
∑

i=1

gi

)

(13)

where, with a slight abuse of notation, we use ȳ to denote a function ȳ : R → R. In this

more general case we can define two scalars y ≡ ∑n
i=1 g

2
i and z ≡ ∑n

i=1 gi which we can

use to define the inaction set. Moreover, one can show that the diffusions for (y, z) follow

themselves a first order Markov process, i.e. so they are sufficient to define the state of the

problem.20

19See Alvarez and Lippi (2014) for an analytical characterization of the optimal stopping barrier ȳ, as well
as the implication for the size distribution of price changes f(∆pi).

20See Section 6 and Appendix E of Alvarez and Lippi (2014) for a proof.
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3.3 Time Dependent pricing rules

We now describe a price setting problem where the firm’s optimal decision rule are time

dependent, i.e. where the time between consecutive price changes is statistically independent

of the current markup or profits of the firm. Under such a rule the time elapsed since the

last price change completely determines the hazard rate of price changes.

More formally, let an observation be an event in which the firm collects and process all

the information that is necessary for price setting. Absent other frictions, observation time

will coincide with the times of a change of prices, to adapt to the newly gathered information.

Let τi be the date of the ith observation: at this time the firm uses all available information

to adjust its price(s) and to decide the time of the next observation, τi+1. Formally we

allow for random dates in the sense that τi+1 − τi is random variable with (right) cumulative

distribution function H , i.e Pr {τi+1 − τi ≥ t | τi} = H (t| τi). The defining characteristic of a

time dependent model is that the realization of τi+1 is independent of the information relevant

for price setting, i.e it is independent of the price gaps {g1(t), . . . , gn(t)} for t ≥ τi. Note that

with this definition price changes cannot have any selection, where we use selection in the

sense of Golosov and Lucas (2007).

Well known examples of TD models are Taylor (1980) model of staggered price setting,

where price adjustments are deterministically spaced every T periods, or H(t) = 1 for t < T ,

and H(t) = 0 otherwise. Another well known example is the model by Mankiw and Reis

(2002) where the times elapsed between successive observations are exponentially distributed,

or H(t) = e−λt so that the mean time elapsed between observations is 1/λ.21 More general

versions of these models allow the distribution of times to follow a first order Markov process

H(t; t0) where the distribution of times elapsed between observations t is allowed to depend

on duration of the previous spell between observations t0.

Aggregating the behavior across firms, each described by the function H , provides a

characterization of the stationary cross-sectional distribution of the “times until the next

observation”: Q(t). That is, the fraction of firms that, at any point in time, will wait at least

t units of time until the next observation. We denote the right CDF of such distribution

by Q(t), which determines the time it takes for an aggregate shock to be incorporated into

21 To be more precise in the Mankiw and Reis (2002) model prices will change every period to keep up with
the mean expected marginal cost. This gives rise to a very high frequency of price changes, that diverges as
the model moves to continuous time. This feature is a common element in models of rational inattentiveness
that lack a physical cost of price adjustment. A robust pattern in the data is, however, that prices change
infrequently. A simple way to obtain infrequent price changes in this class of models is to assume that the level
of the nominal marginal cost is a martingale. As a result, price changes only occur when new information
arrives, so that the frequency of price changes coincide with the frequency of observations. Moreover, in
Alvarez, Lippi, and Paciello (2011) we show that price plans would not be optimal even in the presence of a
drift in the nominal marginal cost, when a price adjustment cost is added to a similar model and calibrated
to match the frequency of price changes in the U.S. economy.
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the information set of a given fraction of firms, i.e. the speed at which the monetary shock

propagates into the aggregate price level.

Micro-foundation of time dependent pricing rules. While the the distribution func-

tion H is assumed as a primitive of the analysis in several TD models, the literature following

Caballero (1989) and Reis (2006) has provided an explicit profit maximization problem sub-

ject to information frictions to rationalize the origins of H . We describe a model with explicit

microfoundations, based on Alvarez, Lippi, and Paciello (2016), that rationalizes inattentive

behavior as the optimal policy given the cost of collecting and processing information. The

firm price setting problem balances the costs and benefits of gathering information. We

assume that to gather information about the nominal marginal cost the firm must pay an

“observation cost”, along the lines discussed by Caballero (1989) and Reis (2006). In par-

ticular, we assume that by paying an observation cost ψo, firms learn the current value of

the production cost (Z1, ..., Zn), which is the key variable to decide prices. We interpret

the observation cost as the physical cost of acquiring the information needed to make the

price decision as well as costs associated with the decision making in the firm (gathering

and aggregating information, e.g. Zbaracki et al. (2004), Reis (2006)). Alternatively, these

costs represent the cognitive costs associated with gathering extra information, as found in

experimental evidence on tracking problems –see Magnani, Gorry, and Oprea (2016).

The problem for the firm consists in deciding, at each observation date τi, the time

until the new planned observation date ti, as well the prices consistent with the available

information:

max
{ti,Pj(t),j=1,...,n,i=1,2,...,t≥0}

E

[
∫ ∞

0

e−r tΠ (P1(t), ..., Pn(t), Z1(t), ..., Zn(t) , W (t) ; c(t) ) dt

−
∞
∑

i=1

e−rτi ψo(τi)W (τi)

]

(14)

where τi+1 = min {si , ti} + τi where si is an exponential distributed r.v. and ti and Pj(t)

for t ∈ [τi, τi+1) only depend on information gathered at τ0, τ1, . . . , τi.

The value of the state of the firm is (Z1, . . . , Zn), which is the information required to

set the the prices that maximize current profits. We assume that the state is only observed

infrequently. In particular, we assume that there are two ways in which the firm can observe

it. First, exogenously and at an exponentially distributed time with duration λ, the state

becomes known to the firm. Second, the firm decides when it plans to observe the state.

Specifically, we assume that at the time of the ith observation (planned or not), denoted by τi

the following events take place: (i) the observation cost ψo(τi) is realized, (ii) the firm obtains
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a signal ζ(τi) that is informative about the value of the next observation cost at different hori-

zons. At this time, the firm decides the time elapsed ti until then new planned observation,

say ti+τi. Thus the next observation occurs either when the exogenous observation time, de-

noted by si arrives, or when the next planned observation occurs, i.e. τi+1 = min {si , ti}+τi.
The decision of ti depends only on the information available at time τi. This information

consists on the observation costs, signals, and production cost at the current and past ob-

servation dates τ0, τ1, . . . , τi. Furthermore, we assume that (iii) production and observation

cost, and exogenous observation times are all statistically independent, and that (iv) nominal

marginal cost for each product follows a martingale. Note that (iv) implies that there are

no incentives to change prices between observations, i.e. there are no incentives for price

plans.22 Assumptions (i)-(iv) imply that the optimally chosen time between observations, or

equivalently between price adjustments, is a function of the signal obtained at the beginning

of the price spell, and that the size of price adjustment is independent of the time elapsed

between price adjustments, i.e. these assumption imply a time dependent model.23

Our motivation for introducing the exogenous observation dates, i.e. those triggered by

si, is to nest the popular model of sticky information where observations (and price changes)

occur with a constant probability per unit of time λ dt. On the other end, by setting λ = 0,

we can abstract from this feature and all the observations involve a cost-benefit analysis in

setting ti. In general in the determination of ti, the value of λ has the same effect as a

higher interest rate in the decision of the firm for ti.

Our choice of the processes for the observation cost and signals is general enough to nest

several cases studied in the literature.

Constant time between observations. If there are no exogenous observation times, i.e.

λ = 0, and observation cost ψo are constant, then the time between observation is constant.

Caballero (1989) and Reis (2006) analyze this case.

Calvo model. There are two set-ups for this model that give rise to the same distribution

of price durations as in the Calvo model. The first one, as explained above, is obtained if

all changes are exogenous, i.e. when ψo is very large. The second obtains even if λ = 0 but

there is particular distribution of ψo and signals so that the firm finds it optimal to observe

22We do this for two reasons. First, when we introduce menu as well as observation costs, price plans will
not be optimal for small departures of a martingale–see Proposition 1 in Alvarez, Lippi, and Paciello (2011).
Second, if cost are not martingale and there are no menu cost, then price changes will occur as frequently as
the model time periods, which will be highly counterfactual.

23In Appendix C we give more details on the structure of the cost and signals.
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at exponentially distributed times.24

Markovian times. We refer to Markovian times the case where the times between obser-

vations (and price changes) form a first order Markov process, so times are random with the

current time between observations depending statistically on the duration of the previous

spell between observations. This is obtained in a very natural case where the current value

of the observation cost is itself the signal for the next observation cost. This case is ana-

lyzed both in Reis (2006) (for negligibly small observation costs levels) and Alvarez, Lippi,

and Paciello (2016). In particular, we assume that the observation cost follows a continuous

time Markov chain, so that for each value θo there is a time invariant probability per unit of

time to transit to some other values. Thus, when a state is observed by the firm, the value

of the observation cost serves as a signal of future observation costs at different horizons,

directly implied by the Markov chain. The firm’s decision rule becomes a function t(θo), so

that times between observations are random, each of them corresponding to a value of the

realized observation cost θo. The economics of this choice balance the benefit of future ob-

servations with the expected cost at different horizons. The key property to understand the

variability of the t is the forecastability of future observation cost, which is tightly related

with the persistence of the Markov chain. Furthermore the property of the Markov chain

are important to construct the cross sectional distribution of times until the next adjustment

Q(t), an object of interest for the impulse response of shocks.

3.4 State and Time Dependent models

We briefly review models that combine state and time dependent elements. In these models

the decision rule of the firm depends both on the time elapsed since the last price change

as well as on the state (for example on whether markups have reached a critical level).

We discuss two examples: the first one is a version of the state dependent model where at

exogenously random dates the menu cost is set to zero. The second example is one where

there are both observation and menu costs (in Appendix D we write out both problems

formally).

Multiproduct Calvo+ model. The first example adds to the state dependent problem

described above the arrival of free adjustment opportunities at a constant rate λ. Equiv-

24 In Alvarez, Lippi, and Paciello (2016), Propositions 7 and 11 show that for any distribution of times,
a distribution of signals and cost on future observation costs can be found that provides a foundation to it.
This can be used to rationalize the work of researchers that start their analysis directly with the assumption
that times between observations (and price changes) are i.i.d. through time with a given distribution, and
study their implications for monetary policy, as for example Bonomo, Carvalho, and Garcia (2010).
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alently, one can interpret the model as one with a random menu cost that, in a period of

length dt, equals ψm with probability (1 − λdt), or equal zero with probability λdt. This

random menu cost introduces exogenous adjustment times in a way that is similar to the

one described for the exogenous observation times in time-dependent models. This model

is referred to as the Calvo+ model, a combination with features of the Golosov and Lucas

model as well as the Calvo model, and was first studied by Nakamura and Steinsson (2010).

The multi-product version of this model is studied in Alvarez, Le Bihan, and Lippi (2016).

The optimal policy for this case is a combination of state and time dependent policy.

As in the state dependent case, prices change the first time the boundary of the inaction

set is reached. But also, as in the time dependent case, the price changes when a free

adjustment opportunity arrives. Thus, the stopping time τi+1 is given by the first time (after

the adjustment at τi) at which the state either reach the boundary of the inaction set, or

that an opportunity to adjust at zero cost occurs.

Positive menu and observation costs. The second example combines both observation

and menu costs.25 Observations will happen at discretely separated periods of times, and we

denote the ith observation by the stopping time τi. Observations are subject to a constant

fixed cost ψo > 0. Upon an observation the firm will decide whether to adjust prices or not,

which we denote by the indicator a(τi) ∈ {0, 1}. If a price adjustment occurs, then a menu

costs ψm > 0 must be paid.

The optimal decision rule combines features of the state and time dependent rules. Upon

the current observation at time τi and with the relevant information gathered until that time

(i.e. the value of the state) the firm decides the time until the next observation, ti, so that

the next observation occurs at τi+1 = τi + ti. Also upon an observation at time τi, the firms

decides whether to adjust prices or not, i.e. whether a(τi) ∈ {1, 0}. Note that the pricing

decision has a state dependent feature, in that upon an observation the firm will keep prices

constant if the state is in the inaction set, and adjust them otherwise. But, differently from

the menu cost model described above, upon an observation the firm may find its state strictly

outside of the inaction region, i.e. it may strictly prefer to adjust. Versions of this model are

analyzed in Alvarez, Lippi, and Paciello (2011, 2016), Bonomo, Carvalho, and Garcia (2010);

Bonomo et al. (2016) .

25For simplicity, and because its effects are mainly covered by the Calvo+, we abstract from the exogenous
observation times featured in equation (14) for the time dependent case.
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3.5 Steady state price setting statistics

For future reference we introduce three steady state statistics that summarize price setting

behavior and we consider a steady state with idiosyncratic shocks, no aggregate shocks, and

trend inflation π. Define N(∆pi; π) as the average number of price changes per unit of time

(say per year); V ar(∆pi; π) as the standard deviation of the distribution of the size of (non-

zero) price changes and as the Kurt(∆pi; π) the kurtosis of the distribution of the size of

(non-zero) price changes. It will be useful to index each of these statistics with the steady

state inflation rate π. Notice that, in principle, these statistics are directly measurable in

micro data sets. We focus on these statistics because for the three classes of models described

above the ratio Kurt(∆pi; π)/N(∆pi; π) provides a sufficient summary statistics for the real

effects of a small monetary shock. This is the object of the next section. In Appendix E

we show that there is an identity between N(∆pi) and Std(∆pi) for small inflation rate,

uncovering the trade off that any decision rule around zero inflation faces.

4 The propagation of monetary shocks

In this section we characterize the effect on the aggregate price level and on output of a

monetary shock. Up to now, we focused on the firm pricing problems under different frictions

and defined steady state statistics. Turns out that, under a convenient GE structure that has

been widely adopted in the literature (see for example Caballero and Engel (1993); Golosov

and Lucas (2007); Alvarez and Lippi (2014)), the effect on prices and output of monetary

shocks can be characterized by the impact of the monetary shocks on price gaps, ignoring GE

effects. We start by reviewing these results. Aided with this structure, we then turn to prove

the main results in the paper. First, we show in Proposition 1 that the impact effect on prices

of a small monetary shock is second order in state dependent and time dependent models.

Second, we show in Proposition 2 that the effect of a small monetary shock on output can

be summarized by the kurtosis both in time and state dependent models. Finally, we show

in Proposition 3 that impact effect on prices of large monetary shocks is first order in state

dependent models and zero in time dependent models.26

26The first result in Proposition 1 concerns the impact effect on prices and output of a once and for all
monetary shock. The second result is for the GE version of our model, where we use the cumulative output
response of an once and for all monetary shock, i.e. the area under the impulse response for output, as defined
in equation (20). The result for the impact effect is more general in scope: for instance, it holds for all levels
of the inflation rate π = 0 and holds if η 6= ̺, and/or if there is correlation between the idiosyncratic shocks
across the products of the firm, i.e. if σ̄ > 0. Indeed for the first result we only use the form of the decision
rules, either them be state dependent Ss rules as in equation (9), or time dependent rules as in equation (14).
The second result in Proposition 2 is obtained analytically for a smaller class of economies, and with the GE
interpretation of this shock. In particular, it is obtained around a zero inflation rate, and we also restrict the
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Preliminaries. The GE structure that is developed in Appendix A follows Golosov and

Lucas (2007) and in particular Alvarez and Lippi (2014). In this structure what will determine

the propagation of shocks up to first order will be price gaps; GE effects can be ignored by

the firm, greatly simplfying the analysis. There are three reasons for this. First, it can be

shown that after a monetary shock of size δ:

R(t) = r + π , log
W (t)

W̄ (t)
= δ for al t ≥ 0 (15)

where R(t) is the real interest rate, W̄ (t) is the wage rate in steady state before the shock,

W (t) is the wage rate after the shock. Thus, the real interest rate is unchanged by the shock

and wages respond on impact. Furthermore, deviations of prices from steady state relate one

to one to deviations on output according to:

log
c(t)

c̄
=

1

ǫ

(

δ − log
P (t)

P̄ (t)

)

(16)

where c̄ is the constant flexible price equilibrium output and where P (t) is the ideal price

index at time t ≥ 0 and P̄ (t) is the path of the price level in the steady state before the

shock, with P̄ (t) = eπtP̄ for all t ≥ 0. Second, as shown in Alvarez and Lippi (2014), the

price level after a monetary shock can be approximated as a function of the price gaps. So,

it can be shown that:

log
P (t)

P̄ (t)
= δ +

∫ 1

0

(

1

n

n
∑

i=1

(gki(t)− g̃ki)

)

dk (17)

+

∫ 1

0

(

n
∑

i=1

o(||pki(t)− p̃ki(t)||)
)

dk

where g̃ki are the price gaps in the steady state before the shock and o(x) denotes a function

of order smaller than x.27 So, to understand the impact effect on prices of a monetary shock,

it is sufficient to understand the effect of the monetary shock on price gaps. In addition, as

we discussed in Section 3, in an approximation to the firms pricing problem we can ignore

general equilibrium effects and focus only on price gaps. Third, it helps to reinterpret a

simple cost shock, the one we will focus on, as the general equilibrium response of a closed

analysis to the case of same elasticity of substitution ̺ = η, and no correlation between idiosyncratic shocks,
i.e. σ̄ = 0.

27To understand this equation notice that the monetary shock increases the desired prices of all firms by
the same amount δ. This implies a decrease by an amount δ of all price gaps gki that are not adjusted on
impact (the gaps g̃ki are unaffected by definition). This explains the presence of the term δ in the equation.
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economy to a once and for all shock to the money supply. We start with a preshock path of

wages W̄ (t) = W̄ eπt for t ≥ 0 and a pre-shock steady-state equilibrium aggregate price level

P̄ (t) = P̄ eπt. Following the shock at time t = 0, under the simplifying assumptions discussed

in Appendix A, it can be shown that W (t) = eδ W̄ (t) all t ≥ 0. So, a monetary shock will

imply raising wages on impact. This will imply a change in the price gaps and a reaction

for some firms that will up to first order ignore general equilbrium effects. The effect over

price gaps will be aggregated into the price level up to first order. Finally, the deviations of

the price level from the steady state level will imply then deviation in output from its steady

state level.

Impulse Responses: definitions and some properties. Regarding prices, the impulse

response of prices can be defined as

P(δ, t; π) = Θ(δ; π) +

∫ t

0

θ(δ, s; π)ds . (18)

The impulse response is made of two parts: an instantaneous impact adjustment (a jump)

of the aggregate price level which occurs at the time of the shock, denoted by Θ(δ; π), and

a continuous flow of adjustments from t > 0 on, denoted by θ(δ, t). In the next subsection

we will study Θ(δ). This statistic was first used by Caballero and Engel (1993, 2007) to

summarize the degree of flexibility of an economy. We note a few properties of the impulse

response of prices: i) the impact effect is bounded by δ, ii) in the long term the shock is

completely pass-through to prices, iii) in the flexible price case prices jump on impact:

0 ≤ P(0, δ; π) ≡ Θ(δ; π) ≤ δ, lim
t→∞

P(t, δ; π) = δ, and Pflex(t, δ; π) = δ .

where we use the super-index flex for the flexible price case. Regarding output, in our GE

version, output and prices are tightly negatively related after the shock, so we can easily

compute the output effect. The negative relationship comes from the assumption that agents

are on their labor supply schedule, and that nominal wages jump on impact. Thus the effect

on output mirrors the one on real wages. This logic gives:

Y(δ, t; π) =
1

ǫ
[δ −P(δ, t; π)] (19)

where 1/ǫ is a parameter describing the uncompensated labor supply elasticity, as described

in Appendix A. We define, as a summary measure of the impulse response, its cumulative
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version, i.e. the area under equation (19)

M(δ; π) =

∫ ∞

0

Y(δ, t; π) dt (20)

For the cumulative effect of output we also have

0 ≤ Y(0, δ; π) ≡ 1

ǫ
[δ −Θ(δ; π)] ≤ δ

ǫ
, lim
t→∞

Y(t, δ; π) = 0 for all δ

Yflex(t, δ; π) = 0 for all t ≥ 0 and thus Mflex(δ; π) = 0 for all δ .

4.1 Small shocks: SD and TD models are identical on impact

We now show that the impact effect of a monetary shock on prices is second order. This,

holds for all the models considered here, i.e. those models with a general equilibrium set up

as described in Section A and with state dependent decision rules -as described in Section 3.2,

and/or time dependent decisions rules -as described in Section 3.3, and/or those with features

of both -as described in Section 3.4.

We start by discussing the intuition of the impact effect of a monetary shock. Notice that

equation (17) implies that the impact effect of a monetary shock is given by

Θ(δ; π) = δ +

∫ 1

0

(

1

n

n
∑

i=1

[gki(0)− g̃ki]

)

dk (21)

where g̃ki are the price gaps just before the monetary shock. Right after the monetary shocks

price gaps will change to gki(0). This change has two parts. First, mechanically, the log

nominal wage increases by δ, so that every single price gap decreases by δ. Notice that this

mechanical effect cancels with the first term δ on equation (18). Second, as a consequence

of the changes in wages some firms may decide to adjust their prices right after the shock

occurs (depending on the type of model), so that for those products and firms there is an

extra change in the price gap gki(0). To see this notice that the price gap of firm k product

i right after the shock can be decomposed as the price gap pre-shock g̃ki minus the common

increase in wages δ plus the increase in prices logPki(0)− log P̃ki(0)

gki(0) = g̃ki − δ +
(

logPki(0)− log P̃ki(0)
)

(22)

The first two terms are mechanical, and the third is the only one that depends on what the

firms do. We introduce price gaps, instead of working directly with the price increases, due

to two reasons. One is that in state dependent models price gaps are the state, hence it
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facilitates to understand what will happen. Second, in all models, the contribution of a firm

k product i to the output deviation from steady state can be written in terms of the price

gap. The statement of the Proposition follows:

Proposition 1. Let Θ(δ; π), defined in equation (18), be the impact effect on the price level

of a once and for all monetary shock of size δ for an economy starting at steady state inflation

π. Fix the inflation rate π. If the decision rules are state dependent as in equation (9), and

σ > 0, then:

Θ(δ; π) = Θ′(0; π) δ + o(δ) with Θ′(0; π) ≡ ∂

∂δ
Θ(δ; π)

∣

∣

∣

∣

δ=0

= 0 (23)

where o(δ) means of order smaller than δ. If the decision rules are time dependent as in

equation (14), then:

Θ(δ; π) = 0 for all δ and for all π. (24)

The proposition states that there is no first order effect of a small monetary shock in

either a SD and as well as in a TD model. The result is stronger for time dependent models

in the sense that the impact effect is zero for any size of the monetary shock. We give a brief

intuitive explanation of the result. Note that for both time and state dependent models,

the aggregate shock increases wages by δ log points, and thus decreases every price gap.

Firms in time and state dependent models react differently. In both cases the firms that

change their prices on impact will change, on average, by a discrete amount proportional

to δ. Nevertheless, in both cases we will conclude that the fraction of firms that adjust

on impact, denoted by I(δ) is of order smaller than δ, i.e. we argue that I ′(0) = 0. The

argument why I ′(0) = 0 is different for time than for state dependent models.

In the case of state-dependent models, described in Section 3.2, the reason why I ′(0) = 0

is that the firm’s decision to change prices depends on whether the state after the shock is

outside the set of inaction I. For instance, in the one product case n = 1, prices are adjusted

when the price gap reach either boundary of the range of inaction given by an interval
[

g , ḡ
]

.

A key argument in these models is that in steady state, right before the shock occurred, there

is a zero density at the boundaries of the range of inaction. Then the fraction of firms that

adjust is proportional to δ, for small δ. In particular, denoting by f the steady state density

of the price gaps, the fraction that adjust equals I(δ) =
∫ g+δ

g
f(g)dg = f(g) δ+o(δ). The fact

that in steady state there is zero density around the boundary, i.e. that f(g) = f(ḡ) = 0, is

a general feature of the state dependent Ss decision rules with idiosyncratic shocks (σ > 0),
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and it is so because at the boundary of the range of inaction firms exit (i.e. prices are

adjusted) when they get an idiosyncratic shock that will push them outside. Interestingly,

this argument extends to multiproduct n ≥ 1, with correlated shocks across products, and

inaction sets given implicitly by ranges equation (9).

In the case of time dependent models, described in Section 3.3, the reason why I ′(0) = 0

is that the firm’s decision rules depend on the time elapsed since the last adjustment. Hence,

even if the price gap changes, the firm will not be aware of it until the next review time

(decided in the past) comes due. Finally, since the model is set in continuous time, on

impact there is a negligible fraction of firms adjusting, i.e. the number that adjust in an

interval of length dt equals (1/N(∆pi; π)) dt. Hence, as dt → 0, the fraction of firms that

change prices to go zero and I(δ) → 0 for any δ! Note that we are assuming that the

information about the change in the price gap due to change on wages is not observed until

the time at which firms have previously schedule their decision to learn the state, which is

the key assumption of time-dependent models based on inattentiveness. The argument for

models with both time and state dependent features, as in Section 3.4, is more complicated,

but unsurprisingly the results still holds.

The logic of the general proof . The next paragraphs illustrate the logic of the proof of

Proposition 1 for SD models in the general case with many goods and allows for correlated

shocks across goods. The proof has two parts. The first part shows that the steady state

density f of price gaps g evaluated at the boundary of the inaction set is zero. We write this

as Lemma 1 and include its proof in the Appendix B.

Lemma 1. Assume σ > 0 for a SD model. Then, there is zero density at an exit point, i.e.

if b(g) = 0, then f(g) = 0.

The logic of the result in Lemma 1 is easier to see in the one dimensional case (n = 1),

which we present separately. The idea behind this result is that the boundary of the inaction

set is an exit point, i.e. if a firm price gap hits the boundary it will change the price,

discretely changing the price gap. This behavior, where the steady state mass "escapes"

with non-negligible probability to a discretely far away regions of the state space implies that

the steady state density has to be zero (this is in contrast with the behavior everywhere else

where the mass moves only to closed-by states). Specifically, consider a discrete state discrete

space. We let the time periods be of length ∆ and a state space for the price gap be of size√
∆σ. The price gap g(t + ∆) − g(t) =

√
∆σ with probability 1

2

[

1− π
√
∆

σ

]

and down to

−
√
∆σ with the complementary probability. Thus the expected change and expected square

change of g per period are −π∆ and σ∆ respectively. The range of inaction is given by an
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interval
[

g, ḡ
]

. We write the analog to the Kolmogorov forward equation in discrete time for

the probability of each value g in the state space as for any g 6= g∗:

f (g; ∆) =



















f
(

g −
√
∆σ; ∆

)

1
2

[

1− π
√
∆

σ

]

for g ≤ ḡ

f
(

g −
√
∆σ; ∆

)

1
2

[

1− π
√
∆

σ

]

+ f
(

g +
√
∆σ; ∆

)

1
2

[

1 + π
√
∆

σ

]

for g ≤ g ≤ ḡ

f
(

g +
√
∆σ; ∆

)

1
2

[

1 + π
√
∆

σ

]

for g ≥ g

(25)

At the upper bound we have:

f(ḡ) = lim
∆↓

f (ḡ; ∆) = lim
∆↓

f
(

ḡ −
√
∆σ; ∆

)

lim
∆↓

1

2

[

1− π
√
∆

σ

]

= f(ḡ)
1

2
(26)

where we use that, provided that σ > 0, thedensity f(·) is continuous in the closure of the

range on inaction in the first and last equalities. We obtain that the only possible solution

of f(ḡ) = f(ḡ)/2 is f(ḡ) = 0. An analogous argument shows that f(g) = 0.

The second part shows that the impact effect on aggregate prices is of second order with

respect to δ. In the general case we define the fraction of firms (or price gap vectors) that

adjust prices in impact as I(δ) as

I(δ) =

∫ ∞

−∞

[

· · ·
∫ ∞

−∞
f(g1, g2, . . . , gn)1{b(g1−δ,g2−δ,...,gn−δ)>0}dgn · · ·

]

dg1 (27)

where we use that f(g) = 0 if b(g) < 0. Thus I(δ) integrates using the density f the firms

whose price gaps will be outside the set of inaction, i.e. b(g1− δ, g2 − δ, . . . , gn− δ) > 0, after

the aggregate shock δ. We set the second part as Lemma 2:

Lemma 2. Assume that there is no density on the boundary of the inaction set. Then,

there is no first order impact effect on prices, i.e. I ′(0) = 0.

In the one dimensional case Lemma 2 follows from direct computation of I and of its

derivative, as shown in the text. The main idea is that the firms that change prices on

impact for a small aggregate shock δ are those close to the lower boundary of the inaction

set, since price gaps decrease all by δ. Thus if the density of price gaps are zero at the lower

boundary, there is no first order effect on the fraction of firms adjusting. The n−dimensional

case is more involved, in this case the price gap for each firm is a vector for which each of

its components decreases by δ with the shock. In the n > 1 case we also has to take into

account a general (unknown) shape of the n-dimensional set of inaction and the correlation

among the price gap from different products of the firm. In particular, in the n > 1 case
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there is no simple lower bound for the range on inaction as is is in the one dimensional case.

We prove Lemma 2 by finding a function Ī(δ) which is a suitable upper bound for I(δ). The

upper bound function Ī(δ), which is inspired by the one dimensional, also has zero derivative

when evaluated at δ = 0. While technically the proof is more involved, the logic is the same

as in the one dimensional case: for a small aggregate shock δ the firms that will change its

price in impact has to belong to the boundary of the set of inaction.

How the impact effect varies with inflation. We conclude the analysis of the impact

effect with a discussion of the role of inflation, π, relative to the volatility of the idiosyncratic

shocks σ. Let us focus on a positive monetary shock δ > 0 in the reminder of this paragraph.

This shock increases the desired price of all firms by an amount δ. First we note that the

impact effect is independent of the inflation rate in TD models just because, by assumption,

decision rules do not depend on the state. But inflation does change the the impact effect

in SD models. In particular, while for finite values of the ratio π/σ the impact effect Θ is of

order δ2, as stated in equation (24), we notice that the impact effect is increasing with π and

that the effect becomes first order as π/σ → ∞. This is the case, for instance, in the classic

menu-cost models of Sheshinski and Weiss (1983) and Caplin and Spulber (1987): in both

models the impact effect Θ(δ) is of order δ, since in these models σ = 0 and π > 0, so that

the ratio diverges. Thus, since the impact effect is second order but it is increasing in π, in

the empirical analysis we will focus on low-inflation countries where the lack of response to

small shocks should be easier to detect.

We briefly expand on the reason why in the case of n = 1, as π/σ increases, the impact

effect of an aggregate monetary shock increases. As explained above, the first order term on

Θ(δ, π) is given by the invariant density f(g, π). A straightforward analysis of the Kolmogorov

forward equation solved by f shows that as inflation rises relative to the variance of the

idiosyncratic shock σ2, the shape of f(·, π) changes in the segment [g, g∗] as follows. The

density f is linear in g for π = 0, and it becomes concave in g for π > 0, with curvature

−f ′′(g, π)/f ′(g, π) = 2π/σ2. In the limit as π/σ2 → ∞ the density f(g) is strictly positive,

and f(·) is constant, so that there is a first order effect. Note that this is the case in the

classical analysis of Sheshinski and Weiss (1983) and Caplin and Spulber (1987), because

there are no idiosyncraric shocks σ = 0. The reason why the invariant distribution “piles up”

more density around g as inflation rises is straightforward: the price gaps drift to g at speed

π, and they only go up when they are hit by a positive idiosyncratic shock (with variance

σ2).

In Appendix F we formally analyze how the impact effect varies with inflation around

small inflation rates. For simplicity we focus on a model with one good n = 1 and assume the
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adjustment thresholds ḡ, g and optimal return point g∗ are fixed at the level corresponding

to zero inflation.28 Since f(g; π) = 0, expanding the first non-zero term of the impact effect

Θ as a function of the inflation rate to obtain:

Θ(δ; π) =
1

2
f ′(g; π)δ2 + o(δ) ≈ 1

2

[

f ′(g; 0) + f ′
π(g; 0)π

]

δ2 =
1

2

[

1

ḡ2
+

1

σ2ḡ
π

]

δ2

=
1

Std [∆pi]

[

2

Std [∆pi]
+

π

σ2

]

δ2

The approximation shows that the impact effect is increasing in the ratio π/σ2, since around

zero inflation the steady state standard deviation of price changes is given by Std [∆pi] = 2ḡ.

Finally, we note that in both TD and SD models a higher inflation rate tends to increase

the average number of price adjustments per unit of timeN(∆pi; π), even though the elasticity

of the frequency of price adjustment to the inflation rate is zero at π = 0 in models with

σ > 0 (see Alvarez, Lippi, and Paciello (2011); Alvarez, Le Bihan, and Lippi (2016) for formal

proofs). This implies that for small rates of inflation (or deflation) the frequency of price

adjustments is very close to the frequency that occurs at zero inflation (see Alvarez and Lippi

(2014) for a formal proof). In practice, this theoretical prediction is consistent with evidence

on the small elasticity of the frequency of price changes in Gagnon (2009) and Alvarez et al.

(2015), who show that the frequency is basically insensitive to inflation for rates between 5

and 10 % (in absolute value).

4.2 Small shocks: SD and TD have identical cumulated propaga-

tion.

The next result uses a simple GE model to characterize the cumulative output effect, M(δ, π),

of a shock δ. We focus on the cumulative output effects, namely the area under the output

impulse response function to a monetary shock, because it is a measure of the real effects

of monetary policy that naturally combines the duration of the output response with the

depth of the response. We show that this effect is well approximated by the ratio of two

steady state statistics: N(∆pi; π), the average number of price adjustments per unit of time,

and Kurt(∆pi; π), the kurtosis of the size distribution of (non-zero) price changes. These

two statistics, in turn, depend on all the structural parameters of a particular model. But

once the models for which the proposition applies are matched with these two statistics, then

28 In Proposition 3 of Alvarez et al. (2015) we show analytically for the same model that around zero
inflation only 10% of the changes in inflation are accounted for changes in the thresholds, and instead 9/10
are accounted for by changes in the frequency of price increases vs price decreases. This means that ignoring
the changes in thresholds, as in the approximation above, makes a very small difference.
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these models will have the same cumulative effect after a small monetary shock.

Proposition 2. Let M(δ; π), defined in equation (20), be the cumulative impulse response

of output to a once and for all monetary shock of size δ for an economy starting at steady

state inflation π. Then

M(δ; π) =
Kurt(∆pi; 0)

ǫ 6N(∆pi; 0)
δ + o

(

||(δ, π)||2
)

(28)

where o(x) means of order smaller than x. Moreover,

∂

∂π

(

Kurt(∆pi; π)

N(∆pi; π)

)∣

∣

∣

∣

π=0

= 0 (29)

The explanation of why this result holds is involved, but its interpretation is not. The

ratio in equation (28) controls for both the selection effect, as measured by Kurt(∆pi; π),

and for the degree of flexibility of the economy, as measured by N(∆pi; π). On the one

hand, that the cumulative impulse response depends on the degree of flexibility is hardly

surprising. On the other hand, that the selection effect is captured completely by the steady

state kurtosis of prices is, at least to us, more surprising. The role of kurtosis is more

novel and embodies the extent to which “selection” in the size as well as in the timing of

price changes occurs.29 The selection effect, a terminology introduced by Golosov and Lucas

(2007), indicates that firms that change prices after the monetary shock are the firms whose

prices are in greatest need of adjustment, a hallmark of SD models. Selection gives rise to

large price adjustments after the shock, so that the CPI response is fast.30 Such selection

is absent in TD models where the adjusting firms are chosen based on (possibly stochastic

functions of) calendar time, not based on their state. In addition to selection in the size of

price changes, recent contributions have highlighted a related selection effect in TD models

which relates to the timing of price changes.31 Surprisingly, the kurtosis of the steady-state

distribution of the size of price changes also encodes this type of selection, which is central

to TD models. For instance, in the models of Taylor and Calvo, calibrated to the same mean

frequency of price changes N (∆pi), the size of the average price change across adjusting

29For a symmetric distribution kurtosis is a scale-free statistic describing its peakedness: the extent to
which “large” and “small” observations (in absolute value) appear relative to intermediate values.

30 Intuitively, a lot of selection gives rise to small kurtosis. For example, in the Golosov-Lucas model price
changes are concentrated around two values: very large and very small, which imply the smallest value of
kurtosis (equal to one). In contrast, the size distribution of price adjustments in a multi product model with
a large number of goods is normally distributed, i.e. it features a large mass of small as well as very large
price changes. This results in less selection, fully captured by the higher kurtosis of the size distribution.

31See Kiley (2002); Sheedy (2010); Carvalho and Schwartzman (2015); Alvarez, Lippi, and Paciello (2016).

31



firms is constant (after a monetary shock), so there is no selection concerning the size. Yet

the real cumulative output effect in Calvo is twice the effect in Taylor. This happens because

in Taylor the time elapsed between adjustments is a constant T = 1/N (∆pi), while in Calvo

it has an exponential distribution (with mean T ), with a thick right tail of firms that adjust

very late.32 This paper collects and extends previous results by showing that equation (28)

also holds for models with both TD and SD components. Formally, the result is shown for

SD models in Alvarez, Le Bihan, and Lippi (2016) and the result for TD models in Alvarez,

Lippi, and Paciello (2016) for the case of n = 1 products.33 For the multiproduct version

of the Calvo+ model, which showcases features of both SD and TD model, the result is

also shown in Alvarez, Le Bihan, and Lippi (2016).34 In particular, Appendix G provides

numerical evidence that the result also holds in models that combine those frictions. Also, in

that appendix this result is illustrated by aggregating and computing the impulse response of

a decisions rules for a price setting problem with both a menu cost as well as an observation

cost, based on Alvarez, Lippi, and Paciello (2011, 2015, 2016).35

Extending the expression for the area under the impulse response for TD models

to n products. Here we argue that Proposition 1 and 2 in Alvarez, Lippi, and Paciello

(2016) hold with no changes for the n > 1 case, which establishes Proposition 2 for the

TD case. Consider the TD model in its multiproduct version. Alvarez, Lippi, and Paciello

(2016) shows that equation (28) holds for that model with n = 1 . This results extends in

a straightforward way to the multiproduct case of n > 1. To see why, let τ be the time

elapsed between observations, noticing that since the menu cost is zero, τ it is also the time

between price changes. Recall that when an observation occurs, every single product of the

firm change its price, “closing" its gaps (this, instead, extend from the one to the n products

since it only requires the symmetry or exchangeability, and the lack of drift). Thus the state

of the economy is still the distribution of times until the next review, the same as the one

dimensional object in Alvarez, Lippi, and Paciello (2016) is denoted by Q(t) with density

q(t). At the time of the adjustment (or of the observation) we can then consider each of the

n products of the firms in isolation. This is because the marginal distribution of the price

32 Notice how these features are captured by kurtosis: in Taylor the constant time between adjustments T
implies that price changes are drawn from a normal distribution, hence kurtosis is three. In Calvo, instead,
the exponential distribution of adjustment times implies that price changes are drawn from a mixture of
normals with different variances, and hence a higher kurtosis (equal to six).

33To be precise for SD models, it follows by setting λ = 0, or equivalently ℓ = 0, in the model in Alvarez,
Le Bihan, and Lippi (2016), and the results corresponds to Proposition 6 of that paper.

34Again, this corresponds to Proposition 6 of that paper, for the case where λ > 0 and ψ > 0, or equivalently
the case where ℓ ∈ (0, 1]

35These computations take advantage that we have a characterization of the decision rules that allows to
compute a simple problem for each ratio of the menu to observation cost, free of any other parameters.
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gaps of each of the n products is the same, and hence the result is identical. Note that this

results holds even if the the price gaps have an arbitrary correlation between the products of

the same firm. It only requires that the marginal distribution of each price gaps be normal.

The expression in equation (28) can be regarded as a second order approximation to

M(δ; π). This expression means that

0 =
∂M(0, 0)

∂π
=
∂2M(0, 0)

∂δ2
=
∂2M(0, 0)

∂π2
=
∂2M(0, 0)

∂δ∂π
(30)

i.e. the approximation in equation (28) holds up to second order, and thus it is very accurate

for small values of δ and π. There are two different arguments why these derivatives are

zero. First, relative to π, note that by definition M(0, π) = 0 for all π, since when there is

no shock there is no response. Thus, all derivatives with respect to π are zero at δ = 0. The

reason why the second derivatives, especially the one with respect to δ are zero is due to the

symmetry of the M function. In particular M(δ; π) = −M(−δ;−π). This means that the

effect of of prices and output when there is a negative shock in an economy with deflation

is the same (in absolute) value than an economy with inflation and a positive shock. Thus

taking any second derivative of this function, and evaluating at (δ, π) = (0, 0) we obtain

the desired result. Thus, the key is to argue the symmetry of this function. This, in turns,

depends, among other things, on the use of the second order approximation of the profit

function, as developed in equation (41) to argue for the symmetry of the optimal decision

rules. Finally we explain the significance of the fact that the approximation itself has zero

derivative with respect to inflation, i.e. the importance of equation (29). This means that

the expression for M(δ; π) is accurate for economies with low inflation rates.

In principle, micro data on prices can be used to construct empirical measures of kurtosis.

In constructing such measures care must be taken of small measurement errors a (lots of

small price changes are just noise) and heterogeneity (pooling together goods with different

volatility of price changes) which may mechanically contribute to generating a high value of

kurtosis, as stressed in Cavallo and Rigobon (2016). Section 2 of Alvarez, Le Bihan, and Lippi

(2016) uses such statistical procedures and estimated Kurtosis values in the neighborhood

of 4. This is useful to decide “where the data stand” between a Golosov-Lucas model (with

kurtosis 1) vs a Calvo model (with Kurtosis 6).

Three examples. To illustrate the point that models with different degree of time and

state dependence can generate the same cumulative output response after a permanent shock

we describe three set-ups that give the same value of M for small δ in spite of their different

nature and steady state behavior in other dimensions than those involved by the formula in

33



equation (28). We concentrate on describing Kurt(∆pi; 0), since in all these models it is easy

to change other parameters, such as the fixed adjustment or observation cost, to produce

the same value of N(∆pi; 0). We focus on three examples where Kurt(∆pi) = 3. The first

example is a state dependent model with many products, i.e. with n → ∞. This model

produces a size distribution of price changes that is Normal (see Alvarez and Lippi (2014)

for a proof), so that the kurtosis equals 3. The second example is a pure time dependent

model, with constant observation cost ψo > 0 (and zero menu cost ψm = 0). This model is

analyzed by e.g. Reis (2006), like the previous model it also produces a size distribution of

price changes that is normal, so its kurtosis equals to 3. While the first two models have

identical steady state statistics in terms of distribution of adjustment times and the size

distribution of price changes, the third one is different. The third example is the so called

Calvo-plus model of Nakamura and Steinsson (2010). In this model n = 1 and while some

prices occur upon the arrival of a free adjustment opportunities, other are decided by the firm

after paying the menu cost. Alvarez, Le Bihan, and Lippi (2016) show that if the fraction

of price adjustment due to free adjustment opportunities is 90% then the model produces a

kurtosis of the size of price changes that is equal to 3 (although the distribution function of

the size of price changes is not Normal). Notice that these 3 models are setup to have the

same mean duration between price adjustments, but other moments of the distribution of

adjustment times will differ. Moreover, the models also differ in terms of the nature of the

friction (menu cost vs observation). In spite of these differences, Proposition 2 states that

the cumulative output effect of a small monetary shock is identical in these models.

4.3 Large shocks: State and time dependent models differ

In this section we examine the impact effect on prices of large shocks. The result differs

between time and state dependent models. For time dependent models, the size of the

monetary shock δ is immaterial. Instead for state dependent models, large shocks behave

differently than small shocks.

Proposition 3. Consider the impact effect of a once and for all change in money of size

δ for an economy at steady state with inflation rate π. Then in a time dependent model as

in Section 3.3 we have:

Θ(δ; π) = 0 for all δ ≥ 0 , (31)

while in a state dependent model as in Section 3.2 with η = ̺ and no correlation between

the idiosyncratic shocks across the products of the firm (σ̄ > 0) we have:

∂Θ(δ; 0)

∂δ
≥ 0 with

Θ(δ; 0)

δ
→ 1 as δ → 2Std(∆pi; 0) (32)
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and in the general state dependent decision rules as in equation (9) with σ > 0, for each π

there is a δ̄(π) such that:

Θ(δ; π) = δ for all δ ≥ δ̄(π) . (33)

The explanation why the effect of monetary shocks in time dependent models is inde-

pendent of the size of the monetary shock δ, is familiar from the Calvo model, and it is the

exactly the same as the one given for small shocks. The fact that for state dependent models

the impact effect is different for large vs small shocks is the hallmark of fixed cost adjustment

models. Put it simply, when the shock is large enough, a large fraction of firms will pay

the fixed cost and adjust. Interestingly, equation (32) gives a hint of when a shock is large

enough so that all the firms will adjust immediately, namely when the shock δ is larger than

the steady state standard deviation of price changes. This result can be easily be seen in the

case of n = 1 product, since the standard deviation of price changes Std(∆pi) = ḡ, since price

changes are ±ḡ with the same probability. Recall that in this case the distribution of price

gaps in the steady state right before the shock lies in the interval [−ḡ, ḡ]. Thus, when the

shock is large enough so that δ > 2ḡ then every single firm will find that right after the shock

has its price gap outside the range of inaction. A similar reasoning holds for any number of

products, i.e. for n ≥ 1. The proof of the result in equation (32) and a characterization of

this function are developed in Proposition 8 (iii) and Proposition 10 of Alvarez and Lippi

(2014).

In the general case, fixing all the parameters that define the set of inaction, one can find

a value of δ that is large enough so that every price gap vector after the aggregate shock is

outside the set of inaction, i.e. (g1 − δ, g2 − δ, . . . , gn − δ) /∈ I. This only requires that the

set of inaction I ⊂ Rn is bounded. Thus, one can take δ̄(π) to be the difference between the

largest and smallest values in I.36 Alvarez, Le Bihan, and Lippi (2016) characterize δ̄(0), the

smallest value of the aggregate shock δ for which all firms adjust their prices on impact for

a multiproduct Calvo+ model. In this case for each value of n ≥ 1 the threshold δ̄(0) is a

function of ℓ ∈ [0, 1], the fraction of all price changes that occur due to the Calvo parameters.

As ℓ increases, the value of δ̄(0) also increases, and indeed as ℓ → 1 then δ̄ → ∞. This is

quite intuitive: as the importance of the time dependence of the decision rules increase (i.e.

as ℓ increases), then threshold for the aggregate shock δ̄ increases.

36We can take δ̄(π) = g(π)max − g(π)min where g(π)max =
{inf x : (x, . . . , x) ≥ (g1, . . . , gn) for all g ∈ I(π)} and g(π)min = {supx : (x, . . . , x) ≤ (g1, . . . , gn) for all g ∈ I(π)}.
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5 Some exploratory evidence

In this section we exploit the predictions of Propositions 1 and 3 to explore the nature of

the friction that underlies a sticky response to shocks. As discussed above, on the one hand

theory predicts that with time dependent rules the impact effect is independent of the size

of the shock. On the other hand, with state dependent rules theory predicts that the impact

effect is second order for small shocks and first order for large shocks. Thus, if the impact

of a cost shock on prices depends on the size of the shock, the evidence will point towards

state dependence. In the empirical exploration, in particular, we study whether changes on

the exchange rate of different sizes imply a differential effect for inflation at different horizons

after the shock. We focus on low inflation countries since the approximation of Propositions

1 and 3 is accurate, as discussed in Section 4, for low levels of inflation. In addition, we study

the period post Bretton Woods, so that changes in the exchange rate better approximate an

unexpected and permanent shock in costs. Overall, in our exploratory results, we find some

evidence of non-linear effects. This evidence is stronger for flexible exchange countries. We

will discuss the dimensions in which this result is robust, and the ones in which it is not.

Data. We start from the whole sample of Consumer Price Index and Exchange rate data

from the International Financial Statistics database from the IMF. For the CPI index we

use “CPI of all items”. For the Exchange rate we use the end of period exchange rate in

units of domestic currency per unit of US dollars.37 With this data we construct an initial

unbalanced panel {πi,t,∆ei,t}i∈I,t∈Ti
where I is the set of all countries and Ti is the set of dates

for which observations are available for country i. To be consistent with the setups described

in Section 3 and Section 4 we restrict the sample in two dimensions. First, by focusing

on low inflation countries. As discussed in Section 4, the result that the impact effect is

second order for state dependent models, Proposition 1, is accurate for low levels of inflation

because as inflation increases the higher order terms also increase. Still, to identify the effects

of large shocks, large devaluations/revaluations are needed in the sample and these events are

sometimes associated with countries experiencing moderate and high inflation rates. With

this trade-off in mind we restrict the sample as follows: we include the inflation rate of

37In terms of the data by choosing CPI and Exchange rate against the US and working at a monthly
frequency we take an alternative route from the literature that studies the exchange rate pass through; see
for example Campa and Goldberg (2005), Bussiere (2013) and the Handbook Chapter Burstein and Gopinath
(2014). The reasons for studying CPI and the exchange rate against the US Dollar are to obtain as many
observations as possible (monthly time series for import prices and effective exchange rate are available
only for a subset of countries), and because the model outlined in Section 3 is better suited for the pricing
decisions of retailers. In addition, we work at a monthly frequency to better approximate impact effects. It
is worth noting that by using Import prices and effective exchange rates we still find some weak evidence of
non-linearity. This evidence is in line with Bussiere (2013).
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country i in period t in the sample if the 10 year moving average of annual inflation is less

than 8 percent (for our baseline specification).38 Second, we further restrict the sample by

focusing on the observations after Bretton Woods. The once and for all monetary shock has

two main features: it is unexpected and permanent. The evidence in this direction favors

flexible exchange rate countries. To classify a country as a flexible exchange rate country

we follow the classifications of Reinhart and Rogoff (2004), Ilzetzki, Reinhart, and Rogoff

(2008) and Levy-Yeyati and Sturzenegger (2003). With these two restrictions, we obtain a

(unbalanced) panel for our main specification.39

Table 1: Descriptive Statistics

Post-1974 Sample, Inflation Threshold 8%
Sample Mean(π) sd(π) Mean(∆e) sd(∆e) # Large innovations |∆e|

>7% >10% >15%
All countries
(13,025 obs)

3.51 3.76 0.08 2.81 368 131 22

No Fixed ER
(6,137 obs)

3.14 3.38 0.14 3.00 229 88 18

Post-1990 Sample, Inflation Threshold 8%
All countries
(8,488 obs)

2.95 2.80 0.13 2.87 272 109 18

No Fixed ER
(5,010 obs)

2.76 2.75 0.19 3.07 204 82 16

Inflation π is the 12-month percentage change of the CPI. The innovations |∆e| are the percent deprecia-
tion (or appreciation) of the bilateral nominal exchange rate vs the US dollar over a 1 month period. The
criterion for including a country-month observation in the sample is that the 60-month moving average
inflation in that month is below 8% (per year) and a per-capita GDP in that country-month of at least
$5,000 (PPP).

Table 1 summarizes inflation, devaluations, and other main features of our panel data

(see Table 9 in Appendix H for more information). There are 13,025 observations in the

main sample. The panel is unbalanced because of different data availability among countries

for the CPI and Exchange rate data and because countries enter and exit the sample over

time depending on their inflation rates. For inflation, we report the mean and volatility of

annual inflation. For devaluation, we report mean and volatility of our main independent

variable, monthly devaluation. Note that the mean devaluation is not zero but the mean is

38With monthly data this amounts to the following restriction. An observation for country i in period t is
in the sample if πMA

i,t = (
∑k=60

k=−60 πi,t+k)/120 ≤ K = 0.08. We check robustness of our findings for different
windows (24, 36, 48 months) and inflation values (4, 6, 8, and 10 percent).

39We also focus on countries that have a GDP per-capita higher than 5000 USD whenever the value of GDP
per-capita is available. We use the World Bank national accounts data, with data available after 1990 on a
monthly basis. Also, we focus on countries that have populations that are higher than 2 million inhabitants.
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usually at least an order of magnitude smaller than the volatility. The number of devalua-

tions/revaluations that are higher than 7, 10 and 15 percent are 368, 131 and 22, respectively.

Our preferred specification focuses on the sample of countries that are not classified as fixed

exchange rate regimes by Ilzetzki, Reinhart, and Rogoff (2008). For this sample, mean and

volatility of inflation is slightly higher and the number of devaluations/revaluations that are

higher than 7, 10 and 15 percent are 229, 88, 18, respectively.

Specification. Our baseline specification is given by:

πi,(t,t+h) = αi + δt + βh ∆ei,t + γh (∆ei,t)
2 sign (∆ei,t) + ǫπit (34)

where πi,(t,t+h) is the inflation rate of country i on the period from date t to date t+h, ∆et is

the devaluation from date t−1 to date t, and both variables are measured in percent, so that

∆ei,t = 1 is one percent.40 The structural innovation is given by ǫπit. The first term in the

regression is a fixed effect for country i that captures unobserved effects that are constant

over time (for example, the average inflation rate). The second term is a time fixed effect that

captures aggregate shocks that are common to the whole group of countries. The third term

is the linear component of the pass through where the coefficient βh measures the impact of

a devaluation on period t over inflation on the period that goes from t to t + h. The fourth

term measures whether large changes in the exchange rate have a higher pass through. If

this is the case for horizon h we should expect that γh > 0. Note that the sign(·) operator

is introduced for symmetry.41

One note of caution is due: the regression coefficient can be interpreted as a measure of the

response of inflation to an exogenous nominal exchange rate innovation under the assumption

40To be precise, devaluation is computed as ∆ei,t = (ei,t/ei,t−1−1)×100 where ei,t is the end of the period
bilateral exchange rate of country i against the US and inflation is computed as πi,(t,t+h) = (pi,t+h/pi,t −
1)× 100 where h = 1, 3, 6, 12, 24 months and pi,t is the price level reported for period t. Note that the CPI
pi,t is constructed using prices that are sampled during period t; that is, between the end of period t− 1 and
the end of period t.

41This specification differs from the ones usually estimated in the literature that studies exchange rate
pass through (see for example, Campa and Goldberg (2005), and the Handbook Chapter by Burstein and
Gopinath (2014)) in two dimensions. First, instead of estimating equation (36) without a non-linear term
(that is, γh = 0) several papers estimates a distributed lag regression

πi,t = αi + δt +
T
∑

s=0

βs∆ei,t−s + ǫπit (35)

It can be shown that under the identifying assumption that the exchange rate follows a random walk the two
specifications, distributed lags vs linear projections, are analogous. Second, our specification in equation (34)
introduces a non-linear term. An exception is Bussiere (2013). This paper runs cross country and country by
country non-linear specifications and finds non-linearities in the pass through of the effective exchange rate
into import and export prices.
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that the shock is orthogonal to the other regressors and unanticipated. This assumption,

which gave us a motive to focus on flexible exchange rate countries where exchange rates

are close to random walks, must be taken with caution. First, the specification implies that

changes in inflation do not feed-back in devaluation by directly assuming that the nominal

exchange rate follows a Random Walk with its own structural shocks. Second, it can be the

case that large swings on the exchange rate are associated with some particular observable or

unobservable economic conditions that are not modeled; i.e. shocks to the exchange rate are

not orthogonal. For example, a large devaluation might occur after a sustained appreciation

of the real exchange rate. In this case, a large devaluation could imply a lower pass through

(see for example, Burstein, Eichenbaum, and Rebelo (2005) and Burstein and Gopinath

(2014)). In addition, devaluations might occur during bad times, as in Kehoe and Ruhl

(2009) or might actually occur as the equilibrium response to real shocks as suggested in

Burstein, Eichenbaum, and Rebelo (2007).

Main Results. The results for our main specification are in Table 2. Overall, we find some

evidence of non-linear effects. In particular, we find a statistically significant correlation

between large devaluations/revaluations and higher inflation transmission for the complete

sample and for the sample where we restrict to countries not classified as having fixed a

exchange rate regime as defined in Ilzetzki, Reinhart, and Rogoff (2008). The top panel of

Table 2 reports the results of a Panel regression of equation (34) for the sample excluding

fixed exchange rate countries post 1974. As one would expect the total pass through of

exchange rate into prices increases with the horizon; from 0.01 after one month to around

0.1 after two years for a 1 percent shock. The nonlinear component of the pass through

is statistically different from zero, and it is quantitatively relevant for large shocks. The

estimated coefficients imply that a devaluation (revaluation) of 10 percent is associated with

a 0.2 percent point of increase in the inflation rate on impact. In addition to the one 1 month

pass through, the non-linear component is significant at the 3 month horizon. Second, in

the mid panel, we report the estimates of equation (34) obtained when using all countries

(i.e. not tossing those classified as fixed exchange rate regimes). In this case, the non-linear

component decreases but it is still statistically significant. We notice that in this sample the

total pass through is higher at every horizon compared to the sample that excludes “fixed

exchange rate countries”, both through the linear and non-linear component. The inclusion

in the sample of countries which are on a fixed exchange rate arrangement also gives rise,

across several specifications, to a significant and negative coefficient for the non-linear term

at the 24-month horizon. None of the theories that we reviewed can fit this pattern which

we find puzzling. We conjecture that this may be related to the low-pass through of large
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Table 2: Inflation Pass Through: Baseline Specification

1974-2014 Sample, excluding Fixed ER countries (6,811 obs.)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.009∗∗ 0.027∗∗∗ 0.056∗∗∗ 0.053∗∗∗ 0.098∗∗∗
(0.004) (0.008) (0.012) (0.016) (0.023)

γh × 100 (quadratic term) 0.114∗∗∗ 0.152∗∗∗ 0.104 0.111 -0.060
(0.027) (0.054) (0.106) (0.133) (0.158)

R2 0.20 0.31 0.41 0.51 0.62

1974-2014 Sample, All countries (13,723 obs)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.019∗∗∗ 0.039∗∗∗ 0.062∗∗∗ 0.091∗∗∗ 0.184∗∗∗
(0.004) (0.010) (0.013) (0.021) (0.024)

γh × 100 (quadratic term) 0.058∗∗ 0.166 0.097 0.104 -0.448∗∗∗
(0.028) (0.112) (0.140) (0.257) (0.149)

R2 0.11 0.19 0.28 0.39 0.46

1990-2014 Sample, All countries (9,179 obs)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.009∗∗∗ 0.033∗∗∗ 0.060∗∗∗ 0.074∗∗∗ 0.109∗∗∗
(0.003) (0.006) (0.009) (0.012) (0.019)

γh × 100 (quadratic term) 0.088∗∗∗ 0.105∗∗ 0.008 -0.088 -0.314∗∗∗
(0.021) (0.045) (0.066) (0.073) (0.107)

R2 0.17 0.28 0.37 0.47 0.53

All regressions include time and country fixed effects. Exchange rates for all countries except the US
are expressed as the bilateral exchange rate with the US, and as the effective exchange rate for the US.
The sample excluding fixed ER countries drops countries with a pre-announced or de facto peg, crawling
peg, or band narrower than ±2% using the Ilzetzki, Reinhart, and Rogoff (2008) exchange rate regime
classification. One, two or three stars denote the coefficient is statistically different from zero at the 10,
5, or 1% confidence level. The criterion for including a country-month observation in the sample is that
the 60-month moving average inflation in that month is below 8% (per year) and a per-capita GDP in
that country-month of at least $5,000 (PPP). Robust standard errors in parenthesis. See Section 5 for
details.

devaluations that can happen (in countries on a fixed exchange rate regime) as a response to

a persistent misalignment of the real exchange rate, as documented in Burstein, Eichenbaum,

and Rebelo (2005); Burstein and Gopinath (2014). Finally, in the bottom panel of Table 2 we

restrict to a sample with both fixed and flexible exchange rate countries but with observations

after 1990. The non-linear component is again significant, with a smaller overall pass through
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than in the middle panel. This is consistent with the evidence of a lower pass through post

1990 discussed in Taylor (2000).

Robustness. We perform 6 robustness checks (corresponding to Table 3 to Table 7) to

our main specification and sample (Table 2). The results are robust to a different non-linear

specification (Table 3), to the definition of low inflation country (Table 4), to the removal

of time fixed effects (Table 5), to the exclusion of countries whose exchange rate regime is

unclassified (Table 6), and to a different classification of Exchange Rate regimes (Table 7).

Instead, the results lose statistical significance if we remove “outliers” as identified by the

largest devaluation (Table 8). We next discuss each one of these Robustness checks in more

detail.

In Table 3 we show that the results are robust to a different non-linear specification. In

particular, we estimate the following:

πi,(t,t+h) = αi + δt + βh∆ei,t + γh∆ei,tI(|∆ei,t| > K) + ǫπit (36)

where the only difference with equation (34) is the introduction of I(|∆et| > K), as an

indicator of whether the devaluation (or revaluation) in period t was higher than K percent

in absolute value instead of the quadratic term. We report results for K = 10 but we also

check robustness for K = 5, 20. There is evidence of non-linearity for the sample of countries

that are not classified as a fixed exchange rate regime. The evidence is weaker for the sample

of all countries. The linear portion of the pass-through is in line with the one for the main

specification in Table 2. We also run a non-linear specification with a cubic non-linear term

(instead of the quadratic) and the results are similar (table not displayed).

In Table 4 we show that the results are robust to a different definition of low inflation

country. We run the baseline specification under different samples depending on the inflation

threshold that we use for the moving average. Recall that in the main sample an observation

for country i in period t is in the sample if πMA
i,t = (

∑k=60
k=−60 πi,t+k)/120 ≤ K = 8. We find

that, if the threshold used is too low, for example a K=4, the non linear term γh is not

significant. This is also the case if the inflation threshold is set too high. For example for a

threshold of 10 percent, results are not significant for the post 1974 samples, and significant

at 10 per cent confidence level for the post 1990 sample. Still, the non-linear term cannot be

rejected for the thresholds of 5, 6 and 8 percent for the samples post 1974 and post 1990 for

all countries.

In Table 5 we show that the results are robust to removing time fixed effects. The idea is

that adding time fixed effects would remove aggregate shock to the exchange rate common

to all other countries; for example, a change in the US monetary policy. Results regarding
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Table 3: Inflation Pass Through: Piecewise Linear Specification

1974-2014 Sample, excluding Fixed ER countries (6,816 obs.)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.015∗∗∗ 0.034∗∗∗ 0.058∗∗∗ 0.058∗∗∗ 0.094∗∗∗
(0.004) (0.007) (0.009) (0.014) (0.020)

γh × 100 (non-linear term) 0.017∗∗ 0.027∗ 0.027 0.019 -0.006
(0.008) (0.016) (0.023) (0.035) (0.049)

R2 0.30 0.45 0.41 0.51 0.62

1974-2014 Sample, All countries (13,733 obs)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.022∗∗∗ 0.047∗∗∗ 0.064∗∗∗ 0.092∗∗∗ 0.157∗∗∗
(0.004) (0.007) (0.010) (0.014) (0.022)

γh × 100 (non-linear term) 0.012∗ 0.027 0.029 0.033 -0.047
(0.007) (0.018) (0.024) (0.038) (0.046)

R2 0.16 0.26 0.28 0.39 0.46

1990-2014 Sample, All countries (9,184 obs)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.014∗∗∗ 0.038∗∗∗ 0.059∗∗∗ 0.072∗∗∗ 0.100∗∗∗
(0.003) (0.005) (0.007) (0.011) (0.017)

γh × 100 (non-linear term) 0.014∗∗ 0.017 0.004 -0.020 -0.066∗∗
(0.006) (0.011) (0.014) (0.022) (0.032)

R2 0.30 0.44 0.37 0.47 0.53

All regressions include time and country fixed effects. Exchange rates for all countries except the US
are expressed as the bilateral exchange rate with the US, and as the effective exchange rate for the US.
The sample excluding fixed ER countries drops countries with a pre-announced or de facto peg, crawling
peg, or band narrower than ±2% using the Ilzetzki, Reinhart, and Rogoff (2008) exchange rate regime
classification. The piecewise linear specification uses a threshold for large devaluations equal to 10%. One,
two or three stars denote the coefficient is statistically different from zero at the 10, 5, or 1% confidence
level. The criterion for including a country-month observation in the sample is that the 60-month moving
average inflation in that month is below 8% (per year) and a per-capita GDP in that country-month of
at least $5,000 (PPP). Robust standard errors in parenthesis. See Section 5 for details.

the the non-linearity of the impact effect are robust in this specification as well.42

In Table 6 we show that the results are robust to the exclusion of countries that are not

classified by Ilzetzki, Reinhart, and Rogoff (2008). This will decrease the number of total

observations. In this case, the 2 year linear pass through is again in line with the the main

42We thank our discussant Greg Kaplan for suggesting this alternative specification.
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Table 4: Robustness: Inflation pass through on impact (1 month)

1974-2014 sample: All Countries

inflation threshold below: 4% 5% 6% 8% 10%

Non-linear effect × !!! !! !! ×
# obs 8,263 9,774 11,030 13,723 16,157

1974-2014 sample: excluding Fixed ER countries

inflation threshold below: 4% 5% 6% 8% 10%

Non-linear effect × !!! !!! !!! ×
# obs 4,566 5,240 5,795 6,811 7,587

1990-2014 sample: All Countries

inflation threshold below: 4% 5% 6% 8% 10%

Non-linear effect × !!! !!! !!! !
# obs 6,678 7,651 8,314 9,179 9,813

1990-2014 sample: excluding Fixed ER countries

inflation threshold below: 4% 5% 6% 8% 10%

Non-linear effect × !!! !!! !!! !
# obs 4,227 4,751 5,145 5,684 5,997

All regressions include time and country fixed effects. Three, two or one check symbols denote that the
coefficient of the non-linear term is statistically different from zero at the 1%, 5% or 10% confidence level
(respectively). A cross indicates the coefficient is not statistically different from zero at the 10% confidence
level. Standard errors are computed using Stata robust options to deal with minor problems about
normality, heteroscedasticity, or some observations that exhibit large residuals, leverage or influence.
The sample excluding fixed ER countries drops countries with a pre-announced or de facto peg, crawling
peg, or band narrower than ±2% using the Ilzetzki, Reinhart, and Rogoff (2008) exchange rate regime
classification. The criterion for including a country-month observation in the sample is that the 60-
month moving average inflation in that month is below 8% (per year) and a per-capita GDP in that
country-month of at least $5,000 (PPP).

specification. Non-linear effects are rejected for the sample of all countries (fixed and flex),

but cannot be rejected for the sample excluding the fixed exchange rate countries, as we can

see from the top panel. For the sample of fixed and flexible exchange rate countries post

1990 non-linear effects cannot be rejected.

In Table 7 we show that the results are robust to a different classification of fixed exchange
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Table 5: Inflation Pass Through: Excluding Time Fixed Effects

1974-2014 Sample, excluding Fixed ER countries (6,811 obs.)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) -0.005 -0.000 0.008 0.000 -0.016
(0.003) (0.006) (0.011) (0.015) (0.022)

γh × 100 (quadratic term) 0.119∗∗∗ 0.172∗∗∗ 0.193 0.168 0.102
(0.027) (0.056) (0.123) (0.146) (0.177)

R2 0.05 0.11 0.18 0.28 0.40

1974-2014 Sample, All countries (13,723 obs)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.013∗∗∗ 0.026∗∗∗ 0.031∗∗∗ 0.058∗∗∗ 0.096∗∗∗
(0.004) (0.008) (0.012) (0.019) (0.022)

γh × 100 (quadratic term) 0.039 0.117 0.132 0.072 -0.326∗
(0.035) (0.101) (0.140) (0.258) (0.186)

R2 0.02 0.06 0.11 0.17 0.23

1990-2014 Sample, All countries (9,179 obs)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) -0.005∗ 0.001 0.002 0.001 -0.006
(0.002) (0.005) (0.008) (0.011) (0.016)

γh × 100 (quadratic term) 0.108∗∗∗ 0.154∗∗∗ 0.165∗ 0.069 -0.063
(0.021) (0.045) (0.090) (0.088) (0.112)

R2 0.05 0.11 0.18 0.27 0.38

All regressions include country fixed effects. Exchange rates for all countries except the US are expressed
as the bilateral exchange rate with the US, and as the effective exchange rate for the US. The sample
excluding fixed ER countries drops countries with a pre-announced or de facto peg, crawling peg, or band
narrower than ±2% using the Ilzetzki, Reinhart, and Rogoff (2008) exchange rate regime classification.
One, two or three stars denote the coefficient is statistically different from zero at the 10, 5, or 1%
confidence level. The criterion for including a country-month observation in the sample is that the 60-
month moving average inflation in that month is below 8% (per year) and a per-capita GDP in that
country-month of at least $5,000 (PPP). Robust standard errors in parenthesis.

rate countries. In particular, we re-run the main specification for the main sample using the

classification in Levy-Yeyati and Sturzenegger (2003). The linear component of the pass

through is again similar to the one in Table 2. Non-linear effects cannot be rejected on

impact.

In Table 8 we show that the statistical significance of the non linear term is not robust

to dropping “outliers”. In particular, in Table 8 we present the results of estimating our
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Table 6: Robustness: Excluding Unclassified Countries

1974-2010 Sample, excluding Fixed ER countries (3,896 obs.)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.008 0.013 0.029∗∗ 0.029∗ 0.081∗∗∗
(0.005) (0.009) (0.012) (0.017) (0.024)

γh × 100 (quadratic term) 0.096∗∗∗ 0.149∗∗∗ 0.134 0.138 -0.034
(0.021) (0.038) (0.089) (0.119) (0.152)

R2 0.26 0.41 0.55 0.61 0.69

1974-2010 Sample, All countries (10,808 obs)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.024∗∗∗ 0.044∗∗∗ 0.062∗∗∗ 0.097∗∗∗ 0.188∗∗∗
(0.005) (0.010) (0.014) (0.023) (0.026)

γh × 100 (quadratic term) 0.029 0.133 0.079 0.090 -0.434∗∗∗
(0.032) (0.111) (0.140) (0.275) (0.148)

R2 0.11 0.19 0.29 0.40 0.47

1990-2010 Sample, All countries (6,436 obs)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.011∗∗∗ 0.029∗∗∗ 0.045∗∗∗ 0.065∗∗∗ 0.100∗∗∗
(0.004) (0.007) (0.009) (0.014) (0.021)

γh × 100 (quadratic term) 0.064∗∗∗ 0.082∗∗ 0.023 -0.074 -0.294∗∗∗
(0.023) (0.041) (0.061) (0.074) (0.100)

R2 0.18 0.30 0.42 0.48 0.54

All regressions include time and country fixed effects. Exchange rates for all countries except the US
are expressed as the bilateral exchange rate with the US, and as the effective exchange rate for the
US. The sample excluding fixed ER countries drops countries with a pre-announced or de facto peg,
crawling peg, or band narrower than ±2% using the Ilzetzki, Reinhart, and Rogoff (2008) exchange rate
regime classification. We exclude from the sample unclassiffied countries. One, two or three stars denote
the coefficient is statistically different from zero at the 10, 5, or 1% confidence level. The criterion for
including a country-month observation in the sample is that the 60-month moving average inflation in
that month is below 8% (per year) and a per-capita GDP in that country-month of at least $5,000 (PPP).
Robust standard errors in parenthesis. See Section 5 for details.

main specification for each sample and dropping the observation (country-month pair) with

the largest devaluation of the exchange rate. Thus, the size of the sample of Table 2 and

Table 8 differ by one observation. The consequence of dropping the largest outlier is to

yield a substantial increase in the standard errors of the estimated coefficients, and a modest

change of their values. In particular, in most cases the coefficient corresponding to the non-
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Table 7: Inflation Pass Through: Levy-Yeyati and Sturzenegger Classification

1974-2014 Sample, excluding Fixed ER countries (9,570 obs.)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.011∗∗∗ 0.031∗∗∗ 0.065∗∗∗ 0.088∗∗∗ 0.125∗∗∗
(0.004) (0.007) (0.011) (0.014) (0.020)

γh × 100 (quadratic term) 0.108∗∗∗ 0.160∗∗ 0.082 -0.010 -0.227∗
(0.036) (0.076) (0.121) (0.133) (0.130)

R2 0.29 0.44 0.42 0.54 0.61

1974-2014 Sample, All countries (13,733 obs)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.020∗∗∗ 0.040∗∗∗ 0.064∗∗∗ 0.092∗∗∗ 0.184∗∗∗
(0.004) (0.010) (0.013) (0.021) (0.024)

γh × 100 (quadratic term) 0.057∗∗ 0.166 0.091 0.097 -0.448∗∗∗
(0.028) (0.112) (0.138) (0.255) (0.149)

R2 0.16 0.26 0.28 0.39 0.46

1990-2014 Sample, All countries (9,184 obs)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.010∗∗∗ 0.033∗∗∗ 0.060∗∗∗ 0.074∗∗∗ 0.109∗∗∗
(0.003) (0.006) (0.009) (0.012) (0.019)

γh × 100 (quadratic term) 0.088∗∗∗ 0.109∗∗ 0.008 -0.088 -0.314∗∗∗
(0.022) (0.046) (0.066) (0.073) (0.107)

R2 0.30 0.44 0.37 0.47 0.53

All regressions include time and country fixed effects. Exchange rates for all countries except the US
are expressed as the bilateral exchange rate with the US, and as the effective exchange rate for the US.
The sample excluding fixed ER countries drops countries with a pre-announced or de facto peg, crawling
peg, or band narrower than ±2% using the Levy-Yeyati and Sturzenegger (2003) exchange rate regime
classification. One, two or three stars denote the coefficient is statistically different from zero at the 10,
5, or 1% confidence level. The criterion for including a country-month observation in the sample is that
the 60-month moving average inflation in that month is below 8% (per year) and a per-capita GDP in
that country-month of at least $5,000 (PPP). Robust standard errors in parenthesis. See Section 5 for
details.

linear term is no longer statistically significant at conventional confidence levels. We also

tried dropping the two largest devaluations, and the results are similar (results not shown).

Instead, dropping one or more observations with the highest inflation rates has no effect

on the results. We conclude with one remark on large devaluations in our sample and the

notion of “outliers” in our empirical analysis. Large devaluations are obviously crucial to our
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Table 8: Inflation Pass Through: Excluding Outliers

1974-2014 Sample, excluding Fixed ER countries (6,810 obs.)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.006 0.021∗∗ 0.034∗∗ 0.028 0.075∗∗
(0.006) (0.010) (0.015) (0.023) (0.035)

γh × 100 (quadratic term) 0.154∗ 0.251 0.443∗ 0.482 0.280
(0.084) (0.163) (0.253) (0.389) (0.570)

R2 0.20 0.31 0.41 0.51 0.62

1974-2014 Sample, All countries (13,722 obs)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.020∗∗∗ 0.029∗∗ 0.044∗∗∗ 0.061∗∗ 0.186∗∗∗
(0.005) (0.013) (0.014) (0.027) (0.030)

γh × 100 (quadratic term) 0.048 0.323 0.364∗ 0.543 -0.479
(0.065) (0.200) (0.210) (0.420) (0.394)

R2 0.11 0.19 0.28 0.39 0.46

1990-2014 Sample, All countries (9,178 obs)
horizon h: 1 month 3 month 6 month 12 month 24 month

βh (linear term) 0.009∗ 0.029∗∗∗ 0.048∗∗∗ 0.070∗∗∗ 0.119∗∗∗
(0.005) (0.009) (0.011) (0.018) (0.027)

γh × 100 (quadratic term) 0.099 0.167 0.175 -0.026 -0.462
(0.063) (0.128) (0.138) (0.240) (0.348)

R2 0.17 0.28 0.37 0.47 0.53

All regressions include time and country fixed effects. To examine the effect of outliers, the largest
devaluation in each sample is excluded. Exchange rates for all countries except the US are expressed
as the bilateral exchange rate with the US, and as the effective exchange rate for the US. The sample
excluding fixed ER countries drops countries with a pre-announced or de facto peg, crawling peg, or band
narrower than ±2% using the Ilzetzki, Reinhart, and Rogoff (2008) exchange rate regime classification.
One, two or three stars denote the coefficient is statistically different from zero at the 10, 5, or 1%
confidence level. The criterion for including a country-month observation in the sample is that the 60-
month moving average inflation in that month is below 8% (per year) and a per-capita GDP in that
country-month of at least $5,000 (PPP). Robust standard errors in parenthesis.

analysis of size-dependent propagation of shocks: absent large devaluations, we could not

implement our analysis. Our quest for low inflation countries and large devaluations makes

it hard to gather a lot of observations that are useful to estimate the non-linear effect. As

shown in Table 1, the sample that excludes the countries on a fixed ER regime has only 18

devaluations larger than 15%, and only 5 devaluations larger than 20% (not reported in the
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table). Indeed, the largest one is the 46% devaluation by South Korea (in 1996) and the

second largest is around 22%. Dropping the Korean “outlier” is critical for the statistical

significance of the non-linear coefficient in our baseline regression. As mentioned, this is a

single but important observation that is relevant in our sample of low-inflation countries that

feature a few large devaluations.

6 Concluding remarks

We showed analytically that in a broad class of models the propagation of a monetary impulse

is independent of the nature of the sticky price friction when shocks are small. In particular,

we proved that for economies with low inflation the total cumulated output response is

approximately the same in TD and SD models, provided the models are fit to the same

frequency of adjustment and the same kurtosis of the size of price changes. These results

are quite robust: we show that they also apply in the presence of moderate rates of steady

state inflation. The main message from these results is that, as long as one is interested in

understanding the propagation of small monetary shocks, what matters are the frequency

and the kurtosis that the models are fitted to. In short, the underlying nature of the nominal

friction is irrelevant for the propagation of small shocks. Instead, the propagation of large

shocks depends on the nature of the friction: the impulse response of inflation to monetary

shocks is independent of the shock size in time-dependent models, while it is non-linear in

state-dependent models.

We devised a simple test for the presence of such non-linear effects using data on exchange

rate devaluations and inflation for a panel of countries over 1974-2014. We presented some ev-

idence of a non-linear effect of exchange rate changes on prices in a sample of flexible-exchange

rate countries with low inflation. Our baseline results are robust to different functional form

specifications (piecewise linear, quadratic, or distributed lags), as well as different controls

(e.g. the same results appear when controlling for GDP growth rates, when no time fixed

effects are used or when a different exchange rate regime classification is used). We also high-

light some dimensions along which these empirical patterns are not robust. The non-linear

effect is not robust to the introduction of fixed exchange rate countries into the full sample,

and it is not robust to removing outliers as defined by the size of the large devaluations. In

particular, removing the largest devaluation from the sample drastically increases the stan-

dard errors of the non-linear coefficient on impact, making them statistically not significant

at conventional confidence levels. Nevertheless, dropping large outliers either increases or

yields very similar point estimates of the non-linear coefficient.

48



References

Abel, Andrew B., Janice C. Eberly, and Stavros Panageas. 2007. “Optimal Inattention to

the Stock Market.” American Economic Review 97 (2):244–249.

———. 2013. “Optimal Inattention to the Stock Market With Information Costs and Trans-

actions Costs.” Econometrica 81 (4):1455–1481.

Alvarez, Fernando, Martin Gonzalez-Rozada, Andres Neumeyer, and Martin Beraja. 2015.

“From Hyperinflation to Stable Prices: Argentina’s evidence on menu cost models.”

manuscript, University of Chicago.

Alvarez, Fernando and Francesco Lippi. 2014. “Price Setting With Menu Cost for Multiprod-

uct Firms.” Econometrica 82 (1):89–135.

Alvarez, Fernando E., Herve Le Bihan, and Francesco Lippi. 2016. “The real effects of

monetary shocks in sticky price models: a sufficient statistic approach.” The American

Economic Review forthcoming.

Alvarez, Fernando E., Francesco Lippi, and Luigi Paciello. 2011. “Optimal Price Setting with

Observation and Menu Costs.” Quarterly Journal of Economics 126 (4):1909–1960.

———. 2015. “Phillips curves with observation and menu costs.” Journal of the European

Economic Association forthcoming.

———. 2016. “Monetary Shocks in Models with Inattentive Producers.” Review of Economic

Studies 83:421–459.

Bhattarai, Saroj and Raphael Schoenle. 2014. “Multiproduct Firms and Price-Setting: The-

ory and Evidence from U.S. Producer Prices.” Journal of Monetary Economics forthcom-

ing.

Bonadio, Barthelemy, Andreas M. Fischer, and Philip Saure. 2016. “The Speed of Exchange

Rate Pass-Through.” Working paper, Swiss National Bank.

Bonomo, Marco, Carlos Carvalho, and Rene’ Garcia. 2010. “State-Dependent Pricing under

Infrequent Information: A Unified Framework.” Tech. rep., SSRN.

Bonomo, Marco, Carlos Carvalho, Rene Garcia, and Vivian Malta. 2016. “Persistent Mone-

tary Non-neutrality in an Estimated Model with Menu Costs and Partially Costly Infor-

mation.” PUC Rio, Mimeo.

49



Brunnermeier, Markus K. and Yuliy Sannikov. 2014. “A Macroeconomic Model with a Fi-

nancial Sector.” American Economic Review 104 (2):379–421.

Burstein, Ariel, Martin Eichenbaum, and Sergio Rebelo. 2005. “Large Devaluations and the

Real Exchange Rate.” Journal of Political Economy 113 (4):742–784.

———. 2007. “Modeling exchange rate passthrough after large devaluations.” Journal of

Monetary Economics 54 (2):346–368.

Burstein, Ariel and Gita Gopinath. 2014. International Prices and Exchange Rates, vol. 4,

chap. 7. Elsevier, 391–451. Prepared for the Handbook of International Economics, Vol.

IV.

Burstein, Ariel T. 2006. “Inflation and output dynamics with state-dependent pricing deci-

sions.” Journal of Monetary Economics 53 (7):1235–1257.

Bussiere, Matthieu. 2013. “Exchange Rate Pass-through to Trade Prices: The Role of Non-

linearities and Asymmetries.” Oxford Bulletin of Economics and Statistics 75 (5):731–758.

Caballero, Ricardo J. and Eduardo M.R.A. Engel. 1993. “Microeconomic rigidities and ag-

gregate price dynamics.” European Economic Review 37 (4):697 – 711.

———. 2007. “Price stickiness in Ss models: New interpretations of old results.” Journal of

Monetary Economics 54 (Supplement):100–121.

Caballero, R.J. 1989. “Time Dependent Rules, Aggregate Stickiness And Information Exter-

nalities.” Discussion Papers 198911, Columbia University.

Calvo, Guillermo A. 1983. “Staggered prices in a utility-maximizing framework.” Journal of

Monetary Economics 12 (3):383–398.

Campa, Jose Manuel and Linda S Goldberg. 2005. “Exchange rate pass-through into import

prices.” Review of Economics and Statistics 87 (4):679–690.

Caplin, Andrew and John Leahy. 1991. “State-Dependent Pricing and the Dynamics of Money

and Output.” The Quarterly Journal of Economics 106 (3):683–708.

Caplin, Andrew S and Daniel F Spulber. 1987. “Menu Costs and the Neutrality of Money.”

The Quarterly Journal of Economics 102 (4):703–25.

Carvalho, Carlos and Felipe Schwartzman. 2015. “Selection and Monetary Non-Neutrality in

Time-Dependent Pricing Models.” The Journal of Monetary Economics (forthcoming).

50



Cavallo, Alberto and Roberto Rigobon. 2016. “The Billion Prices Project: Using online prices

for measurement and research .” Working paper 22111, NBER.

Christiano, Lawrence J., Martin Eichenbaum, and Charles L. Evans. 1999. Monetary policy

shocks: What have we learned and to what end?, vol. 1 PartA, chap. 2. Elsevier, 65 – 148.

Handbook of Macroeconomics.

———. 2005. “Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy.”

Journal of Political Economy 113 (1):1–45.

Eichenbaum, Martin, Nir Jaimovich, and Sergio Rebelo. 2011. “Reference Prices, Costs, and

Nominal Rigidities.” American Economic Review 101 (1):234–62.

Fernandez-Villaverde, Jesus, Pablo Guerron-Quintana, Keith Kuester, and Juan Rubio-

Ramirez. 2015. “Fiscal Volatility Shocks and Economic Activity.” American Economic

Review 105 (11):3352–84.

Gagnon, E. 2009. “Price Setting During Low and High Inflation: Evidence from Mexico*.”

Quarterly Journal of Economics 124 (3):1221–1263.

Gagnon, Etienne, David Lopez-Salido, and Nicolas Vincent. 2012. Individual Price Adjust-

ment along the Extensive Margin, chap. 4. University of Chicago Press, 235–281.

Gertler, Mark and John Leahy. 2008. “A Phillips Curve with an Ss Foundation.” Journal of

Political Economy 116 (3):533–572.

Giavazzi, Francesco, Tullio Jappelli, and Marco Pagano. 2000. “Searching for non-linear

effects of fiscal policy: Evidence from industrial and developing countries.” European

Economic Review 44 (7):1259 – 1289.

Golosov, Mikhail and Robert E. Jr. Lucas. 2007. “Menu Costs and Phillips Curves.” Journal

of Political Economy 115:171–199.

Ilzetzki, Ethan, Carmen Reinhart, and Kenneth Rogoff. 2008. “Exchange rate arrangements

entering the 21st century: which anchor will hold?” University of Maryland and Harvard

University .

Jorda, Oscar. 2005. “Estimation and Inference of Impulse Responses by Local Projections.”

American Economic Review 95 (1):161–182.

Kaplan, Greg and Gianluca Violante. 2014. “A Model of the Consumption Response to Fiscal

Stimulus Payments.” Econometrica 82:1199–1239.

51



Kehoe, Timothy J and Kim J Ruhl. 2009. “Sudden stops, sectoral reallocations, and the real

exchange rate.” Journal of Development Economics 89 (2):235–249.

Kiley, Michael. 2002. “Partial Adjustment and Staggered Price Setting.” Journal of Money,

Credit and Banking 34 (2):283–98.

Klenow, Peter J. and Oleksiy Kryvtsov. 2008. “State-Dependent or Time-Dependent Pric-

ing: Does It Matter for Recent U.S. Inflation?” The Quarterly Journal of Economics

123 (3):863–904.

Levy-Yeyati, Eduardo and Federico Sturzenegger. 2003. “To Float or to Fix: Evidence on the

Impact of Exchange Rate Regimes on Growth.” American Economic Review 93 (4):1173–

1193.

Magnani, Jacopo, Aspen Gorry, and Ryan Oprea. 2016. “Time and State Dependence in an

Ss Decision Experiment.” American Economic Journal: Macroeconomics 8 (1):285–310.

Mankiw, N. Gregory and Ricardo Reis. 2002. “Sticky Information Versus Sticky Prices:

A Proposal To Replace The New Keynesian Phillips Curve.” The Quarterly Journal of

Economics 117 (4):1295–1328.

Martins, Fernando. 2005. “The price setting behaviour of Portuguese firms - evidence from

survey data .” Working Paper Series 562, European Central Bank.

Midrigan, Virgiliu. 2011. “Menu Costs, Multi-Product Firms, and Aggregate Fluctuations.”

Econometrica 79 (4):1139–1180.

Nakamura, Emi and Jon Steinsson. 2010. “Monetary Non-Neutrality in a Multisector Menu

Cost Model.” The Quarterly Journal of Economics 125 (3):961–1013.

Pollard, Patricia S and Cletus C Coughlin. 2004. “Size matters: asymmetric exchange rate

pass-through at the industry level.” University of Nottingham Research Paper 13 (2004).

Reinhart, Carmen M. and Kenneth S. Rogoff. 2004. “The Modern History of Exchange Rate

Arrangements: A Reinterpretation.” The Quarterly Journal of Economics 119 (1):1–48.

Reis, Ricardo. 2006. “Inattentive producers.” Review of Economic Studies 73 (3):793–821.

Sheedy, Kevin D. 2010. “Intrinsic inflation persistence.” Journal of Monetary Economics

57 (8):1049–1061.

Sheshinski, Eytan and Yoram Weiss. 1983. “Optimum Pricing Policy under Stochastic Infla-

tion.” Review of Economic Studies 50 (3):513–29.

52



Taylor, John B. 1980. “Aggregate Dynamics and Staggered Contracts.” Journal of Political

Economy 88 (1):1–23.

Taylor, John B. 2000. “Low inflation, pass-through, and the pricing power of firms.” European

Economic Review 44 (7):1389–1408.

Woodford, Michael. 2009. “Information-Constrained State-Dependent Pricing.” Journal of

Monetary Economics 56:s100–s124.

Zbaracki, Mark J., Mark Ritson, Daniel Levy, Shantanu Dutta, and Mark Bergen. 2004.

“Managerial and Customer Costs of Price Adjustment: Direct Evidence from Industrial

Markets.” The Review of Economics and Statistics 86 (2):514–533.

A General Equilibrium Set up

The general equilibrium set up is essentially the one in Golosov and Lucas (2007), adapted

to multi-product firms (see Appendix B in Alvarez and Lippi (2014) for details). Households

have a constant discount rate r and an instantaneous utility function which is additively

separable: a CES consumption aggregate c, linear in labor hours ℓ, log in real balances M/P ,

with constant intertemporal elasticity of substitution 1/ǫ for the consumption aggregate, so

that the labor supply elasticity to real wages is 1/ǫ− 1.

HH Lifetime Utility :

∫ ∞

0

e−r t

(

c(t)1−ǫ − 1

1− ǫ
− α ℓ(t) + log

M(t)

P (t)

)

dt (37)

with CES aggregate : c(t) =





∫ 1

0

(

n
∑

i=1

[Aki(t) cki(t) ]
(1− 1

̺)

)( ̺

̺−1
)(1− 1

η )

dk





η
η−1

(38)

The specification assumes a continuum of Dixit-Stiglitz monopolistic sellers, index by k. Each

seller sells n goods, indexed by the subscript i, where η > 1 is the substitution elasticity

between sellers (or varieties) and ̺ is the elasticity of substitution between products for each

seller. If the elasticities of substitution are the same, i.e. ̺ = η, then we have the simpler

expression:

c(t) =

(

∫ 1

0

n
∑

i=1

[Aki(t) cki(t) ]
1− 1

η dk

)
η

η−1
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To keep the expenditure shares stationary across goods in the face of the permanent idiosyn-

cratic shocks, we assume offsetting preference shocks Aki.
43

The budget constraint of the representative agent is

M(0) +

∫ ∞

0

Q(t)

[

Π̄(t) + τ(t) +W (t)ℓ(t)− R(t)M(t)−
∫ 1

0

∑

i=1

Pk,i(t)cki(t)dk

]

dt = 0

where R(t) is the nominal interest rates, Q(t) = exp
(

−
∫ t

0
R(s)ds

)

the price of a nominal

bond, W (t) the nominal wage, τ(t) the lump sum nominal transfers, and Π̄(t) the aggregate

(net) nominal profits of firms.

A convenient implication of this setup is that nominal wages are proportional to the

money supply in equilibrium, so that a monetary shock increases the firms’ marginal costs

proportionately. In particular, from the first order conditions of the households problem we

obtain that

W (t) = α(r + π)M(t) (39)

where π is coming from a steady state growth in money supply, as we will detail below. For

futher reference, we can also obtain that

c(t)−ǫ =
α

1 + τl

P (t)

W (t)
. (40)

This equation will pin down the impulse response function of output. In particual, note that

the deviation of output from its steady state level will depend on the deviation of the price

level from the steady state price level.

A.1 Optimal Firm Decision Rules and Price Gaps

In this section we show that , in equilibrium, the nonlinear profit function of the firm can

be replaced by a simple quadratic objective function which depends exclusively on the firm’s

price gaps. This simplifies the solution of the problem, first by simplifying the state space of

the firm, and second by allowing an analytical solution of the firms’s decision rules.

An Approximation to the Profit Function. We describe how the profits of the firms,

once we replace the demand from the household first order conditions problem, as well as using

43We assume that the preference shocks satisfy Aki(t) = Zki(t)
η−1 so that, the share of expenditure on

different goods are constant in the frictionless case. This convenient assumption was used by Woodford
(2009), Bonomo, Carvalho, and Garcia (2010) Midrigan (2011) and Alvarez and Lippi (2014).
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the equilibrium values of nominal wages and nominal interest rates. From here we obtain two

results: a description of the state of the firm’s problem, and a characterization (up to second

order) of the objective function of the firm. We note that firms’s profit depend on nominal

wages, nominal interest rates, but also aggregate consumption, trough its determination of

equilibrium real rates as well as a shifter of the firm’s individual demand. Thus if we let

V(pk, c; pk) be the value of the firm k gross profits (i.e. without subtracting the observation

and/or menu costs) as a function of initial price gap vector pk, and for an arbitrary stochastic

process for prices pk and a path of aggregate consumption c we can show (see Appendix B

in Alvarez and Lippi (2014)) that:

V(pk, c; pk) = −Υ

(

W (0)

W̄ (0)

)

E

[

∫ ∞

0

e−rtB

(

n
∑

i=1

g2ik(t)

)

dt

∣

∣

∣

∣

∣

gk(0) = gk

]

+ E

[
∫ ∞

0

e−rto
(

||(gk(t), c(t)− c̄)||2
)

dt

∣

∣

∣

∣

gk(0) = gk

]

+ ι(δ, c) (41)

where Υ > 0 is a function only on W (0)/W̄ and where ι(·) is only a function of δ and the

path of consumption and where o(x) denotes a function that is of smaller order than x. In

particular, this means that there are no interactions between gki(t) c(t), and hence c(t) does

not impact, up to first order, the determination of the optimal prices, provided that the price

gaps and the shock are both small. Moreover, if we include the menu and observation cost,

they can be measured in terms of frictionless profits -for instance the normalize menu cost

will be ψ = ψm/Π̂(0) where the normalized profit function Π̂ is defined below. Importantly,

note that aggregate consumption does not feature on this problem, i.e. it does not interact

with the price gaps. Finally the constant B = (1/2) η (η − 1). If the elasticity of substitution

η between firms and the n products produced by a firm have elasticity ̺ is different, then

instead of B (
∑n

i=1 g
2
ki(t)) the quadratic approximation gives:

̺(η − 1)

2n

(

n
∑

i=1

g2ki(t)

)

− (̺− η)(η − 1)

2n2

(

n
∑

i=1

gki(t)

)2

(42)

Note this is a function of two scalars, the sum of the squares of the price gaps, omitting the

firm’s index k we have: y ≡∑2
j=1 g

2
j as well as the sum of price gaps z ≡∑2

j=1 gj.

Deriving the Approximation. The remaining of this section provides the details to show

the result in equation (41) first, given that cost shocks follow a random walk, and that nominal

interest rates are constant, wages growth at a constant rate, then current profits of the firm

can be written as a function of price gaps and of exogenous process. Second, consider the
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discounted nominal profits of the firm k can we written as, where for simplicity we consider

the case with η = ̺:

Q(t)W (t)Aki(t)Zki(t)
1−η Π̃ (c(t), gki(t))

= Q(t)W (t)Aki(t)Zki(t)
1−η c(t)1−ηǫ e−η gki(t)

[

egik(t)
η

η − 1
− 1

]

where we define the profits Π̃ depending only on price gaps and aggregate consumption. Thus

we can write the expected discounted profits (not taking into account menu or observation

costs) for firm k with initial price gap vector pkas:

E

[

∫ ∞

0

Q(t)

(

n
∑

i=1

W (t) Zki(t)
1−ηAki(t) Π̃ [c(t), gki(t)]

)

dt | gk(0) = gk

]

w/price gap evolving as

gki(t) = gki − log
Zki(t)

Zik(0)
− log

W (t)

W (0)
+
∑

τj<t

∆gki(τj) for each product i = 1, ..., n

Then

V(pk, c; pk) ≡ E

[

∫ ∞

0

e−(r+π) t

(

n
∑

i=1

W (t) c(t)1−ǫη Π̂ (gik(t))

)

dt | g(0) = g

]

(43)

where we define the normalized profits as Π̂(g) ≡ e−η g

[

eg
η

η − 1
− 1

]

Conduction an expansion in equation (43) around zero price gaps and zero aggregate shock

(i.e. steady state consumption), we obtain equation (41).

Price gaps, state space, and aggregate shocks. Consider the case of zero inflation

π = 0. The combination of the different assumptions give that: i) idiosyncratic shocks to cost,

and hence price gaps, are drift-less random walks, ii) steady state inflation is zero (π = 0),

and ii) strategic complementarities of aggregate consumption don’t (first order) affect optimal

decision rules. In turn, i)-iii) imply that, as stated above, both in state dependent and time

dependent models, when prices are adjusted, the price gap is closed. Also, as a corollary,

in state dependent models the state for problem of the firm is given by the n-dimensional

vector of the price gaps, and the inaction set have relatively simple form. For instance, for

n = 1 product, the inaction set is a interval, and for n > 1 when the elasticities are the same

̺ = η, and uncorrelated shocks across products (σ̄ = 0), it is an hypersphere. Furthermore,

after a once and for all shock aggregate nominal shock starting from a steady state, we have

that iv) equilibrium nominal wages once and for, and v) equilibrium nominal interest rates
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are constant, Thus, i)-v) imply that an for impulse response function we can assume that the

decision rules of the firms stay the same before and after the aggregate shock. In particular,

to compute the price level, the only effect is to instantaneously and simultaneously for all

firms and products, price gaps are reduced by the same percentage, and subsequently price

changes are given by the same decision rules as in steady state.

A.2 GE version of impulse response function

Note that we can use the general equilibrium model that we just specified to re-interpret the

cost shock in equation (15) as a shock to money supply. In particular, the shock that we

are studying is produced by a path of money logM(t) = log M̄(t) + δ for all t ≥ 0, where

M̄(t) = M̄eπt is the pre-shock expected path of money, with level M̄ right before the shock

at time t = 0. Using that the labor market is frictionless, so households are in their labor

supply, this implies that output can we written as function or real wages, which using a first

order approximation can we written as:

log
c(t)

c̄
=

1

ǫ

(

δ − log
P (t)

P̄ (t)

)

(44)

where c̄ is the constant flexible price equilibrium output and where P (t) is the ideal price

index at time t ≥ 0 and P̄ (t) is the path of the price level in the steady state before the

shock, with P̄ (t) = eπtP̄ for all t ≥ 0.

A.3 Impulse Responses and Price Gaps

Finally, note that to study the response of output and the price level to a cost shock (or a

monetary shock), under the structure developed in this section, one only needs to focus on

the distribution of price gaps. First, recall that it can be shown that:

log
P (t)

P̄ (t)
= δ +

∫ 1

0

(

1

n

n
∑

i=1

(gki(t)− g̃ki)

)

dk (45)

+

∫ 1

0

(

n
∑

i=1

o(||pki(t)− p̃ki(t)||)
)

dk.

So, the effect over the price level depends, up to first order, on price gaps of the firms. These

price gaps in turn depend of the current price and of the frictionless optimal price. Second, in

addition, equation (41) implies that to study the optimal price setting each firm can regard

its objective function to be quadratic and ignore all the other general equilibrium effects.
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Third, since wages adjust on impact, we can simple reset every single firm price gap to be

δ smaller log points, and track its aggregate effect keeping the same optimal rules than in

steady state. Finally, consumption is related to the price level by equation (44).

B Proofs

Proof. (of Lemma 1) Here we use that the invariant density of Brownian motion is continuous

on the (closure) of the inaction set, i.e. on {g ∈ Rn : b(g) ≤ 0}. This continuity follows

as long as σ > 0. Our proof strategy is to fix a boundary given by the function b(·; ∆),

and considers a discrete time, discrete state representation, with a time period of length ∆.

We write b(g; ∆) so that in the discrete time version we let b(g; ∆) > 0 for any point that is

outside the inaction set and b(g; ∆) ≤ 0 for those inside. In particular we develop the discrete

time version of the Kolmogorov forward equation for the density, i.e. a difference equation in

the probabilities evaluated finitely many values of g, denoted by f(g; ∆). We establish that

for a value of g for which b(g) = 0, then lim∆↓0 f(g; ∆) = 0.

We will consider a discrete time discrete state space representation of the vector of price

gaps. Time periods are of length ∆ and thus given by t = s∆ for non-negative integers

s = 1, 2, . . . . The state space is given by an equally space grid with the same step size

σ
√
∆ in each of the n dimensions. Thus in each dimension the price gap takes the values

j σ
√
∆ for the integers j = 0,±1,±2, . . . . To describe the law of motion of {g(t)} we will

use n + 2 random variables in each period. These random variables are i.i.d. trough time,

and independent of each other. The first two random variable q(t) is used to model the

importance of the common component relative to the idiosyncratic component of the price

gap. The variable w̄(t) is used to model the innovations on the common component of each

price gap. The remaining n random variables {w̃it}ni=1 are used to model the innovations

on the idiosyncratic component of each of the n price gaps. The distribution of the random

variables are:

q(t) =







0 with probability 1− ̺

1 with probability ̺

The random variable w̄(t) is distributed as:

w̄(t) =







+1 with probability 1
2

[

1− π
√
∆

σ

]

−1 with probability 1
2

[

1 + π
√
∆

σ

]
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and for each i = 1, . . . , n we have that each of the random variables wi(t) are distributed as:

w̃i(t) =







+1 with probability 1
2

[

1− π
√
∆

σ

]

−1 with probability 1
2

[

1 + π
√
∆

σ

]

Thus we have that each price gap i = 1, . . . , n has changes given by:

gi(t+∆)− gi(t) =
√
∆ σ [ q(t+∆) w̄(t+∆) + (1− q(t+∆)) w̃i(t+∆) ]

In words: with probability ̺ the price gaps of all products i = 1, 2, . . . , n move either all

up all down together. With probability 1 − ̺ the ups and down movement are independent

across products. In the case of an up or a down movements the steps are always of the

same size, but the probabilities of the up and down are adjusted away from 1/2 to take the

negative drift into account. With these definitions we have:

E [gi(t+∆)− gi(t)] = −π∆ for all i = 1, 2, . . . , n,

E
[

(gi(t +∆)− gi(t))
2] = σ2∆ for all i = 1, 2, . . . , n,

E [(gi(t+∆)− gi(t)) (gj(t+∆)− gj(t))] = ̺ σ2∆ for all i 6= j = 1, 2, . . . , n.

Take any g′ 6= g∗, so that g′ is not the optimal return point. Then the mass in g comes

from adjacent points in the state space which belong to the inaction set, i.e.:

f (g′; ∆) = (46)
∑

{g : g′i = gi±
√
∆σ , i=1,...,n}

f (g; ∆) 1{b(g;∆)≤0} Pr
{

g′1 = g1 ±
√
∆σ, · · · , g′n = gn ±

√
∆σ
}

The indicator makes sure that only mass that comes from points within the range of inaction

can transit from g to g′. Note that at most mass could come from 2n different points, since

in each dimension gi could have either increase or decrease.

The same steps than for the one dimensional case apply to the general n > 1 dimensional

case. For simplicity we concentrate first on the case of independence shocks across the

products. In this case, we will take a value of g′ for which b(g′; ∆) = 0. For ∆ > 0 but small

enough, there will be some state g for which g′i = gi±
√
∆σ and for which b(g) > 0. In words,

the point g′ of the state space has fewer than 2n adjacent points that belong to the range of

inaction that can move to g′ in exactly one time period of length ∆. We thus have that if
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b(g′; ∆) = 0 then #
{

g : g′i = gi ±
√
∆σ
}

< 2n.

f(g′; ∆) ≤ (1− ̺)

(

1

2

[

1 +
π
√
∆

σ

])n
∑

{g : g′i = gi±
√
∆σ ,i=1,...,n}

f (g; ∆) 1{b(g;∆)≤0}

+ ̺

[

1 +
π
√
∆

σ

]

[

f
(

g′ −
√
∆σ; ∆

)

+ f
(

g′ +
√
∆σ; ∆

)]

There are two reasons for the inequality. The first is that we use for all changes the one

with higher probability, the down step. The second is that we disregard the possibility that

b(g) > 0 when either all the price gaps move up or down together (so there is no indicator in

the second term of the right hand side). For small enough ∆ we have:

∑

{g : g′i = gi±
√
∆σ , i=1,...,n}

1{b(g;∆)≤0} ≤ 2n − 1

so that there is at least one state which uncontrolled will move to g′ but that it doesn’t

belong to the inaction set. Thus taking limits:

lim
∆↓0

∑

{g : g′i = gi±
√
∆σ ,i=1,...,n}

1{b(g;∆)≤0} ≤ 2n − 1

Moreover for those g for which g′i = gi ±
√
∆σ for all i = 1, . . . , n we have, by the assumed

continuity of the density in the closure of the range of inaction, that:

lim
∆↓0

f
(

g′1 ±
√
∆σ, . . . , g′n ±

√
∆σ; ∆

)

= lim
∆↓0

f(g′; ∆) = f(g′)

Hence we have that taking limits on equation (46) for values of g′ for which b(g′; ∆) = 0:

f(g′) = lim
∆↓0

f(g′; ∆)

≤ (1− ̺) lim
∆↓0

(1− ̺)

(

1

2

[

1 +
π
√
∆

σ

])n
∑

{g : g′i = gi±
√
∆σ}

f (g; ∆) 1{b(g;∆)≤0}

+ ̺
1

2
lim
∆↓0

[

f
(

g′ −
√
∆σ; ∆

)

+ f
(

g′ +
√
∆σ; ∆

)]

= ̺ f(g′) + (1− ̺) f(g′)

(

1

2

)n

(2n − 1)

= f(g′)

[

1− (1− ̺)

(

1

2

)n]
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or f(g′) ≤ f(g′)
[

1− (1− ̺)
(

1
2

)n]
which again requires that f(g′) = 0. �

Proof. (of Lemma 2) To establish the desired result in the general multi-product case we

first develop an expression for and upper bound of I(δ), denoted by Ī(δ). We will show that

I(0) = Ī(0), that I(δ) ≤ Ī(δ) and that Ī ′(0) = 0, which implies the desired result I ′(0) = 0.

Instead he upper bound function Ī(δ) is given by:

Ī(δ) = n

∫ ∞

−∞
· · ·
[

∫ ∞

−∞

[

∫ g(g1−δ,g2−δ,...,gn−1−δ)+δ

g(g1−δ,g2−δ,...,gn−1−δ)

f(g1, g2, . . . , gn)dgn

]

dgn−1 · · ·
]

dg1

where the set Gn−1 and the function g : Gn−1 → R are defined as:

Gn−1 ≡
{

g1, g2, . . . , gn−1 ∈ R
n−1 : ∃ gn ∈ R such that (g1, g2, g3, ..., gn) ∈ I

}

g(g1, g2, . . . , gn−1) ≡ min
x

{x : (g1, g2, . . . , gn−1, x) ∈ I} for (g1, g2, . . . , gn−1) ∈ Gn−1

Ī(δ) as n times the number of firms that adjust its price on impact because one price has

gotten below the lower sS bound (for simplicity we have taken this to be the n price gap, but

given exchangeability it does not matter which one it is) . The reason why Ī(δ) in an upper

bound of I(δ) is that in Ī there is some double counting. The double counting comes from

the fact that for some values of g there may have been lower boundaries corresponding to

more than one price gap that are crossed after the shock δ. This establishes that I(δ) ≤ Ī(δ).

That Ī(0) = 0 it follows directly from its definition, since the last intergral is performed in a

degenerate interval if δ = 0. Finally we have:

Ī ′(δ) = n

∫ ∞

−∞
· · ·
[

∫ ∞

−∞

[

∂

∂δ

∫ g(g1−δ,g2−δ,...,gn−1−δ)+δ

g(g1−δ,g2−δ,...,gn−1−δ)

f(g1, g2, . . . , gn)dgn

]

dgn−1 · · ·
]

dg1

with

∂

∂δ

∫ g(g1−δ,g2−δ,...,gn−1−δ)+δ

g(g1−δ,g2−δ,...,gn−1−δ)

f(g1, g2, . . . , gn)dgn

= f
(

g1, g2, . . . , g (g1 − δ, g2 − δ, . . . , gn−1 − δ)
)

which equals zero when evaluated at δ = 0, since f
(

g1, g2, . . . , g (g1, g2, . . . , gn−1)
)

is the

density at the boundary o f the range of inaction. Thus Ī ′(0) = 0. �
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C Random observation cost

In this appendix we describe the set-up for observation cost and signals.

The timeline in Figure 2 describes the structure of the observation cost ψo, the associated

signal ζ and production cost z = (z1, . . . , zn) that occurs at the time τi and at the time of

the next observation τi+1, which is min {ti, si} periods after the current observation τi. In

another words, ti is decided at τi.

Immediately after paying the observation cost at time τi, the firm learns the current value

of (z1, . . . , zn) and receives a signal ζ which is informative about the future realizations of

the observation cost ψ′
o. Recall that at time τi the firm decides its planned elapsed time until

the next observation ti. Recall that the firm also reviews at an exogenous exponentially

distributed time si with parameter λ. Thus the time elapsed until next observation will

occur at the earliest time between si, which is a random variable, or ti, which as of time τi is

decided, and thus known, i.e. non-random. Summarizing the time for the i + 1 observation

is given by τi +min {si ,ti}.
The signal ζ summarizes all the information about the value of the observation cost to

be paid T = min {si ,ti} periods from now. Mathematically we write F (ψ′
o ;T |ζ) to be the

CDF of the observation cost ψ′
o to be paid T periods after the current observation, conditional

on the signal ζ . The dependence of the distribution F on T allows the distribution of the

observation cost ψ′
o to vary with the time elapsed between observations. The functions F

and G fully characterize the process for the observation cost, and provide enough flexibility

to cover cases discussed in the literature as well as generalizations that we find useful. The

expected observation cost is the key input to decide t.

Upon the next observation, when a particular cost ψ′
o is realized, a new signal ζ ′ is

drawn from the CDF G(·|ψ′
o). The other key input to decide t is the distribution of zj(τi+1)

conditional on z(τi), which, given the assumption that the log of {zj} are random walks,

we can summarize them as L(· ; T | z). These distributions allows to compute the benefit of

gathering information, i.e. of choosing a small value of ti.

In this set-up we can obtain several of the cases analyzed in the literature. For instance,

the model of deterministic observation times studied by Caballero (1989) and Reis (2006) is

encompassed by our framework if the signal is uninformative about the future observation

cost, which is the case if F (ψ′
o, T0 | ζ0) = F (ψ′

o, T1 | ζ1) for all ψ′
o and all pairs (T0, ζ0). In

this case, the distribution G is irrelevant because, given that the signal is uninformative, the

mechanism to obtain the new signal is irrelevant.

Another case discussed in the literature is one where the firm’s observation times are i.i.d.,

as proposed by Reis (2006). This setup provides a foundation to i.i.d. observation times: the
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Figure 2: Time line

τi

pay observation cost ψo

learn production costs (z1, . . . , zn)

learn signal ζ

choose planned ti

τi+1 = min {si,ti}+ τi

time between observations T ≡ min {si,ti}
draw z′j ∼ L(· ; T | z) for j = 1, . . . , n

draw ψ′
o ∼ F (· ; T | ζ)

draw ζ ′ ∼ G(· |ψ′
o)

firm has to draw a signal about the future observation cost that is both informative about

the next observation cost and independent of all other shocks (including the current value

of the observation cost). In this case, the particular form of the distribution G is relevant.

Formally, observation times are i.i.d. in our model if and only if G
(

ζ | ψ̃o

)

= G
(

ζ | ψ̄o

)

for

all ζ and all pairs ψ̃o, ψ̄o. The distribution F shapes the precision of the signal. Finally, the

more general case where G
(

ζ | ψ̃o

)

6= G
(

ζ | ψ̄o

)

for at least some ζ and some pairs ψ̃o, ψ̄o

allows us to extend our analysis to the case of observation times correlated over time, a case

which we find more reasonable than the i.i.d. assumption.

D Time and State dependent firm’s problem

In the multi-product Calvo+ model the firms solves:

max
{τi,∆Pj(τi),j=1,...,n,i=1,2,...,}

E

[
∫ ∞

0

e−rtΠ (P1(t), ..., Pn(t), Z1(t), ..., Zn(t) , W (t) ; c(t)) dt

−
∞
∑

i=1

e−rτi ψm 1{dU(τi)=1}W (τi)

]

(47)

Pj(t) = Pj(τi) for all t ∈ (τi, τi+1] and ∆Pj(τi) = lim
ǫ↓0

Pj(τi + ǫ)− Pj(τi)

where {U(t)} is a Poisson process w/intensity λ.
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In the problem with observation and menu cost the firm solves

max
{ti, a(τi),∆Pj(τi), j=1,...,n,i=1,2,...}

E

[
∫ ∞

0

e−rtΠ (P1(t), ..., Pn(t), Z1(t), ..., Zn(t) , W (t); c(t)) dt

−
∞
∑

i=1

e−rτi ψo [1 + a(τi)ψm]W (τi)

]

(48)

where τi+1 = ti + τi where ti is the time between observations,

ti and a(τi) ∈ {0, 1} only depend on information gathered at τ0, τ1, . . . , τi ,

Pj(t) = Pj(s) for all s, t ∈ (τi, τi+1) and

∆Pj(τi) =







limǫ↓0 Pi(τi + ǫ)− Pi(τi) if a(τi) = 1

0 if a(τi) = 0

We simplify the problem assuming that both observation and menu costs are non-random.

E Tradeoff of sticky price models around zero inflation.

In all the micro-founded models we consider the nominal price upon adjustment is reset at

the optimal price maximizing level, i.e. the price gap is “closed”, so that the size of the price

adjustment is equal to (minus) the price gap, or ∆gi = −∆ logPi. In this broad class of

models we have that the following property holds for any decision rules and n ≥ 1:

N(∆pi; 0) V ar(∆pi; 0) = σ2 , and
∂

∂π
[N(∆pi; π) V ar(∆pi; π)]

∣

∣

π=0
= 0 (49)

which states that the total number of price adjustments per period denoted by N(∆pi; π)

times the variance of the size of price changes, V ar(∆pi; π) equals the variance of the innova-

tions to the price gaps σ2. This equation, which holds for any policy for inflation around zero,

which end up closing the price gap upon adjustments (even non-optimal policies) highlights

the key tradeoff of a sticky price problem, that between the frequency of costly adjustments,

or information gathering, versus the mean deviation of nominal prices from their optimal

level.

F Sensitivity of impact effect to inflation

In this section we derive the case of a state dependent model with one good n = 1. We

explicitly write the barriers and the optimal return point as function of inflation, for a given
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σ > 0. At zero inflation we have: ḡ(0) = −g(0) > − and g∗(0) = 0. We will like to obtain

an expansion of I(δ, π). We have

I(δ; π) = f(g(π); π) δ +
1

2
f ′(g(π); π) δ2 +

1

6
f ′′(g(π); π) δ3 + o(δ3)

=
1

2
f ′(g(π); π) δ2 +

1

6
f ′′(g(π); π) δ3 + o(δ3)

where f ′ and f ′′ denote the derivatives of the density with respect to g, and where f ′
π and f ′′

π

denote the (cross) derivatives with respect to π. Note that at π = 0, f(·, 0) is linear so that

f ′′(g, 0) = 0. We thus have:

I(δ; π) = I(δ; 0) +
1

2

∂

∂π
f ′(g(0); 0) π δ2 + o

(

||(δ, π)||3
)

=
1

2
f ′(g(0); 0) δ2 +

1

2

∂

∂π
f ′(g(0); 0) π δ2 + o

(

||(δ, π)||3
)

=
1

2

1

g(0)2
δ2 +

1

2

∂

∂π
f ′(g(0); 0) π δ2 + o

(

||(δ, π)||3
)

To be more precise, the density depends on inflation directly, in the dependence of the

Kolmogorov forward equation on π:

0 = f ′(g; π, g, ḡ, g∗)π + f ′′(g; , g, ḡ, g∗)
σ2

2
for all g ∈ [g, ḡ], g 6= g∗ (50)

as well as, indirectly on g(π), ḡ(π) and g∗(π) which depend on π. We have:

∂

∂π
f ′(g(0); 0, g(0), ḡ(0), g∗(0)) = f ′′(g(0); 0) g′(0) + f ′

π(g(0); 0)

+ f ′
g(g(0); 0, g(0), ḡ(0), g

∗(0)) g′(0)

+ f ′
ḡ(g(0); 0, g(0), ḡ(0), g

∗(0)) ḡ′(0)

+ f ′
g∗(g(0); 0, g(0), ḡ(0), g

∗(0)) g∗′(0)

where we use that at π = 0 the density is linear in g, i.e.

f(g, 0) =
g − g(0)

g(0)2
for g ∈ [g(0), 0) (51)

and hence its derivative f ′ does not depend on g. Thus we have:

I(δ; π) =
1

2

1

g(0)2
δ2 +

1

2
f ′
π(g(0); 0) π δ

2 + o
(

||(δ, π)||3
)
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We first study the effect of inflation on f ′ keeping the thresholds g, ḡ and the optimal

return point g∗ fixed as we change inflation. Thus, we only study the direct effect of infla-

tion on f ′. To do this, we first determine f and its derivatives. The density f solves the

Kolmogorov forward equation at all g 6= g∗ = 0. Furthermore we use that the density is zero

at the exit points. Thus there must be two constants B and B̄:

f(g, a) =







B(a) (eag − eag) if g ∈ [g, g∗]

B̄(a) (eag − eaḡ) if g ∈ [g∗, ḡ]
(52)

where we use a to denote the non-zero root of the characteristic equation for the solution of

the KF equation:

a = −2π/σ2 . (53)

We describe the two equations for the constants B(a) and B̄(a). Continuity of the density

f(·, a) at g∗ = 0 gives

B(a)
(

eag
∗ − eag

)

= B̄(a)
(

eag
∗ − eaḡ

)

and integrates to one:

1 =

∫ ḡ

g

f(g, a)dg =

∫ g∗

g

B(a) (eag − eag) dg +

∫ ḡ

g∗
B̄(a) (eag − eaḡ) dg

We are interested in:

f ′(g(0); 0) = lim
a→0

B(a) a eag(0) =
1

g(0)2
and (54)

f ′
π(g(0); 0) = − 2

σ2
lim
a→0

∂

∂a
B(a) a eag(0)

∣

∣

a=0
(55)

Solving for B we have:

1 = B(a)

(

eag
∗ − eag

a
− eag(g∗ − g)

)

+ B̄(a)

(

eaḡ − eag
∗

a
− eaḡ(ḡ − g∗)

)

= B(a)

(

eag
∗ − eag

a
− eag(g∗ − g)

)

+B(a)

(

eag
∗ − eag

)

(eag∗ − eaḡ)

(

eaḡ − eag
∗

a
− eaḡ(ḡ − g∗)

)
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where we use that the density integrates to one and that it is continuous at zero. Then

1 = B(a)

{

eag
∗ − eag

a
− eag(g∗ − g) +

eag
∗ − eag

eag∗ − eaḡ

(

eaḡ − eag
∗

a
− eaḡ(ḡ − g∗)

)}

= −B(a)

{

eag(g∗ − g) +
eag

∗ − eag

eag∗ − eaḡ
eaḡ(ḡ − g∗)

}

= −B(a)

{

eag
∗ − eaḡ

eag∗ − eaḡ
eag(g∗ − g) +

eag
∗ − eag

eag∗ − eaḡ
eaḡ(ḡ − g∗)

}

= − B(a)

eag∗ − eaḡ
{(

eag
∗ − eaḡ

)

eag(g∗ − g) +
(

eag
∗ − eag

)

eaḡ(ḡ − g∗)
}

using that g = −ḡ and g∗ = 0 at π = 0:

1 = − B(a)

eag∗ − eaḡ
(ḡ − g∗)

{(

eag
∗ − eaḡ

)

eag +
(

eag
∗ − eag

)

eaḡ
}

= −B(a)
(ḡ − g∗)

eag∗ − eaḡ
{

eag
∗

eag − 1 + eag
∗

eaḡ − 1
}

= −B(a)
ḡ

1− eaḡ
{

e−aḡ − 1 + eaḡ − 1
}

or

B(a) = − (1− eaḡ)

ḡ (e−aḡ − 1 + eaḡ − 1)
< 0 since a < 0

We thus have:

ḡ2f ′(g, a) = C(α) ≡ ḡ2B(a) a e−aḡ = − α (e−α − 1)

(e−α − 1 + eα − 1)

= −
(

1

2

) −α2 + α3/2− α4/3! + · · ·
α2/2 + α4/4! + α6/6! + · · ·

= −
(

1

2

) −1 + α/2− α2/3! + · · ·
1/2 + α2/4! + α4/6! + · · ·

where α ≡ a ḡ < 0

Note that direct computation gives

C(0) = 1 and C ′(0) = −1

2
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Thus:

f ′(g, π) =
1

ḡ2
C

(

−2π

σ2
ḡ

)

→ 1

ḡ2
and

f ′
π(g, 0) = − 2 ḡ

σ2ḡ2
C ′ (0) =

1

σ2ḡ

G Accuracy of Proposition 2 in models with both menu

and observation costs

We numerically evaluate the accuracy of the approximation in Proposition 2 in models that

feature the simultaneous presence of a menu cost ψm > 0 as well as an observation cost

ψo > 0. The main parameter to be specified for this analysis is the ratio between the two

fixed costs: α ≡ ψm/ψo. Notice that for the special case of the observation cost only (ψm = 0

so that α = 0) as well as the special case of the menu cost only (ψo = 0 so that α → ∞), we

have supplied an analytic proof of the proposition in Alvarez, Le Bihan, and Lippi (2016) for

ψm > 0, ψo = 0 and in Alvarez, Lippi, and Paciello (2016) for ψo > 0, ψm = 0.

To analyze the problem with 0 < α < ∞ we use the decision rules derived in Alvarez,

Lippi, and Paciello (2011) and numerically compute the invariant distribution of firms in a

steady state. This is a joint density defined over the time until the next review and the

value of each firm price gap. We then develop the impulse response analysis by shocking

the steady state of the economy and computing the are under the impulse response. There

is essentially one parameter in this analysis, α, since the two fixed costs enter the problem

as a ratio and the policy functions are homogenous, so that the results only depend on the

ratios of particular moments (e.g. frequency of adjustment versus frequency of observation;

see Alvarez, Lippi, and Paciello (2011) for details). In practice, we normalize the value of

N = 1 in all the models we consider and vary α so that the models will generate different

steady state levels of kurtosis.

Figure 3 summarizes the results of our numerical analysis. The vertical axis plots the

ratio of the area under the output impulse, numerically computed, and the approximation

of the same object given by the ratio of the steady state moments Kurt(∆pi)/N(∆pi) as

suggested in Proposition 2. We consider a set of models where 0 < α < 5. The model uses

a weekly time period and a cross section of 100 thousand firms, and a monetary shock equal

to 1 per cent i.e. δ = 0.01. It appears that the numerical accuracy of the proposition is

within ±5% of the actual cumulative effect and, more importantly, that the accuracy does

not display a systematic variation with respect to α.
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Figure 3: Ratio between actual and approximate cumulative output effect
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H Additional data documentation

Table 9 reports more summary statistics for the countries used in the analysis. The criterion

for including a country-month observation in the sample is that the 60-month centered moving

average inflation in that month is below 8% (per year) and a per-capita GDP in that country-

month of at least $5,000 (PPP). Columns Mean Inf, Sd. Inf, Mean Dev, and Sd. Dev contain

the mean and standard deviation of inflation and exchange rate devaluations against the US

dollar in all months for which the country is included in the sample. Columns big5, big10,

big20, big30, and big40 indicate the number of months with devaluations of at least X%,

for X=5, 10, 20, 30, and 40, respectively. The number of country-month observations is

contained in column Obs.

Table 9: Countries and main descriptive statistics

Inflation Devaluation

Country Mean Inf Sd. Inf Mean Dev Sd. Dev big5 big10 big20 big30 big40 Obs.

Algeria 0.78 2.57 0.42 1.80 5 0 0 0 0 179

Austria 0.31 0.71 -0.12 2.64 19 2 0 0 0 503

Belgium 0.33 0.38 -0.04 2.69 23 3 0 0 0 503

Bolivia 4.49 14.38 8.61 81.36 14 13 12 11 10 374

Botswana 0.78 0.69 0.68 3.79 22 8 2 0 0 299

Brazil 5.72 9.16 5.43 9.38 111 56 18 11 3 270

Bulgaria 0.27 0.66 0.24 3.43 8 2 0 0 0 101

Burkina Faso 0.52 3.98 0.10 2.64 17 3 0 0 0 374

Burundi 0.89 2.20 0.45 3.02 6 4 1 1 0 195

Cameroon 0.71 1.72 0.14 3.13 17 3 0 0 0 266

Canada 0.31 0.40 0.05 1.69 6 1 0 0 0 700

Central African Republic 0.35 2.03 0.29 3.58 10 1 0 0 0 108

Chad 0.21 3.77 -0.07 3.49 6 0 0 0 0 77

Chile 0.21 0.38 0.03 3.23 3 1 0 0 0 77

China, P.R.: Hong Kong 0.37 0.77 0.11 0.92 2 0 0 0 0 415

Colombia 1.16 1.11 1.23 5.34 16 5 3 3 2 484

Costa Rica 0.77 1.36 0.63 5.67 14 6 4 3 2 486

Cote d’Ivoire 0.60 2.55 0.11 2.69 17 3 0 0 0 363

Croatia 2.21 7.09 1.96 7.45 33 21 16 4 1 256

Czech Republic 0.28 0.59 0.02 3.69 21 3 0 0 0 245

Denmark 0.39 0.60 0.04 3.01 36 4 0 0 0 581

Dominican Republic 0.72 1.88 0.70 10.70 10 5 1 1 1 460

Egypt 0.72 1.99 0.37 4.50 5 4 2 2 1 399

El Salvador 0.71 1.20 0.25 5.00 1 1 1 1 1 400

Ethiopia 0.53 2.36 -0.06 0.75 0 0 0 0 0 288

Finland 0.50 0.58 0.21 3.28 19 5 2 2 0 503

France 0.47 0.45 0.14 2.93 27 6 0 0 0 503
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Germany 0.21 0.33 0.17 3.21 8 1 0 0 0 96

Greece 0.82 1.35 0.51 2.51 24 5 0 0 0 527

Guatemala 0.56 2.04 0.46 7.59 3 2 2 1 1 400

Haiti 0.54 2.79 0.00 0.03 0 0 0 0 0 409

Honduras 0.42 1.01 0.00 0.07 0 0 0 0 0 400

Hungary 0.60 1.21 0.16 3.58 22 8 2 0 0 353

India 0.58 1.14 0.36 3.23 4 1 1 1 1 399

Indonesia 1.07 2.32 0.88 4.89 7 5 3 3 2 269

Iran, Islamic Republic of 0.88 1.60 0.32 4.96 3 1 1 1 1 448

Iraq 0.24 0.93 -0.01 0.05 0 0 0 0 0 51

Ireland 0.14 0.36 0.54 2.63 1 0 0 0 0 24

Israel 1.75 3.44 1.55 5.14 84 32 7 4 3 700

Italy 0.60 0.59 0.22 2.47 26 2 0 0 0 503

Jamaica 0.87 1.26 0.65 4.45 12 5 2 2 2 460

Japan 0.26 0.68 -0.12 2.71 23 2 0 0 0 699

Jordan 0.62 1.95 0.36 2.09 6 1 0 0 0 197

Kazakhstan 0.65 0.56 0.33 2.99 3 2 1 0 0 113

Kenya 0.85 1.21 0.45 2.10 6 3 0 0 0 268

Korea, Republic of 0.57 0.84 0.29 3.45 21 9 3 1 1 545

Kuwait 0.32 0.89 -0.01 0.94 0 0 0 0 0 495

Latvia 1.22 3.75 0.03 3.54 11 2 0 0 0 166

Lebanon 0.30 1.04 0.00 0.00 0 0 0 0 0 81

Libya 0.37 2.57 0.00 1.46 1 1 0 0 0 327

Lithuania 1.48 4.43 0.37 4.42 17 6 3 2 0 272

Macedonia, FYR 0.04 0.43 0.70 2.33 1 0 0 0 0 29

Madagascar 0.87 1.61 0.71 4.77 21 7 2 1 1 315

Malaysia 0.23 0.60 -0.02 1.46 3 0 0 0 0 520

Mali 0.14 1.25 0.14 3.69 4 0 0 0 0 34

Mauritania 0.59 2.64 0.10 2.11 1 0 0 0 0 54

Mexico 1.31 2.05 1.18 6.32 42 10 7 4 4 616

Montserrat 0.21 0.55 0.00 0.00 0 0 0 0 0 170

Morocco 0.46 1.03 0.26 2.34 13 3 0 0 0 399

Myanmar 1.08 2.84 0.05 2.07 4 2 1 1 0 574

Namibia 0.41 0.40 0.83 4.38 9 3 0 0 0 64

Nepal 0.69 2.00 0.44 2.54 5 4 1 1 0 322

Netherlands 0.33 0.69 -0.10 2.68 22 2 0 0 0 503

Niger 0.57 3.05 0.14 3.14 17 3 0 0 0 268

Nigeria 1.02 2.22 0.88 8.04 15 8 3 2 1 365

Norway 0.37 0.56 0.05 2.67 28 4 0 0 0 700

Oman 0.22 0.46 0.00 0.00 0 0 0 0 0 172

Pakistan 0.57 1.33 0.50 6.57 2 1 1 1 1 400

Panama 0.32 0.52 0.00 0.00 0 0 0 0 0 287

Paraguay 0.92 1.98 0.79 6.47 9 5 5 4 3 392

Peru 3.96 8.81 4.24 32.83 60 31 14 9 6 424
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Philippines 0.83 1.38 0.70 5.10 11 6 4 2 2 400

Poland 2.11 8.34 2.01 10.26 22 16 7 4 3 184

Portugal 0.83 1.24 0.39 2.66 22 5 1 0 0 503

Qatar 0.15 0.65 0.00 0.00 0 0 0 0 0 94

Romania 2.96 4.67 3.17 14.27 44 19 7 6 4 295

Russian Federation 0.76 0.61 0.61 4.67 12 6 2 0 0 124

Rwanda 0.65 1.83 0.27 6.01 3 2 1 1 1 302

Saudi Arabia 0.13 0.51 0.03 0.19 0 0 0 0 0 423

Senegal 0.64 2.56 0.15 3.13 17 3 0 0 0 269

Serbia, Republic of 0.59 0.82 0.71 4.75 11 4 1 0 0 101

Sierra Leone 0.51 -0.58 0 0 0 0 0 1

Singapore 0.22 0.80 -0.12 1.51 4 0 0 0 0 652

Slovak Republic 0.50 0.86 -0.17 2.87 5 1 0 0 0 156

Slovenia 0.92 1.53 0.71 3.80 18 2 1 1 0 182

South Africa 0.64 0.65 0.45 3.68 40 11 4 0 0 519

Spain 0.70 0.72 0.30 2.98 25 8 2 0 0 503

Sri Lanka 0.57 1.07 0.62 4.80 8 3 2 1 1 399

Sudan 1.31 4.12 0.66 6.75 5 5 4 3 3 387

Sweden 0.36 0.58 0.11 2.80 30 4 0 0 0 700

Switzerland 0.21 0.40 -0.17 3.01 33 4 0 0 0 700

Tanzania 1.04 0.48 1.21 1.47 0 0 0 0 0 3

Thailand 0.44 0.77 0.10 1.33 2 1 0 0 0 353

Togo 0.58 2.52 0.10 3.21 16 2 0 0 0 244

Tunisia 0.53 0.43 0.54 2.28 0 0 0 0 0 47

Turkey 1.91 2.48 1.78 7.07 47 9 5 3 2 389

United Arab Emirates 0.23 0.84 0.00 0.00 0 0 0 0 0 101

United Kingdom 0.22 0.43 0.10 2.80 17 4 0 0 0 329

United States 0.28 0.37 -0.27 1.51 0 0 0 0 0 431

Uruguay 2.72 2.91 2.61 10.17 56 19 7 5 4 532
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